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0. Introduction 

 

Solid state chemistry and technology recent developments gave rise to the necessity of 
intensive structural analysis from single crystal diffraction. However for many solids, single 
crystal growth is not easy to manage and sometimes impossible. When this is the case, or 
when structural defects cannot be overcome, the corresponding phases have often been 
forsaken, due to the inherent difficulties to carry out crystallographic characterisations on 
polycrystals. But in the last decades powder diffraction techniques progressed significantly, 
notably due to the Rietveld approach (Rietveld, 1969) and computer science developments. 
Undoubtedly these developments are of prior importance in the study of solids that do not 
form large crystals, but also of all materials elaborated by classical solid state reactions, thin 
deposited structures, natural materials like clays and more recently nanomaterials in which the 
required properties are intimately linked to the stabilisation of small crystals. 
  

Since the Rietveld method's birth, several ten thousands of structures have been 
refined and some thousands have been resolved ab-initio from the only diffraction data of 
powder samples. The number of laboratories and industries using this technique, still fairly 
new when dealing with the incorporation of various formalisms like in the combined 
approach, does not stop increasing.  

However, materials having specific properties are often elaborated from low symmetry 
phases, which are consequently anisotropic. Property's optimisation is then conditioned by the 
elaboration processes which have to keep the intrinsic microscopic anisotropy of the 
constituting crystals at the macroscopic level. These elaboration techniques are complex 
(alignment under uniaxial pressure, magnetic or electric fields, thermal gradients, flux or 
substrate growing ... and combinations) and often sample preparation is a hard, time 
consuming, matter. Naturally, non-destructive characterisations are then required. 
Unfortunately, when samples are oriented, which was not often the case until recently, most 
of the characterisation techniques (as the Rietveld analysis of concerns here) require samples 
grinding. Very often this grinding is not acceptable, for the previously described reasons, but 
also in the case of rare samples (fossils, comets ...) or simply when grinding modifies the 
physical behaviour of the samples themselves (thin films, residual stress materials ...). 
Sometimes grinding is simply not possible, imagine peeling off a 10 nm thick film on a 
substrate ! 

In all these cases, the combined analysis becomes essential. 
 
The first part of this document is dedicated to some basic notions concerning 

diffraction by polycrystals. The various peak profiles used are described and some, most 
common combined analysis instrumental set-up detailed. 

In the second part, powder diffraction data treatment is introduced. In particular, the 
Rietveld analysis is detailed, including treatment of all the information provided by diffraction 
diagrams, when texture is not present in the sample or simple to treat.  

The third part deals with the automatic phase indexing, necessary step to solve a 
structure ab-initio. 

Since its effect prevails on real samples where textures are often stabilised, 
quantitative texture analysis is detailed in the fourth part. 

The fifth part is dedicated to microstructural aspects (isotropic and anisotropic crystal 
sizes and microdistortions) of the poder diffraction profiles. 

In part six, quantitative phase analysis from Rietveld analysis is introduced. 
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Part seven describes residual stress analysis for isotropic and anisotropic materials. 
The eighth part focuses on specular x-ray reflectivity and the various models 

associated. 
Finally the combined analysis is described, showing all the dilemma that show up 

when one looks at only one part of the analyses, and case examples are shown as illustration 
of the methodology.

 

daniel chateigner Page 7 13/07/2006 



Combined Analysis 

 
1 Some basic notions about powder diffraction 
 
1.1. Crystallite, grain, polycrystal and powder 

 

A polycrystal, dealing with diffraction, is a solid substance divided in very small 
homogeneous particles, elementary single crystals called crystallites. Crystallites are 
tridimensional domains which propagate an incident x-ray or neutron wave in a coherent way 
without phase lost. Crystallites are also called sometimes "coherent domains" in 
crystallography. A grain (as the ones we can observe using a microscope for instance) can be 
constituted of many crystallites or only a single crystallite. A single crystal is then composed 
of only one crystallite, and a polycrystal of an ensemble of crystallites.  

A powder is an aggregate of crystallites (metal piece, ceramic, polymer or simply a 
compacted or not compacted powder) of varying number, shape, size and crystalline state. It 
is then a polycrystal. But an ideal powder or "standard", again concerning diffraction 
experiments, is constituted of a large number (several ten thousands at least) of crystallites in 
a perfect crystalline state (without microdistortion or any other defects) which exhibit a very 
narrow monomodal size and shape distribution. Furthermore, the standard powder has 
crystallites which are randomly oriented one to each other (without texture). In such 
conditions, whatever the incident beam angle, it always exist the same volume fraction of 
crystallites oriented in such a way that they are satisfying the Bragg law (Bragg, 1912), 
hereby diffracting. We call "powder" in this document the standard powder, and polycrystal 
the regular powder. 

 

1.2. Bragg law and harmonic reflections 

 

1.2.1. Bragg law 
 

This law establishes that a diffracted beam exists for a wavelength λ at an angle 2θ 
between the incident and diffracted beams (Figure 1), by the atoms lying in the {hkl} planes 
at an intereticular distance dhkl one from each other if the relation: 
 

- 1     λθ ndhkl =sin2  

 
is satisfied, in which n is the order of the reflection. 
 

 

daniel chateigner Page 8 13/07/2006 



Combined Analysis 

Figure 1: Schematic illustration of Bragg's law 

 
1.2.2. Monochromator 
 

A direct application of the Bragg law is its capacity to select discrete wavelength 
radiation components among a polychromatic incident source. Looking at equation - 1, one 
sees that, provided a given single crystal with specific dhkl interreticular distances and an 
incident polychromatic beam at θ from the planes surface, the diffracted beam located at 2θ 
from the incident beam will only be composed of one radiation λ for which the Bragg law is 
satisfied. This is a monochromator. Of course the wavelength resolution depends on the single 
crystal quality and in practice a given ∆λ will be selected, that can be used in experiments. 

 
1.2.3. Harmonic radiation components 

 
 Even for a perfect single crystal, the monochromator however can select other 
radiation components, which still satisfy equation - 1. Since (dhkl)/n (n a positive integer) 
planes exist parallel to the ones that provide the λ radiation, any λ/n wavelength contribution 
will also respect the Bragg law, hence diffract. Such λ/2, λ/3 ..., contributions are called 
harmonics.  
 

 a) 

 b) 
Figure 2: Simulated x-ray diffraction diagrams for a Si powder, for λ = 1.5406 Å 
(a) and for λ/2 = 0.7703 Å (b). Intensities for the λ/2 contributions have been 
enhanced for visibility. 

 
 Figure 2 illustrates the λ/2 occurrence on simulated powder diagrams for Si, in the 10° 
≤ 2θ ≤ 50° range. The use of the nominal wavelength (1.5406 Å, Figure 2a) only provides 
with the 111 and 220 lines in the available range, while the λ/2 contribution (0.7703 Å, Figure 
2b) would make all the 11 first lines appearing (i.e. 111, 220, 311, 222, 400, 331, 422, 511, 
333, 440, 531). Using classical x-ray generators the strong x-ray emission are discrete lines of 
a transition metal element (e.g. the Cu Kα line), for which the monochromator is adjusted. At 
half energy of such lines (e.g. λ/2) corresponds a comparatively very low bremstralung, 
making the harmonics in general weak compared to the main selected radiation. However in 
some cases like thin films deposited on single crystal substrates, the harmonic diffraction lines 
are sometimes larger than the film peaks. Using synchrotron x-rays or thermal neutrons the 
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incident spectrum is on the contrary continuous, and harmonics can be of non negligible 
intensity. 

In practice the harmonic lines are hardly visible from powder diffraction, and even on 
large single crystals the λ/2 is often the only one detected. 
 
1.3. Geometrical conditions of diffraction, Ewald sphere 

 

The geometrical aspect of powder diffraction is represented with the help of the Ewald 
sphere, of radius 1/λ when each reciprocal vector h = <hkl>* is allowed to take all the 
possible orientations (Figure 3): 

The extremities of the vectors h are localised on a sphere, called {hkl} pole sphere, of 
centre O' and radius ||h||. Each resulting pole sphere intercepts the Ewald sphere on a small 
circle, diffracted rays being distributed on a cone called diffraction cone, which axis is co-
linear with the incident beam, and of half-angle at summit 2θhkl. Under these conditions, for 
the pole sphere vectors having their extremity on the small circle, Bragg's law is satisfied and 
a diffracted beam emerges giving the so-called Debye-Scherrer rings on a flat detector.  

For a powder, the crystallite orientations in the sample are randomly distributed, and 
the h vectors extremities cover all the pole spheres. In the case of preferred orientations (or 
texture), vectors extremities are around more or less localised arcs and zones called poles, 
which can be really punctual in the case of single crystals or strongly oriented polycrystals. 

 

 

Figure 3: Ewald and pole sphere, Debye-Scherrer rings, geometrical interpretation of diffraction 
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1.4. Imperfect powders 

 

The geometrical representation is however too much simplistic for a correct 
description of the polycrystal diffraction phenomenon, because it requires three assumptions: 
(i) Crystallite dimensions are considered infinite compared to typical distances between 

two close scatterers, 
(ii) A perfect tridimensionnal order, 
(iii) The punctual source delivers a monochromatic radiation of wavelength λ, sample 

dimensions are negligible and the experimental setup does not show any aberration. 
 
When these three conditions are verified, the intensity diffracted by the (hkl) planes can be 

represented by a Dirac distribution located at 2θhkl relative to the incident beam. In reality 
condition (iii) is never respected and conditions (i) and (ii) can be unsatisfied for imperfect 
sample crystalline states. Consequently, the three conditions can be the cause of a diffraction 
line broadening. Hence: 

 
● The condition (i) is no longer satisfied as soon as the crystallite dimensions are small 

enough (typically lower than 300 nm for an experimental resolution of common laboratory 
set-up). The coherent domain limits are always defects (surfaces, stacking faults, dislocations, 
twins, polytypism …). In such case the former work of Scherrer [1918] shows in an 
approximate way that the crystallite size is inversely proportional to the width of the 
reflection. 
 

● The condition (ii) is no longer satisfied when the sample exhibits crystalline 
imperfections like microdistortions induces by internal microstresses, stoechiometric 
inhomogeneities, dislocations, surface or point defects, stacking faults ... 
 

● The condition (iii) is just never satisfied because any instrument has its own 
aberrations which are influencing the used spectral domain. These are affecting both the 
shapes, widths and positions of the diffraction lines. The resulting peak broadening is 
represented by the function g(x) or "instrument resolution function", x being an appropriate 
variable for the kind of measure used (in one dimensional measurements). 
 
1.5. Origin of the diffraction line profiles 

 
Powder diffraction raw data are composed generally of a list of intensities measured at 

many angular positions using a constant angular step in a given angular range. The first task 
of the experimentalist is then to reduce these data (recorded diagram) into observation sets 
that can be analysed using diffraction and crystallographic knowledge (unit-cell parameters, 
bond distances and angles, crystallite sizes, volume fractions, …). This is not feasible without 
knowing a priori the contribution of each of the previously mentioned effects to the observed 
line profiles h(x). This latter is in fact composed of two contributions, from the sample, f(x), 
for the conditions (i) et (ii), and g(x) from the instrument (condition (iii)). 

Sample and instrument contributions convolute into the observed profile h(x), in the 
real mathematical and signal treatment senses [Jones 1938]: 
 

∫
+∞

∞−

−=⊗= dyyxgyfxgxfxh )()()()()(  - 2   
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re and y variables define the angular position of each m asured point of the profile and 

have the same dimensions as 2θ, or as the reciprocal used variable. 

berrations are technique dependant (Bragg-Brentano geometry, Guinier 
trument resolution function g(x) is the result of the convolution of the 

ifferent aberration profile contributions, purely geometrical (beam divergence, optics 
misalig

 full-width at half-maximum H (or FWHM) of the 
diffract

 
This form includes the one proposed by Khattak et Cox (1977) as a simplification in 

not confuse the FWHM 
(which is called sometimes "Halfwidth", partic larly in pioneering works) and HWHM (Half 
Width 

ent of CRISMAT-Caen. 
Neutro

whe x e

 
1.5.1 Origin of g(x) 

 
Instrumental a

camera, …). The ins
d

nments, deviation from punctuality of the source, collimator slit widths, …), or 
physical like the emitted spectral width and distribution of the incident radiation [Alexander 
1948, Alexander 1950, Alexander 1955]. 

It is interesting to note that g(x) is depending on the variable used in the experiment 
(Bragg angle in constant-wavelength set-up or wavelength for energy dispersive instruments 
for instance). The angular variation of the

ion lines is usually represented by the Cagliotti et al. [1958] relationship: 
 

- 3    HWHM2 = H2 = U tan2θ + V tanθ + W 

the case of X-ray diffraction diagrams. Note here that we should 
u

at Half Maximum) the half of the former.  
The g(x) function is experimentally accessible by measuring a standard powder 

sample. An example of instrumental resolution function is shown in Figure 4, for the D1B 
neutron instrument of the ILL-Grenoble and for the x-ray instrum

n resolution curve has been measured on a Belemnite rostrum having large calcite 
grains while the x-ray curve was measured using the standard SRM 660 LaB6 powder from 
NIST shape as a flat specimen (ω = 11.5°).  
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Figure 4: Instrument resolution curves for a neutron (D1B-ILL, calcite rostrum sample) and a x-ray (CRISMAT, 
LaB6 standard powder) diffractometer set-up 

 
1.5.2 Origin of f(x) 

 
Using enough resolved diffractometers one can observe the deviation of h(x) from g(x) 

due to sample microstructure. The line broadening increase comes essentially from the two 
following effects: 

i) broadening due to the finite size of the crystallites. Small crystallites give rise to 
diffraction lines that are no longer Dirac-like but have widths and shapes depending on the 
mean particle sizes and shapes in the h direction. The simplest analysis of such broadening 
gives [Scherrer 1918]: 
 

- 4     
θ

λθ
cos

)2(
T

K
=∆  

 
in which T is the mean thickness of the diffracting crystallites for the h direc ion selected by 

crystallite shape.  
ii) broadening due to crystallite microdistortions. This broadening is defined by the 

rm variations of dhkl, which can be produced by external stresses, 
rystalline defects (dislocations for instance) or local compositional variations (in solid 

solu

 variation with θ is larger than for finite crystalline sizes. 
 
Of course microdistortions and size effects can be present simultaneously in the same 

nce to determine the anisotropic shape of the crystallites 
from diffraction, is not every time easy and various more or less complex methods have been 
roposed [Warren 1969, Klug & Alexander 1974]. Some of them will be described in the 

t
θ, and K is the Scherrer dimensionless constant, close to unity, which depends on the 

crystalline non-unifo
c

tions for instance). One can show that: 
 

- 5     ∆(2θ) = 4 ε tanθ 

 
where ε is the relative deformation of the interreticular distance: ε = ∆dhkl / dhkl. 

This broadening

sample. Their measurement, for insta

p
corresponding microstructural analysis paragraph. 
 
1.6 Peak profile Parameters 

 
The parameters used to define the peak profiles are: 

i) positions of the individual contributions 
ii) their angular or energetic dispersions (FWHM) 
iii) their surface under profile (intensity) 

 
iiii) their shape. 

Other parameters are sometimes used like the barycenter of the profile: 
 

daniel chateigner Page 13 13/07/2006 



Combined Analysis 

- 6    
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θ
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These parameters play a rule in the identification of solid substances, pattern indexing 

 It is then of prior importance to operate to a careful calibration of the instrument to avoid 
c errors. Also, some structural defects or states like stacking 

ults or residual stresses can shift the diffraction peaks, that have to be taken into account 
efore 

1.7 Modelling

…
as much as possible systemati
fa
b any result can be given.  

 
 of the diffraction peaks 

 
1.7.1 Why needing modelling ? 

ith 1977, Smith 1989, 
agner 1966]. The increase in diffraction peak density with 2θ results in strong peak 

overlaps, particularly for low crystal symmetries and low instrumental resolutions. This gives 
jamming of the inform tion at large 2θs, and to non usable 

diagram. The 2θ limit value above which the diagram becomes unusable is never strictly 
defined and often prevents a careful determination of the needed information. The 
ove ap

attern 

Depending on the seek information and on the a priori knowledge of the material, one 
an use

 

 
A central problem of powder diffraction is peak overlapping [Sm

W

rise to a rapidly increasing a

rl ping problem imposes the optimisation of both the instrument resolution and the 
mathematical/computer treatment in order to obtain the best possible Bragg components.  

When several physical phenomena are visible in the diagram, their relative 
contributions cannot be extracted without modelling of the convolution effects. Any 
deconvolution should be carried out with prior knowledge of the way they affect the profiles.  
 

1.7.2 Modeling of a powder diffraction p

 

c  one of the two methodologies hereafter, or the Rietveld approach (next paragraph).  

1.7.2.1 Decomposition of the diagram (individual adjustment of the peaks) 

 

The principle of this method, called direct integration, is to adjust an analytical 
function on each of the peaks of the pattern, provided the individual contributions do not 
overlap too much. This method is used when the desired crystallographic information is 
linked to the peak positions, intensities and/or shape of a limited number of peaks, and we do 
not need the full diagram. In this approach the diagram can be divided in several, individually 
treated parts. Any common software with peak profile refinements can be used in this 
pproach. The approximate positions and widths of the peaks are in general firstly visually a

intuited from a graphic interface, then adjusted by a least-square refinement procedure, by 
minimising the residual M: 
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∑ −=- 7    
i

icio
icy

 yyM 2)(1

 
methodology is rapidly limited by the overlap of neighbouring 
partially bypassed by im osing some constraints on the refined 

parameters of the lines: this is for instance the case when all the lines are imposed with the 
me shape and FWHM evolution with θ.  

 
where yio and yic are the observed and calculated intensities at point i respectively, 

which describe the considered peak. The only imposed constraint in this method lies in the 
choice of the mathematical function used to describe the individual profiles. For this it exists a 
full set of used functions that will be detailed in following paragraphs. The simplest are the 
Gaussian and Lorentzian functions [Snyder 1983, Suorti 1995]. For some reasons the most 
used functions in crystallography are Voigt [Langford 1992] and Pseudo-Voigt. 
 Lets note that we find such functions also in the description and refinement of other 
physical measurements, for instance in spectroscopy (Raman, Nuclear Magnetic Resonance, 
Mössbauer ...). The important thing is to give a physical meaning to the parameters of the 

athematical function used to describe the observations. m

The efficiency of this 
peaks. This limitation can be p

sa
A refinement example using this approach to fit a five components pattern is shown in 

Figure 5. 

 

Figure 5: Least-squares result on a quartz powder 

 
1.7.2.2 Profile refnement with cell constraint (Whole pattern fitting) 

 

In this approach the full diffraction pattern is analysed without a structural model but 
constraining the unit-cell [Toraya 1986]. The peak positions are linked to the unit-cell 
parameters but their intensities is not taking account of the structure and are adjusted 
simultaneously with the other parameters of the profiles. The dependency of the peak widths 
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is described by the Cagliotti relation (Eq. - 3) [Cagliotti et al. 1958] or some related 
approaches [Prince 1989, Cheary et Cline 1994]. 

The observed intensity yio at each step i of the profile is modelled by a calculated 
intensity yic: 
 

- 8     ∑ Ω+=
k

ikkibic Iyy  

 
where yib is the background intensity at step i. 
Ωik = Ω(2θi-2θk) is the profile shape function of the kth peak at 2θk. 
Ik is the integrated intensity of the kth peak of the diagram contributing to step i. 
 

This method was originally proposed by Pawley [1981]. In the procedure, all the 
possible reflections are first generated from the approximate unit-cell parameters (and space 
group if known for systematic extinction's). Then the corresponding integrated intensities are 
refined by a least-square approach together with the line profiles and unit-cell. Since there is 
no constraint on the intensities via the structure, convergence of this approach is however 
relatively unstable, but provides important information for unknown structures. Figure 6 
shows an example of a Whole Pattern Fitting of an anatase/rutile mixture, operated with the 
Fullprof software [Rodriguez 2003]. 

 

Figure 6: Refinement of an anatase/rutile powder operated by Whole Pattern Fitting using Fullprof 

 

1.7.2.3. Functions describing the peak shape 

 

daniel chateigner Page 16 13/07/2006 



Combined Analysis 

1.7.2.3.1. Gaussian 
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Where:  kkkk PWVUH θθθ 22 cos/tantan +++=  

 
I0 is the integrated intensity. 
2θi is the two theta value of each profile point i. 
2θk is the expected two theta value for each reflection k. 
Hk is the FWHM for each reflection k. 
U, V, W and P are the resolution function parameters of the diffractometer. 
 

Refinable parameters: U, V, W, P 
 

1.7.2.3.2. Lorentzian and Modified Lorentzian (Pearson VII) 

m
⎞⎛

k

kik

H
C
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⎟
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⎠
⎜

⎜
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⎝
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+

2
22
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with  

i H
L

⎜
⎜= 0)2(

π
θ- 10   

( )124 /1 −= mC  

 
m is the Lorentzian order which varies between 0 and infinity. 

 = 1 gives the "pure" Lorentzian function. 
m = 1.5 gives the diate" Lorentzian function [Malmros et Thomas 1977]. 
m = 2.0 gives the d" Lorentzian function [Sonneveld et Visser 1975]. 

le parameters: U, V, W, P, m 

 
 W, P, m 

 
1.7.2.3.4. Pseudo-Voigt 

- 12   

m
"interme
"modifie

 
Refinab

 
1.7.2.3.3. Voigt 

- 11    V(2θi) = L(2θi) ⊗ G(2θi) 

Refinable parameters: U, V,

)2()1()2()2( iii GLPV θηθηθ −+=  

 
η is the mixing parameter of the linear combination which varies between 0 and 1. 
L(2θi) is the pure Lorentzian function and G(2θi) the pure Gaussian function. 
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Refinable parameters: U, V, W, P, n 

 
1.7.2.3.5. Split Pearson VII [Toraya 1986] 

- 13   

 
12

1

2

0
2211)2(

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ +

+=
k

ki

k
i H

C
As

AsL
H
QPVII

θθ
θ  

for 2θi ≤ 2θk 

 

( )- 14   

12
22 ⎟

⎞
⎜
⎛ ⎤⎡ ⎞⎛ −Q θθ

2
2

0 11)2( ⎟⎜ ⎥
⎥

⎢
⎢ ⎟⎟

⎠
⎜⎜
⎝

++=
k

ki

k
i H

CAsH
H

PVII θ  

−

⎠⎝ ⎦⎣

for 2θi 

L   and  
θ  

sin/)2()1()( ++=  

0000 1()( =

 
Q is a function of As, Lo and Ho. 

Refinable parameters: U, V, W, P, As(1−3), Lo(1−3), Ho(1−3) 

15   iViVi G

> 2θk
 

with 1=C 2 0/1
1 − 12 0/1

2 −= HC  

kk AsAsAsAs θθ 2sin/)3(sin/)2()1()( ++= k

kkk LLLL θθθ 2
0000 sin/)3(
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1.7.2.3.6. Variable pseudo-Voigt 

 

 1()2()2( LPV )2()ηθηθ −+= θ-  

 

 
Refinable parameters: U, V, W, P, p(1−3) 

1.7.2.3.7. Parameterised pseudo-Voigt [Thompson et al. 1987] 
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kkkkG PWVUY θθθθ 22 cos/tantan)( +++=  Gaussian part  
Lorentzian par  XY kkkLt Y Z= ++ θθθ cos/tan  
 

Refinable parameters: U, V, W, P, X, Y, Z 
 

1.7.2.3.8. Anisotropic variable pseudo-Voigt [Le Bail et Jouanneaux 1997] 

17    

)(

 

)2()1()2()2( iAiAiA GLPV θηθηθ −+=  - 

 

lllhkk UH = tan- 18    hkkhkk WV ++ θθ tan2  

pWpVpU ++= θθθ tantan) 2

- 19
 

222222
11

2 cbkUcahahUdhkhk llll +=  

 
and sim
 

Refinable parameters: 
and V s pW sij ij ij ij ij' , ' , ' , ' , ' . 

Meaning 36 parameters to fit. This procedure is actually not linked to the Popa-like 
parameters for microstructure. 
 

1.7.2.3.9. Anisotropic variable Pearson VII [Le Bail et Jouanneaux 1997] 

tion is defined as in Eq. - 13 and - 14 with Hk given by Eq. - 18 and m is a 

- 20   hkk pW+  

and . 
s to fit. This procedure is actually not linked to the Popa-like 

arameters for microstructure. 
 

 parameterised pseudo-Voigt [Stephens 1999] 

 
This function is derived from the Thompson, Cox et Hastings param −Voigt. 

- 21    
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ilar expressions as Eq. - 19 for lllll hkhkhkhkhk pWpVpUWV ,,,,  
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The func

function of hkl: 
 

 lll hkkhkkhk pVpUm += θθθ tantan)( 2
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Refinable parameters: U U U U U U11 22 33 12 13 23, , , , ,  

V s W s pU s pV s pW sij ij ij ij ij' , ' , ' , ' , '

Meaning 36 parameter
p

1.7.2.3.10. Anisotropic

eterised pseudo
 

)2()1()2()2( iPiPiP GLPV θηθηθ −+=  
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The anisotropic contribution is included in the ΓA hkl( )  expression: 

hklkhklA

 

MMhkl /tan)()( 2 θσ=Γ  

here   is the variance of 

KH
HKLhkl lkhSM ∑=)(2σ   with H+K+L = 4 

 

σ 2 ( )M hkl M dhkl hkl= 1 2/  W
 

L

HKL

Refinable parameters: U, V, W, X, Y, ξ 
 

1.8 Experimental geometry 

 
 As far as combined analysis is of concerns, the acquisition of many diagrams may be 

ly 
e 

se of unidimentional (linear or curved) or bidimensional (CCD camera or image plates) 
 can economise a scan (generally along the 2θ rotation for 

ents, or along another for diffusion experiments) while the latter, 
epending on the geometry, allows to work with even one less rotation. In any case it is useful 

to hold these detectors on monitored arms that allow a precise positioning which allow 
misorientations to be corrected. Working with 4 (or more) circles diffractometer is then 

tric reflection geometry 

 Figure 7 illustrates the mounting of a CPS detector on a 4-circles diffractometer with 
ular v riables and frames. The arrows rotation arrows indicate the + sign for 

e KA and the spectrometer reference frame KS are 
dicated. One can see on this figure the following rotations: 

 - ω: the incidence angle of rays, rotation around ZS

 - χ: the co-latitude or pole distance, rotation around the Eulerian cradle axis, 
tersection between sample and scattering planes 

- ϕ: the azimuth angle, rotation around the sample normal ZA 

required, particularly if texture analysis is of importance. Using point detectors consequent
ives rise to prohibitive acquisition times. These experimental times can be reduced by thg

u
detectors. Using the formers
diffraction experim
d

preferred. 
 
1.8.1. Curved Position Sensitive detector, asymme

 

the different ang a
each rotation. The sample reference fram
in
 

in
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 - ion relative to ZS τ: detector posit
- 2θ: signal position (diffracted or scattered) from the incident beam in the scattering 

lane 
 

 
p

 
Figure 7: 4-circles reflection Geometry using a CPS detector 

r closed circle), a dead-area can be present 
an out of measuring area 

orption through the flat sample, which starts at ω. 

CD or image plate detector, asymmetric transmission geometry 

In this instrumental set-up the ω angle is the same as the one of Figure 7, while ζ is a 
rotation perpendicular to the incident beam and the ω axis. 

 

Depending on the Eulerian cradle (opened o
due to shading of the signal by absorption through the cradle. Also, 
is present in reflection geometry due to abs

 
1.8.2. C

 

daniel chateigner Page 21 13/07/2006 



Combined Analysis 

 
Figure 8: 4-circles transmission Geometry using a 2D detector 
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2 Structure refinement by diffraction profile adjustment (Rietveld method) 

 

2.1 Principle 

 
Another approach starts with roughly estimated integrated intensities Ik

0, in order to 
calculate new intensities at the cycle n+1, Ik

n+1, using the expression: 
 

- 22     ∑ −
−

Ω=+

i ibic

ibio
ik

n
k

n
k nyny

nyy
II

)()(
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where yib is the background associated to the ith measured intensity yio. 
 
This method is numerically more stable and efficient than the Pawley approach, and has 
initially been proposed by Rietveld [1967]. Many other algorithms use it [Taylor 1985, Le 
Bail 1992, Rodriguez 2003] also. It is actually the most intensively used technique because of 
its efficiency in powder diffraction when the crystal structure of the sample is known. It has 
originally been developped for monochromatic neutron powder diffraction analysis, and has 
been extended to monochromatic x-ray experiments and modified to allow time of flight 
neutron and x-ray energy dispersive data analyses. 

The Rietveld algorithm uses all the information of the experimental spectral range, 
including information outside the diffraction peaks. The used variables are: 

 
● the instrumental characteristics (resolution curve of the diffractometer, displacement 

parameters concerning goniometer misadjustments, experimental geometry, detector 
characteristics ...) 

● the structural parameters (unit-cell parameters, atomic positions, atomic occupations, 
thermal vibrations, ...) 

● the microstructural parameters (mean crystallite sizes and microstrains, defects ...) 
● the sample parameters (preferred orientations, residual stresses, excentricity, 

thicknesses, transparency, absorptions, phase fractions ...) 
 

The refinement code minimises the following function: 
 

- 23     
2)(∑ −=

i
icioio yywM  

where 2

1

io
iow

σ
=

easured point (σ

e

 is the statistical weight associated to the observed intensity yio at the ith 

m io is the variance associated to the observed yio), and yi = yio - yib. During 

the refinem nt the used weights are 
io

io y
w 1

= , while for a refinement using the maximum 

likelihood (Bernoulli 1861, Fisher 1922) they are 
ic

ic y
w 1

= . Relation - 23 implies that the 

measurements are independent and that the variations of the observations obey a normal 
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frequency distribution. The second weighting scheme is then preferred for diagrams with low 

The sum extends to all the measured points of the pattern. Calculated intensities are 
etermined by adding the contributions of all the peaks for all NΦ phases of the sample, which 

ith the background contribution at each point i: 

counting levels where normal distributions are not satisfied.  

d
superimpose w
 

∑ ∑
Φ

=Φ
Φ

=
ΦΦΦΦ Ω+=

N

ik
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Kk
kkkibic FPLpjSyy

1

2
 - 24    Φk
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SΦ is a scale factor, proportional to the volumic fraction of each refined phase Φ 

LpΦk is the Lorentz-polarisation factor 

 feet of the function Ω  are often rapidly 
decreas

a Gaussian shape, 
this range is typically of 1.5 times the FWHM of the peak. However, this value may be 
inc

in which: 

- 
- jΦk is the multiplicity factor of the peak for phase Φ 
- 
- PΦk is a correction factor describing preferred orientations of phase Φ 
- |FΦk| is the modulus of the structure factor (including thermal agitation) of phase Φ 
- ΩiΦk describes the profile function of the peaks of phase Φ, which represents instrumental 
and potential sample broadenings. 
 

The first sum runs for all the phases in the sample and the second for all the reflections 
k which contribute to the ith measured point. As the iΦk

ing, the calculation of the contribution of a given reflection k at the angle 2θi is 
necessary only in a limited range on each side of the peak barycenter. For 

reased (sometimes up to 20 FWHMs) for profiles comprising Lorentzian contributions. 
 

2.2 Rietveld based codes 

 
The original program of 1969 [Rietveld 1969], is written for monochromatic neutron 

pow
uthors. Some landmarks should be 

cited. The development by Von Dreele et al. [1982] carried out in order to analyse time of 
flight n x-ray powder diffraction data 
round the late 70's [Malmros et Thomas 1977, Katack et Cox 1977]. A large number became 

able to manage both x-ray and neutron data, and 
 them allow refinem nts with more or less complex 

refinement constraint systems [Pawley et al. 1977, Wiles et Young 1981, Bearlocher 1993, 

ent of ma
2

experimental configurations. Most of these programs in their actual versions allow visual 

would be fastidious to describe their 

der diffraction analysis and has been widely distributed by the author. Since then the 
programs and algorithms have been ameliorated by many a

eutron data. The former uses have been extended to 
a
available since then, most of them being cap
sometimes simultaneously. Most of e

Lutterotti et al. 1999, WinMProf Jouanneaux 1999, Von Dreele 2002, Rodriguez 2003]. 
Refinem ny phases simultaneously is now accepted by quite all the softwares. Some 
of them allow magnetic struture refinements like Fullprof [Rodriguez 003], and/or 
modulated strutures like Jana [Dusek 2001]. The MAUD program by Lutterotti et al. [1999] 
allows the combination of many different approaches (texture, stress, structure ...) and 

interfacing and easy handling of most functionalities. It exists a tremendous number of 
programs that use the Rietveld method and it 
characteristics and specificities her. The Cransvick [1999] site is a place where to find 
practically all the existing programs used in crystallography in general.  
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2.3 Parameters modelling 
 

2.3.1 Background modelling 

 
The background at the ith measurement can be modelled using two main different 

can place a physical explanation to the background signal.  

2.3.1.1. Empirical approaches

approaches, depending if one 
 

 

the empirical approach, an array of data given by the user can be selected and 
n or fit is 
3].  

sent it, for instance to model the direct beam influence at 
w an

 
ber of Gaussians and the order of the polynomia 

ib is the calculated background at each point (i). 
2θi and

 
In 

interpolated, or all the points used and fitted in the program. The interpolatio
al functions [Richardson 199operated through polynomial or Fourier series analytic

 
2.3.1.1.1. mth order polynomial function 

 
A phenomenological function, used in absence of any better model, is a polynomia of 

order m which the origin Bkpos is specified. We can also add Gaussian functions to the 
ackground in order to better repreb

lo gles or to shape bumps coming from amorphous phases at a first approach or if these 
latter are not interesting. The function used is: 
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where G and M are the total num
respectively. 
y

 bkpos are in degrees.  
 

2.3.1.1.2. Fourier series 
 

- 26    )2*11cos(...2cos)( 1110 ii BKBKBKiB θθ +++=  

   Refinable parameters: BKj (j=0 .. 11) 
 

2.3.1.1.3. 2D detectors 

 
 Unlike 2θ diagrams, the background measured on CCD or image plate detectors may 
vary with 2 degrees of freedom. The radial variation from the centre (intercept of the incident 
beam) of the detector corresponds to the variation in 2θ and as such can be treated using Eqs. 
- 25 and - 26. If the background in not homogeneous in azimuth δ, then this variation has to 
be taken into account: 
 

daniel chateigner Page 25 13/07/2006 



Combined Analysis 

nm
i

M

m
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n

G

g
igib BkposBGy δθδ ]1)/2[(

0 01

−+= ∑∑∑
= ==

 - 27    

 with n an index running for all the measured points in δ. Note that since Gaussian 
contributions are generally axially symmetric around the incident beam, the background does 
ot dep δn end on  in the previous equation. It would however not be a problem to include such 

variation. 
 
2.3.1.2. Physical approaches 
 

During the refinement of yib, a phenomenological function can be used when a known 
function describes the physical reality: amorphous phase scattering (taking account of a radial 
distribution function), thermal scattering … [Riello et al. 1995, Riello et al. 1995a]. 
 

2.3.2 Structure factor 

 
The structure factor is given by [Eberhardt 1976]: 

 

- 28    )exp()][2exp( j
j

jjjjj MzkyhxifNF −++= ∑ lπk  

 
with: 

the atom j in the unit-cell 
- fj: atomic scattering factor for atom j 

The X–ray scattering factor is defined as: 

 if’’ 

where f0 is the normal atomic scattering factor, f’ and f’’ are the real and imaginary 
ely which account for the anomalous scattering. 

The f0 values may alternately be calculated using the formula: 

- h, k, l: Miller indices 
- xj, yj, zj: atomic positions of 

 

29-     fj (sinθ/λ ) = f0 + f’ +

 

dispersion terms respectiv

( )[ ] cbaf ii- 30    
i

+−= ∑
=

2
4

0 )/(sinexp)/(sin λθλθ  

i, i = 1 to 4 and c can be retrieved by the programs simply by 
e (neutral atoms and ions, e.g. Sr2+, O2- etc.).  

1

 
The nine coefficients ai, b
supplying the atom nam

 
- Nj: occupation ratio of site j 
- exp(-Mj): thermal vibration parameter 
 

Here are the atomic parameters which may be specified: 
 
1) The Atomic Scattering Factor which may include both nuclear and magnetic scattering for 

neutron diffraction, or real and anomalous scattering for X–ray diffraction. 
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2) The Site Occupation Factor, which may reflect genuine defects in the occupancy of a 
 more usually, is employed to produce correct structure factor 

contributions from atoms situated on crystallographic symmetry elements. 

) The Thermal vibration parameters, which may describe either isotropic or anisotropic 
mperature correction to the calculated structure factor is: 

)  

particular atomic site, or,

 
3) The Coordinates within the unit cell expressed relative to the possibly non−orthogonal 

unit cell axes in terms of fractions of the unit cell edge. 
 
4

vibration. The isotropic te
5

- 31    ( )[ ]2/sinexp λθB−  

 
2where B is the temperature factor expressed in Å . It then is the mean quadratic displacement 

of the a rrection for reflection (hkl) is: 

- 32 

tom. The anisotropic co
 

   [ ]23131233
2

22
2

11
2exp βββ lhh +++− 222 βββ ll khhk ++  

que elements of the symmetric tensor describing the thermal 
vibration ellipsoid. 

The components of the magnetic vector along each of the unit cell axes. If these 
, additional symmetry information is required in order to determine 

agnetic atoms in the unit cell. The 
tly simplified if the structure 

po sess onal symmetry [Shirane 1959]. 

2.3.3 Crystallites Preferred Orientation (texture) 

crystall
particu d when the 
sample  NaCl crystallises as 
parallelepipedic crystallites limited by (001) planes which tend to orient parralel to the sample 

for measurement purposes. In Bragg-Brentano geometry, the 
corresponding intensities will be favoured.  

One should not confuse the texture effect and the lack in statistics in terms of number 
of irrad
appear l, ..., are 

exture treatments in Rietveld analysis. If the texture is simple 
, it can be modelled by a classical analytical shape 

aussian ...). If it is more complex (several texture components, non regular distributions ...) 
tter of §5. In this paragraph only the 

implest textures are of concerns. 

 
where β11 to β23 are the uni

 
5) 
parameters are supplied
the direction of the magnetic vector for each of the m

ross section may be greacalculation of the magnetic scattering c
s es either uniaxial or cubic spin configurati

 

 
The correction of preferred orientations has to be taken into account as soon as the 
ites are likely to orient in one or several directions of the sample. Texture is 
larly present in easy-clivage materials or having anisotropic growing, an
s are elaborated by anisotropic techniques. For instance

surface when compacting it 

iated crystallites, which both reinforce some peaks. In the latter case, reinforcements 
more or less stochastically, while in the former all the hkl, 2h2k2l, 3h3k3

reinforced (if hkl is the textured direction). 
 It exists two types of t
(high symmetry and regular dispersion)
(G
the treatment requires a quantitative texture analysis, ma
s
 

The texture can be roughly modelled using three parameters: 
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● a texturation axis linked to the sample symmetry (the normal to the sample surface for 
at sample in Bragg-Brentano geometry, the cylinder axis in Debye-Scherrer geometry) 
● the crystallographic direction h which tends to align with the previous a

a fl
xis 

● a texturation strength (angular dispersion, texturation factor ...). 

2.3
 

.3.1. Original Rietveld and March approaches 
 

The preferred orientations are modelled in the original equation of Rietveld by the 
rch approach [1992] using the function Ph: Ma

 

( )2
1exp hh αGP −=  - 33    

or 

- 34    )exp()1( 2
112 hh αGGGP −−+=  

 
meters and αh the angle between the texture direction h nd the 

∆k. 

ase approach

with G1 and G2 refinable para  a
scattering vector 
 

2.3.3.2 March−Doll  

Dollase shown that the following function is more efficient [Dollase 1986, Bowman et 
Mendendorp 1994]: 

- 35    2
32

1

22
1 )sin1cos(

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= hhh αα

G
GP  

where α is the acute angle between the scattering vector and the preferred orientation 
axis. O ibution of the preferred orientation 
xis of the individual crystallites about the normal to the plane of the sample. G1 is the 
finab

n of the orientation: 

riginally, the correction assumed a Gaussian distr
a
re le parameter (G1 = 1: no preferred orientation) that now controls the distribution shape 
and is an index of the preferred orientation strength (G1 = 1 for a random orientation). 
 This model provides: 
 ● a preferred orientation correction factor which minimum or maximum at α = 0° 
 ● a symmetric and smooth evolution in the [0,90°] α range 
 ● a single parameter to be fitted 
 ● the possibility of normalisatio

1
2

0

=∫
π

αdPh  - 36    

This latter property is important in order to keep constant the total diffracted intensity 
in a diffraction diagram whatever the distribution shape Ph. 

 
However, this type of formulation is only valid for axially distributed, single 

component, textures (with a cylindrical symmetry around the scattering vector, and for a 
ragg-Brentano geometry), for which it has proved to provide efficient corrections [O'Connor 

et a any softwares, and some of 
them easurements 

B
l. 1991, Capkova 1993, Cerny 1995]. It is implemented in m
 allow a two texture components of this type. For all the other textures, m
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and r
r et 

al. 9
 
2.3.3.3 Donnet−Jouanneaux function

 fo malisms to resolve the texture are more complex and have to be envisaged, unless a 
destruction of the sample is acceptable, as has been demonstrated for instance by O'Conno

(19 2). 

 

tions is purely empirical.  This model for correcting preferred orienta

- 37    
α

α
2)1(1

2cos.1
−+

+=
G
DPh  

sin

le parameters: G, D  (D = 0: no preferred orientation) 
 
 

ollase or Donnet-Jouanneaux models allow the descriptions of 
ese descriptions are then depending on sample 

dependent factors like porosity, crystalline state ... 

mmetry 

e diffraction peaks exhibit some asymmetry, particularly at 
low Bragg angles in Bragg-Br
convol

 a linear detecting slit and a Debye-Scherrer cone of half-aperture α 
introduce distortions of the peak shapes, which are most detectable at low and high angles. 

ed during the refinement by multiplying yio by an asymmetric 
factor of various shapes, among which the most used ones are the following. 

 
   Refinab

 By no way the Mach-D
textures in terms of distribution densities. Th

 
2.3.4 Peak asy

 
It is often observed that th

entano configuration. This effect can come from the 
ution of the goniometer slit shapes by the sample signal. Geometrically, the 

intersection between

Such an effect can be correct

 
2.3.4.1 Rietveld's correction [Rietveld 1969]: 

 

- 38    hhihihi signAA θθθθθθθ tan/)22).(22( 1)22( 2−−−=−  

 
A e r d parameter and θ  the line position (the inverse dependence in tanθk is not  is th efine
lways ed).  Lorenztian (AL): 

- 39    

k
a  us The asymmetry can be used for instance for an asymmetric
 

LAAL hi )22( θθ −=  

 

2.3.4.2 Howard’s correction [Howard 1982] 

 
egration rule and is applied in the 

form of a sum of n peaks, n being the number of integration ordinates. For instance, if a 
Pseudo

The correction employs the Simpson’s or Bode’s int

-Voigt function is used, the corrected peak shape function (PSF) will be defined as: 
 

- 40    [ ]∑
=

−=Ω
n

kiiik PfPVg
1

)2tan(/)(2)2(
l

ll θαθθ  
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P is the asymmetry parameter (P = 0: no correction). The values of the Simpson’s or Bode’s 
rule coefficients,  and , depend on the number of terms in the summation.  lf lg )(αlf  is 

able parameter which enables the positions not to 
 program, the correction can be applied to some or other 

 
le parameters: P, α. 

 
.3.4.3. Finger, Cox et Jephcoat’s correction [Finger et al. 1994]

related to the ordinates positions; α is a refin
be only equidistant. Depending on the
peak shape functions. 

   Refinab

2  

This correction is the most physically appropriate. It is expressed as a function of three 
arameters: 

ately the sample size if the beam is larger. 
 

action, 2H is the horizontal width of the detector slit and 2S is 
e horizontal beam size. For neutron diffraction, 2H is the vertical width of the slit and 2S is 
e ver

 

p
i) L, the sample to detector distance, 
ii) 2H, the aperture of the detector slit and  
iii) 2S, the beam size on the sample or altern

For X–ray powder diffr
th
th tical beam size. 
 
   Refinable parameters: the ratios S/L, H/L. 
 
2.3.4.4 Bérar-Baldinozzi correction [Bérar et Baldinozzi 1993] 

 
The asymmetry correction, which works well for weak asymmetries, takes the form: 

 

41    ( )[ ] ( )[ ]
k

a

k

a zF
zPP

zF
zPP

θθ 2tan
)(

322
tan

)(
3221 2

43
2

21 −++−++  - 

 

where 
kH

 

kiz
θθ 22 −

=  and . 

  Refinable parameters: P1, P2, P3, P4  (Pi = 0, i = 1,4: no assymetry) 

)exp(2)( 2zzzFa −=

 
 
2.3.4.5 TOF neutrons 

 
n additional asymmetric broadening effect. Von 

reele et al. [1982] proposed an empirical form for this asymmetry, composing the peak 
hape f

 

 The neutron pulse structure imposes a
D
s unction with back-to-back paired set of exponential convoluted with Gaussians: 
 

- 42    Ωik(∆T) = N [exp(u) erfc(x) + exp(ν) erfc(y)] 
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 The refinable parameters N, u, ν, x, y have various functional dependencies on the d-

ffs

ematic errors coming either from the 
 the instrument, incorrect sample 

ind are described here. They 
ents varying with the Bragg angle as a cosθ or sinθ law, with a 

oeffici
Rietvel

2.3.5.0

spacing of the reflection, the scattering angle of the detector and the structure of the neutron 
source. ∆T is the o et of the profile point from the reflection position. 
 

2.3.5 Peak displacements 

 

Diffraction diagrams can be affected by syst
iffractometer or from the sample (bad adjustment ofd

positioning) [Wilson 1963]. Most often met aberrations of this k
all induce peak displacem
c ent depending of the diffractometer geometry and the nature of the aberration. 

d software allow the refinement of the factors composing these errors.  
 

 Zero-shift 

 
all peaks and has to be refined. 

If the detector is shifted relative to the incident beam, a constant shift ∆2θ0 appears for 

 
2.3.5.1 Debye-Scherrer geometry 
 

-    ∆2θ = a cosθ / R - b sin2θ / R 43 

d 
erpendicular to the incident beam, respectively, and R is the sample to detector distance. 

.3.5.2 Flat plate, θ-2θ Bragg-Brentano symetrical geometry

 
Where a and b are sample displacements in the directions parallel with an

p
 

2  

- 44    ∆2θ = -2 s cosθ / R 

 
 nt and R the radius of the goniometer circle.  
 
.3.5.3 Flat plate at fixed sample angle ω, asymetrical geometry

 

s is the sample displaceme

2  

 
.3.5.4 Flat plate transmission geometry

- 45    ∆2θ = b sin2θ / R sinω 

2  

.3.5.5 Sample excentricity (Bragg-Brentano geometry)

- 46    ∆2θ = −a sin(2θ) / R 
 

2  

This is often the largest error source of peak positions. This error is given by [Matulis et 

 

 

Taylor, 1993]: 
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-    θθ cos2)2( 1−−=∆ sR  

 
 being the sample displacement relative to the goniometer axis in th

47 

e ∆k direction. The 
inus sign stands for peak shifts towards lower angle for displacements below the 

focalisa eter is often the whole (-2sR-1) factor. 

2.3.5.6

s
m

tion circle. The refined param
 

 Sample transparency 

 
Transparency correction is operated through [Alexander 1948]: 

- 48    θµθ sin)()2( 1−−=∆ R  

in which µ is the linear absorption coefficient of the sample.  
 

narity (Bragg-Brentano geometry)2.3.5.7 Sample pla  

tangent to this circle. It results an asymmetrical broadening of 
rycenter: 

 
In this geometry the sample surface is not concentric to the focalisation circle of the 

goniom ter, but usually flat and e
the line profile and a shift of its ba
 

- 49    θ
α

θ ancot)2( 2−=∆  
6

.3.6 Lorentz-polarisation correction 

.3.6.1. X-ray diffraction

α is here the incident beam divergence. 
 

2

 

2  

2.3.6.1.1. Bragg-Brentano geometry 

For powders and x-ray diffraction, the Lorentz factor is defined by: 

 

 

 

- 50    
θθ cossin2

1
2=L  

 

For X–ray diffraction, the incident X–ray 
adopted in most programs for the polarisation facto

beam can be polarised or not. The form 
r p is: 

 

m  

wh
. 

 

- 51    22P += θθ 2cos2cos1

ere m
2 2cos θ  is the monochromator polarisation correction and θm the exit angle of the 

monochromator
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For an unpolarised inc aident beam on the s mple (no front monochromator inserted), 
. With a front or back monochromator set-up, the  value must be 

ane perpendicular 
 the incident and diffracted beams, 

The Lp factor takes finally the following form [Langford 1986]: 

 polarisation is not symmetrical around 
e inc

53    p = 1 - 0.5 sin2(2θ) [1-p'cos(2δ)] 
 

ree of polarisation of the primary beam. This latter can reach 
quite 100% using sync

.3.6.2. Time Of Flight neutrons

12cos m
2 =θ m

2 2cos θ
specified. For instance, with a graphite monochromator and Cu-Kα radiation, 

.7998,02cos m
2 =θ  

For synchrotron radiation when the beam is 100% polarised in the pl
.02cos m

2 =θ  to
 

 

θθθθ cossin2/]2cos2cos1[ 222
mLp +=  - 52    

 
2.3.6.1.2. 2D detector and polarised beams 

 
On a 2D detector using a polarised beam, the 

th ident beam (Figure 8), and the corresponding correction to be applied depends also on 
the running angle δ on the detector: 
 

- 

 in which p' is the deg
hrotron radiation. 

 
2  
 

For neutrons, there is no polarisation but only the Lorentz factor, which for TOF 
eutron data takes the form [McCusker et al. 1999]: 

54    L = d4 sinθ 

 
This factor strongly enhances the scattered intensity for large d-spacing reflections. 

 
 .3.7 Volume, Absorption, thickness corrections 

ic and absorption corrections may be applied for various 
experimental geometries. They depend also of the sample geometry, for instance thin films 
require specific correction and so on. 
 

n
 

- 

2

 
In many programs the volum

2.3.7.1. Schulz geometry, point detector, thin layered structure 

 
uires to rotate the sample around two more axes than θ and 2θ 

[Schulz 1949a], called tilt χ and azimuth ϕ angles. Dealing with thin structures will then need 

r et al. 1992, Chateigner et al. 1994, 
hateigner et al. 1994a], one can correct the observed intensities using: 

 Measuring textures req

an additional correction that compensates the volume and absorption variations when rotating 
the sample by χ. Using a point detector [Chateigne
C
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Top Film: 
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yi(χ): p
 measured a  at the i  point of the profile 

 film 
T: thick

overed layer:

rofile intensity measured in the χ orientation at the ith point of the profile 
yi(0): corrected profile intensity like if t χ=0 th

µ: linea  absorption coefficient of ther
ness of the film 
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e considered layer of the stack 
: thickness of the considered layer of the stack 

Tj: thickness of the covering layers 

1
)(y(0)y ii χ=

µ
T
µj: linear absorption coefficient of the covering layers 

 
Substrate: 

)
cossin

2
sin
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Multilayer:
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ll

l

l: linear absorption coefficient of the considered layer of the stack 
l: thic

µ
T kness of the considered layer of the stack 
 
2.3.7.2. Schulz geometry, CPS detector, thin layered structure 

 
 The use of a CPS detector on the previous 4-circle diffractometer implies different 
orrections have to be carried out, since the outcoming beam differs from peak position to c
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peak position. Considering an angle ω of incidence, the corrections to be applied are [Morales 
et al 2002]: 

Top Film:
 

 

( )( )
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Covered layer: 
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Multilayer:
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y, 2D detectors, flat sample2.3.7.3. Transmission geometr  

 
 Using the set-up of Figure 8 and a platelet-shaped sample with the normal to the slab 
parallel to the incident beam in the ω = ζ = 0° orientation, a correction has to be applied to 

t al. 1999]: 

64    

account for absorption and volume changes for ω ≠ 0° [Heidelbach e
 

ωcos ⎠⎝  
µω )11(exp)0I()I( T ⎟

⎞
⎜
⎛ −−=

- 

ωω cos/)0()( VV =
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 where T is the sample thickness. 

8. Localisation corrections 

 
s are the ones that have to be operated on the angular co-

ordinates of the data from the diffractometer space where the scattered intensities have been 
measured to the space in which modelling oc ure space Y.  
 

etry, CPS detector

 
2.3.

 Localisation correction

curs, for instance the pole fig

2.3.8.1. Schulz reflection geom  

al using a CPS detector on a 4-circle diffractometer in the Schulz geometry, 
the (χ,ϕ) co-ordinates of the diffractometer space for which the diffracted intensities have 

t the ones of the Y−space, except for that pole figure which have been 
 at the angle 2θ = ω (symmetric case) For all the other pole figures, the pole 

figure co-ordinates (ϕy,ϑy) have to be calculated [Matthies et Chateigner 2000]: 
 

ϑy  = arccos{cos(θ − ω) cosχ} 

  ϕy = ϕy
0

 - ϕ 

ϕy
0 = sign{- cos(θ − ω) sinχ} arccos{sin(θ − ω)/sinϑy} 

y
 These formulae are obviously depending on the geometry of the experiment, but also 
on the rotations signs. We placed our frames in the geometry of Figure 7, which differs 
somehow from the geometries used by other authors for the same calculations [Bunge et al. 

ann et Laruelle 1986]. 

.3.8.2. Transmission geometry, 2D detectors

 
 In gener

been measured are no
measured exactly

- 65  

 
ϕ 0 is the ϕ value at 0.  

1982, Heizm
 
2  

 
Using the set-up of Figure 8, a given rh Debye-Scherrer ring can be discretised in po

fo instan e every 5° along the ring) which have to be translated into co-ordinate of the 
pole figure space [Heidelbach et 1999] using: 
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which, when the ζ rotation is not used simplifies: 
 

⎝⎠⎝ − cos1 2 c
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Here also the rotations are of course oriented. Using neutrons or hard x-rays, these 
, if the sample shape differs from a regular 

ylinder, and/or for strongly absorbing samples, the ω and ζ rotations will give rise to 

ly absorbing 
aterials when systematic intensity decrease is detected at low angles. Four empirical 

formulations for this effect rature. The surface roughness is 
ent, SR, that is large at low θ-values and takes 

). 
Such corrections have been im

 
ragg-Brentano

⎜⎜
⎛

−=yϑ 1cosccos θ

= θcoscosc

corrections are the only ones to achieve. However
c
absorption and irradiated volume changes which will need particular corrections. 
 

2.3.9. Microabsorption/Roughness corrections 

 
The microabsorption or surface roughness correction can apply on high

m
have been described in the lite

introduced as a factor in the Rietveld refinem
the value 0 at θ = 90° (at normal incidence no roughness is "seen" by the incident beam

plemented in the program by Young et al. (1999). 

2.3.9.1. Sparks model, B  

Sparks et al. (1992) use a monoparametric function for SR: 
 

 68    ⎥⎦
⎤

⎢⎣
⎡ −−= 1S

2
πθtR  

with t the parameter to refine and θ in radians. 

-

This model is linear and does not satisfy corrections at very low θ angles (Figure 9). 
 

2.3.9.2. Suortti model, Bragg-Brentano 

Suortti (1972) uses a two-parameters function for SR, with the two parameters to 
refine p and q. This function can represent roughness effects even at low θ angles thanks to 
the additional parameter and the exponential variation: 

 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛+−−=

θsin
q-exp p  exp 1 qpS R  - 69   

 
2.3.9.3. Pitschke model, Bragg-Brentano 

e refined, in the simplified function, 
which  the vertical asymptotic variation for 
θ = 0: 

 

Pitsche et al. (1993) also use two parameters to b
oes not hold at very low θ's (Figure 9) because ofd
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⎥⎦
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θθ sin
1
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)1(1 qpqqpqS R  - 70    

 
2.3.9.4. Sidey model, Bragg-Brentano 

In the two previous models, it exists a strong correlation between the two refinable 
parameters and the overall scale factor, atomic displacement parameters and site occupancies. 
In order to improve the refinement stability Sidey (2004) closely approximate the Pitschke 
and Suortti models using a monoparameter function: 

 

- 71    ⎟
⎞

⎜
⎛=⎟

⎞
⎜
⎛= lnexp θθ θ sS

s

R  
⎠⎝⎠⎝ 2/2/ πθπ
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 Sparks, t=10-4

 Suortti, p=0.01, q=0.02
 Pitschke, p=0.01, q=0.03
 Sidey, s=0.005

rections from various authors. The parameters used in the 
ded to fit the closest same solution. 

atised radiation, the spectral 
distribution of the incident beam is never purely monochromatic. The spectral extension 
results in a peak broadening that has to be taken into account in the refinements. This 

 the resolution curve of the diffractometer. 
 However, since most instruments are working with wavelengths issued for the K-edge 
emission of metals, the monochromator may also influence strongly the instrumental 

ce, using a flat graphite monochromator, with usual 
crystall

ined. This is also done using a standard powder. 
 

 

Figure 9: Model functions for surface roughness cor
models are not inten

 
2.3.10. Wavelength 

 Even in experiments carried out using a monochrom

broadening is calibrated inside

contribution to the peak shape. For instan
ite mosaic of 0.4°, one will not be able to dissociate between the Kα1 and Kα2 lines of 

the radiation. Since these latter do not have the same intensity, and depending upon the actual 
adjustment of the monochromator, the real ratio between the two contributions will have to be 
determ
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2.3.11. Microstructure modelling (classical) 

In the expressions giving the width of the Gaussian and Lorentzian components of a 
seudo-Voigt profile, we find the terms varying as tanθ and cosθ. These two variations are 

ue to crystallite microdistortions and sizes. The 
microd

 

P
respectively linked to broadening d

istortions can affect the two components of the profile and then have two components: 
 

- 72    2
1

0 ][
8.1

(%) UUG −=
πε  

][
8.1

(%) 0XXL −=
πε  - 73    

 
with U0  and X0 instrumental Gaussian and Lorentzian contributions respectively to the line 
broadening, which are determined on a standard sample. 
The crystallite sizes is only Lorentzian: 
 

- 74    HKTL /λ=  

 
with K the Scherrer constant and H the FWHM of the peak in 2θ. However the Lorentzian 
component of the microstrains is most usually neglected [Delhez et al. 1993, Langford et al. 
1993, Lutterotti et al. 1994]. 
 
2.4. Crystal Structure Databases 

 
 Many crystal structure databases exist, that provide files of already determined 
structures which are understandable by crystallographic softwares. Among all the formats 
available, the ".CIF" format, developed by the International Union of Crystallography, is the 
most used. These files ease the incorporation of the structure atomic co-ordinates in the 
softwares, a fastidious task for large unit-cells wit lots of atoms, when the structure is already 
k
 Depending on h  full free access or not. 
When sever iles is warranted (for instance the CCSD, ICDD, CRYSMET 
databases), fees are applied. On the contrary, if the database has been developed by personal 

redicted structures" 

nown or when the use of a closely-related structure is possible. 
ow has been elaborated each database, it is with

e control of the f

resources of researchers without careful assess of the files, no fee is asked to get the files (like 
the COD, AMCSD ... databases). For these latter, a smaller number of structures are 
accessible, because they have been developed more recently and only depend on the work of 
some researchers at spare times. However, they sometimes also contain "p
which may deserve some ab-initio structural determinations (like the PCOD extension of the 
COD database). Some programs like MAUD also allow to submit new .cif files to the COD 
directly via internet. 
 Most of the free databases are linked at 
http://www.ecole.ensicaen.fr/~chateign/texture/cif/ciffiles.htm 
 

2.5. Reliability factors in profile refinements 
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The validation of a powder diffraction pattern refinement is a bit more delicate than 
nes on single crystals, based on intensities directly measured as integrated. On single crystal 

diagram

In order to evaluate the quality of the refinement, several factors have been introduced 
which allow the statistical comparison between the calculated model and the measured 

, Jansen et al. 1994]. The mostly used factors are: 
 

o
s the angular information between crystalline directions is present which is not the 

case for powder diagrams. Lines of powder diffraction diagrams have to be deconvoluted in 
order to access the integrated intensities. Furthermore, each deconvoluted line of a powder 
diagram concerns all the multiplicity of h.  

experiment [Hill et Flack 1987

∑ ∑−= iiciop yyyR /  - 75  R-pattern:  

∑∑ −= 2
122 ]/)([ iio- 76  R-weighted profile: 

i

 

icioiowp ywyywR  

tensities measured at step i. However some programs 
alculate Rwp including the background. This gives rise to lower Rwp values, particularly for 

e in the num p and Rwp the difference (yio - yic) 
fluence while in the denominator background subsists. It is 

referred to discriminate between R-factors which contain or are free of background 

res of the intensities, i.e. incorporating backgrounds. 
To allow the comparison of the results with results that would have been obtained 

ient to use: 

77 

Here yi is understood as the net in
c
high level backgrounds, sinc erators of R
suppresses the background in
p
intensities, the former being subscripted b (e.g. Rwpb, Rpb ...). We should note here that the 
assigned weights wio should be calculated with the background included since they come from 
the errors made on the measu

from single crystal data, it is conven
 

-  R-Bragg:  ∑∑ −= kk
cal

kB IIIR /  

 
 with Ik = mFk

2, m being the multiplicity of the reflection 
 

-  or   78 ∑ −
Ω=

ibic

ibio
ik

cal
kk yy

II  

We also use: 
 

- 79  R-structure factor: 

− yy

∑ ∑−= kkk FFFR calc
F /  

 
The Rwp value is dominated by the profile function and is not much sensitive to 

structural parameters, it then deserves preferably the profile comparison. 

eters are linked to each other 
nd the number of observations influence the value of all these factors, some other factors are 

 
Since the number of parameters to fit, the way the param

a
used which are independent of them: 
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- 80  Goodness of fit: )/()( 22 CPNyyyw
i

ibiciio +−−−= ∑χ  = (Rwp / Rexp)2

 

- 81  R-expected:  ∑+−== ywCPNRR 2
122

exp ]/)[(/ χ  
i

 
where N and P are the number of used information (yi) and the number of refined parameters, 
and C the number of applied constraints between parameters. 

iiowp

 
he ‘’ 2 should go to 1 for an exact refinement. In practice its 

value is of course larger. The expected Rexp gives an hint about what one should expect as the 
 have been measured. 

Used in crystallography, all these factors are not necessarily perfectly satisfying from a 
tatistic

T Goodness-Of-Fit’’ χ

best result from the experiment that
 

s al point of view, and particularly when counting statistics are too much low. In this 
latter case, the usual weighted least-squares minimisation of the Rietveld method and the 
maximum likelihood method (Fisher 1922) show very similar behaviours. However, when 
insufficient counting times have been available, the maximum likelihood approach is to be 
preferred, and for this reason, other parameters have been proposed in this case: 

 
● The deviance D [Antoniadis et al. 1990], based on the maximum log-likelihood 
approach, which is a measure of the discrepancy between the actual model used for the fit 
(with p parameters to fit) and a model with as many parameters to fit as the number of 
observations: 
 

∑
=

−−=D 2- 82    
N

i
ici

ci

i
i yy

y
y

y
1

)](ln[  

 
ith n m and no systematic 

rror, the D distribution evolves approximately like χ2, and can be used for goodness-of-fit 
purposes. From it one can calculate another estimator usable to measure the cost of additional 

me rs to odel. It takes into account χ2 and the number of independent 
parameters m(k) of the refinement for the kth model: 

 

83    Ck = Dk + α(n)m(k)  

eters take the form of a penalised likelihood model, i.e. each additional parameter 
 the f

ses α=2 whatever n) 
nd Sc

s d and Q: these two quantities were suggested by par 
ill & Flack [1987]. They indicate the correlation between two closely-related remainders: 

 

w
e

the number of observations. For a fit with n-p degrees of freedo

para te  fit in the m

- 

 
Such param
in it adds to the deviance and is represented by the penalty function α(n)m(k). Dk is the 
deviance of the kth model, α(n) represents the cost of fitting an additional parameter. Such 
riterion is a special form of those introduced by Akaïke [1974] (CAkaike uc

a hwartz [1978] (CSchwartz uses α = ln(n)). Schwarz's criterion favours models with fewer 
parameters than does Akaike's. 
 

 The Dubin-Watson parameter●
H

daniel chateigner Page 41 13/07/2006 



Combined Analysis 

- 84   ∑=
N

icywd 2)[  ∑
i

N

i
ioioicioioicioio ywyywyy

1 1

22
111 (/)]()(

- 85   

= =
−−− −−−−

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −N
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=

2
1
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0902.3.12
NPN

Q  

d≤Q: positive serial co
have th

ighbouring points have in majority 
pposit

This correlation can be tested (at the 99,9% level) by comparison of d and Q. Three 
cases can arise: 
- rrelation, the (yio - yic) of two neighbouring points get tendency to 

e same sign. This is the most usual case of a refinement. 
- Q<d<4-Q: There is no correlation between neighbouring points. 
- d>4-Q: the serial correlation is negative, (yio - yic) ne
o e signs. 
 

Furthermore, in order to compare refinements operated on different measurements, the 
quality factors are depending on the measuring angular steps and counting times at each step. 
For instance, χ2 and deviance vary proportionally to t , C to st /  and D is linearly 
depending of s and t. 
 

O e of the best reliability criterion remains human eye, par comparing calculated and 
measured data at the end of the refinement. For instance using the difference curve. 

 

 2.6. Parameter exactn

n

ess 

 
ator of precision in Rietveld analysis is the standard deviation σj 

 

The mostly used estim
given by: 
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M icioio
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with Mjj the diagonal matrix element of the inverse matrix. 

 
Young et al. [1977] showed that for x-rays, the ratio between powder diffraction and

parameters, except for position parameters 
r which this ratio can be 1. 

 
single crystal standard deviations is 2 or 3 for all 
fo
 
2.7: The Le Bail method 

 
The Rietveld method is for the refinement of a crystal structure. When solving 

structures from powder data it is necessary to extract the intensities of the overlapping peaks 
without a structural model. The Le Bail method allows this, given a starting set of unit-cell 
arameters and a list of possible reflections. The method is similar to Rietveld in that a 

es 

p
calculated profile is refined by least squares against the observed diffraction pattern. Hence 
lattice parameters, peak widths, peak−shape parameters are allowed to vary. The intensiti
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are, however, unknown. In the Rietveld m
over p te te

ethod, at the end of the least−squares cycles, 
lap ing in nsity can be partitioned between the reflections in the ratios predic d by the 

structural model. In the Le Bail method, the intensity is partitioned between overlapping 
eaks from arbitrarily assigned starting values − all equal say. At the end of the first cycle, the 

peaks no longer have equal intensities. The strong peaks will be strong, and the weak peaks 
. he pro ess is repeated. The overlappin  intensity is now partitioned using the new 

intensities such that the strong peaks take a larger fraction and another new set of intensities 
results. The process is cycled until a stable refinement is obtained. Hence the Le Bail method 
uses th

p

weak T c g

e observed intensities directly to partition the intensity between overlapping peaks. 
Note that the Le Bail method may be used with neutron nuclear diffraction, 

synchrotron and conventional X–ray diffraction but not for magnetic scattering. 
 
2.8: Refinement procedures 

 
 Since we will need here and in the next sections to deal with refinement, lets introduce 
here some of the procedures that are used in the adjustment of models to experimental data. 
 

2.8.1. Least squares 
 

Computationally, both the Rietveld and Le Bail methods may be divided into two 
parts: 

 
- before a powder profile refinement can be successfully carried out, it is necessary to 

on of the lattice parameters, zero−point, halfwidth parameters and 
peak−shape function) which reflections from the specimen contribute to which part of the 
powder

volves considerable reorganisation of data which must be regrouped in the most 
onvenient form. The value of the least−squares weight assigned to each profile point is also 

calculated in this stage. This task must be carried out more than once during the course of 
n of the unit cell and profile parameters will change the 

relationship between the reflections and the observed profile. It is recommended that the 
profile preparation stage should be repeated whenever significant changes in the unit cell or

 

der diffraction profile, and also the derivatives of that intensity 
ith respect to the parameters. 

The least squares equations used during refinement are constructed as follows. Let call 
j the parameters to be refined (variables), j va

determine (from considerati

 profile pattern. This is the preparation or « pre−profile » stage (which is actually 
transparent for the user) which is carried out just before least squares refinement takes place 
ince it ins

c

refinement because alteratio

 
profile parameters occur. 

- the refinement of the structure or extraction of the intensities using the data prepared 
in the previous stage is then carried out. It is necessary to calculate the intensity expected at 
each point in the observed pow
w
 

p rying from 1 to P. There are then a series of 
variables p1 to pP the subscript specifying which of the least squares equations refers to that 
parameter. For each profile point, contributions to the matrix equation: 
 

- 87    [A] . [s]  =  [d] 

 

daniel chateigner Page 43 13/07/2006 



Combined Analysis 

must be evaluated. [A] is a symmetric, positive definite matrix of order P, which elements 
Amn are: 
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[d] is a column vector of order P which elements dm are: 
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[s] is a column vector which is to be calculated after the inversion of the matrix [A]. The 
ied out over all profile points i. The elements of [s], sn, are the 
to the refined parameter pj in order to yield better estimates of 

eir true value. The Estimated Standard Deviations (ESDj) of the refined parameters are then 

90    

summations indicated are carr
shifts which are to be applied 
th
given by: 

[ ] )C) + P  (N / scale)y  (y w [A] = ESD 21 −−∑−- icioj  

−1 is the inverted  the total number of observations, P the number of refined 
e

 more complete discussion of the least squares method is given by Rollett [1965].  
 

- 91 

n the penalty or cost function F(v) is calculated for all the J 
xperim

A
param

 matrix, N
ters and C the number of constraining terms. 

 
A

2.8.2. Genetic or evolutionary algorithms 
 
 This kind of algorithms has been introduced as a powerful technique for solving 
optimisation and fitting problems (Goldberg 1989). Their ability to avoid local minima by 
following many search paths makes them particularly suited to refine data in which a 
relatively large number of parameters has to be fitted, relative to the number of experimental 
points. For instance, Torres-Costa et al. (2004) used them to fit visible reflectance spectra. In 
such methods, no gradient is calculated, but only a penalty function is evaluated. 
 
 In this approach, a possible solution of a given problem that depends on the xi (i: 1 → 
n) parameters is represented as a vector v of the form:  
 

   v = (x1, x2, ..., xn) 

 
With this set of parameters a simulation of the problem is calculated and compared 

with the experimental one. The
e ental points: 

 

- 92    F(v) = ( )∑
=

 
ilar to wi in the Rietveld approach (Eq. - 23), 

xcept that it allows the incorporation of the weight dependence versus the analysed range. 

−
J

j
icio yyiP

1

2)(  

Here the P(yi) factor is a weight sim
e
This parameter can then force a better fit in one spectral range compared to others. 
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The function F(v) is therefore representing the weighted misfit between simulated and 
er F(v) values represent better fits. 

 
ach refinable parameter is called a 
v, is a "chromosome". A population 

is an ensemble of individuals, each of them being defined by its own chromosome. Each 
nt simulation. The penalty function determines how much well 

adapted an individual is. The lower the F-value of the individual the more this individual is 

The algorithm starts then by initialising the population, a step in which a number of 
parameter of each one of the Npar individuals is assigned equally 

spaced values in the interval of all possible values. Then each individual has unique 

other, the 
ene cr

offsprin
 

 son < 1i p  p if x

utation takes place in 

95 son' son

(0,1)
tation allows the creation of new genes, but also helps the algorithm 

escaping from false minima (it plays somehow the role of the temperature term in simulated 

lated for all the family members (father and Noff 
offsprings), and the one who has the lowest F(v) survives for the next generation, the others 
are rejec

- 96   T' = T(1 ± ε) 

experimental data. Hence low

The analogy to evolution lies in the following. E
"gene", in such a way that the complete set of parameters, 

individual represents a differe

adapted to its "environment". Individuals are then crossed to each others, resulting in a given 
number of offsprings, produced from a mixture of the parents chromosomes. This population 
then evolves as evolutionary schemes, and the process ends with the best set of genes leading 
to best fits of the experimental data.  

 

parents Npar are created. Each 

chromosome v.  
In the next step, each parent has a given number of offsprings. For a given m

g ossover can take place in two ways, 1 or 2, according to a probability p1. In way 1 the 
g inherits each gene either from its father or his mother according to: 

- 93    xi  = 
⎩
⎨

≥ 1
mother
i p  p if x

 

 
In way 2, the offspring's genes are simple averages of the parents': 
 

- 94    xi
son = (xi

father + xi
mother) / 2 

⎧ father

 
Once the Noff offsprings have been generated, they suffer genes mutations, resulting in 

ew genes (new parameter values) that did not exist before. This mn
every gene according to: 

 

-    xi  = xi  (1 + N(0,1)T)  

 
where T is the mutation size in that family and N  is a random value from a normal 

distribution. The mu

annealing).  
Then the penalty function is calcu

ted. If this one is the father, the algorithm has not improved the species in that 
generation and other mutations are required. If this is an offspring the species is improved, 
smaller mutations are required and the algorithm is getting closer to the final solution. In that 
case the family mutation size T is enlarged or reduced by a factor ε: 
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Equations - 93 to - 96 are repeated for all Npar individuals for a number Ngen of 

generations. Finally F(v) is computed for all individuals and the best adapted is chosen. 
 

2.8.3. Derivative difference minimisation (DDM) 
 
 Solovyov [2004] proposes to introduce the minimisation of the derivative of the 
difference between measured and calculated profiles, rather than minimising their absolute 
difference. Such a procedure minimises the oscillations (curvature) of the difference profile, 
in order to better account for oscillations in the background than simple polynomial (or other) 
expressions. The minimisation function M is: 
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Which rewrites, using the Savitzky-Golay [1964] formalism: 
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j are the SG coefficients for the derivative of order j in the profile convolution interval [-

m,m], N
 he structure and profile parameters, νn, are introduced for refinement in the equations 
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 is the number of measured points in the profile and ∆ = yio - yic. 
T

corresponding to the minimum of Eq. - 98: 
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hod is that it does not require the 

 ns. Eliminating the systematic 
errors caused by inadequate background definitions, the DDM approach allows 
structu

ent Strategy

 The main advantage of this met
background line modeling or approximatio

re refinement with increased stability and precision. The first implementation of such 
an algorithm was tested successfully in BDWS-9006PC [Wiles et Young, 1981]. 
 
2.9 Refinem  

 Fitting may help. All the 
parame rs should not be released at once. Indeed, some parameters are strongly influencing 

ined first, while others may be released in the last 
steps. The following sequence is often used: 

 
As every least-squares modelling technique, the Rietveld method possesses a limited 

convergence radius in the parameters space. 
Provided minimised diffractometer aberrations (calibrated on a standard sample), one 

has to chose the best starting model. This is relatively easy for background and cell 
parame ers. When the starting model is very rough, a Whole Patternt

te
the minimised function, and have to be ref

 
1. Scale factor + polynomial background. 
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2. Same + zero theta shift. 
3.  +  Atomic co-ordinates are refined 

beginning par the heaviest atoms (x-rays) or these that have the largest scattering cross-
sec

. 
.  + unit-cell parameters. 

 
g x , the refinement of thermal anisotropic vibration parameters often lead to aberrant 

e parameters are more sensitive to large θ values. 
  

e diagram in order to check for 
rge mistakes and software stability. These are on some programs, sometimes together with 

reliability factors, lively available and can help in better defining the model or the refinement 

 It may also be useful to it the range of variation of the parameters to a physically 

atomic positions + global Debye-Waller factor.

tion (neutrons), adding them one by one. 
4.  + asymmetric sample parameters. 
5.  + site occupations. 
6.  + displacement parameters (+ individual anisotropic Debye-Waller factor) 
7.  + the five individual Debye-Waller factors
8

Usin -rays
results. Thes

It is always advisable to frequently plot the differenc
la

strategy to be used.  
lim

meaningful domain, like giving lower and larger variable limits or obliging constraints 
between parameters. This is the case for instance for occupation sites in order to respect the 
chemical composition. 
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utomatic indexing of powder diagrams3 A  

 
 3.1 Principle 

 
nitio indexing consiThe automatic ab i

eciprocal lattice from the 
sts in retrieving unit-cell parameters of the 

peak positions (list of d*). This method relies on resolving the 

- 100 

 
in which ∆Qi is the error in Qi that one can accept for the system. 
 
 In this equation, a*, b* anc c* are the unknown vectors of the reciprocal lattice. In this 
system the number of equations (N) is always smaller than the number of unknowns (i.e. 6 for 
a triclinic, 4 for monoclinic, ..., 1 for cubic lattices, and N sets of three indices hi, ki, li). 
Hence there is no algebraic solution to this problem. 
 
Resolving methods to this equation have been described since the earliest times [Runge 1917, 
Ito 1949, de Wolff 1957]. The main indexing method developments are described by Shirley 
[1980, 1990] and Louër [1991]. 
 

We just mention here a quick view of the three main approaches: 
 

● The Runge-Ito-de Wolff method, based on the research of zones, lies on the existence 
of specific relationship in the reciprocal space. Visser [1969] proposed the first automatic 
program for powder diagram indexing. 
 
● The procedure of Werner [1964], based on Miller indices permutations of the main 
lines. It uses a semi-exhaustive trial and error approach. Werner's principle is used in several 
programs [Taupin 1973, Kohlbeck et Hörl 1976, Kohlbeck et Hörl 1978, Werner et al. 1985]. 
 
● The dichotomy approach which we will describe a bit more in the next paragraph.  
 
3.2 Dichotomy approach

r
following system of linear equations from the quadratic form obtained by squaring the 
reciprocal-lattice vector d* = ha* + kb* + lc*: 
 

Qi(hkl) = di*2 = hi
2a*2 + ki

2b*2 + li
2c*2 + 2kilib*.c* + 2hilic*.a* + 2hikia*.b* 

 
Where h, k, l are Miller indices and i: 1 .. N with N the number of observed lines. Equation - 
100 rewrites: 
 

- 101 |Qi(hkl) - hi
2a*2 - ki

2b*2 - li
2c*2 - 2kilib*.c* - 2hilic*.a* - 2hikia*.b*| ≤ ∆Qi

 

 
The principle of the dichotomy procedure has been described by Louër et Louër 

(1972) for crystal systems down to orthorhombic, and later for the monoclinic and triclinic 
cases [Louër et Vargas 1982, Shirley 1990], then implemented in the program DICVOL91 
[Boultif et Louër 1991]. In the more recent version DICVOL04 [Boultif et Louer 2004] 
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several problems occurring during automating search are addressed like the zero-angle offset, 

In this approach, Equation - 100 is parameterised as Qi(hkl) = f(h,x), x being a vector 
rmed by the n cell constants (n := 1 .. 6 depending on the crystal system) and h is a vector 

ponents (k,k,l). Since we a priori do not know which are the cell parameters, 
one has to define ranges of variations for these parameters, i.e. the xi components of x have to 
vary fr

102    D = [x1 ,x1 ] x [x2
min,x2

max] x ... x [xn
min,xn

max] 

 

s that forms the set H of h. 
In turns, D then admits lower and higher bounds for f, fmin and fmax respectively 

 [fmin, fmax] 
whatever h in H, no solution is found for indexing, the domain D is eliminated and a new one 

lored by bisecting each 
in is then examined and the 

xing vanishes, and the corrections must 
e applied before indexing using for instance a standard powder or the reflection-pair method 

the cell analysis and unindexed diffraction lines. 

fo
with three com

om minimum to maximum values, xi
min and xi

max respectively. This finally defines a n-
dimensional domain D for cell parameter variations and a 3-dimensional domain H for Miller 
indices variations: 

 
min max- 

- 103    H = [hmin,hmax] x [kmin,kmax] x [lmin, lmax] 

Within a defined experimental range (e.g. 2θ range), this limits the number of h to N 
possible value

calculated from all the h and x values. Then, if for a given D one cannot find f ∈

created. Conversely, if a solution exists in D, this domain is further exp
[xi

min,xi
max], i.e. D is divided into 2n sub-domains. Each sub-doma

procedure repeated several times to a given resolution. 
 
The potential solutions found for cell parameters are then refined (by least-squares 

procedures for instance), including or not 2θ systematic shift and sample displacement. If 
these latter are too large, it may happen that the inde
b
[Dong et al., 1999]. 
 
3.3 Criterions for quality 

 
N factor and 

ith e
In order to discern between solutions, de Wolff [1968] suggests the M

Sm t Snyder [1979], FN: 
 

- 104    possNN NQQM = ∆2/  

PossN NNF )2(/ θ∆=  - 105    

 
with: 

)1( 2NQ =  
Nd

 

Nposs  is the number of theoretical peaks up to the nth observed line. <∆Q> and <∆(2θ)> are the 
average absolute discrepancies between Qcalc and Qobs , 2θobs and 2θcal respectively. 
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4 Quantitative Texture Analysis (QTA) 
 

4.1. The orientation Distribution Function (ODF) 
 
4.1.1. Definition 

 
 The quantitative determination of the texture is based on the concept of Orientation 
Distribution Function, f(g), which represents the statistical distribution of the orientations of 
the con titutive crystals (crystallites) in a polycrystalline aggregate: 

- 106    

s
 

dV(g)
V

1
=  

8π 2 f (g) dg  

 
where 

pace (or H-space), that bring a given crystal co-
ordinat

) plane or orthogonal crystal cells). V 
is the irradiated volum
of crys

dg = sinβ dβ dα dγ is the orientation element, defined by three Euler angles g = 
{α,β,γ} (Figure 10) in the orientation s

e system KB co-linear with the sample co-ordinate system KA = (X,Y,Z), or (100, 010, 
001). The H-space can be constructed from the space groups, taking into account their 
rotation symmetry operators and the inversion centre. The two first angles β and α determine 
generally the orientation of the [001]* crystallite direction in KA, they are called co-latitude 
(or pole distance) and azimuth respectively. The third angle, γ, defines the location of another 
crystallographic direction, chosen as [010]* (in the (a,b

e (if one uses diffraction experiments) of the sample, dV(g) the volume 
tallites which orientation is between g and g+dg. 

 
Y=010

X=100
Z=001

c

a

b

α
β

γ

 
Figure 10: Definition of the three Euler angles that define the position of the crystallite co-ordinate system 

,b,c) of an orthogonal crystal cell in the sample co-ordinate system KA=(X,Y,Z). Note, 100, 010 and 001 
are not Miller indices but vectors referring to an ortho-normal frame aligned with KA 

 
4.1.2. Angle conventions 

These are 
ummarised in Table 1 for the most used angular sets. Figure 11 illustrates the Roe/Matthies 

and Bunge's conventions for bringing X1, Y1 and Z1 axes colinear respectively to X2, Y2 and 
Z2.  

KB=(a

 
 There are numerous angular conventions used by the different authors. 
s

daniel chateigner Page 50 13/07/2006 



Combined Analysis 

 
 
o

For instance, in the Roe-Matthies frame, K1 is brought coincident to K2 by the 
perati

of K1 about the axis Z1 through the angle α: 
K1 a K'1]; associated rotation g1 = {α,0,0} 

1 a 1 2 3

2 g3 = {α,0,0} {0,β,0} {0,0,γ} = {α,β,γ} 
 
 Using the Bunge convention: 

on g : [K1 a K2], using the three following rotations: 
  
- Rotation 

  [
- Rotation of K'1 about the axis Y'1 through the angle β: 

  [K'1 a K"1]; associated rotation g2 = {0,β,0} 
- Rotation of K"1 about the axis Z"1 through the angle γ: 
 [K"   K"' //K ]; associated rotation g  = {0,0,γ}  

we obtain finally:  
   g = g1 g

  
- Rotation of K1 about the axis Z1 through the angle ϕ1: 

  [K1 a K'1]; associated rotation g1 = {ϕ1,0,0} 
- Rotation of K'1 about the axis X'1 through the angle Φ: 

  [K'1 a K"1]; associated rotation g2 = {0,Φ,0} 
- Rotation of K"1 about the axis Z"1 through the angle ϕ2: 

  [K"1 a K"'1//K2]; associated rotation g3 = {0,0, ϕ2} 
 

Matthies Roe Bunge Canova Kocks 
α Ψ ϕ1 = α + π/2 ω = π/2 − α Ψ 
β Θ Φ Θ Θ 
γ Φ ϕ2 = γ + 3π/2 φ = 3π/2 − γ Φ = π − γ 

Table 1: Correspondences between the most used Euler angle sets

 

 
 

Figure 11: Definition of the three Euler angles in the Roe-Matthies (left) and Bunge's (right) conventions
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4.1.3. Orientation distance 

n be calculated, similarly as the 
a e contribution of the 

three ro

 
tance g̃ between two orientations g1 and g2 ca The dis

angle difference for pl nar angles, by the orientation difference using th
tations in the Euler space, with: 

 - 107    
2

1
112 ),(~~ gggggg −==

( ) ( )1~ −−= γγαα (1cos[cos
2

cos 2121g

- 108    

)

( ) ( )( )
]1coscos

coscossinsin

coscos

21212121

21

−+
+−−−

+

ββ
ββγγαα

ββ

 

e-Matthies convention is used [Matthies et al. 1987], or 
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( ) ( )[ ] sinsincoscos
212121

−+−+ ββγγαα

 
 if the Ro

   ⎟
⎠
⎞

⎜
⎛

⎟
⎞

⎜
⎛ −

⎟
⎞

⎜
⎛ −

− sinsinsin
⎝⎠⎝⎠⎝ 22

Φ−Φ

⎟
⎠
⎞

⎜
⎝
⎛ Φ−Φ

⎟
⎠
⎞−

2

2
cos⎜⎟⎜=

2
cos[cos ⎛⎞⎛ −~

⎝⎠⎝ 22
cos 211211

21

2121ϕ

 

 
ution d ity and no

ϕϕϕg

21211211 ϕϕϕϕ

 for the Bunge convention [Bunge et Esling 1982]. 

4.2. Distrib ens rmalisation 
 

The function f(g) then represents nsity s orien t is 
measured in m.r.d. the value fr(g) = 1 
m.r.d. for a sample without any 
called orientation distribution densities, and the function f(g) can take values from 0 (absence 
of crystallites oriented in dg around g) to infinity (for some of the H-space values of single 
crystals). 

The normalisation condition of f(g) over the whole orientation space is expressed by: 
 

- 110    

 
4.3. Direct and normalised Pole figures

 the volumic de  of crystallite ted in dg. I
 (multiple of a random distribution) and normalised to 

preferred orientation (or random or powder). These values are 

2
2

0

2/

0

2

0

8 = dg (g) π
π

γ

π

ϑ

π

ϕ
∫∫∫
===

f
yy

 

 
 
 Experimental measurements are the so-called direct pole figures, Ih(y), with h=<hkl>* 
and y=(ϑy,ϕy) (Figure 12). They always are incomplete in some way. They determine the 
istribution of the normals <hkl>* to the crystallographic planes {hkl} which are diffracting 
r the (ϑy,ϕy) orientation of the sample in KA, pole figure space �. For one direct pole figure, 

y i

d
fo

s varied in order to cover the maximum range of orientations.  
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Figure 12: Pole figure co-ordinates in the sample reference frame KA

ties Ih(y) depend on the porosity, crystalline state, ..., of the 
sample. To compare samples between each others a quantity only depending on the 

e normalised pole figure Ph(y), 
presenting the distribution densities of h directions on the pole sphere, comprised inside dy 

= sinϑ

 
The diffracted intensi

orientation has to be calculated. This quantity is th
re

y dϑy dϕy:  
 

- 111    
yyyyy

yy n ϕϑϑϑϕ
π

ϑϕ
ddsi )(P

4
1 =

V
)dV(

h
 

 
and similarly to f(g), every pole figure of a random sample will have the same density 

Ph(y) = 1 m.r.d.. The Ph(y) are in fact the factors PΦk of Equation - 24.  
The normalisation of the pole figures is, similarly as in Eq. - 110, operated through: 

 

πϕϑϑϑϕ
π

ϑ

π

ϕ

2dd sin )(P
/2

0

2

0

=∫∫
== yy

yyyyyh  - 112    

 
4.4. Reduced pole figures 

 
Let mention at this step that the pole figures obtained using normal diffraction 

methods are the so-called reduced ones, P~ h(y). The Friedel's law makes that the measured 
pole figures are superpositions of +h and -h true pole figures. The fact that for normal 
diffraction (and for centrosymmetric crystal systems even for anomalous scattering too) only 
reduced pole figures can be measured is known for texturologists as 'ghost' phenomena 

atthies et Vinel 1982, Matthies et al. 1987]. The true, unreduced, pole figure is defined by: 

- 113    Ph(y) = (y) + 

[M

P~ h P
~~

h(y) 
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P
~~

hin which (y) is the non measured part of the pole figure. 
We will not take account of this here since the ghost suppression, if possible, would 

need anomalous diffraction and very intense beams. Instead, theoretically derived ghost-
correcting approximations will be used.  
 

4.5. Fundamental equation of texture analysis 
 
4.5.1. Fundamental equation 
 

However, one pole figure is only a measure of the distribution of one direction type 
<hkl>*. Any rotation around this direction by a ϕ~  angle results in the same diffracted 
intensity.  

Following Equations - 106 and - 111, one can obtain the fundamental equation of 
texture analysis: 
 

114    ∫- 
yh//2

~f(g)d1=)(P ϕ
π

yh  

 
This equation represents the fact that each pole figure (a 2D object) is a projection 

along a certain path ϕ~  of the ODF (a 3D object), which of course depends on the crystal 
symmetry (Figure 13). Each cell of a given pole figure will then be an average over several 
cells of the ODF, and each cell of the ODF will be measured by one or more cells from the 
pole figures. The larger the number of pole figure cells that measure a specific ODF cell and 

e more statistically reliable is the measurement of this ODF. In practice, one has to measure 
the largest number as possible of reliable (enough intense) pole figures to define the ODF 

ble. 

th

with the best resolution availa

 
Figure 13: Relationship between the 3D ject f(g d the

corresponds several ODF boxes, a d each ODF box
 ob ) an  pole figures Ph(y). To each pole figure cell 
n  is linked to several pole figure cells. 
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hich permits, in a systematic way, to analyse the 
roper  correcting algorithms. The so-called 
vector n [Schaeben 1988] and ADC [Pawlik 

 later. 

.5.2 Typical ODFs 

Equation - 114 was solved several years ago by Bunge, using generalised spherical 
harmonics formulation [Bunge et Esling 1982, Bunge 1982], but only in the case of high 
crystal symmetries. An exact solution of (4-7) in an analytical closed form without any series 
xpansion was given [Matthies 1979], we

p ties of the ghosts and to develop reasonable ghost
" [Ruer 1976, Vadon 1981], entropy maximisatio"

1993] methods were developed
 
4
 
4.5.2.1. Random ODF and random part: FON 
 
 A sample exhibiting randomly oriented crystallites has an ODF with 1 m.r.d. 
istribution densid

v
ties for all g values. However, in some samples only a fraction of the total 

olume is randomly oriented, Vr, the rest, Vc(g), being the oriented fraction volume having 
the orientation component or components, fc(g). The random part produces a "background" 

alled "FON", and one can decompose the ODF in: 
 

- 115 

level in the ODF, sometimes c

   f(g) = fr + fc(g) 
 
 with the mandatory condition 0 ≤ fr ≤ 1. 
 
By integrating Equation - 106 and taking into account Equation - 115, one obtains: 
 

dg (g)]f  [f
8

1 =dV(g) (g)]V  [V
V
1

cr2cr ∫∫ ++
π

 

 
 which verifies after identification: 
 

- 116    Vr / V = fr for the random part, and 

    dg (g)
8

1 =
V

(g)dV
2

c
cf

π
 for the textured part 

 
 This strictly means that the minimum value of the ODF, e.g. fr = 0.3 m.r.d., identifies 
with the random volume fraction, i.e. 30 % of the material is randomly oriented in this case. 
 

4.6. Resolution of the fundamental equation 
 
4.6.1. ODF and OD 

 
 Before describing the various methods to solve the fundamental equation of QTA, one 
may have noticed that authors refer here or there to OD or ODF. The latter case implicitly 
ascribe a given function to the distribution of crystallites. This is for instance the case of the 
generalised spherical harmonics or the component methods. However, there is no  priori 
nee  of 

a
ds for fitting a function to the data, and many "direct" methods (e.g. the maximisation
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entropy, vector or WIMV methods) have been developed that do not. In this case the term 
"Funct

.6.2. Generalised spherical harmonics 

.6.2.1. Principle

ion" can be omitted.  
 We will respect this scheme in the following, calling OD only the f(g) that have been 
fitted from direct methods. But bear in mind that, even for ODs that have been refined using 
direct methods, it is somewhat hard to represent ODs on figures without using contour and 
isolines, which in turns are results of interpolations of discrete OD points by functions (e.g. 
splines). 
 
4

 
4  

The solution proposed by Bunge et Esling [1982] consists in developing the ODF and 

and 

118    

 
 
the pole figures into series of generalised spherical harmonics: 
 

- 117    ∑ ∑
∞

= −=

=
0 ,

)()(
λ

λ

λ
λλ

nm

mnmn gTCgf  

( ) ( )∑∑∑
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∞ π4
- 

= +λ λ n0 12
Θ=

λ

λ
λλ

λ

λ
λ φ

m

mmnn kCkP hhh yy *)(  

 Fourier 
. The 

are known generalised spherical harmonics which depend on the crystal and texture 
symmetries.  and  are spherical harmonics based on Legendre polynomia. The angles 
Θ  and φh are the spherical co-ordinates of the h direction in the crystal reference frame. 

λ  fu
mn

with 

The Equation - 114 still holds, and in this approach one has to determine the 
oefficients from the experiments, which are the proportions of the respective mnT

mnCλ

λ
mnTλ  

 nkλ
mk *

λ

c

h
mnT nctions are given by: 

- 119    α
λ β inimmn ePeT )(=  λ

γ
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- 121    
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 The mnTλ  and nkλ  factors need to respect orthonormality conditions. Their formulation 
can be simplified by the crystal and texture symmetries. The number of Cλ  coefficients to 
be refined and the extension L to which the series in Eq. - 117 has to be expended in λ are 
also depending on these symmetries.  
 
4.6.2.2. D

mn

iffraction and Positivity of f(g) 

's law applies and one cannot dissociate diffracted 
tensity Ih from I-h. Consequently the pole figures are even objects, and it comes out: 

124    

 
Using normal diffraction Friedel

in
 

P h- (y) = [P (y)+P (y)]/2 

ation - 118 are only the even 
rders of the development into Fourier series. On another hand f(g) can be either even or odd, 

and two different ODF objects have then to be dissociated, depending on the parity of the λ 

- 125    gf  

for even terms, and 
λ

The even part of the harmonic series fe(g) being the part accessible to normal 
 measurable only using anomalous scattering. This phenomenon 

creates ghosts (negative, unphysical distribution densities) in the ODF [Matthies 1979, 
Matthies et Vinel 1982] undesirable for a quantitative description of f(g).  

An approximative "ghost correction" by creating the odd orders is very complicated in 
the harmonic apparatus [Esling et al. 1982]. One approach for this correction is called the 
"positivity method" [Dahms et Bunge 1988, Wagner et Dahms 1991], but in any case up to 
now there is no theoretical justification of applying the positivity. 

so, trongly textured samples, the harmonics formulation creates strong negative 
density values and has been proved to be less adequate than other discrete methods. A 

f the method is that it assumes a particular shape of the 
esponds to a harmonic analytical formulation, whereas it does 

not correspond in all cases to a real physical description. This is why in this text f(g) refers to 
the Orientation Distribution (or OD) of the c tead of the Orientation Distribution 
Function (or ODF) of many texture textbooks.  

ge of using harmoni es is that it provides the necessary 
material for the simplest approximation of the mechanical property simulations with a limited 
number of coefficients to be refined (the harmonic coefficients in fact). These coeeficients 

h -h

 
which gives rise that the measured pole figures of Equ

o

terms exist: 

∑ ∑
∞

= −=

=
)2(0 ,

)()(
λ

λ

λ
λλ

nm

mnmne gTC
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mnmno gTCgf  

for odd terms. 
and 

- 127    f(g) = fe(g) + fo(g)  

∞

 

diffraction, the odd part being

Al  for s

philosophical disadvantage o
distributions, the one that corr

rystallites ins

However, one advanta c seri
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can now however be computed from the Orientation Distributions as calculated with discrete 
methods. 
 
4.6.2.3. Least-squares refinement 

 
The residual value to be minimised
 

 by a least square refinement using harmonics is: 

- 128    [ ]∑∑ −
y

hhh
h

dyyy 2)(PN)(I  

with dy = sinϑy dϑy dϕy
rm s to be refined for each pole figure. 

.6.3. V

is represented by a vector called "Texture vector" fj, j: 1 .. J, with J the number of 
cells in which f(g) is discretised. This number of course depends on the resolution of the 

e figures. In the method each pole figure is represented by Pi(h), 
i: 1 .. N, with N the number of cells of the pole figure. 

Using this approach, the fundame re becomes: 
 

i(h) = [σij(h)] fj

 
σ (h) being a P unknowns x N equa atrix. 

fundamental problem consists therefore in finding the solution of the system - 129 
process. 

4.6.4. Williams-Imhof-Matthies-Vinel (WIMV) method [Williams 1968, Imhof 1982, 

 Nh here represents a no alising factor which ha
 
4 ector method [Ruer 1976, Ruer et Baro 1977, Vadon 1981] 

 
The vector method is a discrete method which works in the direct space. In this 

method f(g) 

measurement scans of the pol

ntal equation of textu

- 129    P

tions rectangular mij
The 

of linear equations, using an iterative calculation 
 

Matthies et Vinel 1982] 

 
4.6.4.1. Regular WIMV 
 

The WIMV approach [Matthies et Vinel 1982, Matthies et Wenk 1985] for the 
refinement of the OD is an iterative way which ensures a conditional ghost correction. It is 
based on the numerical refinement of f(g) at step n+1: 
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where the product extends over the I experimentally measured pole figures and for all the 
poles multiplicity Mh, fn(g) and )(Pn yh  represent the refined values of f(g) and )(P yh  at the 
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nth step respectively. The number Nn is a normalising factor. The )(Pn yh  values are calculated 
at each cycle with Eq. - 114. The first step in this procedure is to ev 0(g): 

- 131 

aluate f
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h m

PNgf exp

11
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e measured pole figures. 

 The WIMV algorithm maximises the so-called "phon" (orientation background or 
minim h represents the randomly oriented fraction of the sample) and 

While in the previous methods of OD resolution low texture and crystal symmetries 
mes, the WIMV approach 

oes not depend much on these symmetries.  

in which )(Pexp y  stands for thh

um value of the OD whic
the texture sharpness.  

give rise to large numbers of data to store and large computation ti
d

 
4.6.4.2. Extended WIMV (E-WIMV) 
 

The regular WIMV method necessitates an OD discretised in a finite number of 
regular cells. Inside each cell a discrete value of the OD is associated. When the WIMV 
calcula o additional 
steps: 

xture weights 
egular grid 

This renders non-optimised values of the OD, rticularly for sharp textures and coarse 
irregula
 

be projection of the ADC method 
[Pawlik 1993]. The extension of the method provides with an iterative scheme of the OD 

ten called Entropy-modified WIMV [Cont et al. 2002, Morales et al. 
es are computed through an entropy iteration algorithm that includes 

e reflection weights: 

132 

tion is inserted inside the Rietveld refinement procedure, it requires tw

- the extraction of the pole figures or te
- the interpolation of these weights to fit the r

pa
r coverage of the OD. 
The E-WIMV approach can be used with irregular coverage of the OD space and 

includes smoothing based on a concept similar to the tu

refinement which is very close to the maximisation of entropy [Schaeben 1991]. The E-
WIMV method is then of
2002]. The OD cell valu
th

h

h
h

yhm
nP

gfgf ∏-    
yh

M
w

rM
nn

nP
=

+ ⎞⎛1 )(

n n < 1, Mh is the number of division 
all the orientations around the scattering vector 

h is introduced to take into account the different 
and less overlapped reflections with respect to the smaller ones, 

and is calculated analogously to the weight factors of the Rietveld analysis. 
This approach proved its efficiency [Cont et al. 2002, Morales et al. 2002, Lutterotti et al. 
2004]. 

⎟⎟
⎠

⎜⎜
⎝

=
1 )(

)()(  

 
in which r  is a relaxation parameter such that 0 < r

points for the discretisation of the integral of 
for the pole figure h. The reflection weight w
accuracy of the more intense 

 
4.6.5. Arbitrarily Defined Cells (ADC) method [Pawlik 1993] 
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The ADC method is essentially based on a WIMV algorithm. But, instead of 
calculating pole figures from the OD cells using a projection path, the ADC us

bes which depend on the pole figure cells of concerns. Then, each cell volum
es projection 

e is taken into 
r smoothing scheme. Also, some choices are 

operated between the iteration steps depending on the OD cell values relative to 1 m.r.d.. 
n compared to others [Wenk et al. 1994] on materials with a 

relatively low texture strength and did not show neither better nor worse results than the 
IMV algorithm. 

chaeben 1991, Schaeben 1991a] 

ased on the maximization of the texture 'disorder' or texture entropy, 
i.e. try

f  
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tu
account in the calculations which gives a bette

This approach has bee

W
 

4.6.6. Entropy maximisation method [Schaeben 1988, S

 
This method is b
ing to obtain the maximum texture phon from a set of experiment. Following 

information theory [Shannon 1948, Shannon 1949], the entropy estimator in texture can be 
estimated by: 
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which results in the iterative procedure: 
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fined r . One can see that, except for the weighting schemes 

⎠⎝1 )(

 
with the previously de n

inherent to the Rietveld implementation of the texture, Equation - 134 is exactly the same as 
Eq. - 132. 

 
4.6.7. Component method [Helming 1998] 

 
4.6.7.1. Description 
 

For very strong textures most of the orientation space cells�has zero-values, while few 
ution densities. In such cases the number of data to be acquired 

can be tremendously large and tend to an unacceptable limit. However, since the ODF is 
escribed by a small number of g orientations, simple functions can be used to represent it, 

which 

cells exhibit very large distrib

d
g values are easily handled. This leads to a drastic reduction of data.  
Let a specific texture component centred at the g = gc orientation be represented by the 

model-function fc(g). The total ODF can be represented by: 
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c

gfIFgf )()(  cc

where the intensity Ic is the volume fraction of crystallites belonging to the component gc of 
mly oriented crystallites. For 

onsistency the components have to respect the normalisation conditions: 
distribution fc(g), and F represents the volume fraction of rando
c
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The fc(g) components can be represented by any function, i.e. gaussian distributions, 
that warranty the normalisation possibility. However they are mostly represented using 
Gaussian functions. 
 
4.6.7.2. Gaussian components [Bunge 1969, Matthies et al. 1987] 
 

tion 

 

 fc(g) represents the orientation distribution of crystallites by using the orienta
distance g̃ that separates g from gc: 
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 Width at Half maxi um of the component Density (HWHD). 
This function decreases with increasing g̃. Since there is only one half-width to represent the 
istribu called spherical component. 

  that f(π+g̃) = f(π-g̃). Gaussian functions that 
respect this conditions are called standard Gauss functions [Matthies et al. 1987]: 
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 in which ζ is the Half m

d tion of the component, such distribution is 
One of the properties of the H-space is
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ions. 

ponents [Matthies et al. 1987]

In(x) being the modified Bessel funct
 

4.6.7.3. Elliptical com  
 

The component fc(g) can also be preferably extended along one direction, relative to 
the sample coordinate system KA. This gives rise to two FWHD, one being ζ, and the other 
perpendicular to it, ζ⊥. The component is then elliptical, and defined by: 
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4.6.8. Arbitrary texture correction 
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This kind of texture correction is not a model, and as such cannot be interpreted in 
terms of physically understandable parameters of texture. It only deserves the fitting 
possibi

correction would induce unsatisfactory fit, one can use this correction in 
ities, this doing providing a 

4.7. OD Refinement reliability estimators

lity of diagrams that show textures, but ones that are not of interest or that cannot be 
measured (e.g. if not enough data have been acquired for this purpose). For instance, on a 
summed diagram when texture is not completely removed by the summation procedure, 

herever no texture w
order to force the program to respect the actually observed intens
better fit for starting cell parameters. 

The correction simply consists in assigning arbitrary intensity values for the peaks in 
order that it respects observations.  

 
 

 

 
The best solution found for f(g) is in most programs given for the minimum averaged 

reliability factors: 

4.7.1. RP factors 

 

 140 ∑∑
−

=
j

o
j

c
i

PP
RP

)()(1____ yy hh ii  -    
i j j

ox
i

PI )(yh

here: w
   h , i = (1..I)  Measured pole figures 

..J)  Measured p ints of the pole figures 

recalculat-V
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 Pole density at yj on pole figure hi

 If the RP factors are suitable for the refinement itself, they depend on the texture strength 
d consequently make the comparison of 

finement’s quality between samples somehow ambiguous [Chateigner 2000]. In other 
words,

One should distinguish several RP factors: 

Individual relative deviation factors: 
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since they are not weighted by the density level, an
re

 one should compare the refinement quality with RP factors, only for similar texture 
strengths. Furthermore, these factors can depend on the way the OD refinement is operated 
(Harmonics, WIMV ...), and depend on the grid used for the measurements. 
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e to a correction strategy. 
 

- 142 

  x = 0, ε, 1, 10 ...: criterion to estimate accuracy versus density level.  
 
The value x is a criterion used to appreciate the quality of the refinement for the low and high 
density levels. We use x = 0.05 to reveal the global quality and x = 1 to show this quality for 
the density values higher than 1 m.r.d..  
 
These individual factors help to detect if some pole figures are particularly badly reproduced 
after the refinement, in order to operat

- Averaged relative deviation factors: 

   RP  =  1 RP (h )x
z

x
z

i
I
∑

I i=1
 

he arithmetic average of the previous ones. They help in comparing results 
n different samples. 

 
viation factors: 

These are simply t
o

- Global relative de

( )RP  =  
P (y ) -  P (y )

P (y )
 x, P (y )x

z i 1

I

h
o

j h
c

j
j=1

J

i=1

I

h
z

j
j=1

J h
o

j

i i

i

i

=
∑ ∑

∑ ∑

~ ~

~
~θ  - 143    

Can serve the same uses as the average ones, but the averaging scheme differs. 

.7.2. RPw Surface weighted factors 

 
 Matthies, Vinel et Helming (1987) proposed reliability factors weighted by the surface 
area of the measured cells y of the pole figures. The surface-weighted averaged factors are 

of the pole densities by: 

 
4

calculated on the base 
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 with surface-weighted factors exhibit less v riations with the 

texture strength than RPs, proving the efficiency of the weighting process, particularly for the 
higher texture strengths. 
 
Here also the corresponding three different factors can be calculated: 
- Indiv ted eviation factors [2]  

 Results [Chateigner 2000] a

idual weigh  relative d :
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- Averaged weighted relative deviation factors: 
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- Global weighted relative deviation factors: 
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4.7.3. RB Bragg-like factors 

 since it corresponds to the Bragg R-factor 
of the Rietvelders. We then call it the Bragg-like standard deviation factor: 
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Another R-factor is interesting to calculate,

- Individual Bragg standard deviation factors: 
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- Averaged Bragg standard deviation factors: 
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- Global Bragg standard deviation factors: 
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4.7.4. RBw Bragg-like weighted factors 

 The previous factors can also be weighted by the surface elements: 
- Individual weighted Bragg standard deviation factors: 
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- Averaged weighted Bragg standard deviation factors: 
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- Global weighted Bragg standard deviation factors: 
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ity-weighted" which takes into account the 

standard deviation for each measured intensity, even shows less 
overall variation with the texture strength. It is a better indicator of the OD refinement 
reliability whan comparing different samples.  

ation factors: 

4.7.5. Rw weighted factors 

 The Rietveld-like R-factors or "intens
normal Gaussian distribution 

 
- Individual weighted standard devi
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- Averaged weighted standard deviation factor
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4.8. Texture strength  
 
 Once f(g) is satisfactorily obtained, one can calculate factors which give an estimate of the 

paring samples on the base of overall 
texture strength parameters. Samples should have the same crystal symmetry and exhibit 

 

 
4.8.1.1. ODF Texture Index

texture strength. Caution should be taken here when com

similar texture components.  

4.8.1. Texture Index 

 

 The first texture strength parameter is the so-called 'texture index' [Bunge 1982] 
(expressed in m.r.d.2 units): 
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with ∆gi = sinβι ∆β ∆α ∆γ is the OD cell volume. 

 
 This index varies from 1 (random powder) to infinity (perfect texture or single crystal). It 

presents the mean square value of the ODF. 

 While for discrete OD this factor is straightfully calculated, in the case of the generalised 
spherical harmonics model the calculation is based on the  coefficients: 
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4.8.1.2. Pole Figure Texture Index 
 

nt samples, the texture index associated to the 
pole figures may be used. It is calculated similarly to the ODF Texture Index: 
 

 To compare the texture strength of differe
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   with  ∆y = sinϑy ∆ϑy ∆ϕy
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4.8.2. Pole Figure and ODF strengths 
 
 Both texture (ODF) and pol ressed in units
homogeneous with t di  d si nits (m.r.d.). To help co

e figure indexes are exp  that are not 
he stribution en ty u mparison and 

interpretations, it is more convenient to compare the square roots of these values, i.e. the 
exture Sterngth [Kock et al. 1998]: 

 

16

T

2- 1    F F = , 

 
 and the Pole figure strength: 
 

2
hh J J =  - 162    

 
4.8.3. Texture Entropy 

 
 The second overall texture strength parameter is a measure of the texture disorder, 
evaluated by the calculation of the entropy: 
 

∑ ∆
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4.8.4. Correlation betw

 but it is not possible to obtain an analytical 
xpression for this correlation. 

a)
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 Entropy and texture index are correlated,
e
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 b)

F2

 
n with Texture index. a): for real samples, b): for modelled textures 

 
of  texture index (Figure 14), modelled 

2 are univocally linking, though in a 
non-analytically solvable manner. Comparing ents (Figure 14a) with modelled 

Figure 14: Entropy variatio

 Looking at the variation the entropy with the
textures are placed on a single line, meaning th t S and Fa

 real experim
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textures (Figure 14b) will help in identifying one refinement that may be ameliorated. Lastly, 
om Figure 14, one can experimentally see the relative evolutions of the texture strength fr

parameters, which result from their analytical expressions: below a value of around 50 m.r.d.2, 
S is varying much more than F2, this latter being less efficient in revealing the texture 
strength. The reverse is true above 50 m.r.d.2. 
 

4.9. Texture programs 
 
 Many programs have been developed in order to treat QTA data.  

.9.1. B ARTEX) 

One of the most actually used is Beartex [Wenk et al. 1998] by the University of 
Berkeley, California. This package is dedicated to quantitative texture analyses starting from 

 sets. ODFs using regular 5°x5° and hexagonal grids can be 
alculated after pole figure corrections, and also simulation of standard ODFs and pole 

acroscopic elastic tensors and elastic wave propagation, ODFs from 
apping ... 

sing 1D and 2D detectors, MAUD [Lutterotti et 
l., 1999] is more and more used. It allows the full pattern analysis by combining Rietveld and 

is program works for x-ray, and neutron data, both at 
ersive and time of flight experiments.  

 
.9.3. General Structure Ana ysis System (GSAS) 

 for the refinement of structural models to both x-ray 
nd neutron diffraction data. The GSAS package can be used with both single-crystal and 

r time-of-flight instrumentation. Up to 99 different sets of data 
an be modelled using mixtures of up to 9 different phases.  

GSAS has been created by Allen C. Larson and Robert B. Von Dreele of Los Alamos 
National Laboratory [Larson et Von Dreele, 2000].  
 
4.9.4. preferred orientation package, Los Alamos (popLA) 

The popLA [Mason, 1994] texture analysis software package, developed at Los Alamos 
by Fred Kocks and collaborators, provides a comprehensive treatment of material texture 
analysis by reducing texture data and using these data to predict important material properties. 
popLA is actually composed of two parts; 1) popLA - a general texture analysis and plotting 
package, and 2) LApp (Los Alamos polycrystal plasticity code) - a plasticity modelling code 
for investigating the effect of texture on plastic deformation. The distribution of crystal 
orie tion is calculated and displayed by a w riety of graphic formats for comparison 
with published results. Once distributions have n determined, standard methods are used to 
predict ls and 
eramics processing techniques.  

 
4 erkeley Texture Package (BE

 

experimental raw pole figure
c
figures, modelling of m
single grain orientation m
 
4.9.2. Material Analysis Using Diffraction (MAUD) 

With the development of experiments u 
a
other codes including QTA. Th
monochromatic or energy-disp

4 l

GSAS is a comprehensive system
a
powder diffraction data (Rietveld analysis), even both simultaneously. Neutron data can be 
either from single-wavelength o
c

nta ide va
 bee

 mechanical properties employed by industry to design and control efficient meta
c
Data from three scattering techniques (x-ray, neutron, and electron diffraction) can be used by 
popLA to determine the ODF through the WIMV or harmonic formalisms. The 3-D 
orientation can then be used to generate a representative set of weighted orientations. The 
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weighed orientations serve as input to LApp, which predicts important elastic and plastic 
properties.  
 
4.9.5. The Texture Analysis software (LaboTex) 

The LaboTex [Pawlik et Ozga, 1999] software is the Windows 95/98/NT/Me/2000/XP 
ol fo alysis of crystallographic textures. The program performs in 

Orientation Distribution 
un

 figures 

ultiples 

- Defocusing curves: modifications for thin films, multilayers, fluorescence ... 
, LPEC, LLB, Mossbauer, INEL, Philips, 

. It is able to evaluate epitaxial relationships for up to five 

to r complex and detailed an
user friendly form the different calculations and graphic analysis of 

ction (ODF), Pole Figures (PFs) and Inverse Pole Figures (IPFs).  F
 

4.9.6. Pole Figure Interpretation (POFINT) 

POFINT [Chateigner 2002] is a simple MS-DOS based program developed in Turbo-
Pascal. It provides simple tools for pole figure interpretation and corrections, file 
transformations for many experimental purposes, and without having necessity to work with 
large exploitation systems:  
 

- Direct normalisation of pole
- Poles uncertainties after corrections 
- Angle calculations between (hkl) and {h'k'l'} planes, and m
- Change crystal system, wavelength and conditions of existence 
- Pole integration 
- X-ray absorption coefficients and penetration depth 
- Periodic table of the elements 

- File transformations (Dubna, ILL, Beartex
Seifert, Socabim, Dosophatex, ... 
- Intensity corrections 
- Difference pole figures 
- Reliability factors 

This program allows the calculation of some parameters, useful for a direct pole figure and 
texture interpretation, in the case of bulk, thin film and multilayer specimen, and for eventual 
later analysis through other program packages. All Crystal systems, systematic extinctions 
nd wavelengths are available. a

 
4.9.7. Strong Textures (STROTEX and Phiscans) 

This MS-DOS program [Chateigner, 2002a] is only to visualise pole figures in the 
simplest manner. Its advantage is that it can represent pole figures (and correct them) for all 
regular grids, but also for small angular steps. Its associate Phiscans allows pseudo-3D 
drawing, and pole integration to calculate orientation volumes.  
 
4.9.8. STEREOPOLE 

 This program developed in Interactive Data Language (IDL) 6.0 under the GNU 
General Public Licence allows graphical comparisons of experimental and simulated pole 
figures (Salzmann et Resel 2004)
different layers. 
 

4.10. Limits of the classical texture analysis 
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 Here comes the problem of the pole figure measurements, which has to be adapted to the 
lz 1949a et 1949b] with the use of a 4-circle 

diffr

asurement was to build 
 can have using rotating anodes generators 
Wenk et al. 1997]. Another way is to use 

multide

rucial parameter. In this way, we demonstrated that quite a lot of 
e experimental time can be saved, also with a limited range in the pole figure coverage 

[Chatei oach the 5°x5° grid of the rotation around 
diffract ed in the resulting pole figures [Heizmann et 
Laruell sure those points 
that, af  figure. However, for 
one inc is feasible only for one of the pole figures, and whatever the grid 
used. A t needs more time and the use of 
a PSD y to get rid of this deformation is to spline-interpolate 
the exp  is also 
true for
 
 But g PSDs is revealed when the peak position or peak profile is of 
interest ined analysis paragraph. For instance, when internal stresses 
exist in , the peak position moves when the tilt angle changes, precluding 

ointed out when working with a point detector: 
- what are the relative contributions of each of the peaks probed by the detector ? 

occurrence of defocusing or any other 

mplifies how these problems 
. 

samples to characterise. It started originally [Schu
actometer equipped with point detectors, and using a filtered (only) radiation. It became 

recently a necessity to use also a purer radiation as delivered by a monochromator [Wenk 
1992], which was fairly new in the texturologists world. But one of the main problems still 
remained. One had to measure every single pole figure one after each other, doing the same 
χϕ-scan for each of them. One way to avoid this time-consuming me
systems with more intense fluxes, as one
[Chateigner et al. 1997] or synchrotrons [

tectors, usable on classical generators, like position sensitive (PSD), curved position 
sensitive (CPS) or 2-dimensional detectors (image plates or CCDs). The first use of position 
sensitive detectors was developed using neutron radiation [Bunge et al. 1982], were 
experimental time can be a c
th

gner et al. 1997]. Using this appr
ometer axes are in some way deform
e 1986], after the localisation corrections. The ideal would be to mea
ter correction, result in a non-distorted 5°x5° coverage of the pole
idence angle, this 
nd if several incidences are measured, the experimen

becomes less interesting. The wa
erimental points and recreate a non-distorted grid. All what is mentioned here
 an hexagonal grid [Matthies et Wenk 1992]. 

 another interest in usin
 as we'll see in the Comb
 the studied material

any reliable measurement of the texture with a point detector, particularly if dealing with a 
well crystallised material for which diffraction peaks have low FWHMs.  
On the other hand, for micro- or partially crystallised materials, peaks are so much broadened 
that some questions should be p
 
 - what will be these contributions with the 

instrumental effect ? 
 - is the detector position representative of all the crystallites (or which part of the 

irradiated volume does it concern) ? 
 - how much the diffracted signal is perturbed by the amorphous contribution ? 

igure 15 is an example of a polypropylene diagram that exeF
could perturb the results
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Figure 15: Example of an x-ray diffraction diagram for a plasma-treated polypropylene film. 

 
There are actually three different manners to 

u
 handle such a problematic analysis, all 

sin

ted with 

Matthies et 

g a CPS or a PSD. The less elegant, and also less reliable, is to process a direct numerical 
integration of the peaks with background and amorphous subtraction using a linear 
interpolation. Since the amorphous part does not evolve linearly, it creates artefacts that act as 
a random contribution in the pole figures. This method should still be restricted to fully 
crystallised materials which exhibit individual enough peaks, for which it works nicely. 
The second approach is to fit independent peaks with convenient shapes either in a whole 
pattern fitting procedure or on separated peaks or groups of peaks, versus the sample 
orientation. In this methodology, background and amorphous signals are subtrac
another fitted function [Aouinti et al. 2002]. Of course this approach assumes that the 
structure is perfectly known, a condition which is not always fulfilled. 

 
The most elegant way at the present time is to resolve the structure and the texture in a 
combined approach as now developed for few years using TOF [Wenk et al. 1994, 
al. 1997] and monochromatic neutron [Guilmeau et al. 2003], and x-rays [Cont et al. 2002, 
Morales et al. 2002] investigations.  
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5 Quantitative Microstructure Analysis (QMA) 
 

5.1 Problematic 
 

Important information on the microstructure may also be extracted from the width of 
the diffraction peaks. A diffraction peak can be considered as the convolution product of 
several effects: small size of the coherently diffracting domains, elastic microdistorsions 
(microstrains) due to linear and point defects, stacking faults, strain heterogeneities… From 
the peak profile point of view, this is expressed by Eq. - 11 in the direct space, or in the 
reciprocal space: 

 

- 164    Vh(k) = Lh(k) ⊗ Gh(k)  
 

We introduce here the h indice to take account of the eventual anisotropy (h planes 
depende

 

(average over all the 
equivalents of h). The quantity <εh> is then the (hkl)-dependent macroscopic strain, which 

, and is then <ε2
h> (and corresponds to the <εΙΙΙ

h> kind 
of residual stresses in paragraph 7.1 Strain definitions). The contribution from <ε2

h> to the peak 
broadening is Gaussian while the contribution from finite sizes <Rh> is Lorentzian-like: 

 

- 167    

ncy) of the peak broadening. Equation - 164 rewrites: 

- 165    Vh(k) = ∫ Lh(k + 2π ∆h) Gh(∆h) d(∆h)  

 
∆h being the variation in interreticular spacing due to microstrains and finite sizes. 
The contribution from microstrains εh produced by stresses are seen as relative 
variations of the dhkl spacings: 
 

- 166    εh = - ∆h / h 
 
But diffraction only probes the mean values <εh> of εh 

produces a peak shift under residual stress, and will be treated in paragraph 7 Residual Strain-
stress Analysis (RSA) (this quantity corresponds to the <εΙ

h> kind of residual stresses in 
paragraph 7.1 Strain definitions). The peak broadening represents the deviation of ∆h/h from the 
macroscopic mean value of the strain
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The deconvolution of these effects is generally operated using one of the following 
volution (Warren-Averbach method), a 
onvolution (Integral Breadth method), 

then a development of the microstrains and sizes contributions into spherical harmonics from 
 Lorentzian contribution breadths can be applied to estimate anisotropic 

rystallite sizes and microstrains (Popa method). 

 

methods: a Fourier transformation followed by a decon
modelling by analytical peaks followed again by a dec

the Gaussian and
c

 
Equations - 167 and - 168 can be expressed as functions of the Gaussian (βGh) and 

Lorentzian (βLh) peak broadening parts directly: 
 

- 169   ⎟⎟
⎠

⎞⎛ − 2
1- πz

⎜⎜
⎝

2
G

G exp= )(G
h

hh k
β

β  
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⎞⎛

with: 

 
3

2= 

2 tan2= 

L

G h

λβ

επθβ

h

hh

R

 

2

   

cos hθh

 methods (z = 2θh), and: for constant-wavelength diffraction
 

- 172    
 

sin3
= 

2= 
2

L

2
G

θ
λ

β

επλβ

h
h

hh

R
h

h

 

for energy-dispersive diffraction methods (z = λh). 
 

5.2 Isotropic and Anisotropic crystallite sizes and microstrains, Williamson-Hall 

approach [Langford et al. 1969] 

 
ased on individual profiles determination. It requires the 

determination of each line width of the experimental diagram, deconvoluted of g(x). 
Williamson et Hall [Langford & al. 1969] proposed: 
 

This technique is b

λ
θε

λ
θβ sin1cos

h
h

h +=
T

 - 173    

 in which βh is the sample contribution to the peak width in 2θ, Th the mean crystallite 
size and εh the mean microstrains, all in the  direction. If the crystallite sizes and 
microstrains are isotropic, the slope of the linear Equation - 173 provides the microstrain state 

h
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while t

5.3 Anisotropic crystallite sizes, Popa approach 

he ordinate at origin gives the inverse of the mean size. For anisotropic crystallite sizes 
and/or microstrains, one has to plot one linear equation for each h direction in order to 
reconstruct the anisotropy. The main disadvantage of this technique occurs when the peaks 
are not easily separated (low symmetry phases, polyphased materials). The use of the Rietveld 
approach to extract the contributions is then preferred.  

 
[Popa 1998] 

ze in the crystal direction h, we always can 
develop <Rh> in a convergent series of symmetrised spherical harmonics, the coefficients of 
which being refinable parameters. The symmetrised spherical harmonics are expressed by: 

- 174    P2l
m(x) cosmϕ or P2l

m(x) sinmϕ 

With x = cosχ 
 

 some selection rules [Popa 1992] and the Legendre polynomia 
P2l

m(x) are: 
 

- 175    

 
 Considering <Rh> the mean crystallite si

 

The l and m parameters follow
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The angles χ and ϕ are the co-latitude and azimuth angles respectively, in the sample co-
ordinate system KA. The <Rh> series is truncated at a number of terms which depends on the 
crystallite anisotropy. The first term R  corresponds to the mean crystallite size over all the h 
directio roups. 
 

0
ns. Hereafter are the development of the series for the Laue g

1 :  <Rh> = R0 + R1P2
0(x) + R2P2

1(x)cosϕ + R3P2
1(x)sinϕ + R4P2

2(x)cos2ϕ + 
R5P2

2(x)sin2ϕ + ... 

2/m:  <Rh> = R0 + R1P2
0(x) + R2P2

2(x)cos2ϕ + R3P2
2(x)sin2ϕ + ... 

- 177 

2/mmm <R > = R  + R P 0(x) + R P 2(x)cos2ϕ + ... 

2P4
0(x) + R3P4

4(x)cos4ϕ + R4P4
4(x)sin4ϕ + ... 

- 179 

- 176 

: h 0 1 2 2 2

- 178 

4/m:  <Rh> = R0 + R1P2
0(x) + R

4/mmm: <Rh> = R0 + R1P2
0(x) + R2P4

0(x) + R3P4
4(x)cos4ϕ + ... 

- 180 

:  <Rh> = R0 + R1P2
0(x) + R2P4

0(x) + R3P4
3(x)cos3ϕ + R4P4

3(x)sin3ϕ + ... 3
- 181 

m:  <Rh> = R0 + R1P2
0(x) + R2P4

0(x) + R4P4
3(x)sin3ϕ + ... 3

- 182 
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6/m: <Rh> = R0 + R1P2
0(x) + R2P4

0(x) + R3P6
0(x) + R4P6

6(x)cos6ϕ + R5P6
6(x)sin6ϕ 

+ ... 
- 183 

6/mmm: <Rh> = R0 + R1P2
0(x) + R2P4

0(x) + R3P6
0(x) + R 6

4P6 (x)cos6ϕ + ... 
- 184 

h 0 1 4 2 6 3 6 ) + ... 

with: 

os4ϕ 

- 188  K6
1(x,ϕ) = -0.1410474 P6 (x) + 0.527751 P6

4(x)cos4ϕ 

6 6 6

 The refinable parameters are Ri's. The number of terms that must be used in formulae - 
ed by successive refinements starting from the isotropic case 

<Rh> = R0. Terms are then added one by one until the corresponding fitted value becomes 

m3:  <R > = R  + R K 1(x,ϕ) + R K 1(x,ϕ) + R K 2(x,ϕ
- 185 

m3m:  <Rh> = R0 + R1K4
1(x,ϕ) + R2K6

1(x,ϕ) ... 
- 186 
 

- 187  K4
1(x,ϕ) = 0.3046972 P4

0(x) + 0.3641828 P4
4(x)c

0

- 189  K 2(x,ϕ) = -0.4678013 P 2(x)cos2ϕ + 0.3153915 P 6(x)cos6ϕ 
 

176 to - 186 can be determin

insignificant. 
 
5.4 Microstrains, Popa approach [Popa 1998] 

 
 The microstrain series development for all the Laue groups is: 
 
1 : 2k  + E3l  + 2E4h k + 2E5l k + 2E6h l + 4E7h k + 4E8h l

+ 4E9k h + 4E10k l+ 4E11l
3h + 4E12l

3k + 4E13h2kl + 4E14k2hl + 4E15l
2kh 

 <εh >Eh  = E1h  + E2k  + E3l
4 + 2E4h2k + 2E5l k + 2E6h l + 4E7h3k + 4E8k3h 

2

2 4 4 4 2 2 2 2 2

2 4 4 4 4 2 2 2 2 2   4E5kh(h2-k2) 

4/ 2 4 4 4 4 2 2 2 2 2

 <εh
2>Eh

4 = E1h4 + E 4 4 2 2 2 2 2 2 3  3  

3  3  

- 190 
2 4 4 4 2 2 2 2 2 2/m: 

+ 4E9l hk 
- 191 
2/mmm:  <εh >Eh  = E1h  + E2k  + E3l

4 + 2E4h k + 2E5l k + 2E6h2l

- 192 
4/m:  <εh >Eh  = E1(h +k ) + E2l  + 2E3h k + 2E4l (k +h ) +
- 193 

mmm:  <εh >Eh  = E1(h +k ) + E2l  + 2E3h k + 2E4l (k +h ) 
- 194 

:  <εh >Eh  = E1(h +k +hk)  + 2E2l (h +k2+hk) + E3l +
(4/3)E l(-h3+k3+3k2h) 

2 4 2 2 2 2 2 4  (4/3)E4l(h3-k3+3h2k) + 
5

3

- 195 
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3 R:  <εh
2>Eh

4 = E1(h4+k4+l4) + 2E2(h2k2+h2l2+l2k2) + 4E3lhk(h+k+l) + 
4E4(kh3+lk3+hl3) + 4E5(hk3+kl3+lh3) 

- 196 
3 m1:  <εh

2>Eh
4 = E1(h2+k2+hk)2 + 2E2l

2(h2+k2+hk) + E3l
4 + (4/3)E4l(2h3-2k3+3h2k-

3hk2) 
- 197 

:  <εh
2>Eh

4 = E1(h4+k4+l4) + 2E2(h2k2+h2l2+l2k2) + 4E3lhk(h+k+l) + 3 m1R
4E4[hk(h2+k2)+kl(k2+l2)+hl(h2+l2)] 

- 198 

3 1m:  <εh
2>Eh

4 = E1(h2+k2+hk)2 + 2E2l
2(h2+k2+hk) + E3l

4 + (4/3)E4l(3h2k+3hk2) 

Hexagonal: 2 4 2 2 2 2 2 2 4

- 200

201 

- 199 
<εh >Eh  = E1(h +k +hk)  + 2E2l (h +k +hk) + E3l

 
Cubic:  <εh

2>Eh
4 = E1(h4+k4+l4) + 2E2(h2k2+h2k2+k2l2) 

- 

 
5.5 Stacking faults, Popa approach [Popa 1998] 

 
 From the anisotropic crystallite size model of Popa as is, the peak broadening 

ot coming from the finite crystallite sizes. for 
ce stacking faults, point defects ...  

d 

- 2

in which p  is the faulting probability which has to be refinable, and Ph is a determined 

cubic and hexagonal close-packed crystal systems. 

encompasses also defects contributions that are n
instan
 The separation of the two effects is however possible if <Rh> in Eq. - 168 is replace
by an effective radius: 
 

02    <Rh>eff
-1 = <Rh>-1 + 2 pfPh

 
 f
function of h which can be found in Warren [1969] for the face-centred cubic, body-centred 
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6. Quantitative Phase Analysis (QPA) 

 
6.1. Polycrystalline samples 

 
Quantitative phase analysis can be performed on multi-phase samples using the 

 described by Hill et Howard [1987]. The general scattering cross-section for Bragg 
sc
scattering and le factor, SΦ, in Equation - 24 is then 

rtional to N/V for each phase. 

 

formalism
attering is proportional to N/V, where N is the number of unit cells contributing to the 

 V is the unit cell volume. The sca
propo
 

The weight fraction WΦ of phase Φ can then be written as: 

- 203    

∑
Φ

=

N

iiii VMZS

where ZΦ is the number of formula units per unit cell, MΦ is the molecular weight of 
s an index running over all NΦ phases. It is 

Φ Φ er of diffracting unit cells (NΦ) and ZΦMΦ 
 just the molecular weight of the unit cell, hence S V Z M  is proportional to the weight of 

ulating Y BaCuO  phases. In this sample 35 % of 

ΦΦΦΦ
Φ =

VMZSW  

i 1

 

the formula unit, VΦ is the unit cell volume and i i
worth noting that S V  is proportional to the numb
is Φ Φ Φ Φ

the diffracting sample.  
Figure 16 shows an example of fit of neutron data measured on a sample containing 

the superconducting YBa2Cu3O7 and ins 2 5
superconductor and 65 % of insulator was determined using QPA. 
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Figure 16: Example of a neutron diffraction diagram (dots) of a biphasic sample, and corresponding fit (line) 
using QPA as implemented in the MAUD program. 

 
6.2. Amorphous-crystalline aggregates 

 
 Dealing with an amorphous and crystalline mixture gives rise to diagrams where 
amorphous oscillations close to the background superimpose with the diffracted lines. Le Bail 
[1995] showed, in the case of a SiO2 partially crystallised ensemble, that Equation - 203 still 
can be used to determine the volume fraction of the amorphous and crystalline phases, 
provided that: 
 
 - the amorphous phase is declared with a unit-cell 
 - the crystallite sizes of the amorphous phase are reduced to approximately the 
dimension of the unit-cell, thereby suppressing the interferences of the scattered signal, in 
order that diffusion solely remains. 
 
 Not all the structures can be modelled using this approach, and it is better to start with 
the close crystalline structure. Also, when some preferred orientation is present in the 
crystalline phase(s), the crystalline volume fractions are biased, and a physically 
understandable QTA has to be practiced. 

Figure 17 shows a refinement example on a fluorapatite sample irradiated under 1013 
Kr cm-2, measured using x-rays. Textural effects explain the imperfect reproduction of the 
diffracted peaks. 
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Figure 17: QPA refinement example of an x-ray diagram measured on a 85 % amorphous fluorapatite sample. 
Refinement operated in M  Miro et al. (2004). AUD,
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7 Residual Strain-stress Analysis (RSA) 
 

Diffracting planes are used as strain gauge. Stresses are then calculated via continuum 
mechanics equations. The formalism of these methods is extensively described in the works 
by Cullity [1978], Maeder [1986], Noyan et Cohen [1987], Noyan et al. [1995], Hauk [1997]. 

 
7.1 Strain definitions 

 
The total elastic strain for a grain at the position X in the sample can be expressed in 

the sample reference frame KA by: 

- 204    

εI is the macroscopic strain (first order) averaged over all grains within the macroscopic 
irradiated volume Vd. This macroscopic strain is induced by macroscopic stresses σI (Figure 
18). εII is the intergranular strain (2nd order) which characterises the strain deviation from the 
macroscopic value εI for a particular grain. Intergranular strains can be present in the material 
for several reasons, elastic anisotropy giving rise to εIIe, thermal anisotropy εIIti, plastic 
anisotropy εIIpi. εIII is defined as the position dependent deviations from the average 
m  
a  
of the diffraction peaks. 

 

)()()( XεXεεXε IIIIII ++=  

acroscopic strain of the crystal. These latter are often referred as microstrains, with an
verage value over one crystallite being zero. Microstrains are accessible by a profile analysis

 
 

Figure 18: Phenomenological classification of internal stresses. σI, σII and σIII are respectively macro-, meso- 
and microscopic stresses. One could have drawn the same diagram with strain types εI, εII and εIII respectively. 

 
Diffraction measures the mean interplanar spacing 

dV
hkld ),,( ψφ averaged for the 

diffracting grains which possess a scattering vector normal to the (hkl) planes in Vd. The 
average strain εφψ or εh(y) is measured in the direction y = (φ,Ψ) for the crystalline planes h = 
{h,k,l} defined in the sample coordinate system KA = (X, Y, Z). The angles are the azimuth φ 
and the colatitude ψ. Note that the ψ axis is the tilt angle as used in texture experiments, but 
may also correspond to the asymmetry angle (2θ-ω) using position sensitive detectors. The φ 
angle is the same as ϕ in texture analysis: 
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 - 205  

1

0

0

hkld

hkldhkld
d

d

V
−

=
ψφ

r positions of the corresponding diffraction peaks through 

 

where d0 is the unstrained lattice plane spacing of the {hkl} planes. d(hkl) and d0 are 
accessed via the θφψ and θ0 angula
Bragg’s law. 

7.1. ε33 strain determination 
 
Only one main strain, ε33, is measured, and the other elements of the strain tensor are 

deduced by means of restrictive hypotheses. The axis 3 refers to the axis perpendicular to the 
sample surface.  

 
7.1.1 Isotropic polycrystalline sample 

 
Using linear elasticity theory: 

- 206    ( )221133 1
ε+ε

ν−
ν

−=ε  

 ν: Poisson’s ratio. 
Hypotheses:  

- surface equilibrium conditions: σi3 = 0, i = 1,2,3 
- shear strains are equal to zero (at least ε12, otherwise εφ cannot be constant in the 

plane) 
- the stress free interreticular distance of the diffracting planes is known (otherwise ε33 

cannot be measured !) 
 
With isotropic in-plane strains (fibre textures): 

- 207    φε
ν−

ν
−=ε

1
2

33  

εφ: strain in any in-plane direction. 
Measuring ε33 and knowing ν one can obtain εφ.  

 
7.1.2 Single crystal 

 

- 208    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε+ε−=ε 22

33

32
11

33

31
33 C

C
C
C

 

 Cij: elastic constants in the sample frame with the matrix notation.  
And the same hypotheses remain. 
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With isotropic in-plane strains: 

- 209    φε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=ε

33

3231
33 C

CC
 

 
Measuring ε33 and knowing Cij one can obtain εφ.  

 
7.2. Complete strain tensor determination 

 
7.2.1 Is

ess

otropic polycrystalline samples 
 
7.2.1.1 triaxial str  state 

 
ine samples, the whole strain tensor is obtained thanks to the 

so-called sin2ψ method with the only hypothesis σ  = 0. This method is based on the 

sed in texture experiments, but may also correspond to the asymmetry angle 

ins the general sin2Ψ relation in the case of a triaxial 
stres

In the case of polycrystall
33

measurement of the variations of a {hkl} plane family diffraction peak position (2θhkl) as a 
function of the two Euler angles, the azimuth φ and the colatitude ψ. Note that the ψ axis is 
the tilt angle as u
(2θ- ) using position sensitive detectors. 
Using linear elasticity theory, one obta

ω

s state:  

ε σ ψ τ ψ σφψ φ φ= + +
1
2

22
2

1 11 22S S( sin sin ) (  - 210    σ+ )

²φ σ22 + sin2φ σ12, the main stress in the φ direction and τφ = σ13 cosφ 
2 φ direction. The S1 and S2 "radiocrystallographic" elastic 

cons tallographic" Young’s modulus and 
Poisson’s ratio relative to the considered {hkl} fa

g relation - 210 to at least three different values of φ, one gets the whole stress tensor. 
 

ate

with σφ = cos²φ σ11 + sin
+ σ ar stress in the 3 sinφ, the she

tants can be expressed as a function of the "radiocrys
mily by ½S2 = (1+ν)/E and S1 = -ν/E. 

Applyin

7.2.1.2 Biaxial stress st  

 
When shear stresses are negligible (biaxial stress state τφ = 0), εφψ, and consequently 

n sin2ψ:  

- 211 

ln(1/sinθ), depend linearly upo

)sin/1ln()(S)sin(S
2

)sin/1ln( 2hkl =θ  
1

022111
2 θ+σ+σ+ψσφ  

 
s state7.2.1.2 Uniaxial stres  

 
Finally, if the in-plane stresses are isotropic (σ = σ11 = σ22 = σφ), Eq. - 211 rewrites: 

- 212   )sin/1ln(S2)sin(S
2
1)sin/1ln( 01

2
2hkl θ+σ+ψσ=θ  
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 in2ψ, one obtains a straight line which slope is 
proportional to σ and the intercept allows to determine the stress-free distance d0. This 

ormation on the microstructure of the material compared to the 
bulk one (db): a value of d0 smaller than db indicates a structure with vacancies or smaller 
substitution atoms, or a stretched film, whereas a value of d0 larger than db denotes a large 
amo t purities, or a compressively stressed 

.

, the so called "metric tensor method" is used, with or 
ithout the σ  = 0 hypothesis. Only the guideline of this method is given here; for details on 

t, the reader can refer for example to the works from Gergaud 
[1992] and Auzary et al. [1997]. 

se of the crystal, one can write Eij = gij - gij  where 

orhombic cases are quite simple. 

ic crystal systems

Plotting ln(1/sinθhkl) versus s

parameter gives important inf

unt of intersti ials, bigger substitution atoms and im
 film
 

7.2.2 Single crystal sample 
 
In the case of single crystal samples

w 33
the theoretical developmen

On the basis of the crystal coordinate system KB = (e1, e2, e3) one writes a vector u = Σ 
xiei with |u|2 = gijxixj where gij is the fundamental metric tensor of the basis ei (gij = ei.ej). In 
the small deformation theory of continuum mechanics, the fundamental measure of 
deformation is defined by dl2 – dl0

2 = 2εij dxi dxj with dl0
2 = gij(x) dxi dxj and dl2 = gij(x) dxi 

dxj (dl0 and dl are elementary distances before and after deformation). Rotating from the X, 
Y, Z axes of the sample to the e1, e2, e3 ba 0

Eij is the strain tensor in the crystal axis system and gij and gij
0 are the metric tensors related to 

the strained and unstrained crystal respectively. The general case is rather complicated but 
cubic or orth

 
7.2.2.1 Cubic and orthorhomb  

hkl

trix inversion and gives , which leads for the 

rthorhombic crystal to 

 
In the case of a cubic crystal system, Eij = a0

2δij (a0 = lattice parameter) and gij
0 = a0

2δij, 
then gij = a0

2(2εij + δij) which is the metric tensor related to the deformed crystal basis. The 
angular position of the x-ray diffraction peak gives the interreticular distances dhkl that are 
directly related to the reciprocal lattice. Therefore it is more appropriate to write 

ij2 hhg=− , where gij is the metric tensor related to the reciprocal basis of the crystal. gij is d ji

)2(ag ij
ij

2
0

ij ε−δ= −obtained from gij by a ma

o )gaa(
2 j0i0ijij

orthorhombic structure. The metric tensor of the deformed bases is obtained from the x-ray 
diffraction measurements; therefore, at least 

1 ij−δ=ε  where a0i are the lattice parameters of the 

six peaks are required in the general case. 
 

7.2.2.2 Stress tensor 

 
easured strains, the stress tensor can be determined: 

 

- 213    εkl = Sijkl σ
ij

where Cijkl are the elastic stiffnesses and Sijkl the elastic compliances of the single 
rystal. 

From Hooke's law and m

 σij = Cijkl ε
kl

  

 

c
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As seen above the determination of the strain tensor εkl requires the knowledge of the lattice 
parameters a0i (gij

0) of the undeformed (stress-free) lattice that are generally unknown. 
Therefore a rather reasonable assumption is made: the outer surface of the sample is in 
equilibrium which gives σ33 = 0 (it is postulated that no gradient on σ33 exists and thus σ33 = 0 
all along the probed direction of the sample). The stress tensor is then calculated using the 
lattice parameters of the bulk (or powder) material following an algorithm where σ33 must 
reach the zero value by an iterative calculation as a function of new lattice parameters.  
 
7.3 Textured samples 

 
7.3.1. Generalities 
 

Non-linearity in the sin2Ψ relation is observed due to stress gradients or texture (Maeder, 
1986

 modulus E and Poisson coefficient G to a 
, a broad range of mechanical behaviour can 

ples. The way the anisotropy in elastic constants can be taken 
to 

Another 
stal. Knowing the
odels have been developed to calculate 

or of the polycrystal 
from the measurements involving different sample orientations (in fact the texture 

7.3.2. Non-linear least-squares fit 

 For any stress state, and also for non textured specimen, the use of fitting procedures 
help dual stress 
analysis of random samples (Press et al. 1986), but it became an absolute necessity when 
deali re changing according to the texture, 
and it is by far more powerf ad  the calculated strains to the measured ones. The 

). The sin2ψ method, or any other methods like the cos2ϕ become then non applicable as 
is.  

An easy way to solve this problem, in the case of strong and sharp textures, is to use the 
"crystallite group method" (Willemse et al. 1982, Hauk et Vaessen 1985): interreticular 
strains are measured on several well-oriented crystalline planes (corresponding to specific 
orientation components) and related to the stress tensor via the single crystal elastic constants 
(Clemens et Bain 1992, Badawi et al. 1994, Labat et al. 2000). But this approach does not 
take into account the volume fraction of crystallites actually diffracting in each orientation, a 
quantity that can be estimated using the ODF. 

om a perfectly isotropic powder of Young'sFr
perfect single crystal of elastic compliances Sijkl
be encountered in textured sam
in account is still a long debate. Most of the investigations are dealing with the so-called 
diffraction stress factors, Fij(φ,ψ,h), which take into account the deviations of the elastic 
constants from the single crystal case (Hauk 1997, Welzel et Mittemeijer 2003). This 
approach needs the ODF to be determined in order to provide a correct average of the 
diffraction stress factors, and is barely used in the literature.  

approach is the use of a simulation for the calculation of the macroscopic elastic 
tensors as they are exhibited by the oriented polycry  ODF and the elastic 
compliance or stiffness of the single crystal, several m
the real macroscopic tens (see § 10.2.3.). Strains can then be deduced 

measurements) and the stresses deduced from the simulated macroscopic constants. 
 

 

s the analysis. Non-linear least-squares fit have been developed for resi

ng with anisotropic samples. It that case, strains a
ul to just

function used for the minimisation is: 
 

- 214    [ ]∑ −= MmeasMcalc SSw 222 ),,(),,( yhyh εεχ  
i

ijkiijkii ll
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in which the number of measured strains is i, and wi is the weight associated to the different 
measured strains, liked to the standard deviation obtained in the refinement. This approach is 
very flexible relative to the number of strains that one can measure. For instance, when strong 
texture occurs, not all the peaks give a contribution at all the necessary ψ orientations, which 
makes the sin2ψ method vanishing. Even in this case the refinement can be a solution. 
 

.3.3. Strain and stress distribution functions 7
 
 From the measurement of the strains in all the sample directions, εmeas(h,y), the 

e strain distribution (SD) is straightforward. But only if the strains can be 
 directions, which for strong textures is not always possible. In this latter 

ase εmeas

representation of th
measured for all the
c  one has to rely on the values recalculated from the refinement, (h,y). However, such 
values imply that either the macroscopic elastic coefficients (Sijkl

M or Cijkl
M) have been 

refined together with the stresses, or that a modelling of the macroscopic stresses has been 
operated. Such modelling of the macroscopic elastic constants are detailed in paragraph 10. 
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8 X-ray Reflectivity (XRR) 
 

8.1 Introduction 
 
X-ray reflectivity has become an invaluable tool to study the structure and the 

r by layer by the bottom up approach in thin 
c and atomic scales [Stoev et Sakurai 1999, 

owen et Wormington 1993, Van den Hoogendorf et de Boer 1994, Dietrich et Haase 1995, 

al 
interest to discriminate between a morphological roughness and a composition gradient at the 
interface.  

 
8.2 The x-ray refractive index

organisation of materials which are grown laye
films and hetero-structures at the submicroni
B
Deutsch et Ocko 1998, Robinson et Tweet 1992]. In thin film material research, the trend is to 
design solid films of increasing complexity having specific properties for technical 
applications. The perfection of layered super-structures can be defined by the quality of the 
interfaces, the control of  the thickness, crystallinity, voids or various defects which may 
appear during the growing process. In particular, the roughness of the interfaces is of crucial 
importance for many technological applications and it is a parameter which must be 
determined to appreciate the quality of the interfaces. In addition it is also of fundament

 
 
The interaction of x-rays with matter can be described in a classical way in a first 

approximation by a refractive index which characterises the refraction in a specific media. A 
very simple classical model in which an electron of the material is considered to be 
accelerated by the x-ray field leads to the following expression for the refractive index for x-
ray radiation: 

 
- 215    βδ in −−= 1  

 
where the imaginary part of the index accounts for the absorption in the material. The values 
of δ and β (both positives) depend on the electron density ρΦ of the material which can be 
expressed by: 

- 216    ∑
Φ

Φ

++
=

k

kkk

V
iffZ '''

ρ  

where VΦ is the unit cell volume of phase Φ,  is the number of electrons of atom k in 
the unit cell, f' and f" are the real and imaginary parts of the anomalous scattering factor for 
the specific energy of the incident radiation λ. The sum is performed over all the atoms of the 
unit cell. It is possible to show: 

 

- 217    
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- 218    ∑
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π
β  

with being the classical radius of the electron.  nm813102 6−= .re
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reflection8.3 The critical angle of  

 
F  the refractive index of a material is slightly less than 1 [Compton 

1923]. Crossing an in  air (n = 1) to a given material (n < 1), it is possible to 
totally 

or x-ray radiation,
terface from

reflect the beam if the incident angle θ is small enough. In order to observe this "total 
external reflection" of x-rays, the incident angle must be smaller than the critical angle θc 
defined by: 

 
- 219    cosθ δc n= = −1  
 

Since n is close to unity, this angle is very small and a Taylor approximation in θc 
yields: 

- 220    
Φ== ρ

π
λ

δθ
2

2 2 e
c

r  

 
8  F.4 resnel formalism (Specular reflectivity) 

 
T tionally defined as the ratio: 
 

he specular reflectivity is conven

- 221    
0

)()(
I

IR θθ =  

 
where I(θ) is the intensity reflected along the direction θ from the surface and I0 the 

 at θ from the surface. If the electron density can be considered 
 angles of incidence), refraction/reflection at interfaces can be 

eated as a classical problem of electromagnetic waves. From continuity equations of the 

 modulus of this coefficient: 
 

- 222    

intensity of the incident beam
as a continuous media (small
tr
electromagnetic field at interfaces, the classical Fresnel relationships are obtained which give 
the amplitude of the reflection coefficient for the (s) and (p) polarisation. The reflectivity is 
then the square

( )
2

22 2 βθθθ i
rrR

c +−+

 
This expression does not depend on the field polarisation. For specular reflectivity 

(identical incoming and outcom

22 2 βθθθ
θ

ic +−−
== ∗  

ing angles), we obtain after introduction of the wave vector 
transfer q=(0,0,qz) with qz = 4πsinθ / λ: 

- 223   
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For instance, the reflectivity curve of a flat silicon is equal to 1 below the critical wave 
vecto er this value, the deviation from unity is due to the 

absor

r transfer which is qc=0.0317Å-1. Aft

ption in the material which plays a major role close to 
λ

πθ
λ

θπ cc
cqq ≈== . When 

qz>3qc, the reflectivity rapidly becomes ( )

4sin4

4

4

16 z

c
z q

q
qR = . 

 
8.5 Surface roughness 

 
ough surfaces will be less reflecting than ideally flat surfaces. 

atistically with the help of the moments of the distribution 
f alti

One can realize that r
The roughness can be understood st
o tudes z(x,y). The second moment of the distribution is: 

 

( ) ( )σ 2 2 2
= − = −∫z x y z dzp z z x y z( , ) ( ) ( , )  - 224    

 
ness σ of the surface. The surface 

ughness reduces the specular reflectivity by a Debye-Waller-like factor. When the 
correl

The square root of this quantity is the rough
ro

ation length of the height fluctuations is not very large: 
 

( ) ( ) )exp( 2
1,0, σzzzz

rough qqqRqR −=  - 225    

 
where qz,0 and qz,1 are the wave vector transfers in air and in the material. Conversely 

[Croce et Névot 1976, Névot et Croce 1980, de Boer 1994]: 
 

- 226    ( ) ( ) )exp( 22

0,
σ

zzz
rough qqRqR −=  

 
A similar effect is produced by a flat graded layer in which the electron density is 
represented by an error function of half width σ.  

8.6 Matrix formalism (specular reflectivity)
 

 

When the wave propagates in a heterogeneous medium presenting regions of different 
tron densities, it is not possible to directly use the Fresnel coefficients. The calculation is 

erfo

 matrix form [Abeles 1950, Vidal et Vincent 1994, 
Gibaud 1999]. 

For a single layer (medium 1) of thickness h deposited on a substrate (medium 2), the 
reflection coefficient at the air (medium 0) / layer interface is: 

- 227    

 

elec
p rmed by applying the boundary conditions of the electromagnetic fields at each interface 
[Abeles 1950, Parratt 1954, Born et Wolf 1980]. In the dynamical theory of reflection 
multiple reflections are taken into account at each interface and the reflected and transmitted 
electric fields are usually presented in a

 

hik

hik

Z

z
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err
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with 2,11,0 , rr  the Fresnel coefficients at interfaces 0/1 and 1/2, and 1,zk  the z component 

of the wave vector in medium 1. The r0,1r1,2 factor in the de eviation 

 

nominator expresses d
from unity which comes from multiple reflections in the material. The reflectivity is: 

- 228    
hkcosrrrr
hkcosrrrr
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The existence of cosine terms in the reflectivity clearly indicates that the reflectivity 

does present periodic oscillations in reciprocal space defined as : 
 

π== phqhk ,z,z 22 11  
 

 of constructive interference between the reflected waves 
at interfaces 1 and 2 and their period gives the thickness of the film.  

 

The oscillations are the result

8.7 Born approximation 
 
X-ray reflectivity curves can be analyzed in the framework of kinematical theory, the 

so-called Born approximation, as far as the reflected intensity is small compared to that of the 
ation the reflectivity can be written as [Als Nielsen 

4, Daillant et Bélorgey 1992]: 
 

incident beam. In the first Born approxim
1985, Hamley et Pedersen 199

2

* )(1)(.)( zdqRrrqR zFz ∫
+∞

==
ρ

- 229    dze
dz

zqi

s

z

∞−ρ
 

 
where ( ) ( ) 424 zsezF qrqR ρπ=  is the Fresnel reflectivity of the substrate and ρS its 

s  
In addition, following the Wiener-Kintchine 

theore

electron density. 
The expression - 229 is not rigorous but can be easily handled in analytical calculation

[Reite  1994, Russel 1996, Vignaud et al. 1998]. r
m: 
 

- 230    )]z()z([TF
)q(R

)q(R ''

zF

z ρ⊗ρ=  

 
so that the data inversion gives the autocorrelation function of the first derivative of the 

electron density. 
 
8.8 Electron density profile 
 
For two or more layers deposited on a substrate the analytical expression of the 

reflectivity becomes tedious. The reflectivity curves are showing typical shape with more or 
tings due to interference phenomena. The quantitative analysis 

made via the matrix technique or by inversion of Equation - 229 leads to the determination of 
the electron density profile (EDP) along z using specular reflectivity. The EDP provides all 

less rapid oscillations and bea
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the information about the macroscopic composition of the film in the direction perpendicular 
to its e, incl ral

chnique 
with the Distorted Wave Born Approximation (DWBA) is used to determine the EDP. 

surfac uding the roughness at each interface. The EDP is gene ly not unique due 
the loss of the phase through the media and that only a very good knowledge of the sample 
composition allows the discrimination between different profiles. Similar examples can be 
found in the work of Banerjee et al. [2002], where the comparison of the matrix te

 
8.9 Multilayers reflectivity curves 

 
The reflectivity curve of a multilayer exhibits Bragg peaks separated by Kiessig fringes 

[Stear
ne between Kiessig fringes 

gives the thickness of the film (one should expect N-2 fringes between two Bragg peaks, N 
being the number of repeated bilayers).  

 

ns 1992, Baumbach et Mikulik 1999]. The q distance between two Bragg peaks is 
inversely proportional to the period of the multilayer and the o

8.10 Correction for irradiated area 
 
The fact that the reflectivity can be less than 1 below the critical angle is related to a 

surfac gles, it frequently happens that the sample surface does not 
cross all the beam, so that only part of the incident intensity is reflected. A correction must 
then 

e effect. At very small an

be applied to describe this part of the reflectivity curve, provided a monitored sample 
shape [Gibaud et al. 1993]. 
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9 Combined Structure-Texture-Microstructure-Stress-Phase-Reflectivity 

Analysis 
 

9.1: Problematic 
 
 

Here is a typical actual problem which regroups actual engrossment concerning 
diffra

 

Dilemma 1: This makes indispensable a quantitative texture analysis in order to 
interpret correctly the diffraction diagrams in terms of structure analysis (and this latter can 
deviate considerably from the bulk material). In turns, without an exact knowledge of the 
structure, the quantitative texture determination is for the less delicate to operate ! 

Dilemma 2: The desired anisotropy is often induced by deposition on single crystal 
substrates (e.g. by hetero-epitaxial relationship), which induces residual stresses in the films. 
The diffraction peaks are then shifted relative to their unstressed position, which bias on one 
hand the structural determinations, and on the other hand the QTA analysis since the peak 
positions are changing with the necessary rotations of the sample for texture measurements. It 
is then necessary to analyse the residual stresses in order to know structure and texture. 
However, differently oriented crystallites to not deform the same under the same stress, it 
exists an influence of the texture on residual stresses. 

Dilemma 3: The samples are composed of several layers of different phases (including 
the substrate), which then have to be characterised in terms of structure/texture/stress too. 
Volume and absorption corrections become necessary, which are not operated the same on a 
covered layer, top film, substrate ..., and which bias structural and textural approaches. The 
corrections to be applied for structure and texture analyses depend on the layers thickness and 
absorption coefficients. For instance, a wrong determination of the layer thickness can be 
interpreted as intensity variations coming from atomic position variations and the associated 
peak shifts to residual stresses or/and different cell parameters. This false determination will 
modify pole density corrections and affect the texture solution. However, thickness 
determination is sometimes not easy. For instance ellipsometry may not be applied on films 
opaque to the considered radiation. For thin enough layers with smooth interfaces and surface, 
x-ray reflectivity may be used, if the electron densities are correctly determined. This latter 
depends however on the structure determination ... 

Dilemma 4: In polyphased materials (all or partially crystalline), the quantitative phase 
analysis depends on the texture state of each phase. The quantitative texture analysis is then 
essential, but depends on the previous dilemma.  

Analysis by diffraction/scattering of rays is nowadays more and more confronted with 
a major problem: physical-chemists elaborate samples of growing complexity (thin or massive 
heterostructures, polyphased materials ...) and want to non-destructively know the most 
possible about their sample's characteristics. 

 

ction analysis: 

Someone crystallises a thin perovskite-like ferroelectric film in a pseudo-cubic phase 
(i.e. with a lot of peaks overlaps) in order to provide it optimised properties. The direct 
consequence is that the desired property is indeed increased, but only along specific 
crystalline directions, and it comes out that it is required to give the sample enough 
anisotropy.  
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Dilemma 5: The interpretation of all these methodologies remains furthermore 
depending on the microstructural states, crystallite sizes and shapes (isotropic or anisotropic), 

s, which in turns will be determined correctly if the other parameters are known 
y.  

Dilemma 6: Grinding samples can provide powders in which all these problems due to 
anisotropy are apparently bypassed. If one is allowed (or simply is able, for instance grinding 
thin fil  crush the sample, it may however not resolve the problem, cause 
fter grinding:  

.2: Implementation

crystalline defects (punctual, linear, planar or volumic), composition variations and 
microstrain
satisfactoril

ms is not easy !) to
a

- the residual stresses are removed partially, or at least different;  
- the microstructural state is different; 
- all anisotropy like texture, layering, sizes ... is destroyed. 
 
9  

ng problem description, we see that the characterisation keystone lies in 
the exi

 Figure 19 shows the interdependency of the 

 
n the precediI

stence, desired or not, of crystallite preferred orientations in the material. It needs then 
in fine to implement the determination of all the parameters accessible to diffraction/scattering 
of rays in a global methodology of characterisation, which has progressively taken the name 
of "combined analysis". This approach can be developed with a close collaboration of 
specialists in every domain and modern programming. The MAUD program actually includes 
the following formalisms: 

 
WIMV, spherical harmonics, maximum entropy, components: QTA 
Arbitrary correction of texture 
Rietveld: structure analysis, QPA, QMA 
Warren-Averbach (Fourier): microdistortions and crystallite sizes 
Popa: anisotropic crystallite sizes, stress distribution function 
Le Bail: diffraction peak extraction 
Matrix: specular reflectivity, thicknesses, roughnesses 
DWBA: electronic density profiles 
Sin2Ψ and SDF: residual stresses 
Layering: large thickness 
Size and microstrain distributions 
Warren: Stacking faults 
Microabsorption 
... 
 
Of course, the previous formalisms could be run independently, fixing fitted 

parameters coming from one algorithm to refine another formalism, then fixing these latter to 
refine a second time the former and so on. This would result in a very long, manual, 
procedure.  

It is better to use all these formalisms an an automatic way in one program. They can 
then interplay on each other using one or the other refinement approach (least-squares, genetic 
...). For instance a first Rietveld refinement is operated in a cyclic manner on sets of 
diffraction diagrams measured at different sample orientations, then the extracted intensities 
are entered a QTA cycle, the result of which serving to correct diagrams for the next Rietveld 
cycle ... In between a reflectivity refinement of the thickness may be used to correct the other 
approaches. The operation leads to the determination of the parameters satisfying the best 
solution of the whole ensemble of measurements.
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parameters accessible to diffraction and scattering and the corresponding formalisms for 
refinement. 
 

 
Figur finement procedures 

 
The p to treat as well x-ray (classical, synchrotron, 
monochromatic or energy dispersive, symmetric or asymmetric geometries, 0D, 1D or 2D 
detecto F) data, which is the case of MAUD. 
 
 

 
s methodology requires however a lot of data, then their rapid acquisition using for 

instance m

e 19: Combined algorithm, using least-squares, simulated annealing or genetic re

rograms should give possibility 

rs) as neutron (thermal, TO

9.3. Used experimental set-up 

Thi
ultiple detectors. The first experiment allowing such an approach was developed 

using neutron data at l'ILL [Chateigner et al 1998] on the D20 beamline with a curved 
position sensitive detector. Using x-rays the first experiment of this kind [Cont et al. 2002] 
used a CPS and a 4-circles diffractometer. Since then the methodology has been used for 
different purposes [Lutterotti et al. 2002, Morales et al. 2002, Guilmeau et al. 2003, Lutterotti 
et al. 2004, Morales et al. 2004, Ricote et al. 2004]. 
 The required diffractometer has to be equipped with four circles in order to 
correspond to a texture experiment, i.e. at least one tilt rotation χ, one azimuthal rotation ϕ, an 
incidence circle ω and a detection circle 2θ. One economises one circle (one scanning 
movement) by using a linear detector on the 2θ arm. Another circle and scan can be 
economised using a bidimensional detector. Use of a monochromatic beam is strongly 
recommended for thin films [Wenk 1992] but not only [Chateigner 1994]. 
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 a) 

χ

ϕ

2θ

ω
χ

ϕ

2θ

ω

 b) 

Figure 20: The x-ray diffractometer as set-up at CRISMAT (a) and its schematic 
showing the angle convention (b) 

 

9.4. Instrument calibration 

 
The spectrometer space is multidimensional, each rotation axis possibly giving rise to 

defocusing or misalignment effects. Each of these aberrations have to be calibrated for. Figure 
21 is an illustration of such aberrations measured on a KCl standard powder, using the 
instrument of Figure 20. 

 

 a) 
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 b) 
Figure 21: Illustration of defocusing and misadjustment effects on peak 
shapes and diffractometer resolution function. Measurements on a KCl 
powder. Diagrams appear on top of each other from χ = 0° to χ = 60° by 

 ω = 20° and b) ω = 40°. 

 

 
 Broadening occurs when the incident beam is defocused at the sample surface due to 
its geometrical extent, producing variations in the irradiated area and apparent Bragg angle 
values. The defocusing effects are then depending on the variable angles Figure 22. 
 
9.4.1.1 χ broadening

steps of 5° for a)

Three major effects are visible, peak broadenings, peak shifts and background 
variations. 
 
9.4.1. Peaks broadening 

 

 
When χ increases, the peaks broaden by the so-called defocusing effect. If the total 

integrated intensity is not changed (for a bulk material and enough counting statistics), this 
broadening has to be calibrated for any quantitative microstructure determination. A 
polynomial approach is used to follow the broadening with χ: 

 

- 231    ∆χHWHM = ∆χH = pχu χu

 
with as many pχu parameters as necessary, including them progressively in the refinement 

up to U corresponding to a negligible pχU value. Here ∆χH is the variation in HWHM due to 
the χ rotation. 

 
9.4.1.2. 2θ broadening

∑
=

U

u 0
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For a given diagram measured at ω, peaks are broader at larger 2θ's. This effect is typical 
of flat specimen analyses (it does not occur for instance in transmission geometry using 
neutrons), and is illustrated in Figure 21a. It is corrected by the resolution curve using the 
Cagliotti polynomia. 

 
9.4.1.3. ω broadening 

 
For a given peak at 2θ, the FWHM is smaller at larger ω angles. This effect also is typical 

of flat specimen analyses (Figure 22b). It is corrected similarly to the χ-broadening by a 
polynomial approach: 

 

- 232    ∆ωHWHM = ∆ωH = pωu ωu

 
9.4.1.4. General

∑
=

U

u 0

 broadening 

to adapt this type of corrections to diffractometers with more or other rotation 
 

 In order 
xes, we can then use an equation which depends on the varying angle: 

  ∆rH = pru ru

 
with r the rotation of concerns and with as many p  parameters as necessary, including 

em p

e from misalignments of one or several of the rotation axes. For instance 
on Figure 21a one clearly observes a 2θ peak shift for large χ values, and this shift is not the 
sam

- 234    ∆2θr = 

a
 

∑
=

U

u 0

- 233  

ru
th rogressively in the refinement up to negligible values. 

 
9.4.2. Peak shifts 

 
These effects com

e at two different ω. Depending on the experimental configuration, analytical formulae 
can be produced to fit these misalignments. Similarly to the previous corrections of Equations 
- 233, a polynomial approach can be used: 

 

∑
U

=

p'  ru

 
with p'  the factors to be determined, and ∆2θ  the variation in 2θ peak position due to the 

mis

u 0
ru

ru r

alignment of the rotation r (r = χ, ϕ, 2θ, ω ...). 
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 a) 

 b) 
Figure 22: Origins of the a) 2θ and b) ω broadenings 

 
9.4.3. Background variations 

 
 Furthermore, depending on many factors like sample shape, absorption ..., the 
background B can also vary with th These variations have to be 

 

- 23

e various angles of rotations. 
corrected, which is usually operated through: 

5    ∆rB = ∑
=

with p''ru the factors to be determined. 
 
9.5. Refinement Strategy

U

u 0

p''ru ru
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As for the Rietveld traditional refinement, one should not refine all the parameters at 
once, but chose to resolve the most influencing parameters first. The instrument has to be 
calibrated for its intrinsic aberrations beforehand (Caggliotti function, zero-shift, asymmetry 
...), using the same instrumental parameters (slit sizes ...) and for the corresponding ϕ, χ, ω, 
2θ ... angular ranges as in the previous paragraph. 

Here is the procedure that one can use, which may depend on the problems to solve: 
 

1 basic parameters of the Rietveld refinement: Scale factor + polynomial background + 
variations of the background through χ, ω, 2θ ... angular rotations 

2 Same + basic phase parameters 
3 Same + microstructure parameters 
4 + crystal structure parameters 
5 + texture 
6 + phase fractions (preferably fitted on a sum diagram in which texture effects are 

reduced) 
7 + strains 

 
Of course there is no systematics since a lot of parameters are influencing one another. For 
instance reflectivity may be computed between steps 3 and 4 in order to better appreciate the 
sample thickness used in the rest. 

Since a lot of parameters are refined simultaneously at the end of the procedure, the 
convergence radius of the methodology may be severely reduced. As a general trend the more 
independent experiments have been measured and the more convergence may be reached 
easily. However, when texture exists in the samples, the corresponding diffraction patterns 
exhibit simpler signal than powder patterns, which may be useful particularly for low-
symmetry polyphased materials. In this case the combined approach gives access to better 
reliabilities of the refined parameters. Indeed, textured samples range between powders, in 
which angular relationships between atomic bonds cannot be probed directly using 
diffraction, and ideal single crystals for which these angular values are directly measured 
using four-circle goniometry. As such, texture analysis probes for angular relationships via 
the calculation of the ODF. The OD can then be seen as an object that self-consistently 
depends on the crystal structure, which provides a large number of constraints in the 
refinement, hereby remo  refined parameters and 
nsuring, when enough independent measurements are available, a better convergence of 

.6. Examples

ving parts of the correlation existing between
e
refinement procedures.  
 
9  

 One part of dilemma 5 considers the existence of anisotropic crystallite shapes, in a 
tur ation, e.g. when it is impossible as in random 

powders or when the textured sample as been measured with too few orientations, the 
nisotropic shape of the crystallites can be, at least partially, masked. This will be illustrated 

 single sample orientation

 
9.6.1. Anisotropic crystallite shape, texture, cell parameters and thickness 
 

textured sample. When not using tex e inform

a
in the following. 
 
9.6.1.1 Diffraction pattern from  
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In a sample exhibiting a crystallographic texture, for one measured orientation of the 
sample (one pattern), only some {hk l } planes are preferentially brought to diffraction, while 
the others are not detected. Consequently crystallite sizes may be severely biased since they 
are only estimated from these diffracting planes. Figure 23 illustrates these aspects for a 
sample exhibiting anisotropic crystallite shapes, ellipsoids elongated along the [111] direction 
of a cu e 
sample (Figure 23a), the mean crystallite size as deduced from the 111 line is an average over 
the 1

bic crystal system, e.g. silicon. In the case of crystallites randomly oriented in th

 11  multiplicity. Since for a single crystal of Si, the (111) plane is at 70.53° from (1 1 1)
(11

, 
1 ) and ( 1 11), the mean size along <111> will take a value between the short and long 

axes of the ellipsoid. This reasoning remains valid for any hk  diffraction line, resulting in a 
system y when calculated from a single diagram. For the 
cas f ) planes mostly parallel to the sample surface and [111] 
elongated crystallites perpendicular to it (Figure 23b), the long dimension of the crystallites is 
mo f ines. 

 the long dimension is still underestimated if low ω values are used, because this 
configuration does not ensure to probe the maximum of the distribution of the crystallites 
rientation. Such biased estimations are often encountered in works reporting silicon 

 integral width approach (Balzar et Popovic 1996) used by 
Houben

l
atic lowering of the shape anisotrop

e o  a textured sample having (111

re avoured than the short one, and this latter has to be probed with other hk l  l
However,

o
crystallite size determination using the Scherrer formula, resulting in overestimated sizes with 
underestimate of shape anisotropy (Langford et Louer 1982, Feng et al. 2001, Vallat-Sauvain 
et al. 2000, Kroll et al. 1998). The

 et al. (2003) or even the direct Fourier deconvolution of the signal from the x-ray 
profile gives results closer to the reality but are still however lowering the shape anisotropy. 
 

X-rays

ω

(111)

(111)

a)

<111>

X-rays

ω

(111)

(111)

b) 

Figure 23: Schematics of a film composed of anisotropically shaped crystallites in a randomly oriented (a) and a 
textured (b) sample 

 
.6.1.2 Use of several sa9 mple orientations: combined approach 

To overcome the above-mentioned problems, measurements of the full diffraction 
 to obtain a better 

aterial in a given 

eed 3%, attesting the good ODF refinement. Such reliabilities, if they could 
 the March-Dollase (Dollase 1986, 
 not correspond to a physically 

nderstandable model of the texture in our case, because of the fairly complex ODF of our 
samples, as is seen on the inverse pole figure (Figure 25a).  

 

diagrams for multiple orientations of the sample are needed. This allows one
estimate of the anisotropic shapes, weighted by the volumic ratio of m
orientation. This is achieved by the simultaneous analysis of the anisotropic shape using the 
Popa formalism and the quantitative texture using whichever texture model, here the WIMV 
approach. Figure 24 shows that very satisfactory fits are obtained using this approach on thin 
nanocrystalline Si films, with reliability factors RB, Rw and Rexp around 5% (Table 2). 
Consequently the texture reliability factors RP0 as reported in Table 2 are generally around 
1% and never exc
be achieved by simple texture parameter fits like used in
March 1992) or Lotgering (1959) approaches, would
u
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Figure 24: Selected fitted χ-scans that shows large peaks and the presence of texture in a Si thin film deposited 
on amorphous SiO2 substrate by magnetron sputtering. The insert shows the net intensity variation of the main 

peaks, to better visualise the texture. 

 a) 

[111]

 b)  c) 

 of Figure 24 calculated from the 
d ODF (linear density scale, equal area projection, max = 1.59 m.r.d., min = 0.45 m.r.d.) (a), schematics of 

the refined mean crystallite shape from Table 2 (b) and (c) high resolution TEM image of the Si crystallites. 

Figure 25: Inverse pole figure for the normal direction of the Si thin film
refine

 

 Figure 25b illustrates the mean anisotropic shape as refined using the combined 
analysis. This picture coincides perfectly with high resolution TEM microscopy images 
(Figure 25c) in which elongated single crystals are evidenced. The refined cell parameters are 
obtained within a maximum of 0.0004 Å of standard deviation maximum, without neat 
variations with texture components [Magali et al. 2005]. 

 

 Anisotropic sizes (Å) Texture parameters Reliability factors (%)  

a (Å)   

[111] 

 

[220] 

 

[311] 

maximum 

(m.r.d.) 

minimum 

(m.r.d.) 

F2

(m.r.d2) 

RP0 Rw RB Rexp
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5.4466 (3)  94 (3) 20 (1) 27 (1) 1.95 0.4 1.12 1.72 4.0 3.7 3.5 

5.4439 (2)  101 (3) 20 (1) 22 (1) 1.39 0.79 1.01 0.71 4.9 4.3 4.2 

5.4346 (4)  99 (3) 40 (1) 52 (2) 1.72 0.66 1.05 0.78 4.3 4.0 3.9 

5.4461 (2)  100 (3) 22 (1) 33 (1) 1.57 0.63 1.04 0.90 5.5 4.6 4.5 

5.4462 (2)  98 (3) 20 (1) 25 (1) 1.22 0.82 1.01 0.56 5.0 3.9 4.0 

5.4452 (3)  85 (2) 22 (1) 26 (1) 1.59 0.45 1.05 1.08 4.2 3.5 3.7 

5.4387 (3)  89 (3) 22 (1) 28 (1) 1.84 0.71 1.01 1.57 5.2 4.7 4.2 

5.4434 (2)  88 (3) 22 (1) 24 (1) 2.77 0.50 1.12 2.97 5.0 4.5 4.3 

Table 2: Refined parameters for 8 analysed Si films deposited on various substrates [Morales et al. 2005]. 
Numbers in parentheses are one standard deviations as refined. 

 
Furthermore, the procedure enables to refine the film thickness from the large angle 

part of the data, and since the films thickness are "seen" under various incidences due to the χ 
rotation of the texture scans. Such thicknesses are the ones as probed by x-rays, i.e. if strong 
porosity is present the x-ray thickness appears smaller. This is evidenced on Si 
nanocrystalline thin films deposited on SiO2 substrates (Table 3), for which the porosity has 
been measured by x-ray reflectivity. While profilometry indicates the full geometrical 
t
f
 

Porosity 

hickness of the films, x-ray refinements show smaller thickness values due to porosity in the 
ilms.  

Profilometry 
thickness (nm) 

x-ray thickness 
(nm) (%) 

1350 711 (50) 26(3) 
1470 1360 (80) 13(3) 

Table 3: Thicknesses as measured by profilometry and refined by the combined analysis, compared to the 
porosity as determined by x-ray reflectivity [Morales et al. 2005] on two Si nanocrystalline thin films deposited 

on amorphous SiO2 substrates. 
 
9.6.2. Layering, isotropic shape, microstrains, texture, structure 
 
 re 

al s 
for x-rays are necessary which, depending on the samples, are not all times the theoretical 

 <001> directions 
(dire tions of icular to
and an po s he PCT ickness
as crystallite sizes and microstr ins urs e stru  o e P  f
has to be in t   se re 26) strong s occur in such systems 
between Pt C ak
"conventional" texture analysis using non combined procedures. As a consequence of the spin 

Dilemma 3 points out that for layered systems the different layers thickness a
necessary to correct the data for absorption ... However, for thin heterostructures it is not 

ways possible to measure all the thicknesses, and on the contrary, the effective thicknesse

ones or the ones as determined by profilometry. In such cases the combined approach allows 
for their refinement [Ricote et al. 2003]. We will illustrate this on an as-synthesised spin-
coated sol-gel ferroelectric thin structure consisting of a calcium-modified lead titanate film 
Pb0.76Ca0.24TiO3 (PCT) deposited on a Pt/SiO2/Si-(100) substrate.  
 

In such systems, the texture of the PCT film is desired with
c
c

 the polar axis) perpend
ibly be correlated to t

 the film plane. The Pt elect
texture. The layers th

rode is also textured, 
 are of importance, so s

a for both pha
e (Figu

ses. Of co e th cture f th CT ilm 
vestiga
and P

ed. As
T pe

we can
s. In fact, none of the Pt lines is single, precluding any 

 overlap
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coating elaboration , ture its a f -like c ter, si  o veprocess  the tex  exhib ibre harac with ngle r se ral 
fibre components (Figure 27). 
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Figure 26: Bragg-Brentano diagram of a PCT/Pt/SiO2/(100)-Si thin 
structure. Notice the strong overlap between Pt and PCT peaks 
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Figure 27: {111}-PCT pole figure recalculated from the 
OD of a PCT/Pt/SiO2/(100)-Si thin structure which shows 
the fibre-type character of the texture. Equal area 
projection, logarithmic density scale 

 
 As one can see (Figure 28) the refinement of such a sample gives rise to satisfactory 
reliability factors with Rwp and RB of 5% and 6% for the texture refinement using the E-
WIMV model, and Rwp and RB factors of 13% and 12% for the Rietveld refinem
re vely. In this case, the E-WIMV model results in a better refinement because mainly of 
the strong texture of Pt [Morales et al. 2002]. The texture of the Pt electrode is very strong 
and characterised by <111> directions perpendicular to the film plane (Figure 29 left) as the 
only component. For the PCT film the texture is multicomponent with major components 
being with <100> and <111> directions perpendicular to the film surface (Figure 29, right). 
This orientation is detrimental for practical applications of the polarisation direction, since 
<001> is mainly located in the film plane. The 15% of random c-axes provides however 
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some, thought moderate, polarisation properties. While the Pt layer appears perfectly 
crystallised with crystallite sizes extending along the whole layer's thickness and small 
microstrain values, the PCT layer exhibits approximately twice as microstrains and 
consequently smaller crystallite sizes around 390 Å (Table 4). All parameters are refined with 
satisfactory standard deviations, including the z position of titanium and oxygen atoms.  
 

 
Figure 28: 2θ diagram χ-scans of one film, showing the good agreement between experimental (points) 
and refined (lines) spectra. Bottom diagram is measured at χ = 0°, top diagram at χ = 40°, by steps of 5° 
up. 

 
Figure 29: {111} and {200} recalculated pole figures for the Pt electrode layer (left, max. density is 10 m.r.d., 
min density is 0 m.r.d.) and {001}, {100}, {101}, {110} and {111} for the PCT film right, max. density is 2.1 

m.r.d., m ojections. 

 
Layer 

(Å) 
µ-strain 

(rms) 

 (
in density is 0.15 m.r.d.). Linear density scales, equal area pr

Cell parameters 
(Å) 

Thickness 
(Å) 

Crystallite size 

Pt 3.9108(1) 457(3) 458(3) 0.0032(1) 
PCT a = 3.9156(1) 

c = 4.0497(6) 
2525(13) 390(7) 0.0067(1) 

 
PCT structure Occupancy x Y z 

Pb 0.76 0 0 0 
Ca 0.24 0 0 0 
Ti 1 0.5 0.5 0.477(2) 
O1 1 0.5 0.5 0.060(2) 
O2 1 0 0.5 0.631(1) 

Table 4: Layer and structural characteristics of the sample of Figure 28. 
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9.6.3. Phase and texture 
 
9.6.3.1. Texture removal 
 

Preferred orientation is a sample characteristic that can be desired or not. In both cases  
if the sample can be destroyed, mechanical grinding of the sample can provide an untextured 
sample. If destruction is prohibited, or if specific characteristics linked to texture would be 
removed by the grinding process, one can decide either to rotate the sample during 
measurements in order to suppress textural effects, or to physically interpret this texture and 
to take it into account using a combined refinement. 
 However, texture removal using sample rotations is always a risky procedure without 
knowing the texture itself: it may happen that the rotation axis corresponds to a specific 
texture axis, e.g. the fibre axis of an axially symmetric texture. This will be illustrated for 
several samples in the following. 
 
9.6.3.2. Crystalline multiphase textured compounds 
 

9.6.3.2.1. Top-seeded MTG grown YBa2Cu3O7-δ / Y2BaCuO5 ensembles 
 
 In such systems the superconducting YBa2Cu3O7-δ phase (Y123) exhibits critical current 
densities (Jc) favoured in the (a,b) plane of the orthorhombic (Pmmm space group) structure, 
with approximately ten times more conductivities along (a,b) than along c. A strong texture is 
then necessary in order to benefit of optimised properties, particularly since texture 
developm  
The e 
peritectic form
acts as flux pinning centres for the enhancement of critical current densities. Many techniques 
have been developed for the elaboration of textured bulks of this system. The Melt Textured 
Growth (MTG) technique [Jin et al. 1989] first appeared as very promising in obtaining large 
Jc values. Alignment under a high magnetic field H also promotes c-axes alignment with c // 
H, due to paramagnetic susceptibility anisotropy of the crystals [de Rango et al. 1991]. A lot 
of different techn
p  
single dom  

ured Growth (TSMTG) technique, consisting in promoting 
xture using epita nship the growing Y123 and a YBa2Cu3O7-

δ  (Sm123) cr eed [C 2 e is not (or 
very slightly) textured. 

Nevertheless, for such large samples, nation as-synthesised insulating 
YBa2Cu3O6 phase to the superconducting Y123 meets with two difficulties. On one hand 

acroscopic crack  diminishes the mechanical behaviour of the 
sample. On d, t tion pro
bulk core, becom problematic and gives rise unreasonab  treatment ti e authors 
[Noudem et al. 2003, Guilmeau et al. 2003] proposed to bypass this problem using infiltration 
techniques on polyurthane foam r artificiall tterned h  prior to oxygenation (Figure 
30), respectively. Such samples  very hard study usin rays bec their irregular 
geometry, but ne the phases into 
onsideration. Figure 31a shows the 1368 neutron 2θ-diagrams measured in as many foam-

ple orientations using the D1B line of ILL, in order to carry out combined analysis, while 

ent also strongly reduces weal links for the transport currents [Dimos et al. 1988].
 insulating Y2BaCuO5 (Y211) phase (Pnma space group) either precipitates at th

ation of Y123 or/and is added in the process as fine particles. This latter phase 

iques successfully achieved orientation development by combining MTG 
rocesses with thermal gradients, magnetic fields, quenching ... However, growing large

ains of the Y123 phase at a several 10 cm3 scale could only be operated using the
so-called Top-Seeding Melt Text
te  hetero

ystal s
xial like relatio

ardw
 between 

ell 1998]. In this elaboration process the Y 11 phas

the oxyge of the 

m  formation occurs,
 the other han

 that strong
he oxygena

ly
cess, lying on solid state diffusion through the 

es to le mes. Som

s o y pa oles
are to g x- ause of 

utrons are not too much sensitive to such irregularities for 
c
sam
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Figure 31b illustrates the sum of all these diagrams with the associated fit using an arbitrary 
xture model. As an evidence, although the structures of the two phases are known, the 

nough to reproduce correctly the experiments. The two rotations χ 
ϕ involved in the 1368 measurements were not enough alone to eliminate texture effects. 

te
texture correction is not e
and 
In this case, this comes from the presence of a very strong texture in Y123 (visible as strong 
Y123 peak in Figure 31a) while no texture is present for the Y211 phase, leading to a 
comparatively insufficient probe of the Y123 phase. However this summation approach 
allows the refinement of the cell parameters and crystallite sizes for the two phases (Table 5), 
and a rough estimate of the phase volume fractions. The cell parameters are in good 
agreement with the abundant literature. A calcite sample with large crystallites and without 
eformd ation was used as a standard to estimate isotropic crystallite sizes. The instrumental 

resolution provides with estimates of these sizes, with relatively large standard deviations in 
this size range. 
 

 
Figure 30: Top surface of a Y123 single domain, before perforation with the Sm123 seed in the 
middle (left) and after perforation (middle). Squares are 1 cm. A seeded Y123 / Y211 ensemble grown 
on a polyurethane foam. 

 

a) 
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b) 

Figure 31: The 1368 neutron 2θ-diagrams measured on the foam sample of Figure 30 a) and Rietveld 
refinement of their sum b), allowing phase, particle size and cell parameters quantitative determinations. 
R

 
 sis using the E-WIMV model provides the full QTA of the Y123 

hase (Figure 32). While the foam exhibits several single domains, due to the initial complex 
spacial structure of the polyurethane foam, the perforated sample only shows one single 
domain that extends throughout the sample volume, and correspondingly approximately 15 
times larger maximum orientation densities (if one excepts small poles around 5 m.r.d. 
compared to the 128 m.r.d. at maximum). 
 

 a (Å) b (Å) c (Å) V (Å3) Crystallite size 
(nm) 

eliability factors: Rw = 5.43 %, RB = 19.71 %, used wavelength: 2.53 Å. 

The texture analy
p

Y123 3.8128(6) 3.8803(9) 11.662(4) 46(1) 136(32) 
Y211 12.158(4) 5.645(2) 7.117(3) 54(2) 139(43) 

Table 5: Cell parameters and volume fractions of the Y211 and Y123 phases of the foam sample 
as refined for the summed diagram of Figure 31. Parentheses are one standard deviation. 

 

a) 
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a) b) 

Figure 32: {003}-Y123 and {010}-Y123 recalculated pole figures of the perforated 
sample a) and of the foam b) samples of Figure 30. Linear density scales, equal area 
projections. 

 
 The superconducting properties of the perforated samples are in general not affected 
by the drilling process. This is for instance the case of Jc versus H curves and normalised 
trapped field maps (Figure 33). Similar values of the trapped field are observed, and even 
slightly larger Jc's are obtained for the drilled samples with a tendancy to accept larger 
applied magnetic fields, due to better oxygenation in the bulk of the material [Noudem et al. 
2004, Noudem et al. 2004a]. 
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Figure 33: Jc(B) curves at 77 K for the plain a) and drilled b) samples, and corresponding normalised trapped 
magnetic field maps field cooled in 0.4 T at 77 K c) and d) respectively. 
 

9.6.3.2.2. Sinter-Forged Bi2223 / Bi2212 samples 
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 Sinter-forging methods are effective for obtaining bulk ceramics of 
(Bi,Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor with a grain oriented texture. As in the 
previous example on Y123, the crystal structure of Bi2223 (and its related Bi2212) is strongly 
anisotropic and gives rise to strongly larger critical current densities along the (a,b) planes of 
the structure. High texture strengths and critical current densities around 10000 A/cm2 at 77K 
in self magnetic field have been obtained [Tampieri et al. 1997]. However, in various papers 
published on this subject, similar optimised transport properties for Bi2223 are reported. The 
composition of the starting powder is probably the main cause of such saturation, as sinter-
forging techniques generally used starting pellets composed of highly pure Bi2223 powder. 
Thus, the ty nditions 
to allow w d phase to 
allow suffic trol and 

of the Bi2223 phase content. 

4a). However, the characteristics of the best samples are still not 
ptimised. The Bi2223 phase content is relatively low and must be increased in order to 

improve the critical current density, which may be accomplished by using different starting 
powder compositions and grain size distributions in order to increase powder reactivity, i.e. 
the Bi2223 phase formation kinetic. 

We show here how the combined approach helps investigating the influence of starting 
precursor powders on the transport properties and texture quality of samples prepared by the 
sinter-forging method.  

 

pical sinter-forging process requires precise control of the experimental co
eak partial fusion of the Bi2223 phase, which produces enough liqui
ient grain rotation and sliding. This weak decomposition is difficult to con

generally leads to a decrease 
An alternative route for the synthesis of highly textured Bi2223 discs was recently reported 
[Guilmeau et al. 2002]. Instead of starting with a pure Bi2223 powder, the alternative 
proposes the use of calcined powders composed of (Bi,Pb)2Sr2Ca1Cu2O8+x (Bi2212) and 
secondary phases such as Ca2PbO4, CaCuO3 or CuO [Shi et al. 1989, Uzumaki et al. 1989, 
Chen et al. 1991, Wang et al. 1993], in solid or liquid states, as starting components. As a 
result, the plate-like grains grow and reorient more easily because of the large amount of 
iquid in the powder (Figure 3l

o

 a)  b) 
Figure 34: SEM image of a Bi2223 aligned platelet microstructure resulting from the sinter-
forging process under uniaxial pressure. Pressure and mean c-axis directions are vertical (a). 
Corresponding {119} pole figure showing the axially symmetric texture. Pressure and mean c-axis 
directions are perpendicular to the pole figure plane, logarithmic density scale, equal a
projection (b). 

∞ axis 
f sym les is observed (Figure 34b). Then 

only ti rated on the LaB6 standard, 
as operated in order to check for volume fractions of Bi2223 and Bi2212 phases, isotropic 

crystallite sizes, cell parameters and textures of the two phases.  

rea 

 
As expected for uniaxially deformed materials without subsequent growth, a C

o metry aligned with the pressure axis on the samp
lt χ-scans were performed. The combined analysis, calib

w
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Neutron investigations clearly show the strong texture achievement in the sinter-
forged samples (Figure 35a). They also evidence the presence of the (Sr,Ca)14Cu24O41 (14:24) 
residual phase. On these diagrams, the strong overlaps between the peaks of the two main 
phases is neatly visible. The fit of the diagrams (Figure 35b) gives reasonable results, with 
low reliability factors (Table 6) for the Rietveld as well as for the texture fit. 
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Figure 35: Neutron χ-scans from the D1B-ILL beamline. Note the strong 

with a small component for 

decrease of 00l line in the lower χ range, and the strong increase of hk0 lines in 
the higher χ range (a). c-scans fit using the combined approach (b). 

 
The full representation of the OD is, in the case of fibre textures, represented by the 

inverse pole figures (Figure 36) calculated for the fibre direction. We can see a major 
component with {001} planes perpendicular to the fibre axis, 

daniel chateigner Page 109 13/07/2006 



Combined Analysis 

(10l) a

ement of bulk 
erformances, i.e. Jc, is closely related to an increase of the OD maximum, the Bi2223 phase 

fraction and the mean crystallite size. The circulation of the current is not only eased by a 
better alignment of grains and a larger fraction of Bi2223 but also by a larger crystallite size 
which limits consequently the number of grain boundaries, i.e. current barriers in the material. 
We can also note that, for 20h and 50h dwell times, the textures of Bi2212 and Bi2223 are 
intimately linked indicating the strong growing interaction between these phases (Figure 37). 
It should be noted here, that a nucleation-growth mechanism between Bi2212 and Bi2223 
phases, even for long dwell time, has been established in previous works [Guilmeau et al. 
2003].  

 

nd (hk0) planes, probably related to the overlapping problems for low χ positions 
(Figure 35b). Nevertheless, these graphs confirm the development of the (00l) texture and 
highlights the increase of the texture strength for larger sinter-forging dwell-time. 

Transport critical current densities (Table 6, Figure 37) exhibit a clear correlation with 
he refined parameters and the sinter-forging dwell-time. The improvt

p

 001 

010 100 

24.4 m.r.d 25.2 m.r.d 20.7 m.r.d 27.2 m.r.d 

1 m.r.d 1 m.r.d 1 m.r.d 1 m.r.d 

1 min 1 min 1 min 1 min 

a) b) c) d) 

 
Figure 36: Inverse pole figures of the Bi2223 phase calculated for the direction of the applied pressure 
(fibre axis of the texture). Samples textured during (a) 20h, (b) 50h, (c) 100h and (d) 150h. Logarithmic 
density scale, equal area projection. 

 
Orientation 

Distribution Max 
(m.r.d.) 

Sinter-
forging 

dwell time 
(h) Bi2212 Bi2223 

Bi2223 
(%) 

Crystallite 
size 

Bi2223 
[nm] 

RB
(%) 

Rw 
(%) 

RP0
(%) 

RP1
(%) 

Jc 
(A/cm2) 

20 21.8 20.7 59.9(1.3) 205(7) 7.56 11.1 17.74 10.56 12500 

50 24.1 24.4 72.9(2.9) 273(10) 7.54 11.37 17.05 11.04 15000 

100 31.5 25.2 84.4(4.6) 303(10) 5.4 8.04 13.54 9.31 19000 

150 65.4 27.2 87.0(4.1) 383(13) 6.13 9.12 16.24 12.25 20000 

Table 6: Refined parameters extracted from Rietveld/WIMV combined analysis and reliability factors 
obtained from different sinter-forging time samples. Transport critical current densities, measured on each 
sample, are also reported. 
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Figure 37: Correlation between FWHD, applied unidirectional 
stress σ and transport Jc in Bi2223 sinter forged samples. Points for 
the same σ correspond to identical measurements on various points 
of the same sample 

 
9.6.3.3. Amorphous-Crystalline multiphase textured compounds 
 

Nuclear waste storage over geological periods is one of the main problems that have to 
be  
stu  
im atrices, the apatites are considered since their structure 
allow the incorporation of many elements such as I, Cs and/or trivalent actinides [Erning et al. 
1995, Beauvy et al. 1998, Weber et al. 1998, Wang et al. 2000, Konings et al. 2002]. Apatite 
is t eri ily of cal hates with formula Me10(XO4)6Y2 which 
cr n the nal P ace , w Me ++, , P su or 
substitution by (Na+, Rb+ +) or (Al3+, La3 tion hile the X 4 rou 4 , 
VO4

3-) suitable for substitution by 

 addressed by the nuclear industry. The synthesis of new specific storage matrices and the
dy of their sensitivity to irradiation (γ-rays, α particles, fission fragments) is of prior
portance. Among the potential m

he gen
ystallise i

c name of a fam cium phosp
grou hexago 63/m sp  p

 N 3+, 
ith (Ca Ba++ b++) ita  f

p (PO 3-
ble

, Cs d +) ca s, w O  g
SiO4

4− , GeO4
4−

 or SO4
2 − , CO3

2− ,  groups. The charge 
is bal ed by ova nio uch - Cl-, -  Th atit cture is built up of a 
frame of groups giving rise to two types of tunnels. The first tunnel type is made of 
Me(I) atoms w  Me ons f s the tur ou by yge s, 
whereas the second tunnel type is formed of 6 Me(II) cations in the 6h sites surrounded by 6 
oxygen atoms and 1 Y atom. 
The flexibility of the apatite structure versus substitution explains why the silicate substituted 
apati lso k n as hol  be to s iod ce an
actinides. Apatites also exhibit a high chemical stability in slightly alkaline water medium and 
a  
w  
h isation dose. The most common apatites are the fluor- and hydroxy-
patites of respective formula Ca10(PO4)6F2 (FAp) and Ca10(PO4)6(OH)2 (HAp). Furthermore, 

the most interesting property of FAp is its relatively low recrystallisation temperature, which 
induces a quasi-total damage recovering under thermal activation associated to the irradiation 
itself. 
Nuclear wastes are mainly composed of actinides produced by nuclear transmutation inside 
reactors (Np, Pu, Am, Cu) and by fission products  (Sr, I, Gd, Cs) resulting from the 235U 
fission. After their production, most of these radionuclides transform spontaneously following 

HPO4
2−

anc  mon lent a ns, Y, s  as F , OH . e ap e stru
XO4

3−
 
ith 4  cati  in the 4 ites of struc e surr nded  9 ox n atom

tes a now  brit ites, can  used tore ine, sium d minor trivalent 

re stable against radioactive excitations: some natural apatites found in In-Ouzzal (Algeria)
ere found crystallised (non metamict) despite their irradiation to a fluence two to three times
igher than the amorph

a
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a complex scheme of spontaneous desintegrations characterized by the emission of α 
particles. In this way, the damage is mainly due to cascades of nuclear collisions created by 
emitting nuclei recoil [Ouchani et al. 1997, Soulet et al. 1997, Weber et al. 1997]. 
Spontaneous fission, which occurs only for a few elements (Np, U, Pu), is less probable but 
results in the production of highly energetic ions (up to 100 MeV). Thus, during long time 
storage of nuclear wastes, the matrices can be damaged either by α particles and heavy atoms 
in the nuclear collision regime or by energetic lighter atoms produced by the fission process in 
the electronic energy loss regime. 

Damage induced by fission fragments can be simulated on fluorapatites ceramics 
irradiated by heavy ion irradiations (Kr, I). Samples irradiated with 70 MeV 87Kr ions (T = 
10°C) delivered by the IRRSUD beamline of the GANIL facility (Caen, France) and with 120 
MeV Iodine (T = 298°C) using the Vivitron facility (Strasbourg, France), at fluences ranging 
from 1011 to 5.1013 ions cm-2 have been analysed.  

Irradiation-induced damages are located up to a depth of approximately 10 µm from 
the incoming surface, and x-rays can be used to probe the amorphised volume fraction of 
material. The use ous acquisition 
times, and an in ar-surface of the 
sintered pellets. U om the first 9 µm 
f the sample, which corresponds to the estimated perturbed thickness. However, because of 

inimise texture 
around their normal during 

cquisition, but the texture could not be fully removed. In order to quantitatively determine 
the am

 of a 1D or 2D detector is then mandatory to avoid tremen
cidence angle ω = 5° is necessary to probe only the ne
nder this condition, 97% of the diffracted signal comes fr

d

o
recrystallisation, planar textures are observed in these pellets. In order to m
effects on the diffraction patterns, the samples were rotated 
a

orphized volumic fraction of the perturbed layer, an arbitrary texture model was 
introduced for the crystallised fraction. The amorphous phase was modelled using an 
expended fluorapatite structure with very small crystal sizes, typically of 40Å or smaller. 
Counting times around 24 h were necessary to detect amorphous fractions below 5% in 
volume. 

 

 a)  b) 

Figure 38: TEM micrograph of a fluoroapatite crystal irradiated by 70 MeV Kr ions with a fluence of 9.5 
1010 Kr.cm-2 (a) and x-ray diagram of a virgin sample showing the presence of texture (b). The diagram has 
been measured during sample rotation around its normal. 

 
As an example, a TEM image (Figure 38a) of a fluorapatite microcrystal taken with 

the electron beam parallel to the ion beam, shows the presence of latent tracks after Kr 
irradiation. The typical X-ray diagram of a virgin sample exhibits reinforced {hkl} reflections 
but low {00l}s, as a sign of existence of a planar texture with c-axes of the hexagonal 
structure preferentially aligned parallel to the sample plane, with no preferred direction in this 
plane (Figure 38b). The texture is relatively smooth and all the peaks still appear in the 
diagram, even those corresponding to the c-axes, giving rise to an overall bad modelling, and 
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systematic deviations of the background at large θ values. This texture has to be corrected for 
in the Rietveld approach in order to carry out the best quantitative results, and particularly to 
determine volume fractions of the amorphous and crystalline phases.  

 

a) 

b) 
Figure 39: Same diagram as in Figure 38a with the application of an arbitrary 
texture correction model (a), and 1013 Kr.cm-2 irradiated sample with 85 % of 
amorphous phase (b) 

 
Figure 39a illustrates a fit with texture an arbitrary texture correction model for the 

virgin sample of Figure 39b. The experimental points are neatly better reproduced with the 
texture correction, which decreases the reliability factors from Rw and RB = 21 % and 20 % 
respectively to the ones of Table 7 (first row). The described texture corresponds to SEM 
observations showing needle-like es with the needle axes aligned parallel to 

y 
fraction of disordered matter remains smaller 

than 5%. However, no satisfactory cell parameters could be refined because of peak shifts, 
probab

 grain shap the 
sample plane.  

For Kr irradiation, at the lowest fluence (1011 Kr.cm-2), no drastic change in the X-ra
diagrams could be observed indicating that the 

ly due to the presence of residual strains in the powder that were not measured using 
such scans. At such fluences elastic deformation is likely to exist which are difficult to take 
into account in the fit. Conversely (Figure 39b), for fluences ranging from 1012 to 5.1013 
Kr.cm-2, diffractograms exhibit clearly a broad contribution centred on the most intense peaks 
of diffraction and corresponding to a growing fraction of disordered matter (Table 7). This 
broad peak is shifting continuously towards low 2θ angles with increasing fluences, reaching 
2θ = 30° for 5.1013 Kr.cm-2. No change in the mean crystallite sizes accompanies the 
irradiation, indicating that the non-amorphous part of the ceramic remains undistorted except 
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for its volume. Indeed, no microstrains could be detected in the samples. As expected the 
increase in intensity of the broad peak is coupled to an overall decrease in the intensities of 
the diffraction peaks. 
 

Fluence 
(ions.cm-2) 

Vc/V 
(%) 

A 
(Å) 

C 
(Å) 

<t> 
(nm) 

∆a/a0 
(%) 

∆c/c0 
(%) 

Rw
(%) 

RB
(%) 

0 100 9.3365(3) 6,8560(5) 294(22) - - 14.6 9.1 
Kr 

1011 100 - - - - -   
1012 100 - - - - -   

5.1012 49(1) 9.3775(9) 6,8912(8) 294(20) 0.44 0.53 24 15 
1013 20(1) 9.4236(5) 6,9105(5) 291(20) 0.94 0.82 9.9 6 

5.1013 14(1) 9.3160(4) 6,8402(5) 294(22) -0.21 -0.22 10.5 5.9 
I 

1011 - - - - - -   
5.1011 86(2) 9.3603(3) 6.8790(5) 90(10) 0.26 0.35 23.9 15.1 
1012 - - - - - -   

3.1012 47(2) 9.3645(3) 6.8840(5) 91(6) 0.30 0.42 13.3 9 
5.1012 29.2(5) 9.3765(5) 6.8881(6) 77(11) 0.44 0.48 10.4 7.3 
1013 13.2(2) 9.3719(4) 6.8857(6) 82(9) 0.38 0.45 6.7 4.9 

Table 7: Fitted parameters for the different samples irradiated under Kr and I ions with various fluences. 
Parentheses are one standard deviations. 

 

a) 

b) 

Figure 40: Rietveld refinements of (a) the least (5.1011 I.cm-2) and (b) most (1013 
I.cm-2) I-irradiated samples, with arbitrary texture correction. 

 
Iodine-irradiated samples (Figure 40) also exhibit an increase in amorphous phase 

with fluence, but starting at lower fluences (as soon as 5.1011 I.cm-2) and with a different 
evolution. It is then expected a different behaviour to I-irradiation damaging. Interestingly the 
peak broadening is larger than for Kr-irradiation, mean isotropic crystallite sizes being around 
2 times smaller. The iodine induced process creates more crystalline perturbation. Looking at 
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small angles for low fluence (Figure 40a), one can see some discrepancies in peaks positions 
with the actually refined parameters. This may also be the sign of residual strains present in a 
partially elastically deformed material, with the simultaneous presence of plastic zones 
orresponding to the amorphous volume.  

ing to us ele on micro opy obse ons [ t rald 92], latent 
tr ake elec ergy  re , must present an 
amorphous core which will account for the amor n of  fluo atite ugh their 
overlapping. Whatever the ion used for irradi orphous volume 
with fluence is observed. However, the results of the simulations sho  a clear difference 
betw ncident upo e enc p de e i  crystalline phase 
amo  observ we a r.cm e 7) ve , up crea n 
iodine fluence, the decrease in crystalline phase a s larger than for Kr-irradiation but 
exhibits a smoother evolution. 

ter a str cre  ith tion, e st d  the -
cell parameters of the crystalline phase are approxima ly coming back to their starting, non-
irra  values lta w obse ny si can nge he m n 
crys e size fo ad e in a us p fra is t ssoc d 
to the ell expans n up to lue f ich the w  m stra  

axed for 5.1013 cm-2 in the case of the Kr irradiation. Such a 
process alone would tend to a progressive complete amorphisation of the material with 
decreasing crystallite sizes due to damages. However this is not observed, and the amorphised 
fraction gets saturated around 85% of the material. This is a good indication that another 
phenomenon competes with the amorphisation process. Heat exchanges are probably large 
during irradiation, which may promote recrystallisation and at least would explain the 
conservation of the mean crystallite sizes. 

 

c
Ow

acks formed in the w
previo ctr sc rvati Paul e Fitzge  19

 o  ions in thf Kr e t n
phisatio
ron e  loss gime

the rap  thro
ation, a strong increase in am

w
een i  ions: n increas  in Kr flu e, a stee creas n the
unt i s ed bet en 5.1012 nd 1013 K -2 (Tabl . Con rsely on in se i

mount i

Af ong in ase of the unit-cell w irradia  for th highe oses,  unit
te

diated
t

. Simu neously, e do not rve a gnifi t cha  in t ea
allit
 unit-c

r Kr-irr
io

iation. Th
 a va

 increase 
or wh

m oorph
hole

hase 
aterial re

ction 
laxes in

h aen 
to un

iate
ined

crystalline and amorphous phases. The elastic deformation increase of the crystalline phase up 
to the 1013 cm-2 fluence is fully rel

a) b) 

Figure 41: Damaged fraction as revealed by x-ray analyses for Kr- (a) 
and I-irradiated samples (b).  

 
Variations of the damaged fraction (Figure 41) in the material can be identi  to the 

amorphous frac
 

- 236 

fied
tion Fd: 

   Fd = 1 – Fc 

 
The damaged fraction for I-irradiated fluorapatite sinters can be fitted properly using a 

so-called single-impact model, with the classical Poisson’s relation: 
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- 237    Fd = B[1 – exp(-AΦt)] 

    A = -πr2

 
where the cross section for amorphisation, A, allows the dtermination of the radius, r, 

of the ion tracks, and B is a maximum value of amorphisation characteristic of fluoroapatite. 
A second order relation, or double-impact model: 

 

- 238    Fd = B[1 – (1 + AΦt ) exp(-AΦt)] 

 
has to be used in the case of Kr irradiated samples [Miro et al. 2004, Table 8]. 

Consequently the amorphous track core radius are found to be somewhat larger after Kr 
double impact than after iodine single impact (Table 8). Also in both cases, B values, which 
correspond to the maximum amorphous fraction that can be obtained in fluorapatite for a 
given electronic energy loss, increase from Kr ( ≈ 85% ) to iodine ( ≈ 92% ) irradiation in 
agreement with the increase of the electronic stopping power. The fact that a complete 
amorphisation of fluorapatite cannot be obtained even for high fluences, confirms the defects 
autohealing behaviour of this material already quoted by Soulet et al. [1997] upon α 
irradiation. 

 
Krypton Iodine  

Single 
impact 

Double 
impact 

Single 
impact 

A (cm2) 1.85 10-13 4.1 10-13 3.3.10-13

r (nm) 2.4 3.6 3.2 

B 0.87 0.85 0.92 

χ2 0.013 0.0006 0.0004 

Table 8: Radiation dammage fit results of Figure 41. 

 
Table 7 also reveals an expansion of the cell parameters upon increase in the Kr 

fluence up to 1013 cm-2 . Above this fluence, for 5.1013 cm-2, the cell parameters show a 
decrease and tend to recover the initial value. The latter result may be due to a partial 
annealing of defects above a fluence of 1013 cm  
damage around 85% of a e defects 
results in a relaxation ecover the 
initial apatitic structur dine irradiation, the same behaviour of the 
crystalline fraction Fc parameters can be observed although less pronounced than for Kr-

d above: a single iodine impact allows creation of an amorphous core 
in laten pact is necessary to amorphise the fluorapatite giving 

s of damage mainly built of stressed zones. 
 
9.6.4. Texture of modulated structu

ent, due to the 
appearance of satellite peaks. Their complete analysis needs to take account of such satellites 

-2, annealing which induces saturation of the
morphous phase for Kr-irradiation. The annealing of som

 of stress on the remaining crystallized zones which thus r
al parameters. For io

irradiation. This can be related to the difference in the damage creation mechanism between I 
and Kr irradiations quote

t tracks whereas a double Kr im
rise, after a single impact, to large domain

res 
 

odulated structures represent another difficulty for the spectra treatmM

daniel chateigner Page 116 13/07/2006 



Combined Analysis 

in a physically understandable way, which is at the present time only available in some 
??]. The formalism used necessitates the description of 

on space called super-space. However, in a first 
approx

integration of peaks (as used in classical 
texture analysis), since they further enhance the peaks overlapping. 

9.6.4.1. Ca

Rietveld-based programs, like Jana [??
the structure in a higher dimensi

imation, these structures can be represented in a supercell taking account of at least 
part of the modulations. Doing so, one can use any other program, and in particular programs 
that can work out the combined approach, as we will illustrate here. 

enerally, satellites also preclude direct G

 
3Co4O9 ceramics 

 group, with b ∼ 8b1 ∼ 13b2 and a resulting unit cell of a = 4.8309 Å, b = 36.4902 
Å, c = 10.8353 Å and β = 98.1317° (Figure 42), with 174 atoms per unit-cell. 
 

 
The thermoelectric modulated Ca3Co4O9 (Co349) phase [Li et al. 1999], commonly 

formulated [Ca2CoO3][CoO2]1.62, ranges in the misfit aperiodic structures. A rigorous 
description of this phase was notably given from a 4D structure refinement of three polytype 
phases by Lambert et al. [2001]. From these results, a structural model was built concerning 
the main phase characterised by the previously reported cell parameters. This model was then 
confirmed using powder neutron diffraction data [Grebille et al. 2004] and the corresponding 
structural parameters were used to reconstruct a commensurate supercell approximant in the 
P21/m space

 

Figure 42: Used supercell approximant for the Co349 structure. 

 
 In such a structure the electrical conductivity in the (a,b) planes (σab) is larger than 
along the c axes, which consequently enhances the thermoelectric Power Factor along (a,b) 
(PFab) compared to the one along c. It is then of importance to induce preferred orientations in 
such a manner that all (a,b) planes are parallel to each other in the ceramic. This can be 
operated using different ways. Under large magnetic fields, provided the unit-cell exhibits 
anisotropic paramagnetic susceptibilities (χab and χc respectively along (a,b) planes and along 
the c axis) or that the crystallites are anisotropic in shape, the c axes will tend to align parallel 
r perpendicular to the field direction (depending on the ratio χab/χc and on the crystallite 

 anisotropically shaped crystals will tend to align with 
eir larger dimensions perpendicular to the UP direction. For the Co349 phase, χab/χc < 1, 

c t

o
shapes). Using Uniaxial Pressures (UP),
th
and ends to orient with the field axis, while crystallites grow as platelets perpendicular to c, 
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which allow UP's to force c axes to align with the pressure direction. It is then possible to use 
both UP and magnetic fields to obtain large orientation degrees in this phase. 

A magnetically c-axis aligned sample has been prepared by a slip-casting process 
using fine Co349 powder with average size of ~3µm in diameter. The Co349 fine powder 
obtained through a ball-milling process was mixed with solvent (water) and dispersant 
(polycarboxylic ammonium) to form a slurry. The slurry was cast into a cylindrical die under 
a magn

r 2h and 400°C for 3h in 
order to remove the solvent and dispersant completely. The resulting specimen was then hot-

under uniaxial pressure with pressure and magnetic field axes 
aligned parallel. The final dimensions of the sample are 25×15×4 mm3. 

etic field of 3T applied parallel to the cylinder axis. The slip-casted pellet was pressed 
in a cold isostatic condition at 392MPa and then heated at 200°C fo

forged (880°C/20h/16MPa) 

The samples were measured on the D1B neutron line of the Institut Laüe Langevin, 
using a monochromatised wavelength of 2.523 Å. The χ angle scans for the observed fibre 
textures were operated from χ = 0 to 90° (step 5°) using a fixed incidence angle ω of 20.6° 
({003} Bragg position), and measuring times around 20 mn per sample orientation. 
  
 

      Supercell 

χ=0° 

∆χ=5° 

 
igure 43: Experimental (dots) and calculated (lines) diagrams for the whole set of χ-scan measurements of a 

χ=90°

F
uniaxial stress and magnetically aligned Co349 ceramic 

 
A reasonable reliability is obtained after refinement (Figure 43), with reliability factors 

of 19.7%, 12.4%, 11.9% and 8.3% respectively for RP0, RP1, Rw and RB. The {003}, {-183} 
and {-201} calculated and experimental pole figures (Figure 44) attest for the good texture 
reliability. The inverse pole figure recalculated from the OD for the direction of the fibre 
(Figure 45) shows that a strong major orientation component is present with basal planes 
perpendicular to the stress direction, reaching a maximum density around 30 m.r.d.. Another 
minor texture component is present with a density around the random level, which 
corresponds to {±1k0} (k around 8) planes perpendicular to the stress direction. 
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max 

1 m.r.d. 

 

 

Figure 44: {003}, {-183} and {-201} experimental (left column) 
and recalculated (right column) neutron pole figures of the Co349 
oriented ceramic. Logarithmic density scale, equal area projection, 
max density values are 32.5, 2.8 and 2.5 m.r.d. respectively, min 
density values are 0 m.r.d. 
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ribution to an 
nhancement of the PFab. The value of σ is reported to proportionally increase with increasing 

density.38-40 However, our three samples have similar densities, i.e., 4380 kg/m3, 4580 kg/m3 

{-201}

min 

Figure 45: Inverse pole figure for the fibre direction of the Co349 oriented ceramic. 
Logarithmic density scale, equal area projection. 

 
Using variable UP duration times, one can aim to increase the texture strengths of the 

components. The texture increase is correlated to an enhancement of TE properties (Fig. 7), 
with larger σab and PFab values for larger pressures and UP duration times. In contrast, the 
values of Sab are practically unchanged, so the increase in σab is the major cont
e
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and 4380 kg/m3 for samples 1, 2 and 3 respectively. Although it is also reported that the 
process-induced grain and crystallite size increase influences the transport properties,41,26 the 
calculated crystallite sizes and observed grain sizes16 were respectively similar for our 
ceramic samples. Therefore, if grain boundaries can affect the transport properties, it depends 
only on the texture development and the rearrangement of plate-like Co-349 grains by UP. 
The texture improvement appears here to be the main reason for the increase in σab in our 
ceramic samples. The enhancement of texture would increase the contribution of the 
conduction path along the ab-plane with high σ and decrease that along the c-axis with low σ. 
The current texture analysis technique effectively reveals sm
degree even for highly-textured ceramics with f ~ 1. This demonstrates its importance in the 
exploitation of textured TE ceramics with enhanced TE properties. The electrical conductivity 
remains two times lower than in single crystals (∼5×10-4 S/m) and proves that some efforts 
have still to be developed in the texturation of bulk textured TE materials. 
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Figure 46: Variation of the electrical conductivity and thermoelectric 
power factor with UP duration time. Corresponding maxima of the 
{00l} pole figures are 13.6, 19.8 and 31.8 m.r.d. for 2h, 6h and 20h of 
UP time respectively. 

 
10 Macroscopic anisotropic properties 
 
10.1. Aniso- and Iso-tropic samples and properties 
 
 In perties, two 
necessary conditions must be fulfilled. The first one is that the individual crystallites exhibit 
intrinsically the anisotropic property of concerns. But, in a polycrystalline aggregate, this 
intrinsic

order that a given sample exhibits anisotropic macroscopic pro

 anisotropy of the crystals can be revealed at the macroscopic scale of the specimen 
only in the presence of texture. We can then distinguish 4 different types of samples: 
 
 - Randomly oriented specimen with isotropic crystallites (isotropic sample) 
 - Textured specimen with isotropic crystallites (textured isotropic sample) 
 - Randomly oriented specimen with anisotropic crystallites (isotropised sample) 
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 - Textured specimen with anisotropic crystallites (anisotropic sample) 
 
 Texture is understood here as both morphological and crystallographic textures, since 
a specimen with randomly oriented crystals but with anisotropically aligned grain shapes 
(morphological texture) can still be macroscopically anisotropic, depending on the properties. 
For instance, in an isotropised sample, with a strong morphological texture and in absence of 
crystallographic texture, the interaction between neighbouring grains can result in 
mechanically anisotropic properties. The term quasi-isotropic is sometimes used for 
isotropised samples [Welzel et al. 2005], but the term "quasi" would let imagine that 
anisotropy is quite eliminated but not entirely. The latter term has the advantage, to our 
opinion, not to mislead the interpretation, but to clearly state the elaboration method has given 
the specimen a full isotropic character. 
 
10.2. Macroscopic/Microscopic properties 
 
10.2.1. TM and T tensors 
 
 One of the main goals in non-destructively characterising real samples is the 
prediction of real properties achieved in a given sample, from the measured or refined 
parameters. Unfortunately, most of the time sustained models do not exist for the researched 
property, and in particular for crossed-properties (piezoelectricity, magnetoresistance ....). In 
that cases some literature is available which focuses on the correlation between the extracted 
parameters and the measured properties, though without modelling the macroscopic material 
behaviour. 
 As a general trend, macroscopic scale simulation aims at providing some methodology 
to model a given macroscopic property, taking the tensorial form TM, from the microscopic, 
intrinsic properties of the individual crystallites. These latter are characterised by the tensor T 
of the same order as TM. The link between these two quantities is mainly the concern of 
preferred orientations, in a general meaning, i.e. including crystallographic and morphological 
textures. 
 
10.2.2. Microscopic p
 
10.2.2.1. Extensive and Intensive variables

roperties 

 
 
 In thermodynamic we classify two types of variables, depending on their dependence 
n the mass m, or not. Intensive variables are not depending of the mass of the system. These 

tress σij, electric field Ei , ... When such 
cripts contravariant 

nsors.

o
are for instance the temperature T, pressure p, elastic s
variables represent tensorial properties, they are represented by supers
te  Extensive variables are depending on the mass, like entropy S, volume V, elastic 
strain εij, electric induction Di ..., and tensorial properties are represented by covariant tensor 
subscripts. 
 
10.2.2.2. Work element of conjugated variables 
 
 Variables form conjugated couples, which are associated to give an elementary work 

W: d
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-     dW = ξ dΓ 239 

 
 for wich ξ and Γ are intensive and extensive variables respectively. For instance, the 
mechanical work element is δW = σij dεij, thermal work element δW = T dS or the electrical 
work element δW = Ei dDi. 
 
10.2.2.3. Generalised Energy and Free Enthalpy 
 
 The energy element dU of a system can then be represented from the first principle of 
thermodynamics in its general form by: 
 

- 240     dU  = dQ + δW 

     = T dS + Ei dDi + σij dεij + ... 

for which d ental variation, the term p dV as been neglected for a 
olid, 

which the first part of the right hand-side member is 0 (δW - δW): 

 = -S dT - Di dEi - εij dσij - ... 

ns of all the intensive variables. 

 
 
 Q is the caloric elem
s and the equation extends to as many energetic contributions exist (magnetic, 
piezoelectric ...). The generalised energy variation expresses variations of the extensive 
variables. The second principle obviously gives rise to the definition of free enthalpy, G, 
generalised to all energetic contributions of the solid: 
 

- 241     G = U - TS - Ei dDi - σij dεij - ... 
 
 and its derivative: 
 

    dG = dU - T dS - Ei dDi - σij dεij - ... -S dT - Di dEi - εij dσij - ... 
 
 in 
 

- 242    dG

 
 which takes into account the variatio
 
10.2.2.4. Thermal properties 
 
 Since dQ = T dS = C dT, where C is the molar capacity, thermal properties are 
represented by zero-order tensors (scalar), and they are isotropic whatever the crystal system.  
 
10.2.2.5. Electric properties 
 
 Electric induction and field are vectors (1
dielectric tensor constant κ : 

st order tensors), then linked by the 2nd order 
ij

    Di = κij E

 

- 243 j
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 which implies, for the equilibrium condition dG = 0, that ∂Di / ∂Ej = ∂Dj / ∂Ei, and 
onsequently one gets the symmetrisation of κij: κij = κji. This tensor contains 6 different 
ompo f 

Orthorhombic Tetragonal, 
trigonal, 

hexagonal 

Cubic, 
Gyrotropic 
Isotropic 

c
c nents for the triclinic crystal system, while symmetric operators reduce the number o
independent values (Table 9). 

 
Triclinic Monoclinic 

•••
•••
•••  

••
•

••  

•
•

•  

•
•

•  

•
•

•  

Table 9: Nye representation for the κ  dielectric tensor for all crystal classes ij

 
10.2.2.6. Mechanical properties 

 
 Mechanical (elastic) properties are represented by the fourth order tensors called 
compliances Sijkl and stiffnesses Cijkl that link elastic strains εij and stresses σkl: 
 

- 244     εij = Sijkl σ
kl

     σij ε

Sijk  and Cijk  possess a priori 34 independent components, which reduces with the 
se of the equilibrium at dG = 0 which imposes ∂εij / ∂σkl = ∂ εkl / 

 σij. However, since the stresses are defined relatively to the force element dFi of direction i 
 a su face e ment dSj, b l 

 the condition on a specific surface, e.g. (2,3), (Figure 47b) imposes  = σ . By 
ij ji same stands for 

eform kl lk e relation 
S  = S lji = S l = Sij , and contains only 21 independent parameters. 

 been developed which affects 
e following correspondence between indices: 11 → 1; 22 → 2; 33 → 3; 23 → 4; 13 → 5; 12 
 6. T presentation with 

s as rows and j's as columns. This engenders specific relationships for the compliance and 
. 

 = Cijkl kl
 
 l l

condition Sijkl = Sklij becau
∂
to r le y dFi = σij dSj (Figure 47a), one can see that for mechanica

σ23 32equilibrium
extension to all surfaces, the condition σ  = σ  must be satisfied. The 

ations, and one obtains ε  = ε . As a result, the compliance tensor obei thd
ijkl k jik lk

 Because of this symmetry a conventional notation has
th
→ his results in 6x6 matrices, sij and cij respectively for Sijkl and Cijkl,  re
i'
stiffness constants (Figure 48)
 

daniel chateigner Page 123 13/07/2006 



Combined Analysis 

a) b) 
n relative to the three axes 1, 2 and 3 (a), and projection on the 
 force direction, j is the surface normal to which the force is 

applied 

Figure 47: Stress definitio
(2,3) plane (b). σij: i is the
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Figure 48: Correspondence between tensor (left-hand side) and 
matrix (right-hand side) notations for the compliance (a) and 
stiffness (b) constants 

 

cccccc

Triclinic Monoclinic Orthorhombic 
222 

Orthorhombic
mm2, mmm 

Tetragonal 
4, 4, 4/m 

 •
••
•••
••••
•••••
••••••

 

•
•

••
••
•••
••••

•
••
•••

•
•

•

 

•
•

•
•
••
•••

 

Tetragonal 
422, 4mm, 

42m, 4/mmm 

Trigonal 
3, 3 

Trigonal 
32, 3m, 3m 

Hexagonal Cubic 

    
Isotropic     
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Gyrotropic 

 

    

Table 10: Nye representation for the Sijkl compliance tensor for all crystal classes 
 
10.2.3. Macroscopic properties modelling 
 
10.2.3.1. Averaging of tensors 
 

10
 

The volume average of a tensorial quantity T, which varies inside the volume V of 
consideration can be calculated by: 
 

- 245     

.2.3.1.1. Volume average 

 

∫=
V

 1 dV
V

TT , 

 
 In general, tensors are considered constant inside individual gra , and the previous 
equation rewrites: 
 

- 246     

ins

∑=
iV i

/V represents the 

V 1 TT , 

 
 for which Vi volume fraction or weight associated to each grain i in 
the volume. It is interesting to notice that us g such arithmetic averaging procedures, the 
average of the inverse o s i u nv veraged 
tensor: 
 

- 247     

in
f the tensor i n general not eq ivalent to the i erse of the a

1
i

1-1- V 1 −≠= ∑ TTT
iV

 

 
 T nso at repr  physi , the a of it being 
the macr or T  enting t r l property, it is of crucial importance to 
determ e averaging procedures is a correct approach.  
 

10.2.3.1.2. Arithmetic average over orientations 
 
 Since tensor properties are by essence depending on the crystal orientations, for 
polycrystalline textured samples one has to account for the volume fractions of grains in the 
different orientations g. Using the help of the ODF (Eq. - 106), Equation - 245 rewrites: 
 

hen, if the te r is aimed 
M

esenting a cal property verage 
oscopic tens

ine which of th
repres he polyc ysta
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∫=
g

 f(g) (g) dgTT  - 248     

 
 where g varies in all the orientation space H. This equation is valid if the tensorial 
properties are kept constant inside each individual crystallite, and leads to the same ambiguity 
as in Eq. - 24 1-1)( −≠ TT  in general. 7 that 
 

10.2.3.1.3. Geometric average over orientations 

previous ambiguity, one has to imagine another approach for 
e averaging procedure.  

 
10.2.3.1.3.1. Scalar case 

k f them being associated to a given probability, or weight, 
k. Its arithmetic average is then: 

 249     

 
 In order to remove the 
th

 
 A zero-order tensor, or scalar b, can always be decomposed into a linear combination 

f all its N possible values b , each oo
w
 

1w with ,wbb
N

-
1k1 ==k

 
The corresp

kkk == ∑∑
N

 

onding geometric mean of this scalar takes the form:  
 

⎡ ⎤ ( )lnbex p bb
N

1k

w
k

k == ∏
=

, with - 250     

     ∑
=

 10.2.3.1.3.2. 2  order tensors case 

 Considering matrices the previous approach of the geometric mean is not 
I of a given matrix T, Eq. - 250 rewrites: 

 

251 

=
N

k 1
kk wlnblnb  

 
nd

 

straightforward. For the eigenvalues λ

-     ⎡ ⎤ ∏
=

hich e ⎡λ ⎤ ⎡ λ ⎤ ⎡λ -1⎤-1 atrix T represented in its orthonormal 
basis o ert 1995) that: 

=
N

1k

w
kI

ki,λλ  

 
w nsures that I  = 1/ 1/ I  = I . For the m

f eigenvectors, it can be shown (Matthies et Humb
 

- 252     ⎡T⎤ij  = exp(<lnT>i'j') 

      = exp(<Θ>ij,i'j' lnTi'j') 
 

daniel chateigner Page 126 13/07/2006 



Combined Analysis 

 In this equation, Θ stands for the transformation applied to the tensor T, that represents 
the property of a given single crystal of orientation g in the single crystal reference frame KB, 

 order to bring it coincident to the sample reference frame KA. Θ then depends on the tensor in
order, and its average is composed of elements <Θ>ij given by, similarly as in Eq. - 248: 
 

- 253     ∫ ΘΘ=Θ
j'i'ij,

g

j'
j

i'
i  f(g) (g))( dgg  

10.2.3.2. Therm
 

al properties 
 
 Since thermal properties are scalar the macroscopic thermal properties are not 
epending on crystallite orientations. Hence, if no other effect is present in the material, CM = d

C. 
 
10.2.3.3. Mechanical properties 

 
 Modelling of the mechanical properties has concentrated most of the works of 

acroscopic anisotropic property modelling, in geology and metallurgy. We describe here the 
main models. 

10.2.3.3.1. The Voigt model 

ogeneous inside the 
aterial, i.e. all the crystallites are deformed in exactly the same way, with a strain tensor εij. 

Consequently the strain is continuous at the grain boundaries.
s that are not oriented iden  the stress tensor is then 

different in each differently oriented crystallite. Stresses are then discontinuous at grain 
. 

ij ij = < εij>. The average is calculated using Eq. - 248 for a 
xtured polycrystal, which combined with Eq. - 244 gives: 

 

254 M M 

ij, the following 

- 255     Cijkl
M = <Cijkl> 

the expense of stress 
quilibrium. This imposes an upper bound for C M which will be refered to as Cijkl

V. 

m

 

 
 Voigt (1928) assumes that the distribution of strains is hom
m

 In order to respect this 
homogeneity condition for crystallite tically,

boundaries and violate mechanical stress equilibrium
 This model implies ε M = ε  
te

-     <Cijkl:εij> = Cijkl :εij

 
nd it turns out that in order for this equation to be valid for any given strain εa

condition applies: 
 

 
The elastic macroscopic stiffness tensor is then the average of the intrinsic tensor in 

he Voigt model. In such a way, strain compatibility is satisfied, but at t
e ijkl
 

10.2.3.3.2. The Reuss model 
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 Reuss [1929] assumes that the distribution of stress is homogeneous inside the 
material, i.e. all the crystallites are stressed in exactly the same way, with a stress tensor σκl

 then 
ifferent in each differently oriented crystallite. Strains are then discontinuous at grain 

. 
Consequently the stress is continuous at the grain boundaries. In order to respect this 
homogeneity condition for crystallites that are not oriented identically, the strain tensor is
d
boundaries and violate strain compatibility. 
 This model implies σklM = σκl = < σkl>. The average is calculated using Eq. - 248 for a 
textured polycrystal, which combined with Eq. - 244 gives: 

256     <Cijkl
-1:σkl> = (Cijkl

M)-1:σklM 

dition applies: 

Cijkl
M = <Cijkl

-1>-1 

of strain compatibility. This imposes an upper bound for (Cijkl
M)-1, then a lower 

ound paring tensors in the mean of 
lower and upper bounds. Since we are dealing with tensorial quantities, this does not 

ecessarily means that all the tensor components have to be lower, or resp. larger. 

 for isotropic or textured isotropic 
amples. In any other case they define upper and lower bounds for the elastic constants. Hill 

t and Reuss macroscopic elastic 
onstants in order to more closely represent experimental data: 

  Cijkl
H = ξCijkl

V + (1-ξ)Cijkl
R or 

    S l
H  S l

V + (1-ξ)Sijkl
R

Hill uses ξ = 1/2, but any other value can a priori be used, since the model is purely 
empiric

an model 

Because we are dealing with real and symmetric tensors, the eigenvalues of the 
concerned tensors are real. But neither the Sijkl and Cijkl nor the sij and cij matrices are 

 

- 

 
and it turns out that in order for this equation to be valid for any given stress σkl, the following 
con
 

- 257     

 
The elastic macroscopic stiffness tensor is then the inverse of the average of the 

inverse intrinsic tensor in the Reuss model. In such a way, stress equilibrium is satisfied, but 
t the expense a

b for Cijkl
M, refered to as Cijkl

R. Care should be taken in com

n
Since the average of the inverses is not in general equal to the inverse of the average, 

the Voigt and Reuss approaches do not give the same results, except for isotropic and textured 
isotropic samples, for which the tensors are independent of the orientation. However, they 
define a limit interval for the elastic tensors which can be used.  
 

10.2.3.3.3. The Hill model 

 
As just said, Voigt and Reuss averages only coincide 

s
[1952] proposed to use an arithmetic mean of the Voig
c
 

- 258   

ijk = ξ ijk
 
 

al and will depend on the sample. This estimate of the macroscopic constants neither 
fulfils strain and stress homogeneity nor it ensures that the macroscopic compliance is the 
inverse of the macroscopic stiffness.  
 

10.2.3.3.4. The geometric me
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diagonal, and Eq. - 252 cannot be used in its actual state. One should first diagonalise them 
using an orthonormal basis of eigentensors bij

(λ), for instance in the case of the stiffness tensor 
Cijkl of eigenvalues C(λ): 
 

- 259     ((bij
(λ))-1 C  b (λ)) = C(λ) δ  and ijkl kl ij

     ∑
=

    
⎡ 6

6
)()((

)()(

λλ

λλ
 

Now applying the geometric average over orientations (Eq. - 252), the macroscopic 

- 260 

=
6

1

)(
k

)(
ij

)(
ijk C

λ

λλλ
ll bbC  which extends to 

( ) = ∑
=1

kij
)

ijk )ln(Cln
λ

λ
ll bbC

 

⎥
⎦

⎢
⎣

= ∏
=1

)( kij)(Cln              
λ

λ lbb ⎤

 
 
stiffness of the polycrystal can be calculated from: 
 

   Cijkl
M = ⎡C⎤ijkl  = exp(<lnC>i'j'k'l') 

       = exp(<Θ>ijkl,i'j'k'l' (lnC)i'j'k'l') 

with    ∫ ΘΘΘΘ=Θ
g

'k'
k

j'
j

i'
i'k'j'i',ijk

 f(g) (g)(g)(g))( dgg l
lll

 

and (lnC)i'j'k'l' is given by Eq. - 259. However, before calculating the wanted value ⎡C⎤ijkl, one 
has to first diagonalise <lnC>i'j'k'l' in order to extract the new eigenvalues and eigentensors for 
the oriented polycrystal. The four successive tensor transformations relate to the 4th order 
stiffness tensor character.  

The factorial entering the calculation explains the term "geom 
t

etric mean", in the sense 
hat the scopic stiffness is obtained by the mean averaging of the 

single crystal stiffness eigenvalues. Similar expressions can be obtained for the macroscopic 
ompliance tensor S M (λ) (λ)

s modelling gives rather good 
stimates of the elastic properties (Matthies et Humbert 1995), comparable to ones obtained 

es, somehow not suitable 
for implementation in routinely achieved comb

 oriented polycrystal macro

c ijkl  which admits as eigenvalues S  = 1/C  the reciprocal of the 
stiffness eigenvalues. This waranties that the same macroscopic elastic properties are 
calculated when using stiffness or compliances in the geometric mean approach. In other 
words, the average of the inverse macroscopic property is consistent with the inverse of the 
average macroscopic property. This may be the reason why thi
e
by more sophisticated models which require larger calculation tim

ined algorithm. 
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 variables:Used  

 
dS  Surface element of the Pole Sphere 
a, b, c, αc, β , γ  Unit-cell parameters c c

S

ϑy Polar angle in the pole figure space 

hk  

<hkl> Crystallographic direction hkl and diffracting equivalents 
e reciprocal 

L  Lotgering factor 
ured and a random sample 

h <hk >* directions 

Ih(y) 

(xA, y t-vectors of the sample reference frame 
XA, YA, ZA Sample axes aligned with xA, yA, zA respectively 
[XYZ]  Vector of the sample reference frame 
(xB, yB, zB) Unit-vectors of the crystal reference frame 
XB, YB, ZB Sample axes aligned with xB, yB, zB respectively 
H  Orientation space 
g  Set of three Euler angles defining one orientation 
g̃  Orientation distance 
dg  Orientation element in the H-space 
α, β, γ  Euler angles in the H-space in the Roe-Matthies convention 
ϕ1,Φ,ϕ2 Euler angles in the H-space in the Bunge convention 
f(g)  Orientation Distribution Function 
dhkl,  Inter-reticular distance between (hkl) planes 
ω Angle between the incident beam and the sample surface: incidence angle  
θ Angle between the incident beam and the scattering planes {hkl}: Bragg angle 
δ  Angle running along the Debye ring on a 2D detector 
V  Irradiated volume of the sample 

a, b, c  Unit vectors of the unit-cell 
∆k  Scattering vector 
n  Normal to the sample surface 
  Spectrometer (Diffractometer) space 

χ  Polar angle in the diffractometer space 
ϕ  Azimuthal angle in the diffractometer space 
Y  Pole figure space 

 
ϕy  Azimuth of pole figures 

 Miller indices l

(hkl)  Crystallographic plane hkl 
{hkl}  Crystallographic planes hkl and diffracting equivalents 
[hkl]  Crystallographic direction hkl 
[hkl]*  Crystallographic direction hkl of the reciprocal space 

  
<hkl>* Crystallographic direction hkl and diffracting equivalents of th

space 
hkl

p, p0 ratio entering the Lotgering factor for a text
respectively 

 l
y  ϑy, ϕy direction in � 

 Direct pole figure 
Ph(y)  Normalised pole figure 
KA  Sample reference frame 

A, zA) Uni
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dV(y)  Volume of crystallites having h between y and y + dy 
me of crystallites which orientation is between g and g + dg 

c  Superconducting transport critical current density 
 irradiated sample 

T 

 
  

M or 
V,R, pliance tensor calculated using the Voigt, Reuss, Hill 

 oigt, Reuss, Hill 

dV(g)  Volu
J
Fd  Damaged (amorphous) fraction of an
Fc  Crystalline fraction of a sample 

perty T  Microscopic tensor for a pro
TM  Macroscopic tensor 
< e of the tensor 
ε   
T>  Arithmetic averag
ij strain tensor 

ε M  macroscopic strain tensor ij

σ stress tensor ij

σ M  s tensor ij  macroscopic stres
S   elastic complianceijkl  tensor 

pliance tensSijkl  macroscopic elastic com
H ic comSijkl  macroscopic elast

models 
C   elastic stiffness tensor ijkl
C M  macroscopic elastic stiffness tensor ijkl
C V,R,H macroscopic elastic stiffness tijkl ensor calculated using the V

models 
ξ mixing parameter of the Hill model 
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Abbreviations: 
 

214:  (Sr,Ca)14Cu24O41
B 2

4 
223

m 

M um 
um of the distribution Density 

MTG  ture Growth 
 nance 

 
PA  

A  
SA  Residual Strain-stress Analysis 

SEM  Scanning Electron Microscope 
TEM  Transmission Electron Microscope 
TSMTG Top-Seeded Melt Texture Growth 
XRR  X-Ray specular Reflectivity 
Y123  YBa2Cu3O7-δ  
Y211  Y2BaCuO5  

i   (Bi,Pb)2Sr2Ca2Cu3O10+x
Bi2212  (Bi,Pb)2Sr2Ca1Cu2O8+x
CPS  Curved Position Sensitive detector 

onance ESR  Electron Spin Res
Fap  Ca (PO ) F10 4 6 2
FWHM Full Width at Half Maximu
HAp  Ca (PO ) (OH)10 4 6 2
HWH  Half Width at Half Maxim
HWHD Half Width at Half maxim
ILL  Institut Laue-Langevin 
m.r.d.  multiple of a random distribution 

Melt Tex
NMR  Nuclear Magnetic Reso
ODF  Orientation Distribution Function 
PSD  Position Sensitive Detector 
QMA Quantitative Microstructure Analysis 

QuantitaQ tive Phase Analysis 
T Quantitative Texture Analysis Q

R
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Mathematical operators 

rmal diffraction" (opp. anomalous diffraction) 

a produ

su atrix, stands for the complex conjugated 
 the vector of the reciprocal space 

plem
ithme

atrices, following the Nye [1957] notation, for instance 
order

 
Vectors are in bold 
Unless specified, diffraction means "no
^: vector product 
.: scal r ct 
⊗: convolution product 
*:  as a perscript of a m
 as a superscript of a vector, stands for
:: division of tensors 
erfc: com entary error function 
<>:  ar tic average of a tensor 
 
Tensor notations: 
 Tensors are represented by m
for a 2nd  tensor: 
 

333231

232221

1312

T = 
11

T=
TTT
TT
TTT•

 

 

   ● om zero) 

e ● component to which it is linked 
�  opposite to the twice of the ● component to which it is linked 
×  value linked to others by a specific relationship, e.g. 2(s11 - s12) = s44 
all tensors are symmetric relative to their main diagonal. 

 

••
•••
•••

    non-zero values ●
 ●   identical values (different fr
 ●   opposite values    ○
 ~  twice th
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Figure 23: Schematics of a film composed of anisotropically shaped crystallites in a randomly oriented (a) and a 

textured (b) sample 99 
Figure 24: Selected fitted χ-scans that shows large peaks and the presence of texture in a Si thin film deposited 

on amorphous SiO2 substrate by magnetron sputtering. The insert shows the net intensity variation of the 
main peaks, to better visualise the texture. 100 

Figure 25: Inverse pole figure for the normal direction of the Si thin film of Figure 24 calculated from the 
refined ODF (linear density scale, equal area projection, max = 1.59 m.r.d., min = 0.45 m.r.d.) (a), 
schematics of the refined mean crystallite shape from Table 2 (b) and (c) high resolution TEM image of the 
Si crystallites. 100 

Figure 26: Bragg-Brentano diagram of a PCT/Pt/SiO2/(100)-Si thin structure. Notice the strong overlap between 
Pt and PCT peaks 102 

Figure 27: {111}-PCT pole figure recalculated from the OD of a PCT/Pt/SiO2/(100)-Si thin structure which 
shows the fibre-type character of the texture. Equal area projection, logarithmic density scale 102 

Figure 28: 2θ diagram χ-scans of one film, showing the good agreement between experimental (points) and 
refined (lines) spectra. Bottom diagram is measured at χ = 0°, top diagram at χ = 40°, by steps of 5° up. 103 

Figure 29: {111} and {200} recalculated pole figures for the Pt electrode layer (left, max. density is 10 m.r.d., 
min density is 0 m.r.d.) and {001}, {100}, {101}, {110} and {111} for the PCT film (right, max. density is 
2.1 m.r.d., min density is 0.15 m.r.d.). Linear density scales, equal area projections. 103 

Figure 30: Top surface of a Y123 single domain, before perforation with the Sm123 seed in the middle (left) 
and after perforation (middle). Squares are 1 cm. A seeded Y123 / Y211 ensemble grown on a polyurethane 
foam. 105 

F : Simulated x-ray diffraction diagrams for a Si powder, for λ = 1.5406 Å (a) and for λ/2 = 0.7703 Å (b). 
Intensities for the λ/2 contributions have been enhanced for visibility. 9 

Figure 3: Ewald and pole sphere, Debye-Scherrer rings, geometrical interpretation of diffraction 10 
Figure 4: Instrument resolution curves for a neutron (D1B-ILL, calcite rostrum s
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Figure 31: The 1368 neutron 2θ-diagrams measured on the foam sample of Figure 30 a) and Rietveld 
 sum b), allowing phase, particle size and cell parameters quantitative determinations. 
 R  = 5.43 %, R  = 19.71 %, used wavelength: 2.53 Å. 106 
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Figure 32: {003}-Y123 and {010}-Y123 recalculated pole figures of the perforated sample a) and of the foam 
b) samples of Figure 30. Linear density scales, equal area projections. 107 
re 33: Jc(B) curves at 77 K for the plain a) and drilled b) samples, and corresponding normalised trapped 
magnetic field maps field cooled in 0.4 T at 77 K c) and d) respectively. 107 

Figure 34: SEM image of a Bi2223 aligned platelet microstructure resulting from the sinter-forging process 
under uniaxial pressure. Pressure and mean c-axis directions are vertical (a). Corresponding {119} pole 
figure showing the axially symmetric texture. Pressure and mean c-axis directions are perpendicular to the 
pole figure plane, logarithmic density scale, equal area projection (b). 108 

Figure 35: Neutron χ-scans from the D1B-ILL beamline. Note the strong decrease of 00l line in the lower χ 
range, and the strong increase of hk0 lines in the higher χ range (a). c-scans fit using the combined 
approach (b). 10  
re 36: Inverse pole figures of the Bi2223 phase calculated for the direction of the applied pressure (fibre 
axis of the texture). Samples textured during (a) 20h, (b) 50h, (c) 100h and (d) 150h. Logarithmic dens
scale, equal area projection. 110 
re 37: Correlation between FWHD, applied unidirectional stress σ and transport Jc in Bi2223 sinter 
forged samples. Points for the same σ correspond to identical measurements on various points of the 
same sample 111 

Figure 38: TEM micrograph of a fluoroapatite crystal irradiated by 70 MeV Kr ions with a fluence of 9.5 10  
Kr.cm-2 (a) and x-ray diagram of a virgin sample showing the presence of texture (b). The diagram has been 
measured during sample rotation around its normal. 112 

Figure 39: Same diagram as in Figure 38a with the application of an arbitrary texture correction model (a), and 
1013 Kr.cm-2 irradiated sample with 85 % of amorphous phase (b) 113 
re 40: Rietveld refinements of (a) the least (5.1011 I.cm-2) and (b) most (1013 I.cm-2) I-irradiated samples, Figu
with arbitrary texture correction. 114 
re 41: Damaged fraction as revealed by x-ray analyses for Kr- (a) and I-irradiated samples (b). 115 Figu

Figure 42: Used supercell approximant for the Co349 structure. 11
re 43: Experimental (dots) and calculated (lines) diagrams for the whole set of χ-scan measuremen
uniaxial stress 18 

Figure 44: {003}, {-183} and {-201} experimental (left column) and recalculated (right column) neutron pole 
figures of the Co349 oriented ceramic. Logarithmic density scale, equal area projection, max density values 
are 32 19 .5, 2.8 and 2.5 m.r.d. respectively, min density values are 0 m.r.d. 1

Figure 45: Inverse pole figure for the fibre direction of the Co349 oriented ceramic. Logarithmic density scale
equal area projection. 119
re 46: Variation of the electrical conductivity and thermoelectric power factor with UP duration time. 
Corresponding maxima of the {00l} pole figures are 13.6, 19.8 and 31.8 m.r.d. for 2h, 6h and 20h of UP 
time respectively. 120 
re 47: Stress definitio  is 
the force direction, j is the surface normal to which the force is applied 124
re 48: Correspondence between tensor (left-hand side) and matrix (right-hand side) notations for the 
compliance (a) and stiffness (b) constants 124 
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1 Table 1: Correspondences between the most used Euler angle sets 5
Table 2: Refined parameters for 8 analysed Si films deposited on various substrates [Morales et al. 2005]. 

1 Numbers in parentheses are one standard deviations as refined. 10
Table 3: Thicknesses as measured by profilometry and refined by the combined analysis, compared to the 

porosity as determined by x-ray reflectivity [Morales et al. 2005] on two Si nanocrystalline thin films 
deposited on amorphous SiO2 substrates. 1

le 4: Layer and structural characteristics of the sample of Figure 28. 103 
le 5: Cell parameters and volume fractions of the Y211 and Y123 phases of the foam sample as refined for 
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the summed diagram of Figure 31. Parentheses are one standard deviation. 1
Table 6: Refined parameters extracted from Rietveld/WIMV combined analysis and reliability factors obtain

from different sinter-forging time samples. Transport critical current densities, measured on each sam e, 
0 are also reported. 11

Table 7: Fitted parameters for the different samples irradiated under Kr and I ions with various fluences. 
Parentheses are one standard deviations. 114 

6 Table 8: Radiation dammage fit results of Figure 41. 11
Table 9: Nye representation for the κij dielectric tensor for all crystal classes 123

le 10: Nye representation for the S  compliance tensor for all crystal classes 125 
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