Interpretable Seasonal Hidden Markov Model for spatio-temporal stochastic rain generation in France - Département de mathématiques appliquées
Pré-Publication, Document De Travail Année : 2024

Interpretable Seasonal Hidden Markov Model for spatio-temporal stochastic rain generation in France

Résumé

We present a Stochastic Weather Generator described based on a multisite Hidden Markov Model (HMM) and trained with French weather stations data. It generates correlated precipitation, with a special focus on seasonality and the correct reproduction of the distribution of dry and wet spells. The hidden states are viewed as global weather regimes, e.g., dry all over France, rainy in the north, etc. The resulting model is fully interpretable; it can even approximately recover large-scale structures such as North Atlantic Oscillations. The model achieves very good performances, specifically in terms of extremes. Its architecture allows easy integration of other weather variables. We show an application where the model is trained on future climate scenarios, allowing easy comparison and interpretation with the historical data in terms of parameters evolution and extremes.
Fichier principal
Vignette du fichier
template.pdf (5.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04621349 , version 1 (24-06-2024)
hal-04621349 , version 2 (24-09-2024)

Licence

Identifiants

  • HAL Id : hal-04621349 , version 2

Citer

Emmanuel Gobet, David Métivier, Sylvie Parey. Interpretable Seasonal Hidden Markov Model for spatio-temporal stochastic rain generation in France. 2024. ⟨hal-04621349v2⟩
168 Consultations
60 Téléchargements

Partager

More