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AN INTRODUCTION TO AFFINE KAC-MOODY

ALGEBRAS

DAVID HERNANDEZ

Abstract. In these lectures we give an introduction to affine Kac-
Moody algebras, their representations, and applications of this the-
ory.
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1. Introduction

Affine Kac-Moody algebras ĝ are infinite dimensional analogs of
semi-simple Lie algebras g and have a central role both in Mathematics
(Modular forms, Geometric Langlands program...) and Mathematical
Physics (Conformal Field Theory...). These lectures are an introduction
to the theory of affine Kac-Moody algebras and their representations
with basic results and constructions to enter the theory.

We will first explain how ĝ appears naturally as a central extension
of the loop algebra of a semi-simple Lie algebra g. Then it is possible
to define a system of Chevalley generators which gives a unified point
of view on ĝ and g. The representation theory of ĝ is very rich. We
study two class of representations :

- the category O of representations : for example it contains simple
highest weight representations.

- the category of finite dimensional representations : for example it
contains representations obtained by evaluation from finite dimensional
representations of g.

1



2 DAVID HERNANDEZ

By construction ĝ has a central element. It allows to define the
level of a simple representation. For example the critical level is of
particular importance. We will then study more advanced topics as
the fusion product inside the category of a fixed level and applications
to Knizhnik-Zamolodchikov equations.

Thus affine Kac-Moody algebras provide a perfect example where ab-
stract mathematical motivations (to build infinite dimensional analogs
of semi-simple Lie algebras with analog properties) lead to objects
which are closely related to other fields as Mathematical Physics.

In each section we give references where complete proofs can be read.
As there is a huge amount of very interesting books and articles on
affine Kac-Moody algebras, we listed only a few of them.

Acknowledgments : These are notes from lectures given at the
University of Aarhus (Center for the Topology and Quantization of
Moduli Spaces) in October 2006. The author would like to thank N.
Reshetikhin for the invitation and useful advices during the preparation
of these lectures, J.E. Andersen and E. Frenkel for useful references,
A. Feragen for indicating typos. He also would like to thank the au-
dience of the lectures for enthusiasm and many interesting questions,
and CTQM for the hospitality and excellent working conditions.

2. Quick review on semi-simple Lie algebras

In these lectures, all vectors spaces are over C.
We first recall results and constructions from the classical theory of

finite dimensional semi-simple Lie algebras (they are the starting point
of the theory of affine Kac-Moody algebras).

2.1. Definition.

Definition 2.1. A Lie algebra g is a vector space with a bilinear map
[, ] : g× g→ g (called the bracket) satisfying for x, y, z ∈ g :

[x, y] = −[y, x],
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

For example an algebra A with the bracket defined by [a, b] = ab−ba
is a Lie algebra.

For I, I′ subspaces of a Lie algebra g, we denote by [I, I′] the sub-
space of g generated by {[i, i′]|i ∈ I, i ∈ I′}.

A Lie subalgebra of a Lie algebra g is a subspace g′ ⊂ g satisfying
[g′, g′] ⊂ g′.

An ideal of a Lie algebra g is a subspace I ⊂ g satisfying [I, g] ⊂ g.
For I an ideal of g, I and g/I have an induced structure of a Lie
algebra.
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In the following we suppose that g is finite dimensional.
For I ⊂ g an ideal, we define a sequence of ideals (Di(I))i≥0 by

induction : we set D0(I) = I and for i ≥ 0 :

Di+1(I) = [Di(I), Di(I)].

(Di(I))i≥0 is called the derived series. I is said to be solvable if there
is i ≥ 0 such that Di(I) = {0}.

Definition 2.2. A Lie algebra g is said to be semi-simple if {0} is the
unique solvable ideal of g.

Example : for n ≥ 2, consider :

sln = {M ∈Mn(C)|tr(M) = 0}.

It is a Lie subalgebra ofMn(C) (with the Lie algebra structure coming
from the algebra structure; note that sln is not a subalgebra ofMn(C)).
sln is semi-simple.

2.2. Representations. A Lie algebra morphism is a linear map which
preserves the bracket (ie. ρ([x, y]) = [ρ(x), ρ(y)]).

Definition 2.3. A representation of g on a vector space V is a Lie
algebra morphism ρ : g→ End(V ).

The condition of the definition means :

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x).

One says also that V is a module of g or a g-module.
Examples : For a Lie algebra g and x ∈ g, Adx : g→ g is defined by

Adx(y) = [x, y] for y ∈ g. The linear map x 7→ Adx defines a structure
of g-module on g (called the adjoint representation). Indeed by the
Jacobi identity, we have for x, y, z ∈ g :

[Adx, Ady](z) = [x, [y, z]]− [y, [x, z]] = [[x, y], z] = Ad[x,y](z).

Cn is naturally a representation of sln+1 ⊂ End(Cn).
In the following for ρ : g→ End(V ) a representation of g, for g ∈ g

and v ∈ V , we denote ρ(g)(x) = g.x.

Definition 2.4. Let V be a representation of g.
A submodule V ′ of V is a subspace V ′ ⊂ V such that g.v′ ∈ V ′ for

all g ∈ g, v′ ∈ V ′.
V is said to be simple if the submodules of V are {0} and V .
V said to be semi-simple if V is a direct sum of simple modules.

One of the most important result of the representation theory of
finite dimensional semi-simple Lie algebras is :
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Theorem 2.5. A finite dimensional representation of a finite dimen-
sional semi-simple Lie algebra is semi-simple.

2.3. Presentation. A semi-simple Lie algebra has a presentation in
terms of Chevalley generators.

We start with a Cartan matrix (Ci,j)1≤i,j≤n satisfying

Ci,j ∈ Z , Ci,i = 2 , (i 6= j ⇒ Ci,j ≤ 0) , (Ci,j = 0⇔ Cj,i = 0),

and all principal minors of C are strictly positive :

det((Ci,j)1≤i,j≤R) > 0 for 1 ≤ R ≤ n.

Then we consider generators (ei)1≤i≤n, (fi)1≤i≤n, (hi)1≤i≤n. The rela-
tions are :

[hi, hj ] = 0,

[ei, fj] = δi,jhi,

[hi, ej ] = Ci,jej ,

[hi, fj] = −Ci,jfj,

(Adei
)1−Ci,j (ej) = 0 for i 6= j,

(Adfi
)1−Ci,j (fj) = 0 for i 6= j.

The two last relations are called Serre relations.

Example : Let e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

. We have

sl2 = Ce ⊕ Cf ⊕ Ch, and we have the relations [e, f ] = h, [h, e] = 2e,
[h, f ] = −2f . So we get the above presentation of sl2 with the Cartan
matrix C = (2).

2.4. Finite dimensional simple representations. Let

h =
⊕

1≤i≤n

Chi ⊂ g.

It is a Lie subalgebra of g which commutative (that is to say [x, x′] = 0
for any x, x′ ∈ h). h is called a Cartan subalgebra of g. Let us define

P = {ω ∈ h∗|ω(hi) ∈ Z, ∀i ∈ {1, · · · , n}},

P+ = {ω ∈ P |ω(hi) ≥ 0, ∀i ∈ {1, · · · , n}}.

For λ ∈ h∗, there exists a unique simple representation L(λ) of g such
that there is v ∈ L(λ)− {0} satisfying

hi.v = λ(hi)v , ei.v = 0 for i ∈ {1, · · · , n}.

λ is called the highest weight of L(λ). L(λ) is finite dimensional if and
only if λ ∈ P+. Moreover all simple finite dimensional representations
of g are of the form L(λ) for one λ ∈ P +.

For complements on this section, the reader may refer to [B, S].
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3. Affine Kac-Moody algebras

A natural problem is to generalize the theory of finite dimensional
semi-simple Lie algebras to infinite dimensional Lie algebras. A class
of infinite dimensional Lie algebras called affine Kac-Moody algebra is
of particular importance for this question.

First let us explain the natural geometric construction of affine Kac-
Moody as central of extension of loop algebras of semi-simple Lie alge-
bras.

We recall that a central element c ∈ g of a Lie algebra g satisfies by
definition [c, g] = 0 for any g ∈ g.

3.1. Loop algebras. Let L = C[t±1] be the algebra of Laurent poly-
nomials. Consider a finite dimensional semi-simple Lie algebra g.

Definition 3.1. The loop algebra of g is L(g) = L ⊗ g with the Lie
algebra structure defined by putting for P, Q ∈ L, x, y ∈ g :

[P ⊗ x, Q⊗ y] = PQ⊗ [x, y].

Remark : L(g) is the Lie algebra of polynomial maps from the unit
circle to g, that is why it is called the loop algebra of g.

3.2. Central extension. In this subsection we define the affine Kac-
Moody g as a central extension of g. To do this construction, we first
need a 2-cocycle ν.

We remind that the Killing form of g is the symmetric bilinear map
K : g× g→ C defined by K(x, y) = Tr(AdxAdy).

Lemma 3.2. The Killing form K is Ad-invariant, that is to say for
x, y, z ∈ g :

K([x, y], z) = K(x, [y, z]).

Proof: We have :
Tr(Ad[x,y]Adz) = Tr([Adx, Ady]Adz)

= Tr(AdxAdyAdz)− Tr(AdyAdxAdz)
= Tr(Adx[Ay, Adz]) = Tr(AdxAd[y,z]). �

Remark : K is non degenerated (consequence of Cartan criterion).
In the following we use a normalized version of the Killing form

(x, y) = 1
h∨K(x, y) where h∨ is the dual Coxeter number of g (for

example for g = sln, we have h∨ = n).
Let us define (, )t : L(g)× L(g)→ L by

(Px, Qy)t = PQ× (x, y),

for P, Q ∈ L and x, y ∈ g.
The linear maps d

dt
: L(g)→ Lg and Res : L → C are defined by
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d
dt

(Px) = dP
dt

x (for P ∈ L and x ∈ g),
Res(tr) = δr,−1 (for r ∈ Z).

Definition 3.3. The bilinear map ν : L(g)×L(g)→ C is defined by :

ν(f, g) = Res((
df

dt
, g)t).

Lemma 3.4. ν is a 2-cocycle on L(g), that is to say for f, g, h ∈ L(g),

ν(f, g) = −ν(g, f),

ν([f, g], h) + ν([g, h], f) + ν([h, f ], g) = 0.

Proof: For P, Q ∈ L and x, y ∈ g,

ν(x⊗ P, y ⊗Q) + ν(y ⊗Q, x⊗ P )

= (x, y)Res(
dP

dt
Q + P

dQ

dt
) = (x, y)Res(

d(PQ)

dt
) = 0,

and for P, Q, R ∈ L, x, y, z ∈ g :
ν([P⊗x, Q⊗y], R⊗z)+ν([Q⊗y, R⊗z], P⊗x)+ν([R⊗z, P⊗x], Q⊗y)

= ([x, y], z)Res(d(PQ)R
dt

) + ([y, z], x)Res(d(QR)P
dt

) + ([z, x], y)Res(d(RP )Q
dt

)

= ([x, y], z)Res(d(PQ)R
dt

+ d(QR)P
dt

+ d(RP )Q
dt

)

= ([x, y], z)Res(d(PQR)
dt

) = 0. �

Definition 3.5. The affine Kac-Moody algebra is ĝ = L(g)⊕Cc where
c is an additional formal central element and the Lie algebra structure
is defined by (f, g ∈ L(g)) :

[f, g] = [f, g]L(g) + ν(f, g)c,

where [f, g]L(g) is the bracket in L(g).

The skew symmetry for ĝ is a consequence of the first property of
Lemma 3.4, and the Jabobi identity for ĝ is a consequence of the Jacobi
identity for L(g) and the second property of Lemma 3.4.

3.3. Chevalley generators. In this subsection we give a more alge-
braic presentation of ĝ which allows to have a unified point of view
on finite dimensional semi-simple Lie algebras and affine Kac-Moody
algebras. This is an indication that affine Kac-Moody algebras are the
natural generalizations of finite dimensional semi-simple Lie algebras
and so it is also a motivation for the definition of affine Kac-Moody
algebras.

Theorem 3.6. ĝ can be presented by generators (Ei)0≤i≤n, (Fi)0≤i≤n,
(Hi)0≤i≤n, and relations :

[Hi, Hj] = 0,
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[Ei, Fj ] = δi,jHi,

[Hi, Ej] = Ci,jEj ,

[Hi, Fj] = −Ci,jFj ,

(AdEi
)1−Ci,j (Ej) = 0 for i 6= j,

(AdFi
)1−Ci,j (Fj) = 0 for i 6= j,

where C = (Ci,j)0≤i,j≤n is an affine Cartan matrix, that it to say Ci,j ∈
Z, Ci,i = 2, (i 6= j ⇒ Ci,j ≤ 0), (Ci,j = 0 ⇔ Cj,i = 0), all proper
principal minors are strictly positive

det((Ci,j)0≤i,j≤R) > 0 for 0 ≤ R ≤ n− 1,

and det(C) = 0.

Moreover we can choose the labeling {0, · · · , n} so that the subalge-
bra generated by the Ei, Fi, Hi (1 ≤ i ≤ n) is isomorphic to g, that is
to say (Ci,j)1≤i,j≤n is the Cartan matrix of g.

Let us give the general idea of the construction of the Chevalley
generators of ĝ. Let ei, fi, hi (1 ≤ i ≤ n) be Chevalley generators of g.
For i ∈ {1, · · · , n}, we set

Ei = 1⊗ ei.

The point is to define E0, F0 and H0. Consider the following decom-
position of g :

g = h⊕
⊕

α∈∆

gα,

where for α ∈ h∗,

gα = {x ∈ g|[h, x] = α(x)x, ∀h ∈ h},

and ∆ = {α ∈ h∗ − {0}|gα 6= {0}} (it is called the set of roots). For
example we have ei ∈ gαi

, fi ∈ g−αi
where αi is defined by αi(Hj) =

Ci,j. By classical results, we have dim(gα) = 1 for α ∈ ∆, and there
is a unique θ ∈ ∆ such that θ + αi /∈ ∆ ∪ {0} for i ∈ {1, · · · , n}. θ is
called the longest root of g.

Consider ω the linear involution of g defined by ω(ei) = −fi, ω(fi) =
−ei, ω(hi) = −hi. Consider a bilinear form (, ) : h∗ × h∗ → C defined
by (αi, αj) = Ci,j/ǫi where the ǫi are positive integers such that B =
diag(ǫ1, · · · , ǫn)C is symmetric (the ǫi are uniquely defined if we assume
that there are prime to each other).

Let us choose f0 ∈ gθ such that

(f0, ω(f0)) = −
2h∨

(θ, θ)
,



8 DAVID HERNANDEZ

Let us also define :

e0 = −ω(f0) ∈ g−θ.

Then we define

E0 = t⊗ e0 , F0 = t−1 ⊗ f0 , H0 = [E0, F0].

Example : for g = sl2 we have the Cartan matrix C = (2). Let us

check that the corresponding affine Cartan matrix for ŝl2 is

(

2 −2
−2 2

)

.

We have

ŝl2 = (L ⊗ e)⊕ (L ⊗ f)⊕ (L ⊗ h)⊕ Cc.

We follow the construction described above : we set E1 = 1⊗ e, F1 =
1 ⊗ f and H1 = 1 ⊗ h. We have h∨ = 2, ∆ = {α,−α} where α is
defined by α(h) = 2. The longest root is θ = α and so (sl2)θ = Ce. So
f0 is of the form f0 = λe where λ ∈ C∗. Let us compute λ. We have

(f0, ω(f0)) = λ2(e, f) = λ2K(e, f)/2.

To compute K(e, f) = Tr(AdeAdf), we compute the action

(AdeAdf)(f) = 0 , (AdeAdf)(e) = 2e , (AdeAdf )(h) = 2h.

So K(e, f) = 4 and (f0, ω(f0)) = 2λ2. We have (α, α) = 2, and so by
definition we have (f0, ω(f0)) = −2, and λ2 = 1. Let us fix λ = 1. So
we have :

E0 = t⊗ f , F0 = t−1 ⊗ e.

We can also compute :

H0 = [E0, F0] = 1⊗ [f, e]+ν(t⊗f, t−1⊗e)c = −H1 +(f, e)c = 2c−H1.

Then we can check all relations of Chevalley generators. In particular
[H1, E0] = −2E0 and [H0, E1] = −2E1 give the Cartan matrix. We also
have the Serre relations, for example AdE1

(E0) = 2t⊗h so Ad2
E1

(E0) =
−4t⊗ e and Ad3

E1
(E0) = 0.

For complements on this section, the reader may refer to [K1, M, K2].

4. Representations of Lie algebras

Affine Kac-Moody algebras have a very rich representation theory
which have applications in several fields of Mathematics and Mathe-
matics Physics. First let us explain how to construct analogs of highest
weight representations of semi-simple Lie algebras.
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4.1. Triangular decomposition of ĝ. g has the classical triangular
decomposition g = n+ ⊕ h ⊕ n− where n+ (resp. n−, h) is the Lie
subalgebra of g generated by the (ei)1≤i≤n (resp. (fi)1≤i≤n, (hi)1≤i≤n).

Consider the following subspaces of ĝ :

n̂+ = tC[t]⊗ (n− ⊕ h)⊕ C[t]⊗ n+,

n̂− = t−1C[t−1]⊗ (n+ ⊕ h)⊕C[t−1]⊗ n−,

ĥ = (1⊗ h)⊕ Cc.

Lemma 4.1. n̂+, n̂−, ĥ are Lie subalgebras of ĝ, and we have the
triangular decomposition

ĝ = n̂+ ⊕ ĥ⊕ n̂−.

Note that we get the same decomposition by using Chevalley gen-
erators, that it to say n̂+ (resp. n̂−, ĥ) is the Lie subalgebra of ĝ

generated by the Ei (resp. the Fi, the Hi) for 0 ≤ i ≤ n. Indeed
for i ∈ {1, · · · , n}, we have Ei = 1 ⊗ ei ∈ n̂+, Fi = 1 ⊗ fi ∈ n̂− and

Hi = 1⊗ hi ∈ ĥ. Moreover

E0 = t⊗ e0 ∈ t⊗ n− ⊂ n̂+,

F0 = t−1 ⊗ f0 ∈ t−1 ⊗ n+ ⊂ n̂−,

H0 = [E0, F0] ∈ 1⊗ [e0, f0] + Cc ⊂ ĥ.

4.2. The extended algebra g̃. The simple roots αi ∈ ĥ∗ are defined
by αi(Hj) = Ci,j for 0 ≤ i, j ≤ n. As det(C) = 0, the simple roots are

not linearly independent. For example for ŝl2, we have α0 + α1 = 0.
For the following constructions, we need linearly independent simple
roots. That is why we consider the extended affine Lie algebra

g̃ = ĝ⊕ Cd,

with the additional derivation element d. We extend the Lie algebra
structure of ĝ to g̃ by the relations

[d, P (t)⊗ x] = t
dP (t)

dt
⊗ x , [d, c] = 0,

for P (t) ∈ L and x ∈ g. We have the new Cartan subalgebra h̃ = ĥ⊗Cd.
It is a commutative Lie subalgebra of g̃ of dimension n + 2. We have
the corresponding triangular decomposition :

g̃ = n̂+ ⊕ h̃⊕ n̂−.

Let us define the new simple roots αi ∈ h̃∗ for i ∈ {0, · · · , n}. The

action of αi on ĥ has already been defined, and so we have to specify
the αi(d). The condition that leads to the computation is that the Ei
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should be of weight αi for the adjoint representation, that is to say
[H, Ei] = αi(H)Ei for any H ∈ h̃∗. In particular we get for i 6= 0,
αi(d)Ei = [d, 1⊗ ei] = 0 and so αi(d) = 0. We also get

α0(d)E0 = [d, t⊗ e0] = t⊗ e0 = E0,

and so α0(d) = 1.

4.3. Category O of representations.

Definition 4.2. A module V of g̃ is said to be h̃-diagonalizable if we
have a decomposition V =

⊕

λ∈h̃∗ Vλ where for λ ∈ h̃∗ :

Vλ = {v ∈ V |h.v = λ(h)v, ∀h ∈ h̃}.

Vλ is called the weight space of weight λ of V . The set of weight of
V is

wt(V ) = {λ ∈ h̃∗|Vλ 6= {0}}.

We define a partial ordering � on h̃∗ by

λ � µ⇔ µ = λ +
∑

0≤i≤n

miαi,

where mi ∈ Z, mi ≥ 0.
For λ ∈ h̃∗, we set D(λ) = {µ ∈ h̃∗|µ � λ}.

Definition 4.3. The category O is the category of g̃-modules V satis-
fying :

1) V is h̃-diagonalizable,
2) the weight spaces of V are finite-dimensional,

3) there is a finite number of λ1, · · · , λs ∈ h̃∗ such that

wt(V ) ⊂
⋃

1≤i≤s

D(λi).

The category O is stable by submodules and quotients.
For V1, V2 representations of g̃, we can define a structure of g̃-module

on V1 ⊗ V2, by using the coproduct ∆ : g̃→ g̃⊗ g̃ :

∆(g) = g ⊗ 1 + 1⊗ g for g ∈ g̃.

Proposition 4.4. If V1, V2 are modules in the category O, V1⊕V2 and
V1 ⊗ V2 are in the category O.

The result follows from the following observations : for λ ∈ h̃∗, we
have

(V1 ⊕ V2)λ = (V1)λ ⊕ (V2)λ,

(V1 ⊗ V2)λ =
⊕

µ∈h̃∗

(V1)µ ⊗ (V2)λ−µ,
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D(λ) + D(λ′) = D(λ + λ′) for λ, λ′ ∈ h̃∗.

4.4. Verma modules and simple highest weight modules. In this
subsection we study important examples of modules in the category O.

Let U(ĝ) be the enveloping algebra of ĝ : it is defined by generators
Ei, Fi, Hi (where 0 ≤ i ≤ n), and the same relations than ĝ described
in Theorem 3.6 where [a, b] means ab− ba. One can define in the same
way U(g̃).

For λ ∈ h̃∗, let

J(λ) = U(g̃)n̂+ +
∑

h∈h̃∗

U(g̃)(h− λ(h)) ⊂ U(g̃).

As it is a left ideal of U(g̃), M(λ) = U(g̃)/J(λ) has a natural struc-
ture of a U(g̃)-module by left multiplication. M(λ) is called a Verma
module.

Proposition 4.5. M(λ) is in the category O and has a unique maximal
proper submodule N(λ).

Proof: We have wt(M(λ)) ⊂ D(λ) and for µ = λ −
∑

i=0···n miαi ∈
D(λ) (where mi ≥ 0) and m =

∑

0≤i≤n mi we have

(M(λ))µ ⊂
∑

(i1,··· ,im)∈{0,··· ,n}m

CFi1 · · ·Fim .

Note that (M(λ))λ = C.1 is of dimension 1 and that M(λ) is generated
by (M(λ))λ. In particular a proper submodule N of M(λ) satisfies
Nλ = {0}. In particular the sum Nmax of all proper submodules of
M(λ) satisfies (Nmax)λ = 0 and so is proper. This gives the existence
and unicity of the maximal proper submodule of M(λ) : N(λ) = Nmax.

�

As a consequence of the proposition, M(λ) has a unique simple quo-
tient

L(λ) = M(λ)/N(λ).

Proposition 4.6. L(λ) is in the category O and all simple modules of
the category O are of the form L(λ) for a certain λ.

Proof: L(λ) is inO as a quotient of a module inO. Consider L a simple
module in O and let λ maximal for � in wt(λ) (it exists by property
3) of definition 4.3). Let v ∈ Lλ − {0}. Then we have n̂+.v = {0} and
so L = U(g̃).v is a quotient of M(λ). As L is simple, this quotient is
isomorphic to L(λ). �
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4.5. Characters and integrable representations. The character
of a module V in O is by definition

χ(V ) =
∑

λ∈h̃∗

dim(Vλ)e(λ),

where the e(λ) are formal elements.
In general a representation V in O has no composition series

V0 = V ⊃ V1 ⊃ V2 ⊃ · · ·

where Vi/Vi+1 is simple for i ≥ 0. But we have the following "replace-
ment" :

Lemma 4.7. For V a representation in O and λ ∈ h̃∗, there are sub-
modules {0} = V0 ⊂ V1 ⊂ · · ·Vt−1 ⊂ Vt = V such that for 1 ≤ i ≤ t,
Vi/Vi−1 ≃ L(λi) for an λi � λ, or (Vi/Vi−1)µ = {0} for all µ � λ.

This is proved by induction on
∑

µ�λ dim(Vµ). As a consequence of

this result, for V in O the character χ(V ) of V is a sum of characters
of simple representations in O.

In general L(λ) is not finite dimensional : the notion of finite dimen-
sional representations has to be replaced by the notion of integrable
representations in the category O.

Definition 4.8. A representation V of g̃ is said to be integrable if
i) V is h̃-diagonalizable,

ii) for λ ∈ h̃∗, dim(Vλ) <∞,
iii) for all λ ∈ wt(V ), for all i ∈ {0, · · · , n}, there is M ≥ 0 such

that for m ≥ M , λ + mαi /∈ wt(V ) and λ−mαi /∈ wt(V ).

The character of the simple integrable representations in the category
O satisfy remarkable combinatorial identities (related to MacDonald
identities).

4.6. Evaluation representations. Let a ∈ C∗. For V a finite dimen-
sional representation of g, one defines a structure of ĝ-modules on V
(v ∈ V , x ∈ g, P (t) ∈ L) :

(P (t)x).v = P (a)x.v , c.v = 0.

This module is denoted by V (a) and is called an evaluation represen-
tation (as we evaluate P (t) at a). Note that in general the structure
can not be extended to a representation of g̃.

Example : for g = sl2 and m ≥ 0, consider Vm the m+1 simple finite
dimensional representation of sl2. Let a ∈ C∗. Then the ŝl2-module
Vm(a) is defined by :

Vm(a) = Cv0 ⊕Cv1 ⊕ · · · ⊕ Cvm,
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(Ktr).vj = ar(m− 2j)vj,

(Etr).vj = ar(m− j + 1)vj−1,

(Ftr).vj = ar(j + 1)vj+1,

c.vj = 0,

where we denote v−1 = vm+1 = 0.

We can see that Vm(a) is ĥ-diagonalizable (the vj are weight vectors).
However it is not an highest weight representation (that is to say it is
not generated by a weight vector v satisfying n̂+.v = {0}) as we have

E0.v0 = (t⊗ f)v0 = av1 6= 0.

To understand there representations from a different "highest weight"
point of view, we have to use the second triangular decomposition of ĝ

:
ĝ = Ln+ ⊕ (Lh⊕Cc)⊕ Ln−.

Note that the new Cartan subalgebra Lh⊕ Cc is infinite dimensional,
and so the corresponding theory has major differences with the usual
one. For example the notion of "highest weight" has to be replaced
by series of complex numbers corresponding to the eigenvalues of the
(tr ⊗Hi)1≤i≤n,r∈Z.

Let us look at a similar construction of infinite dimensional "vertex"
representations. Let us consider the algebra g̃′ which is defined exactly
as g̃, except that we use C((t)) instead of L. We can define in the same
way the category O, the simple highest weight representations and the
level for g̃′. For V a finite dimensional representation of g we can define
a structure of g̃′-module on V ((z)) = C((z)) ⊗ V by (v ∈ V , x ∈ g,
f(z), g(z) ∈ C((z))) :

(f(z)⊗ x).(g(z)⊗ v) = f(z)g(z)⊗ (x.v),

c.(g(z)⊗ v) = 0 , d.(g(z)⊗ v) = z
dg(z)

dz
⊗ v.

Analog representations can be considered for ĝ′ (analog of g̃′ for ĝ).

4.7. Level of representations. Let us recall the statement of the
well-known Schur lemma :

Lemma 4.9. A central element c of a Lie algebra acts as a scalar on
a simple finite dimensional representation L.

Proof: c has an eigenvalue λ, and Ker(c − λId) is a submodule of L,
so L = Ker(c− λId). �

The result holds for g̃-modules which are h̃-diagonalizable with finite
dimensional weight spaces. In particular, c ∈ g̃ acts as a scalar k ∈ C

on a simple representation V of the category O.
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Definition 4.10. A representation V is said to be of level k if c acts
as kId on V .

All simple representations of the category O have a level. The cate-
gory of modules of the category O of level k is denoted by Ok.

Note that one can define the same notion for ĝ and then for example
the evaluations representations have level 0.

Note that λ ∈ h̃∗ is characterized by the image of λ in h∗, the level
λ(c) ∈ C and λ(d) ∈ C. So the data of an element of h̃∗ is equivalent
to the data of (λ, k, k′) where λ ∈ h∗ and k, k′ ∈ C. In particular the
notation Lλ,k,k′ is used for the simple modules of the category O.

The level k = −h∨ (where h∨ is the dual Coxeter number of g,
see above) is particular as the center of ĝ/ĝ(c − k) is large and the
representation theory changes drastically at this level (see below). This
level is called critical level. For example it is of particular importance
for application to Conformal Field Theory and Geometric Langlands
Program.

Unless the category O is stable by tensor product, the category Ok

is not stable by tensor product (except for k = 0). Indeed from ∆(c) =
c⊗ 1 + 1⊗ c we get that for V1, V2 representations respectively in Ok1

,
Ok2

, the module V1 ⊗ V2 is in Ok1+k2
. This is one motivation to study

the fusion product in the next section.
For complements on this section, the reader may refer to [C, EFK,

Fr, K1, K2].

5. Fusion product, conformal blocks and

Knizhnik-Zamolodchikov equations

In this section we give a glimpse on examples of mode advanced
subjects related to representations of affine Kac-Moody algebras.

In the following "KZ" means Knizhnik-Zamolodchikov.

5.1. Construction of the fusion product.

Definition 5.1. A representation V of ĝ′ is said to be smooth if for
all v ∈ V , there is N ≥ 0 such that for all g1, · · · , gN ∈ g :

(t⊗ g1)(t⊗ g2) · · · (t⊗ gN).v = 0.

(The vectors v with such a property are called smooth vectors.)

In this section we explain how to construct a smooth module in Ok

as a fusion of two smooth modules in Ok. In the following the level k
of considered representations of ĝ satisfies k /∈ −h∨ + Q≥0.

Let us give a "reason" why this restriction is required : let V be a
smooth module in Ok such that dim(

⋂

g∈g Ker(t ⊗ g)) < ∞. If k /∈
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−h∨ + Q then V is semi-simple and if k /∈ −h∨ + Q≥0 then V has a
finite composition series.

However if we restrict to certains subcategories of smooth represen-
tations in Ok, an analog construction holds for any k (see [Fi]).

Consider V1, · · · , Vn smooth representations of ĝ′ of level k. Let
s1, · · · , sn+1 ∈ P1(C) distinct and C ′ = P1(C) − {s1, · · · , sn+1}. Con-
sider the algebra R of functions f : C ′ → C which are regular outside
the points s1, · · · , sn+1 and which are meromorphic at these points.

Let us define the bilinear map {, } : R ×R→ C by (f1, f2 ∈ R) :

{f1, f2} = Resn+1(f2d(f1))

where Resi is the residue of the expansion at the point si. By the
residue theorem we have also

{f1, f2} = −
∑

i=1···n

Resi(f2d(f1)).

Lemma 5.2. {, } is skew symmetric

{f1, f2} = −{f2, f1}, for all f1, f2 ∈ R,

and is a cocycle, that is to say :

{f1f2, f3}+ {f2f3, f1}+ {f3f1, f2} = 0 for all f1, f2, f3 ∈ R.

Let Γ = (R ⊗ g)⊕ Cc the Lie algebra such that c is central and for
f, g ∈ R, x, y ∈ g :

[fx, gy] = fg[x, y] + {f, g}(x, y)c.

Consider n copies ĝ′
1, · · · , ĝ

′
n of ĝ′ with respective central elements

c1, · · · , cn. We define (ĝ′)n as the Lie algebra

(ĝ′)n = (ĝ′
1 ⊕ · · · ⊕ ĝ′

n)/(c1 = c2 = · · · = cn).

The image of the central elements ci in (ĝ′)n is denoted by c ∈ (ĝ′)n.

Lemma 5.3. We have two Lie algebra morphisms p1 : Γ → ĝ′, p2 :
Γ→ (ĝ′)n defined by (f ∈ R, x ∈ g) :

p1(fx) = (f)n+1x , p1(c) = c,

p2(fx) =
∑

1≤s≤n

(f)sx , p2(c) = −c,

where (f)s ∈ C((t)) is the expansion of f at ps.

Now let W = V1 ⊗ V2 ⊗ · · · ⊗ Vn. As V1, · · · , Vn have the same level
k, W has a structure of (ĝ′)n-module defined by :

gi.(v1, · · · , vN) = (v1, · · · , vi−1, givi, vi+1, · · · , vN) for gi ∈ ĝ′
i,

c.(v1, · · · , vN) = k(v1, · · · , vN).
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So W is also a Γ-module of level −k by lemma 5.3.
For N ≥ 0, let WN be the subspace of W generated by the elements

of the form

(f1 ⊗ g1)((f2 ⊗ g2)(· · · (fN ⊗ gN)(w)) · · · ),

where w ∈ W , g1, · · · , gN ∈ g and f1, · · · , fN ∈ R have an expansion
in tC[[t]] at sn+1.

We get inclusions · · · ⊂ W2 ⊂ W1 ⊂ W and so a sequence of linear
maps

(W/W1)← (W/W2)← · · · .

The projective limit is denoted by Ŵ .
Let us define a structure of ĝ′-module of level −k on Ŵ . An element

w ∈ Ŵ can be written in the form w = (w1, w2, · · · ) where wi ∈ Wi

and wi+1 − wi ∈ Wi. Let f ∈ C((t)) and g ∈ g. Consider fi ∈ R such
that f − (fi)n+1 ∈ tiC[[t]] and q ≥ 0 such that f ∈ t−qC[[t]]. Then we
define :

(f ⊗ g)w = ((f1 ⊗ g)wq+1, (f2 ⊗ g)wq+2, · · · ),

where (fi ⊗ g)wq+i is given by the Γ-module structure on W .

Proposition 5.4. The above formula is well-defined and gives a struc-
ture of ĝ′-module on Ŵ .

By Lemma 5.3, Ŵ is also a Γ-module.
Remark : to construct a tensor category structure, it is necessary

to consider the ĝ-module Ŵ ω obtained from the ĝ-module Ŵ by the
twisting ω : ĝ → ĝ satisfying ω(tr ⊗ g) = (−t)−r ⊗ g, ω(c) = −c, and

then to consider the submodule of smooth vectors of Ŵ ω. We get a
smooth module of level k.

It is remarkable that the corresponding tensor category is related to
certain categories of representations of quantum groups.

For complements see [D2, KL1, KL2, CP].

5.2. Solutions of KZ equations - examples. In this section and
next section we suppose that k 6= h∨.

Suppose that we have W0, · · · , Wm highest weight representations of
g̃ of level k and whose restricted highest weights to h are respectively
λ0, · · · , λm ∈ h∗. Let V1, · · · , Vm be simple finite dimensional represen-
tations of g of corresponding highest weights µ1, · · · , µm. The Vj((z))
where defined in section 4.6. We consider intertwining operators :

Ij(z) : Wj →Wj−1 ⊗ Vj((z)),

that is to say we have for r ∈ Z, g ∈ g

Ij(z) ◦ (tr ⊗ g) = ((tr ⊗ g)⊗ 1 + 1⊗ (zr ⊗ g)) ◦ Ij(z).
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Usually a shift is used in the notations. To use it let us define the
Casimir element. Let

Ψ : g⊗ g→ End(g),

(g1 ⊗ g2) 7→ (g 7→ (g1, g)g2).

We denote T = Ψ−1(Id) and T ′ the image of T by multiplication in
U(g). For (bk)k a basis of g and (b∗k)k the dual basis of g relatively to (, )
defined by (b∗k, bk′) = δk,k′, we have T =

∑

k b∗k⊗bk and so T ′ =
∑

k b∗kbk.
Note that in general T ′ ∈ U(g) is not in g.

For λ a weight, let Cλ the scalar corresponding to the action of T ′

on the simple g-module of highest weight λ. The conformal weight of
λ is

h(λ) =
Cλ

2(k + h∨)
.

We replace Ij(z) by Ij(z)zh(µj )+h(λj)−h(λj−1).
Let us define Tj,i the image of T in

Id⊗ · · · ⊗ Id⊗ End(Vj)⊗ Id⊗ · · · ⊗ Id⊗ End(Vi)⊗ Id⊗ · · · ⊗ Id,

that is to say for T =
∑

k b∗k⊗bk, b∗k acts on End(Vj) and bk on End(Vi).
Consider formal variables z1, · · · , zm and the map

f : Wm →W0 ⊗ V1((z1))⊗ V2((z2))⊗ · · · ⊗ Vm((zm)),

f =(IV1,W0,W1
(z1)⊗ Id⊗(m−1)) ◦ · · ·

◦ (IVm−1,Wm−2,Wm−1
(zm−1)⊗ Id) ◦ IVm,Wm−1,Wm

(zm).

We can look at f as a matrix with coefficients in

V1((z1))⊗ V2((z2))⊗ · · · ⊗ Vm((zm)).

Proposition 5.5. f satisfies the KZ equation :

∂f

∂zj

=
1

k + h∨

∑

i6=j

Tj,i

zj − zi

(f).

Let us look at a simple explicit example of a solution. Let g = sl2.
We have h∨ = 2. As (e, f) = 2, (h, h) = 4 and (e, h) = (f, h) = (e, e) =
(f, f) = 0, we have

T =
1

2
(e⊗ f + f ⊗ e +

1

2
h⊗ h).

Let V1, · · · , VN be highest weight vectors representations, vi ∈ Vi an
highest weight vector and λi ≥ 1 the highest weight of Vi (here P+ is
identified with N). Let

v = v1 ⊗ · · · ⊗ vn.
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We have Ti,jv =
λiλj

4
v. Then

Ψ(z1, · · · , zN) =
∏

i<j

(zi − zj)
λiλj/(4(2+k))v,

is a solution of the KZ equation. Indeed ∂Ψ(z1,··· ,zN )
∂zj

is equal to

Ψ(z1, · · · , zN)(
∑

i<j

λiλj

4(2 + k)

1

−zi + zj
+

∑

i>j

λiλj

4(2 + k)

1

zj − zi
)

=
1

2 + h∨

∑

i6=j

Tj,i

zj − zi
(f).

For complements see [KZ, FR, EFK, CP].

5.3. Conformal blocks, space of coinvariants and KZ connec-

tion. The constructions of this section are closely related to the con-
struction of section 5.1. But the context is different as we want to focus
on applications on KZ equations (some objects are defined both in this
section and in section 5.1).

The Wess-Zumino-Witten (WZW) model is a model of Conformal
Field Theory whose solutions are realized by affine Kac-Moody alge-
bras (Conformal field theory has important applications in string the-
ory, statistical mechanics, and condensed matter physics). The Hilbert
space of the WZW model is

⊗

λ∈P+ Lλ,k ⊗ Lλ,k. To study the WZW
model, important algebraic objects are the spaces of conformal blocks
defined bellow.

Consider s1, · · · , sn ∈ P1(C)−{∞} distinct. ĝ′
i, Γ, (ĝ′)(n) are defined

as in section 5.1.
For M a representation of g, M has a structure of (g[[t]] ⊕ C.c)-

module such that tg[[t]](M) = 0 and c acts as k on M . Then we

consider the ĝ′-module M̂ = Indĝ′

g[[t]]⊕CcM . As a vector space M̂ =

U(t−1C[t−1]⊗g)⊗C M . For example if M is a Verma module of g then

M̂ is a Verma module of ĝ′ of level k.
Let M1, · · · , Mn be representations of g.

⊗

i=1,··· ,n M̂i is a Γ-module.

The space of conformal blocks C0
k(s1, · · · , sn, M1, · · · , Mn) is the sub-

space of the space of linear functions

φ :
⊗

i=1,··· ,n

M̂i → C
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which are invariant by the Lie subalgebra of Γ of maps which vanish
at ∞. The restriction to

⊗

i=1,··· ,n Mi defines an isomorphism

C0
k(s1, · · · , sn, M1, · · · , Mn) ≃ (

⊗

i=1,··· ,n

Mi)
∗.

Note that the notion of conformal blocks can also be defined as sub-
spaces of (

⊗

i=1,··· ,n Mi)
∗ : simple quotients of M̂i are considered instead

of M̂i and the invariance for the whole Γ is required, and so with this
definition we get a subspace of g-invariant elements of (

⊗

i=1,··· ,n Mi)
∗

(for instance see [U]).
The space of coinvariants is by definition the dual space of the space

of conformal blocks.
Now we suppose that (s1, · · · , sn) can vary in

Cn = Cn −
⋃

i6=j

(si = sj).

We consider C0
k(M1, · · · , Mn) the trivial bundle on Cn with fibers

(
⊗

i=1,··· ,n

Mi)
∗.

The following connection on C0
k(M1, · · · , Mn) arises naturally from

general results on conformal blocks :

▽j =
∂

∂sj

−
1

k + h∨

∑

i6=j

Tj,i

sj − si

,

where the operators Ti,j are defined as in the previous section. This
connection is called the KZ connection. This connection is flat, the
operators commute :

[▽i,▽j] = 0.

This last point be checked by using elementary properties of the Casimir
element Tj,i = Ti,j and [Tj,i, Tj,r + Ti,r] = 0.

For complements see [FFR, Fr, FB, U].
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