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Introduction

L'objet de l'analyse numérique est de concevoir et d'étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de la modélisation de problèmes "réels", et dont on cherche à calculer la solution à l'aide d'un ordinateur. Le cours est structuré en quatre grands chapitres :

-Systèmes linéaires -Systèmes non linéaires -Optimisation -Equations différentielles.

On pourra consulter les ouvrages suivants pour ces différentes parties (ceci est une liste non exhaustive !) :

-A. Quarteroni, R. Sacco et F. Saleri, Méthodes Numériques : Algorithmes, Analyse et Applications, Springer

-P.G. Ciarlet, Introduction à l'analyse numérique et à l'optimisation, Masson, 1982, (pour les chapitre 1 à 3 de ce polycopié).

-M. Crouzeix, A.L. Mignot, Analyse numérique des équations différentielles, Collection mathématiques appliquées pour la maitrise, Masson, (pour le chapitre 4 de ce polycopié).

-J.P. Demailly, Analyse numérique et équations différentielles Collection Grenoble sciences Presses Universitaires de Grenoble -L. Dumas, Modélisation à l'oral de l'agrégation, calcul scientifique, Collection CAPES/Agrégation, Ellipses, 1999.

-E. Hairer, polycopié du cours "Analyse Numérique", http ://www.unige.ch/ hairer/polycop.html -J. Hubbard, B. West, Equations différentielles et systèmes dynamiques, Cassini.

-J. Hubbard et F. Hubert, Calcul Scientifique, Vuibert.

-P. Lascaux et R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur, tomes 1 et 2, Masson, 1987 -L. Sainsaulieu, Calcul scientifique cours et exercices corrigés pour le 2ème cycle et les éécoles d'ingénieurs, Enseignement des mathématiques, Masson, 1996.

-M. Schatzman, Analyse numérique, cours et exercices, (chapitres 1,2 et 4).

-D. Serre, Les matrices, Masson, (2000). (chapitres 1,2 et 4).

-P. Lascaux et R. Theodor, Analyse numérique sappliquée aux sciences de l'ingénieur, Paris, (1994) -R. Temam, Analyse numérique, Collection SUP le mathématicien, Presses Universitaires de France, 1970.

Et pour les anglophiles...

-M. Braun, Differential Equations and their applications, Springer, New York,1984 (chapitre 4).

-G. Dahlquist and A. Björck, Numerical Methods, Prentice Hall, Series in Automatic Computation, 1974, Englewood Cliffs, NJ.

Chapitre 1

Systèmes linéaires 1.1 Objectifs

On note M n (IR) l'ensemble des matrices carrées d'ordre n. Soit A ∈ M n (IR) une matrice inversible et b ∈ IR n , l'objectif est de résoudre le système linéaire Ax = b, c'est-à-dire de trouver x solution de :

x ∈ IR n Ax = b (1.1)
Comme A est inversible, il existe un unique vecteur x ∈ IR n solution de (1.1). Nous allons étudier dans les deux paragraphes suivants des méthodes de calcul de ce vecteur x : la première partie de ce chapitre sera consacrée aux méthodes "directes" et la deuxième aux méthodes "itératives". Nous aborderons ensuite en troisième partie les méthodes de résolution de problèmes aux valeurs propres. Un des points essentiels dans l'efficacité des méthodes envisagées concerne la taille des systèmes à résoudre. La taille de la mémoire des ordinateurs a augmenté de façon drastique de 1980 à nos jours. Le développement des méthodes de résolution de systèmes linéaires est liée à l'évolution des machines informatiques. C'est un domaine de recherche très actif que de concevoir des méthodes qui permettent de profiter au mieux de l'architecture des machines (méthodes de décomposition en sous domaines pour profiter des architectures parallèles, par exemple). Dans la suite de ce chapitre, nous verrons deux types de méthodes pour résoudre les systèmes linéaires : les méthodes directes et les méthodes itératives. Pour faciliter la compréhension de leur étude, nous commençons par quelques rappels d'algèbre linéaire.

Pourquoi et comment ?

Nous donnons dans ce paragraphe un exemple de problème dont la résolution numérique recquiert la résolution d'un système linéaire, et qui nous permet d'introduire des matrices que nous allons beaucoup étudier par la suite. Nous commençons par donner ci-après après quelques rappels succincts d'algèbre linéaire, outil fondamental pour la résolution de ces systèmes linéaires.

Quelques rappels d'algèbre linéaire

Quelques notions de base Ce paragraphe rappelle des notions fondamentales que vous devriez connaître à l'issue du cours d'algèbre linéaire de première année. On va commencer par revisiter le produit matriciel, dont la vision combinaison linéaire de lignes est fondamentale pour bien comprendre la forme matricielle de la procédure d'élimination de Gauss. On peut écrire les matrices A et B sous forme de lignes (notées ℓ i ) et colonnes (notées c j ) :

A =   ℓ 1 (A) . . . ℓ n (A)   et B = c 1 (B) . . . c n (B)
Dans nos exemples, on a donc

ℓ 1 (A) = 1 2 , ℓ 2 (A) = 0 1 , c 1 (B) = -1 3 c 2 (B) = 0 2 .
L'expression (1.2) s'écrit encore m i,j = ℓ i (A)c j (B), qui est le produit d'une matrice 1 × n par une matrice n × 1, qu'on peut aussi écrire sous forme d'un produit scalaire :

m i,j = (ℓ i (A)) t • c j (B)
où (ℓ i (A)) t désigne la matrice transposée, qui est donc maintenant une matrice n × 1 qu'on peut identifier à un vecteur de IR n . C'est la technique "habituelle" de calcul du produit de deux matrices. On a dans notre exemple :

m 1,2 = ℓ 1 (A) c 2 (B) = ℓ 1 (A) c 2 (B) = 1 2 0 2 = (ℓ i (A)) t • c j (B) = 1 2 • 0 2 = 4.
Mais de l'expression (1.2), on peut aussi avoir l'expression des lignes et des colonnes de M = AB en fonction des lignes de B ou des colonnes de A :

ℓ i (AB) = n k=1 a i,k ℓ k (B) (1.3) c j (AB) = n k=1 b k,j c k (A) (1.4) 
Dans notre exemple, on a donc :

ℓ 1 (AB) = -1 0 + 2 3 2 = 5 4
ce qui montre que la ligne 1 de AB est une combinaison linéaire des lignes de B. Le colonnes de AB, par contre, sont des combinaisons linéaires de colonnes de A. Par exemple :

c 2 (AB) = 0 1 0 + 2 2 1 = 4 2
Il faut donc retenir que dans un produit matriciel AB,

Analyse numérique I, télé-enseignement, L3 Cette remarque est très importante pour la représentation matricielle de l'élimination de Gauss : lorqu'on calcule des systèmes équivalents, on effectue des combinaisons linéaires de lignes, et donc on multiplie à gauche par une matrice d'élimination.

Il est intéressant pour la suite de ce cours de voir ce que donne la multiplication d'une matrice par une matrice de permutation.

Commençons par une exemple. Soit P et A des matrices carrées d'ordre 2 définies par

P = 0 1 1 0 , A = a b c d , P A = c d a b , AP = b a d c .
La multiplication de A par la matrice P échange les lignes de A lorqu'on multiplie A par P à gauche, et elle échange les colonnes de A lorqu'on multiplie A par P à droite. Noter que ceci montre d'ailleurs bien que le produit matriciel n'est pas commutatif. . . La matrice P s'appelle matrice de permutation. Les matrices de permutation auront un fort rôle à jouer dans l'élaboration d'algorithmes de résolution des systèmes linéaires (voir l'algorithme de Gauss avec pivot partiel).

De manière plus générale, on peut définir une matrice de permutation de la façon suivante :

Définition 1.1 (Matrice de permutation). Soit n ∈ IN et soient i, j ∈ {1, . . . , n}. On notera P (i↔j) ∈ M n (IR) la matrice telle que :

1. Si i = j, P (i↔j) = Id n , 2. Si i = j, p La matrice P (i↔j) est alors appelée matrice de permutation élémentaire. Une matrice de permutation est définie comme le produit d'un nombre fini de permutations élémentaires.

Remarquons qu'une matrice de permutation possède alors n termes égaux à 1, et tous les autres égaux à 0, tels que chaque ligne et chaque colonne comprenne exactement l'un des termes égaux à 1 (pour les amateurs de jeu d'échecs, ces termes sont disposés comme n tours sur un échiquier de taille n × n telles qu'aucune tour ne peut en prendre une autre). Pour toute matrice A ∈ M n (IR) et toute matrice de permutation P , la matrice P A est obtenue à partir de A par permutation des lignes de A, et la matrice AP est obtenue à partir de A par permutation des colonnes de A. Dans un système linéaire Ax = b, on remarque qu'on ne change pas la solution x si on permute des lignes, c'est à dire si l'on résout P Ax = P b. Notons que le produit de matrices de permutation est évidemment une matrice de permutation, et que toute matrice de permutation P est inversible et P -1 = P t (voir exercice 2).

Le tableau 1.1 est la traduction littérale de "Linear algebra in a nutshell", par Gilbert Strang 1 Pour une matrice carrée A, on donne les caractérisations du fait qu'elle est inversible ou non. On rappelle pour une bonne lecture de ce tableau les quelques définitions suivantes (pour le cas ou il y aurait des notions que vous avez oubliées ou que vous ne maîtrisez pas bien).

Définition 1.2 (Pivot). Soit A ∈ M n (IR) une matrice carrée d'ordre n. On appelle pivot de A le premier élément non nul de chaque ligne dans la forme échelonnée de A obtenue par élimination de Gauss. Si la matrice est inversible, elle a donc n pivots (non nuls). (D2) Si la matrice à est obtenue à partir de A par échange de deux lignes, alors det à = -detA.

(D3) Le déterminant est une fonction linéaire de chacune des lignes de la matrice A.

(D3a) (multiplication par un scalaire) si à est obtenue à partir de A en multipliant tous les coefficients d'une ligne par λ ∈ IR, alors det( Ã) = λdet(A).

(D3b) (addition

) si A =         ℓ 1 (A) . . . ℓ k (A) . . . ℓ n (A)         , Ã =         ℓ 1 (A) . . . lk (A) . . . ℓ n (A)         et B =         ℓ 1 (A) . . . ℓ k (A) + lk (A) . . . ℓ n (A)        
, alors det(B) = det(A) + det( Ã).

On peut déduire de ces trois propriétés fondamentales un grand nombre de propriétés importantes, en particulier le fait que det(AB) = detA detB et que le déterminant d'une matrice inversible est le produit des pivots : c'est de cette manière qu'on le calcule sur les ordinateurs. En particulier on n'utilise jamais la formule de Cramer, beaucoup trop coûteuse en termes de nombre d'opérations.

On rappelle que si A ∈ M n (IR) une matrice carrée d'ordre n, les valeurs propres sont les racines du polynôme caractéristique P A de degré n, qui s'écrit :

P A (λ) = det(A -λI).
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Définition 1.5 (Matrices symétriques et symétriques définies positives). Soit A = (a i,j ) 1≤i,j≤n ∈ M n (IR) une matrice carrée d'ordre n.

On dit que la matrice A est symétrique si a i,j = a j,i pour tout (i, j) 1 ≤ i, j ≤ n.

On dit que la matrice A est symétrique définie positive (s.d.p.) si elle est symétrique et si elle vérifie de plus Ax • x ≥ 0 pour tout x ∈ IR n et [Ax • x = 0 =⇒ x = 0 pour tout x ∈ IR n ].

On dit que la matrice A est symétrique semi-définie positive (s.d.p.) si elle est symétrique et si elle vérifie Ax•x ≥ 0 pour tout x ∈ IR n .

Matrices diagonalisables

Un point important de l'algèbre linéaire, appelé "réduction des endomorphismes" dans les programmes français, consiste à se demander s'il existe une base de l'espace dans laquelle la matrice de l'application linéaire est diagonale ou tout au moins triangulaire (on dit aussi trigonale).

Définition 1.6 (Matrice diagonalisable dans IR). Soit A une matrice réelle carrée d'ordre n. On dit que A est diagonalisable dans IR s'il existe une base (u 1 , . . . , u n ) de IR n et des réels λ 1 , . . . , λ n (pas forcément distincts) tels que Au i = λ i u i pour i = 1, . . . , n. Les réels λ 1 , . . . , λ n sont les valeurs propres de A, et les vecteurs u 1 , . . . , u n sont des vecteurs propres associés.

Vous connaissez sûrement aussi la diagonalisation dans C l : une matrice réelle carrée d'ordre n admet toujours n valeurs propres dans C l , qui ne sont pas forcément distinctes. Une matrice est diagonalisable dans C l s'il existe une base (u 1 , . . . , u n ) de C l n et des nombres complexes λ 1 , . . . , λ n (pas forcément distincts) tels que Au i = λ i u i pour i = 1, . . . , n. Ceci est vérifié si la dimension de chaque sous espace propre E i = ker(Aλ i Id) (appelée multiplicité géométrique) est égale a la multiplicité algébrique de λ i , c'est-à-dire son ordre de multiplicité en tant que racine du polynôme caractéristique.

Par exemple la matrice A = 0 0 1 0 n'est pas diagonalisable dans C l (ni évidemment, dans IR). Le polynôme caractéristique de A est P A (λ) = λ 2 , l'unique valeur propre est donc 0, qui est de multiplicité algébrique 2, et de multiplicité géométrique 1, car le sous espace propre associé à la valeur propre nulle est F = {x ∈ IR 2 ; Ax = 0} = {x = (0, t), t ∈ IR}, qui est de dimension 1.

Ici et dans toute la suite, comme on résout des systèmes linéaires réels, on préfère travailler avec la diagonalisation dans IR ; cependant il y a des cas où la diagonalisation dans C l est utile et même nécessaire (étude de stabilité des systèmes diférentiels, par exemple). Par souci de clarté, nous préciserons toujours si la diagonalisation considérée est dans IR ou dans C l . Notons que dans ce calcul, on a fortement utilisé la multiplication des matrices par colonnes, c.à.d.

ci(AB)

= n j=1
ai,jcj(B).

Remarquons que P est aussi la matrice définie (de manière unique) par P ei = ui, où (ei)i=1,...,n est la base canonique de IR n , c'est-à-dire que (ei)j = δi,j. La matrice P est appelée matrice de passage de la base (ei)i=1,...,n à la base (ui)i=1,...,n ; (il est bien clair que la i-ème colonne de P est constituée des composantes de ui dans la base canonique (e1, . . . , en). La matrice P est inversible car les vecteurs propres forment une base, et on peut donc aussi écrire :

P -1 AP = diag(λ1, . . . , λn) ou A = P diag(λ1, . . . , λn)P -1 .

La diagonalisation des matrices réelles symétriques est un outil qu'on utilisera souvent dans la suite, en particulier dans les exercices. Il s'agit d'un résultat extrêmement important. 

(f i | f j ) E = δ i,j ) et λ 1 , . . . , λ n dans IR tels que T (f i ) = λ i f i pour tout i ∈ {1 . . . n}.
Conséquence immédiate : Dans le cas où E = IR n , le produit scalaire canonique de x = (x 1 , . . . , x n ) t et y = (y 1 , . . . , y n ) t est défini par (x | y) E = x • y = n i=1 x i y i . Si A ∈ M n (IR) est une matrice symétrique, alors l'application T définie de E dans E par : T (x) = Ax est linéaire, et :

(T (x)|y) = Ax • y = x • A t y = x • Ay = (x | T (y)).
Donc T est linéaire symétrique. Par le lemme précédent, il existe (f 1 , . . . , f n ) et (λ 1 . . . λ n ) ∈ IR tels que T (f i ) = Af i = λ i f i ∀ i ∈ {1, . . . , n} et f i • f j = δ i,j , ∀ (i, j) ∈ {1, . . . , n} 2 .

Interprétation algébrique : Il existe une matrice de passage P de (e 1 , . . . , e n ) base canonique de IR n dans la base (f 1 , . . . , f n ) dont la i-ème colonne de P est constituée des coordonnées de f i dans la base (e 1 . . . e n ). On a :

Analyse numérique I, télé-enseignement, L3 1.2. POURQUOI ET COMMENT ? CHAPITRE 1. SYSTÈMES LINÉAIRES P e i = f i . On a alors P -1 AP e i = P -1 Af i = P -1 (λ i f i ) = λ i e i = diag(λ 1 , . . . , λ n )e i , où diag(λ 1 , . . . , λ n ) désigne la matrice diagonale de coefficients diagonaux λ 1 , . . . , λ n . On a donc :

P -1 AP =    λ i 0 . . . 0 λ n    = D.
De plus P est orthogonale, i. 

. f n-1 dans E tels que ∀ i ∈ {1 . . . n -1}, Sf i = T f i = λif i , et ∀i, j ∈ {1 . . . n -1}, f i • f j = δi,j. Et donc (λ1 . . . λn) et (f 1 , . . . , f n ) conviennent.

Discrétisation de l'équation de la chaleur

Dans ce paragraphe, nous prenons un exemple très simple pour obtenir un système linéaire à partir de la discrétisation d'un problème continu.

L'équation de la chaleur unidimensionnelle

Discrétisation par différences finies de -u ′′ = f Soit f ∈ C([0, 1], IR). On cherche u tel que

-u ′′ (x) = f (x) (1.5a) u(0) = u(1) = 0.
(1.5b)
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x 0 = 0 x 1 • • • x i = ih • • • u(x) u i x N +1 = 1 x x x x x
FIGURE 1.1: Solution exacte et approchée de -u ′′ = f Remarque 1.9 (Problèmes aux limites, problèmes à conditions initiales). L'équation différentielle -u ′′ = f admet une infinité de solutions. Pour avoir existence et unicité, il est nécessaire d'avoir des conditions supplémentaires. Si l'on considère deux conditions en 0 (ou en 1, l'origine importe peu) on a ce qu'on appelle un problème de Cauchy, ou problème à conditions initiales. Le problème (1.5) est lui un problème aux limites : il y a une condition pour chaque bord du domaine. En dimension supérieure, le problème -∆u = f nécessite une condition sur au moins "un bout" de frontière pour être bien posé : voir le cours d'équations aux dérivées partielles de master pour plus de détails à ce propos.

On peut montrer (on l'admettra ici) qu'il existe une unique solution u ∈ C 2 ([0, 1], IR). On cherche à calculer u de manière approchée. On va pour cela introduire la méthode de discrétisation dite par différences finies. Soit n ∈ IN * , on définit h = 1/(n + 1) le pas de discrétisation, c.à.d. la distance entre deux points de discrétisation, et pour i = 0, . . . , n + 1 on définit les points de discrétisation x i = ih (voir Figure 1.1), qui sont les points où l'on va écrire l'équation -u ′′ = f en vue de se ramener à un système discret, c.à.d. à un système avec un nombre fini d'inconnues u 1 , . . . , u n . Remarquons que x 0 = 0 et x n+1 = 1, et qu'en ces points, u est spécifiée par les conditions limites (1.5b). Soit u(x i ) la valeur exacte de u en x i . On écrit la première équation de (1.5a) en chaque point x i , pour i = 1 . . . n. -u ′′ (x i ) = f (x i ) = b i ∀i ∈ {1 . . . n}. (1.6) Supposons que u ∈ C 4 ([0, 1], IR) (ce qui est vrai si f ∈ C 2 ). Par développement de Taylor, on a :

u(x i+1 ) = u(x i ) + hu ′ (x i ) + h 2 2 u ′′ (x i ) + h 3 6 u ′′′ (x i ) + h 4 24 u (4) (ξ i ), u(x i-1 ) = u(x i ) -hu ′ (x i ) + h 2 2 u ′′ (x i ) - h 3 6 u ′′′ (x i ) + h 4 24 u (4) (η i ), avec ξ i ∈]x i , x i+1 [ et η i ∈]x i , x i+1 [.
En sommant ces deux égalités, on en déduit que :

u(x i+1 ) + u(x i-1 ) = 2u(x i ) + h 2 u ′′ (x i ) + h 4 24 u (4) (ξ i ) + h 4 24 u (4) (η i ).

On définit l'erreur de consistance, qui mesure la manière dont on a approché -u ′′ (x i ) ; l'erreur de consistance R i au point x i est définie par

R i = u ′′ (x i ) - u(x i+1 ) + u(x i-1 ) -2u(x i ) h 2 .
(1.7)
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On a donc :

|R i | = - u(x i+1 ) + u(x i-1 ) -2u(x i ) h 2 + u ′′ (x i ) ≤ h 2 24 u (4) (ξ i ) + h 2 24 u (4) (η i ) ≤ h 2 12 u (4) ∞ .
(1.8) où u (4) ∞ = sup x∈]0,1[ |u (4) (x)|. Cette majoration nous montre que l'erreur de consistance tend vers 0 comme h 2 : on dit que le schéma est consistant d'ordre 2.

On introduit alors les inconnues (u i ) i=1,...,n qu'on espère être des valeurs approchées de u aux points x i et qui sont les composantes de la solution (si elle existe) du système suivant, avec b i = f (x i ),

- u i+1 + u i-1 -2u i h 2 = b i , ∀i ∈ 1, n , u 0 = u n+1 = 0.
(1.9) 

On cherche donc u =    u 1 . . .
       k i,i = 2
h 2 , ∀ i = 1, . . . , n, k i,j = -1 h 2 , ∀ i = 1, . . . , n, j = i ± 1, k i,j = 0, ∀ i = 1, . . . , n, |i -j| > 1.

(1.10) On remarque immédiatement que K n est tridiagonale. On peut montrer que K n est symétrique définie positive (voir exercice 15 page 21), et elle est donc inversible Le système K n u = b admet donc une unique solution. C'est bien, mais encore faut il que cette solution soit ce qu'on espérait, c.à.d. que chaque valeur u i soit une approximation pas trop mauvaise de u(x i ). On appelle erreur de discrétisation en x i la différence de ces deux valeurs :

e i = u(x i ) -u i , i = 1, . . . , n.
(1.11)

Si on appelle e le vecteur de composantes e i et R le vecteur de composantes R i on déduit de la définition (1.7) de l'erreur de consistance et des équations (exactes) (1.6) que

K n e = R et donc e = K -1 n R.
(1.12)

Le fait que le schéma soit consistant est une bonne chose, mais cela ne suffit pas à montrer que le schéma est convergent, c.à.d. que l'erreur entre max i=1,...,n e i tend vers 0 lorsque h tend vers 0, parce que K n dépend de n (c'est-à-dire de h). Pour cela, il faut de plus que le schéma soit stable, au sens où l'on puisse montrer que K -1 n est borné indépendamment de h, ce qui revient à trouver une estimation sur les valeurs approchées u i indépendante de h. La stabilité et la convergence font l'objet de l'exercice 66, où l'on montre que le schéma est convergent, et qu'on a l'estimation d'erreur suivante :

max i=1...n {|u i -u(x i )|} ≤ h 2 96 u (4) ∞ .
Cette inégalité donne la précision de la méthode (c'est une méthode dite d'ordre 2). On remarque en particulier que si on raffine la discrétisation, c'est-à-dire si on augmente le nombre de points n ou, ce qui revient au même, si on diminue le pas de discrétisation h, on augmente la précision avec laquelle on calcule la solution approchée.

POURQUOI ET COMMENT ? CHAPITRE 1. SYSTÈMES LINÉAIRES L'équation de la chaleur bidimensionnelle

Prenons maintenant le cas d'une discrétisation du Laplacien sur un carré par différences finies. Si u est une fonction de deux variables x et y à valeurs dans IR, et si u admet des dérivées partielles d'ordre 2 en x et y, l'opérateur laplacien est défini par ∆u = ∂ xx u + ∂ yy u. L'équation de la chaleur bidimensionnelle s'écrit avec cet opérateur. On cherche à résoudre le problème :

-∆u = f sur Ω =]0, 1[×]0, 1[, u = 0 sur ∂Ω, (1.13) On rappelle que l'opérateur Laplacien est défini pour u ∈ C 2 (Ω), où Ω est un ouvert de IR 2 , par

∆u = ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 .
Définissons une discrétisation uniforme du carré par les points (x i , y j ), pour i = 1, . . . , M et j = 1, . . . , M avec x i = ih, y j = jh et h = 1/(M + 1), representée en figure 1.2 pour M = 6. On peut alors approcher les dérivées secondes par des quotients différentiels comme dans le cas unidimensionnel (voir page 12), pour obtenir un système linéaire : Les coefficients de A = (a k,ℓ ) k,l=1,n peuvent être calculés de la manière suivante :

Au
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Pour

i, j = 1, . . . , M, on pose k = j + (i -1)M, La matrice est donc tridiagonale par blocs, plus précisément si on note Matrices monotones, matrices inversibles dont l'inverse est à coefficients positifs Une propriété qui revient souvent dans l'étude des matrices issues de la discrétisation d'équations différentielles est le fait que si leur action sur un vecteur u donne un vecteur positif v (composante par composante) alors le vecteur u de départ doit être positif (composante par composante) ; on dit souvent que la matrice est "monotone", ce qui n'est pas un terme très évocateur. . . Dans ce cours, on lui préfèrera le terme "à inverse à coefficients positifs", ou ICP-matrice ; en effet, on montre à la proposition 1.11 qu'une matrice A est monotone si et seulement si elle est inversible et que son inverse a tous ses coefficients positifs.

a k,k = 4 h 2 , a k,k+1 = - 1 h 2 si j = M, 0 sinon, a k,k-1 = - 1 h 2 si j = 1, 0 sinon, a k,k+M = - 1 h 2 si i < M, 0 sinon, a k,k-M = - 1 h 2 si i > 1, 0 
D =            4 
Définition 1.10 (Matrice monotone). Si x ∈ IR n , on dit que x ≥ 0 [resp. x > 0] si toutes les composantes de x sont positives [resp. strictement positives].

POURQUOI ET COMMENT ? CHAPITRE 1. SYSTÈMES LINÉAIRES

Soit A ∈ M n (IR), on dit que A est une matrice monotone si elle vérifie la propriété suivante :

Si x ∈ IR n est tel que Ax ≥ 0, alors x ≥ 0, ce qui peut encore s'écrire : {x ∈ IR n t.q. Ax ≥ 0} ⊂ {x ∈ IR n t.q. x ≥ 0}.

Proposition 1.11 (Caractérisation des matrices monotones, ICP-matrice). Une matrice A est monotone si et seulement si elle inversible et à inverse à coefficients positifs (ou ICP) (c.à.d. dont l'inverse a tous ses coefficients sont positifs).

La démonstration de ce résultat est l'objet de l'exercice 14. Retenez que toute matrice monotone est une ICPmatrice. Cette propriété de monotonie peut être utilisée pour établir une borne de A -1 pour la matrice de discrétisation du Laplacien, dont on a besoin pour montrer la convergence du schéma. Elle est aussi importante pour montrer que des bornes physiques du modèle sont respectées par le schéma numérique. Pour n ≥ 1, on note Σ n l'ensemble des bijections de {1, . . . , n} dans lui-même (ces bijections s'appellent des permutations), et pour i = 1, . . . , on note E i ∈ M n,1 (IR) la matrice colonne dont tous les éléments sont nuls sauf le i-ème, qui est égal à 1. A tout élément σ ∈ Σ n , on associe la matrice P σ ∈ M n (IR) dont les colonnes sont E σ(1) , . . . , E σ(n) .

1. Dans cette question seulement, on suppose n = 2. Ecrire toutes les matrices de la forme P σ .

2. Même question avec n = 3.

3. Montrer que pour tout σ ∈ Σ n , P σ est une matrice de permutation. 4. Montrer que si P est une matrice de permutation, alors il existe σ ∈ Σ n tel que P = P σ .

Montrer que

P σ    x 1 . . . x n    =    x σ -1 (1) 
. . .

x σ -1 (n)    .
6. Montrer que si σ, σ ∈ Σ n , alors P σ P σ = P σ•σ . En déduire que le produit de 2 matrices de permutation est une matrice de permutation.

7. Montrer que pour tout σ ∈ Σ n , P σ -1 = (P σ ) t . En déduire que toute matrice de permutation est inversible, d'inverse sa transposée.

Exercice 3 (Théorème du rang). Corrigé en page 23.

Soit A ∈ M n,p (IR) (n, p ≥ 1). On rappelle que ker(A) = {x ∈ IR p ; Ax = 0}, Im(A) = {Ax, x ∈ IR p } et rang(A) = dim(Im(A)). Noter que ker(A) ⊂ IR p et Im(A) ⊂ IR n . Soit f 1 , . . . , f r une base de Im(A) (donc r ≤ n) et, pour i ∈ {1, . . . , r}, a i tel que Aa i = f i .

1. Montrer que la famille a 1 , . . . , a r est une famille libre de IR p (et donc r ≤ p).

2. On note G le sous espace vectoriel de IR p engendré par a 1 , . . . , a r . Montrer que IR p = G ⊕ ker(A). En déduire que (théorème du rang) p = dim(ker(A)) + dim(Im(A)).
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3. On suppose ici que n = p. Montrer que l'application x → Ax (de IR n dans IR n ) est injective si et seulement si elle est surjective.

Exercice 4 (rang(A)=rang(A t )). Corrigé en page 23.

Soit A ∈ M n,p (IR) (n, p ≥ 1).

1. Soient P une matrice inversible de M n (IR) et Q une matrice inversible de M p (IR). Montrer que dim(Im(P A)) = dim(Im(AQ)) = dim(Im(A)). Montrer aussi que les matrices P t et Q t sont inversibles. Soit f 1 , . . . , f r une base de Im(A) (donc r ≤ p) et, pour i ∈ {1, . . . , r}, a i tel que Aa i = f i . Soit a r+1 , . . . , a p une base de ker(A) (si ker(A) = {0}). La famille a 1 , . . . , a n est une base de IR p (voir question 1. de l'exercice 3). De même, on complète (si r < n) f 1 , . . . , f r par f r+1 , . . . , f n de manière à avoir une base f 1 , . . . , f n de IR n .

2. Montrer qu'il existe deux matrices P ∈ M p (IR) et Q ∈ M n (IR) telles que P e i = a i (pour tout i = 1, . . . , p) et Qf j = ēj (pour tout j = 1, . . . , n) ou e 1 , . . . , e p est la base canonique de IR p et ē1 , . . . , ēn est la base canonique de IR n . Montrer que P et Q sont inversibles.

On pose J = QAP .

3. calculer les colonnes de J et de J t et en déduire que les matrices J et J t sont de même rang.

Montrer que

A et A t sont de même rang.

5. On suppose maintenant que n = p. Montrer que les vecteurs colonnes de A sont liés si et seulement si les vecteurs lignes de A sont liés.

Exercice 5 (Décomposition de IR n à partir d'une matrice). Soit n ≥ 1 et A ∈ M n (IR).

1. On suppose que la matrice A est diagonalisable. Montrer que IR n = ker(A) ⊕ Im(A).

2. Donner un exemple pour lequel IR n = ker(A) ⊕ Im(A) (on pourra se limiter au cas n = 2).

Exercice 6 (Vrai ou faux ? Motiver les réponses. . . ). Suggestions en page 22, corrigé en page 24

On suppose dans toutes les questions suivantes que n ≥ 2.

1. Soit Z ∈ IR n un vecteur non nul. La matrice ZZ t est inversible.

2. La matrice inverse d'une matrice triangulaire inférieure est triangulaire supérieure.

3. Les valeurs propres sont les racines du polynôme caractéristique.

4. Toute matrice inversible est diagonalisable dans IR.

5. Toute matrice inversible est diagonalisable dans C l .

6. Le déterminant d'une matrice A est égal au produit de ses valeurs propres (comptées avec leur multiplicité et éventuellement complexes). 12. La fonction A → A -1 est continue de GL n (IR)(IR) dans GL n (IR)(IR) (GL n (IR) désigne l'ensemble des matrices carrées inversibles d'ordre n).

Exercice 7 (Sur quelques notions connues). Corrigé en page 24

Analyse numérique I, télé-enseignement, L3 Exercice 10 (La matrice K 3 ). Suggestions en page 22. Corrigé en page 25 Soit f ∈ C([0, 1], IR). On cherche u tel que

-u ′′ (x) = f (x), ∀x ∈ (0, 1), (1.15a) 
u(0) = u(1) = 0.

(1.15b)

1. Calculer la solution exacte u(x) du problèmes lorsque f est la fonction identiquement égale à 1 (on admettra que cette solution est unique), et vérifier que u(x) ≥ 0 pour tout x ∈ [0, 1]. On discrétise le problème suivant par différences finies, avec un pas h = 1 4 avec la technique vue en cours. 2. On suppose que u est de classe C 4 (et donc f est de calsse C 2 ). A l'aide de dévloppements de Taylor, écrire l'approximation de u ′′ (x i ) au deuxième ordre en fonction de u(x i ), u(x i-1 ) et u(x i+1 ). En déduire le schéma aux différences finies pour l'approximation de (1.15), qu'on écrira sous la forme :

K 3 u = b, (1.16) 
où K 3 est la matrice de discrétisation qu'on explicitera, u =

  u 1 u 2 u 3   et b =   b 1 b 2 b 3   =   f (x 1 ) f (x 2 ) f (x 3 )   .
3. Résoudre le système linéaire (1.16) par la méthode de Gauss. Lorsque f est la fonction identiquement égale à 1, comparer u i et u(x i ) pour i = 1, 2, 3, et expliquer pourquoi l'erreur de discrétisation u(x i )u i est nulle. 4. Reprendre les questions précédentes en remplaçant les conditions limites (1.15b) par : u(0) = 0, u ′ (1) = 0.

(1.17) 5. Soit c ∈ IR. On considère maintenant le problème suivant :

u ′′ (x) = c, ∀x ∈ (0, 1), (1.18a) Exercice 11 (Matrices symétriques définies positives). Suggestions en page 22, corrigé en page 26.

u ′ (0) = u ′ (1) = 0, (1.18b) 
On rappelle que toute matrice A ∈ M n (IR) symétrique est diagonalisable dans IR (cf. lemme 1.8 page 10). Plus précisément, on a montré en cours que, si A ∈ M n (IR) est une matrice symétrique, il existe une base de IR n , notée {f 1 , . . . , f n }, et il existe λ 1 , . . . , λ n ∈ IR t.q. Af i = λ i f i , pour tout i ∈ {1, . . . , n}, et f i • f j = δ i,j pour tout i, j ∈ {1, . . . , n} (x • y désigne le produit scalaire de x avec y dans IR n ). 1. Soit A ∈ M n (IR). On suppose que A est symétrique définie positive, montrer que les éléments diagonaux de A sont strictements positifs.

2. Soit A ∈ M n (IR) une matrice symétrique. Montrer que A est symétrique définie positive si et seulement si toutes les valeurs propres de A sont strictement positives.

3. Soit A ∈ M n (IR). On suppose que A est symétrique définie positive. Montrer qu'on peut définir une unique matrice B ∈ M n (IR), symétrique définie positive t.q. B 2 = A (on note B = A 1 2 ).

Exercice 12 (Résolution d'un système sous forme particulière). Suggestions en page 22.

Soit n ≥ 1, p ≥ 1, A ∈ M n (IR) et B ∈ M n,p (IR). On suppose que A est une matrice symétrique définie positive et que rang(B) = p (justifier que ceci implique que p ≤ n).

Pour i ∈ {1, . . . , p}, on pose z i = A -1 Be i où e 1 , . . . , e p désigne la base canonique de IR p (Be i est donc la i-ieme colonne de B).

1. Montrer que {Be i , i ∈ {1, . . . , p}} est une base de Im(B). On pose u = A -1 b et on note y 1 , . . . , y p les composantes de y. Exercice 13 (Diagonalisation dans IR).

Montrer que

Soit E un espace vectoriel réel de dimension n ∈ IN muni d'un produit scalaire, noté (•, •). Soient T et S deux applications linéaires symétriques de E dans E (T symétrique signifie (T x, y) = (x, T y) pour tous x, y ∈ E). On suppose que T est définie positive (c'est-à-dire (T x, x) > 0 pour tout x ∈ E \ {0}).

1. Montrer que T est inversible. Pour x, y ∈ E, on pose (x, y) T = (T x, y). Montrer que l'application (x, y) → (x, y) T définit un nouveau produit scalaire sur E.

2. Montrer que T -1 S est symétrique pour le produit scalaire défini à la question précédente. En déduire, avec le lemme 1.8 page 10, qu'il existe une base de E, notée {f 1 , . . . , f n } et une famille {λ 1 , . . . , λ n } ⊂ IR telles que T -1 Sf i = λ i f i pour tout i ∈ {1, . . . , n} et t.q. (T f i , f j ) = δ i,j pour tout i, j ∈ {1, . . . , n}.

Exercice 14 (ICP-matrice). Corrigé en page 27 L'objet de cet exercice est de démontrer la proposition 1.11. Soit n ∈ IN ⋆ , on note M n (IR) l'ensemble des matrices de n lignes et n colonnes et à coefficients réels. Si x ∈ IR n , on dit que x ≥ 0 [resp. x > 0] si toutes les composantes de x sont positives [resp. strictement positives]. Soit A ∈ M n (IR), on rappelle qu'une A est une matrice est monotone (voir définition 1.10 si elle vérifie la propriété suivante :

Si x ∈ IR n est tel que Ax ≥ 0, alors x ≥ 0, ce qui peut encore s'écrire : {x ∈ IR n t.q. Ax ≥ 0} ⊂ {x ∈ IR n t.q. x ≥ 0}.

1. Soit A = (a i,j ) i,j=1,...,n ∈ M n (IR). Montrer que A est une matrice monotone si et seulement si A est une ICP-matrice, i.e. si A est inversible et A -1 ≥ 0 (c'est-à-dire que tous les coefficients de A -1 sont positifs). (c) En déduire que A est une ICP-matrice. 6. Montrer que si A ∈ M n (IR) est une ICP-matrice et si x ∈ IR n alors :

Ax > 0 ⇒ x > 0.
c'est-à-dire que {x ∈ IR n t.q. Ax > 0} ⊂ {x ∈ IR n t.q. x > 0}.

7. Montrer, en donnant un exemple, qu'une matrice A de M n (IR) peut vérifier {x ∈ IR n t.q. Ax > 0} ⊂ {x ∈ IR n t.q. x > 0} et ne pas être une ICP-matrice.

POURQUOI ET COMMENT ?

CHAPITRE 1. SYSTÈMES LINÉAIRES 8. On suppose dans cette question que A ∈ M n (IR) est inversible et que {x ∈ IR n t.q. Ax > 0} ⊂ {x ∈ IR n t.q. x > 0}. Montrer que A est une ICP-matrice. 9. (Question plus difficile) Soit E l'espace des fonctions continues sur IR et admettant la même limite finie en +∞ et -∞. Soit L(E) l'ensemble des applications linéaires continues de E dans E. Pour f ∈ E, on dit que f > 0 (resp. f ≥ 0) si f (x) > 0 (resp. f (x) ≥ 0) pour tout x ∈ IR. Montrer qu'il existe T ∈ L(E) tel que T f ≥ 0 =⇒ f ≥ 0, et g ∈ E tel que T g > 0 et g > 0 (ceci démontre que le raisonnement utilisé en 2 (b) ne marche pas en dimension infinie).

Exercice 15 (Matrice du Laplacien discret 1D). Corrigé détaillé en page 28.

Soit f ∈ C( [0, 1]). Soit n ∈ IN ⋆ , n impair. On pose h = 1/(n + 1). Soit K n la matrice définie par (1.10) page 13, issue d'une discrétisation par différences finies avec pas constant du problème (1.5a) page 11. Montrer que K n est symétrique définie positive.

Exercice 16 (Pas non constant).

Reprendre la discrétisation vue en cours avec un pas h i = x i+1x i non constant, et montrer que dans ce cas,le schéma est consistant d'ordre 1 seulement.

Exercice 17 (Réaction diffusion 1d.). Corrigé détaillé en page 29. On s'intéresse à la discrétisation par Différences Finies du problème aux limites suivant :

-u ′′ (x) + u(x) = f (x), x ∈]0, 1[, u(0) = u(1) = 0.
(1.25)

Soit n ∈ IN ⋆ . On note U = (u j ) j=1,...,n une "valeur approchée" de la solution u du problème (1.25) aux points j n+1 j=1,...,n . Donner la discrétisation par différences finies de ce problème sous la forme AU = b.

Exercice 18 (Discrétisation). On considère la discrétisation à pas constant par le schéma aux différences finies symétrique à trois points du problème (1.5a) page 11, avec f ∈ C( [0, 1]). Soit n ∈ IN ⋆ , n impair. On pose h = 1/(n + 1). On note u est la solution exacte, x i = ih, pour i = 1, . . . , n les points de discrétisation, et (u i ) i=1,...,n la solution du système discrétisé (1.9).

1. Montrer que si u ∈ C 4 ([0, 1], alors la propriété (1.7) est vérifiée, c.à.d. :

u(x i+1 ) + u(x i-1 ) -2u(x i )

h 2 = -u ′′ (x i ) + R i avec |R i | ≤ h 2 12 u (4) ∞ .
2. Montrer que si f est constante, alors max 

1≤i≤n |u i -u(x i )| = 0.

Suggestions pour les exercices

Exercice 6 page 17 (Vrai ou faux ?)

1. Considérer la matrice ZZ t . 12. Ecrire que A -1 = 1 det (A) com(A) t où det(A) est le déterminant (non nul) de A et com(A) la comatrice de A.

Exercice 10 page 18 (La matrice K 3 )

2. Ecrire le développement de Taylor de u(x i + h) et u(x ih).

3. Pour l'erreur de discrétisation, se souvenir qu'elle dépend de l'erreur de consistance, et regarder sa majoration. 4. Pour tenir compte de la condition limite en 1, écrire un développement limité de u(1h).

5.1 Distinguer les cas c = 0 et c = 0.

Exercice 11 page 19 (Matrices symétriques définies positives)

3. Utiliser la diagonalisation sur les opérateurs linéaires associés.

Exercice 12 page 19 (Résolution d'un système sous forme particulière)

1. Utiliser le fait que Im(B) est l'ensemble des combinaisons linéaires des colonnes de B.

2. Utiliser le caractère s.d.p. de A puis le théorème du rang.

Corrigés des exercices

Exercice 3 page 16 (Théorème du rang)

1. Soit a 1 , . . . , a r dans IR tel que r i=1 α i a i = 0. On a donc

0 = A( r i=1 α i a i ) = r i=1 α i Aa i = r i=1 α i f i .
Comme la famille f 1 , . . . , f r est une famille libre, on en déduit que α i = 0 pour tout i ∈ {1, . . . , r} et donc que la famille a 1 , . . . , a r est libre.

2. Soit x ∈ IR p . Comme f 1 , . . . , f r est une base de Im(A), il existe α 1 , . . . , α r tel que Ax = r i=1 α i f i . On pose y = r i=1 α i a i . On a Ay = Ax et x = (xy) + y. Comme y ∈ G et A(xy) = 0, on en déduit que IR p = G + ker A. Soit maintenant x ∈ ker A ∩ G. Comme x ∈ G, il existe α 1 , . . . , α r tel que x = r i=1 α i a i . On a donc Ax = r i=1 α i f i . Comme f 1 , . . . , f r est une famille libre et que Ax = 0, on en déduit que α i = 0 pour tout i ∈ {1, . . . , r} et donc x = 0. Ceci montre que IR p = G ⊕ ker(A). Enfin, comme dim G = r = dim(ImA), on en déduit bien que p = dim(ker(A)) + dim(Im(A)). 3. On suppose ici p = n. Comme n = dim(ker(A)) + dim(Im(A)), on a dim(ker(A)) = 0 si et seulement si dim(Im(A)) = n. Ceci montre que l'application x → Ax (de IR n dans IR n ) est injective si et seulement si elle est surjective.

Exercice 4 page 17 (rang(A)=rang(A t ))

1. On remarque tout d'abord que le noyau de P A est égal au noyau de A. En effet, soit x ∈ IR p . Il est clair que Ax = 0 implique P Ax = 0. D'autre part, comme P est inversible, P Ax = 0 implique Ax = 0. On a donc bien ker(P A) = ker(A). On en déduit que dim(ker(P A)) = dim(ker(A)) et donc, avec le théorème du rang (exercice 3), que dim(Im(P A)) = dim(Im(A)).

Pour montrer que dim(Im(AQ)) = dim(Im(A)), on remarque directement que Im(AQ) = Im(A). En effet, on a, bien sûr, Im(AQ) ⊂ Im(A) (l'inversibilité de Q est inutile pour cette inclusion). D'autre part, si z ∈ Im(A), il existe x ∈ IR p tel que Ax = z. Comme Q est inversible, il existe y ∈ IR p tel que x = Qy. On a donc z = AQy, ce qui prouve que Im(A) ⊂ Im(AQ). Finalement, on a bien Im(AQ) = Im(A) et donc dim(Im(AQ)) = dim(Im(A)).

Pour montrer que P t est inversible, il suffit de remarquer que (P -1 ) t P t = (P P -1 ) t = I n (où I n désigne la matrice Identité de IR n ). Ceci montre que P t est inversible (et que (P t ) -1 = (P -1 ) t ). Bien sûr, un raisonnement analogue donne l'inversibilité de Q t .

2. Par définition du produit matrice vecteur, P e i = c i (P ), i-ème colonne de P ; l suffit de prendre pour P la matrice dont les colonnes sont les vecteurs a 1 , . . . , a p ; l'image de P est égale à IR p car la famille a 1 , . . . , a p est une base de IR p , ce qui prouve que P est inversible (on a Im(P ) = IR p et ker P = {0} par le théorème du rang).

Soit maintenant R ∈ M n (IR) dont les colonnes sont les vecteurs f j ; la matrice R est bien inversible car la famille f 1 , . . . , f n est une base IR n . On a donc, toujours par définition du produit matrice vecteur, Rē j = c j (R) = f j pour j = 1, n. Posons Q = R -1 ; on a alors QRē j = ēj = Qf j , et la matrice Q est évidemment inversible.

3. Pour i ∈ {1, . . . , p}, la i-ème colonne de J est donnée par c i (J) = QAP e i = QAa i . Si i ∈ {1, . . . , r}, on a donc c i (J) = Qf i = ēi . Si i ∈ {r + 1, . . . , p}, on a c i (J) = 0 (car a i ∈ ker A). Ceci montre que Im(J) est l'espace vectoriel engendré par ē1 , . . . , ēr et donc que le rang de J est r. La matrice J appartient à M n,p (IR), sa transposée appartient donc à M p,n (IR). En transposant la matrice J, on a, pour tout i ∈ {1, . . . , r}, c i (J t ) = e i et, pour tout i ∈ {r + 1, . . . , n}, c i (J t ) = 0. Ceci montre que Im(J t ) est l'espace vectoriel engendré par e 1 , . . . , e r et donc que le rang de J t est aussi r.

Analyse numérique I, télé-enseignement, L3 6. Vrai : c'est le terme de degré 0 du polynôme caractéristique. 7. Vrai : si Ker(A) = {0}, alors A est inversible. 8. Vrai : on va montrer que Ker(A) = {0}, Supposons que Ax = 0, alors Ax ≥ 0 et Ax ≤ 0, ou encore A(-x) ≥ 0 Donc par hypothèse, x ≥ 0 et -x ≥ 0, et donc x = 0, ce qui montre que Ker(A) = {0}. 9. Faux : la matrice nulle est symétrique. 10. Vrai : Si A est s.d.p.alors Ax = 0 entraîne Ax • x = 0 et donc x = 0, ce qui montre que Ker(A) = {0} et donc que A est inversible. 11. Vrai : l'ensemble des solutions est le noyau de la matrice A ∈ M n,n+1 (IR) qui est de dimension au moins un par le théorème du rang. 12. Vrai : on peut écrire que A -1 = 1 det (A)com(A) t où det(A) est le déterminant (non nul) de A et com(A) la comatrice de A, c.à.d. la matrice des cofacteurs des coefficients de A ; on rappelle que le cofacteur c i,j de l'élément a i,j est défini par c i,j = (-1) i+j ∆ i,j où ∆ i,j est le mineur relatif à (i, j), i.e. le déterminant de la sous matrice carrée d'ordre n -1 obtenue à partir de A en lui retirant sa i-ème ligne et sa j-ème colonne). On peut vérifier facilement que les applications A → det(A) et A → c i,j sont continues de GL n (IR)(IR) dans IR * et IR respectivement (comme polynôme en les éléments de la matrice A), et que donc A → A -1 est continue. 

1 0 0 1 , 1 1 0 1 , 1 0 1 1 
Analyse numérique I, télé-enseignement, L3 Exercice 10 page 18 (La matrice K 3 )

1. La solution est -1 2 x(x -1), qui est effectivement positive. 2. Avec les développements limités vus en cours, on obtient :

K 3 = 1 h 2   2 -1 0 -1 2 -1 0 -1 2   , b =   f (h) f (2h) f (3h)   , où h = 1 4 
3. L'échelonnement du système K 3 x = b sur la matrice augmentée (ou la méthode de Gauss) donne :

1 h 2   2 -1 0 | b 1 -0 3 2 -1 | b 2 + 1 2 b 1 0 0 4 3 | b 3 + 2 3 b 2 + 1 3 b 1   Donc pour h = 1 4 et b 1 = b 2 = b 3 = 1 on obtient u 1 = 3 32 , u 2 = 1 8 et u 3 = 3 32 .
On a u i = u(x i ), ce qui veut dire que l'erreur de discrétisation est nulle. On a vu en cours (formule (1.8)) que l'erreur de consistance R peut être majorée par h 2 12 u (4) ∞ .. Ici u est un polynôme de degré 2, et donc R = 0. Or par l'inégalité (1.12), l'erreur de discrétisation e = (u(x 1 )-u 1 , u(x 2 )-u 2 , u(x 3 )-u 3 ) t satisfait e = K -1 3 R. On en déduit que cette erreur de discrétisation est nulle. Notons qu'il s'agit là d'un cas tout à fait particulier dû au fait que la solution exacte est un polynôme de degré inférieur ou égal à 3.

Avec la condition limite (1.17), la solution exacte du problème pour

f ≡ 1 est maintenant u(x) = -1 2 x(x - 2).
Pour prendre en compte la condition limite (1.17), on effectue un développement limité de u à l'ordre 2 en

x = 1 u(1 -h) = u(1) -hu ′ (1) + 1 2 h 2 u ′′ (ζ) avec ζ ∈ [1 -h, 1].
Les inconnues discrètes sont maintenant les valeurs approchées recherchées aux points

x i , i ∈ {1, 2, 3, 4}, notées u i , i ∈ {1, 2, 3, 4}. Comme u ′ (1) = 0, l'égalité précédente suggère de prendre comme équation discrète u 3 = u 4 -(1/2)f (1) (on rappelle que x 4 = 1).
Le système discret à résoudre est donc :

2u 1 -u 2 = h 2 f (x 1 ), -u 1 + 2u 2 -u 3 = h 2 f (x 2 ) -u 2 + 2u 3 -u 4 = h 2 f (x 3 ) -u 3 + u 4 = 1 2 h 2 f (x 4 )
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K = 1 h 2     2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 1     , b =     f (h) f (2h) f (3h) 1 2 f (4h)     . En notant b i = f (x i ), l'échelonnement du système h 2 Kx = h 2 b sur la matrice augmentée donne :     2 -1 0 0 | h 2 b 1 0 3 2 -1 0 | h 2 (b 2 + 1 2 b 1 ) 0 0 4 3 -1 | h 2 (b 3 + 2 3 b 2 + 1 3 b 1 ) 0 0 0 1 4 | h 2 ( 1 2 b 4 + 1 2 b 2 + 1 4 b 1 + 3 4 b 3 )     Donc pour h = 1 4 et b 1 = b 2 = b 3 = b 4 = 1 on obtient u 1 = 7 32 , u 2 = 3 8 , u 3 = 15 32 et u 4 = 1 2 .
La solution exacte aux points de discrétisation est : Un raisonnement similaire aux questions précédentes nous conduit à introduire 5 inconnues discrètes u i , i ∈ {1, . . . , 5}. Le système à résoudre est maintenant :

u(x 1 ) = 1 2 1 4 (2 - 1 4 ) = 7 32 , u(x 2 ) = 1 2 1 2 (2 - 1 2 ) = 3 8 , u(x 3 ) = 1 2 3 4 (2 - 3 4 ) = 15 32 , u(x 4 ) = 1 2 . On a donc u(x i ) = u i pour tout i ∈ {1, 2,
K = 1 h 2       -1 1 0 0 0 -1 2 -1 0 0 0 -1 2 -1 0 0 0 -1 2 -1 0 0 0 -1 1       , b =       1 2 f (0) f (h) f (2h) f (3h) 1 2 f (4h)       .
(c) La matrice K n'est pas inversible car la somme de ses colonnes est égale au vecteur nul : on part d'un problème continu mal posé, et on obtient effectivement par discrétisation un problème discret mal posé. '

Exercice 11 page 19 (Matrices symétriques définies positives) 1. On note e 1 , . . . , e n la base canonique de IR n . Pour tout i ∈ {1, . . . , n}, on a a i,i = Ae i • e i et donc, comme A est définie positive, on en déduit a i,i > 0.

2. On utilise le rappel donné dans l'énoncé. Les λ i sont les valeurs propres de A. Soit x ∈ IR n , décomposons x sur la base orthonormée (f i ) i=1,n : x = n i=1 α i f i . On a donc :

Ax • x = n i=1 λ i α 2 i .
(1.29) 

(f i ) i=1,n par : S(f i ) = √ λ i f i , ∀i = 1, .
. . , n. On a évidemment S • S = T , et donc si on désigne par B la matrice représentative de l'application S dans la base canonique, on a bien B 2 = A. Pour montrer l'unicité de B, on peut remarquer que, si B 2 =A, on a, pour tout i ∈ {1, . . . , n}, 

(B + λ i I)(B -λ i I)f i = (B 2 -λ i I)f i = (A -λ i I)f i = 0, où I désigne la matrice identité. On a donc (B - √ λ i I)f i ∈ ker(B + √ λ i I).
λ i I) = {0} et donc Bf i = √ λ i f i . Ce qui détermine complètement B.
Exercice 14 page 20 (ICP-matrice)

1. Supposons d'abord que A est une ICP-matrice, c.à.d. que A est inversible et que A -1 ≥ 0 ; soit x ∈ IR n tel que b = Ax ≥ 0.
On a donc x = A -1 b, et comme tous les coefficients de A -1 et de b sont positifs ou nuls, on a bien x ≥ 0. Réciproquement, si A est une matrice monotone, alors Ax = 0 entraine x = 0 ce qui montre que A est inversible. Soit e i le i-ème vecteur de la base canonique de IR n , on a : AA -1 e i = e i ≥ 0, et donc A -1 e i ≥ 0, ce qui montre que tous les coefficients de A -1 sont positifs.

La matrice inverse de

A est A -1 = 1 ∆ d -b -c
a avec ∆ = adbc. Les coefficients de A -1 sont donc positifs ou nuls si et seulement si

   ad < bc, a ≤ 0, d ≤ 0 b ≥ 0, c ≥ 0 ou    ad > bc, a ≥ 0, d ≥ 0, b ≤ 0, c ≤ 0.
Dans le premier cas, on a forcément bc = 0 : en effet sinon on aurait ad < 0, or a ≤ 0 et d ≤ 0 donc ad ≥ 0.

Dans le second cas, on a forcément ad = 0 : en effet sinon on aurait bc < 0,

or b ≤ 0 et c ≤ 0 donc bc ≥ 0.
Les conditions précédentes sont donc équivalentes aux conditions (1.22).

La matrice

A t est une ICP-matrice si et seulement A t est inversible et (A t ) -1 ≥ 0. Or (A t ) -1 = (A -1 ) t . D'où l'équivalence. 4. Supposons que A vérifie (1.23), et soit x ∈ IR n tel que Ax ≥ 0. Soit k ∈ 1, . . . , n tel que x k = min{x i , i = 1, . . . , n}. Alors (Ax) k = a k,k x k + n j=1 j =k a k,j x j ≥ 0.
Par hypothèse, a k,j ≤ 0 pour k = j, et donc a k,j = -|a k,j |. On peut donc écrire :

a k,k x k - n j=1 j =k |a k,j |x j ≥ 0,
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(a k,k - n j=1 j =k |a k,j |)x k ≥ n j=1 j =k |a k,j |(x j -x k ).
Comme x k = min{x i , i = 1, . . . , n}, on en déduit que le second membre de cette inégalité est positif ou nul, et donc que x k ≥ 0. On a donc x ≥ 0. Montrons maintenant que z > 0 : tous les coefficients de A -1 sont positifs ou nuls et au moins l'un d'entre eux est non nul par ligne (puisque la matrice A -1 est inversible). On en déduit que

z i = ǫ n i=1 (A -1 ) i,j > 0 pour tout i = 1, . . . , n. On a donc bien x ≥ z > 0.
7. Soit A la matrice nulle, on a alors {x ∈ IR n t.q. Ax > 0} = ∅, et donc {x ∈ IR n t.q. Ax > 0} ⊂ {x ∈ IR n t.q. x > 0}. Pourtant A n'est pas inversible, et n'est donc pas une ICP-matrice. 

9. Soit T ∈ L(E) défini par f ∈ E → T f , avec T f (x) = f ( 1 x ) si x = 0 et f (0) = ℓ, avec ℓ = lim ±∞ f . On vérifie facilement que T f ∈ E. Si T f ≥ 0, alors f ( 1 x ) ≥ 0 pour tout x ∈ IR ; donc f (x) ≥ 0 pour tout x ∈ IR \ {0} ; on en déduit que f (0) ≥ 0 par continuité. On a donc bien f ≥ 0. Soit maintenant g définie de IR dans IR par g(x) = | arctan x|. On a g(0) = 0, donc g > 0. Or T g(0) = π 2 et T g(x) = | arctan 1 x | > 0 si x > 0, donc T g > 0.
Exercice 15 page 21 (Matrice du laplacien discret 1D.)

Il est clair que la matrice A est symétrique. Pour montrer que A est définie positive (car A est évidemment symétrique), on peut procéder de plusieurs façons :

1. Par échelonnement :

2. Par les valeurs propres :Les valeurs propres sont calculées à l'exercice 64 ; elles sont de la forme :

λ k = 2 h 2 (1 -cos kπh) = 2 h 2 (1 -cos kπ n + 1 ), k = 1, . . . , n,
et elles sont donc toutes strictement positives ; de ce fait, la matrice est symétrique définie positive (voir exercice 11).

3. Par la forme quadratique associée : on montre que Ax

• x > 0 si x = 0 et Ax • x = 0 ssi x = 0. En effet, on a Ax • x = 1 h 2 x 1 (2x 1 -x 2 ) + n-1 i=2 x i (-x i-1 + 2x i -x i+1 ) + 2x 2 n -x n-1 x n 1.3. LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES On a donc h 2 Ax • x = 2x 2 1 -x 1 x 2 - n-1 i=2 x i x i-1 + 2x 2 i - n i=3 x i x i-1 + 2x 2 n -x n-1 x n = n i=1 x 2 i + n i=2 x 2 1-i + x 2 n -2 n i=1 x i x i-1 = n i=2 (x i -x i-1 ) 2 + x 2 1 + x 2 n ≥ 0. De plus, Ax • x = 0 ⇒ x 2 1 = x n = 0 et x i = x i-1 pour i = 2 à n, donc x = 0.
Exercice 17 page 21 (Réaction diffusion 1D.)

La discrétisation du probllème consiste à chercher U comme solution du système linéaire

AU = f ( j N + 1 ) j=1,...,n où la matrice A ∈ M n (IR) est définie par A = (N + 1) 2 K n + Id, Id désigne la matrice identité et K n =          2 -1 0 . . . 0 -1 2 -1 . . . . . . 0 . . . . . . . . . 0 . . . . . . -1 2 -1 0 . . . 0 -1 2         
1.3 Les méthodes directes Le principe de la méthode de Gauss est de se ramener, par des opérations simples (combinaisons linéaires), à un système triangulaire équivalent, qui sera donc facile à inverser. Commençons par un exemple pour une matrice 3 × 3. Nous donnerons ensuite la méthode pour une matrice n × n.

Un exemple 3 × 3

On considère le système Ax = b, avec

A =   1 0 1 0 2 -1 -1 1 -2   b =   2 1 -2   .
On écrit la matrice augmentée, constituée de la matrice A et du second membre b.

à = A b =   1 0 1 2 0 2 -1 1 -1 1 -2 -2   .
Gauss et opérations matricielles On pose A (1) = A, b (1) = b et A (1) = A, b (1) = b. La première ligne a un 1 en première position (en gras dans la matrice), ce coefficient est non nul, et c'est ce qu'on appelle un pivot. On va pouvoir diviser toute la première ligne par ce nombre pour en soustraire un multiple à toutes les lignes d'après, dans le but de faire apparaître des 0 dans tout le bas de la colonne. La deuxième équation a déjà un 0 dessous, donc on n'a rien besoin de faire (ce qui revient à multiplier la matrice

A par E (1)
2 = Id). On veut ensuite annuler le premier coefficient de la troisième ligne. On retranche donc (-1) fois la première ligne à la troisième 2 :

  1 0 1 2 0 2 -1 1 -1 1 -2 -2   ℓ3←ℓ3+ℓ1 -→   1 0 1 2 0 2 -1 1 0 1 -1 0  
Ceci revient à multiplier la matrice à à gauche par la matrice

E (1) 3 =   1 0 0 0 1 0 1 0 1   .
On appelle matrices d'élimination les matrices E

(1)

2 et E (1)
3 . La deuxième ligne a un terme non nul en deuxième position (2) : c'est un pivot. On va maintenant annuler le deuxième terme de la troisième ligne ; pour cela, on retranche 1/2 fois la ligne 2 à la ligne 3 :

  1 0 1 2 0 2 -1 1 0 1 -1 0   ℓ3←ℓ3-1/2ℓ2 -→   1 0 1 2 0 2 -1 1 0 0 -1 2 -1 2   .
Ceci revient à multiplier la matrice précédente à gauche par la matrice d'élimination

E (2) 3 =   1 0 0 0 1 0 0 -1 2 1   .
On a ici obtenu une matrice sous forme triangulaire supérieure à trois pivots : on peut donc faire la remontée pour obtenir la solution du système, et on obtient (en notant x i les composantes de x) : x 3 = 1 puis x 2 = 1 et enfin x 1 = 1. On a ainsi résolu le système linéaire. Le fait de travailler sur la matrice augmentée est extrêmement pratique car il permet de travailler simultanément sur les coefficients du système linéaire et sur le second membre. Finalement, au moyen des opérations décrites ci-dessus, on a transformé le système linéaire

Ax = b en U x = E 2 E 1 b, où U = E 2 E 1 A
est une matrice triangulaire supérieure.

2. Bien sûr, ceci revient à ajouter la première ligne ! Il est cependant préférable de parler systématiquement de "retrancher" quitte à utiliser un coefficient négatif, car c'est ce qu'on fait conceptuellement : pour l'élimination on enlève un multiple de la ligne du pivot à la ligne courante.

Factorisation LU Tout va donc très bien pour ce système, mais supposons maintenant qu'on ait à résoudre 3089 systèmes, avec la même matrice A mais 3089 seconds membres b différents 3 . Il serait un peu dommage de recommencer les opérations ci-dessus 3089 fois, alors qu'on peut en éviter une bonne partie. Comment faire ? L'idée est de "factoriser" la matrice A, c.à.d de l'écrire comme un produit A = LU , où L est triangulaire inférieure (lower triangular) et U triangulaire supérieure (upper triangular). On reformule alors le système Ax = b sous la forme LU x = b et on résout maintenant deux systèmes faciles à résoudre car triangulaires : Ly = b et U x = y. La factorisation LU de la matrice découle immédiatement de l'algorithme de Gauss. Voyons comment sur l'exemple précédent.

1/ On remarque que

U = E 2 E 1 A peut aussi s'écrire A = LU , avec L = (E 2 E 1 ) -1 . 2/ On sait que (E 2 E 1 ) -1 = (E 1 ) -1 (E 2 ) -1 .
3/ Les matrices inverses E -1

1 et E -1 2 sont faciles à déterminer : comme E 2 consiste à retrancher 1/2 fois la ligne 2 à la ligne 3, l'opération inverse consiste à ajouter 1/2 fois la ligne 2 à la ligne 3, et donc

E -1 2 =   1 0 0 0 1 0 0 1 2 1   .
Il est facile de voir que

E -1 1 =   1 0 0 0 1 0 -1 0 1   et donc L = E -1 1 E -1 2 =   1 0 0 0 1 0 -1 1 2 1   .
La matrice L est une matrice triangulaire inférieure (et c'est d'ailleurs pour cela qu'on l'appelle L, pour "lower" in English...) dont les coefficients sont particulièrement simples à trouver : les termes diagonaux sont tous égaux à un, et chaque terme non nul sous-diagonal ℓ i,j est égal au coefficient par lequel on a multiplié la ligne pivot i avant de la retrancher à la ligne j. 

A (1) = A et b (1) = b. Pour i = 1, . . . , n -1, on cherche à calculer A (i+1) et b (i+1) tels que les systèmes A (i) x = b (i) et A (i+1) x = b (i+1) soient équivalents, où A (i+1)
est une matrice dont les coefficients sous-diagonaux des colonnes 1 à i sont tous nuls, voir figure 1.3. Une fois la matrice A (n) (triangulaire supérieure) et le vecteur b (n) calculés, il sera facile de résoudre le système A (n) x = b (n) . Le calcul de A (n) est l'étape de "factorisation", le calcul de b (n) l'étape de "descente", et le calcul de x l'étape de "remontée". Donnons les détails de ces trois étapes.

Etape de factorisation et descente Pour passer de la matrice A (i) à la matrice A (i+1) , on va effectuer des combinaisons linéaires entre lignes qui permettront d'annuler les coefficients de la i-ème colonne situés en dessous de la ligne i (dans le but de se rapprocher d'une matrice triangulaire supérieure). Evidemment, lorsqu'on fait ceci, 

a (i+1) i+1,i+1 a (i+1) i+2,i+1 a (i+1) N,N a (1) 1,N a (i+1) N,i+1 0 0 0 0 A (i+1) = FIGURE 1.
3: Allure de la matrice de Gauss à l'étape i + 1 il faut également modifier le second membre b en conséquence, donc on peut effectuer les manipulations sur la matrice augmentée Ã(i) = A (i) b (i) . L'étape de factorisation et descente s'écrit donc de la manière suivante :

pour k > i, si a (i) i,i = 0, on pose : a (i+1) k,j = a (i) k,j -ℓ k,i a (i) i,j , avec ℓ k,i = a (i) k,i a (i) i,i pour j = i, . . . , n, (1.30) b (i+1) k = b (i) k -ℓ k,i b (i) i , (1.31) 
ce qui revient à multiplier à gauche la matrice augmentée Ã(i) par la matrice E (i) dont l'expression, et celle de son inverse, sont données par

E (i) =                 1 0 . . . 0 0 1 0 . . . 0 0 0 1 0 . . . 0 . . . . . . 0 0 . . . 0 1 0 . . . 0 0 0 0 . . . -ℓ i+1,i 1 . . . 0 . . . 0 0 0 . . . -ℓ n,i 0 . . . 1                 (E (i) ) -1 =                 1 0 . . . 0 0 1 0 . . . 0 0 0 1 0 . . . 0 . . . . . . 0 0 . . . 0 1 0 . . . 0 0 0 0 . . . ℓ i+1,i 1 . . . 0 . . . 0 0 0 . . . ℓ n,i 0 . . . 1                 On obtient donc, en posant L (i+1) = L (i) (E (i) ) -1 et A (i+1) = E (i) A (i) , A = L (i) (E (i) ) -1 E (i) A (i) = L (i+1) A (i+1) et A (i+1) x = b (i+1) , avec les matrices L (i+1) et A (i+1) données par L (i+1) =               1 0 . . . ℓ 2,1 1 0 . . . ℓ 3,1 ℓ 3,2 1 0 . . . . . . ℓ i,1 ℓ i,2 . . . 1 0 . . . ℓ i+1,1 ℓ i+1,2 . . . ℓ i+1,i 1 0 . . . . . . ℓ n,1 ℓ n,2 . . . ℓ n,i 0 . . . 1               Analyse numérique I, télé-enseignement, L3 A (i+1) =               a (1) 1,1 a (1) 1,2 . . . a (1) 1,n 0 a (2) 2,2 . . . a (2) 2,n . . . . . . 0 a (i) i,i a (i) i,i+1 . . . a (i) i,n 0 . . . 0 a (i+1) i+1,i+1 . . . a (i+1) i+1,n . . . 0 . . . 0 a (i+1) n,i+1 . . . a (i+1) n,n               b (i+1) =                b (1) 1 b (2) 2 . . . b (i) i b (i+1) i+1 . . . b (i+1) n               
La matrice A (i+1) est de la forme annoncée. Elle vérifie les propriétés suivantes :

1. a (i+1) k,j = 0 pour tout j = 1, . . . , i et k > j, 2. le système A (i+1) x = b (i+1) est bien équivalent au système A (i) x = b (i) ,
3. la matrice A (n) est triangulaire supérieure.

La matrice L (i+1) est également de la forme annoncée. Elle vérifie les propriétés suivantes :

1. la matrice L (i+1) est triangulaire inférieure, avec tous les coefficients de la diagonale égaux à 1, 2. les colonnes 1 à i -1 de la matrice L (i+1) sont celles de la matrice L (i) , car elles n'ont pas modifiées par la multiplication à droite par (E (i) ) -1 , 3. la colonne i de la matrice L (i+1) est celle de la matrice E (i) ,

et on a bien

A = L (i+1) A (i+1) .

Si la condition a (i)

i,i = 0 est vérifiée pour i = 1 à n, on obtient par le procédé de calcul ci-dessus un système linéaire A (n) x = b (n) équivalent au système Ax = b, avec une matrice A (n) triangulaire supérieure facile à inverser. On verra un peu plus loin les techniques de pivot qui permettent de régler le cas où la condition a (i) i,i = 0 n'est pas vérifiée.

Etape de remontée Il reste à résoudre le système A (n) x = b (n) ; ceci est une étape facile. Comme A (n) est une matrice inversible, on a a (i) i,i = 0 pour tout i = 1, . . . , n, et comme A (n) est une matrice triangulaire supérieure, on peut donc calculer les composantes de x en "remontant", c'est-à-dire de la composante x n à la composante x 1 :

x n = b (n) n a (n) n,n , x i = 1 a (n) i,i   b (n) i - j=i+1,n a (n) i,j x j   , i = n -1, . . . , 1.
Il est important de savoir mettre sous forme algorithmique les opérations que nous venons de décrire : c'est l'étape clef avant l'écriture d'un programme informatique qui nous permettra de faire faire le boulot par l'ordinateur ! Algorithme 1.13 (Gauss sans permutation). Pour k allant de i + 1 à n :

ℓ k,i = u k,i
ui,i (si u i,i = 0, prendre la méthode avec pivot partiel). Pour j allant de i

+ 1 à n, u k,j = u k,j -ℓ k,i u i,j
Fin pour y k = y kℓ k,i y i Fin pour 2. (Remontée) On calcule x :

x n = y n u n,n Pour i allant de n -1 à 1, x i = y i Pour j allant de i + 1 à n, x i = x i -u i,j x j Fin pour x i = 1 u i,i x i

Fin pour

Coût de la méthode de Gauss (nombre d'opérations) On peut montrer (on fera le calcul de manière détaillée pour la méthode de Choleski dans la section suivante, le calcul pour Gauss est similaire) que le nombre d'opérations nécessaires n G pour effectuer les étapes de factorisation, descente et remontée est . En ce qui concerne la place mémoire, on peut très bien stocker les itérés A (i) dans la matrice A de départ, ce qu'on n'a pas voulu faire dans le calcul précédent, par souci de clarté.

Décomposition LU Si le système Ax = b doit être résolu pour plusieurs second membres b, on a déjà dit qu'on a intérêt à ne faire l'étape de factorisation (i.e. le calcul de A (n) ), qu'une seule fois, alors que les étapes de descente et remontée (i.e. le calcul de b (n) et x) seront faits pour chaque vecteur b. L'étape de factorisation peut se faire en décomposant la matrice A sous la forme LU . Supposons toujours pour l'instant que lors de l'algorithme de Gauss, la condition a

(i) i,i = 0 est vérifiée pour tout i = 1, . . . , n. La matrice L a comme coefficients ℓ k,i = a (i) k,i a (i) i,i
pour k > i, ℓ i,i = 1 pour tout i = 1, . . . , n, et ℓ i,j = 0 pour j > i, et la matrice U est égale à la matrice A (n) . On peut vérifier que A = LU grâce au fait que le système 

A (n) x = b (n) est équivalent au système Ax = b. En effet, comme A (n) x = b (n) et b (n) = L -
ℓ k,i = u k,i
ui,i (si u i,i = 0, prendre la méthode avec pivot partiel). Pour j allant de i

+ 1 à n, u k,j = u k,j -ℓ k,i u i,j

Fin pour Fin pour
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(Descente) On calcule y (avec Ly = b)

Pour i allant de 1 à n,

y i = b i - i-1 k=1 ℓ i,k y k (on a ainsi implicitement ℓ i,i = 1) Fin pour 3. (Remontée) On calcule x (avec U x = y)
Pour i allant de n à 1,

x i = 1 ui,i (y i - n j=i+1 u i,j x j ) Fin pour
Remarque 1.15 (Optimisation mémoire). L'introduction des matrices L et U et des vecteurs y et x n'est pas nécessaire. Tout peut s'écrire avec la matrice A et le vecteur b, que l'on modifie au cours de l'algorithme. A la fin de la factorisation, U est stockée dans la partie supérieure de A (y compris la diagonale) et L dans la partie strictement inférieure de A (c'est-à-dire sans la diagonale, la diagonale de L est connue car toujours formée de 1). Dans l'algorithme précédent, on remplace donc tous les "u" et "ℓ" par "a". De même, on remplace tous les "x" et "y" par "b". A la fin des étapes de descente et de remontée, la solution du problème est alors stockée dans b. L'introduction de L, U , x et y peut toutefois aider à comprendre la méthode. 

Nous allons maintenant

A =   L k 0 k×(n-k) C k Id n-k     U k B k 0 (n-k)×k D k   , (1.32) où 0 p,q désigne la matrice nulle de dimension p×q, B k ∈ M k,n-k (IR) et C k ∈ M n-k,k (IR) et D k ∈ M n-k,n-k (IR) ;
de plus, la matrice principale d'ordre k + 1 s'écrit sous la forme

A k+1 =   L k 0 1×k c 1 (C k ) 1     U k ℓ 1 (B k ) 0 k×1 (D k ) 1,1   (1.33) où ℓ 1 (B k ) ∈ M k,1 (IR) est la première colonne de la matrice B k , c 1 (C k ) ∈ M 1,k est la première ligne de la matrice C k , et d k est le coefficient de la ligne 1 et colonne 1 de D k .
DÉMONSTRATION -On écrit la décomposition par blocs de A : 

A = A k P k R k S k , avec A k ∈ M k (IR), P k ∈ M k,n-k (IR), R k ∈ M n-k,k (IR) et S k ∈ M n-k,n-k (IR). Par hypothèse, on a A k = L k U k . De plus L k et U k sont inversibles, et il existe donc une unique matrice B k ∈ M k,n-k (IR) (resp. C k ∈ M n-k,k (IR)) telle que L k B k = P k (resp C k U k = R k ). On pose alors D k = S k -C k B k , on
det(A k ) = det(L k )det(U k ) = 0 pour tout k = 1, . . . , n, et donc (P1) ⇒ (P2).
Montrons maintenant la réciproque. On suppose que les mineurs prinicipaux de A sont non nuls, et on va montrer que A = LU . On va en fait montrer par récurrence que pour tout k = 1, . . . n, on a A k = L k U k où L k triangulaire inférieure de coefficients égaux à 1 et U k inversible triangulaire supérieure. Le premier mineur est non nul, donc a1,1 = 1 × a1,1, et la récurrence est bien initialisée. On la suppose vraie à l'étape k. Par le lemme 1.17, on a donc A k+1 qui est de la forme (1.33), c.à.d. A k+1 = L k+1 U k+1 . Comme det(A k+1 ) = 0, la matrice U k+1 est inversible, et l'hypothèse de récurrence est vérifiée à l'ordre k + 1. On a donc bien (P2) ⇒ (P1) (l'unicité de L et U est laissée en exercice).

Que faire en cas de pivot nul : la technique de permutation ou de "pivot partiel" La caractérisation que nous venons de donner pour qu'une matrice admette une décomposition LU sans permutation est intéressante mathématiquement, mais de peu d'intérêt en pratique. On ne va en effet jamais calculer n déterminants pour savoir si on doit ou non permuter. En pratique, on effectue la décomposition LU sans savoir si on a le droit ou non de le faire, avec ou sans permutation. Au cours de l'élimination, si a (i) i,i = 0, on va permuter la ligne i avec une des lignes suivantes telle que a (i) k,i = 0. Notons que si le "pivot" a (i) i,i est très petit, son utilisation peut entraîner des erreurs d'arrondi importantes dans les calculs et on va là encore permuter. En fait, même dans le cas où la CNS donnée par la proposition 1.18 est verifiée, la plupart des fonctions de libraries scientifiques vont permuter. Plaçons-nous à l'itération i de la méthode de Gauss. Comme la matrice A (i) est forcément non singulière, on a :

det(A (i) ) = a (i) 1,1 a (i) 2,2 • • • a (i) i-1,i-1 det     a (i) i,i . . . a (i) i,n . . . . . . . . . a (i) n,i . . . a (i) n,n     = 0.
On a donc en particulier

det     a (i) i,i . . . a (i) i,n . . . . . . . . . a (i) n,i . . . a (i) n,n     = 0.
On déduit qu'il existe i 0 ∈ {i, . . . , n} tel que a (i) i0,i = 0. On choisit alors i 0 ∈ {i, . . . , n} tel que |a

(i) i0,i | = max{|a (i) k,i |, k = i, .
. . , n}. Le choix de ce max est motivé par le fait qu'on aura ainsi moins d'erreur d'arrondi. On échange alors les lignes i et i 0 (dans la matrice A et le second membre b) et on continue la procédure de Gauss décrite plus haut. L'intérêt de cette stratégie de pivot est qu'on aboutit toujours à la résolution du système (dès que A est inversible).

Remarque 1.19 (Pivot total). La méthode que nous venons de d'écrire est souvent nommée technique de pivot "partiel". On peut vouloir rendre la norme du pivot encore plus grande en considérant tous les coefficients restants et pas uniquement ceux de la colonne i. A l'etape i, on choisit maintenant i 0 et j 0 ∈ {i, . . . , n} tels que |a

(i) i0,j0 | = max{|a (i) k,j |, k = i, .
. . , n, j = i, . . . , n}, et on échange alors les lignes i et i 0 (dans la matrice A et le second Analyse numérique I, télé-enseignement, L3 membre b), les colonnes i et j 0 de A et les inconnues x i et x j0 . La stratégie du pivot total permet une moins grande sensibilité aux erreurs d'arrondi. L'inconvénient majeur est qu'on change la structure de A : si, par exemple la matrice avait tous ses termes non nuls sur quelques diagonales seulement, ceci n'est plus vrai pour la matrice A (n) .

Ecrivons maintenant l'algorithme de la méthode LU avec pivot partiel ; pour ce faire, on va simplement remarquer que l'ordre dans lequel les équations sont prises n'a aucune importance pour l'algorithme. Au départ de l'algorithme, on initialise la bijection t de {1, . . . , n} dans {1, . . . , n} par l'identité, c.à.d. t(i) = i ; cette bijection t va être modifiée au cours de l'algorithme pour tenir compte du choix du pivot.

Algorithme 1.20 (LU avec pivot partiel). On modifie alors t en inversant les valeurs de t(i) et t(i * ).

p = t(i * ) ; t(i * ) = t(i) ; t(i) = p.
On ne change pas la ligne t(i) : u t(i),j = a t(i),j pour j = i, . . . , n, (b) On modifie les lignes t(k), k > i (et le second membre), en utilisant la ligne t(i).

Pour k = i + 1, . . . , (noter qu'on a uniquement besoin de connaître l'ensemble , et pas l'ordre) :

ℓ t(k),i = a t(k),i a t(i),i
Pour j allant de i + 1 à n, a t(k),j = a t(k),jℓ t(k),i u t(i),j Fin pour Fin pour

(Descente) On calcule y

Pour i allant de 1 à n,

y i = b t(i) - i-1
j=1 ℓ t(i),j y j Fin pour

(Remontée) On calcule x

Pour i allant de n à 1,

x i = 1 u t(i),i (y i - n j=i+1 u t(i),j x j ) Fin pour
NB : On a changé l'ordre dans lequel les équations sont considérées (le tableau t donne cet ordre, et donc la matrice P ). On a donc aussi changé l'ordre dans lequel interviennent les composantes du second membre : le système Ax = b est devenu P Ax = P b. Par contre, on n'a pas touché à l'ordre dans lequel interviennent les composantes de x et y.

Il reste maintenant à signaler la propriété magnifique de cet algorithme. . . Il est inutile de connaitre a priori la bijection pour cet algorithme. A l'étape i de l'item 1 (et d'ailleurs aussi à l'étape i de l'item 2), il suffit de connaître t(j) pour j allant de 1 à i, les opérations de 1(b) se faisant alors sur toutes les autres lignes (dans un ordre quelconque). Il suffit donc de partir d'une bijection arbitraire de {1, . . . , n} dans {1, . . . , n} (par exemple l'identité) et de la modifier à chaque étape. Pour que l'algorithme aboutisse, il suffit que a t(i),i = 0 (ce qui toujours possible car A est inversible).

Analyse numérique I, télé-enseignement, L3 Remarque 1.21 (Ordre des équations et des inconnues). L'algorithme se ramène donc à résoudre LU x = b, en résolvant d'abord Ly = b puis U x = y. Notons que lors de la résolution du système Ly = b, les équations sont dans l'ordre t(1), . . . , t(k) (les composantes de b sont donc aussi prises dans cet ordre), mais le vecteur y est bien le vecteur de composantes (y 1 , . . . , y n ), dans l'ordre initial. Puis, on résout U x = y, et les équations sont encore dans l'ordre t(1), . . . , t(k) mais les vecteurs x et y ont comme composantes respectives (x 1 , . . . , x n ) et (y 1 , . . . , y n ).

Le théorème d'existence L'algorithme LU avec pivot partiel nous permet de démontrer le théorème d'existence de la décomposition LU pour une matrice inversible.

Théorème 1.22 (Décomposition LU d'une matrice). Soit A ∈ M n (IR) une matrice inversible, il existe une matrice de permutation P telle que, pour cette matrice de permutation, il existe un et un seul couple de matrices (L, U ) où L est triangulaire inférieure de termes diagonaux égaux à 1 et U est triangulaire supérieure, vérifiant

P A = LU.
DÉMONSTRATION -1.L'existence de la matrice P et des matrices L U peut s'effectuer en s'inspirant de l'algorithme "LU avec pivot partiel" 1.20). Posons A (0) = A. À chaque étape i de l'algorithme 1.20 peut s'écrire comme A (i) = E (i) P (i) A (i-1) , où P (i) est la matrice de permutation qui permet le choix du pivot partiel, et E (i) est une matrice d'élimination qui effectue les combinaisons linéaires de lignes permettant de mettre à zéro tous les coefficients de la colonne i situés en dessous de la ligne i. Pour simplifier, raisonnons sur une matrice 4 × 4 (le raisonnement est le même pour une matrice n × n. On a donc en appliquant l'algorithme de Gauss : E (3) P (3) E (2) P (2) E (1) P (1) A = U Les matrices P (i+1) et E (i) ne commutent en général pas. Prenons par exemple E2, qui est de la forme

E (2) =    1 0 0 0 0 1 0 0 0 a 1 0 0 b 0 1

  

Si P (3) est la matrice qui échange les lignes 3 et 4, alors

P (3) =    1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0    et P (3) E (2) =    1 0 0 0 0 1 0 0 0 b 0 1 0 a 1 0    , alors que E (2) P (3) =    1 0 0 0 0 1 0 0 0 a 0 1 0 b 1 0   
Mais par contre, comme la multiplication à gauche par P (i+1) permute les lignes i + 1 et i + k, pour un certain k ≥ 1, et que la multiplication à droite permute les colonnes i + 1 et i + k, la matrice E (i) = P (i+1) E (i) P (i+1) est encore une matrice triangulaire inférieure avec la même structure que E (i) : on a juste échangé les coefficients extradiagonaux des lignes i + 1 et i + k. On a donc

P (i+1) E (i) = E (i) P (i+1) .
(1.34) Dans l'exemple précédent, on effectue le calcul :

P (3) E (2) P (3) =    1 0 0 0 0 1 0 0 0 b 1 0 0 a 0 1    = E (2) ,
qui est une matrice triangulaire inférieure de coefficients tous égaux à 1, et comme P (3) P (3) = Id, on a donc : (3) . Pour revenir à notre exemple n = 4, on peut donc écrire :

P (3) E (2) = E (2) P
E (3) E (2) P (3) E (1) P (2) P (1) A = U Analyse numérique I, télé-enseignement, L3
Mais par le même raisonnement que précédemment, on a P (3) E (1) = E (1) P (3) où E (1) est encore une matrice triangulaire inférieure avec des 1 sur la diagonale. On en déduit que E (3) E (2) E (1) P (3) P (2) P (1) A = U, soit encore P A = LU où P = P (3) P (2) P (1) bien une matrice de permutation, et L = (E (3) E (2) E (1) ) -1 est une matrice triangulaire inférieure avec des 1 sur la diagonale.

Le raisonnement que nous venons de faire pour n = 3 se généralise facilement à n quelconque. Dans ce cas, l'échelonnement de la matrice s'écrit sous la forme U = E (n-1) P (n-1) . . . E (2) P (2) E (1) P (1) A, et se transforme grâce à (1.34) en U = F (n-1) . . . F (2) F (1) P (n-1) . . . P (2) P (1) A, où les matrices F (i) sont des matrices triangulaires inférieures de coefficients diagonaux tous égaux à 1. Plus précisément, 3) , etc. . . On montre ainsi par récurrence l'existence de la décomposition LU (voir aussi l'exercice 29 page 49).

F (n-1) = E (n-1) , F (n-2) = E (n-2) , F (n-3) = E (n-
2. Pour montrer l'unicité du couple (L, U ) à P donnée, supposons qu'il existe une matrice P et des matrices L1, L2, triangulaires inférieures et U1, U2, triangulaires supérieures, telles que

P A = L1U1 = L2U2 Dans ce cas, on a donc L -1 2 L1 = U2U -1 1 .
Or la matrice L -1 2 L1 est une matrice triangulaire inférieure dont les coefficients diagonaux sont tout égaux à 1, et la matrice U2U -1 1 est une matrice triangulaire supérieure. On en déduit que

L -1 2 L1 = U2U -1 1 = Id, et donc que L1 = L2 et U1 = U2.
Remarque 1.23 (Décomposition LU pour les matrices non inversibles). En fait n'importe quelle matrice carrée admet une décomposition de la forme P A = LU . Mais si la matrice A n'est pas inversible, son échelonnement va nous donner des lignes de zéros pour les dernières lignes . La décomposition LU n'est dans ce cas pas unique. Cette remarque fait l'objet de l'exercice 40.

Méthode de Choleski

On va maintenant étudier la méthode de Choleski, qui est une méthode directe adaptée au cas où A est symétrique définie positive. On rappelle qu'une matrice A ∈ M n (IR) de coefficients (a i,j ) i=1,n,j=1,n est symétrique si A = A t , où A t désigne la transposée de A, définie par les coefficients (a j,i ) i=1,n,j=1,n , et que A est définie positive si Ax • x > 0 pour tout x ∈ IR n tel que x = 0. Dans toute la suite, x • y désigne le produit scalaire des deux vecteurs x et y de IR n . On rappelle (exercice) que si A est symétrique définie positive elle est en particulier inversible.

Description de la méthode

Commençons par un exemple. On considère la matrice 

A =   2 -1 0 -1 2 -1 0 -1 2   ,
A = LU =   1 0 0 -1 2 1 0 0 -2 3 1     2 -1 0 0 3 2 -1 0 0 4 3

 

La structure LU ne conserve pas la symétrie de la matrice A. Pour des raisons de coût mémoire, il est important de pouvoir la conserver. Une façon de faire est de décomposer U en sa partie diagonale fois une matrice triangulaire. On obtient 

U =   2 0 0 0 3 2 0 0 0 4 3     1 -1 2 0 0 1 -2 3 0 0 1   Analyse numérique I, télé-enseignement, L3
= L √ D √ DL t = L L t , avec L = L √ D.
Notons que la matrice L est toujours triangulaire inférieure, mais ses coefficients diagonaux ne sont plus astreints à être égaux à 1. C'est la décomposition de Choleski de la matrice A.

De fait, la méthode de Choleski consiste donc à trouver une décomposition d'une matrice A symétrique définie positive de la forme A = LL t , où L est triangulaire inférieure de coefficients diagonaux strictement positifs. On résout alors le système Ax = b en résolvant d'abord Ly = b puis le système L t x = y. Une fois la matrice A "factorisée", c'est-à-dire la décomposition LL t obtenue (voir paragraphe suivant), on effectue les étapes de "descente" et "remontée" :

1. Etape 1 : "descente" Le système Ly = b s'écrit :

Ly =    ℓ 1,1 0 . . . . . . . . . ℓ n,1 . . . ℓ n,n       y 1 . . . y n    =    b 1 . . . b n    .
Ce système s'écrit composante par composante en partant de i = 1.

ℓ 1,1 y 1 = b 1 , donc y 1 = b 1 ℓ 1,1 ℓ 2,1 y 1 + ℓ 2,2 y 2 = b 2 , donc y 2 = 1 ℓ 2,2 (b 2 -ℓ 2,1 y 1 ) . . . . . . j=1,i ℓ i,j y j = b i , donc y i = 1 ℓ i,i (b i - j=1,i-1 ℓ i,j y j ) . . . . . . j=1,n ℓ n,j y j = b n , donc y n = 1 ℓ n,n (b n - j=1,n-1
ℓ n,j y j ).

On calcule ainsi y 1 , y 2 , . . . , y n .

2. Etape 2 : "remontée" On calcule maintenant x solution de L t x = y.

L t x =       ℓ 1,1 ℓ 2,1 . . . ℓ n,1 0 . . . . . . . . . 0 . . . ℓ n,n              x 1 . . . x n        =        y 1 . . . y n        . On a donc : ℓ n,n x n = y n donc x n = y n ℓ n,n ℓ n-1,n-1 x n-1 + ℓ n,n-1 x n = y n-1 donc x n-1 = yn-1-ℓn,n-1xn ℓn-1,n-1 . . . j=1,n ℓ j,1 x j = y 1 donc x 1 = y 1 -j=2,n ℓ j,1 x j ℓ 1,1 .
On calcule ainsi x n , x n-1 , . . . , x 1 .
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A = LU = 1 0 b a 1 a b 0 c -b 2 a
En extrayant la diagonale de U , on obtient :

A = LU = 1 0 b a 1 a 0 0 c -b 2 a 1 b a 0 1
.

Et donc

A = L L t avec L = √ a 0 b ac-b 2 a .
Théorème 1.24 (Décomposition de Choleski). Soit A ∈ M n (IR) (n ≥ 1) une matrice symétrique définie positive. Alors il existe une unique matrice L ∈ M n (IR), L = (ℓ i,j ) n i,j=1 , telle que : 1. L est triangulaire inférieure (c'est-à-dire ℓ i,j = 0 si j > i), 2. ℓ i,i > 0, pour tout i ∈ {1, . . . , n}, 

0 < Ax • x =    B a a t α       y 0    •    y 0    =    By a t y    •    y 0    = By • y
donc B est définie positive. Par hypothèse de récurrence, il existe une matrice M ∈ Mn(IR) M = (mi,j) n i,j=1 telle que :

1.3. LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES (a) mi,j = 0 si j > i (b) mi,i > 0 (c) B = M M t . On va chercher L sous la forme : 

L =    M 0 b t λ    (1.36) avec b ∈ IR n , λ ∈ IR * + tels que LL t = A.
LL t =    M 0 b t λ       M t b 0 λ    =    M M t M b b t M t b t b + λ 2    On cherche b ∈ IR n et λ ∈ IR * + tels que LL t = A,
(M -1 a) t (M -1 a) + λ 2 = α, donc a t (M t ) -1 M -1 a + λ 2 = α soit encore a t (M M t ) -1 a + λ 2 = α, c'est-à-dire : a t B -1 a + λ 2 = α (1.
Az =   B a a t α      B -1 a -1    =    0 a t B -1 a -α    .
On a donc Az •z = α-a t B -1 a > 0 ce qui montre que (1.38) est vérifiée. On peut ainsi choisir λ = √ α -a t B -1 a (> 0) de telle sorte que (1.37) est vérifiée. Posons :

L =    M 0 (M -1 a) t λ    . La matrice L est bien triangulaire inférieure et vérifie ℓi,i > 0 et A = LL t .
On a terminé ainsi la partie "existence".

II-Unicité et calcul de L. Soit A ∈ Mn(IR) symétrique définie positive ; on vient de montrer qu'il existe L ∈ Mn(IR) triangulaire inférieure telle que ℓi,j = 0 si j > i, ℓi,i > 0 et A = LL t . On a donc :

ai,j = n k=1 ℓ i,k ℓ j,k , ∀ (i, j) ∈ {1 . . . n} 2 .
(1.39)

1. Calculons la 1-ère colonne de L ; pour j = 1, on a :

a1,1 = ℓ1,1ℓ1,1 donc ℓ1,1 = √ a1,1 (a1,1 > 0 car ℓ1,1 existe ), a2,1 = ℓ2,1ℓ1,1 donc ℓ2,1 = a2,1 ℓ1,1 , ai,1 = ℓi,1ℓ1,1 donc ℓi,1 = ai,1 ℓ1,1 ∀i ∈ {2, . . . , n}.
2. On suppose avoir calculé les q premières colonnes de L. On calcule la colonne (q + 1) en prenant j = q + 1 dans (1.39)

Pour i = q + 1, aq+1,q+1 = q+1 k=1 ℓ q+1,k ℓ q+1,k donc ℓq+1,q+1 = (aq+1,q+1 - q k=1 ℓ 2 q+1,k ) 1/2 > 0.
(1.40)

Notons que aq+1,q+1 -q k=1 ℓ 2 q+1,k > 0 car L existe : il est indispensable d'avoir d'abord montré l'existence de L pour pouvoir exhiber le coefficient ℓq+1,q+1.

On procède de la même manière pour i = q + 2, . . . , n ; on a :

ai,q+1 = q+1 k=1 ℓ i,k ℓ q+1,k = q k=1 ℓ i,k ℓ q+1,k + ℓi,q+1ℓq+1,q+1 et donc ℓi,q+1 = ai,q+1 - q k=1 ℓ i,k ℓ q+1,k 1 ℓq+1,q+1
.

(1.41)

On calcule ainsi toutes les colonnes de L. On a donc montré que L est unique par un moyen constructif de calcul de L. 

N L = n-1 p=0 (2p + 1)(n -p) = 2n n-1 p=0 p -2 n-1 p=0 p 2 + n n-1 p=0 1 - n-1 p=0 p = (2n -1) n(n -1) 2 + n 2 -2 n-1 p=0 p 2 .
(On rappelle que 2

n-1 p=0 p = n(n -1).) Il reste à calculer C n = n p=0 p 2 , en remarquant par exemple que n p=0 (1 + p) 3 = n p=0 1 + p 3 + 3p 2 + 3p = n p=0 1 + n p=0 p 3 + 3 n p=0 p 2 + 3 n p=0 p = n+1 p=1 p 3 = n p=0 p 3 + (n + 1) 3 .
On a donc 3C n + 3 n(n+1)

2

+ n + 1 = (n + 1) 3 , d'où on déduit que

C n = n(n + 1)(2n + 1) 6 .
On a donc :

N L = (2n -1) n(n -1) 2 -2C n-1 + n 2 = n 2n 2 + 3n + 1 6 = n 3 3 + n 2 2 + n 6 = n 3 3 + 0(n 2 ).
Analyse numérique I, télé-enseignement, L3 

      y 1 . . . y n    =    b 1 . . . b n    Pour la ligne 1, le calcul y 1 = b 1 ℓ 1,1
s'effectue en une opération.

Pour les lignes p = 2 à n, le calcul

y p = b p - p-1 i=1 ℓ i,p y i /ℓ p,p s'effectue en (p -1) (multiplications) +(p -2) (additions) +1 soustraction +1 (division) = 2p -1 opérations. Le calcul de y (descente) s'effectue donc en N 1 = n p=1 (2p -1) = n(n + 1) -n = n 2 .
On peut calculer de manière similaire le nombre d'opérations nécessaires pour l'étape de remontée N 2 = n 2 . Le nombre total d'opérations pour calculer x solution de (1.1) par la méthode de Choleski est

N C = N L + N 1 + N 2 = n 3 3 + n 2 2 + n 6 + 2n 2 = n 3 3 + 5n 2 2 + n 6 .
L'étape la plus coûteuse est donc la factorisation de A.

Remarque 1.28 (Décomposition LDL t ). Dans les programmes informatiques, on préfère implanter la variante suivante de la décomposition de Choleski :

A = LD Lt où D est la matrice diagonale définie par d i,i = ℓ 2 i,i , Li,i = L D-1 , où D est la matrice diagonale définie par d i,i = ℓ i,i
. Cette décomposition a l'avantage de ne pas faire intervenir le calcul de racines carrées, qui est une opération plus compliquée que les opérations "élémentaires" (×, +, -).

Quelques propriétés Comparaison Gauss/Choleski

Soit A ∈ M n (IR) inversible, la résolution de (1.1) par la méthode de Gauss demande 2n 3 /3 + 0(n 2 ) opérations (exercice). Dans le cas d'une matrice symétrique définie positive, la méthode de Choleski est donc environ deux fois moins chère.

Et la méthode de Cramer ?

Soit A ∈ M n (IR) inversible. On rappelle que la méthode de Cramer pour la résolution de (1.1) consiste à calculer les composantes de x par les formules :

x i = det(A i ) det(A) , i = 1, . . . , n,
où A i est la matrice carrée d'ordre n obtenue à partir de A en remplaçant la i-ème colonne de A par le vecteur b, et det(A) désigne le déterminant de A.

Le calcul du déterminant d'une matrice carrée d'ordre n en utilisant les formules "usuelles" (c'est-à-dire en développant par rapport à une ligne ou une colonne) nécessite au moins n! opérations (voir cours L1-L2, ou livres d'algèbre linéaire proposés en avant-propos). Par exemple, pour n = 10, la méthode de Gauss nécessite environ 700 opérations, la méthode de Choleski environ 350 et la méthode de Cramer (avec les formules usuelles de calcul du déterminant) plus de 4 000 000. . . . Cette dernière méthode est donc à proscrire.

Conservation du profil de A

Dans de nombreuses applications, par exemple lors de la résolution de systèmes linéaires issus de la discrétisation 4 de problèmes réels, la matrice A ∈ M n (IR) est "creuse", au sens où un grand nombre de ses coefficients sont nuls. Il est intéressant dans ce cas pour des raisons d'économie de mémoire de connaître le "profil" de la matrice, donné dans le cas où la matrice est symétrique, par les indices j i = min{j ∈ {1, . . . , n} tels que a i,j = 0}. Le profil de la matrice est donc déterminé par les diagonales contenant des coefficients non nuls qui sont les plus éloignées de la diagonale principale. Dans le cas d'une matrice creuse, il est avantageux de faire un stockage "profil" de A, en stockant, pour chaque ligne i la valeur de j i et des coefficients a i,k , pour k = ij i , . . . , i, ce qui peut permettre un large gain de place mémoire.

Une propriété intéressante de la méthode de Choleski est de conserver le profil. On peut montrer (en reprenant les calculs effectués dans la deuxième partie de la démonstration du théorème 1.24) que ℓ i,j = 0 si j < j i . Donc si on a adopté un stockage "profil" de A, on peut utiliser le même stockage pour L.

Matrices non symétriques

Soit A ∈ M n (IR) inversible ; on ne suppose plus ici que A est symétrique. On cherche à calculer x ∈ IR n solution de (1.1) par la méthode de Choleski. Ceci est possible en remarquant que : 

Ax = b ⇔ A t Ax = A t b car det(A) = det(A t ) = 0.

La matrice

A = 1 1 1 5 admet une décomposition de Choleski A = C t C avec C = -1 -1 0 -2 . 6. Soit A =   0 1 1 0 1 1   (a)
La matrice AA t admet une décomposition de Choleski. (b) La matrice A t A admet une décomposition de Choleski.

Exercice 22 (Elimination de Gauss). On cherche la solution du système linéaire Ax = b avec

A =     1 0 6 2 8 0 -2 -2 2 9 1 3 2 1 -3 10     et b =     6 -2 -8 -4     .
1. Pourquoi la méthode de Gauss sans permutation ne fonctionne-t-elle pas pour résoudre ce système linéaire ? 2. Donner une permutation de lignes de A permettant d'utiliser ensuite la méthode de Gauss.

3. Donner la solution de ce système linéaire. (NB : La solution prend ses valeurs dans Z Z . . . )

Exercice 23 (Factorisation LU sur un exemple).

1. Calculer la factorisation LU , où L est une matrice triangulaire inférieure dont les éléments diagonaux sont tous égaux à 1, et U est une matrice triangulaire supérieure inversible,

de la matrice A =       2 -1 0 . . . -1 2 -1 0 0 -1 2 0 . . . -1 0 -1 2       ∈ M n (IR).
2. En notant (m i ) i=1,...,n les mineurs principaux de A, donner l'expression de m i en fonction de i.

Exercice 24 (Factorisation LU sur un autre exemple). 1. Trouver la factorisation A = LU , L triangulaire inférieure de diagonale égale à la matrice identité, U triangulaire supérieure inversible, pour

A =   2 -1 -1 -2 2 1 -2 1 0   Analyse numérique I, télé-enseignement, L3
2. En déduire les valeurs des mineurs principaux de A.

Exercice 25 (LU). Corrigé en page 54 

1. Donner la décomposition LU de la matrice A =     1 0 0 1 0 2 0 1 0 0 1 1 1 2 1 0     .

Montrer que la matrice

A =   1 0 0 0 0 1 0 1 0   vérifie P A =
a ij =        -1 si i > j, 1 si i = j, 1 si j = n, 0 sinon. 1. Montrer que det(A) = 2 n-1 .
2. Montrer que A admet une décomposition LU sans permutation et calculer les coefficients diagonaux de la matrice U .

Exercice 27 (Décomposition LU d'une matrice particulière). Soient α, β ∈ R tels que αβ = 1.

1. Soit A 3 =   1 β β 2 α 1 β α 2 α 1   .
(a) Montrer que A 3 admet une unique décomposition LU , c'est-à-dire, A 3 = LU , avec L triangulaire inférieure avec des 1 sur la diagonale et U triangulaire supérieure, on demande ici une réponse sans calcul explicite de la décomposition. (b) Donner l'expression des matrices d'élimination de la procédure de décomposition LU pour A 3 . Calculer L -1 et L à l'aide de ces matrices. Comparer L avec A. Donner l'expression de U . 2. Soit n ≥ 2 un entier. On définit de manière plus générale 

A n = (a ij ) n i,j=1 , avec a ii = 1, a ij = α i-j , i > j et a ij = β j-i , j > i. (a) Montrer que det(A n ) = (1 -αβ) n-
(Id n -E n ) -1 =         1 0 . . . 0 0 -α 1 0 . . . 0 0 -α 1 0 . . . . . . . . . . . . . . . 0 0 . . . 0 -α 1         .
Analyse numérique I, télé-enseignement, L3 

A (k) = P (k) A vérifie A (k) k = L k U k , en notant A (k) k ∈ M k (IR) la matrice définie par (A (k) k ) i,j = a (k)
i,j pour i = 1, . . . , k et j = 1, . . . , k.

1. Montrer que l'hypothèse de récurrence est vrai au rang k = 1.

On suppose maintenant que la propriété de récurrence est vérifiée au rang k ∈ {1, . . . , n -1}, et on va prouver qu'elle est encore vraie au rang k + 1.

2. Montrer que la matrice A (k) = P (k) A peut s'écrire sous la forme par blocs suivante :

A (k) =   L k 0 k×(n-k) C D     U k V 0 (n-k)×k Id n-k   , (1.45) où 0 p,q désigne la matrice nulle de dimension p × q, V ∈ M k,n-k (IR) et C ∈ M n-k,k (IR) et D ∈ M n-k,n-k (IR). On appelle c 1 (D), c 1 (V ), c 1 (E) et c 1 (G) les premières colonnes respectives des matrices D, V , E et G. 3. Montrer que c 1 (D) = 0 (n-k)×1 . Soit i * ∈ {k + 1, . . . , n} t.q. |d i * ,1 | = max |d i,1 |, 1 ∈ {k + 1, .
. . , n} . On pose P (k+1) = P (i * ↔k+1) P (k) , A (k+1) = P (i * ↔k+1) A (k) = P (k+1) A, et

L k+1 =   L k 0 k×1 ℓ i * (C) d i * ,1   , U k+1 =   U k c 1 (V ) 0 1×k 1   , A (k+1) k+1 =   A (k) k c 1 (E) ℓ i * (F ) g i * ,1   , ( 1.46) 
où ℓ i * (C) (resp. ℓ i * (F )) désigne la i * -ème ligne de la matrice C (resp. F ).

Analyse numérique I, télé-enseignement, L3

4. Montrer que les matrices P (k+1) , L k+1 et U k+1 vérifient l'hypothèse de récurrence par construction, et conclure la démonstration du lemme 1.29.

Exercice 30 (Conservation du profil). On considère des matrices A et B ∈ M 4 (IR) de la forme suivante, où x en position (i, j) de la matrice signifie que le coefficient a i,j est non nul et 0 en position (i, j) de la matrice signifie que a i,j = 0)

A =     x x x x x x x 0 0 x x 0 0 0 x x     et B =     x x x 0 x x 0 x 0 x x x 0 x x x     .
Pour chacune de ces matrices, quels sont les coefficients nuls (notés 0 dans les matrices) qui resteront nécessairement nuls dans les matrices L et U de la factorisation LU sans permutation (si elle existe) ?

Exercice 31 (Un système linéaire par blocs). Exercice 39 (Factorisation de Choleski).

A n =         1 1 • • • • • • 1 1 2 • • • • • • 2 . . . . . . . . . . . . n -1 n -1 1 2 n -1 n         1.
1. Pouver, au moyen de la factorisation de Choleski, que la matrice A définie par 

A =   1 -1 -1 -1 2 1 -
=     2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2     .
2. Que deviennent les coefficients nuls dans la décomposition LL t ci-dessus ? Quelle est la propriété vue en cours qui est ainsi vérifiée ?

Exercice 42 (Factorisation de Choleski sur un exemple). Calculer la factorisation de Choleski de la matrice suivante : 

A =     4 
A =       1 -1 0 0 0 -1 2 -1 0 0 0 -1 2 -1 0 0 0 -1 2 -1 0 0 0 -1 2       .

L'inverse d'une matrice inversible tridiagonale est elle tridiagonale ?

Exercice 45 (Choleski pour matrice bande). Suggestions en page 54, corrigé en page 63 Soit A ∈ M n (IR) une matrice symétrique définie positive.

1. On suppose ici que A est tridiagonale. Estimer le nombre d'opérations de la factorisation LL t dans ce cas.

2. Même question si A est une matrice bande (c'est-à-dire p diagonales non nulles).

3. En déduire une estimation du nombre d'opérations nécessaires pour la discrétisation de l'équation -u ′′ = f vue page 11. Même question pour la discrétisation de l'équation -∆u = f présentée page 14.

Suggestions

Exercice 26 page 48 (Décomposition LU et mineurs principaux)

1. On pourra par exemple raisonner par récurrence et remarquer que detA = detB où B est obtenue en ajoutant, pour tout i ∈ {2, . . . , n}, la première ligne de A à la i-ème ligne de A, ce qui correspond à la première étape de l'algorithme de décomposition LU .

2. Utiliser la caractérisation par les mineurs (proposition 1.18).

Exercice 29 page 49 (Existence de la décomposition LU à une permutation près)

2. Ecrire A (k) = P (k) A sous une forme par blocs.

Procéder par contradiction.

Analyse numérique I, télé-enseignement, L3

Exercice 45 page 53 2. Soit q le nombre de sur-ou sous-diagonales (p = 2q + 1). Compter le nombre c q d'opérations nécessaires pour le calcul des colonnes 1 à q et nq + 1 à n, puis le nombre d n d'opérations nécessaires pour le calcul des colonnes n = q + 1 nq. En déduire l'estimation sur le nombre d'opérations nécessaires pour le calcul de toutes les colonnes, Z p (n), par :

2c q ≤ Z p (n)2c q + n-q n=q+1 c n .

Corrigés

Exercice 21 page 47 (Vrai ou faux ?) 

L'élimination de Gauss donne

A = LU avec L =   1 0 0 1 1 0 0 0 1   et U =   1 -2 0 0 1 0 0 0 3   .
La matrice B ci-dessus admet une décomposition LU .

4. Non car elle n'est pas symétrique. Exercice 25 page 48 (Décomposition LU )

La matrice

1. L'échelonnement donne L =     1 0 0 0 0 1 0. 0. 0 0 1 0. 1 1 1 1.     et U =     1 0 0 1 0 2 0 1 0 0 1 1 0 0 0 -3    
2. La matrice A est une matrice de permutation (des lignes 2 et 3). Donc on a P = A et P A = Id = LU avec L = U = Id. 

L'échelonnement donne

L =   1 0 0 1 2 1 0 0 2 3 1   et U =   2 1 0 0 3 2 1 0 0 4 3   Analyse numérique I, télé-enseignement, L3
= a, m 2 = a 1 1 2 = 2a -1 et m 2 = a 1 1 1 2 1 1 1 2 = 3a -2. Il en résulte que A est définie positive si et seulement si a > 2/3. (b)   2 1 1 1 2 1 1 1 2   ℓ2←ℓ2-1 2 ℓ1,ℓ3←ℓ3-1 2 ℓ1 -→   2 1 1 0 3/2 1/2 0 1/2 3/2   ℓ3←ℓ3-1 3 ℓ2 -→   2 1 1 0 3/2 1/2 0 0 4/3   Donc A = LU avec L =   1 0 0 1/2 1 0 1/2 1/3 1   et U =   2 1 1 0 3/2 1/
1 = a i * ,1 , L 1 = A (1) 1 et U 1 = 1 .
2. Il suffit d'écrire la décomposition par blocs de A (k) :

A (k) =   A (k) k E F G   , avec A (k) k ∈ M k (IR), E ∈ M k,n-k (IR), F ∈ M n-k,k (IR) et G ∈ M n-k,n-k (IR). Par hypothèse de récurrence, on a A (k) k = L k U k . De plus L k et U k sont inversibles, et il existe donc une unique matrice V ∈ M k,n-k (IR) (resp. C ∈ M n-k,k (IR)) telle que L k V = E (resp CU k = F ). En posant D = G -CV , on obtient l'égalité (1.45). 1.3. LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES 3. En effet, si c 1 (D) = 0 (n-k)×1 , alors c 1 (G) = Cc 1 (V ) = F U -1 c 1 (V ) et en même temps c 1 (E) = Lc 1 (V ) = A (k) k U -1 c 1 (V ).
On obtient alors que la colonne k + 1 de la matrice A (k) , composée des deux vecteurs c 1 (E) et c 1 (G), est obtenue par la combinaison linéaire avec les coefficients U -1 c 1 (V ) des k premières colonnes de la matrice A (k) , constituées des matrices A (k) k et F . C'est impossible, puisque la matrice A (k) est le produit des deux matrices inversibles P (k) et A.

4. On a bien 1. L k v •,1 = c 1 (E), 2. ℓ i * (C)U k = ℓ i * (F ), 3. ℓ i * (C)c 1 (V ) + d i * ,1 = g i * ,1 .
La conclusion du lemme est alors obtenue pour k = n.

Analyse numérique I, télé-enseignement, L3 Appliquons l'algorithme de Gauss ; la première étape de l'élimination consiste à retrancher la première ligne à toutes les autres, c.à.d. à multiplier A à gauche par E 1 , avec

E 1 =     1 0 0 0 -1 1 0 0 -1 0 1 0 -1 0 0 1     .
On obtient :

E 1 A=     a a a a 0 b -a b -a b -a 0 b -a c -a c -a 0 b -a c -a d -a     .
La deuxième étape consiste à multiplier A à gauche par E 2 , avec

E 2 =     1 0 0 0 0 1 0 0 0 -1 1 0 0 -1 0 1     .
On obtient :

E 2 E 1 A=     a a a a 0 b -a b -a b -a 0 0 c -b c -b 0 0 c -b d -b     .
Enfin, la troisième étape consiste à multiplier A à gauche par E 3 , avec

E 3 =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 -1 1     .

LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES

On obtient :

E 3 E 2 E 1 A =     a a a a 0 b -a b -a b -a 0 0 c -b c -b 0 0 0 d -c     . On A = LU avec L = (E 3 E 2 E 1 ) -1 = (E 1 ) -1 (E 2 ) -1 (E 3 ) -1 ; les matrices (E 1 ) -1 , (E 2 ) -1 et (E 3
) -1 sont faciles à calculer : la multiplication à gauche par (E 1 ) -1 consiste à ajouter la première ligne à toutes les suivantes ; on calcule de la même façon (E 2 ) -1 et (E 3 ) -1 . On obtient (sans calculs !) :

(E 1 ) -1 =     1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1     , (E 2 ) -1 =     1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1     , (E 3 ) -1 =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1     , et donc L =     1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1     et U =     a a a a 0 b -a b -a b -a 0 0 c -b c -b 0 0 0 d -c     .
La (2) où λ i ← λ iαλ j veut dire qu'on a soustrait α fois la ligne j à la ligne i. On a donc, sous forme matricielle,

A = A (1) =     2 -1 4 0 4 -1 5 1 -2 2 -2 3 0 3 -9 4     -→ λ2←λ2-2λ1 λ3←λ3++λ1     2 -1 4 0 0 1 -3 1 0 1 2 3 0 3 -9 4     = A
A (2) = E (1) A (1) avec E (1) =     1 0 0 0 -2 1 0 0 1 0 1 0 0 0 0 1     . Notons que A = A (1) = (E (1) ) -1 A (2) avec (E (1) ) -1 =     1 0 0 0 2 1 0 0 -1 0 1 0 0 0 0 1     et donc L =     1 0 0 0 2 1 0 0 1 x 1 0 x x x 1     Etape k = 2 A (2) =     2 -1 4 0 0 1 -3 1 0 1 2 3 0 3 -9 4     -→ λ3←λ3-λ2 λ4←λ4-3λ2     2 -1 4 0 0 1 -3 1 0 0 5 2 0 0 0 1     = A (3) = E (2) A (2) avec E (2) =     1 0 0 0 1 0 0 -1 1 0 -3 0     . Notons que A (2) = (E (2) ) -1 A (3) avec (E (2) ) -1 =     1 0 0 0 0 1 0 0 0 1 1 0 0 3 0 1     et donc L =     1 0 0 0 2 1 0 0 1 1 1 0 0 3 0 1     .
Et la vie est belle... car A (3) est déjà triangulaire supérieure, avec tous les coefficients diagonaux non nuls (ce qui prouve A est inversible). On n'a donc pas besoin d'étape 4 :

U = A (3) =     2 -1 4 0 0 1 -3 1 0 0 5 2 0 0 0 1     . On a également U = A (3) = E (2) E (1) A, soit encore A = (E (1) ) -1 (E (2) ) -1 U = LU avec L = (E (1) ) -1 (E (2) ) -1 =     1 0 0 0 2 1 0 0 -1 1 1 0 0 3 0 1    
On peut vérifier par le calcul qu'on a bien A = LU . Une fois que le mécanisme d'élimination est bien compris, il est inutile de calculer les matrices E (k) : on peut directement stocker les multiplicateurs de l'élimination de Gauss dans la matrice L.

Pour la seconde matrice, l'élimination donne : 

L =     1. 0. 0. 0. -1. 1. 0. 0. 1. 0. 1. 0. -1. 1. 1. 1.     , U =     1. 2.

   

Exercice 41 page 52 (Décomposition LL t "pratique" )

1. Ecrivons l'élimination de Gauss sur cette matrice, en stockant les multiplicateurs qu'on utilise au fur et à mesure dans la matrice E (k) pour chaque étape k.

Etape k = 1 (2) où λ i ← λ iαλ j veut dire qu'on a soustrait α fois la ligne j à la ligne i. On a donc, sous forme matricielle,

A = A (1) =     2 -1 4 0 4 -1 5 1 -2 2 -2 3 0 3 -9 4     -→ λ2←λ2-2λ1 λ3←λ3++λ1     2 -1 4 0 0 1 -3 1 0 1 2 3 0 3 -9 4     = A
A (2) = E (1) A (1) avec E (1) =     1 0 0 0 -2 1 0 0 1 0 1 0 0 0 0 1     . Notons que A = A (1) = (E (1) ) -1 A (2) avec (E (1) ) -1 =     1 0 0 0 2 1 0 0 -1 0 1 0 0 0 0 1     Etape k = 2 A (2) =     2 -1 4 0 0 1 -3 1 0 1 2 3 0 3 -9 4     -→ λ3←λ3-λ2 λ4←λ4-3λ2     2 -1 4 0 0 1 -3 1 0 0 5 2 0 0 0 1     = A (3) = E (2) A (2) avec E (2) =     1 0 0 0 0 1 0 0 0 -1 1 0 0 -3 0 1     . 1.3. LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES Notons que A (2) = (E (2) ) -1 A (3) avec (E (2) ) -1 =     1 0 0 0 0 1 0 0 0 1 1 0 0 3 0 1     .
Et la vie est belle... car A (3) est déjà triangulaire supérieure, avec tous les coefficients diagonaux non nuls (ce qui prouve A est inversible). On n'a donc pas besoin d'étape 4 : 

U = A (3) =     2 -1 4 0 0 1 -3 1 0 0 5 2 0 0 0 1     . On a également U = A (3) = E (2) E (1) A, soit encore A = (E (1) ) -1 (E (2) ) -1 U = LU avec L = (E (1) ) -1 (E (2) ) -1 =     1 0 0 0 2 1 0 0 -1 1 1 0 0 3 0 1     2 

Montrons maintenant que

A =     2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2    
Ax • x =     2a -b -a + 2b -c -b + 2c -d -c + 2d     •     a b c d     Donc Ax • x = 2a 2 -ab -ab + 2b 2 -bc -bc + 2c 2 -cd -cd + 2d 2 = a 2 + (a -b) 2 + (b -c) 2 + (c -d) 2 + d 2 ≥ 0. De plus Ax • x = 0 ssi a = b = c = d = 0. Donc A est sdp.
On peut soit appliquer ici l'algorithme de construction de la matrice donné dans la partie unicité de la preuve du théorème 1.24 d'existence et d'unicité de la décomposition de Choleski, soit procéder comme en 1, calculer la décomposition LU habituelle, puis calculer la décomposition de

A = LU , écrire A = L Lt avec L = L √ D, où √
Det D la matrice diagonale extraite de U , comme décrit plus haut. Nous allons procéder selon le deuxième choix, qui est un peu plus rapide à écrire. (on utilise ici la notation L parce que les matrices L dans les décompositions LU et LL t ne sont pas les mêmes...) Etape k = 1

A = A (1) =     2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2     -→ λ2←λ2+ 1 2 λ1     2 -1 0 0 0 3 2 -1 0 0 -1 2 -1 0 0 -1 2     = A (2) Etape k = 2
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A (2) =     2 -1 0 0 0 3 2 -1 0 0 -1 2 -1 0 0 -1 2     -→ λ3←λ3+ 2 3 λ2     2 -1 0 0 0 3 2 -1 0 0 0 4 3 -1 0 0 -1 2     = A (3) Etape k = 3 A (3) =     2 -1 0 0 0 3 2 -1 0 0 0 4 3 -1 0 0 -1 2     -→ λ4←λ4+ 3 4 λ3     2 -1 0 0 0 3 2 -1 0 0 0 4 3 -1 0 0 0 5 4     = A (4)
On vérifie alors qu'on a bien U = A (4) = DL t où L est la matrice inverse du produit des matrices élémentaires utilisées pour transformer A en une matrice élémentaire (même raisonnement qu'en 1), c.à.d. 

L =     1 0 0 0 -1 2 1 0 0 0 -2 3 1 0 0 0 -3 4 1     On en déduit la décomposition A = L Lt avec L =      √ 2 0 0 0 - √ 2 2 √ 6 2 0 0 0 - √ 6 3 2 √ 3 3 0 0 0 - √ 3 2 √ 5 2      3 
= (x 1 , x 2 ) t ∈ IR 2 , alors Ax • x = 2x 1 (x 1 + x 2 ), et en prenant x = (1, -2) t , on a Ax • x < 0.
2. 2. Reprenons en l'adaptant la démonstration du théorème 1.3. On raisonne donc par récurrence sur la dimension.

1. Dans le cas n = 1, on a A = (a 1,1 ). On peut donc définir L = (ℓ 1,1 ) où ℓ 1,1 = 1, D = (a 

A =     B a a t α     (1.47)
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(a) m i,j = 0 si j > i (b) m i,i = 1 (c) B = M DM t .
On va chercher L et D sous la forme : 

L =     M 0 b t 1     , D =     D 0 0 λ     , ( 1 
LDL t =     M 0 b t 1         D 0 0 λ         M t b 0 1     =     M DM t M Db b t DM t b t Db + λ     On cherche b ∈ IR n et λ ∈ IR tels que LDL t = A,
A = LDL t =     M DM t M Db b t DM t b t Db    
qui n'est pas inversible. En effet, si on cherche (x, y) ∈ IR n × IR solution de

    M DM t M Db b t DM t b t Db         x y     =     0 0     ,
on se rend compte facilement que tous les couples de la forme (-M -t by, y) t , y ∈ IR, sont solutions. Le noyau de la matrice n'est donc pas réduit à {0} et la matrice n'est donc pas inversible. On a ainsi montré que d n+1,n+1 = 0 ce qui termine la récurrence.

3. On reprend l'algorithme de décomposition LL t : Soit A ∈ M n (IR) symétrique définie positive ou négative ; on vient de montrer qu'il existe une matrice L ∈ M n (IR) triangulaire inférieure telle que ℓ i,j = 0 si j > i, ℓ i,i = 1, et une matrice D ∈ M n (IR) diagonale inversible, telles que et A = LDL t . On a donc :

a i,j = n k=1 ℓ i,k d k,k ℓ j,k , ∀ (i, j) ∈ {1, . . . , n} 2 .
(1.49)
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1. Calculons la 1ère colonne de L ; pour j = 1, on a :

a 1,1 = d 1,1 donc d 1,1 = a 1,1 , a 2,1 = ℓ 2,1 d 1,1 donc ℓ 2,1 = a 2,1 d 1,1 , a i,1 = ℓ i,1 ℓ 1,1 donc ℓ i,1 = a i,1 d 1,1 ∀i ∈ {2, . . . , n}.
2. On suppose avoir calculé les n premières colonnes de L. On calcule la colonne (k + 1) en prenant j = n + 1 dans (1.39).

Pour i = n + 1, a n+1,n+1 = n k=1 ℓ 2 n+1,k d k,k + d n+1,n+1 donc d n+1,n+1 = a n+1,n+1 - n k=1 ℓ 2 n+1,k d k,k . (1.50)
On procède de la même manière pour i = n + 2, . . . , n ; on a :

a i,n+1 = n+1 k=1 ℓ i,k d k,k ℓ n+1,k = n k=1 ℓ i,k d k,k ℓ n+1,k + ℓ i,n+1 d n+1,n+1 ℓ n+1,n+1 ,
et donc, comme on a montré dans la question 2 que les coefficients d k,k sont tous non nuls, on peut écrire :

ℓ i,n+1 = a i,n+1 - n k=1 ℓ i,k d k,k ℓ n+1,k 1 d n+1,n+1
.

(1.51) On utilise le résultat de conservation du profil de la matrice énoncé dans le cours, voir aussi exercice 30. Comme A est symétrique, le nombre p de diagonales de la matrice A est forcément impair si A ; notons q = p-1 2 le nombre de sous-et sur-diagonales non nulles de la matrice A, alors la matrice L aura également q sous-diagonales non nulles.

1. Cas d'une matrice tridiagonale. En reprenant l'algorithme de construction de la matrice L (1.39)-(1.41), on remarque que pour le calcul de la colonne j + 1, avec 0 ≤ j < n -1, on a le nombre d'opérations suivant :

-Calcul de ℓ j+1,j+1 = (a j+1,j+1 -n k=1 ℓ j+1,k ℓ j+1,k ) 1/2 > 0 : une multiplication, une soustraction (en effet comme la matrice est tridiagonale, la conservation du profil entraîne que ℓ j,k = 0 si k < j), une extraction de racine, soit trois opérations élémentaires.

-Calcul de ℓ j+2,j+1 = a j+2,j+1 -

n k=1 ℓ j+2,k ℓ j+1,k 1 ℓ j+1,j+1
: une division seulement car ℓ j+2,k = 0 pour tout k ≤ j.
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ℓ i,i = (a i,i - i-1 k=max{1,i-q} ℓ i,k ℓ i,k ) 1/2 , (1.52) et pour j = {max{1, i -q}, . . . , i -1}, ℓ i,j =   a j,i - j-1 k=max{1,i-q} ℓ i,k ℓ j,k   1 ℓ j,j . ( 1 
M (i) = N (i) + i-1 max{1,i-q} N (i, j).
Pour calculer M (i), on distingue les cas i ≤ q et i > q.

Cas i ≤ q Dans ce cas {max{1, i -q} = 1 et

N (i) = 2(i -1) + 1 = 2i -1, N (i, j) = 2(j -1) + 1 = 2j -1, i-1 j=1 N (i, j) = (i -1) 2 .
Ce qui donne M (i) = i 2 et donc q 1 M (i) = q(q + 1)(2q + 1)/6.

Cas i > q Dans ce cas {max{1, i -q} = i -q et N (i) = 2(i -1 -(i -q) + 1) + 1 = 2q + 1, N (i, j) = 2(j -1 -(i -q) + 1) + 1 = 2(j -1 + q) + 1, i-1 j=i-q N (i, j) = i-1 j=i-q 2(j -i + q) + 1 = 2 q-1 k=1 k + (i -1 -(i -q) + 1) = q(q -1) + q = q 2 , M (i) = 2q + 1 + q 2 = (q + 1) 2 .
On en déduit Z p (n) :

Z p (n) = n i=1 M (i) = (n -q)(q + 1) 2 +
q(q + 1)(2q + 1) 6 = n(q + 1) 2 -q(q + 1)(4q + 5) 6 .

Remarquons qu'on retrouve bien le nombre obtenu pour q = 1, Z 2 (n) = 4n -3.
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3. Dans le cas de la discrétisation de l'équation -u ′′ = f (voir page 11), on a q = 1 et la méthode de Choleski nécessite de l'ordre de 4n opérations élémentaires, alors que dans le cas de la discrétisation de l'équation -∆u = f (voir page 14), on a q = √ n et la méthode de Choleski nécessite de l'ordre de n 2 opérations élémentaires (dans les deux cas n est le nombre d'inconnues).

Normes et conditionnement d'une matrice

Dans ce paragraphe, nous allons définir la notion de conditionnement d'une matrice, qui peut servir à établir une majoration des erreurs d'arrondi dues aux erreurs sur les données. Malheureusement, nous verrons également que cette majoration n'est pas forcément très utile dans des cas pratiques, et nous nous efforcerons d'y remédier. La notion de conditionnement est également utilisée dans l'étude des méthodes itératives que nous verrons plus loin. Pour l'étude du conditionnement comme pour l'étude des erreurs, nous avons tout d'abord besoin de la notion de norme et de rayon spectral, que nous rappelons maintenant. DÉMONSTRATION -La démonstration des points 1 et 2 fait l'objet de l'exercice 47 page 75. On démontre ici uniquement le point 3. Par définition de la norme 2, on a : 

A 2 2 = sup x∈IR n x 2 =1 Ax • Ax = sup x∈IR n x 2 =1 A t Ax • x.
A t Ax • x = i=1,...,n µiαif i • i=1,...,n αif i = i=1,...,n α 2 i µi ≤ µn x 2 2 .
On en déduit que A 2 2 ≤ ρ(A t A). Pour montrer qu'on a égalité, il suffit de considérer le vecteur x = f n ; on a en effet

f n 2 = 1, et Af n 2 2 = A t Af n • f n = µn = ρ(A t A).
Nous allons maintenant comparer le rayon spectral d'une matrice avec des normes. Rappelons d'abord le théorème de triangularisation (ou trigonalisation) des matrices complexes. On rappelle d'abord qu'une matrice unitaire Q ∈ M n (C l ) est une matrice inversible telle que Q * = Q -1 ; ceci est équivalent à dire que les colonnes de Q forment une base orthonormale de C l n . Une matrice carrée orthogonale est une matrice unitaire à coefficients réels ; on a dans ce cas Q * = Q t , et les colonnes de Q forment une base orthonormale de IR n . Théorème 1.34 (Décomposition de Schur, triangularisation d'une matrice). Soit A ∈ M n (IR) ou M n (C l ) une matrice carrée quelconque, réelle ou complexe ; alors il existe une matrice complexe Q unitaire (c.à.d. une matrice telle que Q * = Q -1 et une matrice complexe triangulaire supérieure T telles que A = QT Q -1 . Ce résultat s'énonce de manière équivalente de la manière suivante : Soit ψ une application linéaire de E dans E, où E est un espace vectoriel de dimension finie n sur C l , muni d'un produit scalaire. Alors il existe une base orthonormée (f 1 , . . . , f n ) de C l n et une famille de complexes (t i,j ) i=1,...,n,j=1,...,n,j≥i telles que ψ(f i ) = t i,i f i + k<i t k,i f k . De plus t i,i est valeur propre de ψ et de A pour tout i ∈ {1, . . . , n}. Les deux énoncés sont équivalents au sens où la matrice A de l'application linéaire ψ s'écrit A = QT Q -1, où T est la matrice triangulaire supérieure de coefficients (t i,j ) i,j=1,...,n,j≥i et Q la matrice unitaire dont la colonne j est le vecteur f j ).

DÉMONSTRATION -On démontre cette propriété par récurrence sur n. Elle est évidemment vraie pour n = 1. Soit n ≥ 1, on suppose la propriété vraie pour n et on la démontre pour n + 1. Soit donc E un espace vectoriel sur C l de dimension n + 1, muni d'un produit scalaire. Soit ψ une application linéaire de E dans E. On sait qu'il existe λ ∈ C l (qui résulte du caractère algébriquement clos de C l ) et

f 1 ∈ E tels que ψ(f 1 ) = λf 1 et f 1 = 1 ; on pose t1,1 = λ et on note F un sous espace vectoriel de E supplémentaire de C l f 1 . Soit u ∈ F , il existe un unique couple (µ, v) ∈ C l × F tel que ψ(u) = µf 1 + v.
On note ψ l'application qui à u associe v. On peut appliquer l'hypothèse de récurrence à ψ (car ψ est une application linéaire de F dans F , F est de dimension n et le produit scalaire sur E induit un produit scalaire sur F ). Il existe donc une base orthonormée f 2 , . . . , f n+1 de F et (ti,j) j≥i≥2 tels que

ψ(f i ) = 2≤j≤i tj,if j , i = 2, . . . , n + 1.
On en déduit que

ψ(f i ) = 1≤j≤i≤n tj,if j , i = 1, . . . , n + 1.
Le fait que l'ensemble des ti,i est l'ensemble des valeurs propores de A, comptées avec leur multiplicité. vient de l'égalité det(A -λI) = det(T -λI) pour tout λ ∈ C l .

L'objet du théorème suivant est de montrer qu'on peut toujours trouver une norme (qui dépend de la matrice) pour approcher son rayon spectral d'aussi près que l'on veut par valeurs supérieures. Si λ ∈ C l \ IR, la démonstration est un peu plus compliquée car la norme considérée est une norme dans IR n (et non dans C l n ). On montre tout d'abord que ρ(A) < 1 si A < 1.

Soient maintenant

A ∈ M n (IR) et ε > 0, alors il existe une norme sur IR n (qui dépend de A et ε) telle que la norme induite sur M n (IR), notée • A,ε , vérifie A A,ε ≤ ρ(A) + ε.

NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES

En effet, Il existe x ∈ C l n , x = 0, tel que Ax = λx. En posant x = y + iz, avec y, z ∈ IR n , on a donc pour tout

k ∈ IN, λ k x = A k x = A k y + iA k z. Comme A k y ≤ A k y et A k z ≤ A k z , on a, si A < 1, A k y → 0 et A k z → 0 (dans IR n ) quand k → +∞. On en déduit que λ k x → 0 dans C l n . En choisissant une norme sur C l n , notée • a, on a donc |λ| k x a → 0 quand k → +∞, ce qui montre que |λ| < 1 et donc ρ(A) < 1.
Pour traiter le cas général (A quelconque dans Mn(IR)), il suffit de remarquer que la démonstration précédente donne, pour tout η > 0, ρ(A/( A + η)) < 1 (car A/( A + η) < 1). On a donc ρ(A) < A + η pour tout η > 0, ce qui donne bien ρ(A) ≤ A . 2. Soit A ∈ Mn(IR), alors par le théorème de triangularisation de Schur (théorème 

Aei = A(η i-1 f i ) = η i-1 Af i = η i-1 j≤i tj,if j = η i-1 j≤i tj,iη 1-j ej = 1≤j≤i η i-j tj,iej , Soit maintenant x = i=1,...,n αiei. On a Ax = n i=1 αiAei = n i=1 1≤j≤i η i-j tj,iαiej = n j=1 n i=j η i-j tj,iαi ej .

On en déduit que

Ax 2 = n j=1 n i=j η i-j tj,iαi n i=j η i-j tj,iαi , = n j=1 tj,jtj,jαj αj + n j=1 k,ℓ≥j (k,ℓ) =(j,j) η k+ℓ-2j t j,k t j,ℓ α k α ℓ ≤ ρ(A) 2 x 2 + max k=1,...,n |α k | 2 n j=1 k,ℓ≥j (k,ℓ) =(j,j) η k+ℓ-2j t j,k t j,ℓ . Comme η ∈ [0, 1] et k + ℓ -2j ≥ 1 dans la dernière sommation, on a n j=1 k,ℓ≥j (k,ℓ) =(j,j) η k+ℓ-2j t j,k t j,ℓ ≤ ηCT n 3 , où CT = max j,k
|α k | 2 = x 2 , on a donc, pour tout x dans C l n , x = 0, Ax 2 x 2 ≤ ρ(A) 2 + ηCT n 3 . On en déduit que A 2 ≤ ρ(A) 2 + ηCT n 3 et donc A ≤ ρ(A) 1 + ηCT n 3 ρ(A) 2 1 2 ≤ ρ(A)(1 + ηCT n 3 ρ(A) 2 ). D'où le résultat, en prenant • A,ε = • et η tel que η = min 1, ρ(A)ε CT n 3 .
ρ(A) < 1 si et seulement si A k → 0 quand k → ∞.
DÉMONSTRATION -Si ρ(A) < 1, il existe ε > 0 tel que ρ(A) < 1 -2ε ; grâce au résultat d'approximation du rayon spectral du théorème 1.35, il existe donc une norme induite

• A,ε telle que A A,ε = µ ≤ ρ(A) + ε = 1 -ε < 1. Comme • A,ε est une norme matricielle, on a A k A,ε ≤ µ k → 0 lorsque k → ∞.
Comme l'espace Mn(IR) est de dimension finie, toutes les normes sont équivalentes, et on a donc

A k → 0 lorsque k → ∞. Montrons maintenant la réciproque : supposons que A k → 0 lorsque k → ∞, et montrons que ρ(A) < 1. Soient λ une valeur propre de A et x un vecteur propre associé. Alors A k x = λ k x, et si A k → 0, alors A k x → 0, et donc λ k x → 0, ce qui n'est possible que si |λ| < 1.
Remarque 1.37 (Convergence des suites). Une conséquence immédiate du corollaire précédent est que la suite (x (k) ) k∈IN définie par x (k+1) = Ax (k) converge vers 0 (le vecteur nul) pour tout x (0) donné si et seulement si ρ(A) < 1. 

Proposition 1.38 (Convergence et rayon spectral). On munit M n (IR) d'une norme, notée • . Soit A ∈ M n (IR). Alors ρ(A) = lim k→∞ A k 1 k . ( 1 
A k → 0 donc il existe K ∈ IN tel que pour k ≥ K, A k < 1.
On en déduit que pour k ≥ K, A k 1/k < 1, et donc en passant à la limite sup sur k, on obtient bien que

lim sup k→+∞ A k 1 k ≤ 1.
Etape 2. On montre maintenant que lim inf

k→∞ A k 1 k < 1 ⇒ ρ(A) < 1. (1.61)
Pour démontrer cette assertion, rappelons que pour toute suite (u k ) k∈IN d'éléments de IR ou IR n , la limite inférieure lim inf k→+∞ u k est une valeur d'adhérence de la suite (u k ) k∈IN , donc qu'il existe une suite extraite (u kn ) n∈IN telle que

u kn → lim inf k→+∞ u k lorsque n → +∞. Or lim inf k→+∞ A k 1/k < 1 ; donc il existe une sous-suite (kn) n∈IN ⊂ IN telle que A kn 1/kn → ℓ < 1 lorsque n → +∞. Soit η ∈]l, 1[ il existe donc n0 tel que pour n ≥ n0, A kn 1/kn ≤ η.
On en déduit que pour n ≥ n0, A kn ≤ η kn , et donc que A kn → 0 lorsque n → +∞. Soient λ une valeur propre de A et x un vecteur propre associé, on a :

A kn x = λ kn x ; on en déduit que |λ| < 1, et donc que ρ(A) < 1. Etape 3. On montre que ρ(A) = lim k→∞ A k 1 k . Soit α ∈ IR+ tel que ρ(A) < α. Alors ρ( 1 α A) < 1, et donc grâce à (1.60), lim sup k→+∞ A k 1 k < α, ∀α > ρ(A).
En faisant tendre α vers ρ(A), on obtient donc :

lim sup k→+∞ A k 1 k ≤ ρ(A). (1.62) 1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES Soit maintenant β ∈ IR+ tel que lim inf k→+∞ A k 1 k < β. On a alors lim inf k→+∞ ( 1 β A) k 1 k < 1 et donc en vertu de (1.61), ρ( 1 β A) < 1, donc ρ(A) < β pour tout β ∈ IR+ tel que lim inf k→+∞ A k 1 k < β. En faisant tendre β vers lim inf k→+∞ A k 1 k , on obtient donc ρ(A) ≤ lim inf k→+∞ A k 1 k . (1.63) De (1.62) et (1.63), on déduit que lim sup k→+∞ A k 1 k = lim inf k→+∞ A k 1 k = lim k→+∞ A k 1 k = ρ(A). (1.64)
Un corollaire important de la proposition 1.38 est le suivant.

Corollaire 1.39 (Comparaison rayon spectral et norme).

On munit M n (IR) d'une norme matricielle, notée • . Soit A ∈ M n (IR). Alors : ρ(A) ≤ A .
Par conséquent, si M ∈ M n (IR) et x (0) ∈ IR n , pour montrer que la suite x (k) définie par x (k) = M k x (0) converge vers 0 dans IR n , il suffit de trouver une norme matricielle • telle que M < 1.

DÉMONSTRATION -Si • est une norme matricielle, alors A k ≤ A k et donc par la caractérisation (1.59) du rayon spectral donnée dans la proposition précédente, on obtient que ρ(A) ≤ A .

Ce dernier résultat est évidemment bien utile pour montrer la convergence de la suite A k , ou de suites de la forme A k x (0) avec x (0) ∈ IR n . Une fois qu'on a trouvé une norme matricielle pour laquelle A est de norme strictement inférieure à 1, on a gagné. Attention cependant au piège suivant : pour toute matrice A, on peut toujours trouver une norme pour laquelle A < 1, alors que la série de terme général A k peut ne pas être convergente. Prenons un exemple dans IR, x = 1 4 |x|. Pour x = 2 on a x = 1 2 < 1. Et pourtant la série de terme général x k n'est pas convergente ; le problème ici est que la norme choisie n'est pas une norme matricielle (on n'a pas xy ≤ x y ). De même, on peut trouver une matrice et une norme telles que A ≥ 1, alors que la série de terme général A k converge... Nous donnons maintenant un théorème qui nous sera utile dans l'étude du conditionnement, ainsi que plus tard dans l'étude des méthodes itératives.

Théorème 1.40 (Matrices de la forme

Id + A). 1. Soit • une norme matricielle, Id la matrice identité de M n (IR) et A ∈ M n (IR) telle que A < 1. Alors la matrice Id + A est inversible et (Id + A) -1 ≤ 1 1 -A .

Si une matrice de la forme

Id + A ∈ M n (IR) est singulière, alors A ≥ 1 pour toute norme matricielle • .
DÉMONSTRATION -1. La démonstration du point 1 fait l'objet de l'exercice 53 page 77. 

Si la matrice

x + δ x ∈ IR n (A + δ A )(x + δ x ) = b + δ b . (1.65)
On va montrer que si δ A "n'est pas trop grand", alors la matrice A + δ A est inversible, et qu'on peut estimer δ x en fonction de δ A et δ b . 

Conditionnement et majoration de l'erreur d'arrondi

cond(A) = A A -1 . Proposition 1.42 (Propriétés générales du conditionnement). Soit IR n muni d'une norme • et M n (IR) muni de la norme induite. 1. Soit A ∈ M n (IR) une matrice inversible, alors cond(A) ≥ 1. 2. Soit A ∈ M n (IR) une matrice inversible et α ∈ IR * , alors cond(αA) = cond(A). 3. Soient A et B ∈ M n (IR) des matrices inversibles, alors cond(AB) ≤ cond(A)cond(B).
DÉMONSTRATION -1. Comme • est une norme induite, c'est donc une norme matricielle. On a donc pour toute matrice A ∈ Mn(IR),

Id ≤ A A -1 ce qui prouve que cond(A) ≥ 1.
2. Par définition,

cond(αA) = αA (αA) -1 = |α| A 1 |α| A -1 = cond(A)
3. Soient A et B des matrices inversibles, alors AB est une matrice inversible et comme • est une norme matricielle,

cond(AB) = AB (AB) -1 = AB B -1 A -1 ≤ A B B -1 A -1 . Donc cond(AB) ≤ cond(A)cond(B).
Proposition 1.43 (Caractérisation du conditionnement pour la norme 2). Soit IR n muni de la norme euclidienne

• 2 et M n (IR) muni de la norme induite. Soit A ∈ M n (IR) une matrice inversible. On note cond 2 (A) le conditionnement associé à la norme induite par la norme euclidienne sur IR n . 1. Soit A ∈ M n (IR) une matrice inversible. On note σ n [resp. σ 1 ] la plus grande [resp. petite] valeur propre de A t A (noter que A t A est une matrice symétrique définie positive). Alors

cond 2 (A) = σ n σ 1 .
2. Si de plus A une matrice symétrique définie positive, alors

cond 2 (A) = λ n λ 1 , où λ n [resp. λ 1 ]
est la plus grande [resp. petite] valeur propre de A.

DÉMONSTRATION -On rappelle que si A a comme valeurs propres λ1, . . . , λn, alors A -1 a comme valeurs propres

λ -1 1 , . . . , λ -1 n et A t a comme valeurs propres λ1, . . . , λn. 1. Par définition, on a cond2(A) = A 2 A -1 2.
Or par le point 3. de la proposition 1.33 que 

A 2 = (ρ(A t A)) 1/2 = √ σn. On a donc A -1 2 = (ρ((A -1 ) t A -1 )) 1/2 = ρ(AA t ) -1 ) 1/2 ; or ρ((AA t ) -1 ) = 1 σ1 , où σ1 
(A) = 1 si et seulement si A = αQ où α ∈ IR ⋆ et Q est une matrice orthogonale (c'est-à-dire Q t = Q -1 ). 2. Soit A ∈ M n (IR) une matrice inversible. On suppose que A = QR où Q est une matrice orthogonale. Alors cond 2 (A) = cond 2 (R). 3. Si A et B sont deux matrices symétriques définies positives, alors cond 2 (A + B) ≤ max(cond 2 (A), cond 2 (B)).
La démonstration de la proposition 1.44 fait l'objet de l'exercice 56 page 77. On va maintenant majorer l'erreur relative commise sur x solution de Ax = b lorsque l'on commet une erreur δ b sur le second membre b.

Proposition 1.45 (Majoration de l'erreur relative pour une erreur sur le second membre).

Soit A ∈ M n (IR) une matrice inversible, et b ∈ IR n , b = 0. On munit IR n d'une norme • et M n (IR) de la norme induite. Soit δ b ∈ IR n . Si x est solution de (1.1) et x + δ x est solution de A(x + δ x ) = b + δ b ,
(1.66)

alors δ x x ≤ cond(A) δ b b (1.67)
DÉMONSTRATION -En retranchant (1.1) à (1.66), on obtient : (voir proposition 1.31 page 65). On a donc

Aδx = δ b et donc δx ≤ A -1 δ b . ( 1 
δ x x = A -1 δ b A Ax . Posons b = Ax ; on a donc b = A , et donc δ x x = A -1 δ b A b .
De même, grâce à la proposition 1.31, il existe y ∈ IR n tel que y = 1, et

A -1 y = A -1 . On choisit alors δ b tel que δ b = y. Comme A(x + δ x ) = b + δ b , on a δ x = A -1 δ b et donc : δ x = A -1 δ b = A -1 y = A -1 = δ b A -1 .
On en déduit que 

δ x x = δ x = δ b A -1 A b car b = A et x = 1.
(A + δ A )(x + δ x ) = b (1.69) alors δ x x + δ x ≤ cond(A) δ A A (1.70)
DÉMONSTRATION -En retranchant (1.1) à (1.69), on obtient :

Aδ x = -δA(x + δ x ) et donc δ x = -A -1 δA(x + δ x ). On en déduit que δ x ≤ A -1 δA x + δ x , d'où on déduit le résultat souhaité.
On peut en fait majorer l'erreur relative dans le cas où l'on commet à la fois une erreur sur A et une erreur sur b. On donne le théorème à cet effet ; la démonstration est toutefois nettement plus compliquée.

Théorème 1.47 (Majoration de l'erreur relative pour une erreur sur matrice et second membre).

Soit A ∈ M n (IR) une matrice inversible, et b ∈ IR n , b = 0. On munit IR n d'une norme • , et M n (IR) de la norme induite. Soient δ A ∈ M n (IR) et δ b ∈ IR n . On suppose que δ A < 1 A -1 .
Alors la matrice (A + δ A ) est inversible et si x est solution de (1.1) et x + δ x est solution de (1.65), alors

δ x x ≤ cond(A) 1 -A -1 δ A δ b b + δ A A . (1.71) DÉMONSTRATION -On peut écrire A + δA = A(Id + B) avec B = A -1 δA. Or le rayon spectral de B, ρ(B), vérifie ρ(B) ≤ B ≤ δA A -1 < 1, et donc (voir le théorème 1.40 page 70 et l'exercice 53 page 77) (Id + B) est inversible et (Id + B) -1 = ∞ n=0 (-1) n B n . On a aussi (Id + B) -1 ≤ ∞ n=0 B n = 1 1 -B ≤ 1 1 -A -1 δA . On en déduit que A + δA est inversible, car A + δA = A(Id + B) et comme A est inversible, (A + δA) -1 = (Id + B) -1 A -1 . Comme A et A + δA sont inversibles, il existe un unique x ∈ IR n tel que Ax = b et il existe un unique δ x ∈ IR n tel que (A + δA)(x + δ x ) = b + δ b . Comme Ax = b, on a (A + δA)δ x + δAx = δ b et donc δ x = (A + δA) -1 δ b -δAx). Or (A + δA) -1 = (Id + B) -1 A -1
, on en déduit :

(A + δA) -1 ≤ (Id + B) -1 A -1 ≤ A -1 1 -A -1
δA .

On peut donc écrire la majoration suivante :

δ x x ≤ A -1 A 1 -A -1 δA δ b A x + δA A .
En utilisant le fait que b = Ax et que par suite b ≤ A x , on obtient :

δ x x ≤ A -1 A 1 -A -1 δA δb b + δA A ,
ce qui termine la démonstration.
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Discrétisation d'équations différentielles, conditionnement "efficace"

On suppose encore ici que δ A = 0. On suppose que la matrice A du système linéaire à résoudre provient de la discrétisation par différences finies du problème de la chaleur unidimensionnel (1.5a). On peut alors montrer (voir exercice 64 page 80) que le conditionnement de A est d'ordre n 2 , où n est le nombre de points de discrétisation.

Pour n = 10, on a donc cond(A) ≃ 100 et l'estimation (1.67) donne :

δ x x ≤ 100 δ b b .
Une erreur de 1% sur b peut donc entraîner une erreur de 100% sur x. Autant dire que dans ce cas, il est inutile de rechercher la solution de l'équation discrétisée. . . Heureusement, on peut montrer que l'estimation (1.67) n'est pas significative pour l'étude de la propagation des erreurs lors de la résolution des systèmes linéraires provenant de la discrétisation d'une équation différentielle ou d'une équation aux dérivées partielles 5 . Pour illustrer notre propos, reprenons l'étude du système linéaire obtenu à partir de la discrétisation de l'équation de la chaleur (1.5a) qu'on écrit :

Au = b avec b = (b 1 , . . . , b n ) et A la matrice carrée d'ordre n de coefficients (a i,j ) i,j=1
,n définis par (1.10). On rappelle que A est symétrique définie positive (voir exercice 15 page 21), et que

max i=1...n {|u i -u(x i )|} ≤ h 2 96 u (4) ∞ .
En effet, si on note u le vecteur de

IR n de composantes u(x i ), i = 1, . . . , n, et R le vecteur de IR n de composantes R i , i = 1, . . . , n, on a par définition de R (formule (1.7)) A(u -u) = R, et donc u -u ∞ ≤ A -1 ∞ R ∞ .
Or on peut montrer (voir exercice 64 page 80) que cond(A) ≃ n 2 . Donc si on augmente le nombre de points, le conditionnement de A augmente aussi. Par exemple si n = 10 4 , alors δ x / x = 10 8 δ b / b . Or sur un ordinateur en simple précision, on a δ b / b ≥ 10 -7 , donc l'estimation (1.67) donne une estimation de l'erreur relative δ x / x de 1000%, ce qui laisse à désirer pour un calcul qu'on espère précis. En fait, l'estimation (1.67) ne sert à rien pour ce genre de problème, il faut faire une analyse un peu plus poussée, comme c'est fait dans l'exercice 66 page 81. On se rend compte alors que pour f donnée il existe C ∈ IR + ne dépendant que de f (mais pas de n) tel que 

δ u u ≤ C δ b b avec b =    f (x 1 ) . . . f (x n )    . ( 1 

Exercices (normes et conditionnement)

Exercice 46 (Normes de l'Identité). Soit Id la matrice "Identité" de M n (IR). Montrer que pour toute norme induite on a Id = 1 et que pour toute norme matricielle on a Id ≥ 1.

Exercice 47 (Normes induites particulières). Suggestions en page 82, corrigé détaillé en page 83.

Soit A = (a i,j ) i,j∈{1,...,n} ∈ M n (IR).

5. On appelle équation aux dérivées partielles une équation qui fait intervenir les dérivées partielles de la fonction inconnue, par exemple

∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 = 0, où u est une fonction de IR 2 dans IR Analyse numérique I, télé-enseignement, L3
1. On munit IR n de la norme

• ∞ et M n (IR) de la norme induite correspondante, notée aussi • ∞ . Montrer que A ∞ = max i∈{1,...,n} n j=1 |a i,j |.
2. On munit IR n de la norme • 1 et M n (IR) de la norme induite correspondante, notée aussi • 1 . Montrer que

A 1 = max j∈{1,...,n} n i=1 |a i,j |.
Exercice 48 (Normes subordonnées). Soit n ∈ N ⋆ , et soit (ω i ) i=1,...,n une famille de réels strictement positifs et soit • la norme vectorielle sur R n définie par

∀x ∈ IR n , x = n i=1 ω i |x i |.
Nous notons • la norme matricielle subordonnée à cette norme vectorielle.

Prouver que, pour toute matrice

A ∈ M n (IR) avec A = (a i,j ) i,j=1,...,n , on a A ≤ max j=1,...,n n i=1 |a i,j | ω i ω j . 2. Choisir x ∈ IR n avec x = 1 pour que Ax = max j=1,...,n n i=1 |a i,j | ω i ω j .
3. Donner l'expression de A .

Exercice 49 (Exemple de norme non induite). Pour A = (a i,j ) i,j∈{1,...,n} ∈ M n (IR), on pose

A s = ( n i,j=1 a 2 i,j ) 1 2 
. 1. Montrer que • s est une norme matricielle mais n'est pas une norme induite (pour n > 1).

Montrer que

A 2 s = tr(A t A). En déduire que A 2 ≤ A s ≤ √ n A 2 et que Ax 2 ≤ A s x 2 , pour tout A ∈ M n (IR) et tout x ∈ IR n .
3. Chercher un exemple de norme non matricielle. 4. On suppose maintenant que n = p, déduire des questions 1 et 2 que l'ensemble des valeurs propres de AB est égal à l'ensemble des valeurs propres de la matrice BA.

Exercice 50 (Valeurs propres d'un produit de matrices). Soient p et n des entiers naturels non nuls, et soient

A ∈ M n,p (IR) et B ∈ M p,n (IR).
Exercice 51 (Matrice diagonalisable et rayon spectral). Corrigé en page 83.

Soit A ∈ M n (IR). Montrer que si A est diagonalisable, il existe une norme induite sur M n (IR) telle que ρ(A) = A . Montrer par un contre exemple que ceci peut être faux si A n'est pas diagonalisable.

Exercice 52 (Le rayon spectral est-il une norme ou une semi-norme ?). On définit les matrices carrées d'ordre 2 suivantes :

A = 1 1 1 1 , B = -1 0 -1 -1 , C = A + B.
Calculer le rayon spectral de chacune des matrices A, B et C et en déduire que le rayon spectral ne peut être ni une norme, ni même une semi-norme sur l'espace vectoriel des matrices.

Exercice 53 (Série de Neumann). Suggestions en page 82, corrigé détaillé en page 84.

Soient A ∈ M n (IR).

Montrer que si ρ(A) < 1, les matrices

Id -A et Id + A sont inversibles.
2. Montrer que la série de terme général A k converge (vers (Id -A) -1 ) si et seulement si ρ(A) < 1.

Montrer que si ρ(

A) < 1, et si • est une norme matricielle telle que A < 1, alors (Id -A) -1 ≤ 1 1-A et (Id + A) -1 ≤ 1 1-A .
Exercice 54 (Norme induite et rayon spectral). Soit • une norme quelconque sur IR n , et soit A ∈ M n (IR) telle que ρ(A) < 1 (on rappelle qu'on note ρ(A) le rayon spectral de la matrice A). Pour x ∈ IR n , on définit x * par :

x * = ∞ j=0 A j x .
1. Montrer que l'application définie de IR n dans IR par x → x * est une norme.

2. Soit x ∈ IR n tel que x * = 1. Calculer Ax * en fonction de x , et en déduire que A * < 1. Exercice 55 (Calcul de conditionnement). Corrigé détaillé en page 85.

On ne suppose plus que

Calculer le conditionnement pour la norme 2 de la matrice 2 1 0 1 .

Exercice 56 (Propriétés générales du conditionnement). Corrigé détaillé en page 85.

On suppose que IR n est muni de la norme euclidienne usuelle

• = • 2 et M n (IR) de la norme induite (notée aussi • 2 . On note alors cond 2 (A) le conditionnement d'une matrice A inversible. 1. Soit A ∈ M n (IR) une matrice inversible. Montrer que cond 2 (A) = 1 si et seulement si A = αQ où α ∈ IR ⋆ et Q est une matrice orthogonale (c'est-à-dire Q t = Q -1 ). 2. Soit A ∈ M n (IR) une matrice inversible. On suppose que A = QR où Q est une matrice orthogonale. Montrer que cond 2 (A) = cond 2 (R). 3. Soit A, B ∈ M n (IR) deux matrices symétriques définies positives. Montrer que cond 2 (A + B) ≤ max{cond 2 (A), cond 2 (B)}.
Exercice 57 (Conditionnement de la matrice transposée). On suppose que

A ∈ M n (IR) est inversible. 1. Montrer que si B ∈ M n (IR), on a pour tout λ ∈ C l , det(AB -λId) = det(BA -λId).
2. En déduire que les rayons spectraux des deux matrices AB et BA sont identiques.

Montrer que

A t 2 = A 2 .
4. En déduire que cond 2 (A) = cond 2 (A t ).

A-t-on

A t 1 = A 1 ?
6. Montrer que dans le cas n = 2, on a toujours cond

1 (A) = cond 1 (A t ), ∀A ∈ M 2 (IR).
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1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES 7. Calculer cond 1 (A) pour A =   2 0 0 1 1 0 1 1 1   et conclure. Exercice 58 (Conditionnement et normes • 1 et • ∞ ). 1. On considère la matrice B = (B ij ) de M n (IR) définie par B ii = 1, B ij = -1 i < j, B ij = 0 sinon. (a) Calculer B -1 . (b) En déduire cond 1 (B) et cond ∞ (B).
2. Soit A une matrice carrée de taille n × n. L'objectif de cette question est de montrer que

1 n 2 cond ∞ (A) ≤ cond 1 (A) ≤ n 2 cond ∞ (A). (a) Montrer que pour tout x ∈ IR n , x ∞ ≤ x 1 ≤ n x ∞ .
(b) En déduire que pour toute matrice carrée de taille n × n

1 n A ∞ ≤ A 1 ≤ n A ∞ . (c) Conclure.
Exercice 59 (Un système par blocs). 

Soit A ∈ M n (IR) une matrice carrée d'ordre N inversible, b, c, f ∈ IR n . Soient α et γ ∈ IR. On cherche à résoudre le système suivant (avec x ∈ IR n , λ ∈ IR) : Ax + λb = f, c • x + αλ = γ. ( 1 
x = h - γ -c • h α -c • z z, λ = γ -c • h α -c • z .
Montrer que x ∈ IR n et λ ∈ IR ainsi calculés sont bien solutions du système (1.73).

4. On suppose dans cette question que A est une matrice bande, dont la largeur de bande est p.

(a) Calculer le coût de la méthode de résolution proposée ci-dessus en utilisant la méthode LU pour la résolution des systèmes linéaires.

(b) Calculer le coût de la résolution du système M y = g par la méthode LU (en profitant ici encore de la structure creuse de la matrice A).

(c) Comparer et conclure.

Exercice 60 (Majoration du conditionnement).

Soit . une norme induite sur M n (IR) et soit A ∈ M n (IR) telle que det(A) = 0.

Montrer que si A -B < 1

A -1 , alors B est inversible.
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Montrer que cond (A) ≥ sup B∈Mn(IR)

detB=0 A A-B
Exercice 61 (Minoration du conditionnement). Corrigé détaillé en page 86. [On pourra chercher δ A de la forme

On note • une norme matricielle sur M n (IR). Soit A ∈ M n (IR) une matrice carrée inversible, cond(A) = A A -1 le conditionnement de A, et soit δ A ∈ M n (IR).

Montrer que si

A + δ A est singulière, alors cond(A) ≥ A δ A . ( 1 
δ A = - y x t x t x , avec y ∈ IR n convenablement choisi et x = A -1 y.]
3. On suppose ici que la norme • est la norme induite par la norme infinie sur IR n . Soit α ∈]0, 1[. Utiliser l'inégalité (1.74) pour trouver un minorant, qui tend vers +∞ lorsque α tend vers 0, de cond(A) pour la matrice

A =   1 -1 1 -1 α -α 1 α α   .
Exercice 62 (Conditionnement du carré).

Soit A ∈ M n (IR) une matrice telle que detA = 0.

1. Quelle relation existe-t-il en général entre cond (A 2 ) et (cond A) 2 ?

2. On suppose que A symétrique. Montrer que cond 2 (A 2 ) = (cond 2 A) 2 .

3. On suppose que cond 2 (A 2 ) = (cond 2 A) 2 . Peut-on conclure que A est symétrique ? (justifier la réponse.)

Exercice 63 (Calcul de l'inverse d'une matrice et conditionnement). Corrigé détaillé en page 86.

On note • une norme matricielle sur M n (IR). Soit A ∈ M n (IR) une matrice carrée inversible. On cherche ici des moyens d'évaluer la précision de calcul de l'inverse de A.

1. On suppose qu'on a calculé B, approximation (en raison par exemple d'erreurs d'arrondi) de la matrice A -1 . On pose :

       e 1 = B -A -1 A -1 , e 2 = B -1 -A A e 3 = AB -Id , e 4 = BA -Id (1.75) (a)
Expliquer en quoi les quantités e 1 , e 2 , e 3 et e 4 mesurent la qualité de l'approximation de A -1 .

(b) On suppose ici que

B = A -1 + E, où E ≤ ε A -1 , et que εcond(A) < 1.
Montrer que dans ce cas,

e 1 ≤ ε, e 2 ≤ εcond(A) 1 -εcond(A) , e 3 ≤ εcond(A) et e 4 ≤ εcond(A).
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1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES (c) On suppose maintenant que AB -Id = E ′ avec E ′ ≤ ε < 1.
Montrer que dans ce cas :

e 1 ≤ ε, e 2 ≤ ε 1 -ε , e 3 ≤ ε et e 4 ≤ εcond(A).
2. On suppose maintenant que la matrice A n'est connue qu'à une certaine matrice d'erreurs près, qu'on note δ A .

(a) Montrer que la matrice

A + δ A est inversible si δ A < 1 A -1 . (b) Montrer que si la matrice A + δ A est inversible, alors (A + δ A ) -1 -A -1 (A + δ A ) -1 ≤ cond(A) δ A A .
Exercice 64 (Conditionnement du Laplacien discret 1D). Suggestions en page 82, corrigé détaillé en page 88. 

Soit f ∈ C([0, 1]). Soit n ∈ IN ⋆ , n impair. On pose h = 1/(n +
∈ IR et ϕ ∈ C 2 (IR, IR) (ϕ non identiquement nulle) t.q. -ϕ ′′ (x) = λϕ(x) pour tout x ∈]0, 1[ et ϕ(0) = ϕ(1) = 0]. Calculer cond 2 (A) et montrer que h 2 cond 2 (A) → 4 π 2 lorsque h → 0. Exercice 65 (Conditionnement, réaction diffusion 1d.).
On s'intéresse au conditionnement pour la norme euclidienne de la matrice issue d'une discrétisation par Différences Finies du problème (1.25) étudié à l'exercice 17, qu'on rappelle :

-u ′′ (x) + u(x) = f (x), x ∈]0, 1[, u(0) = u(1) = 0.
(1.76)

Soit n ∈ IN ⋆ . On note U = (u j ) j=1,...,n une "valeur approchée" de la solution u du problème (1.25) aux points j n+1 j=1,...,n . On rappelle que la discrétisation par différences finies de ce problème consiste à chercher U comme solution du système linéaire

AU = f ( j N +1 ) j=1,...,n où la matrice A ∈ M n (IR) est définie par A = (N + 1) 2 B + Id, Id désigne la matrice identité et B =          2 -1 0 . . . 0 -1 2 -1 . . . . . . 0 . . . . . . . . . 0 . . . . . . -1 2 -1 0 . . . 0 -1 2         

(Valeurs propres de la matrice B.)

On rappelle que le problème aux valeurs propres

-u ′′ (x) = λu(x), x ∈]0, 1[, u(0) = u(1) = 0. (1.77) admet la famille (λ k , u k ) k∈IN * , λ k = (kπ) 2 et u k (x) = sin(kπx) comme solution.
Montrer que les vecteurs

U k = u k ( j n+1 ) j=1,...,n
sont des vecteurs propres de la matrice B. En déduire toutes les valeurs propres de la matrice B.

En déduire les valeurs propres de la matrice A.

Analyse numérique I, télé-enseignement, L3 Exercice 66 (Conditionnement "efficace"). Suggestions en page 82.

Soit f ∈ C([0, 1]). Soit n ∈ IN ⋆ , n impair.
On pose h = 1/(n + 1). Soit A la matrice définie par (1.10) page 13, issue d'une discrétisation par différences finies (vue en cours) du problème (1.5a) page 11.

Pour u ∈ IR n , on note u 1 , . . . , u n les composantes de u.

Pour u ∈ IR n , on dit que u ≥ 0 si u i ≥ 0 pour tout i ∈ {1, . . . , n}. Pour u, v ∈ IR n , on note u • v = n i=1 u i v i . On munit IR n de la norme suivante : pour u ∈ IR n , u = max{|u i |, i ∈ {1, . . . , n}}. On munit alors M n (IR) de la norme induite, également notée • , c'est-à-dire B = max{ Bu , u ∈ IR n t.q. u = 1}, pour tout B ∈ M n (IR).
Partie I Conditionnement de la matrice et borne sur l'erreur relative 1. (Existence et positivité de

A -1 ) Soient b ∈ IR n et u ∈ IR n t.q. Au = b. Remarquer que Au = b peut s'écrire : 1 h 2 (u i -u i-1 ) + 1 h 2 (u i -u i+1 ) = b i , ∀i ∈ {1, . . . , n}, u 0 = u n+1 = 0.
(1.78)

Montrer que b ≥ 0 ⇒ u ≥ 0. [On pourra considérer p ∈ {0, . . . , n + 1} t.q. u p = min{u j , j ∈ {0, . . . , n + 1}.] En déduire que A est inversible. 2. (Préliminaire) On considère la fonction ϕ ∈ C([0, 1], IR) définie par ϕ(x) = (1/2)x(1 -x) pour tout x ∈ [0, 1]. On définit alors φ = (φ 1 , . . . φ n ) ∈ IR n par φ i = ϕ(ih) pour tout i ∈ {1, . . . , n}. Montrer que (Aφ) i = 1 pour tout i ∈ {1, . . . , n}. 3. (Calcul de A -1 ) Soient b ∈ IR n et u ∈ IR n t.q. Au = b. Montrer que u ≤ (1/8) b [Calculer A(u ± b φ) avec φ défini à la question 2 et utiliser la question 1]. En déduire que A -1 ≤ 1/8 puis montrer que A -1 = 1/8. 4. (Calcul de A ) Montrer que A = 4 h 2 .

(Conditionnement pour la norme • ). Calculer

A -1 A . Soient b, δ b ∈ IR n et soient u, δ u ∈ IR n t.q. Au = b et A(u + δ u ) = b + δ b . Montrer que δ u u ≤ A -1 A δ b b .
Montrer qu'un choix convenable de b et δ b donne l'égalité dans l'inégalité précédente.

Partie II Borne réaliste sur l'erreur relative : Conditionnement "efficace" On se donne maintenant f ∈ C([0, 1], IR) et on suppose (pour simplifier. . . ) que f (x) > 0 pour tout x ∈]0, 1[. On prend alors, dans cette partie, b i = f (ih) pour tout i ∈ {1, . . . , n}. On considère aussi le vecteur φ défini à la question 2 de la partie I.

Montrer que

h n i=1 b i φ i → 1 0 f (x)ϕ(x)dx quand n → ∞ et que n i=1 b i φ i > 0 pour tout n ∈ IN * .
En déduire qu'il existe α > 0, ne dépendant que de f , t.q.

h n i=1 b i φ i ≥ α pour tout n ∈ IN * . 2. Soit u ∈ IR n t.q. Au = b. Montrer que n u ≥ n i=1 u i = u • Aφ ≥ α h (avec α donné à la question 1). Soit δ b ∈ IR n et δ u ∈ IR n t.q. A(u + δ u ) = b + δ b . Montrer que δ u u ≤ f L ∞ (]0,1[) 8α δ b b . 3. Comparer A -1 A (question I.5) et f L ∞ (]0,1[) 8α (question II.2) quand n est "grand" (ou quand n → ∞).
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Suggestions pour les exercices

Exercice 47 page 75 (Normes induites particulières)

1. Pour montrer l'égalité, prendre x tel que x j = sign(a i0,j ) où i 0 est tel que j=1,...,n |a i0,j | ≥ j=1,...,n |a i,j |, ∀i = 1, . . . , n, et sign(s) désigne le signe de s.

2. Pour montrer l'égalité, prendre x tel que x j0 = 1 et x j = 0 si j = j 0 , où j 0 est tel que i=1,...,n |a i,j0 | = max j=1,...,n i=1,...,n |a i,j |.

Exercice 53 page 77 (Série de Neumann)

1. Montrer que si ρ(A) < 1, alors 0 n'est pas valeur propre de Id + A et Id -A.

2. Utiliser le corollaire 1.36.

Exercice 56 page 77 (Propriétés générales du conditionnement) 

3. Soient 0 < λ 1 ≤ λ 2 . . . ≤ λ n et 0 < µ 1 ≤ µ 2 . . . ≤
cond 2 (A + B) ≤ λ n + µ n λ 1 + µ 1 . Montrer ensuite que a + b c + d ≤ max( a c , b d ), ∀(a, b, c, d) ∈ (IR * + ) 4 . et conclure
Exercice 64 page 80(Conditionnement du Laplacien discret 1D) 2. Chercher les vecteurs propres Φ ∈ IR n de A sous la forme Φ j = ϕ(x j ), j = 1, . . . , n où ϕ est introduite dans les indications de l'énoncé. Montrer que les valeurs propres associées à ces vecteurs propres sont de la forme :

λ k = 2 h 2 (1 -cos kπh) = 2 h 2 (1 -cos kπ n + 1 ).
Exercice 66 page 81 (Conditionnement efficace) Partie 1 1. Pour montrer que A est inversible, utiliser le théorème du rang.

2. Utiliser le fait que ϕ est un polynôme de degré 2.

Pour montrer que

A -1 = 1 8
, remarquer que le maximum de ϕ est atteint en x = .5, qui correspond à un point de discrétisation car n est impair.

Partie 2 Conditionnement efficace

1. Utiliser la convergence uniforme des fonctions constantes par morceaux ϕ h et f h définies par

ϕ h (x) = ϕ(ih) = φ i si x ∈]x i -h 2 , x i + h 2 [, i = 1, . . . , n, 0 si x ∈ [0, h 2 ] ou x ∈]1 -h 2 , 1]. f h (x) = f (ih) = b i si x ∈]x i -h 2 , x i + h 2 [, 0 si x ∈ [0, h 2 ] ou x ∈]1 -h 2 , 1]. 2. Utiliser le fait que Aφ = (1 . . . 1) t .
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Corrigés

Exercice 47 page 75 (Normes induites particulières)

1. Par définition, A ∞ = sup x∈IR n x ∞ =1 Ax ∞ , et Ax ∞ = max i=1,...,n | j=1,...,n a i,j x j | ≤ max i=1,...,n j=1,...,n |a i,j ||x j |. Or x ∞ = 1 donc |x j | ≤ 1 et Ax ∞ ≤ max i=1,...,n j=1,...,n |a i,j |.

Montrons maintenant que la valeur

α = max i=1,...,n j=1,...,n |a i,j | est atteinte, c'est-à-dire qu'il existe x ∈ IR n , x ∞ = 1, tel que Ax ∞ = α. Pour s ∈ IR, on note sign(s) le signe de s, c'est-à-dire sign(s) = s/|s| si s = 0, 0 si s = 0. Choisissons x ∈ IR n défini par x j = sign(a i0,j ) où i 0 est tel que j=1,...,n |a i0,j | ≥ j=1,...,n |a i,j |, ∀i = 1, . . . , n. On a bien x ∞ = 1, et Ax ∞ = max i=1,...,n | n j=1 a i,j sign(a i0,j )|.
Or, par choix de x, on a On en déduit que pour ce choix de x, on a bien Ax = max i=1,...,n j=1,...,n |a i,j |.

Par définition,

A 1 = sup x∈IR n x 1 =1 Ax 1 , et Ax 1 = n i=1 | n j=1 a i,j x j | ≤ n j=1 |x j | n i=1 |a i,j | ≤ max j=1,...,n n i=1 |a i,j | j=1,...,n |x j |. Et comme n j=1 |x j | = 1, on a bien que A 1 ≤ max j=1,...,n i=1,...,n |a i,j |. Montrons maintenant qu'il existe x ∈ IR n , x 1 = 1, tel que Ax 1 = i=1,...,n |a i,j |. Il suffit de considérer pour cela le vecteur x ∈ IR n défini par x j0 = 1 et x j = 0 si j = j 0 , où j 0 est tel que i=1,...,n |a i,j0 | = max j=1,...,n i=1,...,n |a i,j |. On vérifie alors facilement qu'on a bien Ax 1 = max j=1,...,n i=1,...,n |a i,j |.

Exercice 51 page 76 (Rayon spectral)

Il suffit de prendre comme norme la norme définie par :

x 2 = n i=1 α 2 i où les (α i ) i=1
,n sont les composantes de x dans la base des vecteurs propres associés à A. Pour montrer que ceci est faux dans le cas où A n'est pas diagonalisable, il suffit de prendre A = 0 1 0 0 , on a alors ρ(A) = 0, et comme A est non nulle, A = 0.
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Exercice 53 page 77 (Série de Neumann)

1. Si ρ(A) < 1, les valeurs propres de A sont toutes différentes de 1 et -1. Donc 0 n'est pas valeur propre des matrices Id -A et Id + A, qui sont donc inversibles.

2. Supposons que ρ(A) < 1. Remarquons que

( n k=0 A k )(Id -A) = Id -A n+1 . (1.79) Comme ρ(A) < 1, d'après le corollaire 1.36, on a A k → 0 lorsque k → 0.
De plus, Id -A est inversible. En passant à la limite dans (1.79) et on a donc

(Id -A) -1 = +∞ k=0 A k . (1.80)
Réciproquement, si ρ(A) ≥ 1, la série ne peut pas converger en raison du corollaire 1.36.

3. On a démontré plus haut que si ρ(A) < 1, la série de terme général A k est absolument convergente et qu'elle vérifie (1.80). On en déduit que si A < 1,

(Id -A) -1 ≤ +∞ k=0 A k ≤ +∞ k=0 A k = 1 1 -A .
On a de même

(Id + A) -1 = +∞ k=0 (-1) k A k ,
d'où on déduit de manière similaire que

(Id + A) -1 ≤ +∞ k=0 A k ≤ +∞ k=0 A k = 1 1 -A .
Exercice 55 page 77 (Calcul de conditionnement)

On a A t A = 4 2 2 2
. Les valeurs propres de cette matrice sont

3 ± √ 5 et donc cond 2 (A) = 3+ √ 5 3- √ 5 = 2.
Exercice 56 page 77 (Propriétés générales du conditionnement)

1. Si cond 2 (A) = 1, alors σn σ1 = 1 et donc toutes les valeurs propres de A t A sont égales. Comme A t A est symétrique définie positive (car A est inversible), il existe une base orthonormée (f 1 . . . f n ) telle que A t Af i = σf i , ∀i et σ > 0 (car A t A est s.d.p.). On a donc A t A = σId A t = α 2 A -1 avec α = √ σ. En posant Q = 1 α A, on a donc Q t = 1 α A t = αA -1 = Q -1 . Réciproquement, si A = αQ, alors A t A = α 2 Id, σn σ1 = 1, et donc cond 2 (A) = 1.
2. A ∈ M n (IR) est une matrice inversible. On suppose que A = QR où Q est une matrice orthogonale. On a donc

cond 2 (A) = σ n σ 1 où σ 1 ≤ . . . ≤ σ n sont les valeurs propres de A t A. Or A t A = (QR) t (QR) = R t Q -1 QR = R t R. Donc cond 2 (A) = cond 2 (R). 3. Soient 0 < λ 1 ≤ λ 2 . . . ≤ λ n et 0 < µ 1 ≤ µ 2 . . . ≤ µ n les valeurs propres de A et B (qui sont s.d.p.). Alors cond 2 (A + B) = ν n ν 1 , où 0 < ν 1 ≤ . . . ≤ ν n sont les valeurs propres de A + B.
a) On va d'abord montrer que

cond 2 (A + B) ≤ λ n + µ n λ 1 + µ 1 .
On sait que si A est s.d.p., alors

cond 2 (A) = λ n λ 1 .
Or, si A est s.d.p., alors sup

x 2=1
Ax • x = λ n ; il suffit pour s'en rendre compte de décomposer x sur la base

(f i ) i=1...n . Soit x = n i=1 α i f i , alors : Ax • x = n i=1 α 2 i λ i ≤ λ n n i=1 α 2 i = λ n . Et Af n • f n = λ n . De même, Ax • x ≥ λ 1 n i=1 α 2 i = λ 1 et Ax • x = λ 1 si x = f 1 . Donc inf x =1 Ax • x = λ 1 .
On en déduit que si A est s.d.p.,

cond 2 (A) = sup x =1 Ax • x inf x =1 Ax • x . Donc cond 2 (A + B) = sup x =1 (A + B)x • x inf x =1 (A + B)x • x . Or sup x =1 (Ax • x + Bx • x) ≤ sup x =1 Ax • x + sup x =1 Bx • x = λ n + µ n , inf x =1 (Ax • x + Bx • x) ≥ inf x =1 Ax • x + inf x =1 Bx • x = λ 1 + µ 1 , et donc cond 2 (A + B) ≤ λ n + µ n λ 1 + µ 1 . 1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES b) On va montrer que a + b c + d ≤ max( a c , b d ), ∀(a, b, c, d) ∈ (IR * + ) 4 . Supposons que a + b c + d ≥ a c alors (a + b)c ≥ (c + d)a c'est-à-dire bc ≥ da donc bc + bd ≥ da + db soit b(c + d) ≥ d(a + b) ; donc a+b c+d ≤ b d . On en déduit que cond 2 (A + B) ≤ max(cond 2 (A), cond 2 (B)).
Exercice 61 page 79 (Minoration du conditionnement)

1. Comme A est inversible, A + δ A = A(Id + A -1 δ A ), et donc si A + δ A est singulière, alors Id + A -1 δ A est singulière.
Or on a vu en cours que toute matrice de la forme

Id + B est inversible si ρ(B) < 1. On en déduit que ρ(A -1 δ A ) ≥ 1, et comme ρ(A -1 δ A ) ≤ A -1 δ A ≤ A -1 δ A , on obtient A -1 δ A ≥ 1, soit encore cond(A) ≥ A δ A . 2. Soit y ∈ IR n tel que y = 1 et A -1 y = A -1 . Soit x = A -1 y, et δ A = -y x t x t x ,on a donc (A + δ A )x = Ax - -y x t x t x x = y - -y x t x x t x = 0.
La matrice A + δ A est donc singulière. De plus,

δ A = 1 x 2 y y t A -t .
Or par définition de x et y, on a x 2 = A -1 2 . D'autre part, comme il s'agit ici de la norme L 2 , on a A -t = A -1 . On en déduit que

δ A = 1 A -1 2 y 2 A -1 = 1 A -1 .
On a donc dans ce cas égalité dans (1.74).

Remarquons tout d'abord que la matrice

A est inversible. En effet, detA = 2α 2 > 0. Soit δ A =   0 0 0 0 -α α 0 -α -α   . Comme det(A + δ A ) = 0, la matrice A + δ A est singulière, et donc cond(A) ≥ A δ A . (1.81) Or δ A = 2α et A = max(3, 1 + 2α) = 3, car α ∈]0, 1[. Donc cond(A) ≥ 3 2α .
Exercice 63 page 79 (Calcul de l'inverse d'une matrice et conditionnement)

1. (a) L'inverse de la matrice A vérifie les quatre équations suivantes :

   X -A -1 = 0, X -1 -A = 0, AX -Id = 0, XA -Id = 0.
Les quantités e 1 , e 2 , e 3 et e 4 sont les erreurs relatives commises sur ces quatre équations lorsqu'on remplace X par B ; en ce sens, elles mesurent la qualité de l'approximation de A -1 .

NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES (b)

On remarque d'abord que comme la norme est matricielle, on a M P ≤ M P pour toutes matrices M et P de M n (IR). On va se servir de cette propriété plusieurs fois par la suite.

(α) Comme B = A -1 + E, on a e 1 = E A -1 ≤ ε A -1 A -1 = ε.
(β) Par définition,

e 2 = B -1 -A A = (A -1 + E) -1 -A A . Or (A -1 + E) -1 -A = (A -1 (Id + AE)) -1 -A = (Id + AE) -1 A -A = (Id + AE) -1 (Id -(Id + AE))A = -(Id + AE) -1 AEA. On a donc e 2 ≤ (Id + AE) -1 A E .
Or par hypothèse, AE ≤ A E ≤ cond(A)ε < 1 ; on en déduit, en utilisant le théorème 1.11, que :

(Id + AE)) -1 ≤ 1 1 -AE , et donc e 2 ≤ εcond(A) 1 -εcond(A) . (γ) Par définition, e 3 = AB -Id = A(A -1 + E) -Id = AE ≤ A E ≤ A ε A -1 = εcond(A). (δ) Enfin, e 4 = BA -Id = (A -1 + E)A -Id ≤ EA ≤ E A ≤ εcond(A). (c) (α) Comme B = A -1 (Id + E ′ ), on a e 1 = A -1 (Id + E ′ ) -A -1 A -1 ≤ Id + E ′ -Id ≤ ε. (β) Par définition, e 2 = (Id+E ′ ) -1 A-A A = (Id+E ′ ) -1 (A-(Id+E ′ )A) A ≤ (Id + E ′ ) -1 Id -(Id + E ′ ) ≤ ε 1-ε car ε < 1 (théorème 1.1). (γ) Par définition, e 3 = AB -Id = AA -1 (Id + E ′ ) -Id = E ′ ≤ ε. (δ) Enfin, e 4 = BA -Id = A -1 (Id + E ′ )A -Id = A -1 (A + E ′ A -A) ≤ A -1 AE ′ ≤ εcond(A). 2. (a) On peut écrire A + δ A = A(Id + A -1 δ A ). On a vu en cours (théorème 1.11) que si A -1 δ A < 1, alors la matrice Id + A -1 δ A est inversible. Or A -1 δ A ≤ A -1 δ A , et donc la matrice A + δ A est inversible si δ A < 1 A -1 . (b) On peut écrire (A + δ A ) -1 -A -1 = (A + δ A ) -1 (Id -(A + δ A )A -1 ≤ (A + δ A ) -1 Id - Id -δ A A -1 ≤ (A + δ A ) -1 δ A A -1 .
On en déduit le résultat.
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-ϕ ′′ (x) = λϕ(x) x ∈]0, 1[ ϕ(0) = ϕ(1) = 0 (1.82)
(Notons que ce "truc" ne marche pas dans n'importe quel cas.) L'ensemble des solutions de l'équation différentielle -ϕ ′′ = λϕ est un espace vectoriel d'ordre 2. donc ϕ est de la forme

ϕ(x) = α cos √ λx + β sin √ λx (λ ≥ 0) et α et β dont déterminés par les conditions aux limites ϕ(0) = α = 0 et ϕ(1) = α cos √ λ + β sin √ λ = 0 ; on veut β = 0 car on cherche ϕ = 0 et donc on obtient λ = k 2 π 2 . Les couples (λ, ϕ) vérifiant (1.82) sont donc de la forme (k 2 π 2 , sin kπx). 2. Pour k = 1 à n, posons Φ (k) i = sin kπx i , où x i = ih, pour i = 1 à n, et calculons AΦ (k) : (AΦ (k) ) i = -sin kπ(i -1)h + 2 sin kπ(ih) -sin kπ(i + 1)h.
En utilisant le fait que sin(a + b) = sin a cos b + cos a sin b pour développer sin kπ(1i)h et sin kπ(i + 1)h, on obtient (après calculs) :

(AΦ (k) ) i = λ k Φ (k) i , i = 1, . . . , n, avec λ k = 2 h 2 (1 -cos kπh) = 2 h 2 (1 -cos kπ n + 1 ) (1.83) 
On a donc trouvé n valeurs propres λ 1 , . . . , λ n associées aux vecteurs propres Φ (1) , . . . , Φ (n) de IR n définis par

Φ (k) i = sin kπi n + 1 , i = 1 . . . n. Remarque : Lorsque n → +∞ (ou h → 0), on a λ (h) k = 2 h 2 1 -1 + k 2 π 2 h 2 2 + O(h 4 ) = k 2 π 2 + O(h 2 ) Donc λ (h) k → k 2 π 2 = λ k lorsque h → 0. Calculons maintenant cond 2 (A). Comme A est s.d.p., on a cond 2 (A) = λ n λ 1 = 1 -cos nπ n+1 1 -cos π n+1 On a : h 2 λ n = 2(1 -cos nπ n+1 ) → 4 et λ 1 → π 2 lorsque h → 0. Donc h 2 cond 2 (A) → 4 π 2 lorsque h → 0.
Exercice 66 page 81 (Conditionnement "efficace")

Partie I 1. Soit u = (u 1 , . . . , u n ) t . On a Au = b ⇔ 1 h 2 (u i -u i-1 ) + 1 h 2 (u i -u i+1 ) = b i , ∀i = 1, . . . , n, u 0 = u n+1 = 0. Supposons b i ≥ 0, ∀i = 1, . . . , n, et soit p = min{k ∈ {0, . . . , n + 1}; u k = min{u i , i = 0, . . . , n + 1}}. Analyse numérique I, télé-enseignement, L3
Remarquons que p ne peut pas être égal à n + 1 car

u 0 = u n+1 = 0. Si p = 0, alors u i ≥ 0 ∀i = 0, n + 1 et donc u ≥ 0. Si p ∈ {1, . . . , n}, alors 1 h 2 (u p -u p-1 ) + 1 h 2 (u p -u p+1 ) ≥ 0; mais par définition de p, on a u p -u p-1 < 0 et u p -u p+1 ≤ 0, et on aboutit donc à une contradiction.
Montrons maintenant que A est inversible. On vient de montrer que si Au ≥ 0 alors u ≥ 0. On en déduit par linéarité que si Au ≤ 0 alors u ≤ 0, et donc que si Au = 0 alors u = 0. Ceci démontre que l'application linéaire représentée par la matrice A est injective donc bijective (car on est en dimension finie).

2. Soit ϕ ∈ C([0, 1], IR) tel que ϕ(x) = 1 2 x(1 -x) et φ i = ϕ(x i ), i = 1, n, où x i = ih.
On remarque que (Aφ) i est le développement de Taylor à l'ordre 2 de ϕ(x i ). En effet, ϕ est un polynôme de degré 2, sa dérivée troisième est nulle ; de plus on a ϕ ′ (x) = 1 2x et ϕ ′′ (x) = 1. On a donc :

φ i+1 = φ i + hϕ ′ (x i ) - h 2 2 φ i-1 = φ i -hϕ ′ (x i ) - h 2 2 
On en déduit que

1 h 2 (2φ i -φ i+1 -φ i+1 ) = 1, et donc que (Aφ) i = 1. 3. Soient b ∈ IR n et u ∈ IR n tels que Au = b. On a : (A(u ± b ϕ)) i = (Au) i ± b (Aφ) i = b i ± b .
Prenons d'abord bi = b i + b ≥ 0, alors par la question (1),

u i + b φ i ≥ 0 ∀i = 1 . . . n. Si maintenant on prend bi = b i -b ≤ 0, alors u i -b φ i ≤ 0 ∀i = 1, . . . , n. On a donc -b φ i ≤ u i ≤ b φ i . On en déduit que u ≤ b φ ; or φ = 1 8 . D'où u ≤ 1 8 b . On peut alors écrire que pour tout b ∈ IR n , A -1 b ≤ 1 8 b , donc A -1 b b ≤ 1 8 , d'où A -1 ≤ 1 8 . On montre que A -1 = 1 8 en prenant le vecteur b défini par b(x i ) = 1, ∀i = 1, . . . , n. On a en effet A -1 b = φ, et comme n est impair, ∃i ∈ {1, . . . , n} tel que x i = 1 2 ;or ϕ = ϕ( 1 2 ) = 1 8 .

Par définition, on a

A = sup x =1 Ax , et donc A = max i=1,n j=1,n |a i,j |, d'où le résultat.
5. Grâce aux questions 3 et 4, on a, par définition du conditionnement pour la norme

• , cond(A) = A A -1 = 1 2h 2 .
Comme Aδ u = δ b , on a :

δ u ≤ A -1 δ b b b ≤ A -1 δ b A u b , Analyse numérique I, télé-enseignement, L3 d'où le résultat. Pour obtenir l'égalité, il suffit de prendre b = Au où u est tel que u = 1 et Au = A , et δ b tel que δ b = 1 et A -1 δ b = A -1 . On obtient alors δ b b = 1 A et δu u = A -1 .
D'où l'égalité.

Partie 2 Conditionnement "efficace"

1. Soient ϕ h et f h les fonctions constantes par morceaux définies par

ϕ h (x) = ϕ(ih) = φ i si x ∈]x i -h 2 , x i + h 2 [, i = 1, . . . , n, 0 si x ∈ [0, h 2 ] ou x ∈]1 -h 2 , 1]. et f h (x) = f (ih) = b i si x ∈]x i -h 2 , x i + h 2 [, f (ih) = 0 si x ∈ [0, h 2 ] ou x ∈]1 -h 2 , 1]. Comme f ∈ C([0, 1], IR) et ϕ ∈ C 2 ([0, 1], IR), la fonction f h (resp. ϕ h ) converge uniformément vers f (resp. ϕ) lorsque h → 0. En effet, f -f h ∞ = sup x∈[0,1] |f (x) -f h (x)| = max i=0,...,n sup x∈[xi,xi+1] |f (x) -f h (x)| = max i=0,...,n sup x∈[xi,xi+1] |f (x) -f (x i )| Comme f est continue, elle est uniformément continue sur [0, 1] et donc pour tout ε > 0, il existe h ε > 0 tel que si |s -t| ≤ h ε , alors |f (s) -f (t)|. On en conclut que si l'on prend h ≤ h ε , on a f -f h ≤ ε.
Le raisonnement est le même pour ϕ h , et donc f h ϕ h converge uniformément vers f ϕ. On peut donc passer à la limite sous l'intégrale et écrire que :

h n i=1 b i ϕ i = 1 0 f h (x)ϕ h (x)dx → 1 0 f (x)ϕ(x)dx lorsque h → 0. Comme b i > 0 et φ i > 0 ∀i = 1, . . . , n, on a évidemment S n = n i=1 b i ϕ i > 0 et S n → 1 0 f (x)ϕ(x)dx = β > 0 lorsque h → 0. Donc il existe n 0 ∈ IN tel que si n ≥ n 0 , S n ≥ β 2 , et donc S n ≥ α = min(S 0 , S 1 . . . S n0 , β 2 ) > 0. 2. On a n u = n sup i=1,n |u i | ≥ n i=1 u i . D'autre part, Aϕ = (1 . . . 1) t donc u • Aϕ = n i=1 u i ; or u • Aϕ = A t u • ϕ = Au • ϕ car A est symétrique. Donc u • Aϕ = n i=1 b i ϕ i ≥ α h d'après la question 1. Comme δ u = A -1 δ b , on a donc δ u ≤ A -1 δ b ; et comme n u ≥ α h , on obtient : δ u u ≤ 1 8 hn α δ b f b . Or hn ≤ 1 et on a donc bien : δ u u ≤ f 8α δ b b .

Méthodes itératives

Les méthodes directes sont très efficaces : elles donnent la solution exacte (aux erreurs d'arrondi près) du système linéaire considéré. Elles ont l'inconvénient de nécessiter une assez grande place mémoire car elles nécessitent le stockage de toute la matrice en mémoire vive. Si la matrice est pleine, c.à.d. si la plupart des coefficients de la matrice sont non nuls et qu'elle est trop grosse pour la mémoire vive de l'ordinateur dont on dispose, il ne reste plus qu'à gérer habilement le "swapping" c'est-à-dire l'échange de données entre mémoire disque et mémoire vive pour pouvoir résoudre le système. Cependant, si le système a été obtenu à partir de la discrétisation d'équations aux dérivés partielles, il est en général "creux", c.à. d. qu'un grand nombre des coefficients de la matrice du système sont nuls ; de plus la matrice a souvent une structure "bande", i.e. les éléments non nuls de la matrice sont localisés sur certaines diagonales. On a vu au chapitre précédent que dans ce cas, la méthode de Choleski "conserve le profil" (voir à ce propos page 46). Si on utilise une méthode directe genre Choleski, on aura donc besoin de la place mémoire pour stocker la structure bande. Lorsqu'on a affaire à de très gros systèmes issus par exemple de l'ingénierie (calcul des structures, mécanique des fluides, . . . ), où n peut être de l'ordre de plusieurs milliers, on cherche à utiliser des méthodes nécessitant le moins de mémoire possible. On a intérêt dans ce cas à utiliser des méthodes itératives. Ces méthodes ne font appel qu'à des produits matrice vecteur, et ne nécessitent donc pas le stockage du profil de la matrice mais uniquement des termes non nuls. Par exemple, si on a seulement 5 diagonales non nulles dans la matrice du système à résoudre, système de n équations et n inconnues, la place mémoire nécessaire pour un produit matrice vecteur est 6n. Ainsi pour les gros systèmes, il est souvent avantageux d'utiliser des méthodes itératives qui ne donnent pas toujours la solution exacte du système en un nombre fini d'itérations, mais qui donnent une solution approchée à coût moindre qu'une méthode directe, car elles ne font appel qu'à des produits matrice vecteur.

Remarque 1.48 (Sur la méthode du gradient conjugué). Il existe une méthode itérative "miraculeuse" de résolution des systèmes linéaires lorsque la matrice A est symétrique définie positive : c'est la méthode du gradient conjugué, découverte dans les années 50 6 . Elle est miraculeuse en ce sens qu'elle donne la solution exacte du système Ax = b en un nombre fini d'opérations (en ce sens c'est une méthode directe) : moins de n itérations où n est l'ordre de la matrice A, bien qu'elle ne nécessite que des produits matrice vecteur ou des produits scalaires. La méthode du gradient conjugué est en fait une méthode d'optimisation pour la recherche du minimum dans IR n de la fonction de IR n dans IR définie par :

f (x) = 1 2 Ax • x -b • x.
Or on peut montrer que lorsque A est symétrique définie positive, la recherche de x minimisant f dans IR n est équivalent à la résolution du système Ax = b (Voir paragraphe 3.2.2 page 197). Malheureusement, la méthode du gradient conjugué n'est pas si miraculeuse que cela en pratique : en effet, le nombre n est en général très grand et on ne peut en géneral pas envisager d'effectuer un tel nombre d'itérations pour résoudre le système. De plus, si on utilise la méthode du gradient conjugué brutalement, non seulement elle ne donne pas la solution en n itérations en raison de l'accumulation des erreurs d'arrondi, mais plus la taille du système croît et plus le nombre d'itérations nécessaires devient élevé. Ces problèmes ont été résolus grâce On a alors recours aux techniques dites de "préconditionnement". Nous reviendrons sur ce point au chapitre 3. La méthode itérative du gradient à pas fixe, qui est elle aussi obtenue comme méthode de minimisation de la fonction f ci-dessus, fait l'objet de l'exercice 68 page 103 et du théorème 3.19 page 205. Définition 1.49 (Méthode itérative). On appelle méthode itérative de résolution du système linéaire (1.1) une méthode qui construit une suite (x (k) ) k∈IN , où l'itéré x (k) est calculé à partir des itérés x (0) . . . x (k-1) , censée converger vers x solution de (1.1)).

Définition et propriétés

Bien sûr, on souhaite que cette suite converge vers la solution x du système. Définition 1.50 (Méthode itérative convergente). On dit qu'une méthode itérative est convergente si pour tout choix initial x (0) ∈ IR n , on a :

x (k) -→ x quand k → +∞
Enfin, on veut que cette suite soit simple à calculer. Une idée naturelle est de travailler avec une matrice P inversible qui soit "proche" de A, mais plus facile que A à inverser. On écrit alors A = P -(P -A) = P -N (avec N = P -A), et on réécrit le système linéaire Ax = b sous la forme

P x = (P -A)x + b = N x + b. (1.84)
Cette forme suggère la construction de la suite (x (k) ) k∈IN à partir d'un choix initial x (0) donné, par la formule suivante :

P x (k+1) = (P -A)x (k) + b = N x (k) + b, (1.85) 
ce qui peut également s'écrire :.

x (k+1) = Bx (k) + c, avec B = P -1 (P -A) = Id -P -1 A = P -1 N et c = P -1 b. (1.86) Remarque 1.51 (Convergence vers A -1 b). Si P x (k+1) = (P -A)x (k) + b pour tout k ∈ IN et x (k) -→ x quand k -→ +∞ alors P x = (P -A)x + b, et donc Ax = b, c.à.d. x = x.
En conclusion, si la suite converge, alors elle converge bien vers la solution du système linéaire.

On introduit l'erreur d'approximation e (k) à l'itération k, définie par

e (k) = x (k) -x, k ∈ IN (1.87) où x (k) est construit par (1.86) et x = A -1 b. Il est facile de vérifier que x (k) → x = A -1 b lorsque k → +∞ si et seulement si e (k) → 0 lorsque k → +∞ Lemme 1.52. La suite (e (k)
) k∈IN définie par (1.87) est également définie par e (0) = x (0) x e (k) = B k e (0) (1.88)

DÉMONSTRATION -Comme c = P -1 b = P -1 Ax, on a e (k+1) = x (k+1) -x = Bx (k) -x + P -1 Ax (1.89) = B(x (k) -x). (1.90) Par récurrence sur k, e (k) = B k (x (0) -x), ∀k ∈ IN. (1.91) Analyse numérique I, télé-enseignement, L3
Théorème 1.53 (Convergence de la suite). Soit A et P ∈ M n (IR) des matrices inversibles. Soit x (0) donné et soit (x (k) ) k∈IN la suite définie par (1.86).

1. La suite (x (k) ) k∈IN converge, quel que soit x (0) , vers

x = A -1 b si et seulement si ρ(B) < 1.
2. La suite (x (k) ) k∈IN converge, quel que soit x (0) , si et seulement si il existe une norme induite notée • telle que B < 1.

DÉMONSTRATION -

1. On a vu que la suite (x (k) ) k∈IN définie par (1.86) converge vers x = A -1 b si et seulement si la suite e (k) définie par (1.88) tend vers 0. On en déduit par le lemme 1.36 que la suite (x (k) ) k∈IN converge (vers x), pour tout x (0) , si et seulement si ρ(B) < 1.

2. Si il existe une norme induite notée • telle que B < 1, alors en vertu du corollaire 1.36, ρ(B) < 1 et donc la méthode converge pour tout x (0) . Réciproquement, si la méthode converge alors

ρ(B) < 1, et donc il existe η > 0 tel que ρ(B) = 1 -η. Prenons maintenant ε = η 2 et appliquons la proposition 1.35 : il existe une norme induite • telle que B ≤ ρ(B) + ε < 1, ce qui démontre le résultat.
Pour trouver des méthodes itératives de résolution du système (1.1), on cherche donc une décomposition de la matrice A de la forme : A = P -(P -A) = P -N , où P est inversible et telle que le système P y = d soit un système facile à résoudre (par exemple P diagonale ou triangulaire).

Estimation de la vitesse de convergence Soit x (0) ∈ IR n donné et soit (x (k) ) k∈IN la suite définie par (1.86). On a vu que, si ρ(B) < 1, x (k) → x quand k → ∞, où x est la solution du système Ax = b. On montre à l'exercice 90 page 127 que (sauf cas particuliers)

x (k+1) -x x (k) -x -→ ρ(B) lorsque k → +∞,
indépendamment de la norme choisie sur IR n . Le rayon spectral ρ(B) de la matrice B est donc une bonne estimation de la vitesse de convergence. Pour estimer cette vitesse de convergence lorsqu'on ne connaît pas x, on peut utiliser le fait (voir encore l'exercice 90 page 127) qu'on a aussi

x (k+1) -x (k) x (k) -x (k-1) -→ ρ(B) lorsque k → +∞,
ce qui permet d'évaluer la vitesse de convergence de la méthode par le calcul des itérés courants.

Quelques exemples de méthodes itératives

Une méthode simpliste

Le choix le plus simple pour le système P x = (P -A)x + b soit facile à résoudre (on rappelle que c'est un objectif dans la construction d'une méthode itérative) est de prendre pour P la matrice identité (qui est très facile à inverser !). Voyons ce que cela donne sur la matrice

A = 2 -1 -1 2 . (1.92) 1.5. MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES On a alors B = P -A = -1 1 1 -1 . Les valeurs propres de B sont 0 et -2 et on a donc ρ(B) = 2 > 1. La suite (e (k)
) k∈IN définie par e (k) = B k e (0) n'est donc en général pas convergente. En effet, si e (0) = au 1 + bu 2 , où

u 1 = 1 -1 est vecteur propre de B associé à la valeur propre λ = -2, on a e (k) = (-2) k a et donc |e (k) | → +∞ lorsque k → ∞ dès que a = 0.
Cette première idée n'est donc pas si bonne. . .

La méthode de Richardson

Affinons un peu et prenons maintenant P = βId, avec β ∈ IR. On a dans ce cas

P -A = βId -A et B = Id -1 β A = Id -αA avec α = 1 β .
Les valeurs propres de B sont de la forme 1αλ, où λ est valeur propre de A. Pour la matrice A définie par (1.92), les valeurs propres de A sont 1 et 3, et les valeurs propres de

B = 1 -2α α α 1 -2α, sont 1 -α et 1 -3α.
Le rayon spectral de la matrice B, qui dépend de α est donc ρ(B) = max(|1 -α|, |1 -3α|), qu'on représente sur la figure ci-dessous. La méthode itérative s'écrit

x (0) ∈ IR n donné ,

x (k+1) = Bx (k) + c, avec c = αb. (1.93) Pour que la méthode converge, il faut et il suffit que ρ(B) < 1, c.à.d. 3α -1 < 1, donc α < 2 3 .
On voit que le choix α = 1 qu'on avait fait au départ n'était pas bon. Mais on peut aussi calculer le meilleur coefficient α pour avoir la meilleure convergence possible : c'est la valeur de α qui minimise le rayon spectral ρ ; il est atteint pour 1α = 3α -1, ce qui donne α = 1 2 . Cette méthode est connue sous le nom de méthode de Richardson 7 . Elle est souvent écrite sous la forme : (k) est le résidu. On vérifie facilement que cette forme est équivalente à la forme (1.93) qu'on vient d'étudier.

x (0) ∈ IR n donné , x (k+1) = x (k) + αr (k) , où r (k) = b -Ax

La méthode de Jacobi

Dans le cas de l'exemple de la matrice A donné par (1.92), la méthode de Richardson avec le coefficient optimal α = 1 2 revient à prendre comme décomposition de A = P + A -P avec comme matrice P = D, où D est la matrice diagonale dont les coefficients sont les coefficients situés sur la diagonale de A. La méthode de Jacobi 8 consiste justement à prendre P = D, et ce même si la diagonale de A n'est pas constante.

7. Lewis Fry Richardson, (1881-1953) est un mathématician, physicien, météorologue et psychologue qui a introduit les méthodes mathématiques pour les prévisions métérologiques. Il est également connu pour ses travaux sur les fractals. C'était un pacifiste qui a abandonné ses travaux de météorologie en raison de leur utillisation par l'armée de l'air, pour se tourner vers l'étude des raisons des guerres et de leur prévention.

8. Carl G. J. Jacobi, (1804 -1851), mathématicien allemand. Issu d'une famille juive, il étudie à l'Université de Berlin, où il obtient son doctorat à 21 ans. Sa thèse est une discussion analytique de la théorie des fractions. En 1829, il devient professeur de mathématique à l'Université de Königsberg, et ce jusqu'en 1842. Il fait une dépression, et voyage en Italie en 1843. À son retour, il déménage à Berlin où il sera pensionnaire royal jusqu'à sa mort. Sa lettre du 2 juillet 1830 adressée à Legendre est restée célèbre pour la phrase suivante, qui a fait couler beaucoup d'encre : "M. Fourier avait l'opinion que le but principal des mathématiques était l'utilité publique et l'explication des phénomènes naturels ; mais un philosophe comme lui aurait dû savoir que le but unique de la science, c'est l'honneur de l'esprit humain, et que sous ce titre, une question de nombres vaut autant qu'une question du système du monde." C'est une question toujours en discussion. . . . Elle n'est équivalente à la méthode de Richardson avec coefficient optimal que dans le cas où la diagonale est constante ; c'est le cas de l'exemple (1.92), et donc dans ce cas la méthode de Jacobi s'écrit

x (0) = x (0) 1 x (0) 2 ∈ IR 2 donné , x (k+1) = x (k+1) 1 x (k+1) 2 = B J x (k) + c, avec B J = 0 1 2 1 2 0, et c = 1 2 b.
(1.94)

Dans le cas d'une matrice A générale, on décompose A sous la forme A = D -E -F , où D représente la diagonale de la matrice A, (-E) la partie triangulaire inférieure et (-F ) la partie triangulaire supérieure :

D =       a 1,1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 a n,n       , -E =       0 0 . . . 0 a 2,1 . . . . . . . . . . . . . . . 0 a n,1 . . . a n-1,n 0       et -F =       0 a 1,2 . . . a 1,n . . . . . . . . . . . . . . . . . . a n,n-1 0 . . . 0 -0       . (1.95)
La méthode de Jacobi s'écrit donc :

x (0) ∈ IR n Dx (k+1) = (E + F )x (k) + b. (1.96)
Lorsqu'on écrit la méthode de Jacobi comme sous la forme (1.86) on a B = D -1 (E + F ) ; on notera B J cette matrice :

B J =        0 - a1,2 a1,1 . . . - a1,n a1,1 - a2,1 a2,2 . . . - a2,n a2,2 . . . . . . . . . . . . - an,1 an,n . . . - an,n-1 an,n 0        .
La méthode de Jacobi s'écrit aussi :

   x (0) ∈ IR n a i,i x (k+1) i = - j<i a i,j x (k) j - j>i a i,j x (k) j + b i i = 1, . . . , n. (1.97) Analyse numérique I, télé-enseignement, L3
La méthode de Gauss-Seidel Dans l'écriture (1.97) de la méthode de Jacobi, on pourrait remplacer les composantes x (k) j dans la somme pour j < i par les composantes x (k+1) j

, puisqu'elles sont déjà calculées au moment où l'on calcule x (k+1) i

. C'est l"idée de la méthode de Gauss-Seidel9 qui consiste à utiliser le calcul des composantes de l'itéré (k + 1) dès qu'il est effectué. Par exemple, pour calculer la deuxième composante x (k+1) 2 du vecteur x (k+1) , on pourrait employer la "nouvelle" valeur x , on pourrait employer les "nouvelles" valeurs x

(k+1) 1 et x (k+1) 2 plutôt que les valeurs x (k) 1 et x (k) 2 .
Cette idée nous suggère de remplacer dans (1.97) x (k) j par x (k+1) j si j < i. On obtient donc l'algorithme suivant :

x (0) ∈ IR n a i,i x (k+1) i = -j<i a i,j x (k+1) j -i<j a i,j x (k) j + b i , i = 1, . . . , n.
(1.98) La méthode de Gauss-Seidel s'écrit donc sous la forme

P x (k+1) = (P -A)x (k) + b, avec P = D -E et P -A = F : x 0 ∈ IR n (D -E)x (k+1) = F x (k) + b.
(1.99) Si l'on écrit la méthode de Gauss-Seidel sous la forme x (k+1) = Bx (k) + c , on voit assez vite que B = (D -E) -1 F ; on notera B GS cette matrice, dite matrice de Gauss-Seidel. Ecrivons la méthode de Gauss-Seidel dans le cas de la matrice A donnée par (1.92) : on a dans ce cas

P = D-E = 2 0 -1 2 , F = 0 1 0 0,
. L'algorithme de Gauss-Seidel s'écrit donc :

x (0) = x (0) 1 x (0) 2 ∈ IR 2 donné , x (k+1) = x (k+1) 1 x (k+1) 2 = B GS x (k) + c, avec B GS = 0 0 0 1 4 et c = 1 2 0 1 4 1 2
b.

(1.100) On a donc ρ(B GS ) = 1 4 . Sur cet exemple la méthode de Gauss-Seidel converge donc beaucoup plus vite que la méthode de Jacobi : Asymptotiquement, l'erreur est divisée par 4 à chaque itération au lieu de 2 pour la méthode de Jacobi. On peut montrer que c'est le cas pour toutes les matrices tridiagonales, comme c'est énoncé dans le théorème suivant : Théorème 1.54 (Comparaison de Jacobi et Gauss-Seidel pour les matrices tridiagonales). On considère une matrice A ∈ M n (IR) tridiagonale, c.à.d. telle que a i,j = 0 si |i -j| > 1 ; soient B GS et B J les matrices d'itération respectives des méthodes de Gauss-Seidel et Jacobi, alors :

ρ(B GS ) = (ρ(B J )) 2 .
Pour les matrices tridiagonales, la méthode de Gauss-Seidel converge (ou diverge) donc plus vite que celle de Jacobi.

La démonstration de ce résultat se fait en montrant que dans le cas tridiagonal, λ est valeur propre de la matrice d'itération de Jacobi si et seulement si λ 2 est valeur propre de la matrice d'itération de Gauss-Seidel, voir exercice 70

MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES

Méthodes SOR et SSOR L'idée de la méthode de sur-relaxation (SOR = Successive Over Relaxation) est d'utiliser la méthode de Gauss-Seidel pour calculer un itéré intermédiaire x(k+1) qu'on "relaxe" ensuite pour améliorer la vitesse de convergence de la méthode. On se donne 0 < ω < 2, et on modifie l'algorithme de Gauss-Seidel de la manière suivante :

       x 0 ∈ IR n a i,i x(k+1) i = - j<i a i,j x (k+1) j - i<j a i,j x (k) j + b i x (k+1) i = ω x(k+1) i + (1 -ω)x (k) i , i = 1, . . . , n.
(1.101)

(Pour ω = 1 on retrouve la méthode de Gauss-Seidel.) L'algorithme ci-dessus peut aussi s'écrire (en multipliant par a i,i la ligne 3 de l'algorithme (1.101)) :

           x (0) ∈ IR n a i,i x (k+1) i = ω   - j<i a i,j x (k+1) j - j>i a i,j x (k) j + b i   +(1 -ω)a i,i x (k) i .
(1.102)

On obtient donc (D -ωE)x (k+1) = ωF x (k) + ωb + (1 -ω)Dx (k) .
La matrice d'itération de l'algorithme SOR est donc

B ω = D ω -E -1 (F + 1 -ω ω D) = P -1 N, avec P = D ω -E et N = F + 1 -ω ω D.
Il est facile de vérifier que A = P -N. 

B ω = D ω -E -1 F + 1 -ω ω D , ω = 0. Si ρ(B ω ) < 1 alors 0 < ω < 2.
DÉMONSTRATION -Calculons det(Bω). Par définition,

Bω = P -1 N, avec P = 1 ω D -E et N = F + 1 -ω ω D.
Donc det(Bω) = (det(P )) -1 det(N ). Comme P et N sont des matrices triangulaires, leurs déterminants sont les produits ceofficients diagonaux (voir la remarque 1.62 page 101). On a donc :

det(Bω) = ( 1-ω ω ) n det(D) ( 1 ω ) n det(D) = (1 -ω) n .
Or le déterminant d'une matrice est aussi le produit des valeurs propres de cette matrice (comptées avec leur multiplicités algébriques), dont les valeurs absolues sont toutes inférieures au rayon spectral. On a donc : 

|det(Bω)| = |(1 -ω) n | ≤ (ρ(Bω)) n ,
P -1 N * = max{ P -1 N x * , x ∈ IR n , x * = 1} < 1, ( 
où on désigne encore par . * la norme induite sur Mn(IR)) ou encore :

P -1 N x * < x * , ∀x ∈ IR n , x = 0.
( 

P -1 N x 2 * = AP -1 N x • P -1 N x. Or N = P -A, et donc : P -1 N x 2 * = A(Id -P -1 A)x • (Id -P -1 A)x. Soit y = P -1 Ax ; remarquons que y = 0 car x = 0 et P -1 A est inversible. Exprimons P -1 N x 2
* à l'aide de y. 

P -1 N x 2 * = A(x -y) • (x -y) = Ax • x -2Ax • y + Ay • y = x 2 * -2Ax • y + Ay • y. Pour que P -1 N x 2 * < x 2 * (et par suite ρ(P -1 N ) < 1)
B ω = D ω -E -1 F + 1 -ω ω D , ω = 0. Alors : ρ(B ω ) < 1 si et seulement si 0 < ω < 2.
En particulier, si A est une matrice symétrique définie positive, la méthode de Gauss-Seidel converge.

DÉMONSTRATION -On sait par la proposition 1.55 que si ρ(Bω) < 1 alors 0 < ω < 2. Supposons maintenant que A est une matrice symétrique définie positive, que 0 < ω < 2 et montrons que ρ(Bω) < 1. Par le lemme 1.56 page 99, il suffit pour cela de montrer que P t + N est une matrice symétrique définie positive. Or,

P t = D ω -E t = D ω -F, P t + N = D ω -F + F + 1 -ω ω D = 2 -ω ω D.
La matrice P t + N est donc bien symétrique définie positive. 

ω 0 = 2 1 + 1 -ρ(B J ) 2 > 1, et on a : ρ(B ω0 ) = ω 0 -1.
La démonstration de ce résultat repose sur la comparaison des valeurs propres des matrices d'itération. On montre que λ est valeur propre de B ω si et seulement si

(λ + ω -1) 2 = λωµ 2 ,
où µ est valeur propre de B J (voir [Ciarlet] pour plus de détails).

Remarque 1.60 (Méthode de Jacobi relaxée). On peut aussi appliquer une procédure de relaxation avec comme méthode iérative "de base" la méthode de Jacobi, voir à ce sujet l'exercice 71 page 104). Cette méthode est toutefois beaucoup moins employée en pratique (car moins efficace) que la méthode SOR.

Méthode SSOR En "symétrisant" le procédé de la méthode SOR, c.à.d. en effectuant les calculs SOR sur les blocs dans l'ordre 1 à n puis dans l'ordre n à 1, on obtient la méthode de sur-relaxation symétrisée (SSOR = Symmetric Successive Over Relaxation) qui s'écrit dans le formalisme de la méthode I avec

B SSOR = D ω -F -1 E + 1 -ω ω D calcul dans l'ordre n...1 D ω -E -1 F + 1 -ω ω D
calcul dans l'ordre 1...n .

Les méthodes par blocs Décomposition par blocs d'une matrice

Dans de nombreux cas pratiques, les matrices des systèmes linéaires à résoudre ont une structure "par blocs", et on se sert alors de cette structure lors de la résolution par une méthode itérative. 

A =             A 1,1 A 1,2 . . . . . . A 1,S A 2,
i = 1 ; soit y ∈ IR n1 , y = 0 et x = (y, 0 . . . , 0) t ∈ IR n . Alors A 1,1 y • y = Ax • x > 0 donc A 1,1 est symétrique définie positive.
3. Si A est une matrice triangulaire par blocs, c.à.d. de la forme (1.104) avec A i,j = 0 si j > i, alors

det(A) = S i=1 det(A i,i ).
Par contre si A est décomposée en 2 × 2 blocs carrés (i.e. tels que n i = m j , ∀(i, j) ∈ {1, 2}), on a en général :

det(A) = det(A 1,1 )det(A 2,2 ) -det(A 1,2 )det(A 2,1
).

Méthode de Jacobi

On cherche une matrice P tel que le système P x = (P -A)x + b soit facile à résoudre (on rappelle que c'est un objectif dans la construction d'une méthode itérative). On avait pris pour P une matrice diagonale dans la méthode de Jacobi. La méthode de Jacobi par blocs consiste à prendre pour P la matrice diagonale D formée par les blocs diagonaux de A : 

D =             A 1,
            .
Dans la matrice ci-dessus, 0 désigne un bloc nul.

Analyse numérique I, télé-enseignement, L3

On a alors N = P -A = E + F , où E et F sont constitués des blocs triangulaires inférieurs et supérieurs de la matrice A : 

E =             0 0 . . . . . . 0 -A 2,
            , F =             0 -A 1,2 . . . . . . -A 1,S 0 
            .
On a bien A = P -N et avec D, E et F définies comme ci-dessus, la méthode de Jacobi s'écrit : 

x (0) ∈ IR n Dx (k+1) = (E + F )x (k) + b. ( 1 
   x 0 ∈ IR n A i,i x (k+1) i = - j<i A i,j x (k) j - j>i A i,j x (k) j + b i i = 1, . . . , S. (1.106) Si S = n et n i = 1 ∀i ∈ {1, .
. . , S}, chaque bloc est constitué d'un seul coefficient, et on obtient la méthode de Jacobi par points (aussi appelée méthode de Jacobi), qui s'écrit donc :

   x 0 ∈ IR n a i,i x (k+1) i = - j<i a i,j x (k) j - j>i a i,j x (k) j + b i i = 1, . . . , n.
(1.107)

Méthode de Gauss-Seidel

La même procédure que dans le cas S = n et n i = 1 donne :

x (0) ∈ IR n A i,i x (k+1) i = -j<i A i,j x (k+1) j -i<j A i,j x (k) j + b i , i = 1, . . . , S.
(1.108)

La méthode de Gauss-Seidel s'écrit donc sous forme la forme

P x (k+1) = (P -A)x (k) + b, P = D -E et P -A = F : x 0 ∈ IR n (D -E)x (k+1) = F x (k) + b. (1.109)
Si l'on écrit la méthode de Gauss-Seidel sous la forme x (k+1) = Bx (k) + c , on voit assez vite que B = (D -E) -1 F ; on notera B GS cette matrice, dite matrice de Gauss-Seidel.

Méthodes SOR et SSOR

La méthode SOR s'écrit aussi par blocs : on se donne 0 < ω < 2, et on modifie l'algorithme de Gauss-Seidel de la manière suivante :

       x 0 ∈ IR n A i,i x(k+1) i = - j<i A i,j x (k+1) j - i<j A i,j x (k) j + b i x (k+1) i = ω x(k+1) i + (1 -ω)x (k) i , i = 1, . . . , S.
(1.110)

Analyse numérique I, télé-enseignement, L3

(Pour ω = 1 on retrouve la méthode de Gauss-Seidel.) L'algorithme ci-dessus peut aussi s'écrire (en multipliant par A i,i la ligne 3 de l'algorithme (1.101)) :

           x (0) ∈ IR n A i,i x (k+1) i = ω   - j<i A i,j x (k+1) j - j>i A i,j x (k) j + b i   +(1 -ω)A i,i x (k) i .
(1.111)

On obtient donc

(D -ωE)x (k+1) = ωF x (k) + ωb + (1 -ω)Dx (k) .
L'algorithme SOR s'écrit donc comme une méthode II avec

P = D ω -E et N = F + 1 -ω ω D.
Il est facile de vérifier que A = P -N. L'algorithme SOR s'écrit aussi comme une méthode I avec

B = D ω -E -1 (F + 1 -ω ω D).
Remarque 1.63 (Méthode de Jacobi relaxée). On peut aussi appliquer une procédure de relaxation avec comme méthode iérative "de base" la méthode de Jacobi, voir à ce sujet l'exercice 71 page 104). Cette méthode est toutefois beaucoup moins employée en pratique (car moins efficace) que la méthode SOR.

En "symétrisant" le procédé de la méthode SOR, c.à.d. en effectuant les calculs SOR sur les blocs dans l'ordre 1 à n puis dans l'ordre n à 1, on obtient la méthode de sur-relaxation symétrisée (SSOR = Symmetric Successive Over Relaxation) qui s'écrit dans le formalisme de la méthode I avec

B = D ω -F -1 E + 1 -ω ω D calcul dans l'ordre S...1 D ω -E -1 F + 1 -ω ω D
calcul dans l'ordre 1...S .

Exercices (méthodes itératives)

Exercice 67 (Convergence de suites). Corrigé en page 114

Etudier la convergence de la suite (x (k) ) k∈IN ⊂ IR n définie par x (0) donné, x (k) = Bx (k) + c dans les cas suivants :

(a) B = 2 3 1 0 2 3 , c = 0 1 , (b) B = 2 3 1 0 2 , c = 0 0 .
Exercice 68 (Méthode de Richardson). Suggestions en page 113, corrigé en page 114

Soit A ∈ M n (IR) une matrice symétrique définie positive, b ∈ IR n et α ∈ IR.
Pour trouver la solution de Ax = b, on considère la méthode itérative suivante :

-Initialisation :

x (0) ∈ IR n , -Iterations : x (k+1) = x (k) + α(b -Ax (k) ).
1. Pour quelles valeurs de α (en fonction des valeurs propres de A) la méthode est-elle convergente ?

2. Calculer α 0 (en fonction des valeurs propres de A) t.q. ρ(Idα 0 A) = min{ρ(Id -αA), α ∈ IR}.

Analyse numérique I, télé-enseignement, L3

Commentaire sur la méthode de Richardson : On peut la voir comme une méthode de gradient à pas fixe pour la minimisation de la fonction f définie de IR N dans IR par :

x → f (x) = 1 2 Ax • x -b •
x, qui sera étudiée au chapitre Optimisation. On verra en effet que grâce qu caractère symétrique définie positif de A, la fonction f admet un unique minimum, caractérisé par l'annulation du gradient de f en ce point. Or ∇f (x) = Axb, et annuler le gradient consiste à résoudre le système linéaire Ax = b.

Exercice 69 (Non convergence de la méthode de Jacobi). Suggestions en page 113. Corrigé en page 115. 

Soit a ∈ IR et A =   1 a
(F -µ(D -E)) z = 0.
5. Montrer que λ est valeur propre non nulle de B J si et seulement si λ 2 est valeur propre de B GS , et en déduire que ρ(B GS ) = ρ(B J ) 2 .

6. On considère la matrice : Suggestions en page 114, corrigé en page 116 Soit n ≥ 1. Soit A = (a i,j ) i,j=1,...,n ∈ M n (IR) une matrice symétrique. On note D la partie diagonale de A, -E la partie triangulaire inférieure de A et -F la partie triangulaire supérieure de A, c'est-à-dire :

A =   1 3 4 3 4 3 4 1 3
D = (d i,j ) i,j=1,...,n , d i,j = 0 si i = j, d i,i = a i,i , E = (e i,j ) i,j=1,...,n , e i,j = 0 si i ≤ j, e i,j = -a i,j si i > j, F = (f i,j ) i,j=1,...,n , f i,j = 0 si i ≥ j, f i,j = -a i,j si i < j.
Analyse numérique I, télé-enseignement, L3

MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES

Noter que A = D -E -F . Soit b ∈ IR n . On cherche à calculer x ∈ IR n t.q. Ax = b. On suppose que D est définie positive (noter que A n'est pas forcément inversible). On s'intéresse ici à la méthode de Jacobi (par points), c'est-à-dire à la méthode itérative suivante :

Initialisation. x (0) ∈ IR n Itérations. Pour n ∈ IN, Dx (k+1) = (E + F )x (k) + b. On pose J = D -1 (E + F ).
1. Montrer, en donnant un exemple avec n = 2, que J peut ne pas être symétrique.

2. Montrer que J est diagonalisable dans IR et, plus précisement, qu'il existe une base de IR n , notée {f 1 , . . . ,

f n }, et il existe {µ 1 , . . . , µ n } ⊂ IR t.q. Jf i = µ i f i pour tout i ∈ {1, . . . , n} et t.q. Df i • f j = δ i,j pour tout i, j ∈ {1, . . . , n}.
En ordonnant les valeurs propres de J, on a donc µ 1 ≤ . . . ≤ µ n , on conserve cette notation dans la suite.

3. Montrer que la trace de J est nulle et en déduire que

µ 1 ≤ 0 et µ n ≥ 0.
On suppose maintenant que A et 2D -A sont symétriques définies positives et on pose x = A -1 b.

4. Montrer que la méthode de Jacobi (par points) converge (c'est-à-dire

x (k) → x quand n → ∞). [Utiliser un théorème du cours.]
On se propose maintenant d'améliorer la convergence de la méthode par une technique de relaxation. Soit ω > 0, on considère la méthode suivante : 8. Calculer les valeurs propres de J ω en fonction de celles de J. En déduire, en fonction des µ i , la valeur "optimale" de ω, c'est-à-dire la valeur de ω minimisant le rayon spectral de J ω .

Initialisation. x (0) ∈ IR n Itérations. Pour n ∈ IN, Dx (k+1) = (E + F )x (k) + b, x (k+1) = ω x(k+1) + (1 -ω)x (k) . 5. Calculer les matrices M ω (inversible) et N ω telles que M ω x (k+1) = N ω x (k) +b pour tout n ∈ IN,
Exercice 72 (Une méthode itérative pour un système linéaire).

Soient n ∈ N tel que n ≥ 3 et b ∈ R n , de composantes (b 1 , . . . , b n ). On cherche x ∈ R n , de composantes (x 1 , . . . , x n ), solution de    4x 1 + x 2 = b 1 , x i-1 + 4x i + x i+1 = b i , i = 2, . . . , n -1, x n-1 + 4x n = b n .
(1.112) 3. Afin de résoudre le système, on considère la méthode itérative suivante :

x (0) = 0 ∈ R n et      x (k+1) 1 = αx (k) 1 + α-1 4 (x (k) 2 -b 1 ), x (k+1) i = αx (k) i + α-1 4 (x (k) i-1 + x (k) i+1 -b i ), i = 2, . . . , n -1, x (k+1) n = αx (k) n + α-1 4 (x (k) n-1 -b n ).
(1.113) qui dépend donc du paramètre α ∈ R. On cherche maintenant le paramètre α qui assure une convergence optimale.

1.5. MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES (a) Montrer que pour tout α ∈ R, on a Exercice 74 (Une matrice cyclique). Suggestions en page 114

x (k+1) -x ∞ ≤ |α| + α -1 2 x (k) -x ∞ . (b) Trouver α min , α max ∈ R, tels que α ∈]α min , α max [ si et seulement si |α| + α-1 2 < 1. (c)
Soit α ∈ IR et soit A ∈ M 4 (IR) la matrice définie par A =     α -1 0 -1 -1 α -1 0 0 -1 α -1 -1 0 -1 α    
Cette matrice est dite cyclique : chaque ligne de la matrice peut être déduite de la précédente en décalant chaque coefficient d'une position.

1. Déterminer les valeurs propres de A. pour i = 1, . . . , 4 les composantes de x (k) . Donner l'expression de x

Pour quelles valeurs de α la matrice

(k+1) i , i = 1, . . . , 4, en fonction de x (k) i et b (k) i , i = 1, . . . , 4.
Pour quelles valeurs de α la méthode de Jacobi converge-t-elle ? 4. On suppose maintenant que A est symétrique définie positive. Reprendre la question précédente pour la méthode de Gauss-Seidel.

Exercice 75 (Jacobi pour les matrices à diagonale dominante stricte). Suggestions en page 114, corrigé en page 118

Soit A = (a i,j ) i,j=1,...,n ∈ M n (IR) une matrice à diagonale dominante stricte (c'est-à-dire |a i,i | > j =i |a i,j | pour tout i = 1, . . . , n).
Montrer que A est inversible et que la méthode de Jacobi (pour calculer la solution de Ax = b) converge.

Exercice 76 (Jacobi pour pour un problème de diffusion ).

Soit f ∈ C([0, 1]) ; on considère le système linéaire Ax = b issu de la discrétisation par différences finies de pas uniforme égal à h = 1 n+1 du problème suivant :

-u ′′ (x) + αu(x) = f (x), x ∈ [0, 1], u(0) = 0, u(1) = 1, (1.114) où α ≥ 0.
1. Donner l'expression de A et b.

2. Montrer que la méthode de Jacobi appliquée à la résolution de ce système converge (distinguer les cas α > 0 et α = 0).

Exercice 77 (Jacobi et diagonale dominance forte). 

M = A 0 B C où A et C sont des matrices carrées d'ordre p et q, avec p + q = n, et B ∈ M q,p (IR). La matrice M peut-elle être irréductible ? 3. Soit A ∈ M n (IR)
, n > 1 une matrice irréductible qui vérifie de plus la propriété suivante :

∀i = 1, . . . , n, a i,i ≥ j =i |a i,j | (1.116) 
(On dit que la matrice est à diagonale dominante). Montrer que la méthode de Jacobi pour la résolution du système linéaire Ax = b, avec b ∈ IR n , est bien définie.

4. Soit A ∈ M n (IR), n > 1 une matrice irréductible qui vérifie la propriété (1.116). On note B J la matrice d'itération de la méthode de Jacobi pour la résolution du système linéaire Ax = b, avec b ∈ IR n , et ρ(B J ) son rayon spectral. On suppose que A vérifie la propriété supplémentaire suivante :

∃i 0 ; a i0,i0 > j =i0 |a i,j |. (1.117) (a) Montrer que ρ(B J ) ≤ 1. (b) Montrer que si Jx = λx avec |λ| = 1, alors |x i | = x ∞ , ∀i = 1, . . . , n, où x ∞ = max k=1,...,N |x k |.
En déduire que x = 0 et que la méthode de Jacobi converge.

(c) Retrouver ainsi le résultat de la question 2 de l'exercice 76. 

A =     1 0 0 0 0 2 1 1 0 1 2 1 0 1 1 2    
La méthode de Jacobi converge-t-elle pour la résolution d'un système linéaire dont la matrice est A ?

Exercice 78 (Méthodes de Jacobi et Gauss Seidel pour une matrice 3 × 3). Corrigé détaillé en page 119

Analyse numérique I, télé-enseignement, L3 0) un vecteur de IR 3 donné.

1.5. MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES On considère la matrice A =   2 -1 0 -1 2 -1 0 -1 2   et le vecteur b =   1 0 1   . Soit x (
1. Méthode de Jacobi 1.a Ecrire la méthode de Jacobi pour la résolution du système Ax = b, sous la forme x (k+1) = B J x (k) + c J . 1.b Déterminer le noyau de B J et en donner une base.

1.c Calculer le rayon spectral de B J et en déduire que la méthode de Jacobi converge. 1.d Calculer x (1) et x (2) pour les choix suivants de x (0) :

(i) x (0) =   0 0 0   , (ii)x (0) =   0 1 2   .
2. Méthode de Gauss-Seidel.

2.a Ecrire la méthode de Gauss-Seidel pour la résolution du système Ax = b, sous la forme (1) et x (2) pour les choix suivants de x (0) :

x (k+1) = B GS x (k) + c GS . 2.b
(i) x (0) =   0 0 0   , (ii) x (0) =   0 1 1   .
Exercice 79 (Convergence en un nombre fini d'itérations). 

K ∈ IN tel que u K = u, alors u (k) = u pour tout k ∈ IN. 2 Soit n > 1, B une matrice réelle carrée d'ordre n et b ∈ IR n . Soit u (0) ∈ IR N et (u (k) ) k∈IN la suite définie par u (k+1) = Bu (k) + c. 2.
ν ω = µ 2 ω et µ ω vérifie µ 2 ω -λωµ ω + ω -1 = 0. En déduire que ρ(B ω ) = max λ valeur propre de J {|µ ω |; µ 2 ω -λωµ ω + ω -1 = 0}.
Exercice 81 (Méthode de Jacobi et Gauss-Seidel pour des matrices triangulaires). Soit A ∈ M n (IR). On note D la partie diagonale de A, -E la partie inférieure stricte et -F la partie supérieure stricte, de sorte que A = D -E -F . On suppose que D est inversible et on note B J et B GS les matrices des itérations des méthodes de Jacobi et Gauss-Seidel. (On rappelle que 

B J = D -1 (E + F ) et B GS = (D -E) -1 F .)
a i,j ≤ 0, ∀i, j = 1, . . . , n, i = j, (1.118) a i,i > 0, ∀i = 1, . . . , n. (1.119) n i=1 a i,j = 0, ∀j = 1, . . . , n. (1.120) Soit λ ∈ IR * + . 1. Pour x ∈ IR n , on définit x A = n i=1 a i,i |x i |. Montrer que • A est une norme sur IR n .
2. Montrer que la matrice λId + A est inversible. 3. On considère le système linéaire suivant :

(λId + A)u = b (1.121)
Montrer que la méthode de Jacobi pour la recherche de la solution de ce système définit une suite (u (k) ) k∈N de IR n .

4. Montrer que la suite (u (k) ) k∈IN vérifie :

u (k+1) -u (k) A ≤ ( 1 1 + α ) k u (1) -u (0) A , où α = λ maxi=1,.
..,n ai,i . 5. Montrer que la suite (u (k) ) k∈IN est de Cauchy, et en déduire qu'elle converge vers la solution du système (1.121).

Exercice 83 (Une méthode itérative particulière).

Soient α 1 , . . . , α n des réels strictement positifs, et A la matrice n × n de coefficients a i,j définis par :

     a i,i = 2 + α i a i,i+1 = a i,i-1 = -1
a i,j = 0 pour tous les autres cas.

Pour β > 0 on considère la méthode itérative 

P x (k+1) = N x (k) + b avec A = P -N et N = diag(β -α i ) (c
) et X + Y + αId = A.
Soit u (0) ∈ IR n , on propose la méthode itérative suivante pour résoudre (1.122) :

(X + αId)u (k+1/2) = -Y u (k) + b, (1.123a) (Y + αId)u (k+1) = -Xu (k+1/2) + b. (1.123b)
1. Montrer que la méthode itérative (1.123) définit bien une suite (u (k) ) k∈IN et que cette suite converge vers la solution u de (1.1) si et seulement si

ρ (Y + αId) -1 X(X + αId) -1 Y < 1.
(On rappelle que pour toute matrice carrée d'ordre n, ρ(M ) désigne le rayon spectral de la matrice M .)

2. Montrer que si les matrices (X + α 2 Id) et (Y + α 2 Id) sont définies positives alors la méthode (1.123) converge. On pourra pour cela (mais ce n'est pas obligatoire) suivre la démarche suivante :

(a) Montrer que ρ (Y + αId) -1 X(X + αId) -1 Y = ρ X(X + αId) -1 Y (Y + αId) -1 .
(On pourra utiliser l'exercice 50 page 76). 

(b) Montrer que ρ X(X + αId) -1 Y (Y + αId) -1 ≤ ρ X(X + αId) -1 ρ Y (Y + αId) -1 . (c) Montrer que ρ X(X + αId) -1 < 1 si et seulement si la matrice (X + α 2 Id) est définie positive. (d) Conclure. 3. Soit f ∈ C([0, 1] × [0, 1]) et soit A la matrice carrée d'ordre n = M × M obtenue par discrétisation de l'équation -∆u = f sur le carré [0, 1] × [0,
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Exercice 85 (Systèmes linéaires, "mauvaise relaxation"). Soit A = (a i,j ) i,j=1,...,n ∈ M n (IR) une matrice s.d.p.. On note D la partie diagonale de A, -E la partie triangulaire inférieure stricte de A et -F la partie triangulaire supérieure stricte de A, c'est-à-dire :

D = (d i,j ) i,j=1,...,n , d i,j = 0 si i = j, d i,i = a i,i , E = (e i,j ) i,j=1,...,n , e i,j = 0 si i ≤ j, e i,j = -a i,j si i > j, F = (f i,j ) i,j=1,...,n , f i,j = 0 si i ≥ j, f i,j = -a i,j si i < j.
Soit b ∈ IR n . On cherche à calculer x ∈ IR n t.q. Ax = b. Pour 0 < ω < 2, on considère la méthode itérative suivante :

(a) Initialisation : On choisit Exercice 86 (Vitesse de convergence pour la méthode de Jacobi).

x (0) ∈ IR n . (b) Itérations : Pour k ∈ IN, On calcule x(k+1) dans IR n solution de (D -E)x (k+1) = F x (k) + b, On pose x (k+1) = ω x(k+1) + (1 -ω)x (k) . Enfin, on pose M = D-E ω et N = M -A.
Soient A une matrice carrée d'ordre n, inversible, et b ∈ IR n , n > 1. On pose x = A -1 b. On note D la partie diagonale de A, -E la partie triangulaire inférieure stricte de A et -F la partie triangulaire supérieure stricte de A. On suppose que D est inversible et on note B J la matrice des itérations de la méthode de Jacobi, c'est-àdire B J = D -1 (E + F ). On munit IR n d'une norme notée • . On note ρ le rayon spectral de B J ; on choisit x (0) ∈ IR n , et on note (x (k) ) k≥1 la suite des itérés par la méthode de Jacobi pour la résolution du système linéaire Ax = b à partir du choix initial x (0) .
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2. On ne suppose plus que B J est diagonalisable. Montrer que pour tout ε > 0, il existe β ε > 0, dépendant de A, b, x (0) , ε et de la norme choisie sur IR n , mais indépendant de k, telle que

x (k) -x ≤ β ε (ρ + ε) k pour tout k ≥ 0. (1.124)
Dans la suite de cet exercice on prend n = 2 et A = 2 -1 -1 2 .

3. Dans cette question, on choisit, pour norme dans IR 2 , la norme euclidienne, c'est-à-dire

x 2 = x 2 1 + x 2 2 si x = x 1 x 2
. Montrer qu'il existe β (dépendant de b et x (0) , mais non de k) telle que

x (k) -x = βρ k pour tout k ≥ 0. (1.125)
4. Montrer qu'il existe des normes dans IR 2 pour lesquelles la conclusion de la question 3 est fausse (c'est-àdire pour lesquelles la suite ( x (k)x /ρ k ) k∈IN n'est pas une suite constante sauf éventuellement pour des valeurs particulières de x (0) ).

Exercice 87 (Convergence d'une méthode itérative).

Soit

A ∈ M 3 (IR) définie par A = I -E -F avec I =   1 0 0 0 1 0 0 0 1   E = -   0 2 0 1 0 0 0 0 0   et F = -   0 0 0 0 0 0 1 1 0   . 1. Montrer que A est inversible. 2. Soit 0 < ω < 2. Montrer que ( I ω -E) est inversible si et seulement si ω = √ 2/2.
Pour 0 < ω < 2, ω = √ 2/2, on considère (pour trouver la solution de Ax = b) la méthode itérative suivante :

( I ω -E)x (n+1) = (F + 1 -ω ω I)x (n) + b.
On note

B ω = ( I ω -E) -1 (F + 1-ω ω I). (De sorte que x (n+1) = B ω x (n) + ( I ω -E) -1 b.) 3.
Calculer, en fonction de ω, les valeurs propres de B ω .

4. Donner l'ensemble des valeurs de ω pour lesquelles la méthode est convergente (quelquesoit x (0) ).

Déterminer ω

0 ∈]0, 2[ t.q. ρ(B ω0 ) = min{ρ(B ω ), ω ∈]0, 2[, ω = √ 2/2}.
Pour cette valeur ω 0 , montrer que la méthode donne la solution exacte de Ax = b après un nombre fini d'itérations (quelquesoit x (0) ).

Exercice 88 (Une méthode itérative à pas optimal). Soit n > 1 et A ∈ M n (IR). On suppose que A est inversible. Pour calculer la solution du système linéaire Ax = b, avec b ∈ IR n donné, on se donne une matrice M appartenant à M n (IR), inversible (et plus simple à "inverser" que A) et on considère la méthode itérative suivante : Initialisation : x (0) vecteur donné de IR n , on pose r (0) = b -Ax (0) .

Itérations : pour k ≥ 0, on choisit un réel α k , on résout M (x (k+1) -x (k) ) = α k r (k) et on pose r (k+1) = b -Ax (k+1) .
Pour conclure la description de la méthode, il reste à donner le choix de α k , ceci est fait à la question 3.

1. Montrer que la méthode considérée peut aussi s'écrire de la manière suivante : Initialisation : x (0) vecteur donné de IR n , r (0) = b -Ax (0) , M y (0) = r (0) .

Itérations : pour k ≥ 0, On choisit un réel α k , x (k+1) = x (k) + α k y (k) , r (k+1) = r (k) -α k Ay (k) , M y (k+1) = r (k+1) . 1.5. MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES 2. On suppose, dans cette question, que α k ne dépend par de k (c'est-à-dire α k = α pour tout k ≥ 0). Déterminer B ∈ M n (IR) et c ∈ IR n tels que x (k+1) = Bx (k) + c pour tout k ≥ 0.
Montrer que si la suite (x (k) ) k∈IN converge, sa limite est solution du système linéaire Ax = b.

Pour la suite de l'exercice, on suppose que M est une matrice symétrique définie positive et on note

• M la norme sur IR n induite par M , c'est-à-dire z 2 M = M z • z (où y • z désigne le produit scalaire usuel de y et z) 3. (Choix de α k ) Soit k ≥ 0. Pour x (k) , r (k) et y (k) connus, on pose, pour α ∈ IR, f (α) = M -1 (r (k) -αAy (k) ) 2 M . Si y (k) = 0, montrer qu'il existe un unique ᾱ ∈ IR tel que f (ᾱ) ≤ f (α) pour tout α ∈ IR. Donner cette valeur de ᾱ.
Dans la suite de l'exercice, si y (k) = 0, on choisit α k = ᾱ lors de l'itération k (si y (k) = 0, on prend, par exemple, α k = 0).

4. Soit k ≥ 0. Si y (k) = 0, montrer que y (k) 2 M -y (k+1) 2 M = (Ay (k) • y (k) ) 2 M -1 Ay (k) • Ay (k) .
En déduire que la suite ( y (k) M ) k∈IN converge dans IR.

(question indépendante des précédentes)

Montrer, en donnant un exemple avec n = 2, que la matrice A + A t est symétrique mais pas nécessairement inversible On suppose dans la suite que A + A t est (symétrique) définie positive.

6. Montrer qu'il existe β > 0 tel que

Az • z ≥ βz • z pour tout z ∈ IR n .
En déduire qu'il existe γ > 0 tel que

(Az • z) 2 M -1 Az • z ≥ γ z 2 M .
7. Montrer que y (k) → 0 quand k → +∞ et en déduire que la suite (x (k) ) k∈IN tend vers x, solution de Ax = b, quand k → +∞.

Exercices, suggestions

Exercice 68 page 103 (Méthode itérative du "gradient à pas fixe".)

1. Calculer le rayon spectral ρ(B) de la matrice d'itération B = Id -αA. Calculer les valeurs de α pour lesquelles ρ(B) < 1 et en déduire que la méthode itérative du gradient à pas fixe converge si = ω(µ i -1 -1/ω). Pour trouver le paramètre optimal ω 0 , tracer les graphes des fonctions de IR + dans IR définies par ω → |µ Exercice 68 page 103 (Méthode itérative de Richardson) 1. On peut réécrire l'itération sous la forme : x k+1 = (Id -αA)x k + αb. La matrice d'itération est donc B = Id -αA. La méthode converge si et seulement si ρ(B) < 1 ; or les valeurs propres de B sont de la forme 1αλ i où λ i est v.p. de A. On veut donc :

0 < α < 2 ρ(A) . 2. Remarquer que ρ(Id -αA) = max(|1 -αλ 1 |, |1 -αλ n -1|, où λ 1 , . . . ,
-1 < 1 -αλ i < 1, ∀i = 1, . . . , n. Analyse numérique I, télé-enseignement, L3 c'est-à-dire -2 < -αλ i et -αλ i < 0, ∀i = 1, . . . , n.
Comme A est symétrique définie positive, λ i > 0, ∀i = 1, . . . , n, donc il faut α > 0.

De plus, on a :

(-2 < -αλ i ∀i = 1, . . . , n) ⇐⇒ (α < 2 λ i ∀i, 1, . . . , n) ⇐⇒ (α < 2 λ n ).
La méthode converge donc si et seulement si 0 < α < 2 ρ(A) .

2. On a :

ρ(Id -αA) = sup i |1 -αλ i | = max(|1 -αλ 1 |, |1 -αλ n |). Le minimum de ρ(Id -αA) est donc obtenu pour α 0 tel que 1 -α 0 λ 1 = α 0 λ n -1, c'est-à-dire (voir Figure (1.5) α 0 = 2 λ 1 + λ n . 1 |1 -αλ 1 | |1 -αλ N | max(|1 -αλ 1 |, |1 -αλ N )|) α 0 1 λ 1 1 λ N α FIGURE 1.5: Graphes de |1 -αλ 1 | et |1 -αλ n | en fonction de α.
Exercice 69 page 104 (Non convergence de la méthode de Jacobi)

-Si a = 0, alors A = Id, donc A est s.d.p. et la méthode de Jacobi converge.

-Si a = 0, posons aµ = (1λ), et calculons le polynôme caractéristique de la matrice A en fonction de la variable µ.

P (µ) = det aµ a a a aµ a a a aµ = a 3 det µ 1 1 1 µ 1 1 1 µ = a 3 (µ 3 -3µ + 2).
On a donc P (µ) = a 3 (µ -1) 2 (µ + 2). Les valeurs propres de la matrice A sont donc obtenues pour

µ = 1 et µ = 2, c'est-à-dire : λ 1 = 1 -a et λ 2 = 1 + 2a. La matrice A est définie positive si λ 1 > 0 et λ 2 > 0, c'est-à-dire si -1 2 < a < 1.
La méthode de Jacobi s'écrit :

X (k+1) = D -1 (D -A)X (k) , avec D = Id dans le cas présent ; donc la méthode converge si et seulement si ρ(D -A) < 1.
Les valeurs propres de D -A sont de la forme ν = 1λ où λ est valeur propre de A. Les valeurs propres de D -A sont donc ν 1 = -a (valeur propre double) et ν 2 = 2a.. On en conclut que la méthode de Jacobi converge si et seulement si

-1 < -a < 1 et -1 < 2a < 1, i.e. -1 2 < a < 1 2 .
La méthode de Jacobi ne converge donc que sur l'intervalle ] - 

En effet, prenons A = 2 -1 -1 1 . Alors J = D -1 (E + F ) = 1 2 0 0 1 0 1 1 0 = 0 1 2 1 0 = 0 1 1 2 0 .
donc J n'est pas symétrique. 2. On applique l'exercice 13 pour l'application linéaire T de matrice D, qui est, par hypothèse, définie positive (et évidemment symétrique puisque diagonale) et l'application S de matrice E + F , symétrique car A est symétrique.

Il existe donc (f 1 . . . f n ) base de E et (µ 1 . . . µ n ) ∈ IR n tels que Jf i = D -1 (E + F )f i = µ i f i , ∀i = 1, . . . , n, et Df i • f j = δ ij .
3. La définition de J donne que tous les éléments diagonaux de J sont nuls et donc sa trace également. Or

T r(J) = n i=1 µ i . Si µ i > 0 ∀i = 1, . . . , n, alors T r(J) > 0, donc ∃i 0 ; µ i0 ≤ 0 et comme µ 1 ≤ µ i0 , on a µ 1 ≤ 0.
Un raisonnement similaire montre que µ n ≥ 0. 4. La méthode de Jacobi converge si et seulement si ρ(J) < 1 (théorème 1.53 page 94). Or, par la question précédente,

ρ(J) = max(-µ 1 , µ n ). Supposons que µ 1 ≤ -1, alors µ 1 = -α, avec α ≥ 1. On a alors D -1 (E +F )f 1 = -αf 1 ou encore (E +F )f 1 = -αDf 1 , ce qui s'écrit aussi (D +E +F )f 1 = D(1-α)f 1 c'est-à-dire (2D -A)f 1 = βDf 1 avec β ≤ 0. On en déduit que (2D -A)f 1 • f 1 = β ≤ 0, ce qui contredit le fait que 2D -A est définie positive. En conséquence, on a bien µ 1 > -1. Supposons maintenant que µ n = α ≥ 1. On a alors D -1 (E + F )f 1 = -αf n , soit encore (E + F )f n = -αDf n . On en déduit que Af n = (D -E -F )f n = D(1 -α)f n = Dβf n avec β ≤ 0.

On a alors

Af n • f n ≤ 0, ce qui contredit le fait que A est définie positive. 5. Par définition, on a :

Dx (k+1) = (E + F )x (k) + b et x (k+1) = ω x(k+1) + (1 -ω)x (k) . On a donc x (k+1) = ω[D -1 (E+F )x (k) +D -1 b]+(1-ω)x (k) c'est-à-dire x (k+1) = [Id-ω(Id-D -1 (E+F ))]x (k) +ωD -1 b,, soit encore 1 ω Dx (k+1) = [ 1 ω D -(D -(E + F ))]x (k) + b. On en déduit que M ω x (k+1) = N ω x (k) + b avec M ω = 1 ω D et N ω = 1 ω D -A. 6. La matrice d'itération est donc maintenant J ω = M -1 ω N ω .
En reprenant le raisonnement de la question 2 avec l'application linéaire T de matrice M ω , qui est symétrique définie positive, et l'application S de matrice N ω , qui est symétrique, il existe une base ( f1 , . . . , fn ) de IR n et (μ 1 , . . . μn ) ⊂ IR tels que 7. On cherche une condition nécessaire et suffisante pour que

J ω fi = M ω -1 N ω fi = ωD -1 1 ω D -A fi = μi fi , ∀i = 1, . . . , n, et 1 ω D fi • fj = δ ij , ∀i, = 1, . . . , n, ∀j, = 1, . . . , n. Supposons μ1 ≤ -1, alors μ1 = -α, avec α ≥ 1 et ωD -1 ( 1 ω D -A) f1 = -α f1 , ou encore ( 1 ω D -A) f1 = -α 1 ω D f1 . On a donc ( 2 ω D -A) f1 = (1 -α) 1 ω D f1 , ce qui entraîne ( 2 ω D -A) f1 • f1 ≤ 0. Ceci contredit l'hypothèse 2 
2 ω D -A x • x > 0, ∀x = 0, (1.126) 
On va montrer que (1.126) est équivalent à

2 ω D -A f i • f i > 0, ∀i = 1, . . . , n, (1.127) 
où les (f i ) i=1,n sont les vecteurs propres de D -1 (E + F ) donnés à la question 2. La famille (f i ) i=1,...,n est une base de IR n , et 

2 ω D -A f i = 2 ω D -D + (E + F ) f i = 2 ω -1 Df i + µ i Df i = 2 ω -1 + µ i Df i . (1.128) On a donc en particulier 2 ω D -A f i • f j = 0 si i = j,
• f i = 1, 2 ω D -A f i • f i = 2 ω -1 + µ i .
Une condition nécessaire et suffisante pour avoir (1.126) est donc

2 ω -1 + µ 1 > 0 car µ 1 = inf µ i , c'est-à- dire : 2 ω > 1 -µ 1 , ce qui est équivalent à : ω < 2 1 -µ 1 .
8. La matrice d'itération J ω s'écrit :

J ω = 1 ω D -1 1 ω D -A = ωI ω , avec I ω = D -1 ( 1 ω D -A).
Soit λ une valeur propre de I ω associée à un vecteur propre u ; alors :

D -1 1 ω D -A u = λu, i.e. 1 ω D -A u = λDu.
On en déduit que

(D -A)u + 1 ω -1 Du = λDu, soit encore D -1 (E + F )u = 1 - 1 ω + λ u.
Ceci montre que u est un vecteur propre de J associé à la valeur propre (1

-1 ω + λ). Il existe donc i ∈ {1, . . . , n} tel que (1 -1 ω + λ) = µ i .
Les valeurs propres de I ω sont donc les nombres (µ i -1 + 1 ω ) pour i ∈ {1, . . . , n}. Finalement, les valeurs propres de J ω sont donc les nombres (ω(µ i -1) + 1) pour i ∈ {1, . . . , n}. On cherche maintenant à minimiser le rayon spectral

ρ(J ω ) = sup i |ω(µ i -1) + 1)| On a, pour tout i, ω(µ 1 -1) + 1) ≤ ω(µ i -1) + 1) ≤ ω(µ n -1) + 1), Analyse numérique I, télé-enseignement, L3 et -(ω(µ n -1) + 1) ≤ -(ω(µ i -1) + 1) ≤ -(ω(µ 1 -1) + 1), donc ρ(J ω ) = max (|ω(µ 1 -1) + 1)|, (|ω(µ n -1) + 1)|)
dont le minimum est atteint (voir Figure 1.6) pour Pour i ∈ {1, . . . , n}, on a donc

ω(µ n -1) + 1 = -ω(µ 1 -1) -1 c'est-à-dire ω = 2 2 -µ 1 -µ n . 1 1 1-µn 1 1-µ1 |ω(1 -µ 1 ) + 1| |ω(1 -µ n ) + 1| max(|ω(1 -µ n ) + 1|, |ω(1 -µ 1 ) + 1|)
|a i,i ||x i | = |a i,i x i | = | j;i =j a i,j x j | ≤ j;i =j |a i,j | x ∞ , ∀i = 1, . . . , n. Si x = 0, on a donc |x i | ≤ j;i =j a i,j x j | |a i,i | x ∞ < x ∞ , ∀i = 1, . . . , n, ce qui est impossible pour i tel que |x i | = x ∞ .
Montrons maintenant que la méthode de Jacobi converge : Si on écrit la méthode ous la forme P x (k+1) = (P -A)x (k) + b avec , on a

P = D =    a 1,1 0 . . . 0 a n,n    .
Analyse numérique I, télé-enseignement, L3 

B J = P -1 (P -A) = D -1 (E + F ) =    a -1 1,1 0 . . . 0 a -1 n,n       0 -a i,j . . . -a i,j 0    =    0 - a1,2 a1,1 . . . . . . - a1,1 an,n . . . 0    .
Cherchons le rayon spectral de

B J : soient x ∈ IR n et λ ∈ IR tels que B J x = λx, alors j;i =j - a i,j a i,i x j = λx i , et donc |λ||x i | ≤ j;i =j |a i,j | x ∞ |a i,i | . Soit i tel que |x i | = x ∞ et x = 0, on déduit de l'inégalité précédente que |λ| ≤ j;i =j |a i,j | |a ii | < 1 pour toute valeur propre λ.
On a donc ρ(B J ) < 1 ce qui prouve que la méthode de Jacobi converge.

Exercice 78 page 107 (Jacobi et Gauss-Seidel pour une matrice 3 × 3)

1.a La méthode de Jacobi s'écrit

Dx (k+1) = (E + F )x (k) + b avec D =   2 0 0 0 2 0 0 0 2   , E =   0 0 0 1 0 0 0 1 0   et F =   0 1 0 0 0 1 0 0 0   .
La méthode de Jacobi s'écrit donc

x (k+1) = B J x (k) + c J avec B J = D -1 (E + F ) =   0 1 2 0 1 2 0 1 2 0 1 2 0   et c J =   1 2 0 1 2   . 1.b On remarque que x ∈ Ker(B J ) si x 2 = 0 et x 1 + x 3 = 0. Donc KerB J = {t   -1 0 1   , t ∈ IR}.
1.c Le polynôme caractéristique de

B J est P J (λ) = det(B J -λId) = (-λ(-λ 2 + 1 2 ) et donc ρ(B J ) = √ 2 
2 < 1. On en déduit que la méthode de Jacobi converge.

1.d Choix

(i) : x (1) =   1 2 0 1 2   , x (2) =   1 2 1 2 1 2   . Choix (ii) : x (1) =   1 1 1   , x (2) =   1 1 1   .
2.a La méthode de Gauss-Seidel s'écrit (D-E)x (k+1) = F x (k) +b, où D, E et F ont été définies à la question 1.a. La méthode s'écrit donc

x (k+1) = B GS x (k) + c GS avec B GS = (D -E) -1 F et c GS = (D -E) -1 b. Calculons (D -E) -1 F et (D -E) -1 b par échelonnement.   2 0 0 0 1 0 1 -1 2 0 0 0 1 0 0 -1 2 0 0 0 1   ❀   2 0 0 0 1 0 1 0 2 0 0 1 2 1 1 2 0 -1 2 0 0 0 1   ❀   2 0 0 0 1 0 1 0 2 0 0 1 2 1 1 2 0 0 2 0 1 4 1 2 5 4   Analyse numérique I, télé-enseignement, L3
On a donc

B GS =   0 1 2 0 0 1 4 1 2 0 1 8 1 4   et c GS =   1 2 1 4 5 8   .
2.b Il est facile de voir que x ∈ Ker(B GS ) si et seulement si

x 2 = x 3 = 0. Donc KerB GS = {t   1 0 0   , t ∈ IR}.
2.c Le polynôme caractéristique de B GS est P GS (λ) = det(B GS -λId). On a donc

P GS (λ) = -λ 1 2 0 0 1 4 -λ 1 2 0 1 8 1 4 -λ = -λ ( 1 4 -λ) 2 - 1 16 = λ 2 ( 1 2 -λ) et donc ρ(B GS ) = 1 2 < 1.
On en déduit que la méthode de Gauss-Seidel converge. 2.d On a bien ρ(B GS ) = 1 2 = ρ(B J ) 2 , ce qui est conforme au théorème 1.36 du cours.

2.e Choix (i) :

x (1) =   1 2 1 4 5 8   , x (2) =   5 8 5 8 13 16 s   . Choix (ii) : x (1) =   1 1 1   , x (2) =   1 1 1   .
Analyse numérique I, télé-enseignement, L3

Exercice 81 page 108 (Méthode de Jacobi et Gauss-Seidel pour des matrices triangulaires)

1. La matrice B GS est nulle et la matrice B J est triangulaire inférieure avec des 0 sur la diagonale. Pour ces deux matrices le rayon spectral est nul. Dans le cas de Gauss-Seidel, la première intération consiste à résoudre Ax (1) = b (car A = D -E). On obtient donc la solution après une itération au plus. Dans le cas de Jacobi, les intérations (avec les notations du cours) sont :

a i,i x (k+1) i = - j<i a i,j x (k) j + b i . La solution x = A -1 b (noter que A est nécessairement inversible) vérifie a i,i x i = - j<i a i,j x j + b i .
On en déduit que x

(1) 1 = x 1 (car il n'y pas de j < 1), puis que x 

(2) 2 = x 2 (car x (1) 1 = x 1 )
n = x n puis par récurrence x (k) n-k+1 = x n-k+1 .
Exercice 82 page 109 (Méthode de Jacobi pour des matrices particulières)

1. Soit x ∈ IR n , supposons que x A = n i=1 a i,i |x i | = 0.
Comme a i,i > 0, ∀i = 1, . . . , n, on en déduit que x i = 0, ∀i = 1, . . . , n. D'autre part, il est immédiat de voir que x + y 

A ≤ x + y A pour tout (x, y) ∈ IR n × IR n et que λx A = |λ| x A pour tout (x, λ) ∈ IR n × IR.
Du (k+1) = (E + F )u (k) + b, ( 1 
u (k+1) i = 1 a i,i + λ (- j=1,n j =i a i,j u (k) j + b i ).
Analyse numérique I, télé-enseignement, L3

MÉTHODES ITÉRATIVES CHAPITRE 1. SYSTÈMES LINÉAIRES

On en déduit que

u (k+1) i -u (k) i = 1 a i,i + λ j=1,n j =i -a i,j (u (k) j -u (k-1) j ).
et donc

u (k+1) -u (k) A ≤ n i=1 a i,i a i,i + λ | j=1,n j =i a i,j (u (k) j -u (k-1) j )|. Or a i,i a i,i + λ ≤ 1 1 + λ ai,i ≤ 1 1 + α . On a donc u (k+1) -u (k) A ≤ 1 1 + α n j=1 |u (k) j -u (k-1) j ] j=1,n j =i -a i,j .
Et par hypothèse, -j=1,n j =i a i,j = a j,j . On en déduit que

u (k+1) -u (k) A ≤ 1 1 + α u (k) -u (k-1)
A .

On en déduit le résultat par une récurrence immédiate. 5. Soient p et q = p + m ∈ IN, avec m ≥ 0. Par le résultat de la question précédente, on a :

u (q) -u (p) A ≤ m i=1 u (p+i) -u (p-i-1) A ≤ u (1) -u (0) A ( 1 1 + α ) p m i=0 ( 1 1 + α ) i
Or α > 0 donc la série de terme général ( 1 1+α ) i , et on a :

u (q) -u (p) A ≤ u (1) -u (0) A ( 1 1 + α ) p +∞ i=0 ( 1 1 + α ) i ≤ (1 + 1 α ) u (1) -u (0) A ( 1 1 + α ) p → 0 lorsque p → +∞.
On en déduit que pour tout ǫ > 0, il existe n tel que si p, q > n alors u (q)u (p) A ≤ ǫ, ce qui montre que la suite est de Cauchy, et donc qu'elle converge. Soit u sa limite. En passant à la limite dans (1.131), on obtient que u est solution de (1.121).

Exercice 86 page 111 (Vitesse de convergence pour la méthode de Jacobi)

1. Soit f 1 , . . . , f n une base de IR n formée de vecteurs propres de B J . On a donc, pour tout i ∈ {1, . . . , n},

B J f i = λ i f i avec λ i ∈ IR et ρ = max{|λ i |, i ∈ {1, . . . , n}}.
La suite (x (k) ) k∈IN donnée par la méthode de Jacobi vérifie, pour tout k ≥ 0, x (k+1)x = B J (x (k)x).

En écrivant x (0) x dans la base f 1 , . . . , f n on a x (0)x = n i=1 α i f i . Par récurrence sur k, on en déduit, pour tout k ≥ 0,

x (k) -x = n i=1 λ k i α i f i . Comme |λ i | ≤ ρ, on en déduit x (k) -x ≤ ρ k n i=1 |α i | f i , ce qui donne le résultat demandé avec β = n i=1 |α i | f i .
Analyse numérique I, télé-enseignement, L3 

x (k) -x ε ≤ B J k ε x (0) -x ε ≤ x (0) -x ε (ρ + ε) k .
D'autre part, comme sur IR n toutes les normes sont équivalentes, il existe γ ∈ IR + tel que

• ≤ γ • ε . On a donc x (k) -x ≤ γ x (k) -x ε ≤ β ε (ρ + ε) k avec β ε = γ x (0) -x ε . 3. Comme B J = D -1 (E + F ) = 0 1 2 1 2

0

, on a donc ρ = 1 2 . Soit x (0) ∈ IR 2 , x (0) x = α 1 e 1 + α 2 e 2 . On a alors

x (k) -x = ( 1 2 ) k (α 1 e 1 + α 2 e 2 ) si k est pair, x (k) -x = ( 1 2 
) k (α 1 e 2 + α 2 e 1 ) si k est impair.

On en déduit que x (k)x = ρ k x (0) x pour tout k ≥ 0.

4. On prend, par exemple,

x = 2x 2 1 + x 2 2 pour x = x 1 x 2 .
Avec les notations de la question précédente, on a

x (k) -x =      ρ k 2α 2 1 + α 2 2 si k est pair, ρ k 2α 2 2 + α 2 1 si k est impair.
La suite ( x (k)x /ρ k ) k∈IN est une suite constante seulement si α 2 1 = α 2 2 . 

Valeurs propres et vecteurs propres

Méthode de la puissance et de la puissance inverse

Pour expliquer l'algorithme de la puissance, commençons par un exemple simple. Prenons par exemple la matrice

A = 2 -1 -1 2
dont les valeurs propres sont 1 et 3, et les vecteurs propres associés f (1) 

= √ 2 2 1 1 et f (2) = √ 2 2 1 -1 . Partons de x = 1 0
et faisons tourner scilab en itérant les instructions suivantes :

-->x = A * x ; x = x/norm(x)

ce qui correspond à la construction de la suite La méthode de la puissance souffre de plusieurs inconvénients :

x (0) = x x , x (1) = Ax (0) Ax (0) , • • • , x (k+1) = Ax (k) Ax (k) (1.
|λ n | > |λ n-1 | ≥ • • • ≥ |λ 1 |, et on suppose de plus que λ n ∈ IR. Soit x (0) ∈ V ect(f 1 , • • • , f n-1 ).
1. Elle ne permet de calculer que la plus grande valeur propre. Or très souvent, on veut pouvoir calculer la plus petite valeur propre.

2. De plus, elle ne peut converger que si cette valeur propre est simple.

3. Enfin, même dans le cas où elle est simple, si le rapport des deux plus grandes valeurs propres est proche de 1, la méthode va converger trop lentement.

De manière assez miraculeuse, il existe un remède à chacun de ces maux :

1. Pour calculer plusieurs valeurs propres simultanément, on procède par blocs : on part de p vecteurs orthogonaux x (0) 1 , . . . x (0) p (au lieu d'un seul). Une itération de la méthode consiste alors à multiplier les p vecteurs par A et à les orthogonaliser par Gram-Schmidt. En répétant cette itération, on approche, si tout se passe bien, p valeurs propres et vecteurs propres de A, et la vitesse de convergence de la méthode est maintenant λn-p λn .

2. Si l'on veut calculer la plus petite valeur propre, on applique la méthode de la puissance à A -1 . On a alors convergence (toujours si tout se passe bien) de

A -1 x k • x k vers 1/|λ 1 |.
Bien sûr, la mise en oeuvre effective ne s'effectue pas avec l'inverse de A, mais en effectuant une décomposition LU de A qui permet ensuite la résolution du système linéaire Ax k+1 = x (k) (et

x k+1 = xk+1 / xk+1 ).
3. Enfin, pour accélérer la convergence de la méthode, on utilise une translation sur A, qui permet de se rapprocher de la valeur propre que l'on veut effectivement calculer. Voir à ce propos l'exercice 91. La démonstration est effectuée dans le cas inversible dans la question 1 de l'exercice 95. La décomposition QR d'une matrice A inversible s'obtient de manière très simple par la méthode de Gram-Schmidt, qui permet de construire une base orthonormée q 1 , . . . , q n (les colonnes de la matrice Q), à partir de n vecteurs vecteurs indépendants a 1 , . . . , a n (les colonnes de la matrice A). On se reportera à l'exercice 93 pour un éventuel raffraichissement de mémoire sur Gram-Schmidt. Dans le cas où A n'est pas inversible (et même non carrée), la décomposition existe mais n'est pas unique. La démonstration dans le cadre général se trouve dans le livre de Ph. Ciarlet conseillé en début de ce cours. L'algorithme QR pour la recherche des valeurs propres d'une matrice est extêmement simple : Si A est une matrice inversible, on pose A 0 = A, on effectue la décomposition QR de A :

Méthode QR

A = A 0 = Q 0 R 0 et on calcule A 1 = R 0 Q 0 .
Comme le produit de matrices n'est pas commutatif, les matrices A 0 et A 1 ne sont pas égales, mais en revanche elles sont semblables ; en effet, grâce à l'associativité du produit matriciel, on a :

A 1 = R 0 Q 0 = (Q -1 0 Q 0 )R 0 Q 0 = Q -1 0 (Q 0 R 0 )Q 0 = Q -1 0 AQ 0 .
Les matrices A 0 et A 1 ont donc même valeurs propres.

On recommence alors l'opération : à l'itération k, on effectue la décomposition QR de A k :

A k = Q k R k et on calcule A k+1 = R k Q k .
Par miracle, pour la plupart des matrices, les coefficients diagonaux de la matrice A k tendent vers les valeurs propres de la matrice A. Dans beaucoup de cas, on peut aussi obtenir des vecteurs propres associés (ils sont donnés par les colonnes de la matrice Qk de l'exercice 95). On sait démontrer cette convergence pour certaines matrices ; on pourra trouver par exemple dans les livres de Serre ou Hubbard-Hubert la démonstration sous une hypothèse assez technique et difficile à vérifier en pratique ; l'exercice 95 donne la démonstration (avec la même hypothèse technique) pour le cas plus simple d'une matrice symétrique définie positive.

Pour améliorer la convergence de l'algorithme QR, on utilise souvent la technique dite de "shift" (translation en français). A l'itération n, au lieu d'effectuer la décomposition QR de la matrice A n , on travaille sur la matrice nn . L'exercice 94 donne un exemple de l'application de la méthode QR avec shift.

Exercices (valeurs propres, vecteurs propres)

Exercice 89 (Multiplicités algébrique et géométrique). Soit A ∈ M n (IR), n > 1. On note P (A) le polynôme caractéristique de A et {λ i , i ∈ {1, . . . , p}} les valeurs propres de A (on a donc 1 ≤ p ≤ n).

On rappelle que

P (A)(x) = p i=1 (x -λ i ) mi et que 1 ≤ n i ≤ m i (pour tout i) où n i = dim ker(A -λ i I) (I désigne la matrice identité de taille n).
Le nombre m i est la multiplicité algébrique de λ i alors que le nombre n i est la multiplicité géométrique de λ i . On rappelle enfin que que n i < m i si et seulement si ker(A -

λ i I) 2 = ker(A -λ i I). Soit λ ∈ {λ i , i ∈ {1, . . . , p}} et x ∈ ker(A -λ i I) 2 . 1. Montrer que A 2 x -λ 2 x = 2λ(Ax -λx), puis que, pour tout k ∈ IN ⋆ , A k x -λ k x = kλ k-1 (Ax -λx).
(1.133)

[Utiliser une récurrence sur k.]

On suppose dans les questions 2 et 3 que |λ| = ρ(A) (ρ(A) désigne le rayon spectral de A). 4. On considère la méthode de la puissance pour la matrice A = µ 1 0 µ , avec µ ∈ R : (0) ∈ IR n . On suppose que -λ n n'est pas une valeur propre de A et que y (0) n'est pas orthogonal à ker(Aλ n Id), ce qui revient à dire que lorsqu'on écrit le y (0) dans une base formée de vecteurs propres de A, la composante sur sous-espace propre associé à λ n est non nulle. (L'espace IR n est muni de la norme euclidienne.) On définit la suite (y

On suppose dans cette question que

x k+1 = Ax k Ax k , k ∈ N, x 0 = (α, β)
(k) ) k∈IN par y (k+1) = Ay (k) pour k ∈ IN. Montrer que (a) y (k) (λ n ) k → y, quand k → ∞, avec y = 0 et Ay = λ n y. (b) y (k+1) y (k) → ρ(A) quand k → ∞. (c) 1 y 2k y 2k → x quand k → ∞ avec Ax = λ n x et x = 1.
Cette méthode de calcul de la plus grande valeur propre s'appelle "méthode de la puissance".

2. Soit A ∈ M n (IR) une matrice inversible et b ∈ IR n . Pour calculer x t.q. Ax = b, on considère un méthode itérative : on se donne un choix initial x (0) , et on construit la suite x (k) telle que x (k+1) = Bx (k) + c avec c = (Id -B)A -1 b, et on suppose B symétrique. On rappelle que si ρ(B) < 1, la suite (y (k) ) k∈IN tend vers x. Montrer que, sauf cas particuliers à préciser, (a) x (k+1) -x

x (k) -x
→ ρ(B) quand k → ∞ (ceci donne une estimation de la vitesse de convergence de la méthode itérative).

(b) x (k+1) -x (k) x (k) -x (k-1) → ρ(B) quand k → ∞ (ceci permet d'estimer ρ(B) au cours des itérations).
Exercice 91 (Méthode de la puissance inverse avec shift). Suggestions en page 130.

Soient A ∈ M n (IR) une matrice symétrique et λ 1 , . . . , λ p (p ≤ n) les valeurs propres de A. Soit i ∈ {1, . . . , p}, on cherche à calculer λ i . Soit x (0) ∈ IR n . On suppose que x (0) n'est pas orthogonal à ker(Aλ i Id). On suppose également connaître µ ∈ IR t.q. 0 < |µ -

λ i | < |µ -λ j | pour tout j = i. On définit la suite (x (k) ) k∈IN par (A -µId)x (k+1) = x (k) pour k ∈ IN.
1. Vérifier que la construction de la suite revient à appliquer la méthode de la puissance à la matrice

(A - µId) -1 . 2. Montrer que x (k) (λ i -µ) k → x, quand k → ∞, où x est un vecteur propre associé à la valeur propre λ i , c.à.d. x = 0 et Ax = λ i x.
3. Montrer que x (k+1)

x (k) → 1 |µ-λi| quand k → ∞.
Exercice 92 (Matrices antisymétriques).

Soit A ∈ M n (IR) t.q. A t = -A. On pose B = A t A. 3. Soit µ = ρ(B). On note (y (k) ) k∈IN la suite donnée par la méthode de la puissance pour le matrice B avec la norme euclidienne. On suppose que y (0) ∈ (ker(B -µI)) ⊥ Montrer que By (k) • y (k) → µ = ρ(A) 2 .

[Suggestion : décomposer y (0) sur une base orthonormée de IR n formée de vecteurs propres de B.]

4. On suppose que n est impair.

(a) Montrer que 0 est v.p. de A.

(b) Pour cette question, A =   0 -1 0 1 0 -1 0 1 0   . Calculer B puis B k pour tout k ∈ IN.
Donner pour tout k ∈ IN, y (k) en fonction de y (0) . A-t-on lim k→+∞ By (k) • y (k) = ρ(A) 2 si et seulement si y (0) ∈ (ker(Bρ(B)I)) ⊥ ?

Exercice 93 (Orthogonalisation de Gram-Schmidt). Corrigé en page 132

Soient u et v deux vecteurs de IR n , u = 0. On rappelle que la projection orthogonale proj u (v) du vecteur v sur la droite vectorielle engendrée par u peut s'écrire de la manière suivante :

proj u (v) = v • u u • u u,
où u • v désigne le produit scalaire des vecteurs u et v. On note • la norme euclidienne sur IR n .

1. Soient (a 1 , . . . , a n ) une base de IR n . On rappelle qu'à partir de cette base, on peut obtenir une base orthogonale (v 1 , . . . , v n ) et une base orthonormale (q 1 , . . . , q n ) par le procédé de Gram-Schmidt qui s'écrit :

Pour k = 1, . . . , n, v k = a k - k-1 j=1 a k • v j v j • v j v j , q k = v k v k .
(1.134)

1. Montrer par récurrence que la famille (v 1 , . . . , v n ) est une base orthogonale de IR n .

2. Soient A la matrice carrée d'ordre n dont les colonnes sont les vecteurs a j et Q la matrice carrée d'ordre N dont les colonnes sont les vecteurs q j définis par le procédé de Gram-Schmidt (1.134), ce qu'on note :

A = a 1 a 2 . . . a n , Q = q 1 q 2 . . . q n .
Montrer que

a k = v k q k + k-1 j=1 a k • v j v j q j .
En déduire que A = QR, où R est une matrice triangulaire supérieure dont les coefficients diagonaux sont positifs. 5. On considère maintenant l'algorithme suivant (où l'on stocke la matrice Q orthogonale cherchée dans la matrice A de départ (qui est donc écrasée)

Montrer que pour toute matrice

Algorithme 1.66 (Gram-Schmidt modifié).

Pour k = 1, . . . , n, Calcul de la norme de a k

r kk := ( n i=1 a 2 ik ) 1 2
Analyse numérique I, télé-enseignement, L3 2. Effectuer la décomposition QR de la matrice A.

Calculer

A 1 = RQ et Ã1 = RQ -bId où b est le terme a 1 22 de la matrice A 1 4. Effectuer la décomposition QR de A 1 et Ã1 , et calculer les matrices A 2 = R 1 Q 1 et Ã2 = R1 Q1 .
Exercice 95 (Méthode QR pour la recherche de valeurs propres). Corrigé en page 132 Soit A une matrice inversible. Pour trouver les valeurs propres de A, on propose la méthode suivante, dite "méthode QR" : On pose A 1 = A et on construit une matrice orthogonale Q 1 et une matrice triangulaire supérieure R 1 telles que A 1 = Q 1 R 1 (par exemple par l'algorithme de Gram-Schmidt). On pose alors A 2 = R 1 Q 1 , qui est aussi une matrice inversible. On construit ensuite une matrice orthogonale Q 2 et une matrice triangulaire supérieure R 2 telles que

A 2 = Q 2 R 2 et on pose A 3 = R 3 Q 3 .
On continue et on construit une suite de matrices A k telles que :

A 1 = A = Q 1 R 1 , R 1 Q 1 = A 2 = Q 2 R 2 , . . . , R k Q k = A k = Q k+1 R k+1 .
(1.135) Dans de nombreux cas, cette construction permet d'obenir les valeurs propres de la matrice A sur la diagonale des matrices A k . Nous allons démontrer que ceci est vrai pour le cas particulier des matrices symétriques définies positives dont les valeurs propres sont simples et vérifiant l'hypothèse (1.137) (on peut le montrer pour une classe plus large de matrices).

On suppose à partir de maintenant que A est une matrice symétrique définie positive qui admet n valeurs propres (strictement positives) vérifiant λ 1 < λ 2 < . . . < λ n . On a donc : 

A = P λP t , avec λ = diag(λ 1 , . . . ,
= Q2 R2 avec Qk = Q 1 Q 2 et Rk = R 2 R 1 .
2.2 Montrer, par récurrence sur k, que 

A k = Qk Rk , (1.138) avec Qk = Q 1 Q 2 . . . Q k-1 Q k et Rk = R k R k-1 . . . R 2 R 1 . ( 1 
B et b (k) 1 , b (k) 2 , . . . , b (k) 
n les colonnes de la matrice B k , ou encore : 

B = b 1 b 2 . . . b n , B k = b (k) 1 b (k) 2 . . . b (k) n . et on note c (k) i,j les coefficients de C k . 4.1 Montrer que la première colonne de B k C k est égale à c (k) 1,1 b (k) 1 . En déduire que c (k) 1,1 → 1 et que b (k) 1 → b 1 . 4.2 Montrer que la seconde colonne de B k C k est égale à c (k) 1,2 b (k) 1 + c (k) 2,2 b (k) 2 . En déduire que c (k) 1,2 → 0, puis que c (k) 2,2 → 1 et que b (k) 2 → b 2 . 4.3 Montrer que lorsque k → +∞, on a c (k) i,j → 0 si i = j, puis que c (k) i,i → 1 et b (k) i → b i .

Montrer que

Rk ( Rk-1 ) -1 = T k λT k-1 . En déduire que R k et A k tendent vers λ.

Suggestions

Exercice 90 page 127 (Méthode de la puissance pour calculer le rayon spectral de A.)

1. Décomposer x (0) sur une base de vecteurs propres orthonormée de A, et utiliser le fait que -λ n n'est pas valeur propre. 2. a/ Raisonner avec y (k) = x (k)x où x est la solution de Ax = b et appliquer la question 1. b/ Raisonner avec y (k) = x (k+1)x (k) .

Exercice 91 page 127 (Méthode de la puissance inverse) Appliquer l'exercice précédent à la matrice B = (A -µId) -1 .

Analyse numérique I, télé-enseignement, L3

Corrigés

Exercice 90 page 127 (Méthode de la puissance pour calculer le rayon spectral de A) 1. Comme A est une matrice symétrique (non nulle), A est diagonalisable dans IR. Soit (f 1 , . . . , f n ) une base orthonormée de IR n formée de vecteurs propres de A associée aux valeurs propres λ 1 , . . . , λ n (qui sont réelles). On décompose y (0) sur (f i ) i=1,...,n :

y (0) = n i=1 α i f i . On a donc Ay (0) = n i=1 λ i α i f i et A k y (0) = n i=1 λ k i α i f i . On en déduit : y (k) λ k n = n i=1 λ i λ n k α i f i .
Comme -λ n n'est pas valeur propre,

lim k→+∞ ( λ i λ n ) k = 0 si λ i = λ n . (1.140)
Soient λ 1 , . . . , λ p les valeurs propres différentes de λ n , et λ p+1 , . . . , λ n = λ n . On a donc

lim n→+∞ y (k) λ k n = n i=p+1 α i f i = y, avec Ay = λ n y. De plus, y = 0 : en effet, y (0) / ∈ (Ker(A-λ n Id)) ⊥ = V ect{f 1 , . . . , f p }, et donc il existe i ∈ {p+1, . . . , n} tel que α i = 0.
Pour montrer (b), remarquons que

y (k+1) y (k) = |λ n | y (k+1) λ k+1 n y (k) λ k n → |λ n | y y = |λ n | lorsque k → +∞.
Enfin,

y (2k) y (2k) = y (2k) λ 2k n λ 2k n y (2k) et lim k→+∞ y (2k) λ 2k n = y .
On a donc lim k→+∞ y (2k) y (2k) = x, avec x = y y .

2. a) La méthode I s'écrit à partir de x (0) connu :

x (k+1) = Bx (k) + c pour k ≥ 1, avec c = (I -B)A -1 b. On a donc x (k+1) -x = Bx (k) + (Id -B)x -x = B(x (k) -x). (1.141) Si y (k) = x (k) -
x, on a donc y (k+1) = By (k) , et d'après la question 1a) si y (0) ⊥ ker(Bµ n Id) où µ n est la plus grande valeur propre de B, (avec

|µ n | = ρ(B)et -µ n non valeur propre), alors y (k+1) y (k) -→ ρ(B) lorsque k → +∞, c'est-à-dire x (k+1) -x x (k) -x -→ ρ(B) lorsque k → +∞.
b) On applique maintenant 1a) à y (k) = x (k+1)x (k) avec y (0) = x (1) x (0) où x (1) = Ax (0) .

On demande que x (1) x (0) / ∈ ker(Bµ n Id) ⊥ comme en a), et on a bien y (k+1) = By (k) , donc

y (k+1) y (k) -→ ρ(B) lorsque k → +∞.
Exercice 93 page 128 (Orthogonalisation par Gram-Schmidt)

1. Par définition de la projection orthogonale, on a

v 1 • v 2 = a 1 • (a 2 -proj a1 (a 2 )) = 0.
Supposons la récurrence vraie au rang k -1 et montrons que v k est orthogonal à tous les

v i pour i = 1, . . . , k -1. Par définition, v k = a k -k-1 j=1 a k •vj vj •vj v j , et donc v k • v i = a k • v i - k-1 j=1 a k • v j v j • v j v j • v i = a k • v i -a k • v i par hypothèse de récurrence. On en déduit que v k • v i = 0 et donc que la famille (v 1 , . . . v n ) est une base orthogo- nale.
2. De la relation (1.134), on déduit que :

a k = v k + k-1 j=1 a k • v j v j • v j v j ,
et comme v j = v j q j , on a bien :

a k = v k q k + k-1 j=1 a k • v j v j q j .
La k-ième colonne de A est donc une combinaison linéaire de la k-ème colonne de Q affectée du poids v k et des k -1 premières affectées des poids

a k •vj vj . Ceci s'écrit sous forme matricielle A = QR où R est une matrice carrée dont les coefficients sont R k,k = v k , R j,k = a k •vj vj si j < k, et R j,k = 0 si j > k.
La matrice R est donc bien triangulaire supérieure et à coefficients diagonaux positifs.

3. Si A est inversible, par le procédé de Gram-Schmidt (1.134) on construit la matrice Q = q 1 q 2 . . . q n , et par la question 2, on sait construire une matrice R triangulaire supérieure à coefficients diagonaux positifs A = QR.

On a a

1 = 1 1 et donc q 1 = 1 2 √ 2 √ 2 Puis a 2 = 4 0 et donc v 2 = a 2 -a2•v1 v1•v1 v 1 = 4 0 -4 2 1 1 = 2 -2 . Donc q 2 = 1 2 √ 2 - √ 2 , et Q = 1 2 √ 2 √ 2 √ 2 - √ 2 . Enfin, R = v 1 a2•v1 v1 0 v 1 = √ 2 2 √ 2 0 2 √ 2 , et Q = 1 2 √ 2 √ 2 √ 2 - √ 2 .
Exercice 95 page 129 (Méthode QR pour la recherche de valeurs propres)

1.1 Par définition et associativité du produit des matrices,

A 2 = (Q 1 R 1 )(Q 1 R 1 ) = Q 1 (R 1 Q 1 )R 1 = Q 1 (R 1 Q 1 )R 1 = Q 1 (Q 2 R 2 )R 1 = (Q 1 Q 2 )(R 2 R 1 ) = Q2 R2 avec Q2 = Q 1 Q 2 et R2 = R 1 R 2 .
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1.2 La propriété est vraie pour k = 2. Supposons la vraie jusqu'au rang k -1 et montrons là au rang k. Par définition, A k = A k-1 A et donc par hypothèse de récurrence, A k = Qk-1 Rk-1 A. On en déduit que :

A k = Qk-1 Rk-1 Q 1 R 1 = Q 1 . . . Q k-1 R k-1 . . . R 2 (R 1 Q 1 )R 1 = Q 1 . . . Q k-1 R k-1 . . . R 2 (Q 2 R 2 )R 1 = Q 1 . . . Q k-1 R k-1 . . . (R 2 Q 2 )R 2 R 1 = Q 1 . . . Q k-1 R k-1 . . . R 3 (Q 3 R 3 )R 2 R 1 . . . . . . = Q 1 . . . Q k-1 R k-1 . . . R j (Q j R j )R j-1 . . . R 2 R 1 = Q 1 . . . Q k-1 R k-1 . . . R j+1 (R j Q j )R j-1 . . . R 2 R 1 = Q 1 . . . Q k-1 R k-1 . . . R j+1 (Q j+1 R j )R j-1 . . . R 2 R 1 = Q 1 . . . Q k-1 R k-1 (Q k-1 R k-1 )R k-2 . . . R 2 R 1 = Q 1 . . . Q k-1 (R k-1 Q k-1 )R k-1 R k-2 . . . R 2 R 1 = Q 1 . . . Q k-1 (Q k R k )R k-1 R k-2 . . . R 2 R 1 = Qk Rk 1.
3 La matrice Qk est un produit de matrices orthogonales et elle est donc orthogonale. (On rappelle que si P et Q sont des matrices orthogonales, c.à.d.

P -1 = P t et Q -1 = Q t , alors (P Q) -1 = Q -1 P -1 = Q t P t = (P Q) t et donc P Q est orthogonale.)
De même, le produit de deux matrices triangulaires supérieures à coefficients diagonaux positifs est encore une matrice triangulaire supérieure à coefficients diagonaux positifs.

2.1 Par définition, P M k = P λ k Lλ -k = P λ k P t P -t Lλ -k = A k P -t Lλ -k .

Mais A k = Qk Rk et P t = LU , et donc :

P M k = Qk Rk U -1 λ -k = Qk T k où T k = Rk U -1 λ -k
. La matrice T k est bien triangulaire supérieure à coefficients diagonaux positifs, car c'est un produit de matrices triangulaires supérieures à coefficients diagonaux positifs. 2.2

(M k ) i,j = (λ k Lλ -k ) i,j =        L i,i si i = j, λ k j λ k i Li, j si i > j, 0 sinon. 2.3 On déduit facilement de la question précédente que, lorsque k → +∞, (M k ) i,j → 0 si i = j et (M k ) i,i → 1 et donc que M k tend vers la matrice identité et que Qk T k tend vers P lorsque k → +∞. 3.1 Par définition, (B k C k ) i,1 = ℓ=1,n (B k ) i,ℓ (C k ) ℓ,1 = (B k ) i,1 (C k ) 1,1 car C k est triangulaire supérieure. Donc la première colonne de B k C k est bien égale à c (k) 1,1 b (k) 1 . Comme B k C k tend vers B, la première colonne b (k) 1 de B k C k tend vers la première colonne de B, c'est -à-dire c (k) 1,1 b (k) 1 → b 1 lorsque k → ∞.
Comme les matrices B et B k sont des matrices orthogonales, leurs vecteurs colonnes sont de norme 1, et donc

|c (k) 1,1 | = c (k) 1,1 b (k) 1 → b 1 = 1 lorsque k → ∞.
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(B k C k ) i,2 = ℓ=1,n (B k ) i,ℓ (C k ) ℓ,2 = (B k ) i,1 (C k ) 1,1 + (B k ) i,2 (C k ) 2,1 , et donc la seconde colonne de B k C k est bien égale à c (k) 1,2 b (k) 1 + c (k) 2,2 b (k) 2 . On a donc c (k) 1,2 b (k) 1 + c (k) 2,2 b (k) 2 → b 2 lorsque k → +∞. (1.142) La matrice B k est orthogonale, et donc b (k) 1 • b (k) 1 = 1 et b (k) 1 • b (k) 2 = 0.
(k) 1 , c (k) 1,2 = c (k) 1,2 b (k) 1 + c (k) 2,2 b (k) 2 • b (k) 1 → b 2 • b 1 = 0 lorsque k → +∞. Comme c (k) 1,2 → 0 et b (k) 1 → b 1 on obtient par (1.142) que c (k) 2,2 b (k) 2 → b 2 lorsque k → +∞.
Le même raisonnement que celui de la question précédente nous donne alors que c

(k) 2,2 → 1 et b (k) 2 → b 2 lorsque k → +∞.
3.3 On sait déjà par les deux questions précédentes que ces assertions sont vraies pour i = 1 et 2. Supposons qu'elles sont vérifiées jusqu'au rang i -1, et montrons que c

(k) i,j → 0 si i = j, puis que c (k) i,i → 1 et b (k) i → b i .
Comme C k est triangulaire supérieure, on a : 

(B k C k ) i,j = ℓ=1,n (B k ) i,ℓ (C k ) ℓ,j = j-1 ℓ=1 (B k ) i,ℓ (C k ) ℓ,j + (B k ) i,j (C k ) j,j , et donc la j-ème colonne de B k C k est égale à j-1 ℓ=1 c (k) ℓ,j b (k) ℓ + c (k) j,j b (k) j . On a donc j-1 ℓ=1 c (k) ℓ,j b (k) ℓ + c (k) j,j b (k) j → b j lorsque k → +∞. (1.143) La matrice B k est orthogonale, et donc b (k) i • b (k) j = δ i,
(k) m , pour m < j, on obtient c (k) m,j = j-1 ℓ=1 c (k) ℓ,j b (k) ℓ + c (k) j,j b (k) j • b (k) m → b m • b j = 0 lorsque k → +∞.
On déduit alors de (1.143) que c 

Systèmes non linéaires

Dans le premier chapitre, on a étudié quelques méthodes de résolution de systèmes linéaires en dimension finie. L'objectif est maintenant de développer des méthodes de résolution de systèmes non linéaires, toujours en dimension finie. On se donne g ∈ C(IR n , IR n ) et on cherche x dans IR n solution de :

x ∈ IR n g(x) = 0. (2.1) 
Au Chapitre I on a étudié des méthodes de résolution du système (2.1) dans le cas particulier g

(x) = Ax -b, A ∈ M n (IR), b ∈ IR n .
On va maintenant étendre le champ d'étude au cas où g n'est pas forcément affine. On étudiera deux familles de méthodes pour la résolution approchée du système (2.1) :

-les méthodes de point fixe : point fixe de contraction et point fixe de monotonie -les méthodes de type Newton 1 .

Rappels et notations de calcul différentiel

Le premier chapitre faisait appel à vos connaissances en algèbre linéaire. Ce chapitre-ci, ainsi que le suivant (optimisation) s'appuieront sur vos connaissances en calcul différentiel, et nous allons donc réviser les quelques notions qui nous seront utiles.

Différentielle

Définition 2.1 (Application différentiable). Soient E et F des espaces vectoriels normés, f une application de E dans F et x ∈ E. On rappelle que f est différentiable en x s'il existe T x ∈ L(E, F ) (où L(E, F ) est l'ensemble des applications linéaires continues de E dans F ) telle que

f (x + h) = f (x) + T x (h) + h E ε(h) avec ε(h) → 0 quand h → 0. (2.2) 
L'application T x est alors unique 2 et on note Df (x) = T x ∈ L(E, F ) la différentielle de f au point x. Si f est différentiable en tout point de E, alors on appelle différentielle de f l'application Df = E → L(E, F ) qui à

x ∈ E associe l'application linéaire continue Df (x) de E dans F .

1. Isaac Newton, 1643 -1727, né d'une famille de fermiers, est un philosophe, mathématicien, physicien, alchimiste et astronome anglais. Remarquons tout de suite que si f est une application linéaire continue de E dans F , alors f est différentiable, et

Df = f . En effet, si f est linéaire, f (x + h) -f (x) = f (h), et donc l'égalité (2.2) est vérifiée avec T x = f et ε = 0.
Voyons maintenant quelques cas particuliers d'espaces E et F :

Cas où E = IR et F = IR
Si f est une fonction de IR dans IR, dire que f est différentiable en x revient à dire que f est dérivable en x. En effet, dire que f est dérivable en x revient à dire que

lim h→0 f (x + h) -f (x) h existe, et lim h→0 f (x + h) -f (x) h = f ′ (x),
ce qui s'écrit encore

f (x + h) -f (x) h = f ′ (x) + ε(h), avec ε(h) → 0 lorsque h → 0, c'est-à-dire f (x + h) -f (x) = T x (h) + hε(h), avec T x (h) = f ′ (x)
h, ce qui revient à dire que f est différentiable en x, et que sa différentielle en x est l'application linéaire T x : IR → IR, qui à h associe f ′ (x)h. On a ainsi vérifié que pour une fonction de IR dans IR, la notion de différentielle coïncide avec celle de dérivée.

Exemple 2.2. Prenons f : IR → IR définie par f (x) = sin x. Alors f est dérivable en tout point et sa dérivée vaut f ′ (x) = cos x. La fonction f est donc aussi différentiable en tout point. La différentielle de f au point x est l'application linéaire Df (x) qui à h ∈ IR associe Df (x)(h) = cos x h. La différentielle de f est l'application de IR dans L(IR, IR), qui à x associe Df (x) (qui est donc elle même une application linéaire).

Cas où E = IR n et F = IR p Soit f : IR n → IR p , x ∈ IR n et supposons que f est différentiable en x ; alors Df (x) ∈ L(IR n , IR p ) ; par caractérisation d'une application linéaire de IR p dans IR n , il existe une unique matrice J f (x) ∈ M p,n (IR) telle que Df (x)(y)

∈IR p = J f (x)y ∈IR p , ∀y ∈ IR n .
On confond alors souvent l'application linéaire Df (x) ∈ L(IR n , IR p ) avec la matrice J f (x) ∈ M p,n (IR) qui la représente, qu'on appelle matrice jacobienne de f au point x et qu'on note J f . On écrit donc :

J f (x) = Df (x) = (a i,j ) 1≤i≤p,1≤j≤n où a i,j = ∂ j f i (x),
∂ j désignant la dérivée partielle par rapport à la j-ème variable. Notons que si n = p = 1, la fonction f est de IR dans IR et la matrice jacobienne en x n'est autre que la dérivée en x : J f (x) = f ′ (x). On confond dans cette écriture la matrice J f (x) qui est de taille 1 × 1 avec le scalaire f ′ (x).

Exemple 2.3. Prenons n = 3 et p = 2 ; soit f : IR 3 → IR 2 définie par :

f (x) =   x 2 1 + x 3 2 + x 4 3 2x 1 -x 2   , ∀x =   x 1 x 2 x 3   Soit h ∈ IR 3 de composantes (h 1 , h 2 , h 3 ). Pour calculer la différentielle de f (en x appliquée à h), on peut calculer f (x + h) -f (x) : f (x + h) -f (x) =   (x 1 + h 1 ) 2 -x 2 1 + (x 2 + h 2 ) 3 -x 3 2 + (x 3 + h 3 ) 4 -x 4 3 2(x 1 + h 1 ) -2x 1 -(x 2 + h 2 ) + x 2   =   2x 1 h 1 + h 2 1 + 3x 2 2 h 2 + 3x 2 h 2 2 + h 3 2 + 4x 3 3 h 3 + 4x 2 3 h 2 3 + h 4 3 2h 1 -h 2   Analyse numérique I, télé-enseignement, L3
et on peut ainsi vérifier l'égalité (2.2) avec :

Df (x)h = 2x 1 h 1 + 3x 2 2 h 2 + 4x 3 3 h 3 2h 1 -h 2
et donc, avec les notations précédentes,

J f (x) = 2x 1 3x 2 2 4x 3 3 2 -1 0 
Bien sûr, dans la pratique, on n'a pas besoin de calculer la différentielle en effectuant la différence f (x+h)-f (x).

On peut directement calculer les dériées partielles pour calculer la matrice jacobienne J f .

Cas 

Df (x)(y) = J f (x)y = n j=i ∂ j f (x)y j = ∇f (x) • y où ∇f (x) =    ∂ 1 f (x) . . . ∂ n f (x)    ∈ IR n .
Attention, lorsque l'on écrit J f (x)y il s'agit d'un produit matrice vecteur, alors que lorsqu'on écrit ∇f (x) • y, il s'agit du produit scalaire entre les vecteurs ∇f (x) et y, qu'on peut aussi écrire ∇(f (x)) t y.

Cas où E est un espace de Hilbert et F = IR.

On généralise ici le cas présenté au paragraphe précédent. Soit f : Revenons maintenant au cas général de deux espaces vectoriels normés

E → IR différentiable en x ∈ E. Alors Df (x) ∈ L(E, IR) = E ′ ,
E et F , et supposons maintenant que f ∈ C 2 (E, F ). Le fait que f ∈ C 2 (E, F ) signifie que Df ∈ C 1 (E, L(E, F )). Par définition, on a D 2 f (x) ∈ L(E, L(E, F )) et donc pour y ∈ E, D 2 f (x)(y) ∈ L(E, F ), et pour z ∈ E, D 2 f (x)(y)(z) ∈ F.
Considérons maintenant le cas particulier E = IR n et F = IR. On a :

f ∈ C 2 (IR n , IR) ⇔ f ∈ C 1 (IR n , IR) et ∇f ∈ C 1 (IR n , IR n ) . et D 2 f (x) ∈ L(IR n , L(IR n , IR))
Mais à toute application linéaire ϕ ∈ L(IR n , L(IR n , IR)), on peut associer de manière unique une forme bilinéaire φ sur IR n de la manière suivante :

φ :IR n × IR n → IR (2.3) (u, v) → φ(u, v) = (ϕ(u)) ∈L(IR n ,IR) (v) ∈IR n . ( 2 

.4)
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On dit qu'il existe une isométrie canonique (un isomorphisme qui conserve la norme) entre l'espace vectoriel normé L(IR n , L(IR n , IR)) et l'espace des formes bilinéaires sur IR n . On appelle matrice hessienne de f et on note H f (x) la matrice de la forme bilinéaire ainsi assocíée à l'application linéaire

D 2 f (x) ∈ L(IR n , L(IR n , IR)). On a donc D 2 f (x)(y)(z) = y t H f (x)z.
La matrice hessienne H f (x) peut se calculer à l'aide des dérivées partielles :

H f (x) = (b i,j ) i,j=1...N ∈ M n (IR) où b i,j = ∂ 2 i,j f (x) et ∂ 2 i,j
désigne la dérivée partielle par rapport à la variable i de la dérivée partielle par rapport à la variable j. Notons que par définition (toujours avec l'abus de notation qui consiste à identifier les applications linéaires avec les matrices qui les représentent), Dg(x) est la matrice jacobienne de g = ∇f en x. Si f est différentiable en x ∈ E, pour définir le gradient de f en x, on a besoin d'un produit scalaire sur E pour pouvoir utiliser le théorème de representation de Riesz mentionné plus haut. Le gradient est défini de manière unique par le produit scalaire, mais ses composantes dépendent de la base choisie. Enfin, si f est deux fois différentiable en x ∈ E, on a besoin d'une base de E pour définir la matrice hessienne en x, et cette matrice hessienne dépend de la base choisie.

Exercices (calcul différentiel)

Enoncés Exercice 96 (Différentielle et gradient). Suggestions en page 139, corrigé détaillé en page 140

Soit f ∈ C 2 (IR n , IR). 1. Montrer que pour tout x ∈ IR n , il existe un unique vecteur a(x) ∈ IR n tel que Df (x)(h) = a(x) • h pour tout h ∈ IR n . Montrer que (a(x)) i = ∂ i f (x).

On pose ∇f

(x) = (∂ 1 f (x), . . . , ∂ 1 f (x)) t . Soit ϕ l'application définie de IR n dans IR n par ϕ(x) = ∇f (x). Montrer que ϕ ∈ C 1 (IR n , IR n ) et que Dϕ(x)(y) = A(x)y, où (A(x)) i,j = ∂ 2 i,j f (x).
Exercice 97 (Calcul de différentielles).

1. Soit f ∈ C 2 (IR 2 , IR) la fonction définie par f (x 1 , x 2 ) = ax 1 + bx 2 + cx 1 x 2 ,
où a, b, et c sont trois réels fixés. Donner la définition et l'expression de Df (x), ∇f (x), Df , D 2 f (x), H f (x).

Même question pour la fonction

f ∈ C 2 (IR 3 , IR) définie par f (x 1 , x 2 , x 3 ) = x 2 1 + x 2 1 x 2 + x 2 sin(x 3 ).
Exercice 98 (Différentielle de l'inverse des matrices). Suggestions en page 139, corrigé en page 140 

1. Soit φ : GL n (IR) → GL n (IR) la fonction définie par φ(A) = A -1 pour A ∈ GL n (IR), où GL n (IR) désigne le groupe des matrices inversibles. Donner l'expression de Dφ(A)H, différentielle de φ en A appliquée à H, pour A ∈ GL n (IR) et H ∈ M n (IR). 2. Soit A ∈ C 1 (IR n , GL n (IR)), et ψ : IR n → GL n (IR) définie par ψ(x) = A(x) -1 .
) i = ∂ i f (x), pour 1 ≤ i ≤ n Soit h (i) ∈ IR n défini par h (i) j = hδ i,j , où h > 0 et δ i,j
désigne le symbole de Kronecker, i.e. δ i,j = 1 si i = j et δ i,j = 0 sinon. En appliquant la définition de la différentielle avec h (i) , on obtient :

f (x + h (i) ) -f (x) = Df (x)(h (i) ) + h (i) ε(h (i) ), c'est-à-dire : f (x 1 , . . . , x i-1 , x i + h, x i-1 , . . . , x n ) -f (x 1 , . . . , x n ) = (a(x)) i h + hε(h (i) ).
En divisant par h et en faisant tendre h vers 0, on obtient alors que (a(x)

) i = ∂ i f (x). 2. Comme f ∈ C 2 (IR n , IR), on a ∂ i f ∈ C 1 (IR n , IR), et donc ϕ ∈ C 1 (IR n , IR n ). Comme Dϕ(x) est une application linéaire de IR n dans IR n , il existe une matrice A(x) carrée d'ordre n telle que Dϕ(x)(y) = A(x)y pour tout y ∈ IR n . Il reste à montrer que (A(x)) i,j = ∂ 2 i,j f (x). Soit h (i) ∈ IR n défini à la question préceédente, pour i, j = 1, . . . , n, on a (Dϕ(x)(h (j) )) i = (A(x)h (j) ) i = n k=1 a i,k (x)h (j) k = ha i,j (x).
Or par définition de la différentielle,

ϕ i (x + h (j) ) -ϕ i (x) = (Dϕ(x)(h (j) )) i + h (j) ε i (h (j) ),
ce qui entraîne, en divisant par h et en faisant tendre h vers 0 :

∂ j ϕ i (x) = a i,j (x). Or ϕ i (x) = ∂ i f (x), et donc (A(x)) i,j = a i,j (x) = ∂ 2 i,j f (x).
Exercice 98 page 139 (Différentielle de l'inverse des matrices)

1. Soient A ∈ GL n (IR), • une norme matricielle sur M n (IR), et H ∈ M n (IR) telle que A -1 H < 1 On a φ(A + H) = (A + H) -1 = (Id + A -1 H) -1 A -1 . Comme A -1 H < 1
, alors par le corollaire 1.39 page 70) ρ(A -1 H) < 1 et par l'exercice 53 page 77, on a

(Id + A -1 H) -1 = Id -A -1 H + R(H) avec R(H) ≤ H 2 , et donc (A + H) -1 = (Id -A -1 H + R(H))A -1 = A -1 -A -1 HA -1 + S(H) avec S(H) ≤ C H 2 .

La fonction φ :

A → A -1 est donc différentiable, et sa différentielle en A, notée Dφ(A), est l'application linéaire de M n (IR) dans M n (IR), définie par Dφ(A)H = -A -1 HA -1 . 2. Soit A ∈ C 1 (IR n , GL n (IR)), et ψ : IR n → GL n (IR) définie par ψ(x) = A(x) -1 . Comme A ∈ C 1 (IR n , GL n (IR)), on peut écrire A(x + h) = A(x) + DA(x)(h) + R(h), où DA(x) ∈ L(IR n , GL n (IR)) est la différentielle de A en x et R(h) ∈ M n (IR) est telle que R(h) ≤ h 2 pour une norme • sur IR n et sa norme induite • sur M n (IR).
On a donc, en supposant que ρ(DA(x)(h) + R(h)) < 1, ce qui est vrai pour h suffisamment petit, et en raisonnant comme à la question 1,

ψ(x + h) = (A(x + h)) -1 = (A(x) + DA(x)(h) + R(h)) -1 = (A(x)) -1 -(A(x)) -1 DA(x)(h)(A(x)) -1 + S(h))
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avec S(h) ∈ M n (IR) telle que S(h) ≤ h 2 . On a donc

ψ(x + h) -ψ(x) = -(A(x)) -1 -DA(x)(h)(A(x)) -1 + S(h)),
ce qui montre que ψ est différentiable et que Dψ(x) ∈ L(IR n , GL n (IR)) est définie par

Dψ(x)(h) = -(A(x)) -1 DA(x)(h)(A(x)) -1 ,
2.2 Les méthodes de point fixe 2.2.1 Point fixe de contraction

Soit g ∈ C(IR n , IR n ), on définit la fonction f ∈ C(IR n , IR n ) par f (x) = x -g(x)
. On peut alors remarquer que g(x) = 0 si et seulement si f (x) = x. Résoudre le système non linéaire (2.1) revient donc à trouver un point fixe de f . Encore faut-il qu'un tel point fixe existe. . . On rappelle le théorème de point fixe bien connu :

Théorème 2.5 (Point fixe). Soit E un espace métrique complet, d la distance sur E, et f : E → E une fonction strictement contractante, c'est-à-dire telle qu'il existe κ ∈]0, 1[ tel que d(f (x), f (y)) ≤ κd(x, y) pour tout x, y ∈ E. Alors il existe un unique point fixe x ∈ E qui vérifie f (x) = x. De plus si x (0) ∈ E, et x (k+1) = f (x (k) ), ∀k ≥ 0, alors x (k) → x quand k → +∞.
DÉMONSTRATION -Etape 1 : Existence de x et convergence de la suite Soit x (0) ∈ E et (x (k) ) k∈IN la suite définie par x (k+1) = f (x (k) ) pour k ≥ 0. On va montrer que :

1. la suite (x (k) ) k∈IN est de Cauchy (donc convergente car E est complet), 2. lim n→+∞ x (k) = x est point fixe de f . Par hypothèse, on sait que pour tout k ≥ 1,

d(x (k+1) , x (k) ) = d(f (x (k) ), f (x (k-1) )) ≤ κd(x (k) , x (k-1) ).
Par récurrence sur k, on obtient que d(x (k+1) , x (k) ) ≤ κ k d(x (1) , x (0) ), ∀k ≥ 0. (1) , x (0) ) ≤ d(x (1) , x (0) )κ k (1 + κ + . . . + κ p-1 ) ≤ d(x (1) , x (0) )

Soit k ≥ 0 et p ≥ 1, on a donc : d(x (k+p) , x (k) ) ≤ d(x (k+p) , x (k+p-1) ) + • • • + d(x (k+1) , x (k) ) ≤ p q=1 d(x (k+q) , x (k+q-1) ) ≤ p q=1 κ k+q-1 d(x
κ k 1 -κ -→ 0 quand k → +∞ car κ < 1.
La suite (x (k) ) k∈IN est donc de Cauchy, i.e. :

∀ε > 0, ∃kε ∈ IN ; ∀k ≥ kε, ∀ p ≥ 1 d(x (k+p) , x (k) ) ≤ ε. Comme E est complet, on a donc x (k) -→ x dans E quand k → +∞.
Comme la fonction f est strictement contractante, elle est continue, donc on a aussi f (x (k) ) -→ f (x) dans E quand k → +∞. En passant à la limite dans l'égalité x (k+1) = f (x (k) ), on en déduit que x = f (x).

Etape 2 : Unicité

Soit x et ȳ des points fixes de f , qui satisfont donc

x = f (x) et ȳ = f (ȳ). Alors d(f (x), f (ȳ)) = d(x, ȳ) ≤ κd(x, ȳ) ; comme κ < 1, ceci est impossible sauf si x = ȳ.
La méthode du point fixe s'appelle aussi méthode des itérations successives. Dans le cadre de ce cours, nous prendrons E = IR n , et la distance associée à la norme euclidienne, que nous noterons

| • |. ∀(x, y) ∈ IR n × IR n avec x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ), d(x, y) = |x -y| = n i=1 (x i -y i ) 2 1 2
.

A titre d'illustration, essayons de la mettre en oeuvre pour trouver les points fixes de la fonction x → x 2 .

1 1 1 1 f (x (0) ) y = x y = x 2
x (2) x (3) x (1) x (0) y = x 2 y = x y y x (2) x x x (0) x (1) f (x (0) )

f (x (1) ) f (x (2) ) f (x (2) ) f (x (1) )
FIGURE 2.1: Comportement des itérés successifs du point fixe pour x → x 2 -A gauche : x (0) < 1, à droite :

x (0) > 1.
Pour la fonction x → x 2 , on voit sur la figure 2.1, côté gauche, que si l'on part de x = x (0) < 1, la méthode converge rapidement vers 0 ; or la fonction x → x 2 n'est strictement contractante que sur l'intervalle ] -1 2 , 1 2 [. Donc si x = x (0) ∈]-1 2 , 1 2 [, on est dans les conditions d'application du théorème du point fixe. Mais en fait, la suite (x (k) ) k∈IN définie par le point fixe converge pour tout x (0) ∈] -1, 1[ ; ceci est très facile à voir car x (k) = (x (k) ) 2 et on a donc convergence vers 0 si |x| < 1. Par contre si l'on part de x (0) > 1 (à droite sur la figure 2.1), on diverge rapidement : mais rien de surprenant à cela, puisque la fonction x → x 2 n'est pas contractante sur [1, +∞[ Dans le cas de la fonction x → √ x, on voit sur la figure 2.2 que les itérés convergent vers 1 que l'on parte à droite ou à gauche de x = 1 ; on peut même démontrer (exercice) que si x (0) > 0, la suite (x) k∈IN converge vers 1 lorsque k → +∞. Pourtant la fonction x → √ x n'est contractante que pour x > 1 4 ; mais on n'atteint jamais le point fixe 0, ce qui est moral, puisque la fonction n'est pas contractante en 0. On se rend compte encore sur cet exemple que le théorème du point fixe donne une condition suffisante de convergence, mais que cette condition n'est pas nécessaire. Remarquons que l'hypothèse que f envoie E dans E est cruciale. Par exemple la fonction f : x → 1

x est lipschitzienne de rapport k < 1 sur [1 + ε, +∞[ pour tout ε > 0 mais elle n'envoie pas [1 + ε, +∞[ dans [1 + ε, +∞[. La méthode du point fixe à partir du choix initial x = 1 donne la suite x, 1

x , x, 1 x , . . . , x, 1 x qui ne converge pas.

Remarque 2.6 (Vitesse de convergence). Sous les hypothèses du théorème 2.5,

d(x (k+1) , x) = d(f (x (k) ), f (x)) ≤ kd(x (k) , x); donc si x (k) = x alors d(x (k+1) ,x) d(x (k) ,x) ≤ κ (< 1)
, voir à ce sujet la définition 2.14. La convergence est donc au moins linéaire (même si de fait, cette méthode converge en général assez lentement).

f (x (2) )
x(1) x (1) x (0) 

y = x y = √ x x(2) f (x (2) ) f (x (1) ) f (x (0) ) x(0) f (x (0) ) f (x ( 1 
(k) = f • f • . . . • f k fois
est strictement contractante " (reprendre la démonstration du théorème pour le vérifier).

La question qui vient alors naturellement est : que faire pour résoudre g(x) = 0 si la méthode du point fixe appliquée à la fonction x → xg(x) ne converge pas ? Dans ce cas, f n'est pas strictement contractante ; une idée possible est de pondérer la fonction g par un paramètre ω = 0 et d'appliquer les itérations de point fixe à la fonction f ω (x) = xωg(x) ; on remarque là encore que x est encore solution du système (2.1) si et seulement si x est point fixe de f ω (x). On aimerait dans ce cas trouver ω pour que f ω soit strictement contractante, c.à.d. pour que

|f ω (x) -f ω (y)| = |x -y -ω(g(x) -g(y))| ≤ κ|x -y| pour (x, y) ∈ IR n × IR n , avec κ < 1. Or |x -y -ω(g(x) -g(y))| 2 = x -y -ω(g(x) -g(y)) • x -y -ω(g(x) -g(y)) = |x -y| 2 -2(x -y) • (ω(g(x) -g(y))) + ω 2 |g(x) -g(y)| 2 .
Supposons que g soit lipschitzienne, et soit M > 0 sa constante de Lipschitz :

|g(x) -g(y)| ≤ M |x -y|, ∀x, y ∈ IR n . (2.5) On a donc |x -y -ω(g(x) -g(y))| 2 ≤ (1 + ω 2 M 2 )|x -y| 2 -2(x -y) • (ω(g(x) -g(y)))
Or on veut |xyω(g(x)g(y))| 2 ≤ κ|x -y| 2 , avec κ < 1. On a donc intérêt à ce que le terme -2(xy) • (ω(g(x)g(y))) soit de la forme -a|x -y| 2 avec a strictement positif. Pour obtenir ceci, on va supposer de plus que :

∃α > 0 tel que (g(x) -g(y)) • (x -y) ≥ α|x -y| 2 , ∀x, y ∈ IR n , ( 2.6) 
On obtient alors :

|x -y -ω(g(x) -g(y))| 2 ≤ (1 + ω 2 M 2 -2ωα)|x -y| 2 . Et donc si ω ∈]0, 2α M 2 [, le polynôme ω 2 M 2 -2ωα est strictement négatif : soit -µ (noter que µ ∈]0, 1[) et on obtient que |x -y -ω(g(x) -g(y))| 2 ≤ (1 -µ)|x -y| 2 .
On peut donc énoncer le théorème suivant :
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f ω : x → x -ωg(x) est strictement contractante si 0 < ω < 2α M 2 . Il existe donc un et un seul x ∈ IR n tel que g(x) = 0 et x (k) → x quand k → +∞ avec x (k+1) = f ω (x (k) ) = x (k) -ωg(x (k) ).
Remarque 2.9. Le théorème 2.8 permet de montrer que sous les hypothèses (2.6) et (2.5), et pour ω ∈]0, 2α M 2 [, on peut obtenir la solution de (2.1) en construisant la suite :

x (k+1) = x (k) -ωg(x (k) ) n ≥ 0, x (0) ∈ IR n .
(2.7)

Or on peut aussi écrire cette suite de la manière suivante (avec f (x) = xg(x)) :

x(k+1) = f (x (k) ), ∀n ≥ 0 x (k+1) = ω x(k+1) + (1 -ω)x (k) , x (0) ∈ IR n . (2.8)
En effet si x (k+1) est donné par la suite (2.8), alors

x (k+1) = ω x(k+1) + (1 -ω)x (k) = ωf (x (k) ) + (1 -ω)x (k) = -ωg(x (k) ) + x (k) .
Le procédé de construction de la suite (2.8) est l'algorithme de relaxation sur f . 

La proposition

ϕ(t) = g(x + t(y -x)). On a donc ϕ(1) -ϕ(0) = g(y) -g(x) = 1 0 ϕ ′ (t)dt. Or ϕ ′ (t) = Dg(x + t(y -x))(y -x). Donc g(y) -g(x) = 1 0 Dg(x + t(y -x))(y -x)dt.
On en déduit que : 

(g(y) -g(x)) • (y -x) = 1 0 (Dg(x + t(y -x))(y -x) • (y -x)) dt. Comme λi(x) ∈ [α, M ] ∀i ∈ {1, . . . , n}, on a α|w| 2 ≤ Dg(z)w • w ≤ M |w| 2 pour tout w, z ∈ IR n On a donc : (g(y) -g(x)) • (y -x) ≥

Point fixe de monotonie

Dans de nombreux cas issus de la discrétisation d'équations aux dérivées partielles, le problème de résolution d'un problème non linéaire apparaît sous la forme Ax = R(x) où A est une matrice carrée d'ordre n inversible, et R ∈ C(IR n , IR n ). On peut le réécrire sous la forme x = A -1 R(x) et appliquer l'algorithme de point fixe sur la fonction f : x → A -1 Rx, ce qui donne comme itération :

x (k+1) = A -1 R(x (k)
). Si on pratique un point fixe avec relaxation, dont le paramètre de relaxation ω > 0, alors l'itération s'écrit :

x(k+1) = A -1 R(x (k) ), x (k+1) = ω x(k+1) + (1 -ω)x (k) .
Si la matrice A possède une propriété dite "de monotonie", on peut montrer la convergence de l'algorithme du point fixe ; c'est l'objet du théorème suivant.

Théorème 2.11 (Point fixe de monotonie).

Soient A ∈ M n (IR) et R ∈ C(IR n , IR n ). On suppose que :

1. La matrice A est une matrice inversible d'inverse à coefficients positis, ou ICP-matrice (voir la proposition 1.18 et l'exercice 14), c'est-à-dire que A est inversible et tous les coefficients de A -1 sont positifs ou nuls, ce qui est équivalent à dire que :

Ax ≥ 0 ⇒ x ≥ 0,
au sens composante par composante, c'est-à-dire

(Ax) i ≥ 0, ∀i = 1, . . . , n ⇒ x i ≥ 0, ∀i = 1, . . . , n .
2. R est monotone, c'est-à-dire que si x ≥ y (composante par composante) alors R(x) ≥ R(y) (composante par composante).

3. 0 est une sous-solution du problème, c'est-à-dire que 0 ≤ R(0), et il existe x ∈ IR n ; x ≥ 0 tel que x est une sur-solution du problème, c'est-à-dire que Ax ≥ R(x).

On pose x (0) = 0 et Ax (k+1) = R(x (k) ). On a alors :

1. 0 ≤ x (k) ≤ x, ∀k ∈ IN, 2. x (k+1) ≥ x (k) , ∀k ∈ IN, 3. x (k) → x quand k → +∞ et Ax = R(x).
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DÉMONSTRATION -Comme A est inversible la suite (x (k) ) n∈IN vérifiant

x (0) = 0, Ax (k+1) = R(x (k) ), k ≥ 0
est bien définie. On va montrer par récurrence sur k que 0 ≤ x (k) ≤ x pour tout k ≥ 0 et que x (k) ≤ x (k+1) pour tout k ≥ 0.

1. Pour k = 0, on a x (0) = 0 et donc 0 ≤ x (0) ≤ x et Ax (1) = R(0) ≥ 0. On en déduit que x (1) ≥ 0 grâce aux hypothèses 1 et 3 et donc x (1) ≥ x (0) = 0.

2. On suppose maintenant (hypothèse de récurrence) que 0 ≤ x (p) ≤ x et x (p) ≤ x (p+1) pour tout p ∈ {0, . . . , n -1}.

On veut montrer que 0 ≤ x (k) ≤ x et que x (k) ≤ x (k+1) . Par hypothèse de récurrence pour p = k -1, on sait que x (k) ≥ x (k-1) et que x (k-1) ≥ 0. On a donc x (k) ≥ 0. Par hypothèse de récurrence, on a également que x (k-1) ≤ x et grâce à l'hypothèse 2, on a donc R(x (k-1) ) ≤ R(x). Par définition de la suite (x (k) ) k∈IN , on a Ax (k) = R(x (k-1) ) et grâce à l'hypothèse 3, on sait que Ax ≥ R(x). On a donc :

A(x -x (k) ) ≥ R(x) - R(x (k-1) ) ≥ 0.
On en déduit alors (grâce à l'hypothèse 1) que

x (k) ≤ x. De plus, comme Ax (k) = R(x (k-1) ) et Ax (k+1) = R(x (k) ), on a A(x (k+1) -x (k) ) = R(x (k) ) -R(x (k-1) ) ≥ 0 par l'hypothèse 2, et donc grâce à l'hypothèse 1, x (k+1) ≥ x (k) .
On a donc ainsi montré (par récurrence) que

0 ≤ x (k) ≤ x, ∀k ≥ 0 x (k) ≤ x (k+1) , ∀k ≥ 0.
Ces inégalités s'entendent composante par composante, c.à.d. que si

x (k) = (x (k) 1 . . . x (k) n ) t ∈ IR n et x = (x1 . . . xn) t ∈ IR n , alors 0 ≤ x (k) i ≤ xi et x (k) i ≤ x (k+1) i , ∀i ∈ {1, . . . , n}, et ∀k ≥ 0.
Soit i ∈ {1, . . . , n} ; la suite (x Théorème 2.12 (Généralisation du précédent). 

(k) i ) n∈IN ⊂ IR est croissante et majorée par xi donc il existe xi ∈ IR tel que xi = lim k→+∞ x (k) i . Si on pose x = (x1 . . . xn) t ∈ IR n , on a donc x (k) -→ x quand k → +∞.
Soit A ∈ M n (IR), R ∈ C 1 (IR n , IR n ), R = (R 1 , . . . , R n ) t tels que 1. Pour tout β ≥ 0 et pour tout x ∈ IR n , Ax + βx ≥ 0 ⇒ x ≥ 0 2. ∂R i ∂x j ≥ 0, ∀i, j t.q. i = j (R i est monotone croissante par rapport à la variable x j si j = i) et ∃γ > 0, -γ ≤ ∂R i ∂x i ≤ 0, ∀x ∈ IR n , ∀i ∈ {1, . . . , n} (R i est monotone décroissante par rapport à la variable x i ). 3. 0 ≤ R(0) (0 est sous-solution) et il existe x ≥ 0 tel que A(x) ≥ R(x) (x est sur-solution). Soient x (0) = 0, β ≥ γ, et (x (k) ) n∈IN la suite définie par Ax (k+1) + βx (k+1) = R(x (k) ) + βx (k) . Cette suite converge vers x ∈ IR n et Ax = R(x). De plus, 0 ≤ x (k) ≤ x ∀n ∈ IN et x (k) ≤ x (k+1) ,
lim k→+∞ x (k+1) -x x (k) -x = β ∈ [0, 1].
(2.9)

On s'intéresse à la "vitesse de convergence" de la suite (x (k) ) k∈IN . On dit que :

1. La convergence est sous-linéaire si β = 1. 

La

∈ IN tels que si k ≥ n 0 alors x (k+1) -x ≤ γ x (k) -x 2 . (b) La convergence est quadratique si lim k→+∞ x (k+1) -x x (k) -x 2 = γ > 0.
Plus généralement, on dit que : Remarque 2.15 (Sur la vitesse de convergence des suites).

-Remarquons d'abord que si une suite (x (k) ) k∈IN de IR n converge vers x lorsque k tend vers l'infini, et qu'il existe β vérifiant (2.9), alors on a forcément β ≤ 1. En effet, si la suite vérifie (2.9) avec β > 1, alors il existe

k 0 ∈ IN tel que si k ≥ k 0 , |x n -x| ≥ |x k0 -x| pour tout k ≥ k 0 , ce qui contredit la convergence.
-Quelques exemples de suites qui convergent sous-linéairement :

x k = 1 √ k , x k = 1 k , mais aussi, de manière moins intuitive : x k = 1 k 2 .
Toutes ces suites vérifient l'égalité (2.9) avec β = 1. -Attention donc, contrairement à ce que pourrait suggérer son nom, la convergence linéaire (au sens donné ci-dessus), est déjà une convergence très rapide. Les suites géométriques définies par x k = β k avec β ∈]0, 1[ sont des suites qui convergent linéairement (vers 0), car elles verifient évidemment bien (2.9) avec β ∈]0, 1[.

-La convergence quadratique est encore plus rapide ! Par exemple la suite définie par x k+1 = x 2 k converge de manière quadratique pour un choix initial x 0 ∈] -1, 1[. Mais si par malheur le choix initial est en dehors 3. Luitzen Egbertus Jan Brouwer (1881-1966), mathématicien néerlandais.

Analyse numérique I, télé-enseignement, L3 de cet intervalle, la suite diverge alors très vite... de manière exponentielle, en fait (pour x 0 > 1, on a x k = e 2k ln x0 ). C'est le cas de la méthode de Newton, que nous allons introduire maintenant. Lorsqu'elle converge, elle converge très vite (nous démontrerons que la vitesse de convergence est quadratique). Mais lorsqu'elle diverge, elle diverge aussi très vite... Pour construire des méthodes itératives qui convergent "super vite", nous allons donc essayer d'obtenir des vitesses de convergence super linéaires. C'est dans cet esprit que nous étudions dans la proposition suivante des conditions suffisantes de convergence de vitesse quadratique pour une méthode de type point fixe, dans le cas d'une fonction f de IR dans IR. Proposition 2.16 (Vitesse de convergence d'une méthode de point fixe). Soit f ∈ C 1 (IR, IR) ; on suppose qu'il existe x ∈ IR tel que f (x) = x. On construit la suite

x (0) ∈ IR x (k+1) = f (x (k) ). 1. Si on suppose que f ′ (x) = 0 et |f ′ (x)| < 1, alors il existe α > 0 tel que si x (0) ∈ I α = [x -α, x + α] on a x (k) → x lorsque k → +∞. De plus si x (k) = x pour tout k ∈ IN, alors |x (k+1) -x| |x (k) -x| → |f ′ (x)| = β avec β ∈]0, 1[.
La convergence est donc linéaire.

Si on suppose maintenant que f

′ (x) = 0 et f ∈ C 2 (IR, IR), alors il existe α > 0 tel que si x (0) ∈ I α = [x -α, x + α], alors x (k) → x quand k → +∞, et si x (k) = x, ∀k ∈ IN alors |x (k+1) -x| |x (k) -x| 2 → β = 1 2 |f ′′ (x)|.
Dans ce cas, la convergence est donc au moins quadratique.

DÉMONSTRATION - 1. Supposons que |f ′ (x)| < 1, et montrons qu'il existe α > 0 tel que si x (0) ∈ Iα alors x (k) → x. Comme f ∈ C 1 (IR, IR) il existe α > 0 tel que γ = maxx∈I α |f ′ (x)| < 1 ( par continuité de f ′ ).
On va maintenant montrer que f : Iα → Iα est strictement contractante, on pourra alors appliquer le théorème du point fixe à f |Iα , (Iα étant fermé), pour obtenir que x (k) → x où x est l'unique point fixe de

f |Iα . Soit x ∈ Iα ; montrons d'abord que f (x) ∈ Iα : comme f ∈ C 1 (IR, IR), il existe ξ ∈]x, x[ tel que |f (x) -x| = |f (x) -f (x)| = |f ′ (ξ)||x -x| ≤ γ|x -x| < α, ce qui prouve que f (x) ∈ Iα. On vérifie alors que f |Iα est strictement contractante en remarquant que pour tous x, y ∈ Iα, x < y, il existe ξ ∈]x, y[(⊂ Iα) tel que |f (x) -f (y)| = |f ′ (ξ)||x -y| ≤ γ|x -y| avec γ < 1. On a ainsi montré que x (k) → x si x (0) ∈ Iα.
Cherchons maintenant la vitesse de convergence de la suite. Supposons que

f ′ (x) = 0 et x (k) = x pour tout n ∈ IN. Comme x (k+1) = f (x (k) ) et x = f (x), on a |x (k+1) -x| = |f (x (k) ) -f (x)|. Comme f ∈ C 1 (IR, IR), il existe ξ k ∈]x (k) , x[ ou ]x, x (k) [, tel que f (x (k) ) -f (x) = f ′ (ξ k )(x (k) -x). On a donc |x (k+1) -x| |x (k) -x| = |f ′ (ξ k )| -→ |f ′ (x)| car x (k) → x et f ′ est continue.
On a donc une convergence linéaire.

2. Supposons maintenant que f ∈ C 2 (IR, IR) et f ′ (x) = 0. On sait déjà par ce qui précède qu'il existe α > 0 tel que si x (0) ∈ Iα alors x (k) → x lorsque k → +∞. On veut estimer la vitesse de convergence ; on suppose pour cela que

x (k) = x pour tout k ∈ IN. Comme f ∈ C 2 (IR, IR), il existe ξ k ∈]x (k) , x[ tel que f (x (k) ) -f (x) = f ′ (x)(x (k) -x) + 1 2 f ′′ (ξ k )(x (k) -x) 2 .
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On a donc :

x (k+1) -x = 1 2 f ′′ (ξ k )(x (k) -x) 2 ce qui entraîne, par continuité de f ′′ , que |x (k+1) -x| |x (k) -x| 2 = 1 2 |f ′′ (ξ k )| -→ 1 2 |f ′′ (x)| quand k → +∞.
La convergence est donc au moins quadratique.

Méthode de Newton dans IR

On va étudier dans le paragraphe suivant la méthode de Newton pour la résolution d'un système non linéaire. (En fait, il semble que l'idée de cette méthode revienne plutôt à Simpson 4 Donnons l'idée de la méthode de Newton dans le cas n = 1 à partir des résultats de la proposition précédente. Soit g ∈ C 3 (IR, IR) et x ∈ IR tel que g(x) = 0. On cherche une méthode de construction d'une suite (x (k) ) k∈IN ⊂ IR n qui converge vers x de manière quadratique. On pose

f (x) = x -h(x)g(x) avec h ∈ C 2 (IR, IR) tel que h(x) = 0 ∀x ∈ IR, et on a donc f (x) = x ⇔ g(x) = 0.
Si par miracle f ′ (x) = 0, la méthode de point fixe sur f va donner (pour x (0) ∈ I α donné par la proposition 2.16)

(x (k) ) n∈IN tel que x (k) → x de manière au moins quadratique. Or on a f ′ (x) = 1 -h ′ (x)g(x) -g ′ (x)h(x) et donc f ′ (x) = 1 -g ′ (x)h(x). Il suffit donc de prendre h tel que h (x) = 1 g ′ (x)
. Ceci est possible si g ′ (x) = 0.

En résumé, si g ∈ C 3 (IR, IR) est telle que g ′ (x) = 0 et g(x) = 0, on peut construire, pour x assez proche de x, la fonction f ∈ C 2 (IR, IR) définie par

f (x) = x - g(x) g ′ (x) .
Grâce à la proposition 2.16, il existe α > 0 tel que si x (0) ∈ I α alors la suite définie par

x (k+1) = f (x (k) ) = x (k) - g(x (k) ) g ′ (x (k) )
converge vers x de manière au moins quadratique.

Remarquons que dans le cas n = 1, la suite de Newton peut s'obtenir naturellement en remplaçant l'équation g(x) = 0 par g(x (k+1) ) = 0, et g(x (k+1) ) par le développement limité en x k :

g(x (k+1) ) = g(x (k) ) + g ′ (x (k) )(x (k+1) -x (k) ) + |x (k+1) -x (k) |ǫ(x (k+1) -x (k) ).
C'est le plus sûr moyen mnémotechnique pour retrouver l'itération de Newton :

g(x (k) ) + g ′ (x (k) )(x (k+1) -x (k) ) = 0 ou encore g ′ (x (k) )(x (k+1) -x (k) ) = -g(x (k) ).
(2.10)

Comparons sur un exemple les méthodes de point fixe et de Newton. On cherche le zéro de la fonction g : x → x 2 -3 sur IR + . Notons en passant que la construction de la suite x (k) par point fixe ou Newton permet l'approximation effective de √ 3. Si on applique le point fixe standard, la suite x (k) s'écrit

x (0) donné ,

x (k+1) = x (k) -(x (k) ) 2 + 3.
4. Voir Nick Kollerstrom (1992). Thomas Simpson and "Newton's method of approximation" : an enduring myth, The British Journal for the History of Science, 25, pp 347-354 doi :10.1017/S0007087400029150 -Thomas Simpson est un mathématicien anglais du 18-ème siècle à qui on attribue généralement la méthode du même nom pour le calcul approché des intégrales, probablement à tort car celle-ci apparaît déjà dans les travaux de Kepler deux siècles plus tôt ! Si on applique le point fixe avec paramètre de relaxation ω, la suite x (k) s'écrit x (0) donné ,

x (k+1) = -x (k) + ω(-x (k) ) 2 + 3)
Si maintenant on applique la méthode de Newton, la suite x (k) s'écrit

x (0) donné , x (k+1) = - (x (k) ) 2 -3 2x (k) .
Comparons les suites produites par scilab à partir de x (0) = 1 par le point fixe standard, le point fixe avec relaxation (ω = .1) et la méthode de Newton.

point fixe standard : 1. Remarque 2.17 (Attention à l'utilisation du théorème des accroissements finis. . . ). On a fait grand usage du théorème des accroissements finis dans ce qui précède. Rappelons que sous la forme qu'on a utilisée, ce théorème n'est valide que pour les fonctions de IR dans IR. On pourra s'en convaincre en considérant la fonction de IR dans IR 2 définie par :

ϕ(x) = sin x cos x .
On peut vérifier facilement qu'il n'existe pas de ξ ∈ IR tel que ϕ(2π)ϕ(0) = 2πϕ ′ (ξ).

Exercices (méthodes de point fixe)

Enoncés Exercice 99 (Un point fixe dans IR). Corrigé en page 154

1. Etudier la convergence de la suite (x (k) ) k∈IN , définie par 4 . Montrer que la suite des itérés de point fixe converge pour tout x ∈ [0, 1] et donner la limite de la suite en fonction du choix initial x (0) .

x (0) ∈ [0, 1] et x (k+1) = cos 1 1 + x (k) . 2. Soit I = [0, 1], et f : x → x
Exercice 100 (Un autre point fixe dans IR). Corrigé détaillé en page 155.

1. On veut résoudre l'équation 2xe x = 1.

(a) Vérifier que cette équation peut s'écrire sous forme de point fixe : x = 1 2 e -x . (b) Ecrire l'algorithme de point fixe, et calculer les itérés x 0 , x 1 , x 2 et x 3 en partant depuis x 0 = 1.

(c) Justifier la convergence de l'algorithme donné en (b).

2. On veut résoudre l'équation x 2 -2 = 0, x > 0.

(a) Vérifier que cette équation peut s'écrire sous forme de point fixe : x = 2

x .

(b) Ecrire l'algorithme de point fixe, et tracer sur un graphique les itérés x 0 , x 1 , x 2 et x 3 en partant de

x 0 = 1 et x 0 = 2. (c) Essayer ensuite le point fixe sur x = x 2 +2
2x . Pas très facile à deviner, n'est ce pas ? (d) Pour suivre les traces de Newton (ou plutôt Simpson, semble-t-il) : à x n connu, écrire le développement limité de g(x) = x 2 -2 entre x (n) et x (n+1) , remplacer l'équation g(x) = 0 par g(x (n+1) ) = 0, et g(x (n+1) ) par le développement limité en x n+1 , et en déduire l'approximation

x (n+1) = x (n) - g(x (n) ) g ′ (x (n) )
. Retrouver ainsi l'itération de la question précédente (pour g(x) = x 2 -2).

Exercice 101 (Point fixe pour la résolution d'une équation non linéaire). Soient g ∈ C 3 (IR, IR) et x ∈ IR tels que g(x) = 0, et soit ω ∈ IR ⋆ . On définit f ω par f ω (x) = xωg(x) et on cherche à calculer x en utilisant l'algorithme du point fixe pour f ω , c'est-à-dire que l'on se donne x 0 ∈ IR et on définit la suite (x k ) k∈IN par x k+1 = f ω (x k ).

On suppose dans cette question que |f

′ ω (x)| > 1. Montrer qu'il existe M > 1 et α > 0 tels que |x -x| ≤ α implique |f ′ ω (x)| > M .
En déduire que la suite (x k ) k∈IN ne peut pas converger vers x si x 0 = x. On suppose maintenant que |f ′ ω (x)| < 1. 2. Montrer que pour x 0 bien choisi, autre que x, on a lim k→+∞ x k = x.

3. On suppose que la suite (x k ) k∈IN converge vers x lorsque k → +∞. Montrer que si on suppose x k = x pour tout k, il existe β < 1 tel que pour k suffisamment grand,

|x k+1 -x| |x k -x| ≤ β.
Donner une valeur possible pour β (dépendant de f ω et x). En déduire que la convergence de x k vers x est au moins linéaire.

4. On suppose dans cette question que g ′ (x) = 0 et que ω = 1 g ′ (x)

. Montrer que la convergence de x k vers

x est au moins quadratique, c'est-à-dire que si on suppose x k = x pour tout k, il existe β > 0 tel que

lim k→+∞ |x k+1 -x| |x k -x| 2 ≤ β.
Exercice 102 (Point fixe pour la résolution d'un système non linéaire). Soient G ∈ C 2 (IR n , IR n ) et x ∈ IR n t.q. G(x) = 0. On suppose (par miracle) que l'on connaît la matrice jacobienne J G (x) de G en x, et que cette matrice est inversible. On pose A = J G (x) et on considère la méthode itérative suivante Initialisation.

x 0 ∈ IR n Itération. Pour k ≥ 0, x k+1 = x k -A -1 G(x k ), c'est-à-dire x k+1 = F (x k ) en posant F (x) = x -A -1 G(x). Pour α > 0 on note B α = {x ∈ IR n , x -x ≤ α} (où • est une norme sur IR n ).
1. Montrer que J F (x) = 0. Puis, montrer qu'il existe α 0 > 0 t.q., pour tout 0 < α ≤ α 0 , F envoie B α dans lui même.

2. Montrer qu'il existe α > 0 t.q. F est strictement contractante de B α dans lui même. En déduire que lim k→+∞ x k = x si x 0 ∈ B α .

3. On suppose que lim k→+∞ x k = x, montrer que la convergence est au moins quadratique.

Exercice 103 (Méthode itérative pour la résolution d'un système non linéaire). Soit G ∈ C 1 (IR n , IR n ). Pour x ∈ IR n , on note J G (x) la matrice jacobienne de G au point x. 0n suppose que pour toute valeur propre λ de A -1 J G (x) on a |λ -1| < 1. Notation : Si • est une norme sur IR n , on note aussi • la norme induite sur M n (IR).

Soit x ∈ IR t.q. G(x) = 0. On cherche à calculer x par une méthode itérative. On se donne une matrice A ∈ M n (IR) inversible et on considère l'algorithme suivant :

Initialisation : On se donne x 0 ∈ IR n . Itération : Pour k ∈ IN, A(x k+1 -x k ) = -G(x k ).
Analyse numérique I, télé-enseignement, L3

1. Ecrire cet algorithme comme un algorithme de point fixe pour une fonction F ∈ C 1 (IR n , IR n ) qu'on explicitera.

Montrer que ρ(I -

A -1 J G (x)) < 1.
3. En déduire qu'il existe une norme sur IR n , notée • , pour laquelle

I -A -1 J G (x) < 1.
Dans la suite, on utilise cette norme sur IR n et pour α > 0, on note B α = {x ∈ IR n , xx ≤ α}.

4. Montrer qu'il existe α > 0 tel que F est strictement contractante de B α dans B α .

5. En déduire que si x 0 ∈ B α , l'algorithme proposé converge vers x (c'est-à-dire lim k→+∞ x k = x). Montrer que cette convergence est au moins linéaire.

Dans la suite, on suppose que n = 1. La fonction G est notée g, la fonction F est notée f et la matrice A (qui est donc ici un scalaire) est notée a. L'itération de l'algorithme est donc a(x k+1x k ) = -g(x k ).

6. L'algorithme proposé correspond-t-il à un algorithme vu en cours ? Si oui, lequel ? Exercice 104 (Méthode de monotonie). Suggestions en page 154, corrigé détaillé en page 156.

On suppose que f ∈ C 1 (IR, IR), f (0) = 0 et que f est croissante. On s'intéresse, pour λ > 0, au système non linéaire suivant de n équations à n inconnues (notées u 1 , . . . , u n ) : (2.12)

(Au) i = α i f (u i ) + λb i ∀i ∈ {1, . . . , n}, u = (u 1 , . . . , u n ) t ∈ IR n , ( 2 
On suppose qu'il existe µ > 0 t.q. (2.11) ait une solution, notée u (µ) , pour λ = µ. On suppose aussi que u (µ) ≥ 0. 

Soit 0 < λ < µ ; on définit la suite (v (k) ) n∈IN ⊂ IR n par v (0) = 0 et, pour n ≥ 0, (Av (k+1) ) i = α i f (v (k) i ) + λb i ∀i ∈ {1, . . . ,
≤ u (λ) ≤ u (µ) ).
Exercice 105 (Point fixe amélioré). Suggestions en page 154, Corrigé en page 156

Soit g ∈ C 3 (IR, IR) et x ∈ IR tels que g(x) = 0 et g ′ (x) = 0. On se donne ϕ ∈ C 1 (IR, IR) telle que ϕ(x) = x.
On considère l'algorithme suivant :

   x 0 ∈ IR, x n+1 = h(x n ), n ≥ 0.
(2.14) avec h(x) = x -g(x) g ′ (ϕ(x)) 1) Montrer qu'il existe α > 0 tel que si x 0 ∈ [xα, x + α] = I α , alors la suite donnée par l'algorithme (2.14) est bien définie ; montrer que x n → x lorsque n → +∞. On prend maintenant x 0 ∈ I α où α est donné par la question 1.

2) Montrer que la convergence de la suite (x n ) n∈IN définie par l'algorithme (2.14) est au moins quadratique.

Analyse numérique I, télé-enseignement, L3

3) On suppose que ϕ ′ est lipschitzienne et que ϕ ′ (x) = 1 2 . Montrer que la convergence de la suite (x k ) k∈IN définie par (2.14) est au moins cubique, c'est-à-dire qu'il existe c ∈ IR + tel que

|x k+1 -x| ≤ c|x k -x| 3 , ∀k ≥ 1. 4) Soit β ∈ IR * + tel que g ′ (x) = 0 ∀x ∈ I β =]
xβ, x + β[ ; montrer que si on prend ϕ telle que :

ϕ(x) = x - g(x) 2g ′ (x) si x ∈ I β ,
alors la suite définie par l'algorithme (2.14) converge de manière cubique.

Exercice 106 (Un problème de rayonnement). Suggestions en page 154.

On cherche à résoudre un modèle de diffusion thermique avec rayonnement (dans un matériau comme le verre, par exemple) avec une discrétisation par différences finies et une méthode de monotonie (voir aussi TP1). Le modèle (simplifié) consiste à chercher la fonction u de [0, 1] à valeurs dans IR solution du problème suivant :

-κu ′′ (x) + 1 0 1 |x -y| (u 4 (x) -u 4 (y))dy = 0 pour x ∈]0, 1[, (2.15 
)

u(0) = c 1 , u(1) = c 2 .
(2.16)

Pour n ≥ 1, on pose h = 1/(n + 1). La discrétisation de (2.15)-(2.16) par différences finies avec un pas uniforme h = 1 n consiste à chercher le vecteur u de IR n solution de

Au + R(u) = b, (2.17) 
où

A ∈ M n (IR), A[i, i] = 2κ h 2 , A[i, j] = -κ h 2 si |i -j| = 1 et A[i, j] = 0 si |i -j| > 1, i, j ∈ {1, . . . , n}. R(u) i = j∈{1,...,n}, j =i √ h √ |i-j| (u 4 i -u 4 j ) + √ h 2 √ i (u 4 i -1) + √ h 2 √ n+1-i (u 4 i -16), i ∈ {1, . . . , n} b ∈ IR n , b 1 = c 1 κ h 2 , b n = c 2 κ h 2 , b i = 0 pour 1 < i < n.
Pour trouver une solution de (2.17), on se donne β ≥ 0 et on utilise la méthode itérative suivante :

Initialisation u (0) ∈ IR n , u (0) i = 1 pour tout i ∈ {1, . . . , n}.
(2.18)

Itérations Au (k+1) + βu (k+1) = -R(u (k) ) + βu (k) + b.
Dans toute la suite, on prendra κ = 10, c 1 = 1, c 2 = 2, et on note m l'élément de IR n dont toutes les composantes sont égales à 1 (c'est-à-dire m = u (0) ) et M l'élément de IR n dont toutes les composantes sont égales à 2.

(Propriété de

A) Soient β ≥ 0 et u ∈ IR n . Montrer que Au + βu ≥ 0 ⇒ u ≥ 0.
Suggestion : Considérer i 0 = min{i ∈ {1, . . . , n} tel que u i ≤ u j pour tout j ∈ {1, . . . , n}} et montrer 

u i0 ≥ 0. 2. (Propriété de R) (a) Soient u ∈ IR n , m ≤ u ≤ M , et i, j ∈ {1, . . . , n}. Montrer que ∂ j R i (u) ≤ 0 pour i = j et ∂ i R i (u) ≤ 128. Suggestion pour la minoration de ∂ i R i (u) : calculer ∂ i R i (u)
(b) Soient u, v ∈ IR n , m ≤ u ≤ v ≤ M , et β ≥ 128. Montrer que βu -R(u) ≤ βv -R(v).

(Sous et sur solutions) Montrer que Am

+ R(m) ≤ b et AM + R(M ) ≥ b.
4. On choisit β ≥ 128. Montrer, par récurrence sur k, que pour tout k ≥ 0,

m ≤ u (k) ≤ u (k+1) ≤ M. En déduire qu'il existe u ∈ IR n tel que u (k) → u quand k → +∞ et que Au + R(u) = b, m ≤ u ≤ M .
5. On initialise maintenant la méthode (2.18) par u (0) i = 2 au lieu de u 0 i = 1 (pour tout i = 1, . . . , n). La méthode converge-t'elle ?

Suggestions

Exercice 104 page 152 (Méthode de monotonie) Pour montrer que la suite (v (k) ) n∈IN est bien définie, remarquer que la matrice A est inversible. Pour montrer qu'elle est convergente, montrer que les hypothèses du théorème du point fixe de monotonie vu en cours sont vérifiées.

Exercice 105 page 152 (Point fixe amélioré) 1) Montrer qu'on peut choisir α de manière à ce que |h ′ (x)| < 1 si x ∈ I α , et en déduire que g ′ (ϕ(x n ) = 0 si x 0 est bien choisi.

2) Remarquer que

|x k+1 -x| = (x k -x)(1 - g(x k ) -g(x) (x k -x)g ′ (ϕ(x k )) . ( 2 

.19)

En déduire que

|x n+1 -x| ≤ 1 ε |x n -x| 2 sup x∈Iα |ϕ ′ (x)| sup x∈Iα |g ′′ (x)|.
3) Reprendre le même raisonnement avec des développements d'ordre supérieur. 4) Montrer que ϕ vérifie les hypothèses de la question 3).

Exercice 106 page 153 (Rayonnement) 1. Considérer i 0 = min{i ∈ {1, . . . , n} tel que u i ≤ u j pour tout j ∈ {1, . . . , n}} et montrer u i0 ≥ 0.

(Propriété de R)

(a) Suggestion pour la minoration de 

∂ i R i (u) : calculer ∂ i R i (u)
1 + x ≤ 1 ≤ π 2 pour tout x ∈ [0, 1], donc f (x) ∈ [0, 1] pour tout x ∈ [0, 1]. De plus, f ′ (x) = 1 (1 + x) 2 sin 1 1 + x . On voit que f ′ (x) ≥ 0 pour tout x ∈ [0, 1] et f ′ (x) ≤ sin(1) < 1.
On peut donc appliquer le théorème de point fixe de Banach pour déduire que f admet un unique point fixe dans l'intervalle [0, 1] qui est limite de toutes les suites définies par

x (0) ∈ [0, 1], x (k+1) = f (x (k) ).
2. La suite des itérés de point fixe est définie par x (0) donné (2.20a) Notons que la suite n'est pas monotone.

x 0 ∈ [0, 1] et x n+1 = (x n ) 4 .
x (k+1) = f (x (k) ). ( 2 
(c) On a f ′ (x) = -1 2 e -x et donc |f ′ (x)| ≤ 1 2 pour x ∈ [0, 1]. De plus f (x) ∈ [0, 1] si x ∈ [0, 1]. L'application x → f (x) = 1 2 e -x est donc strictement contractante de [0, 1] dans [0, 1]
, et elle admet donc un point fixe, qui est limite de la suite construite par l'algorithme précédent. (c) Scilab donne

% x = 1. % x = 1.5 % x = 1.4166667 % x = 1.4142157 (d) Le développement limité de g(x) = x 2 -2 entre x (n) et x (n+1) s'écrit : g(x (n+1) ) = g(x (n) ) + (x (n+1) -x (n) )g ′ (x (n) ) + (x (n+1) -x (n) )ε(x (n+1) -x (n) ), avec ε(x) → 0 lorsque x → 0.
En écrivant qu'on cherche x (n+1) tel que g(x (n+1) ) = 0 et en négligeant le terme de reste du développement limité, on obtient :

0 = g(x (n) ) + (x (n+1) -x (n) )g ′ (x (n) ),
Pour g(x) = x 2 -2, on a g ′ (x) = 2x et donc l'équation précédente donne bien l'itération de la question précédente.

Exercice 104 page 152 (Méthode de monotonie) Montrons que la suite v (k) est bien définie. Supposons v (k) connu ; alors v (k+1) est bien défini si le système

Av (k+1) = d (k) , où d (x) est défini par : d (k) i = α i f (v (k)
i ) + λb i pour i = 1, . . . , n, admet une solution. Or, grâce au fait que Av ≥ 0 ⇒ v ≥ 0, la matrice A est inversible, ce qui prouve l'existence et l'unicité de v (k+1) . Montrons maintenant que les hypothèses du théorème de convergence du point fixe de monotonie sont bien satisfaites. On pose R (λ) i (u) = α i f (u i ) + λb i . Le système à résoudre s'écrit donc :

Au = R (λ) (u) Or 0 est sous-solution car 0 ≤ α i f (0) + λb i (grâce au fait que f (0) = 0, λ > 0 et b i ≥ 0). Cherchons maintenant une sur-solution, c'est-à-dire ũ ∈ IR n tel que ũ ≥ R (λ) (ũ).
Par hypothèse, il existe µ > 0 et u (µ) ≥ 0 tel que

(Au (µ) ) i = αf (u (µ) i ) + µb i . Comme λ < µ et b i ≥ 0, on a (Au (µ) ) i ≥ α i f (u (µ) i ) + λb i = R (λ) i (u (µ)
). Donc u (µ) est sur-solution. Les hypothèses du théorème dont bien vérifiées, et donc v (k) → ū lorsque n → +∞, où ū est tel que Aū = R(ū). 

|g ′ • ϕ(x)| ≥ ε pour tout x ∈ [x -β, x + β] = I β . Remarquons ensuite que h ′ (x) = 1 -(g ′ (x)) 2 (g ′ (x)) 2 = 0. Or h ′ est aussi continue. On en déduit l'existence de γ ∈ IR + tel que |h ′ (x)| < 1 pour tout x ∈ [x -γ, x + γ] = I γ . Soit maintenant α = min(β, γ) ; si x 0 ∈ I α , alors g ′ • ϕ(x 0 ) = 0.
Comme h est strictement contractante sur I α (et que h(x) = x), on en déduit que x 1 ∈ I α , et, par récurrence sur n, x n ∈ I α pour tout n ∈ IN (et la suite est bien définie). De plus, comme h est strictement contractante sur I α , le théorème du point fixe (théorème 2.5 page 141 donne la convergence de la suite (x n ) n∈IN vers x.

2) Remarquons d'abord que si ϕ ∈ C 2 (IR, R), on peut directement appliquer la proposition 2.16 (item 2), car dans ce cas h ∈ C 2 (IR, IR), puisqu'on a déjà vu que h ′ (x) = 0. Effectuons maintenant le calcul dans le cas où l'on n'a que ϕ ∈ C 1 (IR, R). Calculons |x k+1 -x|. Par définition de x k+1 , on a :

x k+1 -x = x k -x - g(x k ) g ′ (ϕ(x k ))
, ce qui entraîne que

x n+1 -x = (x n -x) 1 - g(x n ) -g(x) (x n -x)g ′ (ϕ(x n )) . ( 2 

.21)

Or il existe θ n ∈ I(x, x n ), où I(x, x n ) désigne l'intervalle d'extrémités x et x n , tel que

g(x n ) -g(x) x n -x = g ′ (θ n ).
Analyse numérique I, télé-enseignement, L3

Mais comme g ∈ C 3 (IR, IR) il existe ζ n ∈ I(θ n , ϕ(x n )) tel que :

g ′ (θ n ) = g ′ (ϕ(x n )) + (θ n -ϕ(x n ))g ′′ (ζ n ).
On en déduit que

x n+1 -x = (x n -x)(θ n -ϕ(x n )) g ′′ (ζ n ) g ′ (ϕ(x n )) . ( 2 

.22)

Par inégalité triangulaire, on a :

|θ n -ϕ(x n )| ≤ |θ n -x| + |x -ϕ(x n )| = |θ n -x| + |ϕ(x) -ϕ(x n )|. Comme θ n ∈ I(x, x n ), on a donc |θ n -x| ≤ |x n -x| ; de plus : |ϕ(x) -ϕ(x n )| ≤ sup x∈Iα |ϕ ′ (x)||x n -x|. On en déduit que |θ n -ϕ(x n )| ≤ |x n -x| 1 + sup x∈Iα |ϕ ′ (x))| .
En reportant dans (2.22), on en déduit que :

|x n+1 -x| ≤ 1 ε |x n -x| 2 1 + sup x∈Iα |ϕ ′ (x))| sup x∈Iα |g ′′ (x)|,
où ε est donné à la question 1 par choix de α. On a ainsi montré que la convergence de la suite (x n ) n∈IN définie par l'algorithme (2.14) est au moins quadratique.

3) Reprenons le calcul de la question précédente en montant en ordre sur les développements. Calculons |x n+1 -x|.

Ecrivons maintenant qu'il existe µ n ∈ I(x, x n ) tel que

g(x n ) = g(x) + (x n -x)g ′ (x) + 1 2 (x n -x) 2 g ′′ (µ n ).
De (2.21), on en déduit que

x n+1 -x = (x n -x) 1 -(x n -x) g ′ (x) + 1 2 (x n -x)g ′′ (µ n ) (x n -x)g ′ (ϕ(x n ))
.

Or il existe ν n ∈ I(x, ϕ(x n )) tel que

g ′ (ϕ(x n )) = g ′ (x) + (ϕ(x n ) -ϕ(x))g ′′ (ν n ).
On a donc :

x n+1 -x = x n -x g ′ (ϕ(x n )) (ϕ(x n ) -ϕ(x))g ′′ (ν n ) - 1 2 (x n -x)g ′′ (µ n ) . Ecrivons maintenant que ϕ(x n ) = ϕ(x) + ϕ ′ (ξ n )(x n -x), où ξ n ∈ I(x, x n ). Comme ϕ ′ est lipschitzienne, on a ϕ ′ (ξ n ) = ϕ ′ (x) + ǫ n = 1 2 + ǫ n , avec |ǫ n | ≤ M |x n -x|,
où M est la constante de Lipschitz de ϕ ′ . On a donc :

x n+1 -x = x n -x g ′ (ϕ(x n )) (x n -x)( 1 2 + ǫ n )g ′′ (ν n ) - 1 2 (x n -x)g ′′ (µ n ) ,
et donc (avec ε donné à la question 1 par choix de α) :

|x n+1 -x| ≤ 1 ε |x n -x| 2 ( 1 2 (g ′′ (ν n ) -g ′′ (µ n )) + ǫ n g ′′ (ν n ) .
Mais de même, comme g ∈ C 3 (IR, IR), et que

µ n et ν n ∈ I(x, x n ), on a |g ′′ (µ n ) -g ′′ (ν n )| ≤ sup x∈Iα |g ′′′ (x)||x n -x|.
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On en déduit finalement que :

|x n+1 -x| ≤ C|x n -x| 3 , avec C = 1 2ε sup x∈Iα |g ′′′ (x)| + M ε sup x∈Iα |g ′′ (x)|.
4) Pour montrer que la suite définie par l'algorithme (2.14) converge de manière cubique, il suffit de montrer que ϕ vérifie les hypothèses de la question 3). On a évidemment ϕ(x) = x. Comme g ∈ C 3 (IR, IR) et que g ′ (x) = 0, ∀x ∈ I β , on en déduit que ϕ ∈ C 2 (IR, IR). De plus

ϕ ′ (x) = 1 - 1 2 g ′ (x) 2 -g ′′ (x)g(x) g ′ (x) 2 = 1 2 .
La fonction ϕ vérifie donc bien les hypothèses de la question 3.

Méthode de Newton dans IR n

Construction et convergence de la méthode

On a vu ci-dessus comment se construit la méthode de Newton à partir du point fixe de contraction en dimension n = 1. On va maintenant étudier cette méthode dans le cas n quelconque. Soient

g ∈ C 1 (IR n , IR n ) et x ∈ IR n tels que g(x) = 0.
On généralise la méthode vue en 1D en remplaçant dans (2.10) la dérivée g ′ (x (k) ) par la matrice jacobienne de g au point x (k) , qu'on note Dg(x (k) ). La méthode s'écrit : Pour assurer la convergence et la qualité de la méthode, on va chercher maintenant à répondre aux questions suivantes :

x (0) ∈ IR n Dg(x (k) )(x (k+1) -x (k) ) = -g(x (k) ), ∀k ≥ 0. ( 2 
1. la suite (x (k) ) n est-elle bien définie ? A-t-on Dg(x (k) ) inversible ? 2. A-t-on convergence x (k) → x quand k → +∞ ? 3. La convergence est-elle au moins quadratique ? Grâce au théorème des acroissements finis dans des espaces vectoriels normés 5 , on a :

y -x = f (x) -f (x) ≤ sup z∈B Df (z) x -x , (2.24) et donc y -x ≤ 1 2 x -x .
On en déduit que y ∈ B. La suite (x (k) ) k∈IN définie par (2.23) est donc bien convergente. Pour montrer le caractère quadratique de la convergence, on applique à nouveau l'inégalité des accroissements finis, cette fois-ci à Df (z) dans (2.24). En effet, comme Df ∈ C 1 (IR n , IR n ) (on utilise ici que g est de classe C 3 ), on a

Df (z) = Df (z) -Df (x) ≤ sup ξ∈B D 2 f (ξ) z -x (2.25) ≤ β x -x . (2.26)
En reportant cette majoration de Df (z) dans (2.24), on obtient alors (avec β = sup ξ∈B D 2 f (ξ) ) :

yx ≤ β xx 2 ce qui donne la convergence locale au moins quadratique.

La condition g ∈ C 3 (IR n , IR n ) est une condition suffisante mais non nécessaire. Si g ∈ C 1 (IR n , IR n ), on peut encore démontrer la convergence, mais sous des hypothèses pas très faciles à vérifier en pratique : Théorème 2.20 (Convergence de la méthode de Newton, g ∈ C 1 ). Soient g ∈ C 1 (IR n , IR n ) et x ∈ IR n tels que g(x) = 0. On munit IR n d'une norme • et M n (IR) de la norme induite. On suppose que Dg(x) est inversible. On suppose de plus qu'il existe a, a 1 , a 2 ∈ IR * + tels que :

1. si x ∈ B(x, a) alors Dg(x) est inversible et Dg(x)) -1 ≤ a 1 ; 2. si x, y ∈ B(x, a) alors g(y) -g(x) -Dg(x)(y -x) ≤ a 2 y -x 2 .
Alors, si on pose : b = min a, 1 a 1 a 2 > 0, β = a 1 a 2 et si x (0) ∈ B(x, b), on a :

1. (x (k) ) k∈IN est bien définie par (2.23), 

2. x (k) → x lorsque n → +∞, 3. x (k+1) -x ≤ β x (k) -x 2 ∀k ∈ IN.
x (k+1) -x (k) = Dg(x (k) ) -1 (-g(x (k) ))
5. Théorème des accroissements finis :

Soient (E, • E ) et (F, • F ) des espaces vectoriels normés, soient h ∈ C 1 (E, F ) et (x, y) ∈ E 2 . On définit ]x, y[= {tx + (1 -t)y, t ∈]0, 1[}. Alors : h(y) -h(x) ≤ y -x sup z∈]x,y[ Dh(z) L(E,F ) . (On rappelle que si T ∈ L(E, F ) alors T [L(E,F ) = sup x∈E, x E =1 T x F |.)
Attention piège ! ! : Si dim F > 1, on ne peut pas dire, comme c'est le cas en dimension 1, que :∃ξ ∈]x,y[ t.q. h(y)-h(x) = Dh(ξ)(y -x).

Analyse numérique I, télé-enseignement, L3 . Par hypothèse, on sait que si x, y ∈ B(x, a), on a g(y) -g(x) -Dg(x)(yx) ≤ a2 yx 2 . Prenons y = x et x = x (k) ∈ B(x, a) dans l'inégalité ci-dessus. On obtient alors :

g(x) -g(x (k) ) -Dg(x (k) )(x -x (k) ) ≤ a2 x -x (k) 2 .
Comme g(x) = 0 et par définition de x (k+1) , on a donc :

Dg(x (k) )(x (k+1) -x (k) ) -Dg(x (k) )(x -x (k) ) ≤ a2 x -x (k) 2 , et donc Dg(x (k) )(x (k+1) -x) ≤ a2 x -x (k) 2 . (2.27) Or x (k+1) -x = [Dg(x (k) )] -1 (Dg(x (k) ))(x (k+1) -x), et donc x (k+1) -x ≤ Dg(x (k) ) -1 Dg(x (k) )(x (k+1) -x) . En utilisant (2.27), les hypothèses 1 et 2 et le fait que x (k) ∈ B(x, b), on a donc x (k+1) -x ≤ a1a2 x (k) -x 2 < a1a2b 2 .
(2.28)

Or a1a2b 2 < b car b ≤ 1 a1a2 . Donc x (k+1) ∈ B(x, b).
On a ainsi montré par récurrence que la suite (x (k) ) k∈IN est bien définie et que

x (k) ∈ B(x, b) pour tout k ≥ 0.
Pour montrer la convergence de la suite (x (k) ) k∈IN vers x, on repart de l'inégalité (2.28) :

a1a2 x (k+1) -x ≤ (a1a2) 2 x -x (k) 2 = (a1a2 x (k) -x ) 2 , ∀k ∈ IN, et donc par récurrence a1a2 x (k) -x ≤ (a1a2 x (0) -x ) 2 k , ∀k ∈ IN Comme x (0) ∈ B(x, b) et b ≤ 1 a 1 a 2 , on a a1a2 x (0) -x < 1 et donc x (k) -x → 0 quand k → +∞.
La convergence est au moins quadratique car l'inégalité (2.28) s'écrit :

x (k+1) -x ≤ β x (k) -x 2 avec β = a1a2.
Le théorème 2.19 peut aussi se démontrer comme corollaire du théorème 2.20. En effet, sous les hypothèses du théorème 2.19 (il est même suffisant de supposer g de classe C 2 au lieu de C 3 ), on peut démontrer qu'il existe a, a 1 , a 2 ∈ IR * + tels que 1. si x ∈ B(x, a) alors Dg(x) est inversible et

(Dg(x)) -1 ≤ a 1 , 2. si x, y ∈ B(x, a) alors g(y) -g(x) -Dg(x)(y -x) ≤ a 2 y -x 2 .
et donc appliquer le théorème 2.20, voir exercice 125 page 169.

Remarque 2.21 (Choix de l'itéré initial). On ne sait pas bien estimer b dans le théorème 2.19, et ceci peut poser problème lors de l'implantation numérique : il faut choisir l'itéré initial x (0) "suffisamment proche" de x pour avoir convergence.

Variantes de la méthode de Newton

L'avantage majeur de la méthode de Newton par rapport à une méthode de point fixe par exemple est sa vitesse de convergence d'ordre 2. On peut d'ailleurs remarquer que lorsque la méthode ne converge pas, par exemple si l'itéré initial x (0) n'a pas été choisi "suffisamment proche" de x, alors la méthode diverge très vite. . . L'inconvénient majeur de la méthode de Newton est son coût : on doit d'une part calculer la matrice jacobienne Dg(x (k) ) à chaque itération, et d'autre part la factoriser pour résoudre le système linéaire Dg(x (k) )(x (k+1)x (k) ) = -g(x (k) ). (On rappelle que pour résoudre un système linéaire, il ne faut pas calculer l'inverse de la matrice, mais plutôt la factoriser sous la forme LU par exemple, et on calcule ensuite les solutions des systèmes avec matrice triangulaires faciles à inverser, voir Chapitre 1.) Plusieurs variantes ont été proposées pour tenter de réduire ce coût.

"Faux quasi Newton"

Soient g ∈ C 1 (IR n , IR n ) et x ∈ IR tels que g(x) = 0. On cherche à calculer x. Si on le fait par la méthode de Newton, l'algorithme s'écrit :

x (0) ∈ IR n , Dg(x (k) )(x (k+1) -x (k) ) = -g(x (k) ), n ≥ 0.
La méthode du "Faux quasi-Newton" (parfois appelée quasi-Newton) consiste à remplacer le calcul de la matrice jacobienne Dg(x (k) ) à chaque itération par un calcul toutes les "quelques" itérations. On se donne une suite (n i ) i∈IN , avec n 0 = 0 et n i+1 > n i ∀i ∈ IN, et on calcule la suite (x (k) ) n∈IN de la manière suivante :

x (0) ∈ IR n Dg(x (ni) )(x (k+1) -x (k) ) = -g(x (k) ) si n i ≤ k < n i+1 .
(2.29) Avec cette méthode, on a moins de calculs et de factorisations de la matrice jacobienne Dg(x) à effectuer, mais on perd malheureusement la convergence quadratique : cette méthode n'est donc pas très utilisée en pratique.

Newton incomplet

On suppose que g s'écrit sous la forme :

g(x) = Ax + F 1 (x) + F 2 (x), avec A ∈ M n (IR) avec F 1 , F 2 ∈ C 1 (IR n , IR n ).
L'algorithme de Newton (2.23) s'écrit alors :

   x (0) ∈ IR n A + DF 1 (x (k) ) + DF 2 (x (k) ) (x (k+1) -x (k) ) = -Ax (k) -F 1 (x (k) ) -F 2 (x (k) ).
La méthode de Newton incomplet consiste à ne pas tenir compte de la jacobienne de F 2 .

x (0) 

∈ IR n (A + DF 1 (x (k) ))(x (k+1) -x (k) ) = -Ax (k) -F 1 (x (k) ) -F 2 (x (k) ).
(2.30)

On dit qu'on fait du "Newton sur F 1 " et du "point fixe sur F 2 ". Les avantages de cette procédure sont les suivants :

-La méthode ne nécessite pas le calcul de DF 2 (x), donc on peut l'employer si F 2 ∈ C(IR n , IR n )) n'est pas dérivable.

-On peut choisir F 1 et F 2 de manière à ce que la structure de la matrice A + DF 1 (x (k) ) soit "meilleure" que celle de la matrice A+ DF 1 (x (k) )+ DF 2 (x (k) ) ; si par exemple A est la matrice issue de la discrétisation du Laplacien, c'est une matrice creuse. On peut vouloir conserver cette structure et choisir F 1 et F 2 de manière à ce que la matrice A + DF 1 (x (k) ) ait la même structure que A.

-Dans certains problèmes, on connaît a priori les couplages plus ou moins forts dans les non-linéarités : un couplage est dit fort si la variation d'une variable entraîne une variation forte du terme qui en dépend. Donnons un exemple : Soit f de IR 2 dans IR 2 définie par f (x, y) = (x + sin(10 -5 y), exp(x) + y), et considérons le système non linéaire f (x, y) = (a, b) où (a, b) ∈ IR 2 est donné. Il est naturel de penser que pour ce système, le terme de couplage de la première équation en la variable y sera faible, alors que le couplage de deuxième équation en la variable x sera fort. On a alors intérêt à mettre en oeuvre la méthode de Newton sur la partie "couplage fort" et une méthode de point fixe sur la partie "couplage faible".

L'inconvénient majeur est la perte de la convergence quadratique. La méthode de Newton incomplet est cependant assez souvent employée en pratique en raison des avantages énumérés ci-dessus.

Remarque 2.22. Si F 2 = 0, alors la méthode de Newton incomplet est exactement la méthode de Newton. Si F 1 = 0, la méthode de Newton incomplet s'écrit

A(x (k+1) -x (k) ) = -Ax (k) -F 2 (x (k) ),
En supposant A inversible, on a alors x (k+1) = -A -1 F 2 (x (k) ). C'est donc dans ce cas la méthode du point fixe sur la fonction -A -1 F 2 .

Méthode de la sécante

La méthode de la sécante est une variante de la méthode de Newton dans le cas de la dimension 1 d'espace. On suppose ici n = 1 et g ∈ C 1 (IR, IR). La méthode de Newton pour calculer x ∈ IR tel que g(x) = 0 s'écrit :

x (0) ∈ IR g ′ (x (k) )(x (k+1) -x (k) ) = -g(x (k) ), ∀n ≥ 0.
On aimerait simplifier le calcul de g ′ (x (k) ), c'est-à-dire remplacer g ′ (x (k) ) par une quantité "proche" sans calculer g ′ . Pour cela, on remplace la dérivée par un quotient différentiel. On obtient la méthode de la sécante :

   x (0) , x (1) ∈ IR g(x (k) ) -g(x (k-1) ) x (k) -x (k-1) (x (k+1) -x (k) ) = -g(x (k) ) n ≥ 1.
(2.31)

Remarquons que dans la méthode de la sécante, x (k+1) dépend de x (k) et de x (k-1) : on a une méthode à deux pas ; on a d'ailleurs besoin de deux itérés initiaux x (0) et x (1) . L'avantage de cette méthode est qu'elle ne nécessite pas le calcul de g ′ . L'inconvénient est qu'on perd la convergence quadratique. On peut toutefois montrer (voir exercice 131 page 171) que si g(x) = 0 et g ′ (x) = 0, il existe α > 0 tel que si x (0) , x (1) ∈ [xα.x + α] = I α , x (0) = x (1) , la suite (x (k) ) n∈IN construite par la méthode de la sécante (2.31) est bien définie, que (x (k) ) n∈IN ⊂ I α et que x (k) → x quand n → +∞. De plus, la convergence est super linéaire, i.e. si x (k) = x pour tout n ∈ IN, alors x (k+1)x x (k) -

x → 0 quand n → +∞. On peut même montrer (voir exercice 131 page 171) que la méthode de la sécante est convergente d'ordre d, où d est le nombre d'or.

Méthodes de type "Quasi Newton"

On veut généraliser la méthode de la sécante au cas n > 1. Soient donc g ∈ C 1 (IR n , IR n ). Pour éviter de calculer Dg(x (k) ) dans la méthode de Newton (2.23), on va remplacer Dg(x (k) ) par B (k) ∈ M n (IR) "proche de Dg(x (k) )". En s'inspirant de la méthode de la sécante en dimension 1, on cherche une matrice B (k) qui, x (k) et x (k-1) étant connus (et différents), vérifie la condition :

B (k) (x (k) -x (k-1) ) = g(x (k) ) -g(x (k-1) ) (2.32)
Dans le cas où n = 1, cette condition détermine entièrement B (k) ;car on peut écrire : 1) . Si n > 1, la condition (2.32) ne permet pas de déterminer complètement B (k) . Il y a plusieurs façons possibles de choisir B (k) , nous en verrons en particulier dans le cadre des méthodes d'optimisation (voir chapitre 4, dans ce cas la fonction g est un gradient), nous donnons ici la méthode de Broyden 6 . Celle-ci consiste à choisir B (k) de la manière suivante : à

B (k) = g(x (k) ) -g(x (k-1) x (k) -x (k-
x (k) et x (k-1) connus, on pose δ (k) = x (k) -x (k-1) et y (k) = g(x (k) ) -g(x (k-1) ) ; on suppose B (k-1) ∈ M n (IR) connue (et δ (k) = 0), et on cherche B (k) ∈ M n (IR) telle que B (k) δ (k) = y (k)
(2.33) (c'est la condition (2.32), qui ne suffit pas à déterminer B (k) de manière unique) et qui vérifie également :

B (k) ξ = B (k-1) ξ, ∀ξ ∈ IR n tel que ξ ⊥ δ (k) .
(2.34) 

(k) ∈ IR n , δ (k) ∈ IR n , δ (k) = 0, et B (k-1) ∈ M n (IR).
Il existe une unique matrice B (k) ∈ M n (IR) vérifiant (2.33) et (2.34) ; la matrice B (k) s'exprime en fonction de y (k) , δ (k) et B (k-1) de la manière suivante : 

B (k) = B (k-1) + y (k) -B (k-1) δ (k) δ (k) • δ (k) (δ (k) ) t . ( 2 
B (k) δ (k) = B (k-1) δ (k) + y (k) -B (k-1) δ (k) δ (k) • δ (k) (δ (k) ) t δ (k) = y (k) , et donc B (k) vérifie (2.33). Soit ξ ∈ IR n tel que ξ ⊥ δ (k) , alors ξ • δ (k) = (δ (k) ) t ξ = 0 et donc B (k) ξ = B (k-1) ξ + (y (k) -B (k-1) δ (k) ) δ (k) • δ (k) (δ (k) ) t ξ = B (k-1) ξ, ∀ξ ⊥ δ (k) .
L'algorithme de Broyden s'écrit donc :

          
Initialisation : x (0) , x (1) ∈ IR n , x (0) , = x (1) , B (0) ∈ M n (IR)

Itération k : x (k) , x (k-1) et B (k-1) connus, on pose δ (k) = x (k) -x (k-1) et y (k) = g(x (k) ) -g(x (k-1) ); Calcul de B (k) = B (k-1) + y (k) -B (k-1) δ (k) δ (k) •δ (k) (δ (k) ) t , résolution de B (k) (x (k+1) -x (k) ) = -g(x (k) ).
Une fois de plus, l'avantage de cette méthode est de ne pas nécessiter le calcul de Dg(x), mais l'inconvénient est la perte du caractère quadratique de la convergence .

Exercices (méthode de Newton)

Exercice 107 (Newton et logarithme). Suggestions en page 172 Soit f la fonction de IR * + dans IR définie par f (x) = ln(x). Montrer que la méthode de Newton pour la recherche de x tel que f (x) = 0 converge si et seulement si le choix initial x (0) est tel que x (0) 2. Montrer que pour tout triplet (a, x 0 , y 0 ), il existe un unique couple (x, ȳ) ∈ IR 2 tel que F (x, ȳ) = (0, 0).

3. Ecrire l'algorithme de Newton pour f et montrer que l'algorithme de Newton converge au voisinage de ȳ.

Analyse numérique I, télé-enseignement, L3

4. Ecrire l'algorithme de Newton pour la fonction F . Montrer que l'algorithme converge au voisinage de (x, ȳ).

Exercice 111 (Méthode de Newton pour un système 2 × 2).

1. Ecrire la méthode de Newton pour la résolution du système suivant :

-5x + 2 sin x + 2 cos y = 0, (2.36) Exercice 112 (Méthode de Newton pour un autre système 2 × 2).

2
On considére le système non linéaire à deux inconnues suivant :

x 2 + 2xy = 0, (2.38) xy + 1 = 0, (2.39) 
1. Calculer les solutions du système (2.38)-(2.39).

2. Écrire l'algorithme de Newton pour la résolution du système (2.38)-(2.39) et donner les conditions sous lesquelles la suite définie par l'algorithme de Newton est bien définie.

3. Calculer les premiers itérés (x 1 , y 1 ) construits par la méthode de Newton en partant de (x 0 , y 0 ) = (1, -1) .

Exercice 113 (Newton et les échelles. . . 3. Calculer les premiers itérés x (1) et y (1) construits par la méthode de Newton en partant de x (0) = 1 et y (0) = 1.

Exercice 114 (Newton dans M 2 (IR)).

Analyse numérique I, télé-enseignement, L3

On considère l'application f :

M 2 (IR) → M 2 (IR) définie par f (X) = X 2 - 1 0 0 1
. L'objectif de cet exercice est de trouver les solutions de f (X) = 0 0 0 0 .

1. Réécrire l'application f comme une application F de IR 4 dans IR 4 .

2. Trouver l'ensemble des solutions de f (X) = 0.

3. Ecrire le premier itéré X 1 de l'algorithme de Newton pour l'application f partant de la donnée initiale 1. Montrer que f s'annule en 4 points de IR et qu'un seul de ces points est entre 0 et 1.

X 0 = 4 

On pose g(x)

= (1/2) √ e (x 2 ) (pour x dans IR). Montrer que la méthode du point fixe appliquée à g, initialisée avec un point de l'intervalle ]0, 1[, est convergente et converge vers le point de ]0, 1[ annulant f . Quel est l'ordre de convergence de cette méthode ?

3. Donner la méthode de Newton pour rechercher les points annulant f . Entre cette méthode et la méthode de la question précédente, quelle méthode vous semble a priori la plus efficace ?

Exercice 116 (Nombre d'itérations fini pour Newton). Corrigé détaillé en page 176

1. Soit f la fonction de IR dans IR définie par : f (x) = e x -1. Pour x (0) ∈ IR, on note (x (k) ) n∈IN la suite des itérés construits par la méthode de Newton pour la recherche d'un point où f s'annule.

1.1 Montrer que pour tout x (0) ∈ IR, la suite (x (k) ) n∈IN est bien définie. 1.2 Montrer que si x (0) = 0, alors x (k+1) = x (k) pour tout n ∈ IN. En déduire que la méthode de Newton converge en un nombre fini d'opérations si et seulement si f (x (0) ) = 0.

Montrer que :

1.3 (a) si x (0) < 0 alors x (1) > 0.

1.3 (b) si x (0) > 0 alors 0 < x (1) < x (0) .

1.4 Montrer que la suite (x (k) ) n∈IN converge lorsque n tend vers l'infini et donner sa limite.

2. Soit F : IR n → IR une fonction continûment différentiable et strictement convexe (n ≥ 1) et dont la différentielle ne s'annule pas. Soit x (0) ∈ IR n le choix initial (ou itéré 0) dans la méthode de Newton. Montrer que la méthode de Newton converge en un nombre fini d'opérations si et seulement si F (x (0) ) = 0.

Exercice 117 (Méthode de Newton pour un système 2 × 2). Corrigé en page 176

1. On considère l'application f : IR → IR définie par f (x) = x 2 . Ecrire la méthode de Newton pour calculer la solution de f (x) = 0 et montrer qu'elle converge quel que soit le choix initial x 0 ∈ IR.

2. On considère maintenant l'application F : IR 2 → IR 2 définie par

F (x, y) = x 2 -y y 2
(a) Déterminer l'ensemble des solutions de F (x, y) = (0, 0).
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(b) Ecrire l'algorithme de Newton pour la résolution, et montrer que l'algorithme est bien défini pour tous les couples (x 0 , y 0 ) tels que x 0 = 0 et y 0 > 0.

(c) Soit (x 0 , y 0 ) = (1, 1). On note (x k , y k ), k ∈ IN les itérés de Newton.

i. Expliciter y k et en déduire que la suite (y k ) k∈IN converge.

ii. Montrer que

x k ≥ 2 -k 2 pour tout k ∈ IN et en déduire que x k+1 ≤ x k pour tout k ∈ IN.
iii. En déduire que la méthode de Newton converge vers une solution de F (x, y) = (0, 0).

Exercice 118 (Méthode de Newton pour le calcul de l'inverse). Corrigé en page 177 1. Soit a > 0. On cherche à calculer 1 a par l'algorithme de Newton.

(a) Montrer que l'algorithme de Newton appliqué à une fonction g (dont 1 a est un zéro) bien choisie s'écrit : (c) Ecrire la méthode de Newton pour calculer A -1 en cherchant le zéro de la fonction g de M n (IR) dans M n (IR) définie parg(B) = B -1 -A. Soit B (k) la suite ainsi définie. (d) Montrer que la suite B (k) définie dans la question précédente vérifie :

x (0) donné, x (k+1) = x (k) (2 -ax (k) ). (2.42) (b) Montrer que la suite (x (k) ) n∈IN définie par (2.42) vérifie lim n→+∞ x (k) =    1 a si x (0) ∈]0, 2 a [, -∞ si x (0) ∈] -∞, 0[∪] 2 a , +∞[
Id -AB (k+1) = (Id -AB (k) ) 2 .
En déduire que la suite (B (k) ) n∈IN converge vers A -1 si et seulement si ρ(Id -AB (0) ) < 1.

Exercice 119 (Méthode de Newton pour le calcul de la racine).

1. Soit λ ∈ IR + et f λ la fonction de IR dans IR définie par f λ (x) = x 2 -λ.
1.1 Soit x (0) ∈ IR fixé. Donner l'algorithme de Newton pour la résolution de l'équation f λ (x) = 0. Dans la suite de l'exercice, on considère la méthode de Newton pour déterminer B.

5. On suppose maintenant n ≥ 1. On note (X (k) ) k∈IN la suite (si elle existe) donnée par l'algorithme de Newton à partir d'un choix initial X (0) = I, où I est la matrice identité de M n (IR).

5.1 Donner le procédé de construction de X (k+1) en fonction de X (k) , pour k ≥ 0.

On note λ 1 ≤ • • • ≤ λ n les valeurs propres de A (dont certaines peuvent être égales) et P la matrice orthogonale telle que

A = P diag(λ 1 , • • • , λ n )P -1 .
(i) Montrer que pour tout k ∈ IN, X (k) est bien définie et est donné par

X (k) = P diag(µ (k) 1 , • • • , µ (k) n )P -1 , où µ (k) i
est le k ième terme de la suite de Newton pour la résolution de

f λi (x) = 0, où f λi (x) = x 2 -λ i , avec comme choix initial µ (0) i = 1. (ii) En déduire que la suite X (k) converge vers B quand k → +∞.
Exercice 120 (Valeurs propres et méthode de Newton).

Soit A ∈ M n (IR) une matrice symétrique. Soient λ une valeur propre simple de A et x ∈ IR n un vecteur propre associé t.q. x • x = 1. Pour calculer (λ, x) on applique la méthode de Newton au système non linéaire (de IR n+1 dans IR n+1 ) suivant :

Ax -λx = 0, x • x = 1.
Montrer que la méthode est localement convergente.

Exercice 121 (Problème aux valeurs propres généralisé).

Soient A, B ∈ M n (IR), n ≥ 1. Pour λ ∈ IR, on pose P (λ) = det(A + λB).

1. Montrer que P est un polynôme de degré inférieur ou égal à n. 6. On considère l'algorithme de Newton pour calculer le couple (u, λ). Cet algorithme s'écrit 

On suppose dans cette question que ker

G( v µ ) = Av + µBv Bv • v -1 pour v ∈ IR n , µ ∈ IR. 3. Pour v ∈ IR n µ ∈ IR,
Initialisation u 0 ∈ IR n , λ 0 ∈ IR. Itérations pour k ≥ 0, u k et λ k donnés, on calcule (si c'est possible) (u k+1 , λ k+1 ) solution de J G (u k , λ k ) u k+1 -u k λ k+1 -λ k = - Au k + λ k Bu k Bu k • u k -1 . Montrer qu'il existe ε > 0 tel que, si u 0 -u 2 ≤ ε et |λ 0 -λ| ≤ ε, la suite (u k , λ k ) k∈IN est
1. Soit x, y ∈ IR n . Montrer que F (x + t(y -x)) -F (x) ≤ t(F (y) -F (x)) pour tout t ∈]0, 1[. En déduire que F (y) ≥ F (x) + J F (x)(y -x).
Soit x ∈ IR n tel que F (x) = 0. On suppose que la matrice J F (x) est inversible et on s'intéresse à la méthode de Newton pour calculer x. On rappelle que cette méthode s'écrit Initialisation x 0 ∈ IR n , Itérations pour k ≥ 0, x k donné, on calcule (si c'est possible) x k+1 solution de

J F (x k )(x k+1 -x k ) = -F (x k ).
2. Montrer qu'il existe ε > 0 tel que, si x 0x 2 ≤ ε, la suite (x k ) k∈IN est bien définie (c'est-à-dire que la matrice

J F (x k ) est inversible pour tout k ∈ IN) et que x k → x quand k → +∞.
3. On suppose maintenant que pour tout x tel que xx 2 ≤ ε (ε est donné à la question 2) la matrice J F (x) est inversible et la matrice inverse, notée J F (x) -1 , a tous ses coefficients positifs. On suppose aussi que

F (x 0 ) ≥ 0. Montrer, par récurrence sur k, que x ≤ x k+1 ≤ x k ≤ x 0 .
[Utiliser la convexité de F et le fait que, si A ∈ M n (IR) et A -1 a tous ses coefficients positifs, on a

(b ∈ IR n , b ≥ 0, Ax = b) ⇒ x ≥ 0.]
Exercice 123 (Modification de la méthode de Newton). Suggestions en page 173.

Soient f ∈ C 1 (IR n , IR n ) et x ∈ IR n t.q. f (x) = 0.
On considère, pour λ > 0 donné, la méthode itérative suivante :

-Initialisation :

x (0) ∈ IR n .
-Iterations : pour k ≥ 0,

x (k+1) = x (k) -[Df (x (k) ) t Df (x (k) ) + λId] -1 Df (x (k) ) t f (x (k) ).
[Noter que, pour λ = 0, on retrouve la méthode de Newton.]

1. Montrer que la suite (x (k) ) k∈IN est bien définie.
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2. On suppose, dans cette question, que n = 1 et que f ′ (x) = 0. Montrer que la méthode est localement convergente en x.

3. On suppose que le rang de Df (x) est égal à n. Montrer que la méthode est localement convergente en x.

[Noter que cette question redonne la question précédente si n = 1.]

Exercice 124 (Méthode de Newton pour un système semi-linéaire). Suggestions en page 173.

On suppose que f ∈ C 2 (IR, IR) et que f est croissante. On s'intéresse au système non linéaire suivant de n équations à n inconnues (notées u 1 , . . . , u n ) : 2. Soit u la solution de (2.43). Montrer qu'il existe a > 0 t.q. la méthode de Newton pour approcher la solution de (2.43) converge lorsque le point de départ de la méthode, noté u (0) , vérifie |uu (0) | < a.

(Au) i + α i f (u i ) = b i ∀i ∈ {1, . . . , n}, u = (u 1 , . . . , u n ) t ∈ IR n , ( 2 
Exercice 125 (Autre démonstration de la convergence locale de Newton). Suggestions en page 173. Corrigé en page 179 On se place sous les sous les hypothèses du théorème 2.19 avec g de classe C 2 au lieu de

C 3 . Montrer qu'il existe a, a 1 , a 2 ∈ IR * + tels que 1. si x ∈ B(x, a) alors Dg(x) est inversible et (Dg(x)) -1 ≤ a 1 , 2. si x, y ∈ B(x, a) alors g(y) -g(x) -Dg(x)(y -x) ≤ a 2 y -x 2 .
et qu'on peut donc appliquer le théorème 2.20 pour obtenir le résultat de convergence locale du théorème 2.19.

Exercice 126 (Convergence de la méthode de Newton si f ′ (x) = 0). Suggestions en page 173, corrigé détaillé en page 180

Soient f ∈ C 2 (IR, IR) et x ∈ IR t.q. f (x) = 0.
1. Rappel du cours. Si f ′ (x) = 0, la méthode de Newton est localement convergente en x et la convergence est au moins d'ordre 2.

2. On suppose maintenant que f ′ (x) = 0 et f ′′ (x) = 0. Montrer que la méthode de Newton est localement convergente (en excluant le cas x 0 = x. . . ) et que la convergence est d'ordre 1. Si on suppose f de classe C 3 , donner une modification de la méthode de Newton donnant une convergence au moins d'ordre 2.

Exercice 127 (Point fixe et Newton).

Soit g ∈ C 3 (IR, IR) et x ∈ IR tels que g(x) = 0 et g ′ (x) = 0 et soit f ∈ C 1 (IR, IR) telle que f (x) = x.
On considère l'algorithme suivant :

   x 0 ∈ IR, x n+1 = h(x n ), n ≥ 0.
(2.44)

avec h(x) = x - g(x) g ′ • f (x))
.

1. Montrer qu'il existe α > 0 tel que si x 0 ∈ [xα, x + α] = I α , alors la suite donnée par l'algorithme (2.44) est bien définie ; montrer que x n → x lorsque n → +∞ (on pourra montrer qu'on peut choisir α de manière à ce que |h ′ (x)| < 1 si x ∈ I α ). On prend maintenant x 0 ∈ I α où α est donné par la question 1.

2. Montrer que la convergence de la suite (x n ) n∈IN définie par l'algorithme (2.44) est au moins quadratique.

Analyse numérique I, télé-enseignement, L3 

|x n+1 -x| ≤ c|x n -x| 3 , ∀n ≥ 1. 4. Soit β ∈ IR * + tel que g ′ (x) = 0 ∀x ∈ I β =]x -β, x + β[ ; montrer que si on prend f ∈ C 1 (IR, IR) telle que : f (x) = x - g(x) 2g ′ (x) si x ∈ I β ,
alors la suite définie par l'algorithme (1) converge de manière cubique.

Exercice 128 (Variante de la méthode de Newton).

Corrigé détaillé en page 181

Soit f ∈ C 1 (IR, IR) et x ∈ IR tel que f (x) = 0. Soient x 0 ∈ IR, c ∈ IR * + , λ ∈ IR * + .
On suppose que les hypothèses suivantes sont vérifiées :

(i) x ∈ I = [x 0 -c, x 0 + c], (ii) |f (x 0 )| ≤ c 2λ , (iii) |f ′ (x) -f ′ (y)| ≤ 1 2λ , ∀(x, y) ∈ I 2 (iv) |f ′ (x)| ≥ 1
λ ∀x ∈ I. On définit la suite (x (k) ) n∈IN par : (On pourra remarquer que si x (k+1) est donné par (2.45) alors x (k+1) -

x (0) = x 0 , x (k+1) = x (k) - f (x (k) ) f ′ (y) , ( 2 
x 0 = x (k) -x 0 -f (x (k) )-f (x0) f ′ (y) - f (x0) f ′ (y) .) 2. Montrer que la suite (x (k) ) n∈IN définie par (2.45) vérifie |x (k) -x| ≤ c
2 n et qu'elle converge vers x de manière au moins linéaire.

3. On remplace l'algorithme (2.45) par 

x (0) = x 0 , x (k+1) = x (k) - f (x (k) ) f ′ (y (k) ) , ( 2 
Soient f ∈ C 2 (IR, IR) et x ∈ IR t.q. f (x) = 0 et f ′ (x) = 0.
On considère la méthode itérative suivante :

-Initialisation :

x (0) ∈ IR n .
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MÉTHODE DE NEWTON DANS IR

N CHAPITRE 2. SYSTÈMES NON LINÉAIRES -Itérations : pour n ≥ 0, si f (x (k) + f (x (k) )) = f (x (k) ), x (k+1) = x (k) - (f (x (k) )) 2 f (x (k) + f (x (k) )) -f (x (k) ) , (2.47) et si f (x (k) + f (x (k) )) = f (x (k) ), x (k+1) = x (k) . 1. Montrer qu'il existe α > 0 tel que si x (k) ∈ B(x, α), alors f (x (k) + f (x (k) )) = f (x (k) ) si x (k) = x.
En déduire que si x 0 ∈ B(x, α), alors toute la suite (x (k) ) n∈IN vérifie (2.47) pourvu que x (k) = x pour tout n ∈ IN. 2. Montrer par des développements de Taylor avec reste intégral qu' il existe une fonction a continue sur un voisinage de x telle que si x 0 ∈ B(x, α), alors

x (k+1) -x = a(x (k) )(x (k) -x), pour tout n ∈ IN tel que x (k) = x.
(2.48)

3. Montrer que la méthode est localement convergente en x et la convergence est au moins d'ordre 2.

Exercice 130 (Méthode de Newton-Tchebycheff).

1. Soit f ∈ C 3 (IR, IR) et soit x ∈ IR tel que x = f (x) et f ′ (x) = f ′′ (x) = 0. Soit (x n
) n∈IN la suite définie par : . Donner une expression de h(x) et h ′ (x) en fonction de g ′ (x) et de g ′′ (x) telle que la méthode (P F ) appliquée à la recherche d'un point fixe de f converge localement vers x avec une vitesse de convergence au moins cubique.

x 0 ∈ IR, x n+1 = f (x n ). (P F ) (a 
3. Soit g ∈ C 5 (IR, IR), et soit x ∈ IR tel que g(x) = 0 et g ′ (x) = 0. On considère la modification suivante (dûe à Tchebychev) de la méthode de Newton : 

x n+1 = x n - g(x n ) g ′ (x n ) - g ′′ (x n )[g(x n )] 2 2[g ′ (x n )] 3 . ( 2 
f ∈ C 2 (IR, IR) et x ∈ IR t.q. f (x) = 0 et f ′ (x) = 0.
Pour calculer x, on considère la méthode itérative suivante (appelée "méthode de la sécante") :

-Initialisation : x 0 , x 1 ∈ IR.

-Itérations : pour n ≥ 1,

x n+1 = x n - f (x n )(x n -x n-1 ) f (x n ) -f (x n-1 ) si f (x n ) = 0 et x n+1 = x n si f (x n ) = 0.
Si la suite (x n ) n∈IN est bien définie par cette méthode, on pose e n = |x n -x| pour tout n ∈ IN.
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1. Montrer qu'il existe ε > 0 t.q. pour x 0 , x 1 ∈]xε, x + ε[, x 0 = x 1 , la méthode de la sécante définit bien une suite (x n ) n∈IN et l'on a e n+1 ≤ (1/2)e n pour tout n ≥ 1.

[Raisonner par récurrence : on suppose (b) Montrer qu'il existe ε 1 ∈]0, ε] t.q. la suite (a n ) n≥1 tend en décroissant vers 0 lorsque n → +∞, si (e) Comparer l'ordre de convergence de la méthode de la sécante à celui de la méthode de Newton.

x n , x n-1 ∈]x -ε, x + ε[, x n = x n-1 et x n = x. Montrer, grâce à un choix convenable de ε, que f (x n ) = f (x n-1 ) et que f (x n ) =
x 0 , x 1 ∈]x -ε 1 , x + ε 1 [. (c) Dans cette question, on prend x 0 , x 1 ∈]x -ε 1 , x + ε 1 [. Montrer qu'il existe α > 0 et β ∈]0, 1[ t.q M e n ≤ a n ≤ α(β) d n pour tout n ∈ IN (ceci
Exercice 132 (Algorithme de Newton pour calculer une racine cubique). Soient n ≥ 1 et A ∈ M n (IR) une matrice symétrique définie positive. On note {e 1 , . . . , e n } une base orthonormée de IR n formée de vecteurs propres de A. On a donc Ae i = λ i e i , avec

λ i > 0, e i • e j = 0 pour i = j et e i • e i = 1. Pour B ∈ M n (IR), on pose F (B) = B 3 -A.
1. Montrer que la matrice X définie par Xe i = µ i e i pour i = 1, . . . , n, avec µ 3 i = λ i , est une racine cubique de A (c'est-à-dire une solution de F (X) = 0). Montrer que X est symétrique.

Dans la suite de l'exercice, on s'intéresse à l'algorithme de Newton pour calculer X.

Soit B ∈ M n (IR). La différentielle de F au point B, notée DF (B), est donc une application linéaire de

M n (IR) dans M n (IR). Donner, pour tout H ∈ M n (IR), l'expression de DF (B)H.

Montrer que DF (X) est une application inversible.

[On pourra, par exemple, calculer DF (X)He i • e j et montrer que DF (X)H = 0 implique H = 0.] 4. Donner l'algorithme de Newton pour calculer X et montrer que l'algorithme de Newton donne une suite convergente vers X si l'initialisation de l'algorithme est faite avec une matrice suffisamment proche de X.

Suggestions

Exercice 107 page 163 (Newton et logarithme) Etudier les variations de la fonction ϕ définie par : ϕ(x) = xx ln x.

Exercice 119 page 166 (Méthode de Newton pour le calcul de la racine) 1.1 (ii) Montrer que la suite (x (k) ) k≥1 est décroissante. 4. Ecrire la définition de la différentiel en faisant attention que le produit matriciel n'est pas commutatif. 5. Ecrire l'algorithme de Newton dans la base des vecteurs propres associés aux valeurs propres de A.

Exercice 125 page 169 (Autre démonstration de la convergence locale de Newton) Soit S = Dg(x) -1 (Dg(x) -Dg(x)). Remarquer que

Dg(x) = Dg(x) -Dg(x) + Dg(x) = Dg(x)(Id + S)
et démontrer que S < 1.

En déduire que Dg(x) = Dg(x)(Id + S) est inversible, et montrer alors l'existence de a et de

a 1 = 2 Dg(x) -1 tels que si x ∈ B(x, a) alors Dg(x) est inversible et Dg(x) -1 ≤ a 1 .
Pour montrer l'existence de a 2 , introduire la fonction ϕ ∈ C 1 (IR, IR n ) définie par

ϕ(t) = g(x + t(y -x)) -g(x) -tDg(x)(y -x).
Exercice 120 page 167 (Valeurs propres et méthode de Newton) Écrire le système sous la forme F (x, λ) = 0 où F est une fonction de IR n+1 dans IR n+1 et montrer que DF (λ, x) est inversible.

Exercice 123 page 168 (Modification de la méthode de Newton) 1. Remarquer que si A ∈ M n (IR) et λ > 0, alorsA t A + λId est symétrique définie positive. Exercice 126 page 169 (Convergence de la méthode de Newton si f ′ (x) = 0) Supposer par exemple que f ′′ (x) > 0 et montrer que si x 0 est "assez proche" de x la suite (x n ) n∈IN est croissante majorée ou décroissante minorée et donc convergente. Pour montrer que l'ordre de la méthode est 1, montrer que

En introduisant la fonction ϕ définie par

ϕ(t) = f (tx n + (1 -t)x), montrer que f (x n ) = (x n -x)g(x n ), où g(x) = 1 0 f ′ (tx + (1 -t)x)dt. Montrer que g est continue. Montrer que la suite (x n ) n∈IN vérifie x n+1 -x = a n (x n -x), où a n = 1 - f ′ (x n )g(x n ) f ′ (x n ) 2 + λ ,
x n+1 -x x n -x → 1 2 lorsque n → +∞.
Exercice 124 page 169 (Méthode de Newton) 1. Pour montrer l'unicité, utiliser la croissance de f et le caractère s.d.p. de A.

Utiliser le théorème de convergence du cours.

Exercice 129 page 170 (Méthode de Steffensen)) 1. Utiliser la monotonie de f dans un voisinage de x.

2. Développer le dénominateur dans l'expression de la suite en utilisant le fait que f 

(x n + f (x n )) -f (x n ) = 1 0 ψ ′ (t)dt où ψ(t) = f (x n + tf (x n )), puis que f ′ (x n + tf (x n )) = t 0 ξ ′ (s)ds où ξ(t) = f ′ (x n + tf (x n )).

Développer ensuite le numérateur en utilisant le fait que

-f (x n ) = 1 0 ϕ ′ (t)dt où ϕ(t) = f (tx + (1 -t)x n ), et que f ′ (tx + (1 -t)x n ) = 1 0 χ(s)ds + χ(0), où χ(t) = f (x + (1 -t) n ).
1 ) = ( √ 2, - √ 2 2 ) et (x 2 , y 2 ) = (- √ 2, √ 2 
2 ). Notons que la jacobienne est bien définie en (x 1 , y 1 ) et (x 2 , y 2 ). 2. Soit F l'application de IR 2 dans IR 2 définie par F (x, y) = (x 2 + 2xy, xy + 1). Calculons la matrice jacobienne de F au point (x, y) :

DF (x, y) = 2x + y 2x y x
On a donc Det(DF )(x, y) = (2x + y)x -2xy = 2x(2xy) = 0 pour tout couple (x, y) ∈ IR 2 tel que x = 0 et x = y. L'algorithme de Newton s'écrit : 

DF (x (k) , y (k) ) x (k+1) -x (k) y (k+1) -y (k) = -F (x (k) , y (k) ) et la suite est donc bien définie si 2x (k) = y (k) et x (k) = 0 pour tout k ≥ 0. 3. On a DF (1, -1) = 1 2 -1 1 . Le système à résoudre est donc δx + 2δy = -1 -δx + δy = 0 On en déduit δx = δy = -1 2 , c.à.d. x 1 = 1 2 , y 1 = -3 2 . 4.
16x 2 = (x 2 + 1)(x + y) 2 9y 2 = (y 2 + 1)(x + y) 2 ,
qui est bien le système (2.40)-(2.41).

2. Le système précédent s'écrit sous la forme F (X) = 0, où F est la fonction de IR 2 dans IR 2 définie par

F (X) = F x y = (x 2 + 1)(x + y) 2 -16x 2 (y 2 + 1)(x + y) 2 -9y 2 .
On a donc

DF (X) = 4x 3 + 2xy 2 + 6x 2 y + 2x + 2y -32x 2x 2 y + 2x 3 + 2y + 2x 2xy 2 + 2y 3 + 2x + 2y 4y 3 + 2yx 2 + 6y 2 x + 2y + 2x -18y
L'algorithme de Newton pour la résolution du système (2.40)-(2.41) s'écrit donc, pour

X k = x k y k connu, DF (X k )(X k+1 -X k ) = -F (X k ).
A l'étape k, on doit donc résoudre le système linéaire

[DF (X k ) s t = - (x 2 k + 1)(x k + y k ) 2 -16x 2 k (y 2 k + 1)(x k + y k ) 2 -9y 2 k (2.50) avec DF (X k ) =   4x 3 k + 2x k y 2 k + 6x 2 k y k + 2x k + 2y k -32x k 2x 2 y k + 2x 3 k + 2y k + 2x k 2x k y 2 k + 2y 3 k + 2x k + 2y k 4y 3 k + 2y k x 2 k + 6y 2 k x + 2y k + 2x k -18y k   et on obtient le nouvel itéré X k+1 = x k+1 y k+1 = x k + s y k + t .
3. La première itération nécessite donc la résolution du système linéaire (2.50) pour k = 0, soit, pour

x 0 = 1 et y 0 = 1, -16 8 8 -2 s t = 8 1
dont la solution est s = 3 4 et t = 5 2 . On en déduit que x 1 = 1.75 et y 1 = 3.5 construits par la méthode de Newton en partant de x (0) = 1 et y (0) 2. Pour montrer que la méthode du point fixe appliquée à g, initialisée avec un point de l'intervalle ]0, 1[, est convergente, il suffit de montrer de g est une application strictement contractante de [0, 1] 

dans [0, 1]. Pour x ∈ [0, 1], on a 0 < g(x) < (1/2) √ e < 1 et 0 ≤ g ′ (x) = (1/2)x √ e (x 2 ) < (1/2) √ e < 1.
Ceci prouve que g est une application strictement contractante de [0, 1] dans [0, 1]. La méthode du point fixe appliquée à g, initialisée avec un point de l'intervalle ]0, 1[, est donc convergente. Elle converge vers le point fixe de g dans [0, 1]. Ce point fixe, noté x, vérifie x = (1/2) √ e (x 2 ) , c'est-à-dire f (x) = 0. Ceci montre que x est le point de ]0, 1[ annulant f . Comme g ′ (x) = 0, la convergence est d'ordre 1. 3. La méthode de Newton pour rechercher les points annulant f consiste à construire une suite (x n ) n∈IN de la manière suivante : Exercice 116 page 165 (Nombre d'itérations fini pour Newton) 1.1 Comme f ′ est définie sur tout IR par f ′ (x) = e x et ne s'annule pas, on en déduit que la suite construite par la méthode de Newton, qui s'écrit :

Initialisation : x 0 ∈ IR. Itérations : Pour n ∈ IN, 2x n (e (x 2 n ) -4)(x n+1 -x n ) = -e (x 2 n ) + 4x 2 n . Soit x le point annulant f dans ]0, 1[. Comme f ′ (x) = 0,
x (k+1) = x (k) - f (x (k) ) f ′ (x (k) ) = x (k) - e x (k) -1 e x (k)
est bien définie.

1.2 Par définition de la suite, on a x (k+1) -

x (k) = -e x (k) -1 e x (k) = 0 ssi x (k) = 0. Donc par récurrence sur n, si x (0) = 0, on a x (k+1) = x (k) pour tout n ∈ IN. De plus, si f (x (0) ) = 0 (c.à.d. si x (0) = 0)
, la suite est stationnaire. On en déduit que la méthode de Newton converge en un nombre fini d'opérations si et seulement si f (x (0) ) = 0.

Par définition, on a :

x (1) = x (0) -e x (0) -1 e x (0) . Par le théorème de accroissements finis, on a donc : x (1) = x (0) (1e θ-x (0) ), avec θ ∈]x (0) , 0[ si x (0) < 0 et θ ∈]0, x (0) [ si x (0) > 0. Si x (0) < 0, on a e θ-x (0) > 1 et donc x (1) > 0. En revanche, si x (0) > 0, on a e -x (0) < e θ-x (0) < 1 et donc 0 < x (1) < x (0) . 1.4 On a vu à la question 1.2 que si x (0) = 0 la suite est stationnaire et égale à 0. On a vu à la question 1.3 que si x (0) < 0 alors x (1) > 0. Il suffit donc d'étudier le cas x (0) > 0. Or si x (0) > 0, on a 0 < x (1) < x (0) . Par récurrence sur n, on en déduit que si x (0) > 0, la suite (x (k) ) n∈IN est décroissante et minorée par 0, donc elle converge. La limite ℓ de la suite vérifie : ℓ = ℓ -e ℓ -1 e ℓ , soit encore ℓ = 0 (unique solution de l'équation f (x) = 0). 2. Soient x (k) et x (k+1) deux itérés successifs donnés par la méthode de Newton, tels que F (x (k) ) = 0. On a donc :

DF (x (k) )(x (k+1) -x (k) ) = -F (x (k) ),
(2.51) et en particulier, x (k+1) = x (k) . Or, la condition de stricte convexité pour une fonction continûment différentiable entraîne que :

DF (x (k) )(x (k+1) -x (k) ) < F (x (k+1) ) -F (x (k) ),
et donc, avec (2.51), F (x (k+1) ) > 0. On montre ainsi, par récurrence sur n, que si F (x (0) ) = 0, alors F (x (k) ) > 0 pour tout n > 0, ce qui montre que la méthode de Newton converge en un nombre fini d'opérations si et seulement si F (x (0) ) = 0.

Exercice 117 page 165 ([Méthode de Newton pour un système 2 × 2) 1. Lla méthode de Newton pour calculer la solution de f (x) = 0 s'écrit :

x k+1 = 1 2 x k , et donc x k converge vers 0 pour tout x 0 .
2. (a) L'ensemble des solutions de F (x, y) = (0, 0).est {(0, 0)}.

Analyse numérique I, télé-enseignement, L3 (b) La matrice jacobienne s'écrit : DF (x, y) = 2x -1 0 2y , et donc l'algorithme de Newton s'écrit : 

x k+1 y k+1 = x k y k + δx δy avec 2x k -1 0 2y k δx δy = - x 2 k -
y k+1 = y k 2 > 0 et x k+1 = x k 2 + y k 4x k = 1 2x k (x 2 k + y k 2 ) = 0, car x 2 k + y k 2 > 0. (c) i. Comme y 0 = 1 et que y k+1 = y k 2 , on a y k = 2 -k ii. On écrit que x k+1 = g k (x k ) avec g k (x) = x 2 + 2 -k-2 1
x . L'étude de la fonction g k montre que

min g k = 2 -k+1 2 . Comme x k ≥ 2 -k 2 > 0 et que y k = 2 -k , on en déduit que x k+1 -x k = 1 2x k (-x 2 k + y k 2 ≤ 0.
iii. La suite (x k ) k∈IN est décroissante minorée par 0, et donc elle converge. En passant à la limite sur l'expression de x k+1 , on en déduit que la suite x k converge vers 0. Par l'expression de y k , on sait qu'elle converge également vers 0. D'où la conclusion.

Exercice 118 page 166 (Méthode de Newton pour le calcul de l'inverse) 1. (a) Soit g la fonction définie de IR * dans IR par g(x) = 1 xa. Cette fonction est continue et dérivable pour tout x = 0, et on a : g ′ (x) = -1

x 2 . L'algorithme de Newton pour la recherche d'un zéro de cette fonction s'écrit donc bien :

x (0) donné, x (k+1) = x (k) (2 -ax (k) ).
(2.52) (b) Soit (x (k) ) n∈IN définie par (2.42). D'après le théorème du cours, on sait que la suite (x (k) ) n∈IN converge de localement (de manière quadratique) dans un voisinage de 1 a . On veut déterminer ici l'intervalle de convergence précisément. On a x (k+1) = ϕ(x (k) ) où ϕ est la fonction définie par de IR dans IR par ϕ(x) = x(2ax). Le tableau de variation de la fonction ϕ est le suivant :

x | 0 1 a 2 a ϕ ′ (x) | + 0 - ϕ(x) | -∞ ր 1 a ց -∞ (2.53) Il est facile de remarquer que l'intervalle ]0, 1 a [ est stable par ϕ et que ϕ(] 1 a , 2 a [) =]0, 1 a [ Donc si x (0) ∈] 1
a , 2 a [ alors x (1) ∈]0, 1 a [, et on se ramène au cas x (0) ∈]0, 1 a [. On montre alors facilement que si x (0) ∈]0, 1 a [, alors x (k+1) ≥ x (k) pour tout n, et donc la suite (x (k) ) n∈IN est croissante. Comme elle est majorée (par 1 a ), elle est donc convergente. Soit ℓ sa limite, on a ℓ = ℓ(2aℓ), et comme ℓ ≥ x (0) > 0, on a ℓ = 1 a . Il reste maintenant à montrer que si x (0) 

∈] -∞, 0[∪] 2 a , +∞[ alors lim n→+∞ x (k) = -∞.
On montre d'abord facilement que si x (0) ∈] -∞, 0[, la suite (x n ) n∈IN est décroissante. Elle admet donc une limite finie ou infinie. Appelons ℓ cette limite. Celle-ci vérifie : ℓ = ℓ(2aℓ). Si ℓ est finie, alors ℓ = 0 ou ℓ = 1 a ce qui est impossible car ℓ ≤ x (0) < 0. On en déduit que ℓ = -∞. Enfin, l'étude des variations de la fonction ϕ montre que si x (0) ∈] 2 a , +∞[, alors x (1) ] -∞, 0[, et on est donc ramené au cas pécédent. 

(a) L'ensemble GL

(B + H) -1 = B(Id + B -1 H) -1 = +∞ k=0 (-B -1 H) k B -1 .
On a donc :

T (B + H) -T (B) = +∞ k=0 (B -1 H) k B -1 -B -1 = (Id + +∞ k=1 (-B -1 H) k -Id)B -1 = +∞ k=1 (-B -1 H) k B -1 .
On en déduit que

T (B + H) -T (B) + B -1 HB -1 = +∞ k=2 (-B -1 H) k B -1 .
L'application qui à H associe -B -1 HB -1 est clairement linéaire, et de plus,

T (B + H) -T (B) + B -1 HB -1 ≤ B -1 +∞ k=2 ( B -1 H ) k .
Or B -1 H < 1 par hypothèse. On a donc

T (B + H) -T (B) -B -1 HB -1 H ≤ B -1 3 H +∞ k=0 ( B -1 H ) k → 0 lorsque H → 0.
On en déduit que l'application T est différentiable et que DT (B)(H) = -B -1 HB -1 .

(c) La méthode de Newton pour la recherche d'un zéro de la fonction g s'écrit :

B 0 ∈ GL n (IR), Dg(B n )(B n+1 -B n ) = -g(B n ).
Or, d'apres la question précédente,

Dg(B n )(H) = -(B n ) -1 H(B n ) -1 . On a donc Dg(B n )(B n+1 -B n ) = -(B n ) -1 (B n+1 -B n )(B n ) -1 .
La méthode de Newton sécrit donc :

B 0 ∈ GL n (IR), -(B n+1 -B n ) = (Id -B n A)B n . (2.54) soit encore B 0 ∈ GL n (IR), B n+1 = 2B n -B n AB n . ( 2 

.55)

Analyse numérique I, télé-enseignement, L3

(d) Par définition, on a :

Id -AB n+1 = Id -A(2B n -B n AB n ) = Id -2AB n + AB n AB n .
Comme les matrices Id et AB n commutent, on a donc :

Id -AB n+1 = (Id -AB n ) 2 .
Une récurrence immédiate montre alors que Id -AB n = (Id -AB 0 ) 2 n . On en déduit que la suite Id -AB n converge (vers la matrice nulle) lorsque n → +∞ ssi ρ(Id

-AB 0 ) < 1, et ainsi que la suite B n converge vers A -1 si et seulement si ρ(Id -AB 0 ) < 1.
Exercice 125 page 169 (Autre démonstration de la convergence locale de Newton) Remarquons d'abord que

Dg(x) = Dg(x) -Dg(x) + Dg(x) = Dg(x)(Id + S)
où S = Dg(x) -1 (Dg(x) -Dg(x)). Or si S < 1, la matrice (Id + S) est inversible et

(Id + S) -1 ≤ 1 1 -S .
Nous allons donc essayer de majorer S . Par définition de S, on a : 

S ≤ Dg(x) -1 Dg(x) -Dg(x). Comme g ∈ C 2 (IR n , IR n ), on a Dg ∈ C 1 (IR n , M n (IR))) ; donc par continuité de Dg, pour tout ε ∈ IR * + , il existe a ∈ IR * + tel que si x -x ≤ a alors Dg(x) -Dg(x) ≤ ε. En prenant ε = 1 2 Dg(x) -1 ,
(Id + S) -1 ≤ 1 1 -S ≤ 2, et comme (Id + S) -1 = (Dg(x)) -1 Dg(x), on a Dg(x) -1 Dg(x) ≤ 2, et donc Dg(x) -1 ≤ (Dg(x)) -1 (Dg(x)) -1 Dg(x) ≤ 2 (Dg(x)) -1 .
En résumé, on a donc prouvé l'existence de a et de

a 1 = 2 Dg(x) -1 tels que si x ∈ B(x, a) alors Dg(x) est inversible et Dg(x) -1 ≤ a 1 .
Il reste maintenant à trouver a 2 tel que

x, y ∈ B(x, a) =⇒ g(y) -g(x) -Dg(x)(y -x) ≤ a 2 y -x 2 . Comme g ∈ C 2 (IR n , IR n ), on a donc Dg ∈ C 1 (IR n , M n (IR)
)) (remarquons que jusqu'à présent on avait utilisé uniquement le caractère C 1 de g). On définit la fonction ϕ ∈ C 1 (IR, IR n ) par

ϕ(t) = g(x + t(y -x)) -g(x) -tDg(x)(y -x).
On a donc ϕ(1) = g(y)g(x) -Dg(x)(yx) (c'est le terme dont on veut majorer la norme) et ϕ(0) = 0. On écrit maintenant que ϕ est l'intégrale de sa dérivée :

ϕ(1) -ϕ(0) = 1 0 ϕ ′ (t)dt = 1 0 Dg(x + t(y -x))(y -x) -Dg(x)(y -x)dt. Analyse numérique I, télé-enseignement, L3 On a donc ϕ(1) -ϕ(0)| = g(y) -g(x) -Dg(x)(y -x) ≤ 1 0 Dg(x + t(y -x))(y -x) -Dg(x)(y -x) dt ≤ y -x 1 0 Dg(x + t(y -x)) -Dg(x) dt.
(2.56)

Pour majorer Dg(x + t(yx)) -Dg(x)) , on utilise alors le théorème des accroissements finis (parfois aussi appelé "théorème de la moyenne") appliqué à Dg ; de l'inégalité (2.56), on tire donc que pour x, y ∈ B(x, a) et t ∈]0, 1[ : De plus, t < 1 et on déduit de (2.57) que :

Dg(x + t(y -x)) -Dg(x) ≤ t y -x sup c∈B(x,a) D(Dg)(c) L(IR n ,Mn(IR)) . ( 2 
Dg(x + t(y -x) -Dg(x)) ≤ a 2 y -x , et de l'inégalité (2.56) on déduit ensuite que g(y) -g(x) -Dg(x)(y -x) ≤ 1 0 a 2 y -x dt y -x = a 2 y -x 2 ,
ce qui termine la preuve. On peut alors appliquer le théorème 2.20 pour obtenir le résultat de convergence locale du théorème 2.19.

Exercice 120 page 167 (Valeurs propres et méthode de Newton) On écrit le système sous la forme F (x, λ) = 0 où F est une fonction de IR n+1 dans IR n+1 définie par

F (y) = F (x, λ) = Ax -λx x • x -1 , et on a donc DF (λ, x)(z, ν) = Az -λz -ν x 2x • z , Supposons que DF (x, λ)(z, ν) = 0, on a alors Az -λz -ν x = 0 et 2x • z = 0.
En multipliant la première équation par x et en utilisant le fait que A est symétrique, on obtient : Exercice 126 page 169 (Convergence de la méthode de Newton si f ′ (x) = 0) Comme f ′′ (x) = 0, on peut supposer par exemple f ′′ (x) > 0 ; par continuité de f ′′ , il existe donc η > 0 tel que

z • Ax -λz • x -ν x • x = 0, ( 2 
f ′ (x) < 0 si x ∈]x -η, x[ et f ′ (x) > 0 si x ∈]x, x + η[, et donc f est décroissante sur ]x -η, x[ (et croissante sur ]x, x + η[). Supposons x 0 ∈]x, x + η[, alors f ′ (x 0 ) > 0 et f ′′ (x 0 ) > 0.
On a par définition de la suite

(x n ) n∈IN , f ′ (x 0 )(x 1 -x 0 ) = -f (x 0 ) = f (x) -f (x 0 ) = f ′ (ξ 0 )(x -x 0 ), où ξ 0 ∈]x, x 0 [ Comme f ′ est strictement croissante sur ]x, x + η[, on a f ′ (ξ 0 ) < f ′ (x 0 ) et donc x 1 ∈]x, x 0 [.
On montre ainsi par récurrence que la suite (x n ) n∈IN vérifie

x 0 > x 1 > x 2 . . . > x n > x n+1 > . . . > x.
La suite (x n ) n∈IN est donc décroissante et minorée, donc elle converge. Soit x sa limite ; comme

f ′ (x n )(x n+1 -x n ) = -f (x n ) pour tout n ∈ IN,
on a en passant à la limite :

f (x) = 0, donc x = x.
Le cas f ′′ (x) < 0 se traite de la même manière. Montrons maintenant que la méthode est d'ordre 1. Par définition, la méthode est d'ordre 1 si

x n+1 -x x n -x → β ∈ IR * + .
Par définition de la suite (x n ) n∈IN , on a :

f ′ (x n )(x n+1 -x n ) = -f (x n ) (2.59) Comme f ∈ C 2 (IR) et f ′ (x) = 0, il existe ξ n ∈]x, x n [ et η n ∈]x, x n [ tels que f ′ (x n ) = f ′′ (ξ n )(x n -x) et -f (x n ) = - 1 2 f ′′ (η n )(x -x n ) 2 .
On déduit donc de (2.59) que

f ′′ (ξ n )(x n+1 -x n ) = - 1 2 f ′′ (η n )(x n -x), soit f ′′ (ξ n )(x n+1 -x) = (- 1 2 f ′′ (η n ) + f ′′ (ξ n ))(x n -x) On a donc x n+1 -x x n -x = |1 - 1 2 f ′′ (η n ) f ′′ (ξ n ) | → 1 2 lorsque n → +∞.
La méthode est donc d'ordre 1.

On peut obtenir une méthode d'ordre 2 en appliquant la méthode de Newton à f ′ .

Exercice 128 page 170 (Variante de la méthode de Newton) 1. On a évidemment x (0) = x 0 ∈ I. Supposons que x (k) ∈ I et montrons que x (k+1) ∈ I. Par définition, on peut écrire :

x (k+1) = x (k) - f (x (k) ) -f (x 0 ) f ′ (y) - f (x 0 ) f ′ (y) . Donc x (k+1) -x 0 = x (k) -x 0 - f ′ (ξ n )(x (k) n -x 0 ) -f (x 0 ) f ′ (y) , où ξ n ∈ [x 0 , x (k) ].
On en déduit que

x (k+1) -x 0 = (1 - f ′ (ξ n ) f ′ (y) )(x (k) n -x 0 ) - f (x 0 ) f ′ (y) .
Ceci entraîne :

|x (k+1) -x 0 | = 1 |f ′ (y)| |f ′ (ξ n ) -f ′ (y)||x (k) -x 0 | + |f (x 0 )| f ′ (y) ≤ λ 1 2λ c + c 2λ λ = c. Donc x (k+1) ∈ I.
2. On a :

x (k+1) -x = x (k) -x - f (x (k) ) -f (x) f ′ (y) - f (x) f ′ (y) . Donc|x (k+1) -x| ≤ |x (k) -x||f ′ (y) -f ′ (η n )| 1 |f ′ (y)| où η n ∈ [x, x (k) ];
Par hypothèse, on a donc

|x (k+1) -x| ≤ |x (k) -x| 1 2λ λ ≤ c 2 |x (k) -x|.
On en déduit par récurrence que

|x (k) -x| ≤ c 2 n |x (0) -x|. Ceci entraîne en particulier que x (k) → x n → +∞.
Il reste à montrer que la convergence est au moins linéaire. On a :

|x (k+1) -x| |x (k) -x| = |f ′ (y) -f ′ (x (k) )| 1 |f ′ (y)| Donc |x (k+1) -x| |x (k) -x| → |1 - f ′ (x) f ′ (y) | = β ≥ 0 n → +∞
La convergence est donc au moins linéaire, elle est linéaire si f ′ (x) = f ′ (y) et super-linéaire si f ′ (x) = f ′ (y). 3. Le fait de remplacer y par y (k) ne change absolument rien à la preuve de la convergence de x (k) vers x. Par contre, on a maintenant :

|x (k+1) -x| |x (k) -x| = |f ′ (y n ) -f ′ (η n )| 1 |f ′ (y n )| = |1 - f ′ (η n ) f ′ (y n ) | Or f ′ (η n ) → n→+∞ f ′ (x) et donc si f ′ (y n ) → n→+∞ f ′ (x) la convergence devient superlinéaire.
4. Pour n ≥ 1, l'algorithme se généralise en :

x (0) = x 0 x (k+1) = x (k) -(DF (y)) -1 f (x (k)
).

On a donc

x (k+1) - (0) ). On a

x 0 = x (k) -x 0 -(DF (y)) -1 (f (x (k) ) -f (x 0 )) -(DF (y)) -1 f (x 0 ). (2.60) On définit ϕ : IR → IR n par ϕ(t) = f (tx (k) + (1 -t)x
ϕ ′ (t) = Df (tx (k) + (1 -t)x (0) )(x (k) -x (0) ). et donc f (x (k) ) -f (x (0) ) = ϕ(1) -ϕ(0) = 1 0 ϕ ′ (t)dt = 1 0 Df (tx (k) + (1 -t)x (0) )(x (k) -x (0) )dt.
L'égalité (2.60) s'écrit donc

x (k+1) -x (0) = Id -(Df (y)) -1 1 0 Df (tx (k) + (1 -t)x (0) )dt (x (k) -x (0) ) -(Df (y)) -1 f (x 0 ) = (Df (y)) -1 1 0 Df (y) -Df (tx (k) + (1 -t)x (0) dt (x (k) -x (0) ) -(Df (y)) -1 f (x 0 ).
On en déduit que :

x (k+1) -x (0) ≤ (Df (y)) -1 1 0 Df (y) -Df (tx (k) + (1 -t)x (0) ) dt x (k) -x (0) + (Df (y)) -1 f (x 0 ) . (2.61)
Si on suppose que x (k) ∈ I, alors tx (k) + (1t)x (0) ∈ I. L'hypothèse (iii) généralisée à la dimension n s'écrit :

Df (x) -Df (y) ≤ 1 2λ ∀(x, y) ∈ I 2 ,
si on suppose de plus que

(ii) f (x 0 ) ≤ c 2λ et (iv) (Df (x)) -1 ≤ λ ∀x ∈ I, alors 2.61 donne que x (k+1) -x (0) ≤ x (k) -x (0) λ 1 2λ + λ c 2λ ≤ c.
ce qui prouve que x (k+1) ∈ I.

On montre alors de la même manière que x

(k) n→∞ → x, (car x (k+1) -x ≤ 1 2 x (k) -x ).
Exercice 129 page 170 (Méthode de Steffensen)

1. Comme f ′ (x) = 0, il existe ᾱ > 0 tel que f soit strictement monotone sur B(x, ᾱ) ; donc si f (x) = 0 et x ∈ B(x, ᾱ) alors x = x. De plus, comme x + f (x) → x lorsque x → x, il existe α tel que si x ∈ B(x, α), alors f (x + f (x) ∈ B(x, ᾱ). Or si x ∈ B(x, α), on a :f (x) = 0 si x = x, donc x + f (x) = x et comme x + f (x) ∈ B(x, ᾱ) où f est strictement monotone, on a f (x) = f (x + f (x)) si x = x. On en déduit que si x n ∈ B(x, α), alors f (x n + f (x n )) = f (x n ) (si x n = x) et donc x n+1 est défini par x n+1 = (f (x n )) 2 f (x n + f (x n )) -f (x n )
. Ceci est une forme de stabilité du schéma).

Analyse numérique I, télé-enseignement, L3

2. Montrons maintenant que la suite (x n ) n∈IN vérifie :

x n+1 -x = a(x n )(x n -x) 2 si x n = x et x 0 ∈ B(x, α),
où a est une fonction continue. Par définition de la suite (x n ) n∈IN , on a :

x n+1 -x = x n -x - (f (x n )) 2 f (x n + f (x r )) -f (x n ) . (2.62)
Soit ψ n : [0, 1] → IR la fonction définie par :

ψ n (t) = f (x n + tf (x n )) On a ψ n ∈ C 2 (]0, 1[, IR), ψ n (0) = f (x n ) et ψ n (1) = f (x n + f (x n )).
On peut donc écrire :

f (x n + f (x n )) -f (x n ) = ψ n (1) -ψ n (0) = 1 0 ψ ′ n (t)dt
Ceci donne :

f (x n + f (x n )) -f (x n ) = 1 0 f ′ (x n + tf (x n ))f (x n )dt On pose maintenant ξ n (t) = f ′ (x n + tf (x n )), et on écrit que ξ n (t) = t 0 ξ ′ n (s)ds + ξ n (0)
. On obtient alors :

f (x n + f (x n )) -f (x n ) = f (x n ) f (x n ) 1 0 t 0 f ′′ (x n + sf (x n ))ds + f ′ (x n ) .
(2.63) Soit b ∈ C(IR, IR) la fonction définie par :

b(x) = 1 0 t 0 f ′′ (x + sf (x))ds dt. Comme f ∈ C(IR, IR), on a b(x) → 1 2 f ′′ (x) lorsque x → x
L'égalité (2.63) s'écrit alors :

f (x n + f (x n )) -f (x n ) = (f (x n )) 2 b(x n ) + f (x n )f ′ (x n ). (2.64) Comme x 0 ∈ B(x, α), on a x n ∈ B(x, α) et donc f (x n ) = 0 si x n = x.
Donc pour x n = x, on a grâce à (2.62) et (2.64) :

x n+1 -x = x n -x - f (x n ) f (x n )b(x n ) + f ′ (x n )) (2.65) On a maintenant -f (x n ) = f (x) -f (x n ) = 1 0 ϕ ′ (t)dt où ϕ ∈ C 2 (IR, IR) est définie par ϕ(t) = f (tx + (1 -t)x n ). Donc -f (x n ) = 1 0 f ′ (tx + (1 -t)x n )(x -x n )dt. Soit χ ∈ C 1 (IR, IR) la fonction définie par χ(t) = f ′ (tx + (1 -t)x n ), Analyse numérique I, télé-enseignement, L3 on a χ(0) = f ′ (x n ) et donc : -f (x n ) = 1 0 t 0 (f ′′ (sx + (1 -s)x n )(x -x n ) + f ′ (x n )) ds(x -x n ) dt Soit c ∈ C(IR, IR) la fonction définie par c(x) = 1 0 t 0 f ′′ (sx + (1 -s)x)ds dt, on a c(x) → 1 2 f ′′ (x) lorsque x → x et : -f (x n ) = c(x)(x -x n ) 2 + f ′ (x n )(x -x n )
De cette égalité et de (2.65), on obtient :

x n+1 -x = (x n -x) 1 + c(x n )(x n -x) -f ′ (x n ) f (x n )b(x n ) + f ′ (x n ) = (x n -x) f (x n )b(x n ) + f ′ (x n ) -c(x n )(x -x n ) 2 b(x n ) -f ′ (x n )(x -x n )b(x n ) + f ′ (x n ) +c(x n )(x n -x) -f ′ (x n )) .
On en déduit :

(x n+1 -x) = (x n -x) 2 a(x n ) (2.66) où a(x) = c(x)b(x)(x -x) + f ′ (x)b(x)b + c(x) f (x) + f ′ (x) La fonction a est continue en tout point x tel que D(x) = f (x)b(x) + f ′ (x) = 0. Elle est donc continue en x puisque D(x) = f (x)b(x) + f ′ (x) = f ′ (x) = 0.
De plus, comme f , f ′ et b sont continues, il existe un voisinage de x sur lequel D est non nulle et donc a continue.

Par continuité de a, pour tout

ε > 0, il existe η ε > 0 tel que si x ∈ B(x, η ε ) alors |a(x) -a(x)| ≤ ε. (2.67) Calculons a(x) = f ′ (x)b(x) + c(x) f ′ (x) = 1 2 f ′′ (x) 1 + f ′ (x) f ′ (x) = β. Soit γ = min(η 1 , 1 2(β + 1) ) ; si x ∈ B(x, γ), alors |a(x)| ≤ β + 1 grâce à (2.67), et |x -x| ≤ 1 2(β + 1)
.

On déduit alors de (2.66) que si x n ∈ B(x, γ), alors

|x n+1 -x| ≤ 1 2 |x n -x|.
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|x n+1 -x| |x n -x| 2 = |a(x n )|.
Or on a montré à l'étape 3 que a est continue et que a(x) → β ∈ IR. On a donc une convergence d'ordre au moins 2.

Exercice 131 page 171 (Méthode de la sécante)

1. Supposons x n-1 et x n connus. Pour que x n+1 soit bien défini, il faut et il suffit que f (x n ) = f (x n-1
). Or par hypothèse, f ′ (x) = 0. On en déduit qu'il existe un voisinage de x sur lequel f ′ est monotone, donc bijective. Donc il existe ε 1 tel que si

x n , x n-1 ∈]x -ε 1 , x + ε 1 [, x n = x n-1 et x n = x, alors f (x n ) = f (x n-1 ). De même, toujours par injectivité de f sur ]x -ε 1 , x + ε 1 [, on a f (x n ) = 0. En choisissant x 0 et x 1 dans l'intervalle ]x -ε 1 , x + ε 1 [
, on a par une récurrence immédiate que la suite (x n ) n∈IN est bien définie. Par définition, si f (x n ) = 0, on a :

x n+1 -x = x n -x - f (x n ) -f (x) x n - x (x n -x) x n -x n-1 f (x n ) -f (x n-1 )
.

En notant I(a, b) l'intervalle d'extrémités a et b, il existe donc θ n ∈ I(x, x n ) et ζ n ∈ I(x n-1 , x n ) tels que x n+1 -x = (x n -x)(1 - f ′ (θ n ) f ′ (ζ n ) ), , et donc : e n+1 = |1 - f ′ (θ n ) f ′ (ζ n ) |e n . Or f ′ est continue, il existe ε 2 tel que x n , x n-1 ∈]x -ε 2 , x + ε 2 [, alors 1 - f ′ (θ n ) f ′ (ζ n ) ≤ 1/2, et donc e n+1 ≤ 1 2 e n .
En posant ε = min(ε 1 , ε 2 ), on a donc par récurrence le fait que si x 0 et x 1 appartiennent à l'intervalle ]xε, x + ε[, la suite (x n ) n∈IN est bien définie et la méthode de la sécante est localement convergente.

(a) Par définition,

e n+1 = e n - f (x n ) -f (x) f (x n ) -f (x n-1 ) (x n -x n-1 ).
Donc :

(f (x n ) -f (x n-1 )e n+1 = e n f (x n ) -e n f (x n-1 ) -f (x n )e n + f (x n )e n-1 (2.68) = -e n f (x n-1 ) + f (x n )e n-1 (2.69) = e n e n-1 ( f (x n ) e n - f (x n-1 ) e n-1
).

(2.70)

Or f (xn) en = f (xn)-f (x) en (resp. f (xn-1 en-1 = f (xn-1-f (x)
en-1

)est la valeur moyenne de f ′ sur l'intervalle d'extrémités x, x n (resp. x, x n-1 ). On en déduit que (f (x n )f (x n-1 )e n+1 = e n e n-1 (µ nµ n-1 ), d'où le résultat. (b) Si x > x, la fonction µ vérifie :

(x -x)µ(x) = x x f ′ (t)dt,
on en déduit que la fonction µ est continue et dérivable et sa dérivée µ ′ vérifie :

(x -x)µ ′ (x) + µ(x) = f ′ (x), ∀x > x.
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µ ′ (x) = f ′ (x) -µ(x) x -x , ∀x > x. (2.71) Or µ(x) = 1 x -x (f (x) -f (x)) (2.72) = 1 x -x (f (x) -(f (x) + (x -x)f ′ (x) + 1 2 (x -x) 2 f ′′ (x)(x -x) 3 ε(x). (2.73)
On en déduit que

µ(x) = f ′ (x) + 1 2 (x -x)f ′′ (x) + (x -x) 2 ε(x).
Et finalement, en reportant dans (2.71) :

µ ′ (x) = 1 2 f ′′ (x) + (x -x)ε(x), ∀x > x.
(2.74)

On en déduit que µ ′ admet une limite lorsque x tend vers x par valeurs positives. Le même raisonnement pour x < x donne le même résultat. Enfin, comme f ∈ C 2 (IR, IR), on peut passer à la limite dans (2.74) et on obtient :

lim x→x µ ′ (x) = 1 2 f ′′ (x). (2.75) (c) 
Par définition, on a

M n = | µ(x n ) -µ(x n-1 ) x n -x n-1 x n -x n-1 f (x n ) -f (x n-1 ) | = µ ′ (ζ n ) f ′ (ξ n ) , où ζ n et ξ n sont compris entre x n-1 et
x n (par le théorème des accroissements finis). Comme la suite (x n ) n∈IN tend vers x, comme f ′ est continue et grâce à (2.75), on a :

lim n→+∞ M n = 1 2 f ′′ (x) f ′ (x) .
Notons que cette limite est finie car f ′ (x) = 0 par hypothèse. On en conclut que la suite (M n ) n∈IN est bornée. 

a i = M e i = M (x i -x), pour i = 0, 1, donc si x 0 , x 1 ∈]x -ε 1 , x + ε 1 [ avec ε 1 < 1/M , alors a 0 < 1 et a 1 < 1.
= r + 1, c.à.d. r = 1± √ 5 2 . Si la suite (b n ) n∈IN vérifie (2.76), il existe donc C ∈ IR et D ∈ IR tels que b n = ln(a n ) = C( 1 + √ 5 2 ) n + D( 1 - √ 5 2 
) n .

On en déduit que a n ≤ αβ d n , avec d = 1+ 

β n = (1 -d) ln e n + ln e n-1 + ln M n = (1 -d)(β n-1 + d ln e n-1 ) + ln e n-1 + ln M n = (1 -d)(β n-1 + (1 -d)d ln e n-1 ) + ln e n-1 + ln M n .
Or (1d)d = -1 car d est racine de l'équation : d 2d -1 = 0. On obtient donc finalement

β n = (1 -d)β n-1 + ln M n .
On pose maintenant β n = C n (1d) n (obtenu par "variation de la constante" C pour la solution de l'équation homogène

β n = (1 -d)β n-1
). On obtient alors

C n (1 -d) n = (1 -d)C n-1 (1 -d) n-1 + ln M n .
Ceci entraîne : L'objectif de ce chapitre est de rechercher des extrema, c'est-à-dire des minima ou des maxima d'une fonction f ∈ C(IR n , IR) avec ou sans contrainte. Notons que la recherche d'un minimum ou d'un maximum implique que l'on ait une relation d'ordre, pour pouvoir comparer les valeurs prises par f . On insiste donc bien sur le fait que la fonction f est à valeurs dans IR (et non pas IR n , comme dans le chapitre précédent). Rappelons tout d'abord quelques définitions du cours de calcul différentiel. Définition 3.1 (Extremum d'une fonction). Soit E un espace vectoriel normé et f : E → IR. On dit que x est un minimum local de f s'il existe un voisinage V de x tel que

C n = C n-1 + ln M n (1 -d) n . Donc C n = C 0 + n p=1 ln M p (1 -d) p , et comme la suite (M n ) n∈IN est
f (x) ≤ f (x), ∀x ∈ V.
De même, on dit que x est un maximum local de f s'il existe un voisinage V de x tel que

f (x) ≥ f (x), ∀x ∈ V.
On dit que x est un extremum local de f si c'est un minimum local ou un maximum local. On dit que x est un minimum global de f si

f (x) ≤ f (x), ∀x ∈ E.
De même, on dit que x est un maximum global de f si

f (x) ≥ f (x), ∀x ∈ E.
On dit que x est un extremum global de f si c'est un minimum global ou un maximum global.

Le problème d'optimisation sans contrainte s'écrit :

Trouver x ∈ IR n tel que : f (x) ≤ f (y), ∀y ∈ IR n . ( 3.1) 
Le problème d'optimisation avec contrainte s'écrit :

Trouver x ∈ Ktel que : f (x) ≤ f (y), ∀y ∈ K. ( 3.2) 
où K ⊂ IR n et K = IR n L'ensemble K où l'on recherche la solution est donc l'ensemble qui représente les contraintes. Par exemple, si l'on cherche un miminum d'une fonction f de IR dans IR et que l'on demande que les points qui réalisent ce minimum soient positifs, on aura K = IR + . Si x est solution du problème (3.1), on dit que x ∈ arg min IR n f , et si x est solution du problème (3.2), on dit que x ∈ arg min K f. Vous savez déjà que si un point x réalise le minimum d'une fonction f dérivable de IR dans IR, alors f ′ (x) = 0. On dit que c'est un point critique (voir définition 3.2). La réciproque est évidemment fausse : la fonction x → x 3 est dérivable sur IR, et sa dérivée s'annule en 0 qui est donc un point critique, mais 0 n'est pas un extremum (c'est un point d'inflexion). Nous verrons plus loin que de manière générale, lorsque la fonctionnelle f est différentiable, les extrema sont des points critiques de f , au sens où ils annulent le gradient.

Définition 3.2 (Point critique). Soit E un espace vectoriel normé et f : E → IR différentiable. On dit que x ∈ E est un point critique de f si Df (x) = 0.
Pour illustrer un cas de point critique qui n'est pas un maximum ni un minimum, prenons un exemple en dimension 2, avec

f (x 1 , x 2 ) = x 2 1 -x 2 2 .

On a alors

Df (x 1 , x 2 )(h 1 , h 2 ) = 2(x 1 h 1 -x 2 h 2 ) et Df (0, 0) = 0.
Le point (0, 0) est donc un point critique de f . Si on trace la surface x → x 2 1x 2 2 , on se rend compte que le point (0, 0) est minimal dans une direction et maximal dans une direction indépendante de la première. C'est ce qu'on appelle un point selle Définition 3.3 (Point selle). Soit E un espace vectoriel normé et f : E → IR. On dit que x est un point selle de f s'il existe F et G des sous espaces vectoriels de E tels que E = F ⊕ G et un voisinage V de x tel que

f (x + z) ≤ f (x), ∀z ∈ F ; x + z ∈ V, f (x + z) ≥ f (x), ∀z ∈ G ; x + z ∈ V. 3.1.2 Convexité Définition 3.4 (Convexité). Soit E un espace vectoriel (sur IR) et f : E → IR. On dit que f est convexe si f (tx + (1 -t)y) ≤ tf (x) + (1 -t)f (y) pour tout (x, y) ∈ E 2 et t ∈ [0, 1]. On dit que f est strictement convexe si f (tx + (1 -t)y) < tf (x) + (1 -t)f (y) pour tout (x, y) ∈ E 2 t.q. x = y et t ∈]0, 1[. Proposition 3.5 (Première caractérisation de la convexité). Soit E un espace vectoriel normé (sur IR) et f ∈ C 1 (E, IR) alors : Analyse numérique I, télé-enseignement, L3 1. la fonction f est convexe si et seulement si f (y) ≥ f (x) + Df (x)(y -x), pour tout couple (x, y) ∈ E 2 , 2. la fonction f est strictement convexe si et seulement si f (y) > f (x) + Df (x)(y -x) pour tout couple (x, y) ∈ E 2 tel que x = y.
DÉMONSTRATION -Démonstration de 1.

(⇒) Supposons que f est convexe : soit (x, y) ∈ E 2 ; on veut montrer que f (y)

≥ f (x) + Df (x)(y -x). Soit t ∈ [0, 1], alors f (ty + (1 -t)x) ≤ tf (y) + (1 -t)f (x)
grâce au fait que f est convexe. On a donc :

f (x + t(y -x)) -f (x) ≤ t(f (y) -f (x)). (3.3) Comme f est différentiable, f (x + t(y -x)) = f (x) + Df (x)(t(y -x)) + tε(t) où ε(t) tend vers 0 lorsque t tend vers 0. Donc en reportant dans (3.3), ε(t) + Df (x)(y -x) ≤ f (y) -f (x), ∀t ∈]0, 1[ 
. En faisant tendre t vers 0, on obtient alors :

f (y) ≥ Df (x)(y -x) + f (x).
(⇐) Montrons maintenant la réciproque : Soit (x, y) ∈ E 2 , et t ∈]0, 1[ (pour t = 0 ou = 1 on n'a rien à démontrer). On veut montrer que f (tx + (1 -t)y) ≤ tf (x) + (1 -t)f (y). On pose z = tx + (1 -t)y. On a alors par hypothèse :

f (y) ≥ f (z) + Df (z)(y -z), et f (x) ≥ f (z) + Df (z)(x -z).
En multipliant la première inégalité par 1 -t, la deuxième par t et en les additionnant, on obtient :

(1 -t)f (y) + tf (x) ≥ f (z) + (1 -t)Df (z)(y -z) + tDf (z)(x -z) (1 -t)f (y) + tf (x) ≥ f (z) + Df (z)((1 -t)(y -z) + t(x -z)). Et comme (1 -t)(y -z) + t(x -z) = 0, on a donc (1 -t)f (y) + tf (x) ≥ f (z) = f (tx + (1 -t)y).
Démonstration de 2 (⇒) On suppose que f est strictement convexe, on veut montrer que f (y) > f (x) + Df (x)(y -x) si y = x. Soit donc (x, y) ∈ E 2 , x = y. On pose z = 1 2 (y -x), et comme f est convexe, on peut appliquer la partie 1. du théorème et écrire que f

(x + z) ≥ f (x) + Df (x)(z). On a donc f (x) + Df (x)( y-x 2 ) ≤ f ( x+y 2 ). Comme f est strictement convexe, ceci entraîne que f (x) + Df (x)( y-x
2 ) < 1 2 (f (x) + f (y)), d'où le résultat. (⇐) La méthode de démonstration est la même que pour le 1.

Proposition 3.6 (Seconde caractérisation de la convexité). 

Soit E = IR n et f ∈ C 2 (E, IR). Soit H f (x) la hessienne de f au point x, i.e. (H f (x)) i,j = ∂ 2 i,j f (x). Alors 1. f est convexe si et seulement si H f (x) est symétrique et positive pour tout x ∈ E (c.à.d. H f (x) t = H f (x) et H f (x)y • y ≥ 0 pour tout y ∈ IR n ) 2. f est strictement convexe si H f (x)
H f (x) est symétrique car ∂ 2 i,j f = ∂ 2 j,i f car f est C 2 . Par définition, H f (x) = D(∇f (x)) et ∇f ∈ C 1 (IR n , IR n ). Soit (x, y) ∈ E 2 , comme f est convexe et de classe C 1 ,
on a, grâce à la proposition 3.5 :

f (y) ≥ f (x) + ∇f (x) • (y -x). (3.4) Soit ϕ ∈ C 2 (IR, IR) définie par ϕ(t) = f (x + t(y -x)). Alors : f (y) -f (x) = ϕ(1) -ϕ(0) = 1 0 ϕ ′ (t)dt = [ϕ ′ (t)(t -1)] 1 0 - 1 0 ϕ ′′ (t)(t -1)dt, c'est-à dire : f (y) -f (x) = ϕ ′ (0) + 1 0 ϕ ′′ (t)(1 -t)dt. Or ϕ ′ (t) = ∇f (x + t(y -x)) • (y -x), et ϕ ′′ (t) = D(∇f (x + t(y -x))(y -x) • (y -x) = H f (x + t(y -x))(y -x) • (y -x).
On a donc :

f (y) -f (x) = ∇f (x)(y -x) + 1 0 H f (x + t(y -x))(y -x) • (y -x)(1 -t)dt. ( 3.5) 
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Les inégalités (3.4) et (3.5) entraînent :

1 0 H f (x + t(y -x))(y -x) • (y -x)(1 -t)dt ≥ 0 ∀x, y ∈ E. On a donc : 1 0 H f (x + tz)z • z(1 -t)dt ≥ 0 ∀x, ∀z ∈ E. ( 3.6) 
En fixant x ∈ E, on écrit (3.6) avec z = εy, ε > 0, y ∈ IR n . On obtient :

ε 2 1 0 H f (x + tεy)y • y(1 -t)dt ≥ 0 ∀x, y ∈ E, ∀ε > 0, et donc : 1 0 Hf (x + tεy)y • y(1 -t)dt ≥ 0 ∀ε > 0. Pour (x, y) ∈ E 2 fixé, H f (x + tεy) tend vers H f (x) uniformément lorsque ε → 0, pour t ∈ [0, 1]
. On a donc :

1 0 H f (x)y • y(1 -t)dt ≥ 0, c.à.d. 1 2 H f (x)y • y ≥ 0. Donc pour tout (x, y) ∈ (IR n ) 2 , H f (x)y • y ≥ 0 donc H f (x) est positive.
(⇐) Montrons maintenant la réciproque : On suppose que H f (x) est positive pour tout x ∈ E. On veut démontrer que f est convexe ; on va pour cela utiliser la proposition 3.5 et montrer que :

f (y) ≥ f (x) + ∇f (x) • (y -x) pour tout (x, y) ∈ E 2 .
Grâce à (3.5), on a :

f (y) -f (x) = ∇f (x) • (y -x) + 1 0 H f (x + t(y -x))(y -x) • (y -x)(1 -t)dt. Or H f (x + t(y -x))(y -x) • (y -x) ≥ 0 pour tout couple (x, y) ∈ E 2 , et 1 -t ≥ 0 sur [0, 1]. On a donc f (y) ≥ f (x) + ∇f (x) • (y -x) pour tout couple (x, y) ∈ E 2 .
La fonction f est donc bien convexe.

Démonstration de 2.

(⇐) On suppose que H f (x) est strictement positive pour tout x ∈ E, et on veut montrer que f est strictement convexe. On va encore utiliser la caractérisation de la proposition 3.5. Soit donc (x, y) ∈ E 2 tel que y = x. Alors :

f (y) = f (x) + ∇f (x) • (y -x) + 1 0 H f (x + t(y -x))(y -x) • (y -x) >0 si x =y (1 -t) =0 si t∈]0,1[ dt.
Donc f (y) > f (x) + ∇f (x)(y -x) si x = y, ce qui prouve que f est strictement convexe.

Contre-exemple Pour montrer que la réciproque de 2. est fausse, on propose le contre-exemple suivant : Soit

n = 1 et f ∈ C 2 (IR, IR), on a alors H f (x) = f ′′ (x).
Si f est la fonction définie par f (x) = x 4 , alors f est strictement convexe mais f ′′ (0) = 0.

Exercices (extrema, convexité)

Exercice 133 (Vrai / faux). corrigé en page 194

1. L'application x → x ∞ est convexe sur IR 2 . 2. L'application x → x ∞ est strictement convexe sur IR 2 .
3. L'application de IR 2 dans IR définie par F (x, y) = x 2 -2xy + 3y 2 + y admet un unique minimum.

Soit

A ∈ M n,m (IR), b ∈ IR n , l'application x → Ax -b 2 admet un unique minimum.

Exercice 134 (Minimisation dans IR). Corrigé en page 194

On considère les fonctions définies de IR dans IR par

f 0 (x) = x 2 , f 1 (x) = x 2 (x-1) 2 , f 2 (x) = |x|, f 3 (x) = cos x, f 4 (x) = | cos x|, f 5 (x) = e x . On pose K = [-1, 1].
Pour chacune de ces fonctions, répondre aux questions suivantes :

1. Etudier la différentiabilité et la (stricte) convexité éventuelles de la fonction, ; donner l'allure de son graphe.

2. La fonction admet elle un minimum global sur IR ; ce minimum est-il unique ? Le cas échéant, calculer ce minimum.

3. La fonction admet elle un minimum sur K ; ce minimum est-il unique ? Le cas échéant, calculer ce minimum.

Exercice 135 (Fonctions quadratiques).

1. Montrer que la fonction f de IR 2 dans IR définie par f (x, y) = x 2 + 4xy + 3y 2 n'admet pas de minimum en (0, 0).

Trouver la matrice symétrique

S telle que f (x) = x t Sx, pour f 1 (x) = 2(x 2 1 + x 2 2 + x 2 3 -x 1 x 2 -x 2 x 3 ), puis pour f 2 (x) = 2(x 2 1 + x 2 2 + x 2 3 -x 1 x 2 -x 1 x 3 -x 2 x 3 ) Etudier la convexité des fonctions f 1 et f 2 . 3.
Calculer les matrices hessiennes de g 1 et g 2 définies par : g 1 (x, y) = 1 4 x 4 +x 2 y+y 2 et g 2 (x, y) = x 3 +xy-x et étudier la convexité de ces deux fonctions. 5. La fonction f 4 est différentiable sur IR, et non convexe. La fonction f 4 admet un minimum, qui est 0, et qui n'est pas unique car il est réalisé pour les points (2k + 1) π 2 , k ∈ Z Z . La fonction f 4 n'est pas différentiable en ces points.

= (x 1 , y) t avec -R < x 1 < R et y ∈ IR n-1 (n > 1), majorer f (x) en utilisant f (+R, y) et f (-R, y).
tv 1 + (1 -t)v 2 ∞ = (1, 1 -t) ∞ = 1 = t v 1 ∞ + (1 -t) v 2 ∞ . 3. Vrai. Posons X = (x, y) t , on reconnait la fonctionnelle quadratique F (x, y) = 1 2 (AX, X) -(b, X) avec A = 1 -1 -1 3 et b = 0 
6. La fonction f 5 est différentiable et strictement convexe. Elle n'admet pas de minimum. On a f 5 (x) → 0 lorsque x → -∞ mais f (x) > 0 pour tout x ∈ IR.

Optimisation sans contrainte 3.2.1 Définition et condition d'optimalité

Soit f ∈ C(E, IR) et E un espace vectoriel normé. On cherche x minimum global de f , c.à.d. :

x

∈ E tel que f (x) ≤ f (y) ∀y ∈ E, ( 3.7) 
ou un minimum local, c.à.d. :

x tel que ∃α > 0 f (x) ≤ f (y) ∀y ∈ B(x, α). DÉMONSTRATION -Supposons qu'il existe α > 0 tel que f (x) ≤ f (y) pour tout y ∈ B(x, α). Soit z ∈ E \ {0} ; si |t| < α z , on a x + tz ∈ B(x, α) (où B(x, α) désigne la boule ouverte de centre x et de rayon α) et on a donc f (x) ≤ f (x + tz). Comme f est différentiable en x, on a :

f (x + tz) = f (x) + Df (x)(tz) + |t|εz(t), où εz(t) → 0 lorsque t → 0. On a donc f (x) + tDf (x)(z) + |t|εz(t) ≥ f (x). Et pour α z > t > 0, on a Df (x)(z) + εz(t) ≥ 0.
En faisant tendre t vers 0, on obtient que

Df (x)(z) ≥ 0, ∀z ∈ E. On a aussi Df (x)(-z) ≥ 0 pour tout z ∈ E, et donc -Df (x)(z) ≥ 0 pour tout z ∈ E. On en conclut que Df (x) = 0.
Remarque 3.8 (Condition non suffisante). Attention, la proposition précédente donne une condition nécessaire mais non suffisante. En effet, Df (x) = 0 n'entraîne pas que f atteigne un minimum (ou un maximum) même local, en x. Prendre par exemple E = IR, x = 0 et la fonction f définie par : f (x) = x 3 pour s'en convaincre.

Résultats d'existence et d'unicité

Théorème 3.9 (Existence).

Soit E = IR n et f : E → IR une application telle que (i) f est continue, (ii) f (x) → +∞ quand x → +∞. Alors il existe x ∈ IR n tel que f (x) ≤ f (y) pour tout y ∈ IR n .
DÉMONSTRATION -La condition (ii) peut encore s'écrire

∀A ∈ IR, ∃R ∈ IR; x ≥ R ⇒ f (x) ≥ A. ( 3.9) 
On écrit (3.9) avec A = f (0). On obtient alors :

∃R ∈ IR tel que x ≥ R ⇒ f (x) ≥ f (0). On en déduit que inf IR n f = infB R f , où BR = {x ∈ IR n ; |x| ≤ R}. Or, BR est un compact de IR n et f est continue donc il existe x ∈ BR tel que f (x) = infB R f et donc f (x) = inf IR n f .
Remarque 3.10.

1. Le théorème est faux si E est un espace de Banach (c'est-à-dire un espace vectoriel normé complet) de dimension infinie car, dans ce cas, la boule fermée B R n'est pas compacte.

2. L'hypothèse (ii) du théorème peut être remplacée par

(ii) ′ ∃b ∈ IR n , ∃R > 0 tel que x ≥ R ⇒ f (x) ≥ f (b).
3. Sous les hypothèses du théorème il n'y a pas toujours unicité de x même dans le cas n = 1, prendre pour s'en convaincre la fonction f définie de IR dans IR par f (x) = x 2 (x -1)(x + 1).

Théorème 3.11 (Condition suffisante d'unicité). Soit E un espace vectoriel normé et f : E → IR strictement convexe alors il existe au plus un x ∈ E tel que f (x) ≤ f (y), ∀y ∈ E.

DÉMONSTRATION -Soit f strictement convexe, supposons qu'il existe x et x ∈ E tels que f (x) = f ( x) = inf IR n f. Comme f est strictement convexe, si x = x alors f ( 1 2 x + 1 2 x) < 1 2 f (x) + 1 2 f ( x) = inf IR n f, ce qui est impossible ; donc x = x.
Ce théorème ne donne pas l'existence. Par exemple dans le cas n = 1 la fonction f définie par f (x) = e x n'atteint pas son minimumn ; en effet, inf

IR n f = 0 et f (x) = 0 pour tout x ∈ IR, et pourtant f est strictement convexe. Par contre, si on réunit les hypothèses des théorèmes 3.9 et 3.11, on obtient le résultat d'existence et unicité suivant :

Théorème 3.12 (Existence et unicité). Soit E = IR n , et soit f : E → IR. On suppose que : (i) f continue, (ii) f (x) → +∞ quand x → +∞, (iii) f est strictement convexe ; alors il existe un unique x ∈ IR n tel que f (x) = inf IR n f.
L'hypothèse (i) du théorème 3.12 est en fait inutile car une fonction convexe de IR n dans IR est nécessairement continue.

Nous donnons maintenant des conditions suffisantes d'existence et d'unicité du minimum pour une fonction de classe C 1 .

Proposition 3.13 (Condition suffisante d'existence et unicité). Soit f ∈ C 1 (IR n , IR). On suppose que :

∃α > 0; (∇f (x) -∇f (y)) • (x -y) ≥ α|x -y| 2 , ∀(x, y) ∈ IR n × IR n , ( 3.10) 
Alors :

1. f est strictement convexe, 2. f (x) → +∞ quand |x| → +∞, et en conséquence, il existe un unique x ∈ IR n tel que f (x) = inf IR n f. DÉMONSTRATION - 1. Soit ϕ la fonction définie de IR dans IR n par : ϕ(t) = f (x + t(y -x)). Alors f (y) -f (x) = ϕ(1) -ϕ(0) = 1 0 ∇f (x + t(y -x)) • (y -x)dt,
On en déduit que

f (y) -f (x) -∇f (x) • (y -x) = 1 0 (∇f (x + t(y -x)) • (y -x) -∇f (x) • (y -x))dt, c'est-à-dire : f (y) -f (x) -∇f (x) • (y -x) = 1 0 (∇f (x + t(y -x)) -∇f (x)) • (y -x) ≥αt|y-x| 2 dt.
Grâce à l'hypothèse (3.10) sur f , ceci entraîne :

f (y) -f (x) -∇f (x) • (y -x) ≥ α 1 0 t|y -x| 2 dt = α 2 |y -x| 2 > 0 si y = x. (3.11) Analyse numérique I, télé-enseignement, L3
On a donc, pour tout (x, y) ∈ E 2 , f (y) > f (x) + ∇f (x) • (y -x) ; d'après la première caractérisation de la convexité, voir proposition 3.5, on en déduit que f est strictement convexe.

2. Montrons maintenant que f (y) → +∞ quand |y| → +∞. On écrit (3.11) pour x = 0 :

f (y) ≥ f (0) + ∇f (0) • y + α 2 |y| 2 . Comme ∇f (0) • y ≥ -|∇f (0)|(y), on a donc f (y) ≥ f (0) + |y| α 2 |y| -|∇f (0)| → +∞ quand |y| → +∞.
La fonction f vérifie donc bien les hypothèses du théorème 3.30, et on en déduit qu'il existe un unique x qui minimise f . Remarque 3.14 (Généralisation à un espace de Hilbert). Le théorème 3.12 reste vrai si E est un espace de Hilbert ; on a besoin dans ce cas pour la partie existence des hypothèses (i), (ii) et de la convexité de f . Proposition 3.15 (Caractérisation des points tels que

f (x) = inf E f ). Soit E espace vectoriel normé et f une fonction de E dans IR. On suppose que f ∈ C 1 (E, IR) et que f est convexe. Soit x ∈ E. Alors : f (x) = inf E f ⇔ Df (x) = 0. En particulier si E = IR n alors f (x) = inf x∈IR n f (x) ⇔ ∇f (x) = 0. Démonstration (⇒) Supposons que f (x) = inf E f alors on sait (voir Proposition 3.7) que Df (x) = 0 (la convexité est inutile). (⇐) Si f est convexe et différentiable, d'après la proposition 3.5, on a : f (y) ≥ f (x) + Df (x)(y -x) pour tout y ∈ E et comme par hypothèse Df (x) = 0, on en déduit que f (y) ≥ f (x) pour tout y ∈ E. Donc f (x) = inf E f.
Cas d'une fonction quadratique On appelle fonction quadratique une fonction de IR n dans IR définie par

x → f (x) = 1 2 Ax • x -b • x + c, (3.12) où A ∈ M n (IR), b ∈ IR n et c ∈ IR. On peut vérifier facilement que f ∈ C ∞ (IR n , IR). Calculons le gradient de f et sa hessienne : on a f (x + h) = 1 2 A(x + h) • (x + h) -b • (x + h) + c = 1 2 Ax • x + 1 2 Ax • h + 1 2 Ah • x + 1 2 Ah • h -b • x -b • h + c = f (x) + 1 2 (Ax • h + Ah • x) -b • h + 1 2 Ah • h = f (x) + 1 2 (Ax + A t x) • h -b • h + 1 2 Ah • h. Et comme |Ah • h| ≤ A 2 |h| 2 , on en déduit que : ∇f (x) = 1 2 (Ax + A t x) -b. ( 3 

.13)

Si A est symétrique, on a donc ∇f (x) = Axb. Calculons maintenant la hessienne de f. D'après (3.13), on a : 

∇f (x + h) = 1 2 (A(x + h) + A t (x + h)) -b = ∇f (x) + 1 2 (Ah + A t h) et donc H f (x) = D(∇f (x)) = 1 2 (A + A t ).
f (x) ≥ α 2 |x| 2 -|b • x| -|c|; Mais comme |b • x| ≤ |b||x|, on a f (x) ≥ |x| α|x| 2 -|b| -|c| -→ +∞ quand |x| → +∞.
On en déduit l'existence et l'unicité de x qui minimise f . On a aussi :

∇f (x) = 0 ⇔ f (x) = inf IR n f et donc x est l'unique solution du système Ax = b.
On en déduit le théorème suivant, très important, puisqu'il va nous permettre en particulier le lien entre certains algorithmes d'optimisation et les méthodes de résolution de systèmes linéaires vues au chapitre 1. 

Exercices (optimisation sans contrainte)

Exercice 137 (Maximisation). Suggestions en page 200 Soit E un espace vectoriel normé et f : E → IR. En utilisant les résultats de la section 3.2.2, répondre aux questions suivantes :

1. Donner une condition suffisante d'existence de x ∈ E tel que f (x) = sup x∈E f (x).

2. Donner une condition suffisante d'unicité de x ∈ E tel que f (x) = sup x∈E f (x).

Donner une condition suffisante d'existence et unicité de

x ∈ E tel que f (x) = sup x∈E f (x).
Exercice 138 (Complément de Schur).

Soient n et p deux entiers naturels non nuls. Dans toute la suite, si u et v sont deux vecteurs de

IR k , k ≥ 1, le produit scalaire de u et v est noté u • v. Soient A une matrice carrée d'ordre n, inversible, soit B une matrice n × p, C une matrice carrée d'ordre p, et soient f ∈ IR n et g ∈ IR p .
On considère le système linéaire suivant : On définit la matrice S = C -B t A -1 B, qu'on appelle "complément de Schur". Exercice 139 (Approximation au sens des moindres carrés). Corrigé en page 200

M x y = f g , avec M = A B B t C . ( 3 

Calculer S dans le cas

A = 1 1 0 1 , B = 1 1 0 1 , C = 1 0 0 1 . 3.
1. Un premier exemple. Dans le plan (s, t), on cherche la droite d'équation t = α+ βs qui passe par les points ( 5. Montrer que x ∈ X b ⇐⇒ A t Ax = A t b, où A t désigne la matrice transposée de A. On appelle système d'équations normales le système A t Ax = A t b.

IR m dans IR par f (x) = Ax -b 2 . On cherche à minimiser f , c.à.d. à trouver x ∈ IR n tel que f (x) = min{f (x), x ∈ IR n }. ( 3 
6. Ecrire les équations normales dans le cas de l'exemple de la question 1, et en déduire l'équation de la droite obtenue par moindres carrés, i.e. par résolution de (3.16). Tracer les quatre points donnés à la question 1 et la droite obtenue sur un graphique.

7. Ecrire les équations normales dans le cas de l'exemple de la question 2, et vérifier que le système obtenu n'est pas inversible.

8. Pour y ∈ KerA, on pose g(y) = y + z 2 , où z est définie à la question 3. Montrer qu'il existe un unique ȳ ∈ KerA tel que g(ȳ) ≤ g(y) pour tout y ∈ KerA. En déduire qu'il existe un unique x ∈ X b tel que

x 2 ≤ x 2 pour tout x ∈ X b .
On appelle x pseudo-solution de (3.16). 9. Calculer x dans le cas des exemples des questions 1 et 2.

Dans la suite du problème, on considère, pour ε > 0 fixé, une version pénalisée du problème (3.16). On introduit la fonction f ε de IR m dans IR, définie par

f ε (x) = x 2 + 1 ε A t Ax -A t b 2
, et on cherche à trouver x ε solution du problème de minimisation suivant :

f ε (x ε ) ≤ f ε (x), ∀x ∈ IR m .
(3.17) 10. Montrer que le problème (3.17) possède une unique solution x ε .

11. Calculer ∇f ε (x) et en déduire l'équation satisfaite par x ε .

12. Montrer que x ε converge vers x lorsque ε → 0.

Suggestions pour les exercices

Exercice 137 page 198 (Maximisation) Appliquer les théorèmes du cours à -f .

Corrigés des exercices

Exercice 139 page 199 (Approximation au sens des moindres carrés) 1. (a) Une condition nécessaire pour que la droite existe est que α et β vérifie le système linéaire point (0, 1) :

α = 1 point (1, 9) : α + β = 9 point (3, 9) : α + 3β = 9 point (4, 21) : α + 4β = 21 Autrement dit x = α β est une solution de Ax = b, avec A =     1 0 1 1 1 3 1 4     et b =     1 9 9 21     .
(b) Montrer qu'une telle droite n'existe pas. Si l'on on retranche la ligne 2 à la ligne 3 du système, on obtient β = 0 et si l'on retranche la ligne 1 à la ligne 2, on obtient β = 8. Donc le système n'admet pas de solution.

2. (a) Une condition nécessaire pour que la droite existe est que α, β et γ vérifie le système

α + β + γ = 3 β + γ = 2 Autrement dit x = α β est une solution de Ax = b, avec A = 1 1 1 0 1 1 et b = 3 2 . (b) Une solution particulière de ce système est x =   1 2 0   , et le noyau de A est engendré par   0 -1 1   .
L'ensemble des solutions est de la forme

{   1 2 0   + γ   0 -1 1   , γ ∈ IR}, qui est infini. 3. (a) On a f (z) = (Az -b) • (Az -b) = Az • Az -2Az • b + b • b ≥ Az 2 -2 b Az + b 2 d'après l'inégalité de Cauchy-Schwarz -→ +∞ lorsque Az → ∞
Il reste maintenant à montrer que Az -→ +∞ lorsque z → ∞. Pour cela, on remarque que

Az = A z z z ≥ inf w∈E, w =1
Aw z = A w z , car l'ensemble K = {w ∈ E, w = 1} est un compact de IR n et comme la fonction ϕ : K → IR définie par ϕ(w) = Aw est continue, elle atteint son minimum en w ∈ K :

inf w∈E, w =1 Aw = A w Or A w = 0, et donc A w z → +∞ lorsque z → +∞. (b) Calculons ∇f . ∀x ∈ E, ∇f (x) = 2(A t Ax -A t b) Par conséquent, pour x, y ∈ E, f (y) -∇f (x) • (y -x) = (Ay -b) • (Ay -b) -2(Ax -b) • A(y -x), ∀(x, y) ∈ E 2 ; x = y. = |Ay| 2 -2Ay • b + |b| 2 + 2|Ax| 2 -2Ax • Ay + 2b • Ay -2b • Ax = |Ay| 2 + |b| 2 + 2|Ax| 2 -2Ax • Ay -2b • Ax = |Ay -Ax| 2 + |Ax -b| 2 > 0, ∀(x, y) ∈ E 2 ; x = y.
On en déduit que f est strictement convexe par la proposition 3.5 (première caractérisation de la convexité).

(c) On applique le théorème 3.12 : f est une application continue de E dans IR, qui tend vers l'infini à l'infini et qui admet donc un minimum. L'unicité du minimum vient de la stricte convexité de cette application.

4. Soit x ∈ IR m , x peut s'écrire x = z + y avec z ∈ E et y ∈ KerA, par suite f (x) = A(z + y) -b 2 = Az -b 2 = f (z) ≥ f (z). D'autre part, f (z + y) = f (z)∀y ∈ KerA.
Donc X b est bien l'ensemble des solutions du problème de minimisation (3.16). 6. On a

A t A = 4 8 8 26 et A t b = 40 120
Les équations normales de ce problème s'écrivent donc

A t A α β = A t b.
La matrice A t A est inversible, par conséquent il y a une unique solution à ces equations normales donnée par 2 4 .

On a

A t A =   1 1 1 1 2 2 1 2 2   et A t b =   3 5 5  
Les deux dernières lignes de la matrice A t A sont identiques donc la matrice n'est pas inversible. Comme les deux dernières lignes de A t b sont elles aussi identiques, on en déduit que le système admet une infinité de solutions.

On peut échelonner le système :

  1 1 1 | 3 1 2 2 | 5 1 2 2 | 5   -→ T32(-1),T21(-1)   1 1 1 | 3 0 1 1 | 2 0 0 0 | 0   -→ T12(-1)   1 0 0 | 1 0 1 1 | 2 0 0 0 | 0  
On retrouve les solutions obtenues à la question 2-b :

X b =   1 2 0   z +IR   0 -1 1   ū =   1 2 0   + KerA.
8. La fonction g est continue sur l'espace vectoriel KerA et vérifie

g(y) ≥ y 2 -2 y z + z 2 -→ +∞ lorsque z -→ +∞;
par conséquent, g admet un minimum sur KerA. Ce minimum est unique car g est strictement convexe, car c'est le carré de la norme euclidienne. On peut le montrer directement, ou si l'on ne connaît pas ce résultat, on peut dire que c'est la composée d'une application convexe et d'une application strictement convexe et croissante : g = q(N (x)) avec N : x → x convexe et q : s → s 2 . On pourrait également remarquer que l'application

KerA → IR v → D 2 g(y)(v)(v)
est une forme quadratique définie positive, car

Dg(y)(w) = 2(y + z) • w, et D 2 g(y)(h)(v) = 2h • v L'application v → D 2 g(y)(v)(v) = 2v
• v est clairement définie positive, ce qui montre une fois de plus que g est strictement convexe. On en déduit alors qu'il existe un unique x ∈ X b de norme minimale.

9. Dans le premier exemple, les équations normales admettent une seule solution x = 2 4 , voir question 6.

Pour le deuxième exemple, on calcule x 2 pour x = z + tū ∈ X b :

x 2 = z + tū 2 = 1 + (2 -t) 2 + t 2 = 5 -4t + 2t 2 = 2 (t -1) 2 + 3 On voit x 2 est minimale pour t = 1, autrement dit x =   1 1 1   .
10. La fonction f ε est une fonction continue, infinie à l'infini car

f ε (x) ≥ x 2 -→ +∞ lorsque x → ∞.
On a donc existence d'un minimum pour f ε . De plus, la fonction f ε est de classe C 2 avec

∇f ε (x) = 2(x + 1 ε A t A(A t Ax -A t b)), D 2 f ε (x) = 2(Id + 1 ε (A t A) 2 )
La matrice A t A est positive, donc la matrice (A t A) 2 est positive par suite la matrice D 2 f (x) est définie positive. La fonction f ε est donc strictement convexe. Par conséquent, f ε admet un unique minimum.

11. On sait que le minimum x ε de f ε est un zéro de ∇f ε , soit

x ε + 1 ε A t A(A t Ax ε -A t b) = 0 et donc (Id + 1 ε (A t A) 2 )x ε = 1 ε A t AA t b, ce qui donne x ε = (Id + 1 ε (A t A) 2 ) -1 1 ε A t AA t b.
12. On commence par remarquer que

x ε 2 ≤ f ε (x ε ) ≤ f ε (x) = x 2 .
Par conséquent, la famille{x ε , ε > 0} est bornée dans IR m qui est de dimension finie. Pour montrer que x ε → x quand ε → 0, il suffit donc de montrer que x est la seule valeur d'adhérence de la famille {x ε , ε > 0}. Soit ȳ une valeur d'adhérence de la famille {x ε , ε > 0}. Il existe une suite ε n → 0 pour laquelle x εn converge vers ȳ ∈ IR m . Montrons que A t Aȳ = A t b. On rappelle que

1 ε A t Ax ε -A t b 2 ≤ f ε (x ε ) ≤ x 2 .
On en déduit que

A t Ax εn -A t b 2 ≤ ε n x 2 -→ 0 lorsque n -→ ∞
et en passant à la limite on obtient A t Aȳ -A t b 2 = 0. On a également par un argument analogue ȳ 2 ≤ x 2 . Donc ȳ ∈ X b et comme x est l'unique vecteur de X b de norme minimale, on en déduit que ȳ = x.

Algorithmes d'optimisation sans contrainte

Soit f ∈ C(IR n , IR). On suppose qu'il existe x ∈ IR n tel que f (x) = inf IR n f . On cherche à calculer x (si f est de classe C 1 , on a nécessairement ∇f (x) = 0). On va donc maintenant développer des algorithmes (ou méthodes de calcul) du point x qui réalise le minimum de f . Il existe deux grandes classes de méthodes : -Les méthodes dites "directes" ou bien "de descente", qui cherchent à construire une suite minimisante, c.à.d.

une suite (x (k) ) k∈IN telle que :

f (x (k+1) ) ≤ f (x (k) ), x (k) → x quand k → +∞.
-Les méthodes basées sur l'équation d'Euler, qui consistent à chercher une solution de l'équation (dite d'Euler) ∇f (x) = 0 (ces méthodes nécessitent donc que f soit dérivable).

Méthodes de descente

Définition 3.17.

Soit f ∈ C(IR n , IR). 1. Soit x ∈ IR n , on dit que w ∈ IR n \ {0} est une direction de descente en x s'il existe α 0 > 0 tel que f (x + αw) ≤ f (x), ∀α ∈ [0, α 0 ] 2. Soit x ∈ IR n , on dit que w ∈ IR n \ {0} est une direction de descente stricte en x si s'il existe α 0 > 0 tel que f (x + αw) < f (x), ∀α ∈]0, α 0 ].
3. Une "méthode de descente" pour la recherche de x tel que f (x) = inf IR n f consiste à construire une suite (x k ) k∈IN de la manière suivante : (a) Initialisation : x (0) ∈ IR n ; (b) Itération k : on suppose x (0) , . . . , x (k) connus (k ≥ 0) ; i. On cherche w (k) direction de descente stricte en x (k) ii. On prend

x (k+1) = x (k) + α k w (k) avec α k > 0 "bien choisi". Proposition 3.18 (Caractérisation des directions de descente). Soient f ∈ C 1 (IR n , IR), x ∈ IR n et w ∈ IR n \{0} ; alors 1. si w direction de descente en x alors w • ∇f (x) ≤ 0, 2.
si w • ∇f (x) < 0 alors w direction de descente stricte en x, 3. si ∇f (x) = 0 alors w = -∇f (x) est une direction de descente stricte en x.

DÉMONSTRATION -1. Soit w ∈ IR n \ {0} une direction de descente en x : alors par définition,

∃α0 > 0 tel que f (x + αw) ≤ f (w), ∀α ∈ [0, α0]. Soit ϕ la fonction de IR dans IR définie par : ϕ(α) = f (x+αw). On a ϕ ∈ C 1 (IR, IR) et ϕ ′ (α) = ∇f (x+αw)•w. Comme ϕ(α) ≤ ϕ(0) pour tout α ∈ [0, α0] on a ∀α ∈]0, α0[, ϕ(α) -ϕ(0) α ≤ 0;
en passant à la limite lorsque α tend vers 0, on déduit que ϕ ′ (0) ≤ 0, c.à.d. ∇f (x) • w ≤ 0.
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2. On reprend les notations précédentes. Si ∇f (x) • w < 0, on a ϕ ′ (0) < 0. Par continuité de ∇f , il existe α0 > 0 tel que ϕ ′ (α) < 0 si α ∈ [0, α0]. En utilisant le théorème des accroissements finis on en déduit que ϕ(α) < ϕ(0) si α ∈]0, α0[ et donc que w est une direction de descente stricte. 3. Si ∇f (x) = 0, w = -∇f (x) est une direction de descente stricte en x car ∇f (x)

• w < 0 = -|∇f (x)| 2 < 0.

Algorithme du gradient à pas fixe

Soient f ∈ C 1 (E, IR) et E = IR n . On se donne α > 0.        Initialisation : x (0) ∈ E, Itération k : x (k) connu, (k ≥ 0) w (k) = -∇f (x (k) ), x (k+1) = x (k) + αw (k) .
(3.18) Théorème 3.19 (Convergence du gradient à pas fixe).

Soient E = IR n et f ∈ C 1 (E, IR) vérifiant les hypothèses ∃ω > 0; (∇f (x) -∇f (y)) • (x -y) ≥ ω|x -y| 2 , ∀(x, y) ∈ IR n × IR n , (3.19a) ∃M > 0; ∇f (x) -∇f (y) ≤ M |x -y|, ∀(x, y) ∈ IR n × IR n . ( 3.19b) 
L'hypothese 3.19a est l'hypothese 3.10 de la proposition 3.13. La fonction f est donc strictement convexe et croissante à l'infini, et admet donc un unique minimum. De plus, si 0 < α < 2ω M 2 alors la suite (x (k) ) k∈IN construite par (3.18) converge vers x lorsque k → +∞ .

DÉMONSTRATION -

Montrons la convergence de la suite construite par l'algorithme de gradient à pas fixe en nous ramenant à un algorithme de point fixe. On pose h(x) = x -α∇f (x). L'algorithme du gradient à pas fixe est alors un algorithme de point fixe pour h.

x (k+1) = x (k) -α∇f (x (k) ) = h(x (k) ).
Grâce au théorème 2.8 page 144, on sait que h est strictement contractante si

0 < α < 2ω M 2 . Donc la suite (x (k) ) k∈IN converge vers l'unique point fixe x de h, caractérisé par x = h(x) = x -α∇f (x) On a donc ∇f (x) = 0, et, comme f est strictement convexe, f (x) = inf E f.
Algorithme du gradient à pas optimal L'idée de l'algorithme du gradient à pas optimal est d'essayer de calculer à chaque itération le paramètre qui minimise la fonction dans la direction de descente donnée par le gradient. Soient

f ∈ C 1 (E, IR) et E = IR n , cet algorithme s'écrit :                Initialisation : x (0) ∈ IR n . Itération n : x (k) connu. On calcule w (k) = -∇f (x (k) ). On choisit α k ≥ 0 tel que f (x (k) + α k w (k) ) ≤ f (x (k) + αw (k) ) ∀α ≥ 0. On pose x (k+1) = x (k) + α k w (k) . (3.20)
Les questions auxquelles on doit répondre pour s'assurer du bien fondé de ce nouvel algorithme sont les suivantes :

1. Existe-t-il α k tel que f (x (k) + α k w (k) ) ≤ f (x (k) + αw (k) ), ∀α ≥ 0 ? Analyse numérique I, télé-enseignement, L3
2. Comment calcule-t'on α k ? 3. La suite (x (k) ) k∈IN construite par l'algorithme converge-t-elle ? La réponse aux questions 1. et 3. est apportée par le théorème suivant : Théorème 3.20 (Convergence du gradient à pas optimal).

Soit f ∈ C 1 (IR n , IR) telle que f (x) → +∞ quand |x| → +∞. Alors : 1. La suite (x (k) ) k∈IN est bien définie par (3.20). On choisit α k > 0 tel que f (x (k) +α k w (k) ) ≤ f (x k +αw (k) ) ∀α ≥ 0 (α k existe mais n'est pas nécessairement unique). 2. La suite (x (k) ) k∈IN est bornée et si (x (k ℓ ) ) ℓ∈IN est une sous suite convergente, i.e. x (k ℓ ) → x lorsque ℓ → +∞, on a nécessairement ∇f (x) = 0. De plus si f est convexe on a f (x) = inf IR n f 3. Si f est strictement convexe on a alors x (k) → x quand k → +∞, avec f (x) = inf IR n f
La démonstration de ce théorème fait l'objet de l'exercice 142. On en donne ici les idées principales.

1. On utilise l'hypothèse f (x) → +∞ quand |x| → +∞ pour montrer que la suite (x (k) ) k∈IN construite par (3.20) existe : en effet, à x (k) connu,

1er cas : si ∇f (x (k) ) = 0, alors x (k+1) = x (k) et donc x (p) = x (k) ∀p ≥ k, 2ème cas : si ∇f (x (k) ) = 0, alors w (k) = ∇f (x (k)
) est une direction de descente stricte.

Dans ce deuxième cas, il existe donc α 0 tel que

f (x (k) + αw (k) ) < f (x (k) ), ∀α ∈]0, α 0 ]. (3.21) 
De plus, comme

w (k) = 0, |x (k) + αw (k) | → +∞ quand α → +∞ et donc f (x (k) + αw (k) ) -→ +∞ quand α → +∞. Il existe donc M > 0 tel que si α > M alors f (x k + αw (k) ) ≥ f (x (k)
). On a donc :

inf α∈IR * + f (x (k) + αw (k) ) = inf α∈[0,M] f (x (k) + αw (k) ). Comme [0, M ] est compact, il existe α k ∈ [0, M ] tel que f (x k + α k w (k) ) = inf α∈[0,M] f (x k + αw (k) ).
De plus on a grâce à (3.21) que α k > 0.

2. Le point 2. découle du fait que la suite (f (x (k) )) k∈IN est décroissante, donc la suite (x (k) ) k∈IN est bornée (car f (x) → +∞ quand |x| → +∞). On montre ensuite que si x (k ℓ ) → x lorsque ℓ → +∞ alors ∇f (x) = 0 (ceci est plus difficile, les étapes sont détaillées dans l'exercice 142).

Reste la question du calcul de α k , qui est le paramètre optimal dans la direction de descente w (k) , c.à.d. le nombre réel qui réalise le minimum de la fonction ϕ de IR + dans IR définie par :

ϕ(α) = f (x (k) + αw (k) ). Comme α k > 0 et ϕ(α k ) ≤ ϕ(α) pour tout α ∈ IR + , on a nécessairement ϕ ′ (α k ) = ∇f (x (k) + α k w (k) ) • w (k) = 0.
Cette équation donne en général le moyen de calculer α k . Considérons par exemple le cas (important) d'une fonctionnelle quadratique, i.e.

f (x) = 1 2 Ax • x -b • x, A étant une matrice symétrique définie positive ; on a alors ∇f (x (k) ) = Ax (k) -b, et donc ∇f (x (k) + α k w (k) ) • w (k) = (Ax (k) + α k Aw (k) -b) • w (k) = 0.

On a ainsi dans ce cas une expression explicite de α

k , avec r (k) = b -Ax (k) , α k = (b -Ax (k) ) • w (k) Aw (k) • w (k) = r (k) • w (k) Aw (k) • w (k) (3.22) 
Analyse numérique I, télé-enseignement, L3

Remarquons que Aw (k) • w (k) = 0 (car A est symétrique définie positive). Dans le cas d'une fonction f générale, on n'a pas en général de formule explicite pour α k . On peut par exemple le calculer en cherchant le zéro de f ′ par la méthode de la sécante ou la méthode de Newton. . . L'algorithme du gradient à pas optimal est donc une méthode de minimisation dont on a prouvé la convergence. Cependant, cette convergence est lente (en général linéaire), et de plus, l'algorithme nécessite le calcul du paramètre α k optimal.

Algorithme du gradient à pas variable Dans ce nouvel algorithme, on ne prend pas forcément le paramètre optimal pour α, mais on lui permet d'être variable d'une itération à l'autre. L'algorithme s'écrit :

           Initialisation : x (0) ∈ IR n . Itération : On suppose x (k) connu ; soit w (k) = -∇f (x (k) ) où : w (k) = 0 (si w (k) = 0 l'algorithme s'arrête). On prend α k > 0 tel que f (x (k) + α k w (k) ) < f (x k ). On pose x (k+1) = x (k) + α k w (k) .
(3.23) Théorème 3.21 (Convergence du gradient à pas variable).

Soit f ∈ C 1 (IR n , IR) une fonction telle que f (x) → +∞ quand |x| → +∞, alors :
1. On peut définir une suite (x (k) ) k∈IN par (3.23).

La suite

(x (k) ) k∈IN est bornée. Si x (k ℓ ) → x quand ℓ → +∞ et si ∇f (x (k ℓ ) ) → 0 quand ℓ → +∞ alors ∇f (x) = 0. Si de plus f est convexe on a f (x) = inf IR n f 3. Si ∇f (x (k) ) → 0 quand k → +∞ et si f est strictement convexe alors x (k) → x et f (x) = inf IR n f .
La démonstration s'effectue facilement à partir de la démonstration du théorème précédent : reprendre en l'adaptant l'exercice 142.

Algorithme du gradient conjugué

La méthode du gradient conjugué a été découverte en 1952 par Hestenes et Steifel pour la minimisation de fonctions quadratiques, c'est-à-dire de fonctions de la forme

f (x) = 1 2 Ax • x -b • x, où A ∈ M n (IR) est une matrice symétrique définie positive et b ∈ IR n . On rappelle (voir le paragraphe 3.2.2) que f (x) = inf IR n f ⇔ Ax = b.
L'idée de la méthode du gradient conjugué est basée sur la remarque suivante : supposons qu'on sache construire n vecteurs (les directions de descente) w (0) , w (1) , . . . , w (n-1) libres et tels que r (n) • w (p) = 0 pour tout p < n. On a alors r (n) = 0 : en effet la famille (w (0) , w (1) , . . . , w (n-1) ) engendre IR n ; le vecteur r (n) est alors orthogonal à tous les vecteurs d'une IR n , et il est donc nul. Pour obtenir une famille libre de directions de descente stricte, on va construire les vecteurs w (0) , w (1) , . . . , w (n-1) de manière à ce qu'ils soient orthogonaux pour le produit scalaire induit par A. Nous allons voir que ce choix marche (presque) magnifiquement bien. Mais avant d'expliquer pourquoi, écrivons une méthode de descente à pas optimal pour la minimisation de f , en supposant les directions de descente w (0) connues. On part de x (0) dans IR n donné ; à l'itération k, on suppose que r (k) = b -Ax (k) = 0 (sinon on a x (k) = x et on a fini). On calcule le paramètre α k optimal dans la direction w (k) par la formule (3.22). Et on calcule ensuite le nouvel itéré :

x (k+1) = x (k) + α k w (k) . 3.3. ALGORITHMES D'OPTIMISATION SANS CONTRAINTE CHAPITRE 3. OPTIMISATION Notons que r (k+1) = b -Ax (k+1) et donc r (k+1) = r (k) -α k Aw (k) . (3.24)
De plus, par définition du paramètre optimal α k , on a ∇f (x (k+1) ) • w (k) = 0 et donc

r (k+1) • w (k) = 0 (3.25) 
Ces deux dernières propriétés sont importantes pour montrer la convergence de la méthode. Mais il nous faut maintenant choisir les vecteurs w (k) qui soient des directions de descente strictes et qui forment une famille libre. A l'étape 0, il est naturel de choisir la direction opposée du gradient : (0) .

w (0) = -∇f (x (0) ) = r
A l'étape k ≥ 1, on choisit la direction de descente w (k) comme combinaison linéaire de r (k) et de w (k-1) , de manière à ce que w (k) soit orthogonal à w (k-1) pour le produit scalaire associé à la matrice A.

w (0) = r (0) , (3.26a)

w (k) = r (k) + λ k w (k-1) , avec w (k) • Aw (k-1) = 0, pour k ≥ 1. (3.26b) 
La contrainte d'orthogonalité Aw (k) • w (k-1) = 0 impose le choix du paramètre λ k suivant :

λ k = - r (k) • Aw (k-1) w (k-1) • Aw (k-1) . Remarquons que si r (k) = 0 alors w (k) • r (k) > 0 car w (k) • r (k) = r (k)
• r (k) en raison de la propriété (3.25). On a donc w (k) • ∇f (x (k) ) < 0, ce qui montre que w (k) est bien une direction de descente stricte. On a donc (on a déjà fait ce calcul pour obtenir la formule (3.22) du paramètre optimal)

α k = r (k) • w (k) Aw (k) • w (k) = r (k) • r (k) Aw (k) • w (k) . (3.27)
On suppose que r (k) = 0 pour tout k ∈ {0, . . . , n -1}. Montrons alors par récurrence que pour k = 1, . . . , n -1, on a :

(i) k r (k) • w (p) = 0 si p < k, (ii) k r (k) • r (p) = 0 si p < k, (iii) k Aw (k) • w (p) = 0 si p < k,
Ces relations sont vérifiées pour k = 1. Supposons qu'elles le sont jusqu'au rang k, et montrons qu'elles le sont au rang k + 1.

(i) k+1 : Pour p = k, la relation (i) k+1 est verifiée au rang k + 1 grâce à (3.25) ; pour p < k, on a

r (k+1) • w (p) = r (k) • w (p) -α k Aw (k) • w (p) = 0
par (3.24) et hypothèse de récurrence.

(ii) k+1 : Par les relations (3.26b) et (i) k+1 , on a, pour p ≤ k,

r (k+1) • r (p) = r (k+1) • (w (p) -λ p w (p-1) ) = 0.
(iii) k+1 : Pour p = k la relation (iii) k+1 est vérifiée grâce au choix de λ k+1 .

Pour p < k, on remarque que, avec (3.26b) et (iii

) k w (k+1) • Aw (p) = (r (k+1) + λ k+1 w (k) ) • Aw (p) = r (k+1) • Aw (p) .
Analyse numérique I, télé-enseignement, L3

On utilise maintenant (3.24) et (i) k+1 pour obtenir

w (k+1) • Aw (p) = 1 α p r (k+1) • (r (p) -r (p+1) ) = 0.
On a ainsi démontré la convergence de la méthode du gradient conjugué.

Mettons sous forme algorithmique les opérations que nous avons exposées, pour obtenir l'algorithme du gradient conjugué.

Algorithme 3.22 (Méthode du gradient conjugué).

1. Initialisation Soit x (0) ∈ IR n , et soit r (0) = b -Ax (0) = -∇f (x (0) ).

Si r (0) = 0, alors Ax (0) = b et donc x (0) = x, auquel cas l'algorithme s'arrête.

Sinon, on pose w (0) = r (0) , et on choisit α 0 optimal dans la direction w (0) . On pose alors

x (1) = x (0) + α 0 w (0) . (0) , . . . , x (k) et w (0) , . . . , w (k-1) connus et on pose

2. Itération k, 1 ≤ k ≤ n -1 ; on suppose x
r (k) = b -Ax (k) . Si r (k) = 0, alors Ax (k) = b et donc x (k) = x, auquel cas l'algorithme s'arrête.
Sinon on pose

w (k) = r (k) + λ k-1 w (k-1) , avec λ k-1 tel que w (k) • Aw (k-1) = 0,
et on choisit α k optimal dans la direction w (k) , donné par (3.22). On pose alors

x (k+1) = x (k) + α k w (k) .
Nous avons démontré plus haut la convergence de l'algorithme, résultat que nous énonçons dans le théorème suivant.

Théorème 3.23 (Convergence de l'algorithme du gradient conjugué). Soit A une symétrique définie positive,

A ∈ M n (IR), b ∈ IR n et f (x) = 1 2 Ax • x -b • x. L'algorithme (3.22) définit une suite (x (k) ) k=0,...,p avec p ≤ n telle que x (p) = x avec Ax = b.
On obtient donc la solution exacte de la solution du système linéaire Ax = b en moins de n itérations.

Efficacité de la méthode du gradient conjugué On peut calculer le nombre d'opérations nécessaires pour calculer x (c.à.d. pour calculer x (n) , sauf dans le cas miraculeux où x (k) = x pour k < n) et montrer (exercice) que :

N gc = 2n 3 + O(n 2 ).
On rappelle que le nombre d'opérations pour Choleski est n 3 6 donc la méthode du gradient conjugué n'est pas intéressante comme méthode directe car elle demande 12 fois plus d'opérations que Choleski.

On peut alors se demander si la méthode est intéressante comme méthode itérative, c.à.d. si on peut espérer que x (k) soit "proche de x" pour "k ≪ n". Malheureusement, si la dimension n du système est grande, ceci n'est pas le cas en raison de l'accumulation des erreurs d'arrondi. Il est même possible de devoir effectuer plus de n itérations pour se rapprocher de x. Cependant, dans les années 80, des chercheurs se sont rendus compte que ce défaut pouvait être corrigé à condition d'utiliser un "préconditionnement". Donnons par exemple le principe du préconditionnement dit de "Choleski incomplet".

Méthode du gradient conjugué préconditionné par Choleski incomplet On commence par calculer une "approximation" de la matrice de Choleski de A c.à.d. qu'on cherche L triangulaire inférieure inversible telle que A soit "proche" de LL t , en un sens à définir. Si on pose y = L t x, alors le système Ax = b peut aussi s'écrire

L -1 A(L t ) -1 y = L -1 b, et le système (L t ) -1 y = x est facile à résoudre car L t est triangulaire supérieure. Soit B ∈ M n (IR) définie par B = L -1 A(L t ) -1 , alors B t = ((L t ) -1 ) t A t (L -1 ) t = L -1 A(L t ) -1 = B et donc B est symétrique. De plus, Bx • x = L -1 A(L t ) -1 x • x = A(L t ) -1 x • (L t ) -1 x, et donc Bx • x > 0 si x = 0.
La matrice B est donc symétrique définie positive. On peut donc appliquer l'algorithme du gradient conjugué à la recherche du minimum de la fonction f définie par

f (y) = 1 2 By • y -L -1 b • y.
On en déduit l'expression de la suite (y (k) ) k∈IN et donc (x (k) ) k∈IN .

On peut alors montrer (voir exercice 148) que l'algorithme du gradient conjugué préconditionné ainsi obtenu peut s'écrire directement pour la suite (x (k) ) k∈IN , de la manière suivante :

Itération k On pose r (k) = b -Ax (k) , on calcule s (k) solution de LL t s (k) = r (k) .

On pose alors λ k-1 = s (k) • r (k) s (k-1) • r (k-1) et w (k) = s (k) + λ k-1 w (k-1) . Le paramètre optimal α k a pour expression :

α k = s (k) • r (k)
Aw (k) • w (k) , et on pose alors x (k+1) = x (k) + α k w (k) . Le choix de la matrice L peut se faire par exemple dans le cas d'une matrice creuse, en effectuant une factorisation "LL t " incomplète, qui consiste à ne remplir que certaines diagonales de la matrice L pendant la factorisation, et laisser les autres à 0.

Méthode du gradient conjugué pour une fonction non quadratique. On peut généraliser le principe de l'algorithme du gradient conjugué à une fonction f non quadratique. Pour cela, on reprend le même algorithme que (3.22), mais on adapte le calcul de λ k-1 et α k .

Itération n : A x (0) , . . . , x (k) et w (0) , . . . , w (k-1) connus, on calcule r (k) = -∇f (x (k) ).

Si r (k) = 0 alors ∇f (x (k) ) = 0 auquel cas l'algorithme s'arrête (le point x (k) est un point critique de f et il minimise f si f est convexe). Si r (k) = 0, on pose w (k) = r (k) + λ k-1 w (k-1) où λ k-1 peut être choisi de différentes manières :

1ère méthode (Fletcher-Reeves)

λ k-1 = r (k) • r (k) r (k-1) • r (k-1) , Analyse numérique I, télé-enseignement, L3
2ème méthode (Polak-Ribière)

λ k-1 = (r (k) -r (k-1) ) • r (k) r (k-1)
• r (k-1) .

On pose alors x (k+1) = x (k) + α k w (k) , où α k est choisi, si possible, optimal dans la direction w (k) . La démonstration de la convergence de l'algorithme de Polak-Ribière fait l'objet de l'exercice 150 page 220.

En résumé, la méthode du gradient conjugué est très efficace dans le cas d'une fonction quadratique à condition de l'utiliser avec préconditionnement. Dans le cas d'une fonction non quadratique, le préconditionnement ne se trouve pas de manière naturelle et il vaut donc mieux réserver cette méthode dans le cas "n petit".

Méthodes de Newton et Quasi-Newton

Soit f ∈ C 2 (IR n , IR) et g = ∇f ∈ C 1 (IR n , IR n ).
On a dans ce cas :

f (x) = inf IR n f ⇒ g(x) = 0.
Si de plus f est convexe alors on a g(x) = 0 ⇒ f (x) = inf IR n f. Dans ce cas d'équivalence, on peut employer la méthode de Newton pour minimiser f en appliquant l'algorithme de Newton pour chercher un zéro de g = ∇f . On a D(∇f ) = H f où H f (x) est la matrice hessienne de f en x. La méthode de Newton s'écrit dans ce cas :

Initialisation x (0) ∈ IR n , Itération k H f (x (k) )(x (k+1) -x (k) ) = -∇f (x (k) ). (3.29) 
Remarque 3.24. La méthode de Newton pour minimiser une fonction f convexe est une méthode de descente. En effet, si H f (x (k) ) est inversible, on a x (k+1) -

x (k) = [H f (x (k) )] -1 (-∇f (x (k) )) soit encore x (k+1) = x (k) + α k w (k) où α k = 1 et w (k) = [H f (x (k) )] -1 (-∇f (x (k)
)). Si f est convexe, H f est une matrice symétrique positive (déjà vu). Comme on suppose H f (x (k) ) inversible par hypothèse, la matrice H f (x (k) ) est donc symétrique définie positive. On en déduit que w (k) = 0 si ∇f (x (k) ) = 0 et, si ∇f (x (k) ) = 0,

-w (k) • ∇f (x (k) ) = [H f (x (k) )] -1 ∇f (x (k) ) • ∇f (x (k) ) > 0,
ce qui est une condition suffisante pour que w (k) soit une direction de descente stricte. La méthode de Newton est donc une méthode de descente avec w

(k) = -H f (x (k) ) -1 (∇f (x (k) )) et α k = 1.
On peut aussi remarquer, en vertu du théorème 2.19 page 158, que si f ∈ C 3 (IR n , IR), si x est tel que ∇f (x) = 0 et si Remarque 3.25 (Sur l'implantation numérique). La convergence de la méthode de Newton est très rapide, mais nécessite en revanche le calcul de H f (x), qui peut s'avérer impossible ou trop coûteux.

H f (x) = D(∇f )(x)
On va maintenant donner des variantes de la méthode de Newton qui évitent le calcul de la matrice hessienne. Méthode de Broyden La première idée pour construire une méthode de type quasi Newton est de prendre comme direction de descente en x (k) le vecteur w (k) = -(B (k) ) -1 (∇f (x (k) )) où la matrice B (k) est censée approcher H f (x (k) ) (sans calculer la dérivée seconde de f ). On suppose x (k) , x (k-1) et B (k-1) connus. Voyons comment on peut déterminer B (k) . On peut demander par exemple que la condition suivante soit satisfaite :

∇f (x (k) ) -∇f (x (k-1) ) = B (k) (x (k) -x (k-1)
).

(3.30)

Ceci est un système à n équations et n × n inconnues, et ne permet donc pas de déterminer entièrement la matrice B (k) si n > 1. Voici un moyen possible pour déterminer entièrement B (k) , dû à Broyden. On pose s (k) = x (k)x (k-1) , on suppose que s (k) = 0, et on pose y (k) = ∇f (x (k) ) -∇f (x (k-1) ). On choisit alors B (k) telle que :

B (k) s (k) = y (k) B (k) s = B (k-1) s, ∀s ⊥ s (k) (3.31)
On a exactement le nombre de conditions qu'il faut avec (3.31) pour déterminer entièrement B (k) . Ceci suggère la méthode suivante :

Initialisation Soient x (0) ∈ IR n et B (0) une matrice symétrique définie positive. On pose w (0) = (B (0) ) -1 (-∇f (x (0) ));

alors w (0) est une direction de descente stricte sauf si ∇f (x (0) ) = 0.

On pose alors

x (1) = x (0) + α (0) w (0) , où α (0) est optimal dans la direction w (0) .

Itération k On suppose x (k) , x (k-1) et B (k-1) connus, (k ≥ 1), et on calcule B (k) par (3.31). On pose

w (k) = -(B (k) ) -1 (∇f (x (k) )).
On choisit α (k) optimal en x (k) dans la direction w (k) , et on pose x (k+1) = x (k) + α (k) w (k) .

Le problème avec cet algorithme est que si la matrice est B (k-1) symétrique définie positive, la matrice B (k) ne l'est pas forcément, et donc w (k) n'est pas forcément une direction de descente stricte. On va donc modifier cet algorithme dans ce qui suit.

Méthode de BFGS La méthode BFGS (de Broyden 1 , Fletcher2 , Goldfarb3 et Shanno4 ) cherche à construire B (k) proche de B (k-1) , telle que B (k) vérifie (3.30) et telle que si B (k-1) est symétrique définie positive alors B (k) est symétrique définie positive. On munit M n (IR) d'une norme induite par un produit scalaire, par exemple

si A ∈ M n (IR) et A = (a i,j ) i,j=1,...,n on prend A = n i,j=1 a 2 i,j 1/2
. M n (IR) est alors un espace de Hilbert.

On suppose x (k) , x (k-1) , B (k-1) connus, et on définit Remarquons que le calcul de la projection de P C k K (k-1) peut s'effectuer avec la formule (3.32) où on a remplacé B (k-1) par K (k-1) . Malheureusement, on obtient expérimentalement une convergence nettement moins bonne pour l'algorithme de quasi-Newton modifié (3.34) que pour l'algorithme de BFGS (3.32).

C k = {B ∈ M n (IR)

Résumé sur les méthodes d'optimisation

Faisons le point sur les avantages et inconvénients des méthodes qu'on a vues sur l'optimisation sans contrainte.

Méthodes de gradient : Ces méthodes nécessitent le calcul de ∇f (x (k) ). Leur convergence est linéaire (donc lente).

Méthode de gradient conjugué : Si f est quadratique (c.à.d.

f (x) = 1 2 Ax • x -b •
x avec A symétrique définie positive), la méthode est excellente si elle est utilisée avec un préconditionnement (pour n grand). Dans le cas général, elle n'est efficace que si n n'est pas trop grand.

Méthode de Newton : La convergence de la méthode de Newton est excellente (convergence localement quadratique) mais nécessite le calcul de H f (x (k) ) (et de ∇f (x (k) )). Si on peut calculer H f (x (k) ), cette méthode est parfaite.

Méthode de quasi Newton : L'avantage de la méthode de quasi Newton est qu'on ne calcule que ∇f (x (k) ) et pas H f (x (k) )). La convergence est super linéaire. Par rapport à une méthode de gradient où on calcule w (k) = -∇f (x (k) ), la méthode BFGS nécessite une résolution de système linéaire :

B (k) w (k) = -∇f (x (k) ).

Quasi-Newton modifié :

Pour éviter la résolution de système linéaire dans BFGS, on peut choisir de travailler sur (B (k) ) -1 au lieu de B (k) , pour obtenir l'algorithme de quasi Newton (3.34). Cependant, on perd alors en vitesse de convergence.

Comment faire si on ne veut (ou peut) pas calculer ∇f (x (k) ) ? On peut utiliser des "méthodes sans gradient", c.à.d. qu'on choisit a priori les directions w (k) . Ceci peut se faire soit par un choix déterministe, soit par un choix stochastique. Un choix déterministe possible est de calculer x (k) en résolvant n problèmes de minimisation en une dimension d'espace. Pour chaque direction i = 1, . . . , n, on prend w (n,i) = e i , où e i est le i-ème vecteur de la base canonique, et pour i = 1, . . . , n, on cherche θ ∈ IR tel que :

f (x (k) 1 , x (k) 2 , . . . , θ, . . . , x (k) n ) ≤ f (x (k) 1 , x (k) 2 , . . . , t, . . . , x (k) n ), ∀t ∈ IR.
Remarquons que si f est quadratique, on retrouve la méthode de Gauss Seidel. 4. En déduire que f admet un unique minimum x ∈ IR n et donner la valeur de ce minimum.

5. En utilisant la question 2, montrer que la fonction h définie par

x ∈ IR n → h(x) = x -ρ∇f (x) ∈ IR n
est strictement contractante pour ρ ∈]0, 2α M 2 [. 6. En déduire que pour tout x (0) ∈ IR n , la suite définie par

x (k+1) = x (k) -ρ∇f (x (k) ), k ∈ IN, (3.37) 
converge vers x.

7. Montrer que

x (k+1) -x = (Id -ρA)(x (k) -x).
8. En déduire que la suite (x (k) ) k∈IN converge vers x dès que ρ ∈]0, 2α M 2 [. 9. Quel est le nom de l'algorithme (3.37) ? 10. Proposer d'autres méthodes, directes ou itératives, pour trouver le minimum de f . Exercice 141 (Mise en oeuvre de GPF, GPO). Corrigé en page 223. On considère la fonction f :

IR 2 → IR définie par f (x 1 , x 2 ) = 2x 2 1 + x 2 2 -x 1 x 2 -3x 1 -x 2 + 4. 1.
Montrer qu'il existe un unique x ∈ IR 2 tel que x = min x∈IR 2 f (x) et le calculer.

2. Calculer le premier itéré donné par l'algorithme du gradient à pas fixe (GPF) et du gradient à pas optimal (GPO), en partant de (x

2 ) = (0, 0), pour un pas de α = .5 dans le cas de GPF.

Exercice 142 (Convergence de l'algorithme du gradient à pas optimal). Suggestions en page 222. Corrigé détaillé en page 224 Soit f ∈ C 2 (IR n , IR) t.q. f (x) → ∞ quand |x| → ∞. Soit x 0 ∈ IR n . On va démontrer dans cet exercice la convergence de l'algorithme du gradient à pas optimal.

1. Montrer qu'il existe R > 0 t.q. f (x) > f (x 0 ) pour tout x / ∈ B R , avec B R = {x ∈ IR n , |x| ≤ R}. 2. Montrer qu'il existe M > 0 t.q. |H(x)y • y| ≤ M |y| 2 pour tout y ∈ IR n et tout x ∈ B R+1 (H(x) est la matrice hessienne de f au point x, R est donné à la question 1).

3. (Construction de "la" suite (x k ) k∈IN de l'algorithme du gradient à pas optimal.) On suppose x k connu (k ∈ IN). On pose w k = -∇f (x k ). Si w k = 0, on pose

x k+1 = x k . Si w k = 0, montrer qu'il existe ρ > 0 t.q. f (x k + ρw k ) ≤ f (x k + ρw k ) pour tout ρ ≥ 0. On choisit alors un ρ k > 0 t.q. f (x k + ρ k w k ) ≤ f (x k + ρw k ) pour tout ρ ≥ 0 et on pose x k+1 = x k + ρ k w k .
On considère, dans les questions suivantes, la suite (x k ) k∈IN ainsi construite. 

x k ∈ B R pour tout k ∈ IN, (c) f (x k + ρw k ) ≤ f (x k ) -ρ|w k | 2 + (ρ 2 /2)M |w k | 2 pour tout ρ ∈ [0, 1/|w k |]. (d) f (x k+1 ) ≤ f (x k ) -|w k | 2 /(2M ), si |w k | ≤ M . (e) -f (x k+1 ) + f (x k ) ≥ |w k | 2 /(2M), avec M = sup(M, M ), M = sup{|∇f (x)|, x ∈ B R }.
5. Montrer que ∇f (x k ) → 0 (quand k → ∞) et qu'il existe une sous suite (n k ) k∈IN t.q. x n k → x quand k → ∞ et ∇f (x) = 0. 6. On suppose qu'il existe un unique x ∈ IR n t.q. ∇f (x) = 0. Montrer que f (x) ≤ f (x) pour tout x ∈ IR n et que

x k → x quand k → ∞.
On propose l'algorithme de recherche de minimum de f suivant :

                                                             Initialisation : x (0) ∈ E, Itération n : x (k) connu, (n ≥ 0) Calculer x (k+1) 1
tel que, pour tout ξ ∈ IR,

f (x (k+1) 1 , x (k) 2 , x (k) 3 , . . . , x (k) n ) ≤ f (ξ, x (k) 2 , x (k) 3 , . . . , x (k) n ), Calculer x (k+1) 2 tel que, pour tout ξ ∈ IR, f (x (k+1) 1 , x (k+1) 2 , x (k) 3 , . . . , x (k) n ) ≤ f (x (k+1) 1 , ξ, x (k) 3 , . . . , x (k) n ), . . . Calculer x (k+1) k tel que, pour tout ξ ∈ IR, f (x (k+1) 1 , . . . , x (k+1) k-1 , x (k+1) k , x (k) (k+1) , . . . , x (k) n ) ≤ f (x (k+1) 1 , . . . , x (k+1) k-1 , ξ, x (k) (k+1) , . . . , x (k) n ), . . . Calculer x (k+1) n tel que, pour tout ξ ∈ IR, f (x (k+1) 1 , x (k+1) 2 , . . . , x (k+1) n-1 , x (k+1) n ) ≤ f (x (k+1) 1 , . . . , x (k+1) n-1 , ξ). (3.38) 2. Pour n ∈ IN et 1 ≤ k ≤ N , soit ϕ (k+1) k
la fonction de IR dans IR définie par :

ϕ (k+1) k (s) = f (x (k+1) 1 , . . . , x (k+1) k-1 , s, x (k) (k+1) , . . . , x (k) n ).
Montrer qu'il existe un unique élément s ∈ IR tel que

ϕ (k+1) k (s) = inf s∈IR ϕ (k+1) k (s).
En déduire que la suite (x (k) ) n∈IN construite par l'algorithme (3.38) est bien définie.

Dans toute la suite, on note • la norme euclidienne sur IR n et (•|•) le produit scalaire associé. Pour i = 1, . . . , n, on désigne par ∂ i f la dérivée partielle de f par rapport à la i-ème variable.

3. Soit (x (k) ) n∈IN la suite définie par l'algorithme (3.38).

Pour n ≥ 0, on définit x (n+1,0) = x (k) = (x

(k) 1 , . . . , x (k) n ) t , et pour 1 ≤ k ≤ n, x (n+1,k) = (x (k+1) 1 , . . . , x (k+1) k , x (k) k+1 , . . . , x (k) n ) t (de sorte que x (n+1,n) = x (k+1) ). (a) Soit n ∈ IN. Pour 1 ≤ k ≤ n, montrer que ∂ k f (x (n+1,k) ) = 0, pour k = 1, . . . , n. En déduire que f (x (n+1,k-1) ) -f (x (n+1,k) ) ≥ α 2 x (n+1,k-1) -x (n+1,k) 2 . (b) Montrer que la suite (x (k) ) n∈IN vérifie f (x (k) ) -f (x (k+1) ) ≥ α 2 x (k) -x (k+1) 2 .
En déduire que lim n→+∞ x (k) -x (k+1) = 0 et que, pour 1 ≤ k ≤ n, lim n→+∞ x (n+1,k) -x (k+1) = 0.

Analyse numérique I, télé-enseignement, L3

4. Montrer que (On rappelle que ∂ k f (x (n+1,k) ) = 0.) Conclure quant à la convergence de la suite(x (k) ) n∈IN lorsque n → +∞.

x (k+1) -x ≤ 1 α n k=1 |∂ k f (x (k+1) )| 2
6. On suppose dans cette question que f (x) = 1 2 (Ax|x) -(b|x). Montrer que dans ce cas, l'algorithme (3.38) est équivalent à une méthode itérative de résolution de systèmes linéaires qu'on identifiera.

7. On suppose dans cette question que n = 2. Soit g la fonction définie de IR 2 dans IR par :

g(x) = x 2 1 + x 2 2 - 2(x 1 + x 2 ) + 2|x 1 -x 2 |, avec x = (x 1 , x 2 ) t .
(a) Montrer qu'il existe un unique élément x = (x 1 , x 2 ) t de IR 2 tel que g(x) = inf x∈IR 2 g(x). (c) Montrer que si x (0) = (0, 0) t , l'algorithme (3.38) appliqué à g ne converge pas vers x. Quelle est l'hypothèse mise en défaut ici ?

Exercice 146 (Mise en oeuvre de GC).

On considère la fonction f :

IR 2 → IR définie par f (x 1 , x 2 ) = 2x 2 1 + x 2 2 -x 1 x 2 -3x 1 -x 2 + 4. 1.
Montrer qu'il existe un unique x ∈ IR 2 tel que x = min x∈IR 2 f (x) admet un unique minimum, et le calculer.

2. Calculer le premier itéré donné par l'algorithme du gradient conjugué, en partant de (x Exercice 148 (Gradient conjugué préconditionné par LL t ).

Analyse numérique I, télé-enseignement, L3 Soit y (0) ∈ IR n fixé. On pose r(0) = w(0) = b -By (0) . Si r(0) = 0, on pose alors y (1) = y (0) + ρ 0 w(0) , avec ρ 0 = r(0) •r (0) w(0) •A w (0) . Pour n > 1, on suppose y (0) , . . . , y (k) et w(0) , . . . , w(k-1) connus, et on pose : r(k) = b -By (k) . Si r(k) = 0, on calcule :

w(k) = r(k) + λ k-1 w(k-1) avec λ k-1 = r(k) •r (k)
r(k-1) •r (k-1) et on pose alors :

y (k+1) = y (k) + α k w(k) avec α k = r(k) •r (k)
w(k) •B w(k) , 3. En utilisant le cours, justifier que la famille y (k) ainsi construite est finie. A quoi est égale sa dernière valeur ?

Pour n ∈ IN, on pose :

x (k) = L -t y (k) (avec L -t = (L -1 ) t = (L t ) -1 ), r (k) = b -Ax (k) , w (k) = L -t w(k) et s (k) = (LL t ) -1 r (k) .
4. Soit n > 0 fixé. Montrer que : 1. Montrer qu'il existe x ∈ IR tel que J(x) ≤ J(x), ∀x ∈ IR.

(a) λ k-1 = s (k) • r (k) s (k-1) • r (k-1) , (b) ρ n = s (k) • r (k) w (k) • Aw (k) , (c) w (k) = s (k) + λ n w (k-1) , (d) x (k+1) = x (k) + α k w (k) .
2. (Newton) On cherche ici à déterminer un minimum de J en appliquant la méthode de Newton pour trouver une solution de l'équation J ′ (x) = 0. Ecrire l'algorithme de Newton qui donne x k+1 en fonction de x k et des données d, f, f ′ et f ′′ .

3. L'algorithme dit de "quasi-linéarisation" consiste à remplacer, à chaque itération k ∈ IN, la minimisation de la fonctionnelle J par celle de la fonctionnelle J k , définie de IR dans IR obtenue à partir de J en effectuant un développement limité au premier ordre de f (x) en x (k) , c.à.d.

J k (x) = (f (x k ) + f ′ (x k )(x -x k ) -d) 2
Montrer que à k fixé, il existe un unique x ∈ IR qui minimise J k et le calculer (on supposera que f ′ (x k ) = 0). On pose donc x k+1 = x. Que vous rappelle l'expression de x k+1 ? 4. Ecrire l'algorithme du gradient à pas fixe pour la minimisation de J. Exercice On note x l'unique point de IR n t.q. f (x) ≤ f (x) pour tout x ∈ IR n (l'existence et l'unicité de x est donné par la question précédente). On cherche une approximation de x en utilisant l'algorithme de Polak-Ribière :

initialisation. x (0) ∈ IR n . On pose g (0) = -∇f (x (0) ). Si g (0) = 0, l'algorithme s'arrête (on a x (0) = x).

Si g (0) = 0, on pose w (0) = g (0) et x (1) = x (0) + ρ 0 w (0) avec ρ 0 "optimal" dans la direction w (0) .

itération. x (k) , w (k-1) connus (k ≥ 1). On pose g (k) = -∇f (x (k) ). Si g (k) = 0, l'algorithme s'arrête (on a k) avec α k "optimal" dans la direction w k . (Noter que α k existe bien.)

x (k) = x). Si g (k) = 0, on pose λ k-1 = [g (k) • (g (k) -g (k-1) )]/[g (k-1) • g (k-1) ], w (k) = g (k) + λ k-1 w (k-1) et x (k+1) = x (k) + α k w (
On suppose dans la suite que g (k) = 0 pour tout k ∈ IN. 2. Montrer (par récurrence sur k) que g (k+1) • w (k) = 0 et g (k) • g (k) = g (k) • w (k) , pour tout k ∈ IN.

On pose

J (k) = 1 0 H(x (k) + θα k w (k) )dθ. Montrer que g (k+1) = g (k) + α k J (k) w (k) et que α k = (-g (k) • w (k) )/(J (k) w (k) • w (k) ) (pour tout k ∈ IN). 4. Montrer que |w (k) | ≤ (1 + β/α)|g (k) | pour tout k ∈ IN. [Utiliser, pour k ≥ 1, la question précédente et la formule donnant λ k-1 .] 5. Montrer que x (k) → x quand k → ∞.
Exercice 151 (Algorithme de quasi Newton).

Corrigé détaillé en page 232

Soit A ∈ M n (IR) une matrice symétrique définie positive et b ∈ IR n . On pose f (x) = (1/2)Ax • xb • x pour x ∈ IR n . On rappelle que ∇f (x) = Axb. Pour calculer x ∈ IR n t.q. f (x) ≤ f (x) pour tout x ∈ IR n , on va utiliser un algorithme de quasi Newton, c'est-à-dire : (k) une matrice symétrique définie positive à déterminer et α k "optimal" dans la direction w (k) = -K (k) g (k) . (Noter que α k existe bien.) Partie 1. Calcul de α k . On suppose que g (k) = 0.

initialisation. x (0) ∈ IR n . itération. x (k) connu (n ≥ 0. On pose x (k+1) = x (k) -α k K (k) g (k) avec g (k) = ∇f (x (k) ), K
1. Montrer que w (k) est une direction de descente stricte en x (k) et calculer la valeur de α k (en fonction de

K (k) et g (k)
). 2. On suppose que, pour un certain n ∈ IN, on a K (k) = (H(x (k) )) -1 (où H(x) est la matrice hessienne de f en x, on a donc ici H(x) = A pour tout x ∈ IR n ). Montrer que α k = 1. 3. Montrer que la méthode de Newton pour calculer x converge en une itération (mais nécessite la résolution du système linéaire A(x (1) x (0) ) = b -Ax (0) . . . )

Partie 2. Méthode de Fletcher-Powell. On prend maintenant K (0) = Id et

K (k+1) = K (k) + s (k) (s (k) ) t s (k) • y (k) - (K (k) y (k) )(K (k) (y (k) ) t K (k) y (k) • y (k) , n ≥ 0, (3.41) 
avec s (k) = x (k+1)x (k) et y (k) = g (k+1)g (k) = As (k) . On va montrer que cet algorithme converge en au plus n itérations (c'est-à-dire qu'il existe n ≤ n + 1 t.q.

x N +1 = x.)
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1. Soit n ∈ IN. On suppose, dans cette question, que s (0) , . . . , s (k-1) sont des vecteurs A-conjugués et nonnuls et que K (0) , . . . , K (k) sont des matrices symétriques définies positives t.q. K (j) As (i) = s (i) si 0 ≤ i < j ≤ n (pour n = 0 on demande seulement K (0) symétrique définie positive).

(a) On suppose que g (k) = 0. Montrer que s (k) = 0 (cf. Partie I) et que, pour i < n,

s (k) • As (i) = 0 ⇔ g (k) • s (i) = 0.
Montrer que g (k) • s (i) = 0 pour i < n. [On pourra remarquer que g (i+1) • s

(i) = g (i+1) • w (i) = 0 et (g (k) -g (i+1)
) • s (i) = 0 par l'hypothèse de conjugaison de s (0) , . . . , s (k-1) .] En déduire que s (0) , . . . , s (k) sont des vecteurs A-conjugués et non-nuls. (b) Montrer que K (k+1) est symétrique.

(c) Montrer que K (k+1) As (i) = s (i) si 0 ≤ i ≤ n.

(d) Montrer que, pour tout x ∈ IR n , on a

K (k+1) x • x = (K (k) x • x)(K (k) y (k) • y (k) ) -(K (k) y (k) • x) 2 K (k) y (k) • y (k) + (s (k) • x) 2 As (k) • s (k) .
En déduire que K (k+1) est symétrique définie positive. [On rappelle (inégalité de Cauchy-Schwarz) que, si K est symétrique définie positive, on a (Kx • y) 2 ≤ (Kx • x)(Ky • y) et l'égalité a lieu si et seulement si x et y sont colinéaires.]

2. On suppose que g (k) = 0 si 0 ≤ n ≤ n -1. Montrer (par récurrence sur n, avec la question précédente) que s (0) , . . . , s (n-1) sont des vecteurs A-conjugués et non-nuls et que

K (n) As (i) = s (i) si i < n. En déduire que K (n) = A -1 , α n = 1 et x (n+1) = A -1 b = x.
Exercice 152 (Méthodes de Gauss-Newton et de quasi-linéarisation). 

J(x) = (f (x) -d) • C(f (x) -d).
On cherche à minimiser J.

I Propriétés d'existence et d'unicité

(a) Montrer que J est bornée inférieurement.

(b) Donner trois exemples de fonctions f pour lesquels les fonctionnelles J associées sont telles que l'on ait :

i. existence et unicité de x ∈ IR n qui réalise le minimum de J, pour le premier exemple.

ii. existence et non unicité de x ∈ IR n qui réalise le minimum de J, pour le second exemple.

iii. non existence de x ∈ IR n qui réalise le minimum de J, pour le troisième exemple.

(On pourra prendre n = p = 1.)

II Un peu de calcul différentiel (c) Pour x ∈ IR n , calculer la matrice hessienne de J en x (qu'on notera H(x)). On suppose maintenant que M ne dépend pas de x ; montrer que dans ce cas H(x) = 2M (x) t CM (x).

III Algorithmes d'optimisation Dans toute cette question, on suppose qu'il existe un unique bf x ∈ IR n qui réalise le minimum de J, qu'on cherche à calculer de manière itérative. On se donne pour cela x 0 ∈ IR n , et on cherche à construire une suite (x k ) k∈IN qui converge vers x.

(a) On cherche à calculer x en utilisant la méthode de Newton pour annuler ∇J. Justifier brièvement cette procédure et écrire l'algorithme obtenu.

(b) L'algorithme dit de "Gauss-Newton" est une modification de la méthode précédente, qui consiste à approcher, à chaque itération n, la matrice jacobienne de ∇J en x k par la matrice obtenue en négligeant les dérivées secondes de f . Ecrire l'algorithme ainsi obtenu.

(c) L'algorithme dit de "quasi-linéarisation" consiste à remplacer, à chaque itération k ∈ IN, la minimisation de la fonctionnelle J par celle de la fonctionnelle J k , définie de IR n dans IR, et obtenue à partir de J en effectuant un développement limité au premier ordre de f (x) en x (k) , c.à.d. (k) . Montrer que

J k (x) = (f (x (k) ) + Df (x (k) )(x -x (k) ) -d) • C(f (x (k) ) + Df (x (k) )(x -x (k) ) -d). i. Soit k ≥ 0, x (k) ∈ IR n connu, M k = M (x (k) ) ∈ M p,n (IR), et x ∈ IR n . On pose h = x -x
J k (x) = J(x (k) ) + M t k CM k h • h + 2M t k C(f (x (k) ) -d) • h.
ii. Montrer que la recherche du minimum de J k est équivalente à la résolution d'un système linéaire dont on donnera l'expression.

iii. Ecrire l'algorithme de quasi-linéarisation, et le comparer avec l'algorithme de Gauss-Newton.

Exercice 153 (Comparaison de la minimisation de deux fonctions).

Soit A ∈ M n (R) une matrice inversible et soit b ∈ R n . On considère les deux fonctions suivantes de R n dans R :

J : u ∈ R n → J(u) = 1 2 u t Au -b t u et J : u ∈ R n → J(u) = (Au -b) t (Au -b)
1. On suppose dans cette question que A est symétrique définie positive. Montrer que la fonction J (resp. J) admet un unique minimum et que ce minimum est l'unique solution de ∇J(u) = 0 (resp. ∇ J(u) = 0) ; on calculera ces gradients pour expliciter les équations correspondantes. 1. On a 

∇f (x) = 4x 1 -x 2 -3 2x 2 -x 1 -1 et H f = 4 -1 - 1 
∂ 1 f (x 1 , x 2 ) = 4x 1 -x 2 -3 = 0 ∂ 2 f (x 1 , x 2 ) = 2x 2 -x 1 -1 = 0 c'est-à-dire x1 = 1 et x2 = 1. Ce minimum est f (x 1 , x2 ) = 2.
2. L'algorithme du gradient à pas fixe s'écrit :

       Initialisation : x (0) ∈ IR 2 , ρ > 0 Itération k : x (k) connu, (k ≥ 0) w (k) = -∇f (x (k) ),
x (k+1) = x (k) + ρw (k) .

A la première itération, on a ∇f (0, 0) = (-3, -1) et donc w (0) = (3, 1). On en déduit, pour ρ = 0.5, x (1) = (3ρ, ρ) = (3/2, 1/2) et f (x (1) ) = 3. L'algorithme du gradient à pas optimal s'écrit :

               Initialisation : x (0) ∈ IR n . Itération k : x (k) connu. On calcule w (k) = -∇f (x (k) ). On choisit ρ k ≥ 0 tel que f (x (k) + ρ k w (k) ) ≤ f (x (k) + ρw (k) ) ∀ρ ≥ 0. On pose x (k+1) = x (k) + ρ k w (k) .
Calculons le ρ 0 optimal à l'itération 0. On a vu précédemment que w (0) = (3, 1). Le ρ 0 optimal minimise la fonction ρ → ϕ(ρ) = f (x (0) + ρw (0) ) = f (3ρ, ρ). On doit donc avoir ϕ ′ (ρ 0 ) = 0. Calculons ϕ ′ (ρ). Par le théorème de dérivation des fonctions composées, on a :

ϕ ′ (ρ) = ∇f (x (0) + ρw (0) ) • w(0) = 11ρ -3 -ρ -1 • 3 1 = 3(11ρ -3) + (-ρ -1) = 32ρ -10.
On en déduit que ρ 0 = 5 16 . On obtient alors x (1) = x (0) + ρ 0 w (0) = ( 15 16 , 5 16 ), et f (x (1) ) = 2.4375, ce qui est, comme attendu, mieux qu'avec GPF.

Exercice 142 page 215 (Convergence de l'algorithme du gradient à pas optimal) Si w k = 0, on pose x k+1 = x k .

1. On sait que f (x) → +∞ lorsque |x| → +∞. Donc ∀A > 0, ∃R ∈ IR + ; |x| > R ⇒ f (x) > A. En particulier pour A = f (x 0 ) ceci entraîne : ∃R ∈ IR + ; x ∈ B R ⇒ f (x) > f (x 0 ). 2. Comme f ∈ C 2 (
Si w k = 0, montrons qu'il existe ρ > 0 tel que

f (x k + ρw k ) ≤ f (x k + ρw k ) ∀ρ > 0.
On sait que f (x) → +∞ lorsque |x| → +∞.

Soit ϕ : IR + → IR définie par ϕ(ρ) = f (x k + ρw k ). On a ϕ(0) = f (x k ) et ϕ(ρ) = f (x k + ρw k ) → +∞ lorsque ρ → +∞. En effet si ρ → +∞, on a |x k + ρw k | → +∞. Donc ϕ étant continue, ϕ admet un minimum, atteint en ρ, et donc ∃ρ ∈ IR + ; f (x k + ρw) ≤ f (x k + ρw k ) ∀ρ > 0. 4. a) Montrons que la suite (f (x k )) n∈IN est convergente. La suite (f (x k )) n∈IN vérifie f (x k+1 ) ≤ f (x k ).
De plus f (x) → +∞ lorsque |x| → +∞ donc f est bornée inférieurement. On en conclut que la suite

(f (x k )) n∈IN est convergente. b) Montrons que x k ∈ B R ∀k ∈ IN. On sait que si x / ∈ B R alors f (x) > f (x 0 ). Or la suite (f (x k )) n∈IR est décroissante donc f (x k ) ≤ f (x 0 ) ∀k, donc x k ∈ B R , ∀k ∈ IN. c) Montrons que f (x k + ρw k ) ≤ f (x k ) -ρ|w k | 2 + ρ 2 2 M |w k | 2 , ∀ρ ∈ [0, 1 |w k | ]. Soit ϕ définie de IR + dans IR par ϕ(ρ) = f (x k + ρw k ). On a ϕ(ρ) = ϕ(0) + ρϕ ′ (0) + ρ 2 2 ϕ ′′ (ρ), où ρ ∈]0, ρ[. Or ϕ ′ (ρ) = ∇f (x k + ρw k ) • w k et ϕ ′′ (ρ) = H(x k + ρw k )w k • w k . Donc ϕ(ρ) = ϕ(0) f (x k ) +ρ ∇f (x k ) -w k •w k + ρ 2 2 H(x k + ρw k )w k • w k . Si ρ ∈ [0, 1 |w k | ] on a |x k + ρw k | ≤ |x k | + 1 |w k | |w k | ≤ R + 1, donc x k + ρw k ∈ B R+1 et par la question 2, H(x k + ρw k )w k • w k ≤ M |w k | 2 .
On a donc bien

ϕ(ρ) = f (x k + ρw k ) ≤ f (x k ) -ρ|w k | 2 + ρ 2 2 M |w k | 2 . d) Montrons que f (x k+1 ) ≤ f (x k ) - |w k | 2 2M si |w k | ≤ M .
Comme le choix de α k est optimal, on a

f (x k+1 ) = f (x k + α k w k ) ≤ f (x k + ρw k ), ∀ρ ∈ IR + .
donc en particulier

f (x k+1 ) ≤ f (x k + ρw k ), ∀ρ ∈ [0, 1 |w k | ].
En utilisant la question précédente, on obtient

f (x k+1 ) ≤ f (x k ) -ρ|w k | 2 + ρ 2 2 M |w k | 2 = ϕ(ρ), ∀ρ ∈ [0, 1 |w k | ]. (3.42) 
Or la fonction ϕ atteint son minimum pour

-|w k | 2 + ρM |w k | 2 = 0 c'est-à-dire ρM = 1 ou encore ρ = 1 M ce qui est possible si 1 |w k | ≥ 1 M (puisque 3.42 est vraie si ρ ≤ 1 |w k | ).
Comme on a supposé |w k | ≤ M , on a donc

f (x k+1 ) ≤ f (x k ) - |w k | 2 M + |w k | 2 2M = f (x k ) - |w k | 2 2M . e) Montrons que -f (x k+1 ) + f (x k ) ≥ |w k | 2 2 M où M = sup(M, M ) avec M = sup{|∇f (x)|, x ∈ B R }.
On sait par la question précédente que si

|w k | ≤ M, on a -f (x k+1 ) -f (x k ) ≥ |w k | 2 2M . Montrons que si |w k | ≥ M , alors -f (x k+1 ) + f (x k ) ≥ |w k | 2 2
M . On aura alors le résultat souhaité. On a

f (x k+1 ) ≤ f (x k ) -ρ|w k | 2 + ρ 2 2 M |w k | 2 , ∀ρ ∈ [0, 1 |w k | ]. Donc f (x k+1 ) ≤ min [0, 1 |w k | ] [f (x k ) -ρ|w k | 2 + ρ 2 2 M |w k | 2 ] P k (ρ)
-1er cas si |w k | ≤ M , on a calculé ce min à la question c).

-si 

|w k | ≥ M , la fonction P k (ρ) est décroissante sur [0, 1 |w k | ] et le minimum est donc atteint pour ρ = 1 |w k | . Or P k 1 |w k | = f (x k ) -|w k | + M 2 ≤ f (x k ) - |w k | 2 ≤ f (x k ) - |w k | 2 2 
(∂ k f (s) -∂ k f (t))(s -t) ≥ α|s -t| 2 .
En appliquant à nouveau la proposition 3.13 au cas n = 1, on en déduit l'existence et unicité de s tel que

ϕ (k+1) k (s) = inf s∈IR ϕ (k+1) k (s).
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Comme l'algorithme (3.38) procède à n minimisations de ce type à chaque itération, on en déduit que la suite (x (k) ) n∈IN construite par cet algorithme est bien définie. ∈ C 1 (IR, IR), on a donc (ϕ

(k+1) k ) ′ (x (k+1) k ) = 0. Or (ϕ (k+1) k ) ′ (x (k+1) k ) = ∂ k f (x (n+1,k) ), et donc ∂ k f (x (n+1,k) ) = 0.
D'après la démonstration de la proposition 3.13 (voir l'inégalité (3.11)), on a

f (x (n+1,k-1) ) -f (x (n+1,k) ) ≥ ∇f (x (n+1,k) ) • (x (n+1,k-1) -x (n+1,k) ) + α 2 |x (n+1,k-1) -x (n+1,k) | 2 . Or x (n+1,k-1) -x (n+1,k) = -x (k+1) k e k et ∇f (x (n+1,k) ) • e k = ∂ k f (x (n+1,k) ) = 0.
On en déduit que :

f (x (n+1,k-1) ) -f (x (n+1,k) ) ≥ α 2 |x (n+1,k-1) -x (n+1,k) | 2 .
3.(b) Par définition de la suite (x (k) ) n∈IN , on a :

f (x (k) ) -f (x (k+1) ) = n k=1 f (x (n+1,k-1) ) -f (x (n+1,k) ).
Par la question précédente, on a donc :

f (x (k) ) -f (x (k+1) ) ≥ α 2 n k=1 |x (n+1,k-1)) -x (n+1,k) | 2 . Or x (n+1,k-1)) -x (n+1,k) = -x (k+1) k e k , et (e k
) k∈n est une base orthonormée. On peut donc écrire que

n k=1 |x (n+1,k-1)) -x (n+1,k) | 2 = n k=1 |(x (k) k -x (k+1) k )e k | 2 = | n k=1 (x (k) k -x (k+1) k )e k | 2 = | n k=1 (x (n+1,k-1)) -x (n+1,k) )| 2 = |x (k) -x (k+1) | 2 .
On en déduit que

f (x (k) ) -f (x (k+1) ) ≥ α 2 |x (k) -x (k+1) | 2 .
La suite (f (x (k) )) k∈IN est bornée inférieurement par f (x) ; l'inégalité précédente montre qu'elle est décroissante, donc elle converge. On a donc f (x (k) )f (x (k+1) → 0 lorsque n → +∞, et donc par l'inégalité précédente,

lim n→+∞ |x (k) -x (k+1) | = 0. De plus, pour 1 ≤ k ≤ n, |x (n+1,k) -x (k+1) | 2 = n ℓ=k |(x (k) ℓ -x (k+1) ℓ )e ℓ | 2 = | n ℓ=k (x (k) ℓ -x (k+1) ℓ )e ℓ | 2 = | n ℓ=k (x (n+1,ℓ-1)) -x (n+1,ℓ) )| 2 ≤ |x (k) -x (k+1) | 2 .
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d'où l'on déduit que lim n→+∞ |x (n+1,k)x (k+1) | = 0.

4. En prenant x = x et y = x (k+1) dans l'hypothèse (3.10) et en remarquant que, puisque x réalise le minimum de f , on a ∇f (x) = 0, on obtient :

(-∇f (x (k+1) ) • (x -x (k+1) ) ≥ α|x -x (k+1) | 2 ,
et donc, par l'inégalité de Cauchy Schwarz : 

|x (k+1) -x| ≤ 1 α n k=1 |∂ k f (x (k+1) )| 2
|∂ k f (x) -∂ k f (y)| ≤ ǫ. On a donc, pour n ≥ N η : |∂ k f (x (n+1,k) ) -∂ k f (x (k+1) )| ≤ ǫ, ce qui démontre que : |∂ k f (x (k+1) )| → 0 lorsque n → +∞.
On en conclut par le résultat de la question 4 que x (k) → x lorsque n → +∞.

6. On a vu au paragraphe 3.2.2 que dans ce cas, ∇f (x) = 1 2 (A + A t )xb. L'algorithme 3.38 est donc la méthode de Gauss Seidel pour la résolution du système linéaire 1 2 (A + A t )x = b. 7 (a) La fonction g est strictement convexe (car somme d'une fonction strictement convexe : (x 1 , x 2 ) → x 2 1 + x 2 2 , d'une fonction linéaire par morceaux : (x 1 , x 2 ) → -2(x 1 + x 2 ) + 2|x 1x 2 |. et croissante à l'infini grâce aux termes en puissance 2. Il existe donc un unique élément x = (x 1 , x 2 ) t de IR 2 tel que g(x) = inf x∈IR 2 g(x). 7 (b) Soit ǫ > 0. On a, pour tout x ∈ IR, φ x (ǫ) = g(x, x + ǫ) = x 2 + (x + ǫ) 2 -4x, qui atteint (pour tout x) son minimum pour ǫ = 0. Le minimum de g se situe donc sur l'axe x = y. Or ψ(x) = g(x, x) = 2x 2 -4x atteint son minimum en x = 1. 7 (c) Si x (0) = (0, 0) t , on vérifie facilement que l'algorithme (3.38) appliqué à g est stationnaire. La suite ne converge donc pas vers x. La fonction g n'est pas différentiable sur la droite x 1 = x 2 .

Exercice 147 page 218 (Gradient conjugué pour une matrice non symétrique) 

= (ρ(A t A)) 1 2 et A -1 = (ρ((A -1 ) t A -1 )) 1 2 = (ρ(AA t ) -1 )) 1 2
. On vérifie facilement que M = A t A et A t A ont mêmes valeurs propres et on en déduit le résultat.
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1. Montrons que f est strictement convexe et croissante à l'infini. Soit ϕ la fonction de IR dans IR définie par

ϕ(t) = f (x + t(y -x)). On a ϕ ∈ C 2 (IR, IR), ϕ(0) = f (x) et ϕ(1) = f (y), et donc : f (y) -f (x) = ϕ(1) -ϕ(0) = 1 0 ϕ ′ (t)dt.
En intégrant par parties, ceci entraîne : 2. Montrons par récurrence sur n que g (k+1) • w (k) = 0 et g (k) • g (k) = g (k) • w (k) pour tout k ∈ IN.

f (y) -f (x) = ϕ ′ (0) + 1 0 (1 -t)ϕ ′′ (t)dt. (3.43) Or ϕ ′ (t) = ∇(x + t(y -x)) • (y -x) et donc ϕ ′′ (t) = H(x + t(y -x))(y -x)
Pour k = 0, on a w (0) = g (0) = -∇f (x (0) ).

Si ∇f (x (0) ) = 0 l'algorithme s'arrête. Supposons donc que ∇f (x (0) ) = 0. Alors w (0) = -∇f (x (0) ) est une direction de descente stricte. Comme x (1) = x (0) + ρ 0 w (0) où ρ 0 est optimal dans la direction w (0) , on a g (1) • w (0) = -∇f (x (1) ) • w (0) = 0. De plus, on a évidemment g (0) • w (0) = g (0) • g (0) . Supposons maintenant que g (k) • w (k-1) = 0 et g (k-1) • g (k-1) = g (k-1) • w (k-1) , et montrons que g (k+1) • w (k) = 0 et g (k) • g (k) = g (k) • w (k) . Par définition, on a :

w (k) = g (k) + λ k-1 w (k-1) , donc w (k) • g (k) = g (k) • g (k) + λ k-1 w (k-1) • g (k) = g (k) • g (k)
par hypothèse de récurrence. On déduit de cette égalité que w (k) • g (k) > 0 (car g (k) = 0) et donc w (k) est une direction de descente stricte en x (k) . On a donc ∇f (x (k+1) ) • w (k) = 0, et finalement g (k+1) • w (k) = 0.

3. Par définition, g (k) = -∇f (x (k) ) ; or on veut calculer g (k+1)g (k) = -∇f (x (k+1) ) + ∇f (x (k) ). Soit ϕ la fonction de IR dans IR définie par :

ϕ(t) = -∇f (x (k) + t(x (k+1) -x (k) )).
On a donc :

ϕ(1) -ϕ(0) = g (k+1) -g (k) = 1 0 ϕ ′ (t)dt. Calculons ϕ ′ : ϕ ′ (t) = H(x (k) + t(x (k+1) -x (k) ))(x (k+1) -x (k) ). Et comme x (k+1) = x (k) + α k w (k)
, on a donc :

g (k+1) -g (k) = α k J (k) w (k) . (3.45)
De plus, comme g (k+1) • w (k) = 0 (question 1), on obtient par (3.45) que

α k = g (k) • w (k) J (k) w (k) • w (k) (car J (k) w (k) • w (k) = 0, puisque J (k) est symétrique définie positive).
4. Par définition, on a w (k) = g (k) + λ k-1 w (k-1) , et donc

|w (k) | ≤ |g (k) | + |λ k-1 ||w (k-1) |. (3.46)
Toujours par définition, on a : 1) . Donc, par la question 3, on a : 1) .

λ k-1 = g (k) • (g (k) -g (k-1) ) g (k-1) • g (k-
λ k-1 = α k-1 g (k) • J (k-1) w (k-1) g (k-1) • g (k-
En utilisant la question 2 et à nouveau la question 3, on a donc : 1) , car J (k-1) est symétrique définie positive. De plus, en utilisant les hypothèses sur H, on vérifie facilement que

λ k-1 = - J (k-1) w (k-1) • g (k) J (k-1) w (k-1) • w (k-1) , et donc |λ k-1 | = |J (k-1) w (k-1) • g (k) | J (k-1) w (k-1) • w (k-
α|x| 2 ≤ J (k) x • x ≤ β|x| 2 ∀x ∈ IR n .
On en déduit que

|λ k-1 | ≤ |J (k-1) w (k-1) • g (k) | α|w (k-1) | 2 .
On utilise alors l'inégalité de Cauchy-Schwarz :

|J (k-1) w (k-1) • g (k) | ≤ J (k-1) 2 |w (k-1) | |g (k) | ≤ β|w (k-1) | |g (k) |.
On obtient donc que

|λ k-1 | ≤ β α |g (k) | |w (k-1)| ,
ce qui donne bien grâce à (3.46) :

|w (k) | ≤ |g (k) |(1 + β α ). 5. • Montrons d'abord que la suite (f (x (k) )) n∈IN converge. Comme f (x (k+1) ) = f (x (k) + α k w (k) ) ≤ f (x (k) + ρw (k)
) ∀ρ ≥ 0, on a donc en particulier f (x (k+1) ) ≤ f (x (k) ). La suite (f (x (k) )) n∈IN est donc décroissante. De plus, elle est minorée par f (x). Donc elle converge, vers une certaine limite ℓ ∈ IR, lorsque k tend vers +∞.

• La suite (x (k) ) k∈IN est bornée : en effet, comme f est croissante à l'infini, il existe R > 0 tel que si |x| > R alors f (x) > f (x (0) ). Or f (x (k) ) ≤ f (x (0) ) pout tout k ∈ IN, et donc la suite (x (k) ) n∈IN est incluse dans la boule de rayon R.

• Montrons que ∇f (x (k) ) → 0 lorsque n → +∞. On a, par définition de x (k+1) ,

f (x (k+1) ) ≤ f (x (k) + ρw (k) ), ∀ρ ≥ 0.
En introduisant la fonction ϕ définie de IR dans IR par ϕ(t) = f (x (k) + tρw (k) ), on montre facilement (les calculs sont les mêmes que ceux de la question 1) que

f (x (k) + ρw (k) ) = f (x (k) ) + ρ∇f (x (k) ) • w (k) + ρ 2 1 0 H(x (k) + tρw (k) )w (k) • w (k) (1 -t)dt,
pour tout ρ ≥ 0. Grâce à l'hypothèse sur H, on en déduit que

f (x (k+1) ) ≤ f (x (k) ) + ρ∇f (x (k) ) • w (k) + β 2 ρ 2 |w (k) | 2 , ∀ρ ≥ 0. Comme ∇f (x (k) ) • w (k) = -g (k) • w (k) = -|g (k) | 2 (question 2) et comme |w (k) | ≤ |g (k) |(1 + β α ) ( question 
4), on en déduit que :

f (x (k+1) ) ≤ f (x (k) ) -ρ|g (k) | 2 + ρ 2 γ|g (k) | 2 = ψ k (ρ), ∀ρ ≥ 0, où γ = β 2 2 + (1 + β α ) 2 .
La fonction ψ k est un polynôme de degré 2 en ρ, qui atteint son minimum lorsque ψ ′ k (ρ) = 0, i.e. pour ρ = 1 2γ . On a donc, pour ρ = 1 2γ ,

f (x (k+1) ) ≤ f (x (k) ) - 1 4γ |g (k) | 2 , d'où on déduit que |g (k) | 2 ≤ 4γ(f (x (k) ) -f (x (k+1) ) → 0 k→+∞
On a donc ∇f (x (k) ) → 0 lorsque k → +∞.

• La suite (x (k) ) n∈IN étant bornée, il existe une sous-suite qui converge vers x ∈ IR n , comme ∇f (x (k) ) → 0 et comme ∇f est continue, on a ∇f (x) = 0. Par unicité du minimum (f est croissante à l'infini et strictement convexe) on a donc x = x. Enfin on conclut à la convergence de toute la suite par un argument classique (voir question 6 de l'exercice 142 page 215).

Exercice 151 page 220 (Algorithme de quasi Newton) Partie 1

1. Par définition de w (k) , on a :

w (k) • ∇f (x (k) ) = -K (k) ∇f (x (k) ) • ∇f (x (k) ) < 0
car K est symétrique définie positive.

Comme α k est le paramètre optimal dans la direction w (k) , on a ∇f (x

(k) + α k w (k) ) • w (k) = 0, et donc Ax (k) • w (k) + α k Aw (k) • w (k) = b • w (k)
; on en déduit que

α k = - g (k) • w (k) Aw (k) • w (k) .
Comme w (k) = -K (k) g (k) , ceci s'écrit encore : (k) .

α k = g (k) • K (k) g (k) AK (k) g (k) • K (k) g
Analyse numérique I, télé-enseignement, L3

2. Si K (k) = A -1 , la formule précédente donne immédiatement α k = 1. 3. La méthode de Newton consiste à chercher le zéro de ∇f par l'algorithme suivant (à l'itération 1) : (0) )(x (1) x (0) ) = -∇f (x (0) ), (où H f (x) désigne la hessienne de f au point x) c'est-à-dire A(x (1) x (0) ) = -Ax (0) + b. 

H f (x

On a donc Ax

(k) = x (k+1) -x (k) = -α k K (k) g (k) , avec α k > 0.
Comme K (k) est symétrique définie positive elle est donc inversible ; donc comme g (k) = 0, on a K (k) g (k) = 0 et donc s (k) = 0. Soit i < n, par définition de s (k) , on a :

s (k) • As (i) = -α k K (k) g (k) • As (i) .
Comme K (k) est symétrique,

s (k) • As (i) = -α k g (k) • K (k) As (i) .
Par hypothèse, on a K (k) As (i) = s (i) pour i < n, donc on a bien que si i < n

s (k) • As (i) = 0 ⇔ g (k) • s (i) = 0.
Montrons maintenant que g (k) • s (i) = 0 pour i < n.

• On a

g (i+1) • s (i) = -ρ i g (i+1) • K (i) g (i) = -ρ i g (i+1)
• w (i) .

Or g (i+1) = ∇f (x (i+1) ) et ρ i est optimal dans la direction w (i) . Donc

g (i+1) • s (i) = 0.
• On a

(g (k) -g (i+1) ) • s (i) = (Ax (k) -Ax (i+1) ) • s (i) = n-1 k=i+1 (Ax (k+1) -Ax (k) ) • s (i) = n-1 k=i+1 As (k) • s (i) , = 0 
Par hypothèse de A-conjugaison de la famille (s (i) ) i=1,k-1 on déduit alors facilement des deux égalités précédentes que g (k) • s (i) = 0. Comme on a montré que g (k) • s (i) = 0 si et seulement si s (k) • As (i) = 0, on en conclut que la famille (s (i) ) i=1,...,n est A-conjuguée, et que les vecteurs s (i) sont non nuls. 2. Montrons que K (k+1) est symétrique. On a :

(K (k+1) ) t = (K (k) ) t + (s (k) (s (k) ) t ) t s (k) • y (k) - [(K (k) y (k) )(K (k) y (k) ) t ] t K (k) y (k) • y (k) = K (k+1) , car K (k) est symétrique.
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3. Montrons que K (k+1) As (i) = s (i) si 0 ≤ i ≤ n. On a :

K (k+1) As (i) = K (k) As (i) + s (k) (s (k) ) t s (k) • y (k) As (i) - (K (k) y (k) )(K (k) (y (k) ) t K (k) y (k) • y (k)
As (i) .

(3.47)

-Considérons d'abord le cas i < n. On a

s (k) (s (k) ) t As (i) = s (k) [(s (k) ) t As (i) ] = s (k) [s (k) • As (i) ] = 0 car s (k) • As (i) = 0 si i < n.
De plus, comme K (k) est symétrique, on a :

(K (k) y (k) )(K (k) y (k) ) t As (i) = K (k) y (k) (y (k) ) t K (k) As (i) .
Or par la question (c), on a K (k) As (i) = s (i) si 0 ≤ i ≤ n. De plus, par définition, y (k) = As (k) . On en déduit que

(K (k) y (k) )(K (k) y (k) ) t As (i) = K (k) y (k) (As (k) ) t s (i) = K (k) y (k) (s (k) ) t As (i) = 0
puisque on a montré en (a) que les vecteurs s (0) , . . . , s (k) sont A-conjugués. On déduit alors de (3.47) que

K (k+1) As (i) = K (k) As (i) = s (i) .
-Considérons maintenant le cas i = n. On a

K (k+1) As (k) = K (k) As (k) + s (k) (s (k) ) t s (k) • y (k) As (k) - (K (k) y (k) )(K (k) (y (k) ) t K (k) y (k) • y (k) As (k) ,
et comme y (k) = As (k) ,, ceci entraîne que

K (k+1) As (k) = K (k) As (k) + s (k) -K (k) y (k) = s (k) .
4. Pour x ∈ IR n , calculons K (k+1) x • x : 2 . On en déduit que

K (k+1) x • x = K (k) x • x + s (k) (s (k) ) t s (k) • y (k) x • x - (K (k) y (k) )(K (k) y (k) ) t K (k) y (k) • y (k) x • x. Or s (k) (s (k) ) t x • x = s (k) (s (k) • x) • x = (s (k) • x) 2 , et de même, (K (k) y (k) )(K (k) y (k) ) t x • x = (K (k) y (k) • x)
K (k+1) x • x = K (k) x • x + (s (k) • x) 2 s (k) • y (k) - (K (k) y (k) • x) 2 K (k) y (k) • y (k) .
En remarquant que y (k) = As (k) , et en réduisant au même dénominateur, on obtient alors que

K (k+1) x • x = (K (k) x • x)(K (k) y (k) • y (k) ) -(K (k) y (k) • x) 2 (K (k) y (k) • y (k) ) + (s (k) • x) 2 As (k) • s (k) .
Montrons maintenant que K (k+1) est symétrique définie positive. Comme K (k) est symétrique définie positive, on a grâce à l'inégalité de Cauchy-Schwarz que

(K (k) y (k) • x) 2 ≤ (K (k) x • x)(K (k) y (k) )
avec égalité si et seulement si x et y (k) sont colinéaires. Si x n'est pas colinéaire à y (k) , on a donc donc clairement

K (k+1) x • x > 0.
Si maintenant x est colinéaire à y (k) , i.e. x = αy (k) avec α ∈ IR * + , on a, grâce au fait que y (k) = As (k) ,

(s (k) • x) 2 As (k) • s (k) = α 2 (s (k) • As (k) ) 2 As (k) • s (k) > 0, et donc K (k+1) x • x > 0.
On en déduit que K (k+1) est symétrique définie positive.
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5. On suppose que g (k) = 0 si 0 ≤ n ≤ n -1. On prend comme hypothèse de récurrence que les vecteurs s (0) , . . . , s (k-1) sont A-conjugués et non-nuls, que K (j) As (i) = s (i) si 0 ≤ i < j ≤ n et que les matrices K (j) sont symétriques définies positives pour j = 0, . . . , n.

Cette hypothèse est vérifiée au rang n = 1 grâce à la question 1 en prenant n = 0 et K (0) symétrique définie positive. On suppose qu'elle est vraie au rang n. La question 1 prouve qu'elle est vraie au rang n + 1.

Il reste maintenant à montrer que x (n+1) = A -1 b = x. On a en effet K (n) As (i) = s (i) pour i = 0 à n -1. Or les vecteurs s (0) , . . . , s (k-1) sont A-conjugués et non-nuls : ils forment donc une base. On en déduit que K (n) A = Id, ce qui prouve que K (n) = A -1 , et donc, par définition de x (n+1) , que

x (n+1) = A -1 b = x.
3.4 Optimisation sous contraintes

Définitions

Soit E = IR n , soit f ∈ C(E, IR), et soit K un sous ensemble de E. On s'intéresse à la recherche de ū ∈ K tel que :

ū ∈ K f (ū) = inf K f (3.48)
Ce problème est un problème de minimisation avec contrainte (ou "sous contrainte") au sens où l'on cherche u qui minimise f en restreignant l'étude de f aux éléments de K. Voyons quelques exemples de ces contraintes (définies par l'ensemble K), qu'on va expliciter à l'aide des p fonctions continues, g i ∈ C(E, IR) i = 1 . . . p.

1. Contraintes égalités. On pose K = {x ∈ E, g i (x) = 0 i = 1 . . . p}. On verra plus loin que le problème de minimisation de f peut alors être résolu grâce au théorème des multiplicateurs de Lagrange (voir théorème 3.34). 2. Contraintes inégalités. On pose K = {x ∈ E, g i (x) ≤ 0 i = 1 . . . , p}. On verra plus loin que le problème de minimisation de f peut alors être résolu grâce au théorème de Kuhn-Tucker (voir théorème 3.38).

-Programmation linéaire. Avec un tel ensemble de contraintes K, si de plus f est linéaire, c'est-à-dire qu'il existe b ∈ IR n tel que f (x) = Alors f 

( 1 2 x + 1 2 x) < 1 2 f (x) + 1 2 f ( x) = inf K f .
. Soient E = IR n , f ∈ C(E, IR) et x ∈ K tel que f (x) = inf K f . On suppose que f est différentiable en x 1. Si x ∈ • K alors ∇f (x) = 0. 2. Si K est convexe, alors ∇f (x) • (x -x) ≥ 0 pour tout x ∈ K. DÉMONSTRATION - 1. Si x ∈ • K, alors il existe ε > 0 tel que B(x, ε) ⊂ K et f (x) ≤ f (x) ∀x ∈ B(x, ε).
Alors on a déjà vu (voir preuve de la Proposition 3.7 page 194) que ceci implique ∇f (x) = 0.

Soit

x ∈ K. Comme x réalise le minimum de f sur K, on a : f (x + t(x -x)) = f (tx + (1 -t)x) ≥ f (x) pour tout t ∈]0, 1 
], par convexité de K. On en déduit que

f (x + t(x -x)) -f (x) t ≥ 0 pour tout t ∈]0, 1].
En passant à la limite lorsque t tend vers 0 dans cette dernière inégalité, on obtient : ∇f (x) • (xx) ≥ 0.
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Conditions d'optimalité dans le cas de contraintes égalité

Dans tout ce paragraphe, on considèrera les hypothèses et notations suivantes : 

f ∈ C(IR n , IR), g i ∈ C 1 (IR n , IR), i = 1 . . . p ; K = {u ∈ IR n , g i (u) = 0 ∀i = 1 . . . p} ; g = (g 1 , . . . , g p ) t ∈ C 1 (IR n , IR p ) ( 3 
Dg(u) =       ∂g 1 ∂x 1 , • • • , ∂g 1 ∂x n • • • , . . . , • • • ∂g p ∂x 1 , • • • , ∂g p ∂x n       , et que 
f ∈ C 1 (IR 2 , IR) et K = {(x, y) ∈ IR 2 g(x, y) = 0}, et on cherche u ∈ K tel que f (u) = inf K f.
Traçons dans le repère (x, y) la courbe g(x, y) = 0, ainsi que les courbes de niveau de f . Si on se "promène" sur la courbe g(x, y) = 0, en partant du point P0 vers la droite (voir figure 3.1), on rencontre les courbes de niveau successives de f et on se rend compte sur le dessin que la valeur minimale que prend f sur la courbe g(x, y) = 0 est atteinte lorsque cette courbe est tangente à la courbe de niveau de f : sur le dessin, ceci correspond au point P1 où la courbe g(x, y) = 0 est tangente à la courbe f (x, y) = 3. Une fois qu'on a passé ce point de tangence, on peut remarquer que f augmente. On utilise alors le fait que si ϕ est une fonction continûment différentiable de IR 2 dans IR, le gradient de ϕ est orthogonal à toute courbe de niveau de ϕ, c'est-à-dire toute courbe de la forme ϕ(x, y) = c, où c ∈ IR. (En effet, soit (x(t), y(t)), t ∈ IR un paramétrage de la courbe g(x, y) = c, en dérivant par rapport à t, on obtient : ∇g(x(t), y(t)) • (x ′ (t), y ′ (t)) t = 0). En appliquant ceci à f et g, on en déduit qu'au point de tangence entre une courbe de niveau de f et la courbe g(x, y) = 0, les gradients de f et g sont colinéaires. Et donc si ∇g(u) = 0, il existe λ = 0 tel que ∇f (u) = λ∇g(u).

Passons maintenant à la démonstration rigoureuse du théorème dans laquelle on utilise le théorème des fonctions implicites 5 . Par hypothèse, Dg(ū) ∈ L(IR n , IR p ) et Im(Dg(ū)) = IR p . Donc il existe un sous espace vectoriel F de IR n de dimension p, tel que Dg(ū) soit bijective de F dans IR p . En effet, soit (e1 . . . ep) la base canonique de IR p , alors pour tout i ∈ {1, . . . p}, il existe yi ∈ IR n tel que Dg(x)yi = ei. Soit F le sous espace engendré par la famille {y1 . . . yp} ; on 5. Théorème des fonctions implicites Soient p et q des entiers naturels, soit h ∈ C 1 (IR q × IR p , IR p ), et soient (x, ȳ) ∈ IR q × IR p et c ∈ IR p tels que h(x, ȳ) = c. On suppose que la matrice de la différentielle D 2 h(x, ȳ)(∈ Mp(IR )) est inversible. Alors il existe ε > 0 et ν > 0 tels que pour tout x ∈ B(x, ε), il existe un unique y ∈ B(ȳ, ν) tel que h(x, y) = c. on peut ainsi définir une application φ de B(x, ε) 

dans B(ȳ, ν) par φ(x) = y. On a φ(x) = ȳ, φ ∈ C 1 (IR p , IR p ) et Dφ(x) = -[D 2 h(x, φ(x))] -1 • D 1 h(x,φ(x)). f (x) = 5 f (x) = 4 f (x) = 3 f (x) = 2 f (x) = 1 g(x) = 0
n = F G. Pour v ∈ F et w ∈ G ; on pose ḡ(w, v) = g(v + w) et f (w, v) = f (v + w). On a donc f ∈ C(G × F, IR) et ḡ ∈ C 1 (G × F, IR). De plus, D2 ḡ(w, v) ∈ L(F, IR p ), et pour tout z ∈ F , on a D2 ḡ(w, v)z = Dg(v + w)z. Soit (v, w) ∈ F × G tel que ū = v + w. Alors D2ḡ( w, v)z = Dg(ū)z pour tout z ∈ F. L'application D2 ḡ( w, v) est une bijection de F sur IR p , car, par définition de F , Dg(ū) est bijective de F sur IR p . On rappelle que K = {u ∈ IR n : g(u) = 0} et on définit K = {(w, v) ∈ G × F, ḡ(w, v) = 0}. Par définition de f et de ḡ, on a ( w, v) ∈ K f ( w, v) ≤ f (w, v) ∀(w, v) ∈ K (3.50)
D'autre part, le théorème des fonctions implicites (voir note de bas de page 237) entraîne l'existence de ε

> 0 et ν > 0 tels que pour tout w ∈ BG( w, ε) il existe un unique v ∈ BF (v, ν) tel que ḡ(w, v) = 0. On note v = φ(w) et on définit ainsi une application φ ∈ C 1 (BG( w, ε), BF (v, ν)).
On déduit alors de (3.50) que :

f ( w, φ( w)) ≤ f (w, φ(w))), ∀w ∈ BG( w, ε), et donc f (ū) = f ( w + φ( w)) ≤ f (w + φ(w)), ∀w ∈ BG( w, ε).
En posant ψ(w) = f (w, φ(w)), on peut donc écrire ψ( w) = f ( w, φ( w)) ≤ ψ(w), ∀w ∈ BG( w, ε). On a donc, grâce à la proposition 3.32, Dψ( w) = 0. 

Contraintes inégalités

Soit f ∈ C(IR n , IR) et g i ∈ C 1 (IR n , IR) i = 1, .
. . , p, on considère maintenant un ensemble K de la forme : K = {x ∈ IR n , g i (x) ≤ 0 ∀i = 1 . . . p}, et on cherche à résoudre le problème de minimisation (3.48) qui sécrit :

x ∈ K f (x) ≤ f (x), ∀x ∈ K.
Remarque 3.37. Soit x une solution de (3.48) et supposons que g i (x) < 0, pour tout i ∈ {1, . . . , p}. Il existe alors ε > 0 tel que si x ∈ B(x, ε) alors g i (x) < 0 pour tout i = 1, . . . , p. On a donc f (x) ≤ f (x) ∀x ∈ B(x, ε). On est alors ramené à un problème de minimisation sans contrainte, et si f est différentiable en x, on a donc ∇f (x) = 0.

On donne maintenant sans démonstration le théorème de Kuhn-Tücker qui donne une caractérisation de la solution du problème (3.48). 

λ i ∇g i (x) = 0.
Remarque 3.39.

1. Le théorème de Kuhn-Tucker s'applique pour des ensembles de contrainte de type inégalité. Si on a une contraite de type égalité, on peut évidemment se ramener à deux contraintes de type inégalité en remarquant que {h(x) = 0} = {h(x) ≤ 0)} ∩ {-h(x) ≤ 0}. Cependant, si on pose g 1 = h et g 2 = -h, on remarque que la famille {∇g 1 (x), ∇g 2 (x)} = {∇h(x), -∇h(x)} n'est pas libre. On ne peut donc pas appliquer le théorème de Kuhn-Tucker sous la forme donnée précédemment dans ce cas (mais on peut il existe des versions du théorème de Kuhn-Tucker permettant de traiter ce cas, voir Bonans-Saguez).

2. Dans la pratique, on a intérêt à écrire la conclusion du théorème de Kuhn-Tucker (i.e. l'existence de la famille (λ i ) i∈I(x) ) sous la forme du système de n + p équations et 2p inéquations à résoudre suivant :

             ∇f (x) + p i=1 λ i ∇g i (x) = 0,
λ i g i (x) = 0, ∀i = 1, . . . , p, g i (x) ≤ 0, ∀i = 1, . . . , p, λ i ≥ 0, ∀i = 1, . . . , p.

Exercices (optimisation avec contraintes)

Exercice 154 (Sur l'existence et l'unicité). Corrigé en page 243 Etudier l'existence et l'unicité des solutions du problème (3.48), avec les données suivantes : E = IR, f : IR → IR est définie par f (x) = x 2 , et pour les quatre différents ensembles K suivants :

(i) K = {|x| ≤ 1} ; (ii) K = {|x| = 1} (iii) K = {|x| ≥ 1} ; (iv) K = {|x| > 1}.
(3.55)

Exercice 155 (Aire maximale d'un rectangle à périmètre donné). Corrigé en page 244

1. On cherche à maximiser l'aire d'un rectangle de périmètre donné égal à 2. Montrer que ce problème peut se formuler comme un problème de minimisation de la forme (3.48), où K est de la forme K = {x ∈ IR 2 ; g(x) = 0}. On donnera f et g de manière explicite. 2. Montrer que le problème de minimisation ainsi obtenu est équivalent au problème 

x = (x 1 , x2 ) t ∈ K f (x 1 , x2 ) ≤ f (x 1 , x 2 ), ∀ (x 1 , x 2 ) t ∈ K, ( 3 
(v) = (1/2)Av • v - b • v + j(v).
1. Montrer qu'il existe un et un seul u tel que : 

u ∈ U, J(u) ≤ J(v), ∀v ∈ U. ( 3 
= 0. 2. Soit a = (a 1 , . . . , a n ) ∈ IR n , a = 0 ; pour x = (x 1 , . . . , x n ) ∈ IR n , on pose : f (x) = n i=1 |x i -a i | 2 et g(x) = n i=1 |x i | 2 . Chercher le(s) point(s) où f atteint son maximum ou son minimum sous la contrainte g = 1. 3. Soient A ∈ M n (IR) symétrique, B ∈ M n (IR) s.d.p. et b ∈ IR n ; pour v ∈ IR n , on pose f (v) = (1/2)Av • v -b • v et g(v) = Bv • v.
Peut-on appliquer le théorème de Lagrange et quelle condition donne-t-il sur u si f

(u) = min{f (v), v ∈ K} avec K = {v ∈ IR n ; g(v) = 1} ?
Exercice 160 (Distance d'un point à une ellipse). Soit a ∈ IR 2 . On note a 1 , a 2 les deux composantes de a.

Pour x = (x 1 , x 2 ) ∈ IR 2 , on pose J(x) = |x-a| 2 , f (x) = x 2 1 +2x 2 2 -3, et on définit K = {x ∈ IR 2 ; f (x) = 0}
. On s'intéresse au problème de la minimisation et de la maximisation de J sur K, c'est-à-dire aux deux problèmes suivants :

x ∈ K, J(x) ≤ J(y) pour tout y ∈ K.

(3.59)

x ∈ K, J(x) ≥ J(y) pour tout y ∈ K. 

p(s) -p(0) = -λs + 1 0 (1 -t) λH ψ (x(0) + tz(s))z(s) • z(s) + H F (x(0) + tz(s))z(s) • z(s)
K = K 1 ∪ K 2 où K 1 = [1, +∞[ et K 2 =] -∞, -
. Pourx = (x 1 , x 2 ) t ∈ IR 2 , posons f (x 1 , x 2 ) = -x 1 x 2 et g(x 1 , x 2 ) = x 1 + x 2 . Définissons K = x = (x 1 , x 2 ) t ∈ (IR + ) 2 tel que x 1 + x 2 = 1 .
Le problème de minimisation de l'aire du rectangle de périmètre donné et égal à 2 s'écrit alors : Or ∇f (x, ȳ) = (-x, -ȳ) t , et ∇g(x, ȳ) = (1, 1) t . Le système précédent s'écrit donc :

   x 1 x 2 ∈ K f (x 1 , x2 ) ≤ f (x 1 , x 2 ) ∀(x 1 , x 2 ) ∈ K (3.
-ȳ + λ = 0 -x + λ = 0

x + ȳ = 1.

On a donc

x = ȳ = 1 2 .

Exercice 156 page 241 (Fonctionnelle quadratique) 

d t 0   ∈ M n+1 (IR), y = x λ ∈ IR n+1 et e =     b c     ∈ IR n+1 . Montrons maintenant que B est inversible. En effet, soit z x µ ∈ IR n+1 , avec x ∈ IR n et µ ∈ IR tel que Bz = 0. Alors   A d d t 0   x µ = 0. Ceci entraîne Ax -dµ = 0 et d t x = d • x = 0. On a donc Ax • x -(d • x)µ = 0.
On en déduit que x = 0, et comme d = 0, que µ = 0. On a donc finalement z = 0.

On en conclut que B est inversible, et qu'il existe un unique (x, λ) t ∈ IR n+1 solution de (3.68) et que x est solution de (3.48).

Exercice 163 page 243 (Application simple du théorème de Kuhn-Tucker

La fonction f définie de E = IR 2 dans IR par f (x) = x 2 + y 2 est continue, strictement convexe et croissante à l'infini. L'ensemble K qui peut aussi être défini par : K = {(x, y) ∈ IR 2 ; g(x, y) ≤ 0}, avec g(x, y) = 1xy est convexe et fermé. Par le théorème 3.30 page 236, il y a donc existence et unicité de la solution du problème (3.48). Appliquons le théorème de Kuhn-Tucker pour la détermination de cette solution. On a :

∇g(x, y) = -1 -1 et ∇f (x, y) = 2x 2y . Il existe donc λ ∈ IR + tel que :            2x -λ = 0, 2y -λ = 0, λ(1 -x -y) = 0, 1 -x -y ≤ 0, λ ≥ 0.
Par la troisième équation de ce système, on déduit que λ = 0 ou 1xy = 0. Or si λ = 0, on a x = y = 0 par les première et deuxième équations, ce qui est impossible en raison de la quatrième. On en déduit que 1xy = 0, et donc, par les première et deuxième équations, x = y = 1 2 .

Exercice 164 page 243 (Exemple d'opérateur de projection) 2. Soit p K l'opérateur de projection définie à la proposition 3.40 page 246, il est facile de montrer que, pour tout i = 1, . . . , n, :

(p K (y)) i = y i si y i ∈ [α i , β i ], (p K (y)) i = α i si y i < α i , (p K (y)) i = β i si y i > β i , ce qui entraîne (p K (y)) i = max(α i , min(y i , β i )) pour tout i = 1, . . . , n.
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3.5 Algorithmes d'optimisation sous contraintes

Méthodes de gradient avec projection

On rappelle le résultat suivant de projection sur un convexe fermé :

Proposition 3.40 (Projection sur un convexe fermé). Soit E un espace de Hilbert, muni d'une norme . induite par un produit scalaire (., .), et soit K un convexe fermé non vide de E. Alors, tout x ∈ E, il existe un unique x 0 ∈ K tel que xx 0 ≤ xy pour tout y ∈ K. On note x 0 = p K (x) la projection orthogonale de x sur K. Soient x ∈ E et x 0 ∈ K. On a également :

x 0 = p K (x) si et seulement si (x -x 0 , x 0 -y) ≥ 0, ∀y ∈ K.
Dans le cadre des algorithmes de minimisation avec contraintes que nous allons développer maintenant, nous considèrerons E = IR n , f ∈ C 1 (IR n , IR) une fonction convexe, et K fermé convexe non vide. On cherche à calculer une solution approchée de x, solution du problème (3.48).

Algorithme du gradient à pas fixe avec projection sur K (GPFK) Soit ρ > 0 donné, on considère l'algorithme suivant : Algorithme (GPFK) Initialisation : 

x 0 ∈ K Itération : x k connu x k+1 = p K (x k -ρ∇f (x k )) où p K est
x k → x quand n → +∞ alors x = pK(x -ρ∇f (x)) et x ∈ K (car x k ∈ K et K est fermé).
La caractérisation de pK(x -ρ∇f (x)) donnée dans la proposition 3.40 donne alors :

(x -ρ∇f (x) -x/x -y) ≥ 0 pour tout y ∈ K, et comme ρ > 0, ceci entraîne (∇f (x)/x -y) ≤ 0 pour tout y ∈ K. Or f est convexe donc f (y) ≥ f (x) + ∇f (x)(y -x) pour tout y ∈ K, et donc f (y) ≥ f (x) pour tout y ∈ K, ce qui termine la démonstration.
Théorème 3.42 (Convergence de l'algorithme GPFK). Soit f ∈ C 1 (IR n , IR), et K convexe fermé non vide. On suppose que :

1. il existe α > 0 tel que (∇f (x) -∇f (y)|x -y) ≥ α|x -y| 2 , pour tout (x, y) ∈ IR n × IR n , 2. il existe M > 0 tel que |∇f (x) -∇f (y)| ≤ M |x -y| pour tout (x, y) ∈ IR n × IR n , alors :
1. il existe un unique élément x ∈ K solution de (3.48), 2. si 0 < ρ < 2α M 2 , la suite (x k ) définie par l'algorithme (GP F K) converge vers x lorsque n → +∞.
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= (pK(x) -x + x -y + y -pK(y)|pK(x) -pK(y)) = (pK(x) -x|pK(x) -pK (y))E + (x -y|pK(x) -pK(y))+ (y -pK(y)|pK(x) -pK (y)). Or (pK(x) -x|pK(x) -pK (y)) ≤ 0 et (y -pK(y)|pK(x) -pK(y)) ≤ 0, d'où : pK (x) -pK(y) 2 ≤ (x -y|pK(x) -pK(y)), et donc, grâce à l'inégalité de Cauchy-Schwarz, pK (x) -pK(y) 2 ≤ x -y pK (x) -pK(y) , ce qui permet de conclure.
Algorithme du gradient à pas optimal avec projection sur K (GPOK) L'algorithme du gradient à pas optimal avec projection sur K s'écrit :

Initialisation x 0 ∈ K Itération x k connu w k = -∇f (x k ); calculer α k optimal dans la direction w k x k+1 = p K (x k + α k w (k)
) La démonstration de convergence de cet algorithme se déduit de celle de l'algorithme à pas fixe. Remarque 3.44. On pourrait aussi utiliser un algorithme de type Quasi-Newton avec projection sur K.
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Les algorithmes de projection sont simples à décrire, mais ils soulèvent deux questions :

1. Comment calcule-t-on p K ? 2. Que faire si K n'est pas convexe ?

On peut donner une réponse à la première question dans les cas simples :

Cas 1. On suppose ici que K = C + = {x ∈ IR n , x = (x 1 , . . . , x k ) t x i ≥ 0 ∀i}.
Si y ∈ IR n y = (y 1 . . . y n ) t , on peut montrer (exercice 164 page 243) que

(p K (y)) i = y + i = max(y i , 0), ∀i ∈ {1, . . . , n} Cas 2. Soit (α i ) i=1,...,n ⊂ IR n et (β i ) i=1,...,n ⊂ IR n tels que α i ≤ β i pour tout i = 1, . . . , n. Si K = i=1,n [α i , β i ], alors (p K (y)) i = max(α i , min(y i , β i )), ∀i = 1, . . . , n
Dans le cas d'un convexe K plus "compliqué", ou dans le cas où K n'est pas convexe, on peut utiliser des méthodes de dualité introduites dans le paragraphe suivant.

Méthodes de dualité

Supposons que les hypothèses suivantes sont vérifiées :

   f ∈ C 1 (IR n , IR), g i ∈ C 1 (IR n , IR), K = {x ∈ IR n , g i (x) ≤ 0 i = 1, . . . , p}, et K est non vide.
(3.69)

On définit un problème "primal" comme étant le problème de minimisation d'origine, c'est-à-dire

x ∈ K, f (x) ≤ f (x), pour tout x ∈ K, ( 3.70) 
On définit le "lagrangien" comme étant la fonction L définie de IR n × IR p dans IR par :

L(x, λ) = f (x) + λ • g(x) = f (x) + p i=1 λ i g i (x), (3.71) 
avec g(x) = (g 1 (x), . . . , g p (x)) t et λ = (λ 1 , . . . , λ p ) t . On note C + l'ensemble défini par

C + = {λ ∈ IR p , λ = (λ 1 , . . . , λ p ) t , λ i ≥ 0 pour tout i = 1, . . . , p}.
Remarque 3.45. Sous les hypothèses du théorème de Kuhn-Tucker, si x est solution du problème primal (3.70)

alors il existe λ ∈ C + tel que D 1 L(x, λ) = 0 (c'est-à-dire Df (x) + λ • Dg(x) = 0) et λ • g(x) = 0.
On définit alors l'application M de IR p dans IR par : Dans la suite, on note x u cette solution. Montrer que x u est aussi l'unique élément de IR n t.q. ∇f (x u ) + C t u = 0. 4. On admet que le théorème de Kuhn-Tucker s'applique ici (cf. cours). Il existe donc u ∈ C + t.q. ∇f (x) +

M (λ) = inf x∈IR n L(x, λ), pour tout λ ∈ IR p . ( 3 
C t u = 0 et u • (Cx -d) = 0. Montrer que (x, u) est un point selle de L sur IR n × C + , c'est-à-dire : L(x, v) ≤ L(x, u) ≤ L(y, u), ∀(y, v) ∈ IR n × C + . (3.77) Pour u ∈ IR p , on pose M (u) = L(x u , u) (de sorte que M (u) = inf{L(x, u), x ∈ IR n }).
On considère alors le problème suivant : 

u ∈ C + , M (u) ≥ M (v), ∀v ∈ C + . (3.78) 5. Soit (x, u) ∈ IR n × C + un point selle de L sur IR n × C + (c'est-à-dire L(x, v) ≤ L(x, u) ≤ L(y, u), pour tout (y, v) ∈ IR n × C + ). Montrer que x = x = x u (
= (x 1 , x 2 ) t : x ′ (t) = f (x(t), t), x(0) = (x 0 , 0) t , avec f (x, t) = x 2 , - 1 m (cx 2 + kx 1 ) . ( 4.3) 
On rappelle que par le théorème de Cauchy-Lipschitz, si x 0 donné (approximation de x0 ) 

f ∈ C 1 (IR n × IR, IR n ) alors il existe T M > 0 et x ∈ C 2 ([0, T M [, IR n ) solution
∀A > 0, ∃M A ∈ IR + tel que ∀t ∈ [0, T [, ∀(x, y) ∈ B A × B A , |f (x, t) -f (y, t)| ≤ M A |x -y|. ( 4 
                             
x k+1 -x k h k = φ(x k , t k , h k ), k = 0, . . . n -1, (4.8 
(x k , t k , h k ) = f (x k , t k ). (4.9) 2. Schéma Euler implicite      x 0 donné x k+1 -x k h k = f (x k+1 , t k+1 ). k = 0, . . . n -1, (4.10) 
On remarque que dans le schéma d'Euler implicite, le calcul de x k+1 n'est pas explicite, il est donné de manière implicite par (4.8) (d'où le nom du schéma). La première question à se poser pour ce type de schéma est l'existence de x k+1 . On montrera au théorème 4.15 que si l'hypothèse suivante est vérifiée :

D 1 f (y, t)z • z ≤ 0 ∀y ∈ IR n , ∀z ∈ IR n , ∀t ≥ 0, (4.11) 
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R k = x k+1 -x k h k -φ(x k , t k , h k ). ( 4 
x(t k+1 ) -x(t k ) = t k+1 t k x ′ (s)ds = t k+1 t k f (x(s), s)ds.
On en déduit que 

R k = x(t k+1 ) -x(t k ) h k -φ(x k , t k , h k ) = 1 h k t k+1 t k (f (x(s), s) -φ(x k , t k , h k ))ds. Soit ε > 0, comme f est continue et φ(x k , t k , 0) = f (x k , t k ), il existe η1 tel que si h k ≤ η1 alors : |φ(x k , t k , h k ) - f (x k , t k )| ≤ ε. On a donc par inégalité triangulaire, |R k | ≤ ε + 1 h k t k+1 t k |f (x(s), s) -f (x k , t k )|ds. La fonction s → f (x(
= x k + h k φ(t k , x k , h k ), y k+1 = y k + h k φ(t k , y k , h k ) + ε k , pour k = 0, . . . , n -1, (4.14) où (ε k ) k∈IN ⊂ IR + est donnée, alors |x k -y k | ≤ K(|x 0 -y 0 | + k-1 i=0 |ε i |), pour tout k = 0, . . . , n -1.
On peut alors énoncer le théorème de convergence suivant, dont la démonstration, très simple, fait partie de l'exercice 173 page 268. On va "parachuter" ici un choix de ε et h * * qui permettront de montrer le théorème par récurrence sur k, on montrera dans la suite de la démonstration pourquoi ce choix convient. On choisit :

Alors il existe h

* * > 0 (h * * ≤ h * ), ε > 0, et K > 0 (ne dépendant que de f ,x 0 ,T ,h * ,M A ) tels que si 0 < h ≤ h * * et |e 0 | ≤ ε,
1. h * * > 0 tel que Ce T (M 2A +1) (h * * ) p ≤ A 2 , où M2A est la constante de Lipschitz de φ sur B2A dans l'hypothèse (4.16), 2. ε > 0 tel que e T M 2A ε ≤ A 2 .
On va maintenant montrer par récurrence sur k que si h ≤ h * * et |e0| ≤ ε, alors :

|e k | ≤ α k h p + β k |e0|, x k ∈ B2A, , (4.17) 
avec α k = Ce t k M 2A (1 + h0) . . . (1 + h k-1 ) et β k = e t k M 2A . (4.18)
Si on suppose (4.17) vraie, on peut terminer la démonstration du théorème : en effet pour x ≥ 0, on a 1 + x ≤ e x , et donc :

(1 + h0)(1 + h1) . . . (1 + h k-1 ) ≤ e h 0 +h 1 +•••h k-1 = e t k ≤ e T . On en déduit que α k ≤ Ce T M 2A e T = Ce T (M 2A +1) , et que β k ≤ e T M 2A .
On déduit alors de (4.17) et (4.18) que

|e k | ≤ Ce T (M 2A +1) h p + e T M 2A |e0| ≤ K(h p + |e0|) avec K = max(Ce T (M 2A +1
) , e T (M 2 A ), et que x k ∈ B2A. Il ne reste donc plus qu'à démontrer (4.17) par récurrence sur k.

-Pour k = 0, les formules (4.18) donnent α0 = C et β0 = 1. Or on a bien |e0| ≤ α0h p + |e0| car C ≥ 0. De plus, par définition de e0, on a x0 = x0 -e0, et donc :

|x0| ≤ |x0| + |e0| ≤ A + ε ≤ A + A 2 ≤ 2A car, par hypothèse εe T M 2 A ≤ A 2 et donc ε ≤ A 2 .
On en déduit que x0 ∈ B2A. -Supposons maintenant que les relations (4.17) et (4.18) sont vraies jusqu'au rang k et démontrons qu'elles le sont encore au rang k + 1.

Par définition du schéma (4.8) et de l'erreur de consistance (4.12), on a : 

x k+1 = x k + h k φ(x k , t k , h k ) xk+1 = xk + h k φ(x k , t k , h k ) + h k R k . On a donc e k+1 = e k + h k (φ(x k , t k , h k ) -φ(x k , t k , h k )) + h k R k , ce qui entraîne que |e k+1 | ≤ |e k | + h k |φ(x k , t k , h k ) -φ(x k , t k , h k )| + h k |R k |. ( 4 
|e k+1 | ≤ |e k |(1 + M2Ah k ) + h k Ch p ,
et, en utilisant l'hypothèse de récurrence (4.17) :

|e k+1 | ≤ (1 + h k M2A)(α k h p + β k |e0|) + h k Ch p . Comme 1 + u ≤ e u pour tout u ≥ 0, ceci entraîne |e k+1 | ≤ ᾱk+1 h p + β k+1 |e0|, où ᾱk+1 = α k e h k M 2A + Ch k et β k+1 = β k e h k M 2A = e t k+1 M 2A . Or α k = Ce t k M 2A (1 + h0) + • • • (1 + h k-1 ) ≥ C, et donc ᾱk+1 ≤ α k (e h k M 2A + h k ) ≤ α k e h k M 2A (1 + h k ), ce qui entraîne Ce t k M 2A e h k M 2A (1 + h0) • • • (1 + h k-1 )(1 + h k ) = α k+1 car t k + h k = t k+1 . Donc |e k+1 | ≤ α k+1 h p + β k |e0|.
Il reste à montrer que x k+1 ∈ B2A. On a

|x k+1 | ≤ |x k+1 | + |e k+1 | ≤ A + |e k+1 | car xk ∈ BA. Or on vient de montrer que |e k+1 | ≤ α k+1 h p + β k+1 |e0|, et α k+1 ≤ Ce T (M 2A+1 ) et β k+1 ≤ e T M 2A . Donc |e k+1 | ≤ Ce T (M 2A +1) h * * p + e T M 2A ε ≤ A 2 + A 2 car on a choisi h * * et ε pour !. . . On a donc finalement |x k+1 | ≤ A + A, c'est-à-dire x k+1 ∈ B2A.
On a donc bien montré (4.17) pour tout k = 0, . . . n. Ce qui donne la conclusion du théorème. Remarque 4.13. Dans le théorème précédent, on a montré que x k ∈ B 2A pour tout k = 1, . . . n. Ceci est un résultat de stabilité (c'est-à-dire une estimation sur la solution approchée ne dépendant que des données T , x0 , f et φ (ne dépend pas du pas de discrétisation h)) conditionnelle, car on a supposé pour le démontrer que h ≤ h * * , où h * * ne dépend que de T , x0 , f et φ. Remarque 4.14 (Sur la démonstration du théorème de convergence). Dans la plupart des ouvrages d'analyse numérique, la convergence des schémas de discrétisation des équations différentielles est obtenue à partir de la notion de consistance et de la notion de stabilité par rapport aux erreurs (vue au paragraphe précédent, voir définition 4.9, et souvent appelée stabilité tout court). Il est en effet assez facile de voir (cf exercice 173 page 268) que si le schéma (4.8) est consistant d'ordre p et stable par rapport aux erreurs comme défini dans la définition 4.9, alors il est convergent, et plus précisément, |e k | ≤ K(h p + |e 0 |), pour tout k = 0, . . . , n. Il y a deux avantages à utiliser plutôt le théorème précédent. D'une part, ce théorème est d'une portée très générale et s'applique facilement à de nombreux schémas, comme on le verra sur des exemples (voir section 4.4). D'autre part la preuve de convergence par la notion de stabilité par rapport aux erreurs présente un défaut majeur : la seule condition suffisante qu'on connaisse en général pour montrer qu'un schéma est stable par rapport aux erreurs est que la fonction φ(., t, h) soit globalement lipschitzienne pour tout t ∈ [0, T ] et pour tout h ∈ [0, h * ] (voir proposition 4.11). Ceci revient à dire, dans le cas du schéma d'Euler explicite par exemple, que f est globalement lipschitizienne. Cette hypothèse est très forte et rarement vérifiée en pratique. Bien sûr, comme la solution x de (4.1) est bornée sur [0, T ], x vit dans un compact et on peut toujours modifier f sur le complémentaire de ce compact pour la rendre globalement lipschitzienne. Cependant, cette manipulation nécessite la connaissance des bornes de la solution exacte, ce qui est souvent loin d'être facile à obtenir dans les applications pratiques.

Exemples

On se place sous les hypothèses (4.7) et on étudie le schéma (4.8). On donne quatre exemples de schémas de la forme (4.8) :

Exemple 1 Euler explicite On rappelle que le schéma s'écrit (voir (4.9)) :

x k+1 -x k h k = f (x k , t k ), On a donc φ(x k , t k , h k ) = f (x k , t k ).
On peut montrer (voir exercice 172 page 268) que : 

-si f ∈ C 1 (IR n × IR + , IR n ),
x k+1 -x k h k = f x k + h k 2 f (x k , t k ), t k + h k 2 = φ(x k , t k , h k ) (4.20) -si x ∈ C 2 (IR + , IR n ),le schéma est consistant d'ordre 2,
-le théorème 4.12 s'applique et

|e k | ≤ K(h 2 + |e 0 |) pour h ≤ h * * .
La convergence est plus rapide. 

Exemple 3 Heun

x k+1 -x k h k = 1 2 f (x k , t k ) + 1 2 [f (x k + h k f (x k , t k ), t k+1 )]. ( 4 
x k,0 = x k x k,1 = x k + h k 2 f (x k,0 , t k ) x k,2 = x k + h k 2 f (x k,1 , t k + h k 2 ) x k,3 = x k + h k f (x k,2 , t k + h k 2 ) x k+1 -x k h k = 1 6 f (x k,0 , t k ) + 1 3 f (x k,1 , t k + h k 2 ) + 1 3 f (x k,2 , t k + h k 2 ) + 1 6 f (x k,3 , t k+1 ) = φ(x k , t k , h k )
On peut montrer (avec pas mal de calculs. 

dx dt = -x(t), x(0) = 1,
dont la solution est clairement donnée par x(t) = e -t . On suppose que le pas est constant, c'est-à-dire h k = h ∀k.

Le schéma d'Euler explicite s'écrit dans ce cas :

x k+1 = x k -hx k = (1 -h)x k et donc x k = (1 -h) k , ∀k = 0, . . . , n, avec nh = T. ( 4.22) 
(On a donc n points de discrétisation.) La valeur x k est censée être une approximation de x(t k ) = e -t k , et de fait, on remarque que pour n = T h , on a

x k = (1 -h) T /h → e -T quand h → 0.
Lorsqu'on cherche par exemple à obtenir le comportement de la solution d'une équation différentielle "dans les grands temps", on peut être amené à utiliser des pas de discrétisation relativement grands. Ceci peut être aussi le cas dans des problèmes de couplage avec d'autres équations, les "échelles de temps" des équations pouvant être très différentes pour les différentes équations. Que se passe-t-il dans ce cas ? Dans le cas de notre exemple, si on prend h = 2, on obtient alors x k = (- Dans ce cas, la solution approchée reste "proche" de la solution exacte, et positive, même pour des pas de discrétisation grands. On pourrait en conclure un peu hâtivement que le schéma implicite est "meilleur" que le schéma explicite. On va voir dans l'exemple qui suit qu'une telle conclusion est peu rapide. 4.5.2 L'implicite perd... On considère maintenant le problème de Cauchy (4.1) avec f (y, t) = +y, x0 = 1. La solution est maintenant x(t) = e t . Si on prend un pas de discrétisation constant égal à h, le schéma d'Euler explicite s'écrit :

x k+1 = x k + hx k = (1 + h)x k , c.à.d. x k = (1 + h) k .

On a donc

x k = (1 + h) n → e T c.à.d. lorsque n → +∞.

Contrairement à l'exemple précédent, la solution approchée donnée par le schéma d'Euler explicite reste "raisonnable" même pour les grands pas de temps. Si on essaye maintenant de calculer une solution approchée à l'aide du schéma d'Euler implicite (4.10), on obtient

x k+1 = x k + hx k+1 , c.à.d. x k+1 = 1 1 -h x k .
On remarque d'une part que le schéma implicite n'est pas défini pour h = 1, et que d'autre part si h est proche de 1 (par valeurs supérieures ou inférieures), la solution approchée "explose". De plus pour les valeurs de h supérieures à 1, on perd la positivité de la solution (pour h = 2 par exemple la solution approchée oscille entre les valeurs +1 et -1). Dans le cadre de cet exemple, le choix explicite semble donc plus approprié.

Match nul

En conclusion de ces deux exemples, il semble que le "meilleur" schéma n'existe pas dans l'absolu. Le schéma de discrétisation doit être choisi en fonction du problème ; ceci nécessite une bonne compréhension du comportement des schémas en fonction des problèmes donnés, donc une certaine expérience. . .

Etude du schéma d'Euler implicite

On peut écrire le schéma d'Euler implicite sous la forme d'un schéma (4.8), si pour tout k = 0 . . . n -1, x k étant donné, il existe x k+1 qui satisfait :

x k+1x k h k = f (x k+1 , t k+1 ), k = 0, . . . , n -1.

On va montrer dans le théorème suivant que ceci est le cas si la condition (4.11) qu'on rappelle ici est vérifiée :

D 1 f (y, t)z • z ≤ 0, ∀y, z ∈ IR n , ∀t ∈ [0, T ].
On montrera aussi que sous cette hypothèse, on obtient un résultat de stabilité inconditionnelle pour le schéma d'Euler implicite. Par définition du schéma (4.10) et de l'erreur de consistance, on a : x (m+1) (t) = f (m) (x(t), t).

y k = x k + h k (f (y k , t k + h k ) -f (0, t k + h)) + h k f (0, t k + h),
x k+1 = x k + h k f (x k+1 ,
2. Calculer f (1) et f (2) en fonction des dérivées partielles

∂ 1 f , ∂ 2 f ,∂ 1 ∂ 2 f , ∂ 2 1 f , ∂ 2 2 f
, et de f . On définit pour p ≥ 1 la fonction ψ p de IR × IR à valeurs dans IR par ψ p (y, t, h) = p-1 j=0 h j (j + 1)! f (j) (y, t).

Pour k = 1, . . . , n, on note t k = kh. On définit alors la suite (x k ) k=0,n+1 ⊂ IR par Soit f ∈ C 2 (IR n × IR + , IR n ), T > 0, et y (0) ∈ IR n . On désigne par (., .) le produit scalaire euclidien sur IR n et . la norme associée. On suppose que : Exercice 180 (Le pendule). On considère l'équation différentielle suivante, qui décrit le mouvement d'un pendule.

∀(y, z) ∈ (IR n ) 2 ,
x ′′ (t) + sin x(t) = 0, t > 0, x(0) = ξ, x ′ (0) = 0, 3. Mettre le système (4.63) sous la forme F (X) = 0 où F est une fonction de IR 2 dans IR 2 , et écrire la méthode de Newton pour la résolution F (X) = 0. Déterminer les valeurs de a pour lesquelles la méthode de Newton permet de construire une suite qui est toujours bien définie (quelque soit le choix initial).

4. Soit (x, y) une solution du problème (4.63). En supposant que a est tel que la méthode de Newton est bien définie, montrer qu'il existe ε > 0 tel que si (x 0 , y 0 ) est dans la boule B ε de centre (x, y) et de rayon ε, alors la suite (x k , y k ) n∈IN construite par la méthode de Newton converge vers (x, y) lorsque n tends vers +∞.

a Montrer que le système (4.63) est équivalent au système

xay = α f (x) = 0 où f est une fonction de IR dans IR dont on donnera l'expression. 5.b Ecrire la méthode de Newton pour la résolution de l'équation f (x) = 0, et donner les valeurs de a pour lesquelles la méthode de Newton permet de construire une suite qui est toujours bien définie (quelque soit le choix initial). Comparer les itérés obtenus avec cette méthode avec les itérés obtenus par la méthode de la question 3. 6. En s'inspirant des question précédentes, étudier la méthode de Newton pour le schéma d'Euler implicite pour le problème suivant qui modélise le pendule avec amortissement :

x ′′ (t) + µx ′ (t) + sin x(t) = 0, t > 0, x(0) = ξ, x ′ (0) = 0, Ceci est impossible car ln 3 2 = 1 2 ln 3. Donc la population ne peut pas satisfaire la loi de Malthus.

Exercice 171 page 267 (Histoire de sardines)

1. Pendant le premier mois, le taux d'accroissement de la population est celui de la loi de Malthus (4p(t)) auquel il faut retrancher les pertes dues auxbonites, soit 10 -4 p 2 (t). Donc pour 0 ≤ t ≤ T = 30, on a :

p ′ 1 (t) = 4p 1 (t) -4 10 -4 p 2 1 (t)

p 1 (0) = p 0 .
A partir de T = 30, le taux diminue en raison de l'émigration, soit 10 -1 p(t). On a donc : p ′ 2 (t) = 4p 2 (t) -10 -4 p 2 2 (t) -10 -1 p 2 (t), t > 30 p 2 (30) = p 1 (30).

c'est-à-dire : p ′ 2 (t) = 3.9p 2 (t) -10 -4 p 2 2 (t), t > 30 p 2 (30) = p 1 (30).

Analyse numérique I, télé-enseignement, L3

2. Les équations à résoudre sont de la forme :

x ′ (t) = ax(t) + bx 2 (t) x(0) = ax 0 .

qui sont du type "Bernoulli". En supposant que x ne s'annule pas (ce qu'on vérifiera a posteriori) on divise par x 2 , on pose z = 3.9 e -3.9t + 10 -4 3.9 t ≥ 30.

On en conclut que lim t→+∞ x(t) = 3.9 10 

X = f (x(t k + h k 2 ), t k + h k 2 ) - 1 8 h 2 k x ′′ (ξ k )∂ 1 f (ζ k , t k + h k 2 ).
On en déduit que

X = x ′ (t k + h k 2 ) - 1 8 h 2 k x ′′ (ξ k )∂ 1 f (ζ k , t k + h k 2 )
De plus, par développement de Taylor d'ordre 2, on a :

xk+1 -xk h k -x ′ (t k + h k 2 ) ≤ Ch 2 (4.65)
où C ne dépend que de f . On en déduit que l'erreur de consistance R k vérifie :

R k = xk+1 -x k h k -f (x k + h k 2 f (x k , t k ), t k + h k 2 ) ≤ 1 8 h 2 x"(ξ k )∂ 1 f (ζ k , t k + h k
2 ) + Ch 2 où C ne dépend que de f . On en déduit que le schéma est bien d'ordre 2.

2. Le schéma de Heun s'écrit : 

x k+1 -x k h k = 1 2 f (x k , t k ) + 1 2 [f (x k + h k f (x k , t k ),
f (x k + h k f (x k , t k ), t k+1 ) = f (x k+1 , t k+1 ) + ∂ 1 f (ζ k , t k+1 ) h 2 k 2
x"(θ k ).

Or 1 2 (f (x k , t k ) + f (x k+1 t k+1 )) = 1 2 (x ′ (t k+1 ) + x ′ (t k )) et par développement de Taylor, il existe C ∈ IR ne dépendant que de x tel que

| 1 2 (x ′ (t k+1 ) + x ′ (t k )) -x ′ (t k + h k 2 )| ≤ Ch 2 .
En utilisant à nouveau (4.65), on en déduit que l'erreur de consistance est d'ordre 2 (à condition que x soit trois fois dérivable . . .).

Exercice 173 page 268 (Stabilité par rapport aux erreurs et convergence)

1. Par définition du schéma (4.8) et de l'erreur de consistance (4.12), on a :

x k+1 = x k + h k φ(x k , t k , h k ) xk+1 = xk + h k φ(x k , t k , h k ) + h k R k .
Comme le schéma (4. Analyse numérique I, télé-enseignement, L3 1. L'algorithme du gradient à pas fixe s'écrit : pour x 0 donné, et à x k connu, n ≥ 0, w k = -∇f (x k ) et x n+1 = x k + ρw (k) . L'algorithme d'Euler explicite pour la résolution de l'équation x ′ (t) = -∇f (x(t)) avec x(0) = x 0 , et pour le pas de discrétisation ρ s'écrit :

x 0 = x(0), x n+1 -x k ρ = -∇f (x(t k ))
Il est donc clair que les deux algorithmes sont équivalents. Pour m = 0, on a x (1) (t) = f (x(t), t) = f (0) (x(t), t). Supposons que x (p+1) (t) = f (p) (x(t), t) pour p = 0, . . . , m, et calculons x (m+2) (t). On a

x (m+2) (t) = ∂ 1 f (m) (x(t), t)x ′ (t) + ∂ 2 f (m) (x(t), t)
= ∂ 1 f (m) (x(t), t)f (x(t), t) + ∂ 2 f (m) (x(t), t) = f (m+1) (x(t), t).

2. On a f (1) = ∂ 2 f + (∂ 1 f )f, et f (2) = (∂ 1 f (1) )f + (∂ 2 f (1) ), soit encore

f (2) = ∂ 1 ∂ 2 f + (∂ 2 1 )f + (∂ 1 f ) 2 + ∂ 2 2 + (∂ 1 ∂ 2 f )f + (∂ 1 f )(∂ 2 f ).
3.Dans le cas p = 1, on a ψ p (y, t, h) = f (y, t) et donc le schéma (4.29) s'écrit :

x 0 = x0 , x k+1 = x k + hf (x k , t k ), pour k = 1, . . . , n.
On reconnaît le schéma d'Euler explicite. Exercice 178 page 270 (Méthodes semi-implicite et explicite) + pour la minimisation de f , une suite définie par x (0) ∈ IR n donné, x (k+1) = x (k) + αw (k) , pour k ≥ 0, où w (k) est une direction de descente en x (k) .

1.              x (k+1) 1 -x (k) 1 k = -x (k) 1 -x (k) 1 x (k+1) 2 , x (k+1) 2 -x (k) 2 k = - x (k+1) 2 x (k) 1 , x (0) 1 = a, x (0) 
             x (k+1) 1 -x (k) 1 k = -x (k) 1 -x (k) 1 x (k) 2 , x (k+1) 2 -x (k) 2 k = - x (k) 2 x (k) 1 , x (0) 1 = a, x (0) 
Dans toute la suite, on considère la fonction f de IR n dans IR définie par 1. Montrer que la méthode de Jacobi pour la résolution du système Ax = b peut s'écrire comme une méthode de descente à pas fixe pour la minimisation de la fonction f définie par (5.1). Donner l'expression du pas α et de la direction de descente w (k) à chaque itération k et vérifier que c'est bien une direction de descente stricte si x (k) = A -1 b.

2. On cherche maintenant à améliorer la méthode de Jacobi en prenant non plus un pas fixe dans l'algorithme de descente ci-dessus, mais un pas optimal qui est défini à l'itération k par

f (x (k) + α k w (k) ) = min α>0 f (x (k) + αw (k) ), (5.2) 
où w (k) est défini à la question précédente. On définit alors une méthode de descente à pas optimal par :

x (k+1) = x (k) + α k w (k) .

On appelle cette nouvelle méthode "méthode de Jacobi à pas optimal". i. Ecrire l'algorithme de descente à pas optimal dans ce cas.

ii. Comparer les algorithmes de descente obtenus par Jacobi et Jacobi à pas optimal avec les algorithmes de gradient que vous connaissez.

Corrigé 1. La méthode de Jacobi peut s'écrire

x (k+1) = (Id -D -1 A)x (k) + D -1 b = x (k) + D -1 (b -Ax (k) )
= x (k) + w (k) avec w (k) = D -1 (b -Ax (k) ) = D -1 r (k) . On a w (k) • ∇f (x (k) ) = -D -1 r (k) • r (k) , et comme A est s.d.p., D -1 l'est également, et donc w (k) • ∇f (x (k) ) < 0 si x (k) = A -1 b. Ceci montre que w (k) est une direction de descente stricte en x (k) .

2. (a) Le pas optimal α k est celui qui minimise la fonction ϕ définie de IR dans IR par f (x (k) + αw (k) ), qui est de classe C 1 , strictement convexe et croissante à l'infini, ce qui donne l'existence et l'unicité ; de plus α k vérifie :

∇f (x (k) + α k w (k) ) • w (k) = 0, c.à.d. (Ax (k) + α k Aw (k) + b) • w (k) = 0.
On en déduit que (si w (k) = 0)

α k = (b -Ax (k) ) • w (k)
Aw (k) • w (k) = r (k) • w (k) Aw (k) • w (k) = r (k) • D -1 r (k) AD -1 r (k) • D -1 r (k) .

(Si w (k) = 0, on a alors r (k) = 0 et x (k) = x, l"algorithme s'arrête.) (b) On a :

f (x (k+1) ) = f (x (k) )γα k + δα 2 k , avec γ = r (k) • w (k) et δ = 1 2 Aw (k) • w (k) . Comme α k minimise ce polynôme de degré 2 en α, on a

f (x (k+1) ) -f (x (k) ) = - γ 2 4δ = - |r (k) • w (k) | 2 2Aw (k) • w (k) ,
d'où le résultat.

(c) On suppose que w (k) = 0 pour tout k. La suite (f (x (k) )) k∈IN est décroissante et bornée inférieurement (car la fonction f est bornée inférieurement). Elle est donc convergente. Ce qui prouve que lim k→+∞ f (x (k+1) )f (x (k) ) = 0.

On sait que w (k) = D -1 r (k) . On a donc, par la question précédente, Comme x (k)x = -A -1 r (k) , on en déduit la convergence de la suite x (k) vers la solution du système.

|r (k) • w (k) | 2 Aw (k) • w (k) = |r (k) • D -1 r (k) | 2 AD -1 r (k) • D -1 r (k) = 2|f (x (k) ) -f (x (k+1) )|.
(d) i. Si D = αId, on a

α k = (b -Ax (k) ) • w (k) Aw (k) • w (k) = r (k) • w (k) Aw (k) • w (k) = 1 α r (k) • r (k)
Ar (k) • r (k) .

ii. Jacobi simple= algorithme de gradient avec ρ = 1 α Jacobi à pas optimal= algorithme de gradient à pas optimal.

5.2 Assemblage des matrices éléments finis Enfin, on rappelle qu'une matrice B ∈ M m (R) est une ICP-matrice si B est inversible et tous les coefficients de B -1 sont positifs ou nuls (voir exercice 14 du polycopié).

Méthode des éléments finis et matrices d'assemblage

La méthode des éléments finis de Lagrange est une méthode de discrétisation des équations aux dérivées partielles qui permet d'approcher des valeurs de la fonction inconnue en des points d'un maillage. Ces points sont appelés "noeuds" et les valeurs en ces noeuds sont appelés "degrés de liberté". L'utilisation de la méthode des éléments finis pour la résolution d'une équation aux dérivées partielles conduit à résoudre un système linéaire. Nous ne détaillerons pas ici le principe de la méthode ni son implémentation, mais nous allons nous intéresser aux propriétés du système linéaire résultant. Dans ce but, nous définissons les grandeurs suivantes :

(i) Les inconnues sont représentés par un vecteur u ∈ R n , n ∈ N ⋆ (valeurs approchées de la fonction inconnue aux noeuds, ou degrés de liberté . On utilise des éléments finis de Lagrange linéaires par morceaux (on ne détaillera pas ici la procédure, qui relève du cours de M1). Les degrés de liberté sont les valeurs aux noeuds intérieurs à Ω, qui sont indiqués par un • sur la figure 5.1 (car on a vu que les valeurs aux noeuds du bord sont fixées par (5.5b)). On a donc n = 2. Toujours en raison des conditions limites, les mailles du bord m 1 et m 3 ont un seul degré de liberté et la maille intérieure m 2 en a 2. On a donc n 1 = n 3 = 1 et n 2 = 2. Avec des éléments finis linéaires par morceaux, on obtient les matrices élémentaires, second membres élémentaires et degrés de liberté suivants pour chaque maille m k , k = 1, 2, 3, où on a posé h = 1 3 (pas du maillage) :

1. A 1 = 1 h 1 , ϕ 1 (1) = 1, b 1 = h ; 2. A 2 = 1 h 1 -1 -1 1 , ϕ 2 (1) = 1 ϕ 2 (2) = 2 , b 2 = h 1 1 ;
Analyse numérique I, télé-enseignement, L3 (c) Comparer la matrice A avec la matrice K 2 vue en cours pour la discrétisation de (5.5a) par différences finies et comparer le second membre b avec celui obtenu par différences finies. En déduire que le schéma éléments finis donné ci-dessus donne le même système linéaire que celui obtenu par différences finies.

(d) Calculer les valeurs propres de la matrice A = K 2 .

Corrigé de la partie 5.2.3 1. u(x) = -x(x -1). 

Les matrices

A = H t 1 A 1 H 1 + H t 2 A 2 H 2 + H t 3 A 3 H 3 = 1 0 1 h 1 0 + 1 h 1 -1 -1 1 + 0 1 1 h 0 1 = 1 h 2 -1 -1 2 . b = H t 1 b 1 + H t 2 b 2 + H t 3 b 3 = 1 0 h + h 1 1 + 0 1 h 0 1 = h 2 2 ( 

Propriétés de la matrice A

On revient ici au cadre général décrit en section 5. 

v t v = 1, λ k ≤ v t A k v ≤ λ k , En prenant v = H k u ((H k u) t H k u) 1 2
, qui est bien tel que v t v = 1, on obtient

λ k (H k u) t (H k u) ≤ (H k u) t A k (H k u) ≤ λ k (H k u) t (H k u).
(c) On a, pour k = 1, . . . , M et i, j = 1, . . . , n

(H t k H k ) ij = n k ℓ=1 (H k ) ℓ,i (H k ) ℓ,j .
On ne peut avoir (H k ) ℓ,i (H k ) ℓ,j non nul que si i = ϕ k (ℓ) et j = ϕ k (ℓ), donc si i = j ∈ ϕ k ({1, . . . , n k }). 

1. 2 .

 2 POURQUOI ET COMMENT ? CHAPITRE 1. SYSTÈMES LINÉAIRES Soient A et B deux matrices carrées d'ordre n, et M = AB. Prenons comme exemple d'illustration On note a i,j , b i,j et m i,j , i, j = 1, . . . n les coefficients respectifs de A, B et M . Vous savez bien sûr que m i,j = n k=1 a i,k b k,j .(1.2)

= 1 ,

 1 et pour tout k, l ∈ {1, . . . , n} tel que (k, l) / ∈ {(i, i), (i, j), (j, i), (j, j)}, si k = l, p

Lemme 1 . 7 .=

 17 Soit A une matrice réelle carrée d'ordre n, diagonalisable dans IR. Alors A = P diag(λ 1 , . . . , λ n )P -1 , où P est la matrice dont les vecteurs colonnes sont égaux à des vecteurs propres u 1 , . . . , u n associées aux valeurs propres λ 1 , . . . , λ n . Analyse numérique I, télé-enseignement, L3 DÉMONSTRATION -Par définition d'un vecteur propre, on a Aui = λiui pour i = 1, . . . n, et donc, en notant P la matrice dont les colonnes sont les vecteurs propres ui, Au1 . . . Aun = A u1 . . . un = AP et donc AP = λ1u1 . . . λnun = u1 . . . un P diag(λ1, . . . , λn).

Lemme 1 . 8 (

 18 Une matrice symétrique est diagonalisable dans IR). Soit E un espace vectoriel sur IR de dimension finie : dimE = n, n ∈ IN * , muni d'un produit scalaire i.e. d'une applicationE × E → IR, (x, y) → (x | y) E , qui vérifie : ∀x ∈ E, (x | x) E ≥ 0 et (x | x) E = 0 ⇔ x = 0, ∀(x, y) ∈ E 2 , (x | y) E = (y | x) E , ∀y ∈ E,l'application de E dans IR, définie par x → (x | y) E est linéaire. Ce produit scalaire induit une norme sur E définie par x = (x | x) E . Soit T une application linéaire de E dans E. On suppose que T est symétrique, c.à.d. que (T (x) | y) E = (x | T (y)) E , ∀(x, y) ∈ E 2 . Alors il existe une base orthonormée (f 1 , . . . , f n ) de E (c.à.d. telle que

  1ère étape. On suppose dimE = 1. Soit e ∈ E, e = 0, alors E = IRe = IRf 1 avec f 1 = 1 e e. Soit T : E → E linéaire. On a : T f 1 ∈ IRf 1 donc il existe λ1 ∈ IR tel que T f 1 = λ1f 1 . 2ème étape. On suppose le lemme vrai si dim E < n. On montre alors le lemme si dimE = n. Soit E un espace vectoriel normé sur IR tel que dimE = n et T : E → E linéaire symétrique. Soit ϕ l'application définie par :ϕ : E → IR x → (T x|x). L'application ϕ est continue sur la sphère unité S1 = {x ∈ E| x = 1} qui est compacte car dim E < +∞ ; il existe donc e ∈ S1 tel que ϕ(x) ≤ ϕ(e) = (T e | e) = λ pour tout x ∈ E. Soit y ∈ E \ {0} et soit t ∈]0,1 y [ alors e + ty = 0. On en déduit que : 1 e + ty (e + ty) ∈ S1 et donc ϕ(e) = λ ≥ T 1 e + ty (e + ty) | 1 e + ty (e + ty)) E donc λ(e + ty | e + ty)E ≥ (T (e + ty) | e + ty). En développant on obtient : λ[2t(e | y) + t 2 (y | y)E] ≥ 2t(T (e) | y) + t 2 (T (y) | y)E. Comme t > 0, ceci donne : λ[2(e | y) + t(y | y)E] ≥ 2(T (e) | y) + t(T (y) | y)E. En faisant tendre t vers 0 + , on obtient 2λ(e | y)E ≥ 2(T (e) | y), soit encore 0 ≥ (T (e)-λe | y) pour tout y ∈ E \{0}. De même pour z = -y on a 0 ≥ (T (e) -λe|z) donc (T (e) -λe | y) ≥ 0. D'où (T (e) -λe | y) = 0 pour tout y ∈ E. On en déduit que T (e) = λe. On pose f n = e et λn = λ. Soit F = {x ∈ E; (x | e) = 0}, on a donc F = E, et E = F IRe : On peut décomposer x ∈ E comme x = x -(x | e)e + (x | e)e. Si x ∈ F , on a aussi T (x) ∈ F (car T est symétrique). L'application S = T |F est alors une application linéaire symétrique de F dans F et on a dimF = n -1. On peut donc utiliser l'hypothèse de récurrence : ∃λ1 . . . λn-1 dans IR et ∃f 1 . .

  IR n solution de (1.9). Ce système peut s'écrire sous forme matricielle :K n u = b K n est la matrice carrée d'ordre n de coefficients (k i,j ) i,j=1,n définis par :

  = b où A ∈ M n (IR) et b ∈ IR n avec n = M 2 . Utilisons l'ordre"lexicographique" pour numéroter les inconnues, c.à.d. de bas en haut et de gauche à droite : les inconnues sont alors numérotées de 1 à n = M 2 et le second membre s'écrit b = (b 1 , . . . , b n ) t . Les composantes b 1 , . . . , b n sont définies par :pour i, j = 1, . . . , M , on pose k = j + (i -1)M et b k = f (x i , y j ).

FIGURE 1 . 2 :

 12 FIGURE 1.2: Ordre lexicographique des inconnues, exemple dans le cas M = 6

  sinon, Pour k = 1, . . . , n, et ℓ = 1, . . . , n; a k,ℓ = 0, ∀ k = 1, . . . , n, 1 < |k -ℓ| < n ou |k -ℓ| > n.

-1 0 .,où

 0 les blocs diagonaux (qui sont des matrices de dimension M × M ), on a : Id désigne la matrice identité d'ordre M , et 0 la matrice nulle d'ordre M .

1. 2 . 3 Exercice 2 (

 232 Exercices (matrices, exemples)Exercice 1 (A faire sans calcul !). Effectuer le produit matriciel  Permutations et matrices).

7 .

 7 Soit A une matrice carrée telle que Ax = 0 =⇒ x = 0, alors A est inversible. 8. Soit A une matrice carrée telle que Ax ≥ 0 =⇒ x ≥ 0, alors A est inversible. 9. Une matrice symétrique est inversible. 10. Une matrice symétrique définie positive est inversible. 11. Le système linéaire n+1 j=1 a i,j x j = 0 pour tout i = 1, . . . , n admet toujours une solution non nulle.

( a )

 a Montrer que le problème (1.18) admet soit une infinité de solutions, soit pas de solution. (b) Ecrire la discrétisation du problème (1.18), toujours avec h = 1 4 , sous la forme Ku = b en explicitant K et b. (c) Montrer que la matrice K n'est pas inversible : on part d'un problème continu mal posé, et on obtient par discrétisation un problème discret mal posé. . .

A - 1

 1 est une matrice symétrique définie positive et que ker(B t A -1 B) = ker(B) = {0}. En déduire que {B t z i , i ∈ {1, . . . , p}} est une base de IR p . Soient b ∈ IR n et c ∈ IR p . On cherche le couple (x, y), avec x ∈ IR n et y ∈ IR p , solution du système suivant (écrit sous forme de blocs) :

2 . 3 . 4 .

 234 Soit A = a b c d une matrice réelle d'ordre 2. Montrer que A est une ICP-matrice si et seulement si : Montrer que si A ∈ M n (IR) est une ICP-matrice alors A t (la transposée de A) est une ICP-matrice. Montrer que si A est telle que a i,j ≤ 0, pour tout i, j = 1, . . . , n, i = j, et a i,i > n j=1 j =i |a i,j |, pour tout i = 1, . . . , n, (1.23) alors A est une ICP-matrice ; en déduire que si A t satisfait (1.23), alors A est une ICP-matrice. 5. Soit A une matrice inversible telle que a i,j ≤ 0, pour tout i, j = 1, . . . , n, i = j, et a i,i ≥ n j=1 j =i |a i,j |, pour tout i = 1, . . . , n. (1.24) Pour tout ε ≥ 0, on définit la matrice A ε = A + εId, où Id désigne la matrice identité. (a) Prouver que, pour ε > 0, la matrice A ε est une ICP-matrice. (b) Prouver que la matrice A ε est inversible pour tout ε ≥ 0, et que les coefficients de A -1 ε sont des fonctions continues de ε.

3 . 1 . 1 . 2 . 3 . 4 . 5 . 6 .

 31123456 Soit n fixé, et max 1≤i≤n |u iu(x i )| = 0. A-t-on forcément que f est constante sur [0, 1] ? Exercice 19 (Déterminant d'une matrice sous forme de blocs). Soient A ∈ M n (IR) (n > 1), b, c ∈ IR n et λ ∈ IR. On s'intéresse à la matrice Ā ∈ M n+1 (IR) définie sous forme de blocs de la manière suivante : cet exercice que les deux assertions suivantes sont, sauf cas particuliers, fausses : A1 det( Ā) = λdet(A)det(bc t ), A2 det( Ā) = λdet(A)c t b, Dans cette question, on prend n ≥ 2, A = 0, b = c et on suppose que b = 0. (a) Montrer que rang( Ā) ≤ 2 et en déduire que Ā n'est pas inversible. (b) En déduire que l'assertion A2 est fausse pour cet exemple. 2. Dans cette question, on suppose que A est symétrique définie positive, λ = 0, b = c et que b = 0. (a) Montrer que Ā est inversible et que rang(bb t ) = 1. (b) En déduire que l'assertion A1 est fausse pour cet exemple. Exercice 20 (Résolution d'un système linéaire particulier). Soient A ∈ M n (IR) une matrice de rang (n -1) et b ∈ Im(A). Cet exercice donne une méthode pour calculer une solution u ∈ IR n du système linéaire Au = b. On se donne a ∈ ker(A) ⊥ , c ∈ Im(A) et on définit la matrice Ā de M n (IR) par Ā = A + c a t . Montrer que dim(ker(A)) = 1. Montrer qu'il existe un et un seul u solution de Au = b, Montrer que l'unique solution de (1.27)-(1.28) est aussi l'unique solution de Āu = b. En déduire que Ā est inversible. On suppose dans cette question que A est symétrique. (a) Montrer que pour toute matrice carrée M d'ordre n symétrique, on a Im(M ) ⊂ ker(M ) ⊥ . (b) Montrer Im(A) = ker(A) ⊥ et en déduire qu'un choix possible est a = c ∈ Im(A). [Suggestion : montrer que dim(ker(A) ⊥ ) = n -1.] On suppose dans cette question que a ∈ ker(A) ⊥ et c ∈ IR n . Montrer que la matrice Ā = A + c a t n'est pas inversible. On suppose dans cette question que c ∈ Im(A) et a ∈ IR n . Montrer que la matrice Ā = A + c a t n'est pas inversible.

Exercice 7

 7 page 17 (Sur quelques notions connues) 1. Supposons qu'il existe deux solutions distinctes x 1 et x 2 au système Ax = b. Soit z = x 1x 2 . On a donc Az = 0 et z = 0. -Si A est inversible, on a donc z = 0 en contradiction avec x 1 = x 2 . -Si A est non inversible, alors A(tz) = 0 pour tout t ∈ IR, et donc il y a une infinité de solutions au système Ax = b. 2. C = (AB)C = A(BC) = A. 3. Les matrices carrées d'ordre 2 ont quatre coefficients, et donc il y a 2 4 = 16 matrices ne comportant que des 1 ou des 0 comme coefficients. Une matrice A = a b c d est inversible si adbc = 0. Dans le cas de matrices ne comportant que des 1 ou des 0 comme coefficients, les valeurs non nulles possibles de adbc sont 1 et -1, obtenues respectivement pour (ad = 1, bc = 0) et (ad = 0, bc = 1), c.à.d pour les matrices

3 ,

 3 4}, ce qu'on aurait pu deviner sans calculs car ici aussi l'erreur de discrétisation est nulle car l'erreur de consistance est nulle en raison du traitement que nous avons fait de la condition aux limites de Neumann (u ′ (1) = 0) et du fait que la solution exacte est un polynôme de degré au plus égal à 2. 5. (a) Il est facile de voir que si c = 0, aucune fonction ne peut satisfaire le problème (1.18), alors que si c = 0, toutes les fonctions constantes conviennent. (b) On a maintenant une condition de Neumann en 0 et en 1.

5 .

 5 (a) Puisque la matrice A vérifie l'hypothèse (1.24) et puisque ε > 0, la matrice A ε vérifie l'hypothèse (1.23), et c'est donc une ICP-matrice par la question précédente. (b) Pour ε > 0, la matrice A ε est une ICP-matrice donc inversible, et pour ε = 0, A ε = A et A est inversible par hypothèse. La fonction ε → A + εId est continue de IR dans M n (IR), et la fonction M → M -1 est continue de M n (IR) dans M n (IR). Par composition, les coefficients de A -1 ε sont donc des fonctions continues de ε. (c) Comme la matrice A ε est une ICP-matrice, les coefficients de A -1 ε sont tous positifs ou nuls. Par continuité, les coefficients de A -1 sont donc aussi tous positifs ou nuls, et donc A est une ICP-matrice. 6. Soit 1 le vecteur de IR n dont toutes les composantes sont égales à 1. Si Ax > 0, comme l'espace IR n est de dimension finie, il existe ǫ > 0 tel que Ax ≥ ǫ1. Soit z = ǫA -1 1 ≥ 0 ; on a alors A(xz) ≥ 0 et donc x ≥ z, car A est une ICP-matrice.

8 .

 8 Soit x tel que Ax ≥ 0, alors il existe ε ≥ 0 tel que Ax + ε1 ≥ 0. Soit maintenant b = A -1 1 ; on a A(x + εb) > 0 et donc x + εb > 0. En faisant tendre ε vers 0, on en déduit que x ≥ 0.

1 .(

 1 Factorisation et descente) Pour commencer, on pose u i,j = a i,j et y i = b i pour pour i, j ∈ {1, . . . , n}. Puis, pour i allant de 1 à n -1, on effectue les calculs suivants : (a) On ne change pas la i-ème ligne (qui est la ligne du pivot) (b) On modifie les lignes i + 1 à n et le second membre y en utilisant la ligne i.

  1 b, on en déduit que LU x = b, et comme A et LU sont inversibles, on en déduit que A -1 b = (LU ) -1 b pour tout b ∈ IR n . Ceci démontre que A = LU. La méthode LU se déduit donc de la méthode de Gauss en remarquant simplement que, ayant conservé la matrice L, on peut effectuer les calculs sur b après les calculs sur A, ce qui donne : Algorithme 1.14 (LU simple (sans permutation)). 1. (Factorisation) On pose u i,j = a i,j pour pour i, j ∈ {1, . . . , n}. Pour i allant de 1 à n -1, on effectue les calculs suivants : (a) On ne change pas la i-ème ligne (b) On modifie les lignes i + 1 à n ((mais pas le second membre) en utilisant la ligne i. Pour k allant de i + 1 à n :

  donner une condition nécessaire et suffisante (CNS) pour qu'une matrice A admette une décomposition LU avec U inversible et sans permutation. Cette CNS fait intervenir les matrices principales d'ordre k et leurs déterminants. Commençons par une définition, puis un lemme de décomposition par blocs qui va nous permettre de prouver cette CNS. Définition 1.16 (Matrice principale d'ordre k et mineur principal). Soit n ∈ IN, A ∈ M n (IR) et k ∈ {1, . . . , n}. On appelle matrice principale d'ordre k de A la matrice A k ∈ M k (IR) définie par (A k ) i,j = a i,j pour i = 1, . . . , k et j = 1, . . . , k. Le mineur principal d'ordre k de A est le déterminant de la matrice principale d'ordre k. Lemme 1.17 (Décomposition LU de la matrice principale d'ordre k). Soit n ∈ IN, A ∈ M n (IR), k ∈ {1, . . . , n} et A k la matrice principale d'ordre k de A. On suppose qu'il existe une matrice L k ∈ M k (IR) triangulaire inférieure de coefficients diagonaux tous égaux à 1 et une matrice triangulaire supérieure U k ∈ M k (IR) inversible, telles que A k = L k U k . Alors A s'écrit sous la forme "par blocs" suivante :

3 . 0 ∈

 30 A = LL t . DÉMONSTRATION -I-Existence de L : démonstration par récurrence sur n 1. Dans le cas n = 1, on a A = (a1,1). Comme A est symétrique définie positive, on a a1,1 > 0. On peut donc définir L = (ℓ1,1) où ℓ1,1 = √ a1,1, et on a bien A = LL t . 2. On suppose que la décomposition de Choleski s'obtient pour A ∈ Mp(IR) symétrique définie positive, pour 1 ≤ p ≤ n et on va démontrer que la propriété est encore vraie pour A ∈ Mn+1(IR) symétrique définie positive. Soit donc A ∈ Mn+1(IR) symétrique définie positive ; on peut écrire A sous la forme : où B ∈ Mn(IR) est symétrique, a ∈ IR n et α ∈ IR. Montrons que B est définie positive, c.à.d. que By • y > 0, pour tout y ∈ IR n tel que y = 0. Soit donc y ∈ IR n \ {0}, et x = y IR n+1 . Comme A est symétrique définie positive, on a :

  et on veut donc que les égalités suivantes soient vérifiées : M b = a et b t b + λ 2 = α. Comme M est inversible (en effet, le déterminant de M s'écrit det(M ) = n i=1 mi,i > 0), la première égalité ci-dessus donne : b = M -1 a et en remplaçant dans la deuxième égalité, on obtient :

1 ∈

 1 37) Pour que (1.37) soit vérifiée, il faut que α -a t B -1 a > 0 (1.38) Montrons que la condition (1.38) est effectivement vérifiée : Soit z = B -1 a -IR n+1 . On a z = 0 et donc Az • z > 0 car A est symétrique définie positive. Calculons Az :

Remarque 1 .

 1 25 (Choleski et LU ). Considérons une matrice A symétrique définie positive. Alors une matrice P de permutation dans le théorème 1.24 possible n'est autre que l'identité. Il suffit pour s'en convaincre de remarquer qu'une fois qu'on s'est donné la bijection t = Id dans l'algorithme 1.20, celle-ci n'est jamais modifiée et donc on a P = Id. Les théorèmes d'existence et d'unicité 1.22 et 1.24 nous permettent alors de remarquer que A = LU = L Lt avec L = L √ D, où D est la matrice diagonale extraite de U , et √ D désigne la matrice dont les coefficients sont les racines carrées des coefficients de D (qui sont tous positifs). Voir à ce sujet l'exercice 41 page 52. La décomposition LU permet de caractériser les matrices symétriques définies positives. Proposition 1.26 (Caractérisation des matrices symétriques définies positives par la décomposition LU ). Soit A une matrice symétrique admettant une décomposition LU sans permutation, c'est-à-dire qu'on suppose qu'il existe L triangulaire inférieure de coefficients diagonaux tous égaux à 1, et U triangulaire supérieure telle que A = LU . Alors A est symérique définie positive si et seulement si tous les pivots (c'est-à-dire les coefficients diagonaux de la matrice U ) sont strictement positifs. DÉMONSTRATION -Soit A une matrice symétrique admettant une décomposition LU sans permutation. Si A est symétrique définie positive, le théorème 1.24 de décomposition de Choleski donne immédiatement le résultat. Montrons maintenant la réciproque : supposons que A = LU avec tous les pivots strictement positifs. On a donc A = LU , et U est inversible car c'est une matrice triangulaire supérieure dont tous les coefficients diagonaux sont strictement positifs. Donc A est aussi inversible, et la décomposition LU est donc unique, par le théorème 1.22 de décomposition LU d'une matrice inversible. On a donc A = LU = LD Lt où D est la matrice diagonale dont la diagonale est celle de U , et L est la matrice triangulaire inférieure de coefficients diagonaux tous égaux à 1 définie par Lt = D -1 U . On a donc aussi par symétrie de A A t = LDL t = A = LU et par unicité de la décomposition LU , on en déduit que L = L et DL t = U , ce qui entraîne que A = LDL t = CC t avec C = L √ D. On a donc pour tout x ∈ IR n , Ax • x = CC t x • x = Cx 2 et donc que A est symétrique définie positive.

  . Si A est une matrice symétrique définie positive, on sait par le théorème 1.22 et la remarque 1.25 qu'il existe une unique décomposition LU : A = LU . Le théorème 1.24 nous donne l'existence (et l'unicité) de la décomposition A = L Lt . Soit D la matrice diagonale extraite de L, qui est strictement positive par construction de L ; on pose L = L D-1 . On a donc A = L D D Lt = L Ū , avec Ū = D2 Lt . La matrice D = D2 est donc la diagonale de la matrice Ū. Par unicité de la décomposition LU , on a L = L, Ū = U et D = D, et donc L = L √ D.

  et on veut donc que les égalités suivantes soient vérifiées : M Db = a et b t Db + λ = α. La matrice M est inversible (en effet, le déterminant de M s'écrit det(M ) = n i=1 1 = 1). Par hypothèse de récurrence, la matrice D est aussi inversible. La première égalité ci-dessus donne : b = D-1 M -1 a. On calcule alors λ = αb t M -1 a. Remarquons qu'on a forcément λ = 0, car si λ = 0,

Théorème 1 .

 1 35 (Approximation du rayon spectral par une norme induite). 1. Soit • une norme induite. Alors ρ(A) ≤ A , pour tout A ∈ M n (IR).

DÉMONSTRATION - 1

 1 Soit λ ∈ C l valeur propre de A telle que |λ| = ρ(A). On suppose tout d'abord que λ ∈ IR. Il existe alors un vecteur non nul de IR n , noté x, tel que Ax = λx. Comme • est une norme induite, on a λx = |λ| x = Ax ≤ A x . On en déduit que |λ| ≤ A et donc ρ(A) ≤ A .

  Id + A ∈ Mn(IR) est singulière, alors λ = -1 est valeur propre, et donc ρ(A) ≥ 1. En utilisant le corollaire 1.39, on obtient que A ≥ ρ(A) ≥ 1.

1. 4 .

 4 NORMES ET CONDITIONNEMENT D'UNE MATRICE CHAPITRE 1. SYSTÈMES LINÉAIRES1.4.2 Le problème des erreurs d'arrondisSoient A ∈ M n (IR) inversible et b ∈ IR n ; supposons que les données A et b ne soient connues qu'à une erreur près. Ceci est souvent le cas dans les applications pratiques. Considérons par exemple le problème de la conduction thermique dans une tige métallique de longueur 1, modélisée par l'intervalle[0, 1]. Supposons que la température u de la tige soit imposée aux extrémités, u(0) = u 0 et u(1) = u 1 . On suppose que la température dans la tige satisfait à l'équation de conduction de la chaleur, qui s'écrit (k(x)u ′ (x)) ′ = 0, où k est la conductivité thermique. Cette équation différentielle du second ordre peut se discrétiser par exemple par différences finies (on verra une description de la méthode page 12), et donne lieu à un système linéaire de matrice A. Si la conductivité k n'est connue qu'avec une certaine précision, alors la matrice A sera également connue à une erreur près, notée δ A . On aimerait que l'erreur commise sur les données du modèle (ici la conductivité thermique k) n'ait pas une conséquence trop grave sur le calcul de la solution du modèle (ici la température u). Si par exemple 1% d'erreur sur k entraîne 100% d'erreur sur u, le modèle ne sera pas d'une utilité redoutable. . . L'objectif est donc d'estimer les erreurs commises sur x solution de (1.1) à partir des erreurs commises sur b et A. Notons δ b ∈ IR n l'erreur commise sur b et δ A ∈ M n (IR) l'erreur commise sur A. On cherche alors à évaluer δ x où x + δ x est solution (si elle existe) du système :

Définition 1 .

 1 41 (Conditionnement). Soit IR n muni d'une norme • et M n (IR) muni de la norme induite. Soit A ∈ M n (IR) une matrice inversible. On appelle conditionnement de A par rapport à la norme • le nombre réel positif cond(A) défini par :

que 1 x ≤ A b .

 b .68) Cette première estimation n'est pas satisfaisante car elle porte sur l'erreur globale ; or la notion intéressante est celle d'erreur relative. On obtient l'estimation sur l'erreur relative en remarquant que b = Ax, ce qui entraîne que b ≤ A x . On en déduit En multipliant membre à membre cette dernière inégalité et (1.68), on obtient le résultat souhaité. Remarquons que l'estimation (1.67) est optimale. En effet, on va démontrer qu'on peut avoir égalité dans (1.67). Pour cela, il faut choisir convenablement b et δ b . On sait déjà que si x est solution de (1.1) et x + δ x est solution de (1.65), alors δ x = A -1 δ b , et donc δ x = A -1 δ b . Soit x ∈ IR n tel que x = 1 et Ax = A . Notons qu'un tel x existe parce que A = sup{ Ax ; x = 1} = max{ Ax ; x = 1}

  Par ce choix de b et δ b on a bien égalité dans (1.67) qui est donc optimale. Majorons maintenant l'erreur relative commise sur x solution de Ax = b lorsque l'on commet une erreur δ A sur la matrice A. Proposition 1.46 (Majoration de l'erreur relative pour une erreur sur la matrice). Soit A ∈ M n (IR) une matrice inversible, et b ∈ IR n , b = 0. On munit IR n d'une norme • , et M n (IR) de la norme induite. Soit δ A ∈ M n (IR) ; on suppose que A + δ A est une matrice inversible. Si x est solution de (1.1) et x + δ x est solution de

3 .

 3 (On rappelle que M n,p (IR) désigne l'ensemble des matrices à n lignes et p colonnes.) 1. Montrer que λ est valeur propre non nulle de AB si et seulement si λ est valeur propre non nulle de BA. 2. On suppose que n ≤ p. Montrer que si 0 est valeur propre de AB alors 0 est valeur propre de BA. (Il est conseillé de distinguer les cas Bx = 0 et Bx = 0, où x est un vecteur propre associé à la valeur propre nulle de AB. Pour le deuxième cas, on pourra distinguer selon que ImA = IR n ou non.) Montrer en donnant un exemple que 0 peut être une valeur propre de BA sans être valeur propre de AB. (Prendre par exemple n = 1, p = 2.)

  ρ(A) < 1. Soit ε > 0 donné. Construire à partir de la norme . une norme induite . * * telle que A * * ≤ ρ(A) + ε.

.73) 1 .

 1 Ecrire le système (1.73) sous la forme M y = g, où M est une matrice carrée d'ordre n + 1, y ∈ IR n+1 , g ∈ IR n+1 . Donner l'expression de M , y et g. 2. Donner une relation entre A, b, c et α, qui soit une condition nécessaire et suffisante pour que le système (1.73) soit inversible. Dans toute la suite, on supposera que cette relation est vérifiée. 3. On propose la méthode suivante pour la résolution du système (1.73) : (a) On calcule z solution de Az = b, et h solution de Ah = f . (b) On pose

  j=1,...,n |a i0,j | = max i=1,...,n j=1,...,n |a i,j |.

  Soit A ∈ M n (IR) une matrice inversible et b ∈ IR n , on cherche toujours ici à résoudre le système linéaire (1.1) c'est-à-dire à trouver x ∈ IR n tel que Ax = b, mais de façon itérative, c.à.d. par la construction d'une suite. 6. Hestenes, Magnus R. ; Stiefel, Eduard (December 1952). "Methods of Conjugate Gradients for Solving Linear Systems". Journal of Research of the National Bureau of Standards. 49 (6).

FIGURE 1 . 4 :

 14 FIGURE 1.4: Rayon spectral de la matrice B de Richardson en fonction du coefficient α.

  vient de calculer plutôt que la valeur x (k) 1 comme dans (1.97) ; de même, dans le calcul de x (k+1) 3

Proposition 1 .

 1 55 (Condition nécessaire de convergence de la méthode SOR). Soit A ∈ M n (IR) et soiet D, E et F les matrices définies par (1.95) ; on a donc A = D -E -F . Soit B ω la matrice d'itération de la méthode SOR (et de la méthode de Gauss-Seidel pour ω = 1) définie par :

  , il suffit donc de montrer que -2Ax • y + Ay • y < 0. Or, comme P y = Ax, on a : -2Ax•y +Ay•y = -2P y•y +Ay•y. En écrivant : P y•y = y•P t y = P t y •y, on obtient donc que : -2Ax • y + Ay • y = (-P -P t + A)y • y, et comme A = P -N on obtient -2Ax • y + Ay • y = -(P t + N )y • y. Comme P t + N est symétrique définie positive par hypothèse et que y = 0, on en déduit que -2Ax • y + Ay • y < 0, ce qui termine la démonstration.

Théorème 1 .

 1 57 (CNS de convergence de la méthode SOR pour les matrices s.d.p.). Soit A ∈ M n (IR) une matrice symétrique définie positive, et soient D, E et F les matrices définies par (1.95) ; on a donc A = D -E -F . Soit B ω la matrice d'itération de la méthode SOR (et de la méthode de Gauss-Seidel pour ω = 1) définie par :



  Montrer que cette matrice est symétrique définie positive. Montrer que ρ(B GS ) = ρ(B J ) 2 . Quelle est l'hypothèse mise en défaut ici ?Exercice 71 (Méthode de Jacobi et relaxation).

  en fonction de ω, D et A. On note, dans la suite J ω = (M ω ) -1 N ω . 6. On suppose dans cette question que (2/ω)D -A est symétrique définie positive. Montrer que la méthode converge (c'est-à-dire que x (k) → x quand n → ∞.) 7. Montrer que (2/ω)D -A est symétrique définie positive si et seulement si ω < 2/(1µ 1 ).

1 .

 1 On suppose, dans cette question uniquement, que b = 0. (a) Montrer que 4|x i | ≤ 2 x ∞ pour i ∈ {1, . . . , n}. (b) En déduire que x = 0. 2. Montrer que dans le cas d'un second membre quelconque b, il existe une unique x ∈ IR n solution du système linéaire (1.112).

  Montrer que la méthode itérative converge vers x pour α ∈]α min , α max [. (d) Lorsque α = 0, de quelle méthode itérative (vue en cours) s'agit-il ?Exercice 73 (Jacobi pour une matrice 3 × 3 particulière). On suppose que A est symétrique définie positive. Montrer que la méthode de Jacobi converge pour n'importe quel second membre et n'importe quel choix initial.

  A est-elle symétrique définie positive ? singulière ? 3. On suppose ici que α = 0. Soit b = (b 1 , b 2 , b 3 , b 4 ) t ∈ IR 4 donné. On considère la méthode de Jacobi pour la résolution du système Ax = b. Soit (x (k) ) n∈IN la suite de vecteurs donnés par l'algorithme. On note x (k) i

1 .

 1 Soit A ∈ M n (IR) une matrice symétrique définie positive. (a) Montrer que tous les coefficients diagonaux de A sont strictement positifs. (b) En déduire que la méthode de Jacobi pour la résolution du système linéaire Ax = b, avec b ∈ IR n , est bien définie. Soit M ∈ M n (IR) une matrice carrée d'ordre n, avec n > 1. On dit que la matrice M est irréductible si : pour tous ensembles d'indices I ⊂ {1, . . . , n}, I = ∅, et J = {1 . . . , n} \ I, J = ∅, ∃i ∈ I, ∃j ∈ J; a i,j = 0. (1.115) 2 (a) Montrer qu'une matrice diagonale n'est pas irréductible. En déduire qu'une matrice inversible n'est pas forcément irréductible. 2 (b) Soit M ∈ M n (IR) une matrice carrée d'ordre n, qui s'écrit sous la forme :

1

  Soit α et β des réels. Soit u (0) ∈ IR et (u (k) ) k∈IN la suite réelle définie par u (k+1) = αu (k) + β. 1.a Donner les valeurs de α et β pour lesquelles la suite (u (k) ) k∈IN converge. 1.b On suppose que α = 0, et que la suite (u (k) ) k∈IN converge vers une limite qu'on note u. Montrer que s'il existe

1 ]

 1 avec conditions aux limites de Dirichlet homogènes u = 0 sur ∂Ω, par différences finies avec un pas uniforme h = 1 M , et b le second membre associé. (a) Donner l'expression de A et b. (b) Proposer des choix de X, Y et α pour lesquelles la méthode itérative (1.123) converge dans ce cas et qui justifient l'appellation "méthode des directions alternées" qui lui est donnée.

( a ) 1 a a a 1 a a a 1 

 a1 Montrer que α > 0, β > 0 et γ 2 < αβ. (b) Montrer que la méthode est convergente pour 0 < ω < 2. [Indication : Soit µ une valeur propre de M -1 N , montrer que µ ∈] -1, 1[.] (c) Montrer, en donnant un exemple, que M t + N n'est pas toujours s.d.p.. [Prendre γ = 0.] 4. On suppose, dans cette question, que n = 3 et on prend A =  , avec -1 2 < a < 1. (a) Vérifier que A est bien s.d.p.. (b) Montrer que si a = -1/2 et ω = 2, la matrice M est toujours inversible (mais A n'est plus s.d.p.) et que ρ(M -1 N ) > 1. En déduire qu'il existe a ∈] -1/2, 1[ et ω ∈]0, 2[ tels que ρ(M -1 N ) > 1. 5. On suppose n ≥ 3. Donner un exemple de matrice A (A ∈ M n (IR), A s.d.p) pour laquelle la méthode est non convergente pour certains ω ∈]0, 2[. [Utiliser la question précédente.]

1 |

 1 et ω → |µ (ω) n |, et en conclure que le minimum de max(|µ (ω) 1 |, |µ (ω) n |) est atteint pour ω = 2 2-µ1-µn . Exercice 82 page 109 (Méthode de Jacobi et relaxation.) 2. Utiliser l'exercice 75 page 106 1.5.6 Exercices, corrigés Exercice 67 page 103 (a) La valeur propre double est 2 3 et donc le rayon spectral est 2 3 qui est strictement inférieur à 1, donc la suite converge vers x = (Id -B) -1 c = 9 3 . (b) Les valeurs propres sont 2 3 et 2 et donc le rayon spectral est 2 qui est strictement supérieur à 1, donc la suite diverge (sauf si x (0) = Bx (0) + c).

  ω D -A définie positive. De même, si μn ≥ 1, alors μn = α avec α ≥ 1. On a alors ( 1 ω D -A) fn = α 1 ω D fn , et donc A fn = (1α) 1 ω D fn ce qui entraîne en particulier que A fn • fn ≤ 0 ; or ceci contredit l'hypothèse A définie positive.

FIGURE 1 . 6 :

 16 FIGURE 1.6: Détermination de la valeur de ω réalisant le minimum du rayon spectral.

  .131) avec D = λId + D, et A = D -E -F est la décomposition habituelle de A en partie diagonale, triangulaire inférieure et triangulaire supérieure. Comme a i,i ≥ 0 et λ ∈ IR * + , on en déduit que D est inversible, et que donc la suite (u (k) ) k∈IN est bien définie dans IR. 4. Par définition de la méthode de Jacobi, on a :

A

  n -bI, où b est choisi proche de la plus grande valeur propre. En général on choisit le coefficient b = a (k)

A = 0

 0 et qu'il existe une norme induite sur M n (IR), notée • ⋆ pour laquelle A ⋆ = ρ(A).

( a )

 a Montrer que λ = 0. (b) Montrer que Ax = λx. [Utiliser (1.133) et faire k → +∞. On pourra se limiter au cas λ ∈ IR et x ∈ IR n . Les courageux pourront, hors barème, faire le cas λ ∈ C l .] (c) Montrer que m i = n i . 3. Donner un exemple pour lequel n i < m i (mais toujours avec λ = λ i et |λ| = ρ(A)). En déduire que, pour cet exemple, A ⋆ > ρ(A) pour tout norme induite sur M n (IR).

4 .

 4 A ∈ M n (IR) inversible, on peut construire une matrice orthogonale Q (c.à. d. telle que QQ t = Id) et une matrice triangulaire supérieure R à coefficients diagonaux positifs telles que A = QR. Donner la décomposition QR de A

4. 4

 4 En déduire que B k tend B et C k tend vers l'identité lorsque k tend vers l'infini. 5. Déduire des questions 3 et 4 que Qk tend vers P et T k tend vers Id lorsque k → +∞.

1 | → 1 ) 1 , 1 =

 1111 lorsque k → +∞, et donc lim k→+∞ c (k±1. Or, par hypothèse, la matrice C (k) a tous ses coefficients diagonaux positifs, on a donc bien c (k) 1,1 → 1 lorsque k → +∞ . Par conséquent, on a b (k) 1 → b 1 lorsque k → ∞. 3.2 Comme C k est triangulaire supérieure, on a :

  De plus, par la question précédente, b (k) 1 → b 1 lorsque k → +∞, On a donc, en prenant le produit scalaire du membre de gauche de (1.142) avec b

  j . De plus, par hypothèse de récurrence, on sait que b (k) ℓ → b ℓ pour tout ℓ ≤ j -1. En prenant le produit scalaire du membre de gauche de (1.143) avec b

→

  b j lorsque k → +∞, et le même raisonnement que celui de la question 4.1 nous donne alors que c (k) j,j → 1 et b (k) j → b j lorsque k → +∞. ce qui conclut le raisonnement par récurrence.

3. 4

 4 En déduire que B k tend B et C k tend vers l'identité lorsque k tend vers l'infini. On a montré aux trois questions précédentes que la j-ième colonne de B k tend vers la j-ième colonne de B, et que c (k) i,j → δ i,j lorque k tend vers +∞. On a donc bien le résultat demandé.Analyse numérique I, télé-enseignement, L3Chapitre 2

  Figure emblématique des sciences, il est surtout reconnu pour sa théorie de la gravitation universelle et la création, en concurrence avec Leibniz, du calcul infinitésimal.

Remarque 2 . 4 (

 24 Sur les différentielles, gradient et Hessienne). Pour définir la différentielle d'une fonction f d'un expace vectoriel de dimension finie E dans IR, on a besoin d'une norme sur E.

1 0α|y 1 0 1 0 1 0

 1111 -x| 2 dt = α|y -x| 2 ce qui montre que l'hypothèse (2.6) est bien vérifiée. Analyse numérique I, télé-enseignement, L3Montrons maintenant que l'hypothèse (2.5) est vérifiée. On veut montrer que |g(y) -g(x)| ≤ M |y -x|. Comme g(y) -g(x) = Dg(x + t(y -x))(y -x)dt, on a |g(y) -g(x)| ≤ |Dg(x + t(y -x))(y -x)|dt ≤ |Dg(x + t(y -x))||y -x|dt, où |.|est la norme sur Mn(IR) induite par la norme euclidienne sur IR n . Or, comme λi(x) ∈ [α, M ] pour tout i = 1, . . . , n, la matrice Dg(x + t(y -x)) est symétrique définie positive et donc, d'après la proposition 1.33 page 66, son rayon spectral est égal à sa norme, pour la norme induite par la norme euclidienne. On a donc : |Dg(x + t(y -x)| = ρ(Dg(x + t(y -x)) ≤ M. On a donc ainsi montré que : |g(y) -g(x)| ≤ M |y -x|, ce qui termine la démonstration.

Enfin, comme

 comme Ax (k+1) = R(x(k) ) et comme R est continue, on obtient par passage à la limite lorsque k → +∞ queAx = R(x) et que 0 ≤ x ≤ x.L'hypothèse 1 du théorème 2.11 est vérifiée par exemple par les matrices A qu'on a obtenues par discrétisation par différences finies des opérateurs -u ′′ sur l'intervalle ]0, 1[ (voir page 12 et l'exercice 66) et ∆u sur ]0, 1[×]0, 1[ (voir page 15).

( a )

 a La convergence est au moins d'ordre p s'il existe γ ∈ IR + et il existe k 0 ∈ IN tels que si k ≥ k 0 alors x (k+1)x ≤ γ x (k)x p . (b) La convergence est d'ordre p si lim k→+∞ x (k+1)x x (k)x p = γ > 0.

7 .

 7 (Etude d'un exemple.) On suppose que g(x) = x 2 -3 et x = √ 3. (a) Donner explicitement les valeurs de a pour lesquelles il est certain que si x 0 est assez proche de x, l'algorithme converge vers x. (b) Pour une telle valeur de a, donner explicitement un intervalle B α pour lequel cette convergence est assurée si x 0 ∈ B α .

  .11) où α i > 0 pour tout i ∈ {1, . . . , n}, b i ≥ 0 pour tout i ∈ {1, . . . , n} et A ∈ M n (IR) est une matrice vérifiant u ∈ IR n , Au ≥ 0 ⇒ u ≥ 0.

( a ) 0 .

 a0 Si x 0 = 0, la suite est stationnaire et égale à 0. (b) Si x 0 = 1, la suite est stationnaire et égale à 1. (c) Si x 0 ∈]0, 1[, on montre par une récurrence facile que Analyse numérique I, télé-enseignement, L3 i. x n+1 < x n , ii. x n+1 ∈]0, 1[. On en déduit que la suite converge vers une limite ℓ, et en passant à la limite sur x n+1 = (x n ) 4 , on obtient ℓ = 0 ou 1. Comme ℓ ≤ x 0 < 1, on en d duit que ℓ = Exercice 100 page 150 (Un autre point fixe dans IR) 1. Résolution de l'équation 2xe x = 1. (a) Comme e x ne s'annule pas, l'équation 2xe x = 1 est équivalente à l'équation x = 1 2 e -x , qui est sous forme point fixe x = f (x) avec f (x) = 1 2 e -x . (b) L'algorithme de point fixe s'écrit

2 .

 2 Résolution de l'équation x 2 -2 = 0. (a) On se place sur l'intervalle ]0, 4[. L'équation x 2 -2 = 0 est manifestement équivalente à l'équation x = 2 x , qui est sous forme point fixe x = f (x) avec f (x) = 2 x . (b) L'algorithme de point fixe s'écrit toujours (2.20), mais si on part de x 0 = 1 ou x 0 = 2, on obtient une suite cyclique (1, 2, 1, 2, 1, 2. . . ) ou (2, 1, 2, 1, 2, 1, 2. . . ) qui ne converge pas.

  Exercice 105 page 152 (Point fixe amélioré) 1) La suite donnée par l'algorithme (2.14) est bien définie si pour tout n ∈ IN, g ′ • ϕ(x n ) = 0. Remarquons d'abord que g ′ • ϕ(x) = 0. Or la fonction g ′ • ϕ est continue ; pour ε > 0 fixé, il existe donc β ∈ IR + tel que

  .23) Pour chaque k ∈ IN, il faut donc effectuer les opérations suivantes : 1. Calcul de Dg(x (k) ), 2. Résolution du système linéaire Dg(x (k) )(x (k+1)x (k) ) = -g(x (k) ). Remarque 2.18. Si la fonction g dont on cherche un zéro est linéaire, i.e. si g est définie par g(x) = Axb avec A ∈ M n (IR) et b ∈ IR n , alors la méthode de Newton revient à résoudre le système linéaire Ax = b. En effet Dg(x (k) ) = A et donc (2.23) s'écrit Ax (k+1) = b.

Théorème 2 . 1 2

 21 19 (Convergence de la méthode de Newton, g ∈ C3 ). Soient g ∈ C 3 (IR n , IR n ) et x ∈ IR n tels que g(x) = 0. On munit IR n d'une norme • . On suppose que Dg(x) est inversible. Alors la méthode de Newton converge localement, et la convergence est au moins quadratique. Plus précisément, il existe b > 0, et β > 0 tels que 1. si x(0) ∈ B(x, b) = {x ∈ IR n , xx ≤ b} alors la suite (x (k) ) k∈IN est bien définie par (2.23) et x (k) ∈ B(x, b) pour tout n ∈ IN, 2. si x (0) ∈ B(x, b) et si la suite (x (k) ) k∈IN est définie par (2.23) alors x (k) → x quand n → +∞, 3. si x (0) ∈ B(x, b) et si la suite (x (k) ) k∈IN est définie par (2.23) alors x (k+1)x ≤ β x (k)x 2 ∀k ∈ IN.DÉMONSTRATION -Montrons d'abord que la suite converge si x(0) est suffisamment proche de x. Pour cela on va utiliser le théorème du point fixe : Soit f la fonction définie sur un voisinage de x (et à valeurs dansIR n ) par x → x -(Dg(x)) -1 g(x). On a Df (x) = Id -(Dg(x)) -1 (Dg(x)) = 0.Comme g ∈ C 2 (IR, IR), la fonction f est de classe C 1 et donc par continuité de Df , il existe b > 0 tel que Df (x) ≤ pour tout x ∈ B = B(x, b). Si on montre que f (B) ⊂ B, alors la fonction f est strictement contractante de B dans B, et donc par le théorème du point fixe, la suite définie par (2.23) converge. Soit x = x (k) ∈ B, et soit y = x (k+1) = f (x (k) ).

DÉMONSTRATION -Soit x ( 0 )

 0 ∈ B(x, b) ⊂ B(x, a) où b ≤ a. On va montrer par récurrence sur k que x (k) ∈ B(x, b) ∀k ∈ IN (et que (x (k) ) k∈IN est bien définie). L'hypothèse de récurrence est que x (k) est bien défini, et que x (k) ∈ B(x, b). On veut montrer que x (k+1) est bien défini et x (k+1) ∈ B(x, b). Comme b ≤ a, la matrice Dg(x (k) ) est inversible et x (k+1) est donc bien défini ; on a :

  Pour montrer que x (k+1) ∈ B(x, b) on va utiliser le fait que b ≤ 1 a1a2

  ∈]0, e[. Exercice 108 (Newton pour un système linéaire). Corrigé en page 174 Soit f l'application définie sur IR n par f (x) = Axb où A est une matrice inversible et b ∈ IR n . Ecrire l'algorithme de Newton pour la résolution de l'équation f (x) = 0 et montrer qu'il converge pour toute condition initiale x 0 ∈ IR n . Exercice 109 (Condition initiale et Newton). Corrigé en page 174 L'algorithme de Newton pour F (x, y) = (sin(x) + y, xy) t est-il bien défini pour la condition initiale ( π 2 , 0) ? Exercice 110 (Newton dans IR et IR 2 ). Soit a ∈ IR tel que |a| < 1 et (x 0 , y 0 ) ∈ IR 2 . On définit l'application F : IR 2 → IR 2 x y → xx 0ay yy 0a sin x . 1. Montrer qu'il existe une fonction f : IR → IR, que l'on déterminera, telle que F (x, y) = (0, 0) si et seulement si x = x 0 + ay et f (y) = 0.

0 0 4 ( 1 ?

 41 On pourra passer par l'application F ). Montrer que la suite (X k ) k définie par cet algorithme est définie par tout k et que l'on peut écrire sous la forme X k = λ k Id où (λ k ) k est une suite réelle dont on étudiera la convergence. 4. L'algorithme de Newton converge-t-il au voisinage de X * = -1 0 0 -Exercice 115 (Recherche d'un point fixe). Corrigé détaillé en page 175 On définit la fonction f de IR dans IR par f (x) = e (x 2 ) -4x 2 .

2 .

 2 On cherche maintenant à calculer l'inverse d'une matrice par la méthode de Newton. Soit donc A une matrice carrée d'ordre n inversible, dont on cherche à calculer l'inverse. (a) Montrer que l'ensemble GL n (IR) des matrices carrées inversibles d'ordre n (où n ≥ 1) est un ouvert de l'ensemble M n (IR) des matrices carrées d'ordre n. (b) Soit T l'application définie de GL n (IR) dans GL n (IR) par T (B) = B -1 . Montrer que T est dérivable, et que DT (B)H = -B -1 HB -1 .

1. 2

 2 On suppose x (0) > 0.

  (i) Montrer que la suite (x (k) ) k≥1 est minorée par √ λ. (ii) Montrer que la suite (x (k) ) k≥0 converge et donner sa limite. Soit n ∈ IN * et soit A ∈ M n (IR) une matrice diagonalisable dans IR ; on note λ i , i = 1, . . . , n les valeurs propres de A. On suppose que λ i > 0 pour tout i = 1, . . . , n. 2. Montrer qu'il existe au moins une matrice B ∈ M n (IR) telle que B 2 = A. Calculer une telle matrice B dans le cas où n = 2 et A = 1 1 0 2 .

3 . 4 .

 34 On suppose de plus que A est symétrique définie positive. Montrer qu'il existe une unique matrice symétrique définie positive B telle que B 2 = A. Montrer par un contre exemple que l'unicité n'est pas vérifiée si on ne demande pas que B soit symétrique définie positive.Soit F l'application de M n (IR) dans M n (IR) définie par F (X) = X 2 -A. Montrer que F est différentiable en tout X ∈ M n (IR), et déterminer DF (X)H pour tout H ∈ M n (IR).

  A ∩ ker B = {0}. Montrer que P est le polynôme nul. Dans toute la suite, on suppose que A et B sont des matrices symétriques et que ker A ∩ ker B = {0}. Soit λ ∈ IR tel que dim ker(A + λB) = 1. On suppose que Bv • v = 0 pour v ∈ ker(A + λB), v = 0. Soit u ∈ ker(A + λB) tel que Bu • u = 1. On cherche à calculer le couple (λ, u) par la méthode de Newton. Pour cela, on définit la fonction G de IR n+1 dans IR n+1 par

5 .= 0 0 .

 50 Soient v ∈ IR n et µ ∈ IR tels que J G (u, λ) v µ Montrer que Av + λBv + µBu = 0. En déduire que µ = 0.[utiliser la symétrie de A et B.] Montrer que v = 0. [Utiliser dim ker(A + λB) = 1.]

1 .

 1 .45) où y ∈ I est choisi arbitrairement. Montrer par récurrence que la suite définie par (2.45) satisfait x (k) ∈ I pour tout n ∈ IN.

  ) Justifier l'appellation "(P F )" de l'algorithme. (b) Montrer qu'il existe a > 0 tel que si |y -x| ≤ a alors |f ′ (y)| ≤ 1 2 . (c) Montrer par récurrence sur n que si x 0 ∈ B(x, a) alors x n ∈ B(x, a 2 n ). (d) En déduire que la suite construite par (P F ) converge localement, c'est-à-dire qu'il existe un voisinage V de x tel que si x 0 ∈ V alors x n → x lorsque n → +∞. . (e) Montrer que la vitesse de convergence de la suite construite par (P F ) est au moins cubique (c'est-à-dire qu' il existe β ∈ IR + tel que |x n+1 -x| ≤ β|x n -x| 3 ) si la donnée initiale x 0 est choisie dans un certain voisinage de x. (On pourra utiliser un développement de Taylor-Lagrange.) 2. Soit g ∈ C 3 (IR, IR), et soit x ∈ IR tel que g(x) = 0 et g ′ (x) = 0. Pour une fonction h ∈ C 3 (IR, IR) à déterminer, on définit f ∈ C 3 (IR, IR) par f (x) = x + h(x)g(x)

0 .

 0 En déduire que x n+1 est bien défini et x n = x n+1 . Puis, toujours grâce à un choix convenable de ε, que e n+1 ≤ (1/2)e n . Conclure.] Dans les questions suivantes, on suppose que x 0 , x 1 ∈]xε, x + ε[, x 0 = x 1 (ε trouvé à la première question) et que la suite (x n ) n∈IN donnée par la méthode de la sécante vérifie x n = x pour tout n ∈ IN. On pose d = (1 + √ 5)/2 et on démontre que la convergence est en général d'ordre d. 2. Pour x = x, on définit µ(x) comme la moyenne de f ′ sur l'intervalle dont les extrémités sont x et x. (a) Montrer que e n+1 = e n e n-1 M n , pour tout n ≥ 1, avec M n = | µ(xn)-µ(xn-1) f (xn)-f (xn-1) |. (b) Montrer que la fonction µ est dérivable sur IR \ {x}. Calculer lim x→x µ ′ (x).

  (c) Calculer la limite de la suite (M n ) n≥1 lorsque n → ∞. En déduire que la suite (M n ) n≥1 est bornée. 3. Soit M > 0, M ≥ M n pour tout n ≥ 1 (M n donné à la question précédente). On pose a 0 = M e 0 , a 1 = M e 1 et a n+1 = a n a n-1 pour n ≥ 1. (a) Montrer que M e n ≤ a n pour tout n ∈ IN.

  correspond à une convergence d'ordre au moins d). [On pourra utiliser la relation de récurrence ln a n+1 = ln a n + ln a n-1 pour n ≥ 1]. (d) (Question plus difficile) Si f "(x) = 0, e n+1 = e n e n-1 M n , montrer que M n → M , quand n → ∞, avec M > 0. En déduire qu'il existe γ > 0 t.q. en+1 (en) d → γ quand n → ∞ (ceci signifie que la convergence est exactement d'ordre d). [Considérer, par exemple, β n = ln e n+1d ln e n et montrer que β n converge dans IR quand n → ∞.]

  et qu'il existe α tel que si x n ∈ B(x, α), alors a n ∈]0, 1[. Conclure. 3. Reprendre la même méthode que dans le cas n = 1 pour montrer que la suite(x n ) n∈IN vérifie x n+1x = D(x n )(x nx), où D ∈ C(IR n , M n (IR)). Montrer que D(x) est symétrique et montrer alors que D(x) 2 < 1 en calculant son rayon spectral. Conclure par continuité comme dans le cas précédent.

3 . 2 n 0 ,

 320 La convergence locale et l'ordre 2 se déduisent des résultats de la question 2. Analyse numérique I, télé-enseignement, L3 Corrigés des exercices Exercice 108 page 163 (Méthode de Newton pour un système linéaire) Pour tout x ∈ IR n , la matrice Df (x) est inversible ; donc l'algorithme de Newton est bien défini et s'écrit Df (x)x (1) = b. Il converge donc en une itération, qui demande la résolution du sysème linéaire Ax = b. . . Exercice 109 page 163 (Condition initiale et Newton) On vérifie que DF (x, y) = cos('est pas inversible. La matrice DF (x, y) est inversible pour x = 0 y = 1 par exemple. Exercice 112 page 164 (Newton pour un autre système 2 × 2) . . . ) 1. Les solutions (x, y) ∈ IR 2 vérifient x(x + 2y) = 0, xy + 1 = La première équation implique x = 0 ou x = -2y. Le choix x = 0 est impossible en raison de la seconde équation, on a donc forcément x = -2y et donc 2y 2 = 1. Les solutions sont donc (x 1 , y

Exercice 113 page 164 (

 164 Newton et les échelles. . . ) 1. Notons A et B les deux pieds des murs, P le point de croisement des échelles et M sa projection sur le plan horizontal, comme indiqué sur la figure. Soient x = d(A, M ) la distance de A à M , y = d(B, M ), α = d(A, P ) et β = d(B, P ). Par le théorème de Pythagore, x 2 + 1 = α 2 et y 2 + 1 = β 2 . Par le théorème de Thalès, x d = α 4 et y d = β 3 . En éliminant α et β, on en déduit que x et y sont solutions du système non linéaire :

= 1 .

 1 La distance d à la première itération est donc d = 5.25. Exercice 115 page 165 (Recherche d'un point fixe) 1. La fonction f est paire, il suffit de l'étudier sur IR + . Comme f ′ (x) = 2x(e (x 2 ) -4), la fonction f ′ ne s'annule qu'une fois sur IR ⋆ + . Elle est négative pour x strictement positif et proche de 0. Comme f (0) = 1 et f (1) = e-4 < 0, la fonction s'annule deux fois sur IR + et une seule fois entre 0 et 1.

  il existe ε > 0 tel que cette méthode est bien définie si |x 0 -x| ≤ ε et on a alors x n → x as n → +∞. Comme f est de classe C 3 , la convergence est au moins d'ordre 2 et donc la méthode Newton est a priori plus efficace que celle de la question précédente.

y k y 2 k

 2 Cet algorithme est bien défini dès que la matrice jacobienne est inversible, c.à.d dès que x k y k = 0. C'est vrai pour k = 0 par hypothèse. Montrons que c'est vrai pour tout k ∈ IN par récurrence sur k. Supposons qu'on a x p = 0 et y p > 0 pour tout p ≤ k, et montrons que dans ce cas on a encore x k+1 = 0 et y k+1 > 0. Par définition de l'algorithme de Newton, on a

2 2 .

 22 il existe donc a > 0 tel que si x ∈ B(x, a) alors Dg(x) -Dg(x) ≤ 1 Dg(x) -1 et donc si x ∈ B(x, a), alors S ≤ 1 On en déduit que si x ∈ B(x, a) alors Id + S est inversible et donc que Dg(x) = Dg(x)(Id + S) est inversible (on rappelle que Dg(x) est inversible par hypothèse). De plus, si x ∈ B(x, a) on a :

  .57) Comme D(Dg) = D 2 g est continue par hypothèse, et comme B(x, a) est inclus dans un compact, on a a 2 = sup c∈B(x,a) D(Dg)(c) L(IR n ,Mn(IR)) < +∞.

  .58) et comme Ax = λx et x • x = 1, ceci entraîne que ν = 0. En revenant à (2.58) on obtient alors que Ax -λx = 0, c.à.d. que x ∈ Ker(A -λId) = IR x car λ est valeur propre simple. Or on a aussi x • z = 0, donc z ⊥ x ce qui n'est possible que si z = 0. On a ainsi montré que Df (x, λ) est injective, et comme on est en dimension finie, Df (x, λ) est bijective. Donc, d'après le théorème du cours, la méthode de Newton est localement convergente.

  3. (a) La relation à démontrer est vérifiée pour n = 0 et n = 1. Supposons-la vérifiée jusqu'au rang n. On a par définition : a n+1 = a n a n-1 ≥ M e n M e n-1 . Or par la question 2a, e n e n-1 = M n e n+1 ≤ M e n+1 . On en déduit que la relation est encore vérifiée au rang n + 1. (b) Par définition,

  On en déduit alors facilement par récurrence que la suite a n < 1, et donc que la suite (a n ) n∈IN est strictement décroissante. Elle converge donc vers une limite ā qui vérifie ā = ā2 et ā < 1. On en déduit que la limite est nulle. (c) On pose b n = ln a n on a donc b n+1 = b n + b n-1 , ∀n ≥ 1 (2.76) L'ensemble de suites (b n ) n∈IN vérifiant (2.76) est un espace vectoriel de dimension 2. Pour trouver une base de cet espace vectoriel, on cherche des éléments de cet espace sous la forme b n = r n , n ≥ 0. Une telle suite vérifie (2.76) si et seulement si r 2

√ 5 2

 5 , α = e |D| et β = e C . Notons qu'on a bien 0 < β < 1 car C < 0 puisque ln(a n ) < 0, pour tout n ∈ IN. Analyse numérique I, télé-enseignement, L3 (d) Par la question 2(c) et l'hypothèse f "(x) = 0, on déduit que M > 0. Comme e n+1 = M n e n e n-1 , on a ln e n+1 = ln M n + ln e n + ln e n-1 ; si on pose β n = ln e n+1d ln e n (pour n ≥ 0, on a donc

→ 1 2 < 2 , 3 Optimisation 3 . 1

 122331 bornée, la série de terme général ln Mp (1-d) p est convergente. Comme (1-d) n tend vers 0 lorsque n tend vers l'infini, on en déduit que β n → 0. On a donc ln e n+1 -d ln e n → 0, i.e. en+1 e d n lorsque n → +∞. (e) L'ordre de convergence de la méthode de la sécante est d = 1+ √ 5 donc plus faible que l'ordre de convergence de la méthode de Newton. Analyse numérique I, télé-enseignement, L3 Chapitre Définitions et rappels 3.1.1 Extrema, points critiques et points selle.

Exercice 136 (

 136 Convexité et continuité). Suggestions en page 193. 1. Soit f : IR → IR une fonction convexe. (a) Montrer que f est continue. (b) Montrer que f est localement lipschitzienne. 2. Soit n ≥ 1 et f : IR n → IR. On suppose que f est convexe. (a) Montrer f est bornée supérieurement sur les bornés (c'est-à-dire : pour tout R > 0, il existe m R t.q. f (x) ≤ m R si la norme de x est inférieure ou égale à R). (b) Montrer que f est continue. (c) Montrer que f est localement lipschitzienne. (d) On remplace maintenant IR n par E, e.v.n. de dimension finie. Montrer que f est continue et que f est localement lipschitzienne. 3. Soient E un e.v.n. de dimension infinie et f : E → IR. On suppose que f est convexe. (a) On suppose, dans cette question, que f est bornée supérieurement sur les bornés. Montrer que f est continue. (b) Donner un exemple d'e.v.n. (noté E) et de fonction convexe f : E → IR t.q. f soit non continue. Suggestions pour les exercices Exercice 136 page 193 (Convexité et continuité) 1. (a) Pour montrer la continuité en 0, soit x = 0, |x| < 1. On pose a = sgn(x) (= x |x| ). Ecrire x comme une combinaison convexe de 0 et a et écrire 0 comme une combinaison convexe de x et -a. En déduire une majoration de |f (x)f (0)|. (b) Utiliser la continuité de f et la majoration précédente. 2. (a) Faire une récurrence sur n et pour x

  (b) Reprendre le raisonnement fait pour n = 1. (c) Se ramener à E = IR n . 3. (a) reprendre le raisonnement fait pour E = IR. (b) On pourra, par exemple choisir E = C([0, 1], IR). . . Analyse numérique I, télé-enseignement, L3 Corrigés des exercices Exercice 133 page 192 (Vrai/faux) 1. Vrai. 2. Faux. L'application est convexe mais pas strictement convexe. Si on fixe v 1 = (1, 0) et v 2 = (1, 1), alors pour tout t ∈ [0, 1],

1 .

 1 La matrice A une matrice symétrique définie positive. Le cours nous dit alors que F admet un unique minimum.4. Contre-exemple. Soit A = 1 Axb 2 = x 2 1 et toute la droite x 1 = 0 réalise le minimum de f . Exercice 134 page 192 (Minimisation dans IR) 1. La fonction f 0 est différentiable sur IR, et strictement convexe. Elle admet un minimum unique sur IR et sur K et son minimum est réalisé en x = 0, et on a f 0 (x) = 0. 2. La fonction f 1 est différentiable sur IR, et non convexe. La fonction f 1 admet un maximum local en x = 1 2 , et on a f (x) = 1 16 . Elle admet un minimum global non unique, réalisé en 0 et 1, et dont la valeur est 0. 3. La fonction f 2 est différentiable sur IR \{0}, et convexe, mais pas strictement convexe. La fonction f 2 admet un minimum unique sur IR et sur K et son minimum est réalisé en x = 0, et on a f 2 (x) = 0, mais la fonction f 2 n'est pas différentiable en 0. 4. La fonction f 3 est différentiable sur IR, et non convexe. La fonction f 3 admet un minimum, qui est -1, et qui n'est pas unique car il est réalisé pour les points (2k + 1)π, k ∈ Z Z .

(3. 8 )

 8 Proposition 3.7 (Condition nécessaire d'optimalité). Soit E un espace vectoriel normé, et soient f ∈ C(E, IR), et x ∈ E tel que f est différentiable en x. Si x est solution de (3.8) alors Df (x) = 0.

  On en déduit que si A est symétrique, H f (x) = A. Dans le cas où A est symétrique définie positive, f est donc strictement convexe. Analyse numérique I, télé-enseignement, L3 De plus on a f (x) → +∞ quand |x| → +∞. (On note comme d'habitude | • | la norme euclidienne de x.) En effet, Ax • x ≥ α|x| 2 où α est la plus petite valeur propre de A, et α > 0. Donc

Théorème 3 .

 3 16 (Minimisation d'une fonction quadratique). Soit f une fonction de IR n dans IR définie par (3.12) où A ∈ M n (IR) est une matrice symétrique définie positive et b ∈ IR n . Alors il existe un unique x ∈ IR n qui minimise f , et x est l'unique solution du système linéaire Ax = b.

.14) 1 .

 1 On suppose dans cette question seulement que n = p = 1, et A = a , B = b , C = c (a) Donner une condition nécessaire et suffisante sur a, b, et c pour que M soit inversible. (b) Donner une condition nécessaire et suffisante sur a, b, et c pour que M soit symétrique définie positive.

( a ) 5 . 0 S

 a50 Vérifier que M est symétrique. (b) Soient x ∈ IR n , y ∈ IR p et z = (x, y) ∈ IR n+p . Calculer M z • z en fonction de A, B, C, x et y. (c) On fixe maintenant y ∈ IR p , et on définit la fonction F de IR n dans IR par : x → Ax • x + 2By • x + Cy • y. Calculer ∇F (x), et calculer x 0 ∈ IR n tel que ∇F (x 0 ) = 0 (d) Montrer que la fonction F définie en 3(c) admet un unique minimum, et calculer la valeur de ce mimimum. (e) En déduire que M est définie positive si et seulement si S est définie positive. On suppose dans cette question que C est la matrice (carrée d'ordre p) nulle. (a) Montrer que la matrice S = -S est symétrique définie positive si et seulement si p ≤ n et rang(B) = p. On supposera que ces deux conditions sont vérifiées dans toute la suite de la question. (b) En déduire que la matrice P = A 0 est symétrique définie positive. (c) Calculer les valeurs propres de la matrice T = P -1 M (il peut être utile de distinguer les cas KerB t = {0} et KerB t = {0}).

2 .p i=1 y 2 i 1 2

 21 Montrer que si cette droite existait, le vecteur x = α β serait solution d'un système linéaire Ax = b ; on donnera explicitement la matrice A et le vecteur b. (b) Montrer qu'une telle droite n'existe pas. Dans la suite du problème on va trouver la droite qui passe le "plus près" possible de ces quatre points, au sens de la norme euclidienne. Un second exemple. On cherche maintenant à déterminer les coefficients α, β et γ d'une fonction linéaire T de IR 3 dans IR, dont on ne connaît la valeur qu'en deux points : T (1, 1, 1) = 3 et T (0, 1, 1) = 2. (a) Montrer que les coefficients α, β et γ s'ils existent, satisfont un système linéaire Ax = b ; on donnera explicitement la matrice A et le vecteur b. (b) Montrer qu'il existe une infinité de solutions au système Ax = b. Dans la suite du problème on va trouver les coefficients α, β et γ qui donnent un vecteur x de norme euclidienne minimale. On considère maintenant une matrice A d'ordre n × m et b ∈ IR n , et on veut résoudre dans un sens aussi "satisfaisant" que possible le système linéaire Ax = b, x ∈ IR m , (3.15) lorsque m = n ou lorsque m = n mais que A n'est pas inversible. On note y = la norme euclidienne sur IR p , p = n ou m suivant les cas et (• | •) le produit scalaire associé. Soit f la fonction définie de

.16) 3 .

 3 Soit E un sous espace vectoriel de IR m tel que IR m = E KerA. (a) Montrer que f (z) → +∞ lorsque z → +∞ avec z ∈ E. (b) Montrer que f est strictement convexe de E dans IR. (c) En déduire qu'il existe un unique z ∈ E tel que f (z) ≤ f (z), ∀z ∈ E. 4. Soit X b = {z + y, y ∈ KerA}, où z est défini à la question précédente. Montrer que X b est égal à l'ensemble des solutions du problème de minimisation (3.16).

5 .

 5 Condition nécessaire : On a déjà vu que f est différentiable et que ∇f (x) = 2(A t Ax -A t b). Comme f est différentiable toute solution de (3.16) vérifie l'équation d'Euler ∇f (x) = 0. Condition suffisante : Soit x tel que A t Ax = A t b, c'est à dire tel que ∇f (x) = 0. Comme f est de classe C 1 et convexe sur IR m , alors x est un minimum global de f . (Noter que la convexité de f peut se montrer comme à la question 3(b) en remplaçant E par IR m .)

  est inversible alors il existe ε > 0 tel que si x 0 ∈ B(x, ε), alors la suite (x (k) ) k est bien définie par (3.29) et x (k) → x lorsque k → +∞. De plus, d'après la proposition 2.16, il existe β > 0 tel que |x (k+1) -x| ≤ β|x (k) -x| 2 pour tout k ∈ IN.

Proposition 3 .

 3 26. Soient f ∈ C 1 (IR n , IR), x ∈ IR n tel que ∇f (x) = 0, et soit B ∈ M n (IR) une matrice symétrique définie positive ; alors w = -B∇f (x) est une direction de descente stricte en x. DÉMONSTRATION -On a : w • ∇f (x) = -B∇f (x) • ∇f (x) < 0 car B est symétrique définie positive et ∇f (x) = 0 donc w est une direction de descente stricte en x. En effet, soit ϕ la fonction de IR dans IR définie par ϕ(α) = f (x+αw). Il est clair que ϕ ∈ C 1 (IR, IR), ϕ ′ (α) = ∇f (x + αw) • w et ϕ ′ (0) = ∇f (x) • w < 0. Donc ∃α0 > 0 tel que ϕ ′ (α) < 0 si α ∈]0, α0[. Par le théorème des accroissements finis, ϕ(α) < ϕ(0) ∀α ∈]0, α0[ donc w est une direction de descente stricte.

  |B symétrique, vérifiant (3.30)}, qui est une partie de M n (IR) convexe fermée non vide. On choisit alors B (k) = P C k B (k-1) où P C k désigne la projection orthogonale sur C k . La matrice B (k) ainsi définie existe et est unique ; elle est symétrique d'après le choix de C k . On peut aussi montrer que si B (k-1) symétrique définie positive alors B (k) est aussi symétrique définie positive.

4 .

 4 Montrer que (avec R et M donnés aux questions précédentes) (a) la suite (f (x k )) k∈IN est une suite convergente, (b)

1 2 . 5 .

 125 Montrer que les suites (x (k) ) n∈IN , et (x (n+1,k) ) n∈IN , pour k = 1, . . . , n, sont bornées. Montrer que|∂ k f (x (k+1) )| → 0 lorsque n → +∞.

( b )

 b Montrer que x = (1, 1) t .

1 . 2 .

 12 pour un pas de α = .5 dans le cas de GPF. Exercice 147 (Gradient conjugué pour une matrice non symétrique). Corrigé détaillé en page 228 Soit n ∈ IN, n ≥ 1. On désigne par • la norme euclidienne sur IR n , et on munit l'ensemble M n (IR) de la norme induite par la norme • , • . Soit A ∈ M n (IR) une matrice inversible. On définit M ∈ M n (IR) par M = A t A. On se donne un vecteur b ∈ IR n , et on s'intéresse à la résolution du système linéaire Ax = b; . (3.39) Montrer que x ∈ IR n est solution de (1.121) si et seulement si x est solution de M x = A t b; . (3.40) On rappelle que le conditionnement d'une matrice C ∈ M n (IR) inversible est défini par cond(C) = C C -1 (et dépend donc de la norme considérée ; on rappelle qu'on a choisi ici la norme induite par la norme euclidienne).

( a )

 a Montrer que les valeurs propres de la matrice M sont toutes strictement positives. (b) Montrer que cond(A) = λn λ1 , où λ n (resp. λ 1 ) est la plus grande (resp. plus petite) valeur propre de M . 3. Ecrire l'algorithme du gradient conjugué pour la résolution du système (3.40), en ne faisant intervenir que les matrices A et A t (et pas la matrice M ) et en essayant de minimiser le nombre de calculs. Donner une estimation du nombre d'opérations nécessaires et comparer par rapport à l'algorithme du gradient conjugué écrit dans le cas d'une matrice carré d'ordre n symétrique définie positive.

SoitA 1 . 2 .

 12 ∈ M n (IR) une matrice symétrique définie positive, et b ∈ IR n . Soit L une matrice triangulaire inférieure inversible, soit B = L -1 A(L t ) -1 et b = L -1 b. Montrer que B est symétrique définie positive. Justifier l'existence et l'unicité de x ∈ IR n tel que Ax = b, et de y ∈ IR n tel que By = b. Ecrire x en fonction de y.

5 .

 5 On suppose que la matrice LL t est une factorisation de Choleski incomplète de la matrice A. Ecrire l'algorithme du gradient conjugué préconditionné par cette factorisation, pour la résolution du système Ax = b. Exercice 149 (Méthode de quasi-linéarisation). Soit f ∈ C 3 (IR, IR) une fonction croissante à l'infini, c. à.d. telle que f (x) → +∞ lorsque |x| → +∞ ; soit d ∈ IR et soit J la fonction de IR dans IR par J(x) = (f (x)d) 2 .

5 .

 5 Dans cette question, on prend f (x) = x 2 . (a) Donner l'ensemble des valeurs x ∈ IR qui minimisent J, selon la valeur de d. Y a t-il unicité de x ? (b) Montrer que quelque soit la valeur de d, l'algorithme de Newton converge si le choix initial x 0 est suffisamment proche de x. (c) On suppose que d > 0 ; montrer que l'algorithme de quasi-linéarisation converge pour un choix initial x 0 dans un voisinage de 1. (d) On suppose maintenant que d = -1. Montrer que l'algorithme de quasi-linéarisation ne converge que pour un ensemble dénombrable de choix initiaux x 0 .

( a )

 a On note Df et D 2 f les différentielles d'ordre 1 et 2 de f . A quels espaces appartiennent Df (x), D 2 f (x) (pour x ∈ IR n ), ainsi que Df et D 2 f ? Montrer que pour tout x ∈ IR n , il existe M (x) ∈ M p,n (IR), où M p,n (IR) désigne l'ensemble des matrices réelles à p lignes et n colonnes, telle que Df (x)(y) = M (x)y pour tout y ∈ IR n . (b) Pour x ∈ IR n , calculer ∇J(x).

2 . 4 . 2 .

 242 Donner un exemple d'une ICP-matrice 2 × 2 non symétrique. 3. Donner un exemple d'une ICP-matrice 2 × 2 symétrique qui ne soit pas symétrique définie positive. On suppose dans cette question que A est une ICP-matrice qui est symétrique mais non définie positive ; (a) Montrer que inf u∈R n J(u) = -∞ (b) Montrer que J admet un unique minimum que l'on caractérisera.Suggestions pour les exercicesExercice 142 page 215 (Algorithme du gradient à pas optimal) Utiliser le fait que H est continue.3. Etudier la fonction ϕ : IR + dans IR définie par ϕ(ρ) = f (x k + ρw(k) ).

4. a .

 a Montrer que f est minorée et remarquer que la suite (f (x k )) k∈IN est décroissante. 4.b se déduit du 4.a 4.c. Utiliser la fonction ϕ définie plus haut, la question 4.b. et la question 2.

3 .

 3 (a) Par définition, x (k+1) k réalise le minimum de la fonction ϕ (k+1) k sur IR. Comme de plus, ϕ (k+1) k

1 2 . 5 .

 125 En vertu de la proposition 3.13, on sait que la fonctionf est croissante à l'infini. Donc il existe R > 0 tel que si |x| > R alors f (x) > f (x 0 ). Or, la suite (f (x k )) k∈IN étant décroissante, on a f (x k )) ≤ f (x 0 ) pour tout n, et donc |x k | ≤ R pour tout n. Par la question 3(b), on sait que pour tout k ≥ 1, lim n→+∞ |x (n+1,k)x (k+1) | = 0, ce qui prouve que les suites (x (n+1,k) ) n∈IN , pour k = 1, . . . , n, sont également bornées. Comme lim n→+∞ |x (n+1,k)x (k+1) | = 0, on a pour tout η > 0, l'existence de N η ∈ IN tel que |x (n+1,k)x (k+1) | < η si n ≥ N η . Comme f ∈ C 1 (IR,IR), la fonction ∂ k f est uniformément continue sur les bornés (théorème de Heine), et donc pour tout ε > 0, il existe η > 0 tel que si |x -y| < η alors

1 .

 1 Comme A est inversible, A t l'est aussi et donc les systèmes (3.39) et (3.40) sont équivalents. 2 (a) La matrice M est symétrique définie positive, car A est inversible et M = AA t est symétrique. Donc ses valeurs propres sont strictement positives. 2 (b) On a cond(A) = A A -1 . Comme la norme est ici la norme euclidienne, on a : A

  (k) = b, et comme la fonction f admet un unique minimum qui vérifie Ax = b, on a donc x (1) = x, et la méthode converge en une itération. Partie 2 Méthode de Fletcher-Powell. 1. Soit n ∈ IN, on suppose que g (k) = 0. Par définition, on a s

2 .

 2 Soit x0 ∈ K. Si f est croissante à l'infini, alors il existe R > 0 tel que si x -x0 > R alors f (x) > f (x0) ; donc inf K f = inf K∩B(x 0 ,R) f , où B(x0, R) désigne la boule (fermé) de centre x0 et de rayon R. L'ensemble K ∩ B(x0, R)est compact, car intersection d'un fermé et d'un compact. Donc, par ce qui précède, il existe x ∈ K tel que f (x) = infK∩B(x 0 ,R) f = inf K f . Théorème 3.29 (Unicité). Soit E = IR n et f ∈ C(E,IR). On suppose que f est strictement convexe et que K est convexe. Alors il existe au plus un élément x de K tel que f (x) = inf K f . DÉMONSTRATION -Supposons que x et x soient deux solutions du problème (3.48), avec x = x

  rang(Dg(u)) ≤ min(n, p). De plus, si rang(Dg(u)) = p, alors les vecteurs (Dg i (u)) i=1...p sont linéairement indépendants dans IR n . Théorème 3.34 (Multiplicateurs de Lagrange). Soit ū ∈ K tel que f (ū) = inf K f . On suppose que f est différentiable en ū et dim(Im(Dg(ū)) = p (ou rang(Dg(ū)) = p), alors : il existe (λ 1 , . . . , λ p ) t ∈ IR p tels que ∇f (ū) + p i=1 λ i ∇g i (ū) = 0. (Cette dernière égalité a lieu dans IR n ) DÉMONSTRATION -Pour plus de clarté, donnons d'abord une idée "géométrique" de la démonstration dans le cas n = 2 et p = 1. On a dans ce cas

FIGURE 3 . 1 :

 31 FIGURE 3.1: Interprétation géométrique des multiplicateurs de Lagrange

  (3.51) Par définition de ψ, de f et de ḡ , on a : Dψ( w) = D1 f ( w, φ(( w)) + D2 f ( w, φ( w))Dφ( w). D'après le théorème des fonctions implicites, Dφ( w) = -[D2 ḡ( w, φ(( w))] -1 D1ḡ( w, φ(( w)). Analyse numérique I, télé-enseignement, L3 On déduit donc de (3.51) que D1 f ( w, φ(( w))w -[D2 ḡ( w, φ(( w))] -1 D1 ḡ( w, φ(( w))w = 0, pour tout w ∈ G. (3.52) De plus, comme D2ḡ( w, φ(( w))] -1 D2 ḡ( w, φ(( w)) = Id, on a : D2 f ( w, φ(( w))z -D2 f ( w, φ(( w)) [D2ḡ( w, φ(( w))] -1 D2ḡ( w, φ(( w))z = 0, ∀z ∈ F. (3.53) Soit x ∈ IR n , et (z, w) ∈ F × G tel que x = z + w. En additionant (3.52) et (3.53), et en notant λ = -D2 f ( w, φ(( w)) [D2 ḡ( w, φ(( w))] -1 , on obtient : Df (ū)x + λDg(ū)x = 0, ce qui donne, en transposant : ∇f (ū) + p i=1 λi∇gi(ū) = 0, avec λ = (λ1, . . . , λp).

2

 2 .56) où K = K ∩ [0, 1] 2 , K et f étant obtenus à la question 1. En déduire que le problème de minimisation de l'aire admet au moins une solution. 3. Calculer Dg(x) pour x ∈ K et en déduire que si x est solution de (3.56) alors x = (1/2, 1/2). En déduire que le problème (3.56) admet une unique solution donnée par x = (1/2, 1/2). Exercice 156 (Fonctionnelle quadratique). Suggestions en page 223, corrigé en page 244 Soit f une fonction quadratique, i.e. f (x) = 1 Ax • xb • x, où A ∈ M n (IR) est une matrice symétrique définie positive et b ∈ IR n . On suppose que la contrainte g est une fonction linéaire de IR n dans IR, c'est-à-dire g(x) = d • xc où c ∈ IR et d ∈ IR n , et que d = 0. On pose K = {x ∈ IR n , g(x) = 0} et on cherche à résoudre le problème de minimisation (3.48). 1. Montrer que l'ensemble K est non vide, fermé et convexe. En déduire que le problème (3.48) admet une unique solution. 2. Montrer que si x est solution de (3.48), alors il existe λ ∈ IR tel que y = (x, λ) t soit l'unique solution du système :

.58) 2 .

 2 Soit u ∈ U , montrer que u est solution de (3.58) si et seulement si (Aub)• (vu) + j(v)j(u) ≥ 0, pour tout v ∈ U .Exercice 159 (Utilisation du théorème de Lagrange).1. Pour (x, y) ∈ IR 2 , on pose : f (x, y) = -y, g(x, y) = x 2 + y 2 -1. Chercher le(s) point(s) où f atteint son maximum ou son minimum sous la contrainte g

(3.60) 1 .

 1 Représenter graphiquement l'ensemble K et expliquer en quoi l'un des problèmes d'optimisation ci-dessus revient à chercher la distance d'un point à une ellipse. 2. Montrer que les problèmes (3.59) et (3.60) admettent au moins une solution et que si x est solution de l'un de ces problèmes, il existe λ ∈ IR tel que ∇J(x) + λ∇f (x) = 0, (3.61) f (x) = 0. (3.62) Le système (non linéaire) (3.61)-(3.62) s'écrit G(x 1 , x 2 , λ) = 0. Soit (x 1 , x 2 , λ) une solution de (3.61)-(3.62). Dans les questions suivantes, on cherche à calculer (x 1 , x 2 , λ). 3. On suppose dans cette question que a 1 = 0, a 2 = 0 et f (a) > 0. (a) Montrer que λ = -1 et λ = -1/2. (b) Calculer la matrice jacobienne J G (x 1 , x 2 , λ) et montrer que son déterminant est non nul. [Il peut être opportun d'utiliser le fait que λ ∈ [-1, -1/2].] (c) Ecrire la méthode de Newton pour calculer le point (x 1 , x 2 , λ). Y-a-t-il convergence de la suite donnée par la méthode de Newton vers (x 1 , x 2 , λ), et sous quelles conditions ? 4. On suppose dans cette question que a 1 = 0, a 2 = 0. (a) On suppose que f (a) ≥ 0 (et donc |a 2 | ≥ √ 3/2). Montrer que x 1 = 0 et x 2 = ± √ 3/2. Quel est l'unique point solution de (3.59) et l'unique point solution de (3.60) ? (b) On suppose maintenant que f (a) < 0. Montrer que le système (3.61)-(3.62) a quatre solutions : deux solutions correspondant à x 1 = 0 et deux solutions à λ = -1. Pour chacune de ces solutions, indiquer, sans démonstration, si elle est solution de (3.59), de (3.60) ou de aucun de ces problèmes. [Il est peutêtre utile de faire un dessin.] Exercice 161 (Calcul d'un coût marginal). Soient ψ, F ∈ C 2 (IR 2 , IR). On suppose que F (x) → +∞ quand |x| → +∞. Pour s ∈ IR, on pose K s = {x ∈ IR 2 ; ψ(x) = s}. On suppose K s = ∅ pour tout s et on s'intéresse au problème x ∈ K s , (3.63) F (x) ≤ F (y) pour tout y ∈ K s . (3.64) 1. Montrer que pour tout s ∈ IR, le problème (3.63)-(3.64) admet au moins une solution. Pour tout s ∈ IR, on note x(s) une solution de (3.63)-(3.64) et p(s) = F (x(s)). On suppose que ∇ψ(x(0)) = 0. 2. Montrer qu'il existe λ ∈ IR tel que ∇F (x(0)) + λ∇ψ(x(0)) = 0. 3. Soit s ∈ IR. On pose z(s) = x(s)x(0). Montrer que

1 .

 1 Comme d = 0, il existe x ∈ IR n tel que d • x = α = 0. Soit x = c α x alors d • x = c. Donc l'ensemble K est non vide. L'ensemble K est fermé car noyau d'une forme linéaire continue de IR n dans IR, et K est évidemment convexe. La fonction f est strictement convexe et f (x) → +∞ quand |x| → +∞, et donc par les théorèmes 3.28 et 3.29 il existe un unique x solution de (3.48).

2 .

 2 On veut calculer x. On a : Dg(x)z = d • z, et donc Dg(x) = d t . Comme d = 0 on a rang(Dg(x)) = 1, ou encore Im(Dg(x)) = IR pour tout x. Donc le théorème de Lagrange s'applique. Il existe donc λ ∈ IR tel que ∇f (x) + λ∇g(x) = 0, c'est-à-dire Axb + λd = 0. Le couple (x, λ) est donc solution du problème suivant' : Axb + λd = 0, d • x = c , (3.68) qui s'écrit sous forme matricielle : By = e, avec B =

  la projection sur K définie par la proposition 3.40. Lemme 3.41. Soit (x k ) k construite par l'algorithme (GPFK). On suppose que x k → x quand n + ∞. Alors x est solution de (3.48). DÉMONSTRATION -Soit pK : IR n → K ⊂ IR n la projection sur K définie par la proposition 3.40. Alors pK est continue. Donc si

alors 1 .

 1 le schéma est "stable", au sens où x k ∈ B 2A pour tout k = 0, . . . n, avec A = max{|x(t)|, t ∈ [0, T ]} < +∞. 2. le schéma converge, et plus précisément, on a l'estimation d'erreur suivante : |e k | ≤ K(h p + |e 0 |), pour tout k = 0, . . . , n. (En particulier si e 0 = 0 on a |e k | ≤ Kh p donc e k tend vers 0 au moins comme h p .) DÉMONSTRATION -Soit x ∈ C 1 ([0, T ], IR n ) solution de (4.1), et soit A = max{|x(t)|, t ∈ [0, T ]} < +∞ (car x est continue et [0, T ] est compact). On a donc xk ∈ BA = {y ∈ IR n , |y| ≤ A}.

4. 5 . 1 L

 51 'implicite gagne... Prenons d'abord f (x, t) = -x, n = 1 et x 0 = 1. L'équation différentielle est donc :

x k = 1 ( 1 +

 11 h) k , ∀k = 0, . . . n, avec nh = T.

Théorème 4 .+ h t k 0 |x 1 . 1 0

 4011 15. On se place sous les hypothèses (4.7) et (4.11). Alors 1. (x k ) k=0...n est bien définie par (4.10), 2. |e k | ≤ |e 0 | ′′ (s)|ds, ∀k = 0, . . . , n. DÉMONSTRATION -Soit ϕ la fonction définie de [0, 1] à valeurs dans IR n par ϕ(t) = f ((1 -t)y + tz) ; en écrivant que ϕ(1) -ϕ(0) = ϕ ′ (s)ds, et en utilisant l'hypothèse (4.11), on déduit que :(f (y, t) -f (z, t), (y -z)) ≤ 0, ∀y, z ∈ IR n , ∀t ∈ [0, T ]. (4.23)On veut alors montrer que si x k , h k , t k sont donnés, il existe un et un seul y tel que y -x k h k = f (y, t k + h k ). A x k et t k fixés, soit F la fonction de IR+ × IR n à valeurs dans IR n définie par F (h, y) = y -x k -hf (y, t k + h). On considère alors l'équation F (h, y) = 0. (4.24)Pour h = 0, cette équation admet évidemment une unique solution y = x k . Soit I = { h ∈ IR * + t.q. (4.24) admette une solution pour tout h < h}. On va montrer par l'absurde que sup I = +∞, ce qui démontre l'existence et l'unicité de y solution de (4.24). Supposons que sup I = H < +∞. Montrons d'abord que H est atteint. Soit (h k ) k∈IN ⊂ I telle que h k → H lorsque n → +∞, alors la suite (y k ) k∈IN définie par y k = x k + h k f (y k , t k + h k ) est bornée : en effet,

h t k 0 |x

 0 en prenant le produit scalaire des deux membres de cette égalité avec y k et en utilisant (4.23) et l'inégalité de Cauchy-Schwarz, on obtient que : |y k | ≤ |x k | + H|f (0, t k + h)|. Il existe donc une sous-suite (yn k ) k∈IN qui converge vers un certain Y lorsque n → +∞. Par continuité de f , on a Y = x k + Hf (Y, t k + H), et donc H = max I. Montrons maintenant que H ne peut pas être égal à sup I. On applique pour cela le théorème des fonctions implicites à F définie en (4.24). On a bien F (H, Y ) = 0, et D2F (H, Y ) = Id -HD1f (Y, t k + H) est inversible grâce à l'hypothèse (4.11). Donc il existe un voisinage de (H, Y ) sur lequel (4.24) admet une solution, ce qui contredit le fait que H = sup I. 2. La démonstration de 2 se fait alors par récurrence sur k. Pour k = 0 la relation est immédiate. L'hypothèse de récurrence s'écrit |e k | ≤ |e0| + ′′ (s)|ds.

4 .

 4 Expliciter le cas f (x) = (1/2)Ax • xb • x avec A symétrique définie positive et b ∈ IR n . Exercice 176 (Méthode de Taylor). Corrigé en page 278 Soit f ∈ C ∞ (IR × IR, IR), et x0 ∈ IR, on considère le problème de Cauchy (4.1), dont on cherche à calculer la solution sur [0, T ], où T > 0 est donné. On se donne un pas de discrétisation h = T n , avec n ≥ 1. Dans toute la suite, on note x (k) la dérivée d'ordre k de x, ∂ k i f la dérivée partielle d'ordre k de f par rapport à la i-ème variable, ∂ k i ∂ ℓ j f la dérivée partielle de f d'ordre k par rapport à la i-ème variable et d'ordre ℓ par rapport à la j-ème variable (on omettra les symboles k et ℓ lorsque k = 1 ou ℓ = 1). On définit f (m) ∈ C ∞ (IR × IR, IR) parf (0) = f, f (m+1) = ∂ 1 f (m) f + ∂ 2 f (m) , pour m ≥ 0.(4.28)1. Montrer que pour tout m ∈ IN, la solution x du problème de Cauchy (4.1) satisfait :

x 0 3 .

 03 = x0 , x k+1 = x k + hψ p (x k , t k , h), pour k = 1, . . . , n.(4.29) Montrer que dans le cas p = 1, le système (4.29) définit un schéma de discrétisation vu en cours, dont on précisera le nom exact. 4. On suppose, dans cette question uniquement, que f (y, t) = y pour tout (y, t) ∈ IR × IR, et que x0 = 1. 4.a/ Calculer ψ p (y, t, h) en fonction de y et h.

, 5 . 1

 51 pour k = 1, . . . , n. 4.c/ Montrer que |x kx(t k )| ≤ h p (p + 1)! t k e t k . On revient au cas général f ∈ C ∞ (IR × IR, IR). Montrer que le schéma (4.29) est consistant d'ordre p. Montrer qu'il existeh > 0, et C > 0 ne dépendant que de x0 , T et f , tels que si 0 < h < h, alors |x kx(t k )| ≤ Ch p , pour tout k = 0, . . . , n + 1.Exercice 177 (Schéma d'Euler implicite).Soit f ∈ C 1 (IR, IR) telle que f (y) < 0 pour tout y ∈]0, 1[ et f (0) = f (1) = 0. Soit y 0 ∈]0, 1[. On considère le problème suivant : y ′ (t) = f (y(t)), t ∈ IR + , (4.30) y(0) = y 0 . Soit T ∈ IR + ; on suppose que y ∈ C 1 ([0, T [, IR) est solution de (4.30)-(4.31). Montrer que 0 < y(t) < 1 pour tout t ∈ [0, T [ (On pourra raisonner par l'absurde et utiliser le théorème d'unicité).

1. 2 2 . 2 . 1 2 . 2 Question 3 . 3 . 1

 222122331 Montrer qu'il existe une unique fonction y ∈ C 1 ([0, +∞[, IR) solution de (4.30)-(4.31) et que y est une fonction strictement positive et strictement décroissante. Dans les questions suivantes on désigne par y cette unique solution définie sur [0, +∞[. Question Montrer que y admet une limite ℓ ∈ IR lorsque t → +∞. Montrer que ℓ = 0 . (On pourra remarquer que, pour tout t ≥ 0, on a y(t + 1) = y(t) + t+1 t f (y(s))ds). Soit y 0 ∈]0, 1[, on cherche à approcher la solution exacte de (4.30)-(4.31) par le schéma d'Euler implicite de pas h ∈ IR * + , qui s'écrit :y n+1 = y k + hf (y n+1 ), n ∈ IN. (4.32) Soit a ∈]0, 1[. Montrer qu'il existe b ∈]0, 1[ t.q. ba h = f (b).En déduire que pour y 0 ∈]0, 1[ fixé, il existe (y k ) n∈IN solution du schéma d'Euler implicite (4.32) telle que y k ∈]0, 1[ pour tout n ∈ IN.

3. 2 Question 4 .

 24 Soit (y k ) n∈IN une suite construite à la question 3.1. Montrer que cette suite est décroissante et qu'elle tend vers 0 lorsque n tend vers l'infini. On suppose dans cette question que f ′ (0) = -α < 0 Soit β ∈]0, α[.

( a )

 a Montrer qu'il existe α > 0 et x ∈ C 1 ([0, α[, (IR * + ) 2 ) solution de (4.35) (on pourra utiliser, ainsi que dans la question suivante, le fait que f est lipschitzienne sur tout pavé [ε, A] 2 avec 0 < ε ≤ A < +∞). (b) Soit β > 0, montrer qu'il existe au plus une solution de (4.35) appartenant à C 1 ([0, β[, (IR * + ) 2 ). (c) Montrer que le système (4.35) admet une solution maximale x ∈ C 1 ([0, +∞[, (IR * + ) 2 ). (Cette question est difficile : il faut raisonner par l'absurde, supposer que T < +∞, montrer que dans ce cas x n'est pas solution maximale. . . ) (d) Montrer que la solution maximale x vérifie x ∈ C ∞ ([0, +∞[, (IR * + ) 2 ). 3. On considère le schéma suivant de discrétisation du système (4.33)-(4.34) : soit k le pas de discrétisation, choisi tel que 0 < k <

2 ) 1 ≥ 2 ≤ 0 .) 1 > 0 et x (k) 2 > 0 2 ≤ 0 ,

 212012020 Montrer par récurrence sur n que les suites (x n∈IN données par (4.36) sont bien définies, décroissantes et strictement positives.(b) Montrer que le schéma numérique (4.36) s'écrit sous la formex (k+1)x (k) k = φ(x (k) , k), (4.37) avec x (k) = (x (k) 1 , x (k) 2 ) t , φ ∈ C ∞ ((IR * + ) 2 × IR + , IR 2 ) et φ(x, 0) = f (x). Analyse numérique I, télé-enseignement, L3 (c) (Consistance) Soit T > 0. Pour n ∈ IN, on note t k = nk. Montrer qu'il existe C(T ) ∈ IR + tel que x(t n+1 )x(t n ) k = φ(x(t n ), k) + R (k) k , pour tout n tel que nk ≤ T, (1kkb) T k pour tout entier n tel que nk ≤ T . (ii) Montrer que (1kkb) T k → e -(1+b)T lorsque k → 0, et en déduire que inf 0<k< 1 2 (1kkb) T k > 0. (iii) En déduire qu'il existe a(T ) > 0 et b(T ) > 0 tels que a(T ) ≤ x (k) 1 ≤ a, b(T ) ≤ x (k) 2 ≤ b, pour tout n tel que nk ≤ T. (4.39) (e) (Convergence) Soit T > 0. Montrer qu'il existe D(T ) ∈ IR + tel que |x (k)x(t k )| ≤ D(T )k, pour tout n tel que nk ≤ T. (4.40) En déduire la convergence du schéma (4.36). (f) On remplace maintenant le schéma (4.36) par le schéma d'Euler explicite pour le système (4.35). Ecrire ce schéma. Montrer que pour tout pas de discrétisation k > 0, il existe des valeurs de n telles que x (On pourra montrer que si x (kpour tout n ∈ IN, alors x (k) 1 tend vers 0 lorsque n tend vers +∞, et donc qu'il existe n tel que x (k) ce qui contredit l'hypothèse). Commenter. Exercice 179.

( 4

 4 .62) où ξ ∈ [0, 2π[ est la position initiale du pendule. 1. Ecrire le problème sous la forme d'un système différentiel d'ordre 1.

2 .

 2 Ecrire la méthode d'Euler implicite pour la résolution du système différentiel d'ordre 1 obtenu à la question 1, donnant les approximations x n+1 et y n+1 de x et y au temps t n+1 en fonction des approximations x k et y k de x et y au temps t n . En déduire qu'à chaque pas de temps, on doit résoudre un système non linvaire de la forme xay = α, a sin x + y = β. (4.63) On exprimera a, α et β en fonction du pas de temps δt et des approximations x k et y k de x et y au temps t k = nδt.

( 4 2 e

 42 .64) où ξ ∈ [0, 2π[ est la position initiale du pendule et µ ∈ IR + . le coefficient d'amortissement. Analyse numérique I, télé-enseignement, L34.8 Corrigés Exercice 168 page 267 (Condition de Lipschitz et unicité) Pour a ≥ 1, la fonction ϕ a : IR + → IR + définie par : ϕ a (x) = x a est continûment différentiable, et sa dérivée est ϕ ′ a (x) = ax a-1 . Elle est donc lipschitzienne sur les bornés. Si a = 0, la fonction ϕ a est constante et égale à 1, et donc encore lipschitzienne sur les bornés. Soit maintenant a ∈]0, 1[, supposons que soit lipschitzienne sur les bornés. Alors, pour tout A > 0, il existeM A > 0 tel que |ϕ a (x)| ≤ M A |x|. Ceci entraîne que la fonction x → | ϕa(x) x | est bornée sur B(0, A). Mais | ϕa(x) x | = |x a-1 | → +∞ lorsque x → 0.Ceci montre que la fonction ϕ a n'est pas lipachitzienne sur les bornés si a ∈]0, 1[. Par le théorème de Cauchy-Lipschitz, si ϕ a est lipschitzienne sur les bornés, alors le problème (4.25) admet une unique solution qui est la solution constante et égaleà zéro. Si ϕ a n'est pas lipschitzienne sur les bornés, i.e. si a ∈]0, 1[, la fonction nulle est encore solution du problème (4.25), mais on peut obtenir une autre solution définie par (calcul élémentaire de séparation de variable) :y a (t) = [(1a)t]1 1-a . (Notons que cette fonction n'est définie que pour a ∈]0, 1[.) Exercice 170 page 267 (Loi de Malthus) Soit p 0 le nombre d'individus au temps t = 0. On a donc p(100) = 2p 0 , et p(200) = 3p 0 . Or la loi de Malthus s'écrit p ′ (t) = ap(t) avec a > 0, et donc p(t) = p 0 e at . On a donc p(100) = p 0 e 100 a = 2p 0 p(200) = p 0 e 200 a = 3p 0 , mais on a aussi p(200) = p(100)e 100 a , et donc p(200) = 3p 0 e 100 a . On obtient donc que p(200) = 3p 0 e 100 a = p 0 e 200 a = 3p 0 , ce qui est vrai si e 100 a = 3 200 a = 3.

0 1 1+ b a e -at -b a .

 01a Notons qu'on suppose x 0 = 0. Si x 0 = 0, la solution unique est x(t) ⇐⇒ 0 ∀t ∈ IR + , par le théorème de Cauchy-Lipschitz. On cherche une solution sous la forme : z(t) = C(t)e -at . On a donc z ′ (t) = C ′ (t)e -at -aC(t)e -at = C ′ (t)e -ataz(t). Pour que z soit solution, il faut donc que :-C ′ (t)e -at = b, soit encore C ′ (t) = -be at .On en déduit que C(t) = -b a e at + K où K ∈ IR. La fonction z est donc de la forme z(t) = -b a e +at + K . On détermine K à l'aide de la condition initiale z(0) = 1 x0 , ce qui entraineb a + K = 1 x0 , soit K = b a + 1 x0 .On en déduit que la solution de (4.8) s'écrit z(t) après avoir vérifié que cette fonction ne s'annule pas (ce qu'on avait supposé pour pouvoir la calculer). On a donc :x(t) = x0En reportant les données de notre problème dans cette expression, on a donc :

  8) est supposé stable par rapport aux données, on a en prenanty k = xk et ε k = h k R k dans (4.14) page 260 : e k+1 ≤ K(|x 0 -x0 | + k-1 i=0 |h i R i |) pour tout k = 0, . . . , n -1.

  IR f , et que x(t) → x où x = Argminf . On raisonne par l'absurde ; sSi ℓ > min IR f , on poseε = ℓmin IR f > 0. Il existe η > 0 tel que |x -x| ≤ η ⇒ f (x)f (x) = f (x)min IR f < ε. Comme f (x(t)) ≥ ℓ = ε + min IR f , on a donc |x(t) -x| > η pour tout t ∈ IR. Donc |∇f (x(t))| ≥ δ = min{|∇f (y)|, |y -x| ≥ η, |y| ≤ M }, où M est une borne de {x(t), t ∈ IR}.Comme δ > 0, on obtient une contradiction avec le fait que ϕ tend en décroissant vers ℓ quand t tend vers l'infini, puisque :t 0 ϕ ′ (s)ds ≤ -t 0 δ 2 ds ≤ -tδ 2 , avec t 0 ϕ ′ (s)ds → ℓϕ(0) et -tδ 2 → +∞ lorque t → +∞. 4. Dans le cas f (x) = 1 2 Ax • xb • x, où A est s.d.p., il est facile de voir que la fonctionnelle f vérifie les hypothèses de l'exercice. On a ∇f (x) = Axb, et donc x(t) tend vers A -1 b. L'algorithme s'écrit dans ce cas :x n+1 = x kρ(Axb).Analyse numérique I, télé-enseignement, L3Exercice 176 page 269 (Méthode de Taylor) 1. Soit x solution du problème de Cauchy (4.1). Montrons par récurrence que x (m+1) (t) = f (m) (x(t), t).

4. a /pour k = 1 ,

 a1 Puisque f (y, t) = y , on a f (k) = f pour tout k, et donc ψ p (y, t, h) = f (y, t).4.b/ Par définition,x 1 = x0 + hf (x 0 , 0) = x0 + h . . . , ℓ,et montrons que cette relation est encore vérifiée au rang ℓ + 1. On a bien :x ℓ+1 = x ℓ + h la récurrence.4.c/ Comme x est la solution de (4.1) pour f (y, t) = y et x0 = 1, on a évidemment x(t) = e t , et donc x(t k ) = e hk . Le résultat de la question 4.b/ permet de déduire quex k = p j=0 h j j! k = e h -R(h) k ,Analyse numérique I, télé-enseignement, L3 avec 0 < R(h) < e h h p+1 (p+1)! . On a doncx k = e k h 1 -R(h) e h k = e k h(1a) k , avec a = R(h) e h ∈]0, 1[. On en déduit que 0 ≤ xkx k ≤ e k h 1 -(1a) k . Comme k ≥ 1 et a ∈]0,1[, on en déduit (par récurrence sur k) que (1a) k ≥ 1ka. On a donc

2 = b.
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 21222 est bien défini, et 0 < x (1) 2 < x (0) 2 = b. Or x (1) 1 = ak(a + ab) et comme a et b appartiennent à ]0, 1[, on a a + ab ∈]0, 2[, et comme 0 < k < 1/2, on en déduit que 0 < x Analyse numérique I, télé-enseignement, L3Supposons que les suites soient bien définies, décroissantes et strictement positives jusqu'au rang n, et vérifions-le au rang n + 1. On ax utilisant l'hypothèse de récurrence, on obtient que x kkb, et à l'hypothèse de récurrence, on déduit que x Après calcul, on obtient que le schéma numérique (4.36) s'écrit sous la formex (k+1)x (k) k = φ(x (k) , k), (4.69) avec x (k) = (x t , et où φ ∈ C ∞ ((IR * + ) 2 × IR , + IR 2 ) est définie par φ(x, k) bien que φ ∈ C ∞ ((IR * + ) 2 × IR + , IR 2 ) (en fait φ est de classe C ∞ sur IR 2 + × IR + \ {0} × IR + × {0}.) et que φ(x, 0) = f (x).Ceci montre que pour (x est bien défini par (4.36) de manière unique.3. Comme x ∈ C ∞ ([0, +∞[, (IR * + ) 2 ), on a | x(t n+1 )x(t n ) k x ′ (t n )| ≤ k max [0,T ] |x ′′ |, et |φ(x(t n ), k)φ(x(t n ), 0)| ≤ k max [0,T ] |D 2 φ(x(t), t)|.Or la solution exacte x sur [0, T ] vit dans un borné [α, β] 2 de R * + , et ses dérivées atteignent ses bornes sur le compact [0, T ], donc il existeC(T ) ∈ IR + tel que max [0,T ] |x ′′ | ≤ C(T ) et max [0,T ] |D 2 φ(x(t), t)| ≤ C(T ). Comme de plus φ(x(t n ), 0) = f (x(t n ),on en déduit par inégalité triangulaire que |R (k) k | ≤ C(T )k. 4. (Stabilité) (i) Soit T > 0. De (4.68) et du fait que 0 < x

k > 0 . 2 ,

 02 kkb) n , Donc pour tout entier n tel que nk ≤ T , on a n ≤ T k , et comme 1kkb > 0 (car k < 1/2), on a x(k) 1 ≥ (1kkb) T k . Analyse numérique I, télé-enseignement, L3 (ii) On a (1kkb) T k = exp( T k ln(1kkb)), et ln(1kkb) est équivalent à kkb dans un voisinage de k = 0. On en déduit que (1kkb) T k → e -(1+b)T lorsque k → 0. La fonction ϕ définie par ϕ(k) = (1kkb)T k est continue, strictement positive sur [0, 1/2], et sa limite lorsque k tend vers 0 est minorée par un nombre strictement positif. Donc la fonction est elle-même minorée par un nombre strictement positif. On en déduit que inf 0<k< 1 2 (1kkb) T (iii) D'après les résultats des questions 3 (a) et 3 (d) (ii), on a a(T ) ≤ x (k) 1 ≤ a, pour tout n tel que nk ≤ T , avec a(T ) = inf 0<k< 1 2 (1kkb) T k . En utilisant ce résultat (et la question 3 (a)), on déduit alors de (4.67) que x Une étude similaire à celle de la question précédente montre que la fonction strictement positive sur [0, 1/2] et sa limite lorsque k tend vers 0 est strictement positive. On en déduit que b(T ) ≤ x (k) 2 ≤ b, pour tout n tel que nk ≤ T , avec b(T ) = b inf Convergence) Soit T > 0. On ne peut pas appliquer directement le théorème du cours car φ n'est pas lipschitzienne sur les bornés, mais il suffit de remarquer que : -la solution exacte sur [0, T ] vit dans un borné [α, β] 2 de R * + . -le schéma est inconditionnellement stable : x (k) ∈ [a(T ), a] × [b(T ), b]. Or la fonction φ est de classe C 1 sur [A, B] 2 × R * + , où A = min(α, a(T ), b(T )) et B = max(β, a, b). Donc elle est lipschitzienne par rapport à la première variable sur le pavé [A, B] 2 . La démonstration par récurrence faite en cours dans le cas φ globalement lipschitzienne s'adapte donc très facilement. (elle est même plus facile car e 0 = 0 et le pas de discrétisation est constant. . . ) 6. On remplace maintenant le schéma (4.36) par le schéma d'Euler explicite. Celui s'écrit :

2 = b.

  

2 > 0 1 . 1 ) ≤ 0 ,

 20110 pour tout n. La première équation de (4.36) donne alors que x On en déduit par récurrence que x (k) 1 < (1k) n a → 0 lorsque n → 0 (on supposera que k < 1 pour que le schéma soit bien défini. Donc pour un pas de temps k donné, il existe n tel que x (k) 1 ≤ k. Or pour cette valeur de n, x ce qui contredit l'hypothèse x (k) 2 > 0 pour tout n. Ceci montre que le schéma d'Euler explicite n'est franchement pas bon dans ce cas. (Etudier si le coeur vous en dit le schéma totalement implicite...) Analyse numérique I, télé-enseignement, L3 284 Université d'Aix-Marseille, R. Herbin, 4 août 2023 Chapitre 5 Quelques problèmes supplémentaires 5.1 Méthode de Jacobi et optimisation Corrigé détaillé à la suite de l'énoncé, 284 Rappel Soit f ∈ C 1 (IR n , IR) ; on appelle méthode de descente à pas fixe α ∈ IR *

f (x) = 1 2

 2 Ax • xb • x, (5.1) où A une matrice carrée d'ordre n, symétrique définie positive, et b ∈ IR n . On pose x = A -1 b.

( a )

 a Justifier l'existence et l'unicité du pas optimal défini par (5.2), et donner son expression à chaque itération.(b) Montrer que |f (x (k) )f (x (k+1) )| = |r (k) • w (k) | 2 2Aw (k) • w (k) si w (k) = 0. (c) Montrer que r (k) → 0 lorsque k → +∞,et en déduire que la suite donnée par la méthode de Jacobi à pas optimal converge vers la solution x du système linéaire Ax = b. 5.1. MÉTHODE DE JACOBI ET OPTIMISATION CHAPITRE 5. QUELQUES PROBLÈMES SUPPLÉMENTAIRES (d) On suppose que la diagonale extraite D de la matrice A (qui est symétrique définie positive) est de la forme D = αId avec α ∈ IR.

Or 0 <

 0 AD -1 r (k) • D -1 r (k) ≤ ζ|r (k) | 2 avec ζ = A 2 D -1 2 2 et r (k) • D -1 r (k) ≥ θ|r (k) | 2 ,Analyse numérique I, télé-enseignement, L3où θ = min i∈{1,...,n} 1/a i,i . (Les a i,i étant les termes diagonaux de A.) On en déduit queθ 2 ζ |r (k) | 2 ≤ |f (x (k) )f (x (k+1) )| → 0 lorsque k → +∞, et donc r (k) → 0 lorsque k → +∞.

5. 2 . 1

 21 Notations et rappelsPour x, y ∈ R n , on note x • y = x t y = y t x leur produit scalaire. Soit m ∈ N ⋆ quelconque. On rappelle qu'une matrice symétrique B ∈ M m (R) est : définie si (Bu • u = 0 =⇒ u = 0), positive si ∀u ∈ R m , u t Bu ≥ 0.

( 3 ). 4 ) 5 . 2 . 3 3 •FIGURE 5 . 1 :

 34523351 FIGURE 5.1: Le maillage et les degrés de liberté (d.d.l.) du maillage et de chaque maille dans le cas M = 3, n = 2.

3. A 3 = 1 h 1 , ϕ 3 ( 1 ) = 2 , b 3 = h . 2 . 3 .

 131223 Montrer que les matrices A k , k = 1, . . . , 3 sont symétriques positives et que les matrices A 1 et A 3 sont de plus définies positives. Expliciter des ensembles E i pour i = 1, 2.

4 .

 4 Construction de la matrice A. (a) Ecrire les matrices H k pour k = 1, . . . , 3. (b) Donner la matrice A et le second membre b.

3 . 4 . 0 ,

 340 Si i = 1 : on a uniquement 1 = ϕ 1 (1) et 1 = ϕ 2 (1) donc E 1 = {1, 2}. Si i = 2 : on a uniquement 2 = ϕ 2 (2) et 2 = ϕ 3 (1) donc E 2 = {2,3}. Construction de la matrice A.(a) H 1 = 1

  c) On a : A = 1 h K 2 , où K n est la matrice vue en cours pour la matrice du schéma des différences finies appliqué au problème (5.5), avec h = 1 n , n étant le nombre de points de discétisation. On a vu que b = h 2 2 , or le second membre dans la méthode des différences finies est égal à b = 2 2 = 1 h b. Le schéma éléments finis s'écrit donc Au = b, c.à.d. 1 h K 2 u = 1 h b, ou encore K 2 u = b. C'est donc le même système linéaire que celui des différences finies. (d) λ 1 = 1 h , λ 2 = 3 h .

[ 1 .i=1 a i f i avec u t u = m i=1 a 2 i = 1 , on a u t Bu = m i=1 µ i a 2

 1212 Pour montrer cette dernière égalité, on pourra commencer par remarquer que pour tout k = 1, . . . , M et pour tout q = 1, . . . , n k , on a n j=1 (H k ) qj = 1.] 3. On suppose que A est inversible. Prouver que la matrice A est une ICP-matrice (cette propriété permet en particulier de déduire la monotonie de la méthode d'approximation, voir le cours). Corrigé de la partie 5.2.4 Propriétés spectrales de A. (a) Soit f 1 , . . . , f m une base orthonormée de R m telle que chaque f i est un vecteur propre de B associé à la valeur propre µ i , et µ 1 ≤ . . . ≤ µ n . Pour x ∈ R m qui s'écrit u = m i . On a donc u t Bu ∈ [µ 1 , µ n ], et les deux extrémités de cet intervalle sont respectivement atteintes pour u = f 1 et u = f m . (b) Comme les matrices A k sont symétriques, la question 1(a) donne que pour tout v ∈ R n k tel que

( a )

 a On divise le carré [0, 1] 2 en (m + 1) 2 carrés égaux (les éléments), et on numérote les noeuds intérieurs de 1 à m 2 par ligne. (b) Le spectre des matrices A k = 2 est égal à {2}, celui des matrices A k = 2 -1 -1 2 est égal à {1, 3}, et celui des matrices A k = {0, 2, 4} (2 est valeur propre double dans ce cas). (c) On a E I = {i + (j -1)(m + 1), i + 1 + (j -1)(m + 1), i + j(m + 1), i + 1 + j(m + 1)}.

α

  calcul effectué dans le cas particulier 1D permet de montrer que ces vecteurs sont associés à la valeur propre 8 -4 cos( pπ m+1 ) -4 cos( qπ m+1 ). Montrons qu'ils forment une famille libre. Supposons que les coefficients α pq soient tels que ∀i, j = 1, . . . , m, pq sin(j qπ m + 1 ) = 0.

  colonnes de AB sont des combinaisons linéaires des colonnes de A les lignes de AB sont des combinaisons linéaires des lignes de B.

	1.2. POURQUOI ET COMMENT ?	CHAPITRE 1. SYSTÈMES LINÉAIRES

les

  Ax = 0 a une infinité de solutions Le noyau de A est réduit à {0} Le noyau de A contient au moins un vecteur non nul Ax = b a une solution unique x = A -1 b Ax = b a soit aucune solution, soit une infinité A a n pivots (non nuls) A a r < n pivots A est de rang maximal : rang(A) = n. rang(A) = r < n La forme totatement échelonnée R de A est la matrice identité R a au moins une ligne de zéros L'image de A est tout IR n L'image de A est strictement incluse dans IR n L'espace L(A) engendré par les lignes de A est tout IR n L(A) est de dimension r < n Toutes les valeurs propres de A sont non nulles Zéro est valeur propre de A A t A est symétrique définie positive A t A n'est que semi-définie

	1.2. POURQUOI ET COMMENT ?	CHAPITRE 1. SYSTÈMES LINÉAIRES
	A inversible	A non inversible
	Les vecteurs colonne sont indépendants	Les vecteurs colonne sont liés
	Les vecteurs ligne sont indépendants	Les vecteurs ligne sont liés
	Le déterminant est non nul	Le déterminant est nul
	Ax = 0 a une unique solution x = 0	

TABLE 1 .

 1 

1: Extrait de "Linear algebra in a nutshell", G. Strang Définition 1.3 (Valeurs propres). Soit A ∈ M n (IR) une matrice carrée d'ordre n. On appelle valeur propre de A tout λ ∈ C l tel qu'il existe x ∈ C l n , x = 0 tel que Ax = λx. L'élément x est appelé vecteur propre de A associé à λ. Définition 1.4 (Déterminant). Il existe une unique application, notée det de M n (IR) dans IR qui vérifie les propriétés suivantes (D1) Le déterminant de la matrice identité est égal à 1.

  e. P -1 = P t . En effet, P t P e i • e j = P e i • P e j = (f i |f j ) = δ i,j , ∀i, j ∈ {1 . . . n}, et donc (P t P e i -e i )•e j = 0, ∀j ∈ {1 . . . n}, ∀i ∈ {1, . . . n}. On en déduit que P t P e i = e i pour tout i = 1, . . . n, i.e. P t P = P P t = Id. DÉMONSTRATION du lemme 1.8 Cette démonstration se fait par récurrence sur la dimension de E. On note (•|•) le produit scalaire dans E et • la norme associée.

  1. Soit A une matrice carrée d'ordre n et b ∈ IR n . Peut il exister exactement deux solutions distinctes au système Ax = b ? 2. Soient A, B et C de dimensions telles que AB et BC existent. Montrer que si AB = Id et BC = Id, alors A = C. 3. Combien y a -t-il de matrices carrées d'ordre 2 ne comportant que des 1 ou des 0 comme coefficients ? Exercice 8 (A propos de BB t = I). Pour n ≥ 1, on note I n la matrice identité d'ordre n. 1. Existe-t-il B ∈ M 2,1 (IR) telle que BB t = I 2 (justifier la réponse) ? 2. Soit n > 2, Existe-t-il B ∈ M n,1 (IR) telle que BB t = I n (justifier la réponse) ? Exercice 9 (Matrices symétriques). Soit A ∈ M n (IR) une matrice symétrique. Pour tout k = 1, . . . , n, on note A k la matrice principale d'ordre k de la matrice A. 1. Dans cette question seulement, on suppose que A est symétrique définie positive. Prouver que, pour tout k = 1, . . . , n, la matrice A k est symétrique définie positive. 2. On note λ k la plus petite valeur propre de A k et λ k sa plus grande valeur propre. Prouver que la suite (λ

	Combien d'entre elles sont inversibles ?
	4. Soit B =	3 -5 -3 2	. Montrer que B 1024 = Id.

k ) k=1,...,n est décroissante et que la suite (λ k ) k=1,...,n est croissante . [Indication : on pourra décomposer les vecteurs propres de A k , après prolongement par 0, dans une base de vecteurs propres de A k+1 ].

  Il suffit maintenant d'appliquer la première question, elle donne que le rang que A est le même que le rang de J et, comme J t = P t A t Q t , que le rang que A t est le même que le rang de J t . Finalement le rang de A et de A t est r. 5. Les vecteurs colonnes de A sont liés si et seulement si le rang de A est strictement inférieur à n. Les vecteurs colonnes de A t sont liés si et seulement si le rang de A t est strictement inférieur à n. Comme les vecteurs colonnes de A t sont les vecteurs lignes de A, on obtient le résultat désiré grâce au fait que A et A t ont même rang. La matrice ZZ t est de rang 1 et donc non inversible. 2. Faux : La matrice inverse d'une matrice triangulaire inférieure est triangulaire inférieure. 3. Vrai : le polynôme caractéristique d'une matrice A est le déterminant de A -λId.

	1.2. POURQUOI ET COMMENT ?	CHAPITRE 1. SYSTÈMES LINÉAIRES
	4. Exercice 6 page 17 (Vrai ou faux ?)
	1. Faux : 4. Faux : la matrice	1 1 0 1	est inversible et non diagonalisable dans IR.
	5. Faux : la matrice	1 1 0 1	est inversible et non diagonalisable dans C l .

  Les valeurs propres de B sont i et -i (car la trace de B est nulle et son déterminant est égal à 1). Donc B 1024 = Id

	1.2. POURQUOI ET COMMENT ?					CHAPITRE 1. SYSTÈMES LINÉAIRES
	et	0 1 1 0	,	0 1 1 1	,	1 1 1 0
	4.					

  On prouve tout d'abord l'existence de B. Comme A est s.d.p., toutes ses valeurs propres sont strictement positives, et on peut donc définir l'application linéaire S dans la base orthonormée

Montrons d'abord que si les valeurs propres sont strictement positives alors A est définie positive : Supposons que λ i ≥ 0, ∀i = 1, . . . , n. Alors pour ∀x ∈ IR n , d'après (1.29), Ax • x ≥ 0 et la matrice A est positive. Supposons maintenant que λ i > 0, ∀i = 1, . . . , n. Alors pour ∀x ∈ IR n , toujours d'après (1.29), (Ax • x = 0) ⇒ (x = 0), et la matrice A est donc bien définie.

Montrons maintenant la réciproque : si A est définie positive, alors Af i • f i > 0, ∀i = 1, . . . , n et donc λ i > 0, ∀i = 1, . . . , n.

3. On note T l'application (linéaire) de IR n dans IR n définie par T (x) = Ax.

  Nous rappelons la méthode de Gauss et sa réécriture matricielle qui donne la méthode LU et nous étudierons plus en détails la méthode de Choleski, qui est adaptée aux matrices symétriques.

	1.3.2 Méthode de Gauss, méthode LU

1.3.1 Définition

Définition 1.12 (Méthode directe). On appelle méthode directe de résolution de (1.1) une méthode qui donne exactement x (A et b étant connus) solution de (1.1) après un nombre fini d'opérations élémentaires : addition, soustraction, mutiplication, division, et extraction de racine carrée pour la methode de choleski.

Parmi les méthodes de résolution du système (1.1), la plus connue est la méthode de Gauss (avec pivot), encore appelée méthode d'échelonnement ou méthode LU dans sa forme matricielle. Soit A ∈ M n (IR) une matrice inversible, et b ∈ IR n . On cherche à calculvoir à ce sujeter x ∈ IR n tel que Ax = b.

  LU avec L triangulaire inférieure de coefficients égaux à 1 et U inversible triangulaire supérieure, alors A k , matrice principale d'ordre k de A, vérifie A k = L k U k où les matrices L k et U k les matrices principales d'ordre k de L et U , qui sont encore respectivement triangulaire inférieure de coefficients égaux à 1 et inversible triangulaire supérieure. On a donc

obtient

(1.32

). L'égalité

(1.33

) en découle immédiatement.

1.3. LES MÉTHODES DIRECTES CHAPITRE 1. SYSTÈMES LINÉAIRES

Proposition 1.18 (CNS pour LU sans permutation). Soit n ∈ IN, A ∈ M n (IR). Les deux propriétés suivantes sont équivalentes. (P1) Il existe un unique couple (L, U ), avec L matrice triangulaire inférieure de coefficients égaux à 1 et U une matrice inversible triangulaire supérieure, telles que A = LU . (P2) Les mineurs principaux de A sont tous non nuls. DÉMONSTRATION -Si A =

  On a donc U = DL t , et comme tous les coefficients de D sont positifs, on peut écrire D = dont les éléments diagonaux sont les racines carrées des éléments diagonaux de A. On a donc A

	√ D	√ D, où	√	D est
	la matrice diagonale			

  Existence et unicité de la décompositionSoit A une matrice symétrique définie positive. On sait déjà par le théorème 1.22 page 38, qu'il existe une matrice de permutation et L triangulaire inférieure et U triangulaire supérieure telles que P A = LU . L'avantage dans le cas où la matrice est symétrique définie positive, est que la décomposition est toujours possible sans permutation. On prouve l'existence et unicité en construisant la décomposition, c.à.d. en construisant la matrice L. Pour comprendre le principe de la preuve, commençons d'abord par le cas n = 2. Dans ce cas on peut écrire

	A =	a b b c

. On sait que a > 0 car A est s.d.p. . L'échelonnement de A donne donc

  Pour déterminer b et λ, calculons LL t où L est de la forme (1.36) et identifions avec A :

  Remarque 1.27 (Pivot partiel et Choleski). Considérons une matrice A symétrique définie positive. On a vu dans le théorème qu'on n'a pas besoin de permutation pour obtenir la décomposition LL t d'une matrice symétrique définie positive. Par contre, on utilise malgré tout la technique de pivot partiel pour minimiser les erreurs d'arrondi. On peut illustrer cette raison par l'exemple suivant : À titre d'illustration, pour n = 12 en FORTRAN (double précision), on obtient la bonne solution, c.à.d. (-1, 1), avec le programme gausslupivot donné plus haut, alors que le programme sans pivot gausslu donne comme solution (0, 1).

	1.3. LES MÉTHODES DIRECTES	CHAPITRE 1. SYSTÈMES LINÉAIRES
	Attention : la proposition précédente est fausse si la décomposition est avec permutation, méditer pour s'en
	convaincre l'exemple A =	0 1 1 0	, voir aussi exercice 43.
			A =	-10 -n 1 1 1
	Calcul		

du coût de la méthode de Choleski Calcul du coût de calcul de la matrice L. Dans le procédé de calcul de L exposé ci-dessus, le nombre d'opérations pour calculer la première colonne est n. Calculons, pour p = 0, . . . , n -1, le nombre d'opérations pour calculer la (p + 1)-ième colonne : pour la colonne (p + 1), le nombre d'opérations par ligne est 2p + 1, car le calcul de ℓ p+1,p+1 par la formule (1.40) nécessite p multiplications, p soustractions et une extraction de racine, soit 2p + 1 opérations ; le calcul de ℓ i,p+1 par la formule (1.41) nécessite p multiplications, p soustractions et une division, soit encore 2p + 1 opérations. Comme les calculs se font des lignes p + 1 à n (car ℓ i,p+1 = 0 pour i ≤ p), le nombre d'opérations pour calculer la (p + 1)-ième colonne est donc (2p + 1)(np). On en déduit que le nombre d'opérations N L nécessaires au calcul de L est :

  Coût de la résolution d'un système linéaire par la méthode LL t . Nous pouvons maintenant calculer le coût (en termes de nombre d'opérations élémentaires) nécessaire à la résolution de (1.1) par la méthode de Choleski pour A ∈ M n (IR) symétrique définie positive. On a besoin de N L opérations pour le calcul de L, auquel il faut rajouter le nombre d'opérations nécessaires pour les étapes de descente et remontée. Le calcul de y solution de Ly = b s'effectue en résolvant le système :

	  	ℓ 1,1 . . .	. . .	0 . . .
	ℓ n,1 . . . ℓ n,1

  Il ne reste alors plus qu'à vérifier que A t A est symétrique définie positive. Remarquons d'abord que pour toute matrice A ∈ M n (IR), la matrice AA t est symétrique. Pour cela on utilise le fait quesi B ∈ M n (IR), alors B est symétrique si et seulement si Bx • y = x • By et Bx • y = x • B t y pour tout (x, y) ∈ (IR n ) 2 . En prenant B = A t A, on en déduit que A t A est symétrique. De plus, comme A est inversible, A t Ax • x = Ax • Ax = |Ax| 2 > 0 si x = 0.La matrice A t A est donc bien symétrique définie positive. La méthode de Choleski dans le cas d'une matrice non symétrique consiste donc à calculer A t A et A t b, puis à résoudre le système linéaireA t A • x = A t b par la méthode de Choleski "symétrique".

	qu'on appelle équations normales du problème de minimisation. La résolution approchée du problème (1.42) par
	cette procédure est appelée méthode des moindres carrés . La matrice AA t étant symétrique, on peut alors employer
	la méthode de Choleski pour la résolution du système (1.44).
	1.3.5 Exercices (méthodes directes)
	Exercice 21 (Vrai ou faux ?). Corrigé en page 54
	Les propositions suivantes sont-elles vraies ou fausses ?
	1. La matrice 2. La matrice B = 2 1 1 1  	admet une décomposition de Choleski.  1 -2 0 0 0 3 1 -1 0  est symétrique définie positive.
	3. La matrice B ci-dessus admet une décomposition LU .
	4. La matrice	1 -1 1 3	s'écrit C t C.
	Cette manière de faire est plutôt moins efficace que la décomposition LU puisque le coût de la décomposition LU
	est de 2n 3 /3 alors que la méthode de Choleski dans le cas d'une matrice non symétrique nécessite au moins 4n 3 /3
	opérations (voir exercice 33).
	Systèmes linéaires non carrés
	On considère ici des matrices qui ne sont plus carrées. On désigne par M M,n (IR) l'ensemble des matrices réelles
	à M lignes et n colonnes. Pour A ∈ M M,n (IR), M > n et b ∈ IR M , on cherche x ∈ IR n tel que
				Ax = b.	(1.42)
	Ce système contient plus d'équations que d'inconnues et n'admet donc en général pas de solution. On cherche
	x ∈ IR n qui vérifie le sytème (1.42) "au mieux". On introduit pour cela une fonction f définie de IR n dans IR par :
	f (x) = |Ax -b| 2 , √ x • x désigne la norme euclidienne sur IR n . La fonction f ainsi définie est évidemment positive, et s'il existe x qui annule f , alors x est solution du système (1.42). Comme on l'a dit, un tel x n'existe pas forcément, où |x| =
	et on cherche alors un vecteur x qui vérifie (1.42) "au mieux", au sens où f (x) soit le plus proche de 0. On cherche donc x ∈ IR n satisfaisant (1.42) en minimisant f , c.à.d. en cherchant x ∈ IR n solution du problème d'optimisation :
	(1.43) On peut réécrire f sous la forme : f (x) = A t Ax • x -2b • Ax + b • b. On montrera au chapitre III que s'il existe f (x) ≤ f (y) ∀y ∈ IR n une solution au problème (1.43), elle est donnée par la résolution du système linéaire suivant :
				AA t x = A t b ∈ IR n ,	(1.44)

  1 puis que A n admet une unique décomposition LU (ici encore sans calculer les matrices L et U ).

	On décompose A n = Id n -E n -F n , où Id n est la matrice identité de taille n × n et -E n (resp. -F n ), la partie triangulaire inférieure (resp. supérieure) stricte de A n
	(b) Montrer que

  Id n -E n ) -1 A n et en déduire l'expression de L n dans la décomposition LU de A n . Lemme 1.29 (Décomposition LU d'une matrice inversible par technique du pivot partiel). Soit n ∈ IN, A ∈ M n (IR) une matrice inversible ; il existe une matrice de permutation P ∈ M n (IR) an sens de la définition 1.1, une matrice L ∈ M n (IR) triangulaire inférieure inversible et une matrice triangulaire supérieure U ∈ M n (IR) de coefficients diagonaux tous égaux à 1, telles que l'on ait la relation P A = LU (décomposition LU de la matrice P A).

	1.3. LES MÉTHODES DIRECTES	CHAPITRE 1. SYSTÈMES LINÉAIRES
	(c) Calculer (Exercice 28 (Matrices symétriques définies positives, mineurs principaux et décomposition LU). On rappelle que
	les mineurs principaux d'une matrice A ∈ M n (IR), sont les déterminants ∆ k des matrices principales A k = A(1 : k, 1 : k) extraites de la matrice A.
	1. Soit A une matrice n × n. On suppose que les pivots de l'élimination de Gauss sont tous non nuls pour cette matrice. Expliquer pourquoi, à chaque étape k de l'élimination de Gauss pour trouver la décomposition
	LU , le mineur principal ∆ k reste inchangé.	
	2. Montrer qu'une matrice symétrique est définie positive si et seulement tous ses mineurs pricipaux strictement
	positifs. Cette CNS s'appelle critère de Sylvester.	
	3. En déduire que toute matrice symétrique définie positive admet une décomposition LU sans permutation. 4. On considère la matrice A =    a 1 1 1 2 1 
	1 1 2	
	(a) Pour quelles valeurs de a cette matrice est-elle définie positive ?
	(b) Ecrire l'algorithme de Gauss pour obtenir la décomposition LU de A pour a = 2.
	Exercice 29 (Existence de la décomposition LU à une permutation près). Suggestions en page 53, corrigé en page
	55	
	L'objet de cet exercice est de démontrer par récurrence le résultat suivant (voir aussi théorème 1.22) :
	Pour cela, nous allons démontrer par récurrence la propriété suivante : pour tout k ∈ {1, . . . , n}, il existe une matrice de permutation P (k) ∈ M n (IR), une matrice L k ∈ M k (IR) triangulaire inférieure inversible et une matrice triangulaire supérieure U k ∈ M k (IR) de coefficients diagonaux tous égaux à 1, telles que la matrice

x α et x b .

  Soit n ≥ 1, A ∈ M n (IR), b et c ∈ IR n et d ∈ IR. On note M la matrice appartenant à M n+1 (IR) définie (par blocs) par : (noter qu'on a identifié IR n à M n,1 (IR)). On suppose que la matrice A est inversible. On note x b le vecteur de IR n tel que Ax b = b. 1. Montrer que M est inversible si et seulement si dc t x b = 0.2. On suppose maintenant que M est inversible. Soit α ∈ IR n et β ∈ IR. On note x α le vecteur de IR n tel que , effectuer la décomposition LL t de A 2 , résoudre le système LL t x = b.2. Calculer la décomposition LL t de A, résoudre les systèmes LL t y = b et LL t x = y.

	Exercice 35 (Echelonnement et factorisation LU et LDU ). Corrigé en page 58.
	Echelonner les matrices suivantes (c.à.d. appliquer l'algorithme de Gauss), et lorsqu'elle existe, donner leur dé-
	composition LU et LDU				
	A =	   	2 -1 4 0 4 -1 5 1 0 3 -9 4 -2 2 -2 3     ;	B =	-1. -1. 1. 0.     1. 2. 1. 2. -1. -1. 0. -2.  1. 2. 2. 3.    .
	Exercice 36 (Méthode de Choleski sur un exemple). Soit la matrice
			A =	  4 2 0 2 4 1	 
					0 1 1
	1. Montrer que A est symétrique définie positive, en effectuant sa décomposition de Choleski.
	M = 3. A l'aide de la décomposition de Choleski de A, résoudre AX = B où B = t (8, 13, 5). 2. Que valent les mineurs principaux de A ? A b c t d
	Exercice 37 (Décomposition de Choleski d'une matrice particulière).
	Soit n ∈ IN \ {0}. On considère la matrice A n carrée d'ordre n dont les coefficients sont donnés par (A n ) i,j : min(i, j), et qui s'écrit donc :
	Ax α = α. Soit x = . Donner l'expression de y et z en fonction de Exercice 32 (Matrices symétriques définies positives et décomposition LU). On rappelle que les mineurs princi-y z ∈ IR n+1 tel que M x = α β
	paux d'une matrice A ∈ M n (IR), sont les déterminants ∆ p des matrices A p = A(1 : p, 1 : p) extraites de la matrice A.
	1. Montrer qu'une matrice symétrique définie positive a tous ses mineurs pricipaux strictement positifs.
	2. En déduire que toute matrice symétrique définie positive admet une décomposition LU .
	Exercice 33 (Sur la méthode LL t ). Corrigé détaillé en page 57.
	Soit A une matrice carrée d'ordre n, symétrique définie positive et pleine. On cherche à résoudre le système
	A 2 x = b.				
	On propose deux méthodes de résolution de ce système :
	1. Calculer A 2 Calculer le nombre d'opérations élémentaires nécessaires pour chacune des deux méthodes et comparer.
	Exercice 34 (Décomposition LU d'une matrice à paramètres). Corrigé en page 57.
	Soient a, b, c et d des nombres réels. On considère la matrice suivante :
			A =	    a a a a  a b b b a b c c    .
				a b c d
	Appliquer l'algorithme d'élimination de Gauss à A pour obtenir sa décomposition LU (si elle existe).
	Donner les conditions sur a, b, c et d pour que la matrice A soit inversible.

  Écrire et échelonner les matrices A 2 et A 3 . Montrer que A 2 et A 3 sont des matrices symétriques définies positives et donner leur décomposition de Choleski.2. En déduire la décomposition de Choleski de la matrice A n .

	Exercice 38 (LU et Choleski sur un exemple). Soit M =    1 2 1 2 8 10  .
	1 10 18
	1. Calculer les mineurs principaux de M . En déduire que M admet des décompositions LU et de Choleski.
	2. Donner la décomposition LU de M .
	3. Donner la décomposition de Choleski de M .

  Exercice 28 page 49 (Matrices symétriques définies positives, mineurs principaux et décomposition LU) 1. Lorsqu'on fait l'élimination de Gauss à l'étape k, on remplace la ligne k par une combinaison linéaire de cette ligne avec la ligne k -1 de A k , et donc on ne change pas le déterminant de A k . 2. Montrons d'abord que la condition est nécessaire. Comme A est symétrique définie positive, xAx t > 0 Soit A une matrice n × n, symétrique, dont tous les mineurs principaux sont strictement positifs. Pour n = 1, il est clair que A est s.d.p. Supposons le résultat vrai pour toute matrice p × p avec p ≤ n -1, et appliquons l'algorithme de Gauss à la matrice A. Comme les déterminants mineurs sont tous strictement positifs au départ et qu'ils restent constants pendant l'algorithme de Gauss, les déterminants mineurs de la matrice U obtenue à la fin de l'algorithme de Gauss sont strictement positifs. Or les matrices principales de U sont triangulaires supérieures, donc leur déterminant est le produit des valeurs propres. En conséquence, toutes les valeurs propres de A sont strictement positives, ce qui montre bien que A est symétrique est définie positive. 3. Ceci découle directement de la proposition 1.18 du cours (CNS pour LU sans permutation) 4. (a) Appliquons le critère de Sylvester. En notant m i le i-ème mineur principal, on a m 1

	pour tout x ∈ IR n . En prenant x =	y 0	, avec y ∈ IR k et 0 ∈ IR n-k , on obtient donc que yA k y t > 0
	pour tout y ∈ IR k , pour tout k = 1, . . . , n ce qui montre bien que les matrices A k sont toutes symétriques définies positives.
	Réciproquement, pour montrer que si tous les mineurs pricipaux d'une matrice sont strictement positifs,
	alors la matrice est définie positive, on va raisonner par récurrence sur n.

  Exercice 33 page 50 (Sur la méthode LL t ) La décomposition LL t de A nécessite n 3 3 + n 2 2 + n 6 , et la résolution des systèmes LL t y = b et LL t x = y nécessite 4n 2 opérations. Le nombre total d'opérations pour le calcul de la solution du système A 2 x = b par la deuxième méthode est donc n 3 3 + 9n 2 2 + n 6 = n 3 3 + O(n 2 ) opérations. Pour les valeurs de n assez grandes, il est donc avantageux de choisir la deuxième méthode.

	Calculons le nombre d'opérations élémentaires nécessaires pour chacune des méthodes :
	1. Le calcul de chaque coefficient nécessite n multiplications et n -1 additions, et la matrice comporte n 2 coefficients. Comme la matrice est symétrique, seuls n(n + 1)/2 coefficients doivent être calculés. Le calcul
	de A 2 nécessite nécessite donc (2n-1)n(n+1) 2	opérations élémentaires.
	Le nombre d'opérations élémentaires pour effectuer la décomposition LL t de A 2 nécessite n 3 3 + n 2 2 + n 6 (cours).
	La résolution du système A 2 x = b nécessite 2n 2 opérations (n 2 pour la descente, n 2 pour la remontée, voir
	cours).	
	Le nombre total d'opérations pour le calcul de la solution du système A 2 x = b par la première méthode est
	donc (2n-1)n(n+1) 2	+ n 3 3 + 3n 2 2 + n 6 = 4n 3 3 + O(n 2 ) opérations.
	2. Exercice 34 page 50 (Décomposition LU d'une matrice à paramètres)

  matrice L est inversible car produit de matrices élémentaires, et la matrice A est donc inversible si et seulement si la matrice U l'est. Or U est une matrice triangulaire qui est inversible si et seulement si ses éléments diagonaux sont non nuls, c.à.d. a = 0, b = c et c = d.

	Exercice 35 page 51 (Echelonnement et factorisation LU et LDU )
	Pour la première matrice, on donne le détail de l'élimination de Gauss sur cette matrice, et on montre ainsi qu'on
	peut stocker les multiplicateurs qu'on utilise au fur et à mesure dans la matrice L pour chaque étape k.
	Etape k = 1

  M n (IR) est symétrique définie positive ou négative (calculer Ax • x avec x = (y, 0) t , avec y ∈ IR n pour le vérifier), a ∈ IR n et α ∈ IR.

	1.3. LES MÉTHODES DIRECTES	CHAPITRE 1. SYSTÈMES LINÉAIRES
	où B ∈ Par hypothèse de récurrence, il existe une matrice M ∈ M n (IR) M = (m i,j ) n i,j=1 et une matrice diagonale D = diag(d 1,1 , d 2,2 , . . . , d n,n ) dont les coefficients sont tous non nuls, telles que :

  .48) avec b ∈ IR n , λ ∈ IR tels que LDL t = A. Pour déterminer b et λ, calculons LDL t avec L et D de la forme (1.48) et identifions avec A :

  On en déduit que le nombre d'opérations élémentaires pour le calcul de la colonne j + 1, avec 1 ≤ j < n -1, est de 4. Or le nombre d'opérations pour la première et dernière colonnes est inférieur à 4 (2 opérations pour la première colonne, une seule pour la dernière). Le nombre Z 1 (n) d'opérations élémentaires pour la décomposition

	LL t de A peut donc être estimé par : 4(n -2) ≤ Z 1 (n) ≤ 4n, ce qui donne que Z 1 (n) est de l'ordre de 4n (le calcul exact du nombre d'opérations, inutile ici car on demande une estimation, est 4n -3.)
	2. Cas d'une matrice à p diagonales.
	On cherche une estimation du nombre d'opérations Z p (n) pour une matrice à p diagonales non nulles (ou q sous-diagonales non nulles) en fonction de n.
	On rappelle les formules donnant L :
	Pour i = 1, . . . , n,

  Norme matricielle, norme induite). On note M n (IR) l'espace vectoriel (sur IR) des matrices carrées d'ordre n. 1. On appelle norme matricielle sur M n (IR) une norme • sur M n (IR) t.q. définie de IR n dans IR par : ϕ(x) = Ax est continue sur la sphère unité S1 = {x ∈ IR n | x = 1} qui est un compact de IR n . Donc ϕ est bornée et atteint ses bornes : il existe x0 ∈ S1 tel que A = Ax0 . Mn(IR), on a AB = max { ABx ; x = 1, x ∈ IR n } . Or Proposition 1.33 (Caractérisation de normes induites). Soit A = (a i,j ) i,j∈{1,...,n} ∈ M n (IR). 1. On munit IR n de la norme • ∞ et M n (IR) de la norme induite correspondante, notée aussi • ∞ . Alors On munit IR n de la norme • 1 et M n (IR) de la norme induite correspondante, notée aussi • 1 . Alors

	1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE		CHAPITRE 1. SYSTÈMES LINÉAIRES
	4. Soient A et B ∈ ABx ≤ A Bx ≤ A B x ≤ A B . On en déduit que • est une norme matricielle.
	Définition 1.32 (Rayon spectral). Soit A ∈ M n (IR) une matrice. On appelle rayon spectral de A la quantité ρ(A) = max{|λ|; λ ∈ C l , λ valeur propre de A}.
	La proposition suivante caractérise les principales normes matricielles induites.
	1.4.1 Normes, rayon spectral	A ∞ = max i∈{1,...,n}	n j=1	|a i,j |.	(1.56)
	(1.54) (1.57) 2. On considère IR n muni d'une norme • . On appelle norme matricielle induite (ou norme induite) sur 2. A 1 = max j∈{1,...,n} n i=1 |a i,j | Définition 1.30 (AB ≤ A B , ∀A, B ∈ M n (IR) 3. On munit IR n de la norme • 2 et M n (IR) de la norme induite correspondante, notée aussi • 2 . M n (IR) par la norme • , encore notée • , la norme sur M n (IR) définie par : A 2 = (ρ(A t A)) 1 2 . (1.58)
	A = sup{ Ax ; x ∈ IR n , x = 1}, ∀A ∈ M n (IR) En particulier, si A est symétrique, A 2 = ρ(A).	(1.55)
	Proposition 1.31 (Propriétés des normes induites). Soit M n (IR) muni d'une norme induite • . Alors pour toute matrice A ∈ M n (IR), on a : 1. Ax ≤ A x , ∀x ∈ IR n , 2. A = max { Ax ; x = 1, x ∈ IR n }, 3. A = max Ax x ; x ∈ IR n \ {0} .
	4. • est une norme matricielle.					
	DÉMONSTRATION -					
	1. Soit x ∈ IR n \ {0}, posons y = x . Si maintenant x = 0, alors Ax = 0, et donc x = 0 et Ax = 0 ; l'inégalité x x , alors y = 1 donc Ay ≤ A . On en déduit que Ax x ≤ A et donc que Ax ≤ A Ax ≤ A x est encore vérifiée. 2. L'application ϕ 3. Cette égalité résulte du fait que
	Ax x	= A	x x	et	x x	∈ S1 et x = 0.

  Comme A t A est une matrice symétrique positive (car A t Ax • x = Ax • Ax ≥ 0), il existe une base orthonormée (f i )i=1,...,n et des valeurs propres (µi)i=1,...,n, avec 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn tels que Af i = µif i pour tout i ∈ {1, . . . , n}. Soit x = i=1,...,n αif i ∈ IR n . On a donc :

  1.34 ppécédent), il existe une base (f 1 , . . . , f n ) de C l n et une famille de complexes (ti,j) i,j=1,...,n,j≥i telles que Af i = j≤i tj,if j . Soit η ∈]0, 1[, qu'on choisira plus précisément plus tard. Pour i = 1, . . . , n, on définit ei = η i-1 f i . La famille (ei)i=1,...,n forme une base de C l n . On définit alors une norme sur IR n par x = ( Notons que cette norme dépend de A et de η. Soit ε > 0 ; montrons que pour η bien choisi, on a A ≤ ρ(A) + ε. Remarquons d'abord que

	base (ei)i=1,...,n.	n i=1 αiαi) 1/2 , où les αi sont les composantes de x dans la

  Corollaire 1.36 (Convergence et rayon spectral). Soit A ∈ M n (IR). Alors :

	1.4. NORMES ET CONDITIONNEMENT D'UNE MATRICE	CHAPITRE 1. SYSTÈMES LINÉAIRES

  et que si lim sup k→+∞ u k ≤ lim inf k→+∞ u k , alors la suite (u k ) k∈IN converge vers lim k→+∞ u k = lim inf k→+∞ u k = lim sup k→+∞ u k .

					.59)
	DÉMONSTRATION -La démonstration se fait par des arguments d'homogénéité, en trois étapes. Rappelons tout d'abord
	que			
	lim sup k→+∞	u k = lim k→+∞	n≥k sup	un,
	lim inf k→+∞	u k = lim k→+∞	inf n≥k	un,
	Etape 1. On montre que			
	ρ(A) < 1 ⇒ lim sup k→∞	A k 1 k ≤ 1.	(1.60)
	En effet, si i ρ(A) < 1, d'après le corollaire 1.36 on a :	

  .74) 2. On suppose dans cette question que la norme • est la norme induite par la norme euclidienne sur IR n . Montrer que la minoration (1.74) est optimale, c'est-à-dire qu'il existe δ A ∈ M n (IR) telle que A + δ A soit singulière et telle que l'égalité soit vérifiée dans (1.74).

  On rappelle (voir le corollaire (1.39) page 70) que si B ∈ Mn(IR), et si • est une norme induite sur Mn(IR) par une norme sur IR n , on a toujours ρ(B) ≤ B . On va donc chercher une norme sur IR n , notée • * telle que

d'où le résultat.

On a un résultat de convergence de la méthode SOR (et donc également de Gauss-Seidel) dans le cas où A est symétrique définie positive, grâce au lemme suivant : Lemme 1.56 (Condition suffisante de convergence d'une méthode itérative). Soit A ∈ M n (IR) une matrice symétrique définie positive, et soient P et N ∈ M n (IR) telles que A = P -N et P est inversible. Si la matrice P t + N est symétrique définie positive alors ρ(P -1 N ) = ρ(B) < 1, et donc la suite définie par (1.86) converge. DÉMONSTRATION -

  est bien une norme sur IR n , induite par le produit scalaire (x|y)A = Ax • y. On va montrer que la propriété (1.103) est vérifiée par cette norme. Soit x ∈ IR n , x = 0, on a :

1.103) On définit la norme • * par x * = √ Ax • x, pour tout x ∈ IR n . Comme A est symétrique définie positive, • *

  Remarquons que le résultat de convergence des méthodes itératives donné par le théorème précédent n'est que partiel, puisqu'il ne concerne que les matrices symétriques définies positives et que les méthodes Gauss-Seidel et SOR. On a aussi un résultat de convergence de la méthode de Jacobi pour les matrices à diagonale dominante stricte, voir exercice 75 page 106, et un résultat de comparaison des méthodes pour les matrices tridiagonales par blocs, voir le théorème 1.59 donné ci-après. Dans la pratique, il faudra souvent compter sur sa bonne étoile. . . Estimation du coefficient de relaxation optimal de SOR La question est ici d'estimer le coefficient de relaxation ω optimal dans la méthode SOR, c.à.d. le coefficient ω 0 ∈]0, 2[ (condition nécessaire pour que la méthode SOR converge, voir théorème 1.57) tel queρ(B ω0 ) ≤ ρ(B ω ), ∀ω ∈]0, 2[.Ce coefficient ω 0 donnera la meilleure convergence possible pour SOR. On sait le faire dans le cas assez restrictif des matrices tridiagonales (ou tridiagonales par blocs, voir paragraphe suivant). On ne fait ici qu'énoncer le résultat dont la démonstration est donnée dans le livre de Ph.Ciarlet conseillé en début de cours.

Remarque 1.58 (Comparaison Gauss-Seidel/Jacobi). On a vu (théorème 1.57) que si A est une matrice symétrique définie positive, la méthode de Gauss-Seidel converge. Par contre, même dans le cas où A est symétrique définie positive, il existe des cas où la méthode de Jacobi ne converge pas, voir à ce sujet l'exercice 69 page 104. Théorème 1.59 (Coefficient optimal, matrice tridiagonale). On considère une matrice A ∈ M n (IR) qui admet une décomposition par blocs définie dans la définition 1.104 page 101 ; on suppose que la matrice A est tridiagonale par blocs, c.à.d. A i,j = 0 si |i -j| > 1 ; soient B GS et B J les matrices d'itération respectives des méthodes de Gauss-Seidel et Jacobi. On suppose de plus que toutes les valeurs propres de la matrice d'itération J de la méthode de Jacobi sont réelles et que ρ(B J ) < 1. Alors le paramètre de relaxation optimal, c.à.d. le paramètre ω 0 tel que ρ(B ω0 ) = min{ρ(B ω ), ω ∈]0, 2[}, s'exprime en fonction du rayon spectral ρ(B J ) de la matrice J par la formule :

  Définition 1.61. Soit A ∈ M n (IR) une matrice inversible ; une décomposition par blocs de A est définie par un entier S ≤ n, des entiers (n i ) i=1,...,S tels que S i=1 n i = n, et S 2 matrices A i,j ∈ M ni,nj (IR) (ensemble des matrices rectangulaires à n i lignes et n j colonnes, telles que les matrices A i,i soient inversibles pour i = 1, . . . , S et

  Montrer que A est symétrique définie positive si et seulement si -1/2 < a < 1 et que la méthode de Jacobi converge si et seulement si -1/2 < a < 1/2.

	a a 1 a	 
	a a 1	

Exercice 70 (Jacobi et Gauss-Seidel : cas des matrices tridiagonales). L'objet de cet exercice est de démontrer le théorème 1.54 sur la comparaison des méthodes de Jacobi et Gauss-Seidel pour les matrices tridiagonales. Soit A ∈ M n (IR) une matrice carrée d'ordre n inversible et tridiagonale ; on note a i,j le coefficient de la ligne i et la ligne j de la matrice A. On décompose en A = D -E -F , où D représente la diagonale de la matrice A, (-E) la partie triangulaire inférieure stricte et (-F ) la partie triangulaire supérieure stricte. On note B J et B GS les matrices d'itération des méthodes de Jacobi et Gauss-Seidel pour la résolution d'un système linéaire de matrice A. 1. Calculer les matrices B J et B GS pour la matrice particulière A = 2 -1 -1 2 et calculer leurs rayons spectraux. Montrer que les méthodes convergent. 2. Montrer que λ est valeur propre de B J si et seulement s'il existe un vecteur complexe x = (x 1 , . . . x n ) ∈ C n , x = 0, tel que -a p,p-1 x p-1a p,p+1 x p+1 = λa p,p x p , p = 1, . . . , n. avec x 0 = x n+1 = 0. 3. Soit y = (y 1 , . . . y n ) ∈ C n défini par y p = λ p x p , où λ est une valeur propre non nulle de B J et x = (x 1 , . . . , x n ) un vecteur propre associé. On pose y 0 = y n+1 = 0. Montrer que -λ 2 a p,p-1 y p-1a p,p+1 y p+1 = λ 2 a p,p y p , p = 1, . . . , n. 4. Montrer que µ est valeur propre de B GS associée à un vecteur propre z = 0 si et seulement si

  1. On suppose dans cette questions que F = 0, calculer ρ(B J ) et ρ(B GS ). Pour b ∈ IR n , Les methodes de Jacobi et Gauss-Seidel donnent-elles la solution exacte du système Ax = b après un nombre fini d'itérations ? si oui, combien faut-il au plus d'itérations ? [Suggestion : Commencer par le cas n = 2.] 2. On suppose dans cette questions E = 0, calculer ρ(B J ) et ρ(B GS ). Pour b ∈ IR n , Les methodes de Jacobi et Gauss-Seidel donnent-elles la solution exacte du système Ax = b après un nombre fini d'itérations ? si oui, combien faut-il au plus d'itérations ? Exercice 82 (Méthode de Jacobi pour des matrices particulières). Suggestions en page 114, corrigé en page 121 On note M n (IR) l'ensemble des matrices carrées d'ordre n à coefficients réels, et Id la matrice identité dans M n (IR). Soit A = [a i,j ] i,j=1,...,n ∈ M n (IR). On suppose que :

  avec α = min i=1,...,n α i et ᾱ = max i=1,...,n α i et en déduire que max i=1,n |β -α i | = max(βα, ᾱβ)) .Exercice 84 (Méthode des directions alternées).Soit n ∈ IN, n ≥ 1 et soit A ∈ M n (IR) une matrice carrée d'ordre n symétrique inversible et b ∈ IR n . On cherche à calculer u ∈ IR n , solution du système linéaire suivant :

				i=1,n	|β -α i | β
	3. Déduire de la question 1. que si β > itérative converge.	α 2	, où α = max i=1,n α i , alors ρ(P -1 N ) < 1, et donc que la méthode
	4. Trouver le paramètre β minimisant max i=1,n	|β -α i | β	.
				Au = b,	(1.122)

.à.d βα i pour les coefficients diagonaux, et 0 pour tous les autres).

1. Soit λ ∈ C une valeur propre de la matrice P -1 N ; montrer qu'il existe un vecteur x ∈ C n non nul tel que N x • x = λP x • x (où x désigne le conjugué de x). En déduire que toutes les valeurs propres de la matrice P -1 N sont réelles. 2. Montrer que le rayon spectral ρ(P -1 N ) de la matrice vérifie : ρ(P -1 N ) ≤ max (On pourra d'abord montrer que pour tout β > 0, |βα i | ≤ max(βα, ᾱβ) pour tout i = 1, . . . , n, On suppose connues des matrices X et Y ∈ M n (IR), symétriques. Soit α ∈ IR * + , choisi tel que X + αId et Y + αId soient définies positives (où Id désigne la matrice identité d'ordre n

  λ n sont les valeurs propres de A ordonnées dans le sens croissant. En traçant les graphes des valeurs prises par |1-αλ 1 | et |1-αλ n -1| en fonction de α, en déduire que le min est atteint pour α = 2 λ1+λn . Exercice 74 page 106 (Une matrice cyclique) 1. On peut trouver les trois valeurs propres (dont une double) sans calcul en remarquant que pour α = 0 il y a 2 fois 2 lignes identiques, que la somme des colonnes est un vecteur constant et par le calcul de la trace. 2. Une matrice A est symétrique définie positive si et seulement si elle est diagonalisable et toutes ses valeurs propres sont strictement positives. 3. Appliquer le cours. Pour montrer que A est inversible, montrer que Ax = 0 si et seulement si x = 0. Pour montrer que la méthode de Jacobi converge, montrer que toutes les valeurs propres de la matrice A sont strictement inférieures à 1 en valeur absolue.

	Exercice 75 page 106 (Jacobi et diagonale dominante stricte.)
	Exercice 69 page 104 (Non convergence de la méthode de Jacobi)

Considérer d'abord le cas a = 0. Si a = 0, pour chercher les valeurs de a pour lesquelles A est symétrique définie positive, calculer les valeurs propres de A en cherchant les racines du polynôme caractéristique. Introduire la variable µ telle que aµ = 1λ. Pour chercher les valeurs de a pour lesquelles la méthode de Jacobi converge, calculer les valeurs propres de la matrice d'itération J définie en cours.

Exercice 71 page 104 (Méthode de Jacobi et relaxation.)

1. Prendre pour A une matrice (2,2) symétrique dont les éléments diagonaux sont différents l'un de l'autre. 2. Appliquer l'exercice 13 page 19 en prenant pour T l'application linéaire dont la matrice est D et pour S l'application linéaire dont la matrice est E + F . 4. Remarquer que ρ(B J ) = max(-µ 1 , µ n ), et montrer que : si µ 1 ≤ -1, alors 2D -A n'est pas définie positive, si µ n ≥ 1, alors A n'est pas définie positive. 6. Reprendre le même raisonnement qu'à la question 2 à 4 avec les matrices M ω et N ω au lieu de D et E + F . 7. Chercher une condition qui donne que toutes les valeurs propres sont strictement positives en utilisant la base de vecteurs propres ad hoc. (Utiliser la base de IR n , notée {f 1 , . . . , f n }, trouvée à la question 2.) 8. Remarquer que les f i de la question 2 sont aussi vecteurs propres de J ω et en déduire que les valeurs propres µ (ω) i de J ω sont de la forme µ (ω) i

  ce qui prouve que (1.126) est équivalent à (1.127). De (1.127), on déduit aussi, grâce au fait que Df i

  = x k . On obtient donc la solution après n itérations au plus. 2. Les matrices B GS et B J sont triangulaires supérieures avec des 0 sur la diagonale (et elles sont d'ailleurs égales). Pour ces deux matrices le rayon spectral est nul. Pour les deux méthodes, on obtient la solution après n itérations au plus. Le raisonnement est semblable à celui fait pour Jacobi à la question précédente. La différence ici est que x

	, puis par récurrence
	que x (k)
	(1)

k

  On en déduit que • A est une norme sur IR n . 2. Posons à = λId + A et notons ãi,j ses coefficients. Comme λ ∈ IR * La matrice à est donc à diagonale dominante stricte, et par l'exercice 75 page 106, elle est donc inversible. 3. La méthode de Jacobi pour la résolution du système (1.121) s'écrit :

	(1.120), ceux-ci vérifient :		+ ,et grâce aux hypothèses (1.118)-
	ãi,j ≤ 0, ∀i, j = 1, . . . , n, i = j, n	(1.129)
	ãi,i >	j =i i=1	a i,j , ∀i = 1, . . . , n.	(1.130)

  Soit ε > 0 ; on sait qu'il existe une norme sur IR n , notée • ε , telle que la norme induite sur M n (IR) (encore notée • ε ) vérifie B J ε ≤ ρ + ε. (On rappelle que cette norme dépend de ε et B J .) Avec cette norme, on a donc
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  Les techniques de recherche des éléments propres, c.à.d. des valeurs et vecteurs propres (voir Définition 1.3 page 8) d'une matrice sont essentielles dans de nombreux domaines d'application, par exemple en dynamique des structures : la recherche des modes propres d'une structure peut s'avérer importante pour le dimensionnement de structures sous contraintes dynamiques ; elle est essentielle dans la compréhension des phénomènes acoustiques. On peut se demander pourquoi on parle dans ce chapitre, intitulé "systèmes linéaires" du problème de recherche des valeurs propres : il s'agit en effet d'un problème non linéaire, les valeurs propres étant les solutions du polynôme caractéristique, qui est un polynôme de degré n, où n est la dimension de la matrice. Il n'est malheureusement pas possible de calculer numériquement les valeurs propres comme les racines du polynôme caractéristique, car cet algorithme est instable : une petite perturbation sur les coefficients du polynôme peut entraîner une erreur très grande sur les racines (voir par exemple le chapitre 5 du polycopié d'E. Hairer, cité dans l'introduction de ce cours, en ligne sur le web). De nombreux algorithmes ont été développés pour le calcul des valeurs propres et vecteurs propres. Ces méthodes sont en fait assez semblables aux méthodes de résolution de systèmes linéaires. Dans le cadre de ce cours, nous nous restreignons à deux méthodes très connues : la méthode de la puissance (et son adaptation de la puissance inverse), et la méthode dite QR.

  On voit clairement sur cet exemple que la suite x(k) converge vers f 2 = +∞. Si maintenant on fait tourner Scilab en lui demandant de calculer ensuite le produit scalaire de Ax avec x : Théorème 1.64 (Convergence de la méthode de la puissance). Soit A une matrice de M n (C l ). On note λ 1 , • • • , λ n les valeurs propres de A, (f 1 , • • • , f n ) une base orthonormée de trigonalisation de A telle que Af n = λ n f n . On suppose que la valeur propre λ n est dominante, c.à.d. que

							132)
	où x désigne la norme euclidienne.				
	On obtient les résultats suivants :				
	0.8944272	0.7808688	0.7327935	0.7157819	0.7100107	0.7080761	0.7074300
	-0.4472136 -0.6246950 -0.6804511 -0.6983239 -0.7061361 -0.7067834 -0.706999
	√ 2 2 lorsque k → -->x= A * x;x=x/norm(x);mu=(A * x)' * x -1 1
	ce qui correspond au calcul de la suite µ k = Ax (k) • x (k) , k ≥ 0, on obtient la suite :
			2.8, 2.9756098, 2.9972603, 2.9996952, 2.9999661, ...	

qui a tout l'air de converger vers 3 ! En fait on a le théorème suivant, qui montre que dans un certain nombre de cas, on a effectivement convergence de l'algorithme vers la valeur propre dite dominante (celle qui correspond au rayon spectral).

  Alors, la suite de vecteurs x 2k définie par (1.132) converge vers un vecteur unitaire qui est vecteur propre de A pour la valeur propre dominante λ n . De plus, si la norme choisie dans l'algorithme (1.132) est la norme 2, alors la suite (Ax k • x k ) k∈IN converge vers λ n lorsque k → +∞. Démonstration. La démonstration de ce résultat fait l'objet de l'exercice 90 dans le cas plus simple où A est une matrice symétrique, et donc diagonalisable dans IR.

  Toute matrice A peut se décomposer sous la forme A = QR, où Q est une matrice orthogonale et R une matrice triangulaire supérieure. Dans le cas où A est inversible, cette décomposition est unique. On a donc le théorème suivant : Théorème 1.65 (Décomposition QR d'une matrice). Soit A ∈ M n (IR). Alors il existe Q matrice orthogonale et R matrice triangulaire supérieure à coefficients diagonaux positifs ou nuls tels que A = QR. Si la matrice A est inversible, alors cette décomposition est unique.

  et • désigne la norme euclidienne. Etudier la convergence de la suite (x k ). [On pourra montrer que x k est proportionnel à (αµ k + kβµ k-1 , βµ k ) t .] Exercice 90 (Méthode de la puissance). Suggestions en page 130, corrigé en page 131 1. Soit A ∈ M n (IR) une matrice symétrique (non nulle). Soit λ n ∈ IR valeur propre de A t.q. |λ n | = ρ(A) et soit y

t ,

  ik a ij On soustrait la projection de a k sur q j sur tous les vecteurs de A après k.Pour i = 1, . . . , n, a ij := a ija ik r kj Fin pour i Fin pour jMontrer que la matrice A résultant de cet algorithme est identique à la matrice Q donnée par la méthode de Gram-Schmidt, et que la matrice R est celle de Gram-Schmidt. (Cet algorithme est celui qui est effectivement implanté, car il est plus stable que le calcul par le procédé de Gram-Schmidt original. )

	1.6. VALEURS PROPRES ET VECTEURS PROPRES	CHAPITRE 1. SYSTÈMES LINÉAIRES
	Normalisation	
	Pour ℓ = 1, . . . , n	
	a ℓk := a ℓk /r kk	
	Fin pour ℓ	
	Pour j = k + 1, . . . , n	
	Produit scalaire correspondant à q k • a j r kj := n i=1 a Exercice	

94 (Méthode QR avec shift). Soit A = cos θ sin θ sin θ 0

1. Calculer les valeurs propres de la matrice A.

  λ n ), et P est une matrice orthogonale. (1.136) (La notation diag(λ 1 , . . . , λ n ) désigne la matrice diagonale dont les termes diagonaux sont λ 1 ,... ,λ n ).

	On suppose de plus que
	P

t admet une décomposition LU et que les coefficients diagonaux de U sont strictement positifs. (1.137) On va montrer que A k tend vers λ = diag(λ 1 , . . . , λ n ).

Analyse numérique I, télé-enseignement, L3

  1.6. VALEURS PROPRES ET VECTEURS PROPRES CHAPITRE 1. SYSTÈMES LINÉAIRES 2. Soient Q i et R i les matrices orthogonales et triangulaires supérieures définies par (1.135). 2.1 Montrer que A 2

  .139) 2.3 Justifier brièvement le fait que Qk est une matrice orthogonale et Rk est une matrice triangulaire à coefficients diagonaux positifs.3. SoitM k = λ k Lλ -k . 3.1 Montrer que P M k = Qk T k où T k = Rk U -1 λ -k estune matrice triangulaire supérieure dont les coefficients diagonaux sont positifs. 3.2 Calculer les coefficients de M k en fonction de ceux de L et des valeurs propres de A. 3.3 En déduire que M k tend vers la matrice identité et que Qk T k tend vers P lorsque k → +∞. 4. Soient (B k ) k∈IN et (C k ) k∈IN deux suites de matrices telles que les matrices B k sont orthogonales et les matrices C

k triangulaires supérieures et de coefficients diagonaux positifs. On va montrer que si B k C k tend vers la matrice orthogonale B lorsque k tend vers l'infini alors B k tend vers B et C k tend vers l'identité lorsque k tend vers l'infini. On suppose donc que B k C k tend vers la matrice orthogonale B. On note b 1 , b 2 , . . . , b n les colonnes de la matrice

  Montrer que ψ est différentiable et donner l'expression de Dψ(x)(h) pour h ∈ IR n . Utiliser le fait que Df (x) est une application linéaire et le théorème de Riesz. Appliquer ensuite la différentielle à un vecteur h bien choisi.CorrigésExercice 96 page 139 1. Par définition, T = Df (x) est une application linéaire de IR n dans IR n , qui s'écrit donc sous la forme : T (h) = Or l'application T dépend de x, donc le vecteur a aussi. Montrons maintenant que(a(x)

	Suggestions
	Exercice 96 page 139 (Différentielle et gradient)
	1.

Exercice 98 page 139 (Différentielle de l'inverse des matrices) Calculer φ(A + H), pour H suffisamment petit, à l'aide des séries de Neumann (voir exercice 53 page 77 et corollaire 1.39 page 70) et prendre garde à la non commutativité de la mmultiplication dans M n (IR).

n i=1 a i h i = a • h.

  Théorème 2.8 (Point fixe de contraction avec relaxation). On désigne par | • | la norme euclidienne sur IR n . Soit g ∈ C(IR n , IR n ) lipschitzienne de constante de Lipschitz M > 0, et telle que (2.6) est vérifiée : alors la fonction

  beaucoup plus générales (mais le théorème est non constructif), c'est le théorème de Brouwer 3 : si f est une fonction continue de la boule unité de IR n dans la boule unité, alors elle admet un point fixe dans la boule unité. Vitesse de convergence). Soit (x (k) ) n∈IN ∈ IR n et x ∈ IR n . On suppose que x (k) → x lorsque k → +∞, que la suite est non stationnaire, c.à.d. que x (k) = x pour tout k ∈ IN, et que

	2.2.3 Vitesse de convergence
	Définition 2.14 (

∀n ∈ IN. DÉMONSTRATION -On se ramène au théorème précédent avec A + βId au lieu de A et R + β au lieu de R.

Remarque 2.13 (Point fixe de Brouwer). On s'est intéressé ici uniquement à des théorèmes de point fixe "constructifs", i.e. qui donnent un algorithme pour le déterminer. Il existe aussi un théorème de point fixe dans IR n avec des Analyse numérique I, télé-enseignement, L3 hypothèses

  .35) DÉMONSTRATION -L'espace des vecteurs orthogonaux à δ (k) est de dimension n -1. Soit (γ1, . . . , γn-1) une base de cet espace, alors (γ1, . . . , γn-1, δ(k) ) est une base de IR n et si B (k) vérifie (2.33) et (2.34), les valeurs prises par l'application linéaire associée à B (k) sur chaque vecteur de base sont connues, ce qui détermine l'application linéaire et donc la matrice B (k) de manière unique. Soit B (k) définie par (2.35), on a :

  cos x + 2 sin y -5y = 0.(2.37) et montrer que la suite définie par cet algorithme est toujours bien définie.2. Soit (x, y) une solution du problème (2.36)-(2.37). Montrer qu'il existe ε > 0 tel que si (x 0 , y 0 ) est dans la boule B ε de centre (x, y) et de rayon ε, alors la suite (x n , y n ) n∈IN construite par la méthode de Newton converge vers (x, y) lorsque n tends vers +∞.3. Montrer qu'il existe au moins une solution (x, y) au problème (2.36)-(2.37).

  bien définie (c'est-à-dire que la matrice J G (u k , λ k ) est inversible pour tout k ∈ IN) et converge, quand k → +∞, vers (u, λ). 7. (Question indépendante des questions précédentes) On suppose que A ou B est s.d.p. Montrer que les racines de P sont nécessairement réelles.

Exercice 122 (Newton monotone). Soit F une application de

IR n dans IR n (n ≥ 1) de classe C 3 . On suppose que F est convexe, c'est-à-dire F (tx + (1t)y) ≤ tF (x) + (1t)F (y) pour tous x, y ∈ IR n et t ∈ [0, 1].

(On rappelle que x ≤ y signifie que x i ≤ y i pour toutes les composantes x i , y i de x et y.) On note J F (x) la matrice jacobienne de F au point x.

  .43) où A ∈ M n (IR) est une matrice symétrique définie positive, α i > 0 pour tout i ∈ {1, . . . , n} et b i ∈ IR pour tout i ∈ {1, . . . , n}. On admet que (2.43) admet au moins une solution (ceci peut être démontré mais est difficile).

1. Montrer que (2.43) admet une unique solution.

  3. On suppose de plus que f est deux fois dérivable et que f ′ (x) = 1 2 . Montrer que la convergence de la suite (x n ) n∈IN définie par (1) est au moins cubique, c'est-à-dire qu'il existe c ∈ IR + tel que

  .46) où la suite (y(k) ) n∈IN est une suite donnée d'éléments de I. Montrer que la suite (x (k) ) n∈IN converge vers x de manière au moins linéaire, et que cette convergence devient super-linéaire si f ′ (y n ) → f ′ (x) lorsque n → +∞. 4. On suppose maintenant que n ≥ 1 et que f ∈ C 1 (IR n , IR n ). La méthode définie par (2.45) ou(2.46) peut-elle se généraliser, avec d'éventuelles modifications des hypothèses, à la dimension n ?

Exercice 129 (Méthode de Steffensen). Suggestions en page 173, corrigé détaillé en page 183

  .49) Montrer que la méthode (2.49) converge localement et que la vitesse de convergence est au moins cubique. [On pourra commencer par le cas où g ′ ne s'annule pas].

	Exercice 131 (Méthode de la sécante). Corrigé en page 2.3.3 page 186
	Soient

  La fonction F est infiniment continûment différentiable. Pour appliquer le théorème de convergence du cours, il reste à vérifier que la matrice jacobienne DF est inversible dans un voisinage de (x, y) où (x, y)

une solution de (2.38)-

(2.39)

. Or Det(DF (x, y))) = 5 = 0. La matrice DF (x, y)) est donc inversible, et le théorème du cours s'applique : il existe donc ε > 0 tel que si (x 0 , y 0 ) est dans la boule B ε de centre (x, y) et de rayon ε, alors la suite (x n , y n ) n∈IN construite par la méthode de Newton converge vers (x, y) lorsque n tends vers +∞. De plus la convergence est quadratique.

  n (IR) est ouvert car image réciproque de l'ouvert IR * par l'application continue qui a une matrice associe son déterminant. (b) L'application T est clairement définie de GL n (IR) dans GL n (IR). Montrons qu'elle est dérivable. Soit H ∈ GL n (IR) telle que B + H soit inversible. Ceci est vrai si H B -1 < 1, et on a alors, d'après le cours :

  Ceci entraîne d'une part que x n+1 ∈ B(x, γ) et d'autre part, par récurrence, la convergence de la suite (x n ) n∈IN vers x. Il reste à montrer que la convergence est d'ordre 2. Grâce à (2.66), on a :

  IN, A ∈ M n (IR) une matrice symétrique définie positive, b ∈ IR n et c ∈ IR, et soit f une fonction de IR n dans IR définie par (3.12), où x • y désigne le produit scalaire de x ∈ IR IN et y ∈ IR IN ; on note | • | 2 la norme euclidienne sur IR IN , et • 2 la norme matricielle induite sur M n (IR).1. Montrer que f est de classe C 3 (IR n , IR). Donner son gradient, sa hessienne et sa différentielle troisième.

	3.3.5 Exercices (algorithmes pour l'optimisation sans contraintes)
	Exercice 140 (Minimisation d'une fonction quadratique).
	Soient N ∈ 2. Montrer que

(∇f (x) -∇f (y)) • (xy) ≥ α|x -y|

2 

2 , ∀(x, y)

∈ IR n × IR n , ∀(x, y) ∈ IR n , (3.35) |∇f (x) -∇f (y))| 2 ≤ M |x -y| 2 , ∀(x, y) ∈ IR n . (

3

.36) où α est la plus petite valeur propre de A et M > 0 son rayon spectral. 3. Montrer que f est strictement convexe et que f (x) → +∞ quand |x| → +∞. Analyse numérique I, télé-enseignement, L3

  150 (Méthode de Polak-Ribière). Suggestions en page 223, corrigé en page 229 Dans cet exercice, on démontre la convergence de la méthode de Polak-Ribière (méthode de gradient conjugué pour une fonctionnelle non quadratique) sous des hypothèses "simples" sur f . Soit f ∈ C 2 (IR n , IR). On suppose qu'il existe α > 0, β ≥ α tel que α|y| 2 ≤ H(x)y • y ≤ β|y| 2 pour tout x, y ∈ IR n . (H(x) est la matrice hessienne de f au point x.)1. Montrer que f est strictement convexe, que f (x) → ∞ quand |x| → ∞ et que le spectre VP(H(x)) de H(x) est inclus dans [α, β] pour tout x ∈ IR n .

  Soit f ∈ C 2 (IR n , IR p ), avec n, p ∈ IN * . Soit C ∈ M p (IR) une matrice réelle carrée d'ordre p, symétrique définie positive, et d ∈ IR p . Pour x ∈ IR n , on pose

2

  La fonction f vérifie les hypothèses du théorème 3.30 d'existence et d'unicité du minimum. En particulier la

	hessienne H f =	4 -1 -1 2	est s.d.p.. Le minimum est obtenu pour

  IR n , IR), sa hessienne H est continue, donc H 2 atteint son max sur B R+1 qui est un fermé borné de IR n . Soit M = max x∈BR+1 H(x) 2 , on a |H(x)y • y| ≤ M y • y ≤ M |y| 2 .

3. Soit w

k = -∇f (x k ).

  M , en remarquant que |w k | ≤ M . 5. Montrons que ∇f (x k ) → 0 lorsque k → +∞. On a montré que ∀k, |w k| 2 ≤ 2 M (f (x k )f (x k+1 )). Or la suite (f (x k )) n∈IN est convergente. Donc |w k | → 0 lorsque n → +∞ et w k = ∇f (x k ) ce qui prouve le résultat. La suite (x k ) n∈IN est bornée donc ∃(n k ) k∈IN et x ∈ IR n ; x n k → x lorsque k → +∞ et comme ∇f (x n k ) → 0,on a, par continuité, ∇f (x) = 0. 6. On suppose qu'il existe un unique x ∈ IR n tel que ∇f (x) = 0. Comme f est croissante à l'infini, il existe un point qui réalise un minimum de f , et on sait qu'en ce point le gradient s'annule ; en utilisant l'hypothèse d'unicité, on en déduit que ce point est forcément x. On remarque aussi que x est la seule valeur d'adhérence de la suite (bornée) (x k ) k∈IN , et donc que x k → x quand k → +∞. = se k et y = te k où (s, t) ∈ IR 2 et e k est le k-ième vecteur de la base canonique de IR n ; en notant ∂ k f la dérivée partielle de f par rapport à la k-ième variable, il vient :

	Exercice 145 page 216 (Méthode de relaxation)
	1. On sait par la propostion 3.13 que si f vérifie l'hypothèse (3.10) alors f est strictement convexe et tend vers l'infini en l'infini, et donc il existe un unique x ∈ IR n réalisant son minimum. 2. Ecrivons l'hypothèse (3.10) avec x

  • (yx). On a donc par hypothèse ϕ ′′ (t) ≥ α|y -x| 2 . On déduit alors de 3.43 que .44 entraîne la stricte convexité de f et sa croissance à l'infini (voir la démonstration de la proposition 3.13). Il reste à montrer que l'ensemble VP(H(x)) des valeurs propres deH(x) est inclus dans [α, β]. Comme f ∈ C 2 (IR, IR), H(x)est symétrique pour tout x ∈ IR, et donc diagonalisable dans IR. Soit λ ∈ VP(H(x)) ; il existe donc y ∈ IR n , y = 0 tel que H(x)y = λy, et donc αy • y ≤ λy • y ≤ βy • y, ∀λ ∈ VP(H)(x)). On en déduit que VP(H(x)) ⊂ [α, β].

	f (y) ≥ f (x) + ∇f (x) • (y -x) +	α 2	|y -x| 2 .	(3.44)
	L'inégalité 3			

  b•x, et les fonctions g i sont affines, c'est-à-dire qu'il existe b i ∈ IR n et c i ∈ IR tels que g i (x) = b i • x + c i , alors on dit qu'on a affaire à un problème de "programmation linéaire". Ces problèmes sont souvent résolus numériquement à l'aide de l'algorithme de Dantzig, inventé vers 1950. -Programmation quadratique. Avec le même ensemble de contraintes K, si de plus f est quadratique, c'est-à-dire si f est de la forme f(x) = 1 2 Ax • xb •x, et les fonctions g i sont affines, alors on dit qu'on a affaire à un problème de "programmation quadratique".3. Programmation convexe. Dans le cas où f est convexe et K est convexe, on dit qu'on a affaire à un problème de "programmation convexe". Soit E = IR n et f ∈ C(E, IR). 1. Si K est un sous-ensemble fermé borné non vide de E, alors il existe x ∈ K tel que f (x) = inf Si K est un sous-ensemble fermé borné non vide de E, comme f est continue, elle atteint ses bornes sur K, d'où l'existence de x.

	DÉMONSTRATION -
	1.
	3.4.2 Existence -Unicité -Conditions d'optimalité simple
	Théorème 3.28 (Existence). Analyse numérique I, télé-enseignement, L3

K f . 2. Si K est un sous-ensemble fermé non vide de E, et si f est croissante à l'infini, c'est-à-dire que f (x) → +∞ quand |x| → +∞, alors ∃x ∈ K tel que f (x) = inf K f

  On aboutit donc à une contradiction.

Des théorèmes d'existence 3.28 et d'unicité 3.29 on déduit immédiatement le théorème d'existence et d'unicité suivant : Théorème 3.30 (Existence et unicité). Soient E = IR n , f ∈ C(E, IR n ) une fonction strictement convexe et K un sous ensemble convexe fermé de E. Si K est borné ou si f est croissante à l'infini, c'est-à-dire si f (x) → +∞ quand x → +∞, alors il existe un unique élément x de K solution du problème de minimisation (3.48), i.e. tel que f (x) = inf K f Remarque 3.31. On peut remplacer E = IR n par E espace de Hilbert de dimension infinie dans le dernier théorème, mais on a besoin dans ce cas de l'hypothèse de convexité de f pour assurer l'existence de la solution (voir cours de maîtrise). Proposition 3.32 (Condition simple d'optimalité)

  .49) Remarque 3.33 (Quelques rappels de calcul différentiel). Comme g ∈ C 1 (IR n , IR p ), si u ∈ IR n , alors Dg(u) ∈ L(IR n , IR p ), ce qui revient à dire, en confondant l'application linéaire Dg(u) avec sa matrice, que Dg(u) ∈ M p,n (IR). Par définition, Im(Dg(u)) = {Dg(u)z, z ∈ IR n } ⊂ IR p , et rang(Dg(u)) = dim(Im(Dg(u))) ≤ p. On rappelle de plus que

  Remarque 3.35 (Utilisation pratique du théorème de Lagrange). Soit f ∈ C 1 (IR n , IR), g = (g 1 , . . . , g p ) t avec g Le problème qu'on cherche à résoudre est le problème de minimisation (3.48) qu'on rappelle ici :

				ū ∈ K f (ū) = inf
	    	∂f ∂x j	(ū) +	p i=1	λ i	∂g i ∂x

i ∈ C(IR n , IR) pour i = 1, . . . , p., et soit K = {u ∈ IR n , g i (u) = 0, i = 1, . . . , p}. K f D'après le théorème des multiplicateurs de Lagrange, si ū est solution de (3.48) et Im(Dg(ū)) = IR p , alors il existe (λ 1 , . . . , λ p ) ∈ IR p tel que ū est solution du problème j = 0, j = 1, . . . n, g i (ū) = 0, i = 1, . . . , p. (3.54) Le système (3.54) est un système non linéaire de de (n + p) équations et à (n + p) inconnues (x, . . . , xn , λ i . . . λ p ). Ce système sera résolu par une méthode de résolution de système non linéaire (Newton par exemple). Remarque 3.36. On vient de montrer que si x solution de (3.48) et Im(Dg(x)) = IR p , alors x solution de (3.54). Par contre, si x est solution de (3.54), ceci n'entraîne pas que x est solution de (3.48). Des exemples d'application du théorème des multiplicateurs de Lagrange sont donnés dans les exercices 155 page 240 et 156 page 241.

  Théorème 3.38 (Kuhn-Tucker). Soit f ∈ C(IR n , IR), soit g i ∈ C 1 (IR n , IR), pour i = 1, . . . , p, et soit K = {x ∈ IR n , g i (x) ≤ 0 ∀i = 1 . . . p}. On suppose qu'il existe x solution de (3.48), et on pose I(x) = {i ∈ {1, . . . , p}; |g i (x) = 0}. On suppose que f est différentiable en x et que la famille (de IR n ) {∇g i (x), i ∈ I(x)} est libre. Alors il existe une famille (λ i ) i∈I(x) ⊂ IR + telle que

	∇f (x) +	i∈I(x)

  Exercice 157 (Boites de chocolats). Un chocolatier veut concevoir une boîte cylindrique en carton, ouverte sur le dessus. Le coût du carton est proportionnel à la surface utilisée. Le carton doré qui constitue le cylindre est deux fois plus cher que le carton dont est fait le fond. Le rayon du cylindre est r et sa hauteur h. La boîte doit contenir un volume V de chocolats. Le chocolatier souhaite choisir r et h afin de minimiser le coût du carton.1. Écrire le problème d'optimisation associé. 2. Résoudre le problème sans utiliser les multiplicateurs de Lagrange.3. Résoudre le problème avec la méthode des multiplicateurs de Lagrange. Soit U une partie non vide, fermée convexe de IR n . Pour v ∈ IR n , on pose J

Exercice 158 (Minimisation sans dérivabilité). Soient A ∈ M n (IR) une matrice s.d.p., b ∈ IR n , j : IR n → IR une fonction continue et convexe, à valeurs positives ou nulles (mais non nécessairement dérivable, par exemple j(v) = n j=1 α i |v i |, avec α i ≥ 0 pour tout i ∈ {1, . . . , n}).

  dt, où λ est donné par la question 2. 4. (Question indépendante de la précédente et de la suivante) On suppose dans cette question que F et ψ sont de classe C 4 . Soit λ donné par la question 2. Pour x ∈ IR 2 , on pose G(x) = F (x) + λψ(x), et on suppose que la matrice hessienne de G est s.d.p au point x(0) (c'est-à-dire H G (x(0)) s.d.p.). La question 2 donne que le couple (x(0), λ) est solution du système de 3 équations à 3 inconnues (notées x, µ avec x ∈ IR 2 , µ ∈ IR) : Dans cette question, on note x 1 et x 2 les deux composantes de x ∈ IR 2 et on choisitF (x) = 2(x 1 + 1) 2 + (x 2 + 2) 2 , ψ(x) = x 1 + x 2a,où a > 0 est donné. Cette application est une modélisation très simplifiée du problème suivant : une entreprise possède 2 usines. La solution du modèle lui indique comment répartir (de manière optimale) cette production entre les deux usines. Puis, le modèle lui indique le coût d'une "petite" augmentation de production (c'est le coût marginal). Essayez d'indiquer comment (3.63)-(3.64) modélise ce problème et de donner le sens (pour l'entreprise) du multiplicateur de Lagrange (noté ici λ). (ii) L'ensemble K = {|x| = 1} est fermé borné mais non convexe. Le théorème d'existence 3.28 page 235 s'applique donc, mais pas le théorème d'unicité 3.29 page 236. De fait, on peut remarquer que K = {-1, 1}, et donc {f (x), x ∈ K} = {1}. Il existe donc deux solutions du problème (3.48) : x1 = 1 et x1 = -1. (iii) L'ensemble K = {|x| ≥ 1} est fermé, non borné et non convexe. Cependant, on peut écrire

	(a) Montrer que le problème (3.63)-(3.64) admet une unique solution (notée x(s)) pour tout s ∈ IR, sans la calculer.
	Montrer que ∇ψ(x(0)) = 0. (b) Calculer x(0).				
	(c) Comparer lim s→0	p(s) -p(0) s	, lim s→0	F (a + s, 0) -F (a, 0) s	et lim s→0	F (0, a + s) -F (0, a) s	.
	(d)						
				∇F (x) + µ∇ψ(x) = 0, ψ(x) = 0.		(3.65) (3.66)

Montrer que l'algorithme de Newton pour calculer une solution de (3.65)-(3.66) converge vers (x(0), λ) à condition que l'algorithme soit initialisé avec un point suffisamment proche de (x(0), λ). La condition "H G (x(0)) s.d.p." est elle assurée si F est strictement convexe et ψ est affine ?

5. (Exemple)

  1] sont des ensembles convexes fermés. On peut donc appliquer le théorème 3.30 page 236 : il existe un unique x1 ∈ IR et un unique x2 ∈ IR solution de (3.48) pour K = K 1 et K = K 2 respectivement. Il suffit ensuite de comparer x1 et x2 . Comme x1 = -1 et x2 = 1, on a existence mais pas unicité. (iv) L'ensemble K = {|x| > 1} n'est pas fermé, donc le théorème 3.28 page 235 ne s'applique pas. De fait, il n'existe pas de solution dans ce cas, car on a lim x→1 + f (x) = 1, et donc inf K f = 1, mais cet infimum n'est pas atteint.Exercice 155 page 240 (Maximisation de l'aire d'un rectangle à périmètre donné) 1. On peut se ramener sans perte de généralité au cas du rectangle [0, x 1 ] × [0, x 2 ], dont l'aire est égale à x 1 x 2 et de périmètre 2(x 1 + x 2 ). On veut donc maximiser x 1 x 2 , ou encore minimiser -x 1 x 2

  En déduire qu'il existe une sous-suite (x km ) m∈IN et y ∈ K tels que xkm → y lorsque m → +∞. 4. Montrer que y = xK . En déduire que toute la suite (x k ) k∈IN converge vers xK lorsque k → +∞.Exercice 166 (Convergence de l'algorithme d'Uzawa). Corrigé en page 253Soient n ≥ 1 p ∈ IN ⋆ . Soit f ∈ C 1 (IR n , IR) une fonction telle que ∃α > 0, (∇f (x) -∇f (y)) • (xy) ≥ α|x -y| 2 , ∀x, y ∈ IR n . Soit C ∈ M p,n (IR) (Cest donc une matrice, à éléments réels, ayant p lignes et n colonnes) et d ∈ IR p . On note D = {x ∈ IR n , Cx ≤ d} et C + = {u ∈ IR IR n . 2. Montrer que f est strictement convexe et que f (x) → ∞ quand |x| → ∞. En déduire qu'il existe une et une seule solution au problème (3.75).

	5. Déduire de ces questions un algorithme (dit "de pénalisation") de résolution du problème de minimisation
	suivant : en donnant un exemple de fonction ψ.	Trouver xK ∈ K; f (x K ) ≤ f (x), ∀x ∈ K,

.72) On peut donc remarquer que M (λ) réalise le minimum (en x) du problème sans contrainte, qui s'écrit, pour λ ∈ IR p fixé :

x ∈ IR n L(x, λ) ≤ L(y, λ) pour tout x ∈ IR n , (

3.73)

3. p , u ≥ 0}. On suppose D = ∅ et on s'intéresse au problème suivant :

x ∈ D, f (x) ≤ f (y), ∀y ∈ D. (3.75) 1. Montrer que f (y) ≥ f (x) + ∇f (x) • (yx) + α 2 |x -y| 2 pour tout x, y ∈ Dans la suite, on note x cette solution. Pour u ∈ IR p et x ∈ IR n , on pose L(x, u) = f (x) + u • (Cxd).

3. Soit u ∈ IR p (dans cette question, u est fixé). Montrer que l'application x → L(x, u) est strictement convexe (de IR n dans IR) et que L(x, u) → ∞ quand |x| → ∞ [Utiliser la question 1]. En déduire qu'il existe une et une seule solution au problème suivant : x ∈ IR n , L(x, u) ≤ L(y, u), ∀y ∈ IR n . (3.76)

  on rappelle que x est l'unique solution de (3.75) et x u est l'unique solution de (3.76)) et que u est solution de (3.78). [On pourra commencer par montrer, en utilisant la première inégalité, que x ∈ D et u • (Cxd) = 0.Déduire des questions 2, 4 et 5 que le problème (3.78) admet au moins une solution.Comme 2αρ C 2 > 0, ceci montre que la suite (u ku) k∈IN est décroissante (positive) et donc convergente. Il suffit alors de remarquer que|x k -x| 2 ≤ 1 ρ(2αρ C 2 ) (|u k -u| 2 -|u k+1 -u| 2 )pour en déduire que x k → x quand k → +∞.La suite (u ku) k∈IN est convergente. La suite (u k ) k∈IN est donc bornée. Si ũ est une valeur d'adhérence de la suite (u k ) k∈IN , en passant à la limite sur l'équation ∇f(x k ) + C t u k = 0 on obtient ∇f (x) + C t ũ = 0. Si rang(C) = p, on a aussi rang(C t ) = p. L'application u → C t uest de IR p dans IR n , on a donc dim(ker C t ) = p -rang(C t ) = 0. Ceci prouve qu'il existe un unique ũ tel que C t ũ = -∇f (x). La suite (u k ) k∈IN n'a alors qu'une seule valeur d'adhérence et elle est donc convergente vers u et u est l'unique élément de C + t.q. ∇f (x) + C t u = 0.

	Chapitre 4		
	Equations différentielles	
	4.1 Introduction		
	On s'intéresse ici à la résolution numérique d'équations différentielles avec conditions initiales (ou problème de
	Cauchy) :		
	x décrivant le
	comportement de l'amortisseur d'une voiture :		
	 	my ′′ + cy ′ + ky = 0,	
		y ′ (0) = 0. y(0) = x0 ,	(4.2)

] Montrer que ∇f (x) + C t u = 0 et que u = P C + (u + ρ(Cxd)), pour tout ρ > 0, où P C + désigne l'opérateur de projection orthogonale sur

C + . [on rappelle que si v ∈ IR p et w ∈ C + , on a w = P C + v ⇐⇒ ((vw) • (wz) ≥ 0, ∀z ∈ C + ).] 6. ′ (t) = f (x(t), t) t > 0, x(0) = x0 . (

4

.1) où f est une fonction de IR n × IR à valeurs dans IR n , avec n ≥ 1. L'inconnue est la fonction x de IR dans IR n . Souvent, t représente le temps, et on cherche donc x fonction de IR + à valeurs dans IR n . On a donc affaire à un système différentiel d'ordre 1. De nombreux exemples de problèmes s'écrivent sous cette forme. Citons entre autres les lois qui régissent la cinétique d'un ensemble de réactions chimiques, ou encore les équations régissant la dynamique des populations. Notons qu'un système différentiel faisant intervenir des différentielles d'ordre supérieur peut toujours s'écrire sous la forme (4.1). Prenons par exemple l'équation du second ordre où m est la masse de la voiture, c le coefficient d'amortissement et k la force de rappel. L'inconnue y est le déplacement de l'amortisseur par rapport à sa position d'équilibre. Pour se ramener à un système d'ordre 1, on pose x 1 = y, x 2 = y ′ , et le système amortisseur s'écrit alors, avec comme inconnue x

  maximale de (4.1), c'est-à-dire que x est solution de (4.1) sur [0, T M [, et que s'il existe α > 0 et y ∈ C 2 ([0, α[, IR n ) solution de (4.1) sur [0, α[ alors α ≤ T M et y = x sur [0, α[. De plus, par le théorème d'explosion en temps fini, si T M < +∞ alors |x(t)| → +∞ quand t → T M .Remarque 4.1 (Hypothèse sur f ). On rappelle d'abord qu'une fonction ϕ de IR dans IR est dite lipschitzienne si∀A > 0, ∃M A ∈ IR + tel que , ∀(x, y) ∈ IR, |ϕ(x)ϕ(y)| ≤ M A |x -y|.Par exemple la fonction x → x 2 est lipschitzienne sur les bornés, mais la fonction x → √ x ne l'est pas (sa dérivée explose en 0).On peut se servir de cette notion pour affaiblir l'hypothèse sur f pour avoir existence et unicité d'une solution maximale de (4.1) ; on remplace l'hypothèse f ∈ C 1 (IR n × IR, IR n ) par f ∈ C(IR n × IR, IR n ) "lipschitzienne sur les bornés", c'est-à-dire qui vérifie :

(4.4) Par exemple, toute fonction linéaire est lipschitzienne, et la fonction valeur absolue l'est aussi. Mais la fonction x → x 2 ne l'est pas. Il est donc utile d'introduire la notion plus faible suivante : on dit qu'une fonction ϕ de IR dans IR est dite lipschitzienne sur les bornés si ∀A > 0, ∃M A ∈ IR + tel que ∀(x, y) ∈ B 2 A |ϕ(x)ϕ(y)| ≤ M A |x -y|. (4.5)

  .6) où |.| désigne une norme sur IR n et B A la boule de centre 0 et de rayon A. Il est clair que si f ∈ C 1 (IR n × IR, IR n ) alors f vérifie (4.6), alors qu'elle n'est évidemment pas forcément globalement lipschitzienne (prendre f (x) = x 2 pour s'en convaincre). De même la propriété (4.6) est encore vérifiée si f est "C 1 par morceaux", propriété toutefois délicate à démontrer dans le cas général. La fonction f est de classe C 1 , donc lipschitzienne sur les bornés (mais pas globalement lipschitzienne). On peut donc appliquer le théorème de Cauchy-Lipschitz qui nous donne existence et unicité d'une solution maximale. On cherche alors à calculer une solution locale. Un calcul simple donne x(t) = 1 1-t , et cette fonction tend vers +∞ lorsque t tend vers 1 -. On en déduit que le temps maximal de la solution est T M = 1, et on a donc comme solution maximale x(t) = 1 1-t t ∈ [0, 1[. On peut alors appliquer le lemme de Gronwall 1 à la fonction t → |x(t)|. On obtient que : |x(t)| ≤ (|b T |T + |x 0 |)e aT t pour tout t ∈ [0, T [. On en déduit que x reste bornée sur tout intervalle [0, T ], T ∈ IR. Le temps d'existence T M est donc égal à +∞.

	4.1. INTRODUCTION	CHAPITRE 4. EQUATIONS DIFFÉRENTIELLES
	Notations et hypothèses :		
			
	Cauchy :		
		dx dt x(0) = 1 (t) = x 2 (t)	
	et donc :	t	
	|x(t)| ≤ a T |x(s)|ds + |b Dans de nombreux cas, il n'est pas possible d'obtenir une expression analytique de la solution de (4.1). L'objet 0
	de ce chapitre est de présenter des méthodes pour obtenir des solutions (numériques) approchées de la solution de
	(4.1). Plus précisément, on adopte les notations et hypothèses suivantes :	
	1. On rappelle que le lemme de Gronwall permet de dire que si ϕ ∈ C([0, T ], IR + ) est telle que ϕ(t) ≤ α	t 0	ϕ(s)ds + β, avec α ≥ 0,

Exemple 4.2. On suppose n = 1 ; soit la fonction f définie par f (z, t) = z 2 . On considère le problème de Exemple 4.3. Supposons que f ∈ C 1 (IR n × IR, IR n ), et soit x la solution maximale de (4.1) sur [0, T M [. On suppose que pour tout 0 < T < +∞, il existe a T > 0 et b T > 0 tels que |f (z, t)| ≤ a T |z| + b T ∀z ∈ IR n , ∀t ∈ [0, T ] On a donc : x ′ (t) ≤ a T |x(t)| + b T pour tout t, en intégrant entre 0 et t, on obtient : x(t) ≤ a T t 0 |x(s)|ds + +b T t + x0 , T |T + |x 0 |, ∀t ∈ [0, T [. β > 0 alors ϕ(t) ≤ βe αt pour t ∈ [0, T ].

  Soit f vérifiant l'hypothèse (4.6)) et soit x solution maximale de (4.1) (définie sur [0, T M [), on se donne T ∈]0, T M [, on cherche à calculer x sur [0, T ], où x ∈ C 1 ([0, T ], IR n ) est solution de (4.1). On se donne une discrétisation de [0, T ], i.e. n ∈ IN et(t 0 , t 1 , . . . , t k ) ∈ IR n+1 tels que 0 < t 0 < t 1 < . . . < t k = T. On pose h k = t k+1t k , ∀k = 0, . . . , n -1, et h = max{h 0 , . . . , h k-1 }. Pour k = 1, . . . n, on cherche x k valeur approchée de x(t k ) = xk , et on appelle e k = xkx k l'erreur de discrétisation.On cherche alors une méthode qui permette le calcul de x k , pour k = 1, . . . , n, et telle que la solution approchée ainsi calculée converge, en un sens à définir, vers la solution exacte. On cherchera de plus à évaluer l'erreur de discrétisation e k , et plus précisément, à obtenir des estimations d'erreur de la forme |e k | ≤ Ch α , où C ne dépend que de la solution exacte (et pas de h) ; α donne alors l'ordre de la convergence. On étudiera ici les méthodes de discrétisation des équations différentielles dits "schéma à un pas" qui s'écrivent sous la forme suivante :

		(4.7)
		forme
	suivante :	  
		 

Définition 4.4 (Schéma à un pas). Avec les hypothèses et notations (4.7), on appelle schéma à un pas pour la résolution numérique de (4.1), un algorithme de construction des valeurs (x k ) k=1,n qui s'écrit sous la

  ′ (t k ) et que φ(x k , t k , h k ) est obtenu en cherchant une approximation de f (x k , t k ). Le schéma numérique est défini par cette fonction φ.

	Dans la définition du schéma (4.8), il est clair que le terme x k+1 -x k h k de x Exemples :	est obtenu en cherchant une approximation
	1. Schéma d'Euler explicite Le schéma d'Euler explicite est défini par (4.8) avec la fonction φ très simple
	suivante :	
	φ	

) où φ est une fonction de IR n × IR + × IR + à valeurs dans IR.

  alors x k+1 calculé par (4.10) est bien défini en fonction de x k , t k , et h k . On peut donc bien écrire le schéma (4.10) sous la forme (4.8) avecx k+1x k h k = φ(x k , t k , h k ),bien que la fonction φ ne soit définie ici qu'implicitement et non explicitement. Sous l'hypothèse (4.11), ce schéma entre donc bien dans le cadre des schémas (4.8) étudiés ici ; néanmoins, une propriété supplémentaire dite de "stabilité inconditionnelle", est vérifiée par ce schéma. Cette propriété peut s'avérer très importante en pratique et justifie une étude séparée (voir section 4.6).

	4.2 Consistance, stabilité et convergence

Définition 4.5 (Consistance). On se place sous les hypothèses et notations (4.7) et on étudie le schéma (4.8).

1. Pour k = 0, . . . , n, on définit l'erreur de consistance du schéma (4.8) en t k par :

  s), s) est continue et donc uniformément continue sur [t k , t k+1 ]. Il existe donc η2 tel que si h ≤ η2, Définition 4.7 (Stabilité). Sous les hypothèses (4.7), on dit que le schéma (4.8) est stable s'il existe h * > 0 et R ∈ IR + tels que x k ∈ B R pour tout k = 0, . . . , n et pour tout h ∈ [0, h * [, où B R désigne la boule de centre 0 et de rayon R. On dit que le schéma est inconditionnellement stable si de plus, h * = +∞. Définition 4.8 (Convergence). On se place sous les hypothèses et notations (4.7). 1. Le schéma (4.8) est convergent si, lorsqu'on suppose |e 0 | = 0, on a

	alors	1 h k	t k+1 t k |f (x(s), s) -f (x max k=0,...,n |e k | → 0 lorsque h → 0.

k , t k )|ds ≤ ε.

On a ainsi montré que si h ≤ min(η1, η2), alors |R k | ≤ 2ε, ce qui termine la preuve de la proposition. Notons que pour obtenir une consistance d'ordre p > 1, il est nécessaire de supposer que la solution x de (4.1) est dans C p (IR + , IR n ). 2. Soit p ∈ IN * , le schéma est convergent d'ordre p s'il existe C ∈ IR + ne dépendant que de f ,T , x0 (et pas de h) tel que si on suppose |e 0 | = 0, alors max k=0,...,n |e k | ≤ Ch p . Nous donnons à présent une notion de stabiité souvent utilisée dans les ouvrages classiques, mais qui ne semble pas être la plus efficace en termes d'analyse d'erreur (voir remarque 4.14. Définition 4.9 (Stabilité par rapport aux erreurs). Sous les hypothèses et notations (4.7), on dit que le schéma (4.8) est stable par rapport aux erreurs s'il existe h * ∈ IR * + et K ∈ IR + dépendant de x0 , f et φ (mais pas de h) tels que si h ≤ h * et si x k+1

  Théorème 4.10 (Convergence). Sous les hypothèses et notations (4.7), on suppose que le schéma (4.8) est stable par rapport aux erreurs au sens de la définition 4.9 et qu'il est consistant d'ordre p au sens de la définition 4.12. Alors il existe K ∈ IR + ne dépendant que de x0 , f et φ (mais pas de h) tel que |e k | ≤ Kh p + |e 0 |, pour tout k = 0, . . . , n. Proposition 4.11 (Condition suffisante de stabilité). Sous les hypothèses et notations (4.7), une condition suffisante pour que le schéma (4.8) soit stable par rapport aux erreurs est que ∃h * > 0, ∃M > 0; ∀(x, y) ∈ IR n × IR n , ∀h < h * , ∀t ∈ [0, T ], On se place sous les hypothèses et notations (4.7). 1. On suppose que le schéma (4.8) est consistant d'ordre p (i.e. il existe p ∈ IN * et C ∈ IR + ne dépendant que de T , f , x0 tel que |R k | ≤ Ch p .) 2. On suppose qu'il existe h

	|φ(x, t, h) -φ(y, t, h)| ≤ M |x -y|.	(4.15)
	La démonstration de cette proposition est laissée en exercice (exercice 173 page 268).	
	4.3 Théorème général de convergence	
	Théorème 4.12.	

Comme on l'a dit dans la remarque 4.14, ce théorème est d'une portée moins générale que le théorème 4.12 car il n'est pas toujours facile de montrer la stabilité par rapport aux erreurs, en dehors de la condition suffisante donnée dans la proposition qui suit, et qui est rarement vérifiée en pratique. * > 0 tel que pour tout A ∈ IR * + , il existe M A > 0 tel que

∀(y, z) ∈ B A × B A , ∀t ∈ [0, T ], ∀h ∈ [0, h * ], |φ(y, t, h)φ(z, t, h)| ≤ M A |y -z|, (

4

.16) où B A désigne la boule de rayon A. (Noter que cette hypothèse sur φ est semblable à l'hypothèse (4.6) "Lipschitz sur les bornés" faite sur f dans la remarque 4.1 page 256).

  .21) -si x ∈ C 2 (IR + , IR n ), le schéma est consistant d'ordre 2, Analyse numérique I, télé-enseignement, L3 partir des formules d'intégration numérique pour le calcul approché des intégrales. Le schéma RK4 s'obtient à partir de la formule d'intégration numérique de Simpson : A x k connu,

-Le théorème 4.12 s'applique et |e k | ≤ K(h 2 + |e 0 |), pour h ≤ h * * . Exemple 4 RK4 (Runge et Kutta, 1902) Les schémas de type Runge Kutta peuvent être obtenus en écrivant l'équation différentielle sous la forme xk+1xk = t k+1 t k f (x(t), t)dt, et en construisant un schéma numérique à

  . . ) que si x ∈ C 4 ([0, T ]) alors le schéma est consistant d'ordre 4. Le théorème 4.12 s'applique et |e k | ≤ K(h 4 + |e 0 |), pour h ≤ h * * .

4.5 Explicite ou implicite ?

On lit souvent que "les schémas implicites sont plus stables". Il est vrai que lorsque la condition (4.11) donnée plus haut est vérifiée, le schéma d'Euler implicite (4.10) est inconditionnellement stable, comme nous le verrons dans la section suivante. Il est donc naturel de le préférer au schéma explicite pour lequel on n'a qu'un résultat de stabilité conditionnelle. Cependant, dans le cas général, le choix n'est pas si évident, comme nous allons le voir sur des exemples, en étudiant le comportement respectif des schémas d'Euler explicite et implicite.

  est pas en contradiction avec le théorème 4.12 qui donne un résultat de convergence (i.e. de comportement lorsque h tend vers 0). Dans l'exemple présent, le schéma d'Euler explicite (4.22) ne donne pas une solution approchée raisonnable pour h grand. Si on essaye maintenant de calculer une solution approchée à l'aide du schéma d'Euler implicite (4.10), on obtient x k+1 = x khx k+1 , c.à.d.

	x k+1 =	1 1 + h	x k et donc

1) k , ce qui n'est clairement pas une bonne approximation de la solution. Un des problèmes majeurs est la perte de la positivité de la solution. Dans un problème d'origine physique où x serait une concentration ou une densité, il est indispensable que le schéma respecte cette positivité. On peut noter que ceci n'

  t k+1 ), xk+1 = xk + h k f (x k+1 , t k+1 ) + h k R k . avec (par intégration par parties) k+1 = xk+1 -x k+1 = xk -x k + h k (f (x k+1 , t k+1 ) -f (x k+1 , t k+1 )) + h k R k ,et donc e k+1 • e k+1 = e k • e k+1 + h k R Remarque 4.16 (Stabilité inconditionnelle du schéma Euler implicite). Le schéma d'Euler implicite (4.10) est inconditionnellement stable, au sens où la suite (x k ) k=0,...,n est majorée indépendamment de h. En effet :|e k | ≤ |e 0 | + T T 0 |x ′′ (s)|ds = β, |x k | ≤ |x k | + β ≤ max{|x(s)|, s ∈ [0, T ]} + β = γ.4.7 Exercices Exercice 168 (Condition de Lipschitz et unicité). Corrigé en page 274 Pour a ≥ 0, on définit la fonction ϕ a : IR + → IR + par : ϕ a (x) = x a . Pour quelles valeurs de a la fonction ϕ a est-elle lipschitzienne sur les bornés ? On considère le problème de Cauchy suivant : Montrer que si ϕ a est lipschitzienne sur les bornés alors le problème de Cauchy (4.25) admet une solution unique, et que si ϕ a n'est pas lipschitzienne sur les bornés alors le problème de Cauchy (4.25) admet au moins deux solutions. 2 : IR 2 → IR 2 (x, y) → (x 2xy, |y + 2xy|) Exercice 170 (Loi de Malthus). Corrigé en page 275 On considère une espèce dont la population (i.e. le nombre d'individus) a doublé en 100 ans et triplé en 200 ans. Montrer que cette population ne peut pas satisfaire la loi de Malthus (on rappelle que la loi de Malthus s'écrit p ′ (t) = ap(t) avec a > 0 indépendant de t).

	et donc	|e k+1 | ≤ |e0| + h	0	t k	|x ′′ (s)|ds +	t k+1 t k	|x ′′ (s)|ds = |e0| + h	0	t k+1	|x ′′ (s)|ds.
	Ce qui démontre le point 2.								
	Exercice 169 (Fonctions lipschitziennes sur les bornés).				
	Les fonctions suivantes sont elles lipschitziennes sur les bornés ?			
	1. ϕ 3. ϕ 3 : IR 2 + → IR 2 + (x, y) → ( √ x + y, x 2 + y 2 )			
					|R k | ≤	t k+1 t k	|x ′′ (s)|ds.			
	On a donc :									

e k • e k+1 + h k (f (x k+1 , t k+1 ) -f (x k+1 , t k+1 )) • e k+1 .

Grâce à l'hypothèse (4.11) ceci entraîne (par (4.23)) que

|e k+1 | ≤ |e k | + h|R k |, Analyse numérique I, télé-enseignement, L3 y ′ (t) = ϕ a (y(t)), t ∈ [0, +∞[ y(0) = 0. (4.25) 1 : IR → IR x → min(x 2 , (x 2 + 1))

2. ϕ

Exercice 171 (Histoire de sardines). Corrigé en page 275

Analyse numérique I, télé-enseignement, L3

  1. Montrer que si le schéma (4.8) est stable par rapport aux erreurs au sens de la définition 4.9 page 260, et qu'il est consistant d'ordre p au sens de la définition 4.5 page 259, alors il existe K ∈ IR + ne dépendant que de x0 , f et φ (mais pas de h) tel que |e k | ≤ Kh p + |e 0 |, pour tout k = 0 . . . n. En déduire que si e 0 = 0 le schéma converge.Exercice 174 (Schéma d'ordre 2).Soit f ∈ C 2 (IR n × IR, IR n ), n ≥ 1, x0 ∈ IR n , et soit x solution maximale de (E) (définie sur [0, T M [) : On se donne T ∈]0, T M [, et une discrétisation de [0, T ], définie par n ∈ IN et (t 0 , t 1 , . . . , t k ) ∈ IR n+1 tels que 0 = t 0 < t 1 < . . . < t k = T. On pose h k = t k+1t k , ∀k = 0, . . . ,n -1. On considère le schéma de discrétisation x 0 donné (approximation de x0 ), Exercice 175 (Algorithme du gradient à pas fixe et schéma d'Euler). Soit f ∈ C 2 (IR n , IR) strictement convexe et t.q. f (x) → ∞ quand |x| → ∞. Soit x 0 ∈ IR n . On considère les 2 problèmes : Montrer que l'algorithme du gradient à pas fixe (de pas noté ρ) pour trouver la solution de (4.26) (avec point de départ x 0 ) est le schéma d'Euler explicite pour la résolution approchée de (4.27) (avec pas de temps ρ). 2. Montrer qu'il existe un unique x solution de (4.26). 3. Montrer que (4.27) admet une et une seule solution sur IR + et que cette solution converge vers x (solution de (4.26)) quand t → ∞.

	x ∈ IR n , f (x) ≤ f (x), ∀x ∈ IR n ,	(4.26)
	dx dt x(0) = x 0 . (t) = -∇f (x(t)), t ∈ IR + ,	(4.27)
	1.	
	dx x(0) = x0 . dt (t) = f (x(t), t), t > 0,	(E)

2. Montrer que si φ est globalement lipschitzienne, c.à.d. si

∃h * > 0, ∃M > 0; ∀(x, y) ∈ IR n × IR n , ∀h < h * , ∀t ∈ [0, T ], |φ(x, t, h)φ(y, t, h)| ≤ M |x -y|,

alors le schéma est stable par rapport aux erreurs.

x k+1 -x k h k = 1 2 [f (x k , t k ) + f (x k + h k f (x k , t k ), t k+1 )], k = 0, . . . n -1,

pour la résolution numérique de l'équation différentielle (E). Montrer que ce schéma est convergent d'ordre 2.

Analyse numérique I, télé-enseignement, L3

  En déduire qu'il existe C ∈ IR + t.q. y(t) ≤ Ce -βt , ∀t ≥ 0.4.3Montrer qu'il existe C ∈ IR * + t.q. la solution du schéma d'Euler implicite construite à la question 3 vérifie : Exercice 178 (Méthodes semi-implicite et explicite). Corrigé en page 280 On s'intéresse dans cet exercice au système différentiel : + ) 2 , IR 2 ). 2. Les questions suivantes sont facultatives : elles permettent de montrer que le système (4.35) admet une solution maximale x ∈ C 1 ([0, +∞[, (IR * + ) 2 ). Le lecteur pressé par le temps pourra admettre ce résultat et passer à la question 3.

		y k ≤ C	1 1 + hβ	
	  	x ′ 1 (t) = -x 1 (t) -x 1 (t)x 2 (t), x ′ 2 (t) = -x 2 (t) x 1 (t) ,	t > 0,	(4.33)
	avec les conditions initiales			
		x 1 (0) = a, x 2 (0) = b,		(4.34)

4.1 Montrer que pour t suffisamment grand, f (y(t)) y(t) < -β. Analyse numérique I, télé-enseignement, L3 4.2 n , ∀n ∈ IN. où a et b appartiennent à l'intervalle ]0, 1[. 1. On pose x = (x 1 , x 2 ) t . Montrer que le système (4.33)-(4.34) s'écrit

x ′ (t) = f (x(t)), t > 0, x(0) = (a, b) t , (

4.35)

avec f ∈ C 1 ((IR *

  Montrer que pour tout y ∈ IR n et t ∈ [0, T [, on a : On se propose de calculer une solution approchée de y sur [0, T ]. Pour cela, on considère une discrétisation de l'intervalle [0, T ] de pas constant, noté h, avec h = T n , où n ∈ IN * . Pour k = 0, . . . , n, on note t k = kh, et on se propose d'étudier l'algorithme suivant, où 0 ≤ θ ≤ 1. y 0 ∈ IR n est donné (4.45)y k,1 = y k + θhf (y k,1 , t k + θh), pour k = 0, . . . , n -1,(4.46)y k+1 = y k + hf (y k,1 , t k + θh) pour k = 0, . . . , n -1,(4.47) 2. Montrer qu'il existe une unique solution (y k ) k=0,...,n ⊂ IR n de (4.45)-(4.46)-(4.47). Pour k = 0, . . . , n -1, on pose y(t k ) = y k , où y est la solution exacte de (4.42)-(4.43), t k,1 = t k + θh, on définit ỹk,1 par : ỹk,1 = y k + θhf (ỹ k,1 , t k,1 ), (4.48) et on définit l'erreur de consistance R k du schéma (4.45)-(4.46)-(4.47) au point t k par : Montrer que pour tout k = 1, . . . , n, on a :y ky k , f (y k,1 , t k,1 )f (ỹ k,1 , t k,1 ) ≤ -θh f (y k,1 , t k,1 )f (ỹ k,1 , t k,1 ) 2 . (4.54)7. Montrer que pour tout k = 0, . . . , n, on a :e k+1 -hR k 2 = e k 2 + 2h(f (y k,1 , t k,1 )f (ỹ k,1 , t k,1 ), e k ) + h 2 f (y k,1 , t k,1 )f (ỹ k,1 , t k,1 ) 2 . (4.55)Analyse numérique I, télé-enseignement, L39. Soient (ε k ) k∈IN ⊂ IR n donnée et (z k ) k∈IN ⊂ IR n définie par :z 0 ∈ IR n donné (4.57) z k,1 = z k + θhf (z k,1 , t k,1 ), pour k = 0, . . . , n -1,(4.58)z k+1 = z k + +ε k + hf (z k,1 , t k,1 ) pour k = 0, . . . , n -1,(4.59)En s'inspirant des questions 6 et 7, montrer que si θ ≥ 1 2 , on a :y k+1z k+1 + ε k 2 ≤ y kz k 2 , (4.60) et en déduire que y kz k ≤ y 0z 0 +

	On considère le système différentiel : 1. R R k ≤ C 3 ((θ -y ′ (t) = f (y(t), t) ∀t ∈ [0, T [, y(0) = y (0) . 1 2 )h + h 2 ) et en déduire l'ordre du schéma (4.45)-(4.46)-(4.47). i=0 6. k-1 ε i .	(4.41) (4.42) (4.43) (4.53) (4.61)

(f (y, t)f (z, t), yz) ≤ 0.

(f (y, t), y) ≤ 1 2 ( f (0, t) 2 + y 2 ). (4.44) En déduire qu'il existe une unique solution y ∈ C 1 ([0, T [, IR n ) vérifiant (4.42)-(4.43).

Analyse numérique I, télé-enseignement, L3 k = y k+1 -

y k h f (ỹ k,1 , t k,1 )

(4.49)

3. Pour k = 0, . . . , n, on pose y k,1 = y(t k,1 ), et, pour k = 0, . . . , n -1 on pose :

Rk = 1 h (y k,1y k )θf (y k,1 , t k,1 ).

(4.50)

Montrer que pour tout k = 0, . . . , n -1 :

ỹk,1y k,1 = θh f (ỹ k,1 , t k,1 )f (y k,1 , t k,1 + h Rk , (

4.51)

En déduire qu'il existe C 1 ne dépendant que de y et de T t.q. : ỹk,1 -

y k,1 ≤ C 1 h 2 .

4. Montrer qu'il existe C 2 ne dépendant que de f, y et T t.q.

y k+1y khf (y k , t k,1 ) -hR k ≤ C 2 h 3 , ∀k = 0, . . . ,

n -1. (4.52) 5. Déduire des questions précédentes qu'il existe C 3 ne dépendant que de y, f et T t.q. : 8. Montrer que si θ ≥ 1 2 , on a : e k ≤ e 0 + C 3 (h 2 + (θ -1 2 )h), ∀k = 1, . . . , n. (4.56)

4 .

 4 Exercice 172 page 268 (Consistance et ordre des schémas) 1. Un développement de Taylor à l'ordre 1 donne quex(t k+1 )x(t k ) h k f (x(t k ), t k ) ≤ sup [0,T ] |f ′ |h k . L'erreur de consistance est donc d'ordre 1, et le schéma est convergent par le théorème 4.12 page 261. 2. Pour les schémas d'Euler amélioré et de Heun, le théorème 4.12 page 261 s'applique encore, à condition de montrer qu'ils sont consistants. Calculons l'erreur de consistance pour ces deux schémas : 1. Le schéma d'Euler amélioré s'écrit :Analyse numérique I, télé-enseignement, L3 avec ξ k ∈ t k , t k + h k 2 . En posant X = f (x k + h k 2 f (x k , t k ), t k + h k 2 ), on remarque que X = f (x(t k + h k 2 ) -1 8 h 2 x ′′ (ξ k ), t k + h k 2 ) et donc qu'il existe ζ k ∈ IR tel que :

	x k+1 -x k h k	= f x k +	h k 2	f (x k , t k ), t k +	h k 2
				h k 2	-	1 8	h 2

Soit xk = x(t k ) la solution exacte de l'équation différentielle x ′ (t) = f (x(t), t) (avec condition initiale x(0) = x 0 ) en t k . En remarquant que f (x k , t k ) = x ′ (t k ), on a : xk + h k 2 f (x k , t k ) = xk + h k 2 x ′ (t k ) = x t k + k x ′′ (ξ k ),

  Comme le schéma est consistant d'ordre p, on a R i ≤ Ch p et donc par l'inégalité précédente e k+1 ≤ K|e 0 | + Ch p , où C ∈ R + ne dépend que de f ,T , x0 (et pas de h). On en déduit que le schéma est convergent d'ordre p. 2. Soient (x k ) k=0,...,n-1 et (y k ) k=0,...,n-1 vérifiant (4.14), c'est-à-dire :x k+1 = x k + h k φ(x k , t k , h k ), y k+1 = y k + h k φ(y k , t k , h k ) + ε k , pour k = 0, . . . , n -1,alors grâce à l'hypothèse sur le caractère lipschitzien de φ, on a :|x k+1y k+1 | ≤ (1 + h k M )|x ky k | + |ε k | ≤ e h k M |x ky k | + |ε k |.On en déduit par récurrence sur k que|x ky k | ≤ e t k M |e 0 | + T M .On a donc ainsi montré que le schéma (4.8) est stable par rapport aux erreurs. Exercice 175 page 268 (Algorithme du gradient à pas fixe et schéma d'Euler)

	k-1
	e (t
	i=0

k -ti+1)M |ε i | ≤ K(|e 0 | + k i=0 |ε i |), avec K = e

  2. Ceci est une conséquence directe du théorème d'existence et unicité 3.12 page 196.3. Comme f est de classe C 1 , par le théorème de Cauchy-Lipschitz il existe une unique solution maximale. On sait de plus que si le temps maximal d'existence T M est fini, alors x(t) → +∞ lorsque t → +∞. Montrons que x(t) est borné, ce qui entraîne donc existence d'une solution globale. On pose ϕ(t) = f (x(t)). On a donc ϕ ′ (t) = -|∇f (x(t))| 2 < 0. La fonction ϕ est donc décroissante et bornée inférieurement (car f est bornée inférieurement, puisque f est continue et tend vers +∞ en ±∞). Il existe donc ℓ ∈ IR tel que ϕ tend en décroissant vers ℓ quand t tend vers l'infini. Ceci prouve en particulier que l'ensemble {x(t); t ∈ IR} est borné. On obtient donc ainsi existence et unicité d'une solution globale. Montrons maintenant que que ℓ = min

  0 ≤ xkx k ≤ kae kh ≤ ke t k h p+1 (p + 1)! ≤ t k e t k h p (p + 1)! . Le schéma est donc consistant d'ordre p. Il suffit alors d'appliquer le théorème 4.12 page 261 (car ψ p est de classe C ∞ donc lipschitzienne sur les bornés) pour obtenir l'existence de h > 0 et C > 0 ne dépendant que de x0 , T et f , tels que si 0 < h < h, alors |x kx(t k )| ≤ Ch p , pour tout k = 0, . . . , n + 1.

	5. Un développement de Taylor montre que			
	xk+1 = = xk + p h j j! j=0 j=1 x (j) (t k ) + C k,h h p+1 p h j-1 j! f xk+1 -xk h = p j=1 h j-1 j! f (j-1) (x k , t k ) + C k,h h p
	=	p-1 j=0	h j (j + 1)!	f (j) (x

(j-1) (x k , t k ) + C k,h h p+1 , avec C k,h ≤ C ∈ IR + . On a donc k , t k ) + C k,h h p = ψ p (x k , t k , h) + C k,h h p .

  2.2. 1. Propriétés spectrales de A. (a) Soit m ∈ N ⋆ , soit B ∈ M m (R) une matrice symétrique et soient µ la plus petite valeur propre de B et µ la plus grande valeur propre de B : montrer que On note λ (resp. λ k ) la plus petite valeur propre de A (resp. A k ) et λ (resp. λ k ) la plus grande valeur propre de A (resp. A k ). (b) Soit u ∈ R n tel que u t u = 1, montrer queλ k (H k u) t (H k u) ≤ (H k u) t A k (H k u) ≤ λ k (H k u) t (H k u), (c) Montrer que la matrice H t k H k ∈ M n (R) peut s'écrire H t k H k = diag (χ Ei (k)) i=1,...,n , avec χ Ei (k) = 1 si k ∈ E i et 0 sinon, et où l'on note diag((d i ) i=1,...,n ) ∈ M n (R)la matrice diagonale d'ordre n dont les coefficients diagonaux sont donnés par (d i ) i=1,...,n . En déduire que pour toute famille de réels (α k ) k=1,...,M , on a En déduire que, si A est inversible, A est symétrique définie positive, et que, si chaque matrice A k est symétrique définie positive, A est également symétrique définie positive. (f) On suppose que A est inversible. Pour ε > 0 donné on pose Prouver, au moyen d'un critère du cours, que la méthode itérative définie par P u (k+1) = (P -A)u (k) + b est convergente. 2. On suppose dans cette question que chaque matrice A k est telle que tous ses termes hors diagonale sont négatifs ou nuls, et que ∀p = 1, . . . , n k , (A k ) pp ≥ -q=1,...,n k q =p (A k ) pq . (a) Prouver que chaque matrice A k est (symétrique) positive. (b) Prouver que la matrice A est symétrique, que tous ses termes hors diagonale sont négatifs ou nuls, et que ∀i = 1, . . . , n, A ii ≥ -

	µ =	min x∈R m ,x t x=1	x t Bx et µ =	max x∈R m ,x t x=1	x t Bx.
		M			
		α k H t k H k = diag (
	k=1			
		P = (	1 2	+ ε)diag (

k∈Ei α k ) i=1,...,n ,

(5.6)

(d) Montrer que min i=1,...,n k∈Ei λ k ≤ λ ≤ λ ≤ max i=1,...,n k∈Ei λ k . (e) k∈Ei λ k ) i=1,...,n . j=1,...,n, j =i

  Corrigé de la partie 5.2.5 1. Un exemple en dimension 1. On a E i = {i, i + 1} pour tout i = 1, . . . , n.(c) On a, en passant par exemple par les nombres complexes, pour tout k = 1, . . . , n Comme, pour k = 1, sin((k -1) pπ n+1 ) = 0, et que, pour k = n, sin((k + 1) pπ n+1 ) = 0, on obtient que le vecteur transposé de (sin(k pπ n+1 )) k=1,...,n est vecteur propre de A associé à la valeur propre 2 -2 cos( pπ n+1 ) = 4 sin 2 ( pπ 2(n+1) ). Toutes ces valeurs propres étant distinctes et au nombre de n pour p = 1, . . . , n, on a donc trouvé tous les vecteurs propres de la matrice A, et les vecteurs forment une base orthogonale de R n . Ces valeurs propres sont comprises entre 4 sin 2 ( π 2(n+1) ) et 4(1sin 2 ( π 2(n+1) )). Or on a On obtient que ces minorants et majorants sont proches d'un facteur en C/n 2 de la plus petite et plus grande valeur propre de A. (d) On aPuisque la matrice A est inversible et donc symétrique définie positive, la méthode de Gauss-Seidel et la méthode SOR (pour ω ∈]0, 2[) en vertu du théorème 1.57. Comme la matrice est tridiagonale, l'exercice 70 montre que ρ(B J ) 2 = ρ(B GS ) < 1, donc la méthode de Jacobi converge également. Noter que, pour la méthode de Jacobi, la matrice P est égale à 2I n .

	(a)										
	(b) -sin((k -1)	pπ n + 1	) + 2 sin(k	pπ n + 1	) -sin((k + 1)	pπ n + 1	) = sin(k	pπ n + 1	)(2 -2 cos(	pπ n + 1	)).
						min i=1,...,n	k∈Ei	λ k = 0 et max i=1,...,n	k∈Ei	λ k = 2 + 2 = 4.
	P = (	1 2	+ ε)diag 3, 4, . . . , 4, 3 = diag	3 2	+ 2ε, 2 + 2ε, . . . , 2 + 2ε,	3 2	+ 2ε .
	M										
	La matrice	α k H t						
	k=1										
	donc						u t (	M	λ k H t k H M	λ k H t k H k )u.
							k=1				k=1
	Grâce à la question 1(b), on a			
					M						n	n
				u t ( k=1	λ k H t k H k )u =	i=1	u 2 i	k∈Ei	λ k ≥	min i=1,...,n	k∈Ei	λ k	i=1	u 2 i ,
	et				M						n	n
				u t ( k=1	λ k H t k H k )u =	i=1	u 2 i	k∈Ei	λ k ≤	max i=1,...,n	k∈Ei	λ k	i=1	u 2 i ,
	ce qui permet de conclure compte tenu que n i=1 u 2

Dans ce cas, comme ϕ k est injective, il n'existe qu'un seul ℓ = 1, . . . , n k tel que i = ϕ k (ℓ). Donc

H t k H k = diag (χ Ei (k)) i=1,...,n , avec χ Ei (k) = 1 si k ∈ E i et 0 sinon. k H k est

donc aussi une matrice diagonale d'ordre n dont le i-ème terme diagonal est égal à M k=1 α k χ Ei (k). Par définition de χ Ei , on a donc bien (5.6).

(d) Par définition de A, on a

u t Au = M k=1 u t H t k A k H k u = M k=1 (H k u) t A k (H k u). k )u ≤ u t Au ≤ u t ( i = u t u = 1.

2. Un exemple en dimension 2.

Université d'Aix-Marseille, R. Herbin, 4 août 2023

Analyse numérique I, télé-enseignement, L3

On appelle discrétisation le fait de se ramener d'un problème où l'inconnue est une fonction en un problème ayant un nombre fini d'inconnues scalaires.Analyse numérique I, télé-enseignement, L3

Le conditionnement cond(A) calculé dans la partie 1 est d'ordre 1/h 2 , et donc tend vers l'infini lorsque le pas de discrétisation tend vers 0, alors qu'on vient de montrer dans la partie 2 que la variation relative δu u est inférieure à une constante multipliée par la variation relative de δ b b . Cette dernière information est nettement plus utile et réjouissante pour la résolution effective du système linéaire.Analyse numérique I, télé-enseignement, L3

Philipp Ludwig von Seidel (Zweibrücken, Allemagne 1821 -Munich, 13 August 1896) mathématicien allemand dont il est dit qu'il a découvert en 1847 le concept crucial de la convergence uniforme en étudiant une démonstration incorrecte de Cauchy.Analyse numérique I, télé-enseignement, L3

On suppose que B J est diagonalisable dans IR (c'est-à-dire qu'il existe une base de IR n formée de vecteurs propres de B J ). Montrer qu'il existe β > 0, dépendant de A, b, x(0) et de la norme choisie sur IR n , mais indépendant de k, telle que x (k)x ≤ βρ k pour tout k ≥ 0.Analyse numérique I, télé-enseignement, L3

Broyden, C. G., The Convergence of a Class of Double-rank Minimization Algorithms, Journal of the Institute of Mathematics and Its Applications 1970, 6, 76-90

Fletcher, R., A New Approach to Variable Metric Algorithms, Computer Journal 1970, 13, 317-322

Goldfarb, D., A Family of Variable Metric Updates Derived by Variational Means, Mathematics of Computation 1970, 24, 23-26

Shanno, D. F.,Conditioning of Quasi-Newton Methods for Function Minimization , Mathematics of Computation 1970, 24, 647-656 Analyse numérique I, télé-enseignement, L3

Avec un choix convenable de la norme sur M n (IR), on obtient le choix suivant de B (k) si s (k) = 0 et ∇f (x (k) ) = 0 (sinon l'algorithme s'arrête) :

(s (k) ) t B (k-1) s (k) .

(3.32) L'algorithme obtenu est l'algorithme de BFGS.

Algorithme de BFGS

Initialisation On choisit x (0) ∈ IR n et B (0) symétrique définie positive ( par exemple B (0) = Id) et on pose w (0) = -B (0) ∇f (x (0) ) si ∇f (x (0) ) = 0, on choisit α (0) optimal dans la direction w (0) , et donc w (0) est une direction de descente stricte.

On pose x (1) = x (0) + α (0) w (0) .

On pose s (k) = x (k)x (k-1) y (k) = ∇f (x (k) ) -∇f (x (k-1) ) si s (k) = 0 et ∇f (x (k) ) = 0, on choisit B (k) vérifiant (3.32) On calcule w (k) = -(B (k) ) -1 (∇f (x (k) )) (direction de descente stricte en x (k) ).

On calcule α (k) optimal dans la direction w (k) et on pose x (k+1) = x (k) + α (k) w (k) .

(3.33)

On donne ici sans démonstration le théorème de convergence suivant :

Théorème 3.27 (Fletcher, 1976). Soit f ∈ C 2 (IR n , IR) telle que f (x) → +∞ quand |x| → +∞. On suppose de plus que f est strictement convexe (donc il existe un unique x ∈ IR n tel que f (x) = inf IR n f ) et on suppose que la matrice hessienne H f (x) est symétrique définie positive. Alors si x (0) ∈ IR n et si B (0) est symétrique définie positive, l'algorithme BFGS définit bien une suite x (k) et on a x (k) → x quand k → +∞ De plus, si x (k) = x pour tout k, la convergence est super linéaire i.e.

Pour éviter la résolution d'un système linéaire dans BFGS, on peut choisir de travailler sur (B (k) ) -1 au lieu de B (k) . (0) ∈ IR n et K (0) symétrique définie positive telle que α 0 soit optimal dans la direction -K (0) ∇f (x (0) ) = w (0) x (1) = x (0) 

) et on choisit α k optimal dans la direction w (k) . On pose alors x (k+1) = x (k) + α k w (k) .

(3.34)

Analyse numérique I, télé-enseignement, L3

3. Ecrivons l'algorithme du gradient conjugué pour la résolution du système (3.40)

auquel cas l'algorithme s'arrête.

2) Si r (0) = 0, alors on pose w (0) = r (0) , et on choisit ρ 0 = r (0) • r (0) A t Aw (0) • w (0) . On pose alors x (1) = x (0) + ρ 0 w (0) .

On suppose x (0) , . . . , x (k) et w (0) , . . . , w (k-1) connus et on pose

Si on implémente l'algorithme sous cette forme, on a intérêt à calculer d'abord b = A t b et M = A t A pour minimiser le nombre de mutliplications matrice matrice et matrice vecteur. Au lieu du coût de l'algorithme initial, qui est en 2n 3 + O(n 2 ), on a donc un coût en 3n 3 + O(n 2 ). Maintenant si on est optimiste, on peut espérer converger en moins de n itérations (en fait, c'est malheureusement rarement le cas), et dans ce cas il est plus économique d'écrire l'algorithme précédent sous la forme suivante.

1) Si r (0) = 0, alors Ax (0) = b et donc x (0) = x, auquel cas l'algorithme s'arrête.

2) Si r (0) = 0, alors on pose w (0) = r (0) , y (0) = Aw (0) et on choisit ρ 0 = r (0) • r (0) y (0) • y (0) . On pose alors x (1) = x (0) + ρ 0 w (0) .

On suppose x (0) , . . . , x (k) et w (0) , . . . , w (k-1) connus et on pose

On peut facilement vérifier que dans cette version, on a un produit matrice vecteur en plus à chaque itération, donc le coût est le même pour n itérations, mais il est inférieur si on a moins de n itérations. Remarque : Cette méthode s'appelle méthode du gradient conjugué appliquée aux équations normales. Elle est facile à comprendre et à programmer. Malheureusement, elle ne marche pas très bien dans la pratique, et on lui préfère des méthodes plus sophistiquées telles sue la méthode "BICGSTAB" ou "GMRES".

Exercice 150 page 220 (Méthode de Polak-Ribière)

Exercice 167 (Méthode de relaxation avec Newton pour un problème d'optimisation contrainte). On considère le problème :

(3.80) Montrer que la suite x (k) construite par l'algorithme (3.80) est bien définie et converge vers x lorsque n tend vers +∞,

On considère l'algorithme suivant pour la recherche de x :

(3.81) Montrer (éventuellement graphiquement) que la suite construite par l'algorithme ci-dessus ne converge vers x que si l'une des composantes de x (0) vaut 1.

Corrigés

Exercice 166 page 251 (Convergence de l'algorithme d'Uzawa) 

Montrer que

De ces deux propriétés de f on déduit l'existence et l'unicité de la solution au problème (3.75).

L'application

De ces deux propriétés de L(•, u) on déduit l'existence et l'unicité de la solution au problème (3.76). Comme L(•, u) est strictement convexe, x u est aussi l'unique point qui annule ∇L(•, u) (c'est-à-dire le gradient de l'application x → L(x, u)). Ceci donne bien que x u est l'unique point de IR n tel que ∇f (x u ) + C t u = 0. 4. La question précédente nous dit que x ū est l'unique point de 

On peut alors appliquer les conclusions de la question c) en remplaçant A k par les matrices

Ces matrices sont symétriques positives, de plus petite valeur propre 2ελ k > 0, et sont donc symétriques définies positives. La question d) permet alors de conclure que P t +N est symétrique définie positive, donc le critère du cours (lemme 1.56 ) permet de conclure que ρ(P -1 (P -A)) < 1, donc la méthode itérative converge.

2. (a) Soit u ∈ R n k . On a, en additionnant et en retranchant le terme diagonal,

Le dernier terme du membre de droite de l'équation ci-dessus, qu'on note X, s'écrit, compte tenu de la symétrie de A k ,

ce qui conclut la preuve de la positivité de A k .

(b) Pour tout k = 1, . . . M , la matrice

La matrice A est donc elle aussi symétrique.

Pour i, j = 1, . . . , n on a

Or par hypothèse sur A k ,

3. Le résultat de la question précédente permet d'appliquer la question 5 de l'exercice 14 du polycopié, ce qui prouve que A est une ICP-matrice. 

Deux cas particuliers

. , M , on définit la matrice carrée

Soit