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1 Introduction

The material included in these lectures is taken from a series of joint pa-
pers with O.Guès, M.Williams and K.Zumbrun. They concern the linear
and nonlinear stability of viscous boundary layers which arise when one
considers small viscosity parabolic perturbations of noncharacteristic multi-
dimensional hyperbolic boundary value problems. The analysis of boundary
layers is a major issue in many applications, for instance in fluid mechanics,
and there is a huge literature in books of mechanics concerning all kinds of
layers. Moreover, after suitable modifications, the study of layers applies
to the analysis of shock waves: shock waves can be seen as (smooth) solu-
tions of a free boundary value problem, or more accurately as solutions of
a transmission problem across a free interface. Classical Lax’s shocks are
noncharacteristic, and constitute a major motivation for the analysis pre-
sented here. In this approach, the conservative character of the equations
as well as the classical Lax’ shock conditions are unessential, so that the
analysis presented here also applies to nonclassical shocks (overcompressive
or nonconservative) as long as they remain noncharacteristic.

Several references for the mathematical analysis of boundary layers for
linear equations are [BBB], [BaRa], [Lio]. The semilinear symmetric dis-
sipative case is completely solved in [Gue1]. This paper gives a rigorous
complete asymptotic description of the layer, at all order of approximation.
It also concerns characteristic and noncharacteristic problems, pointing out a
fundamental difference between this two cases. For noncharacteristic bound-
aries, the layer has a characteristic width of order ε, the magnitude of the
viscosity, and the layer profile is given by an ordinary differential equation;
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for characteristic boundaries, the characteristic width of the layer is of order√
ε and the layer is given by a partial differential equation.

The analysis of noncharacteristic boundary layers for quasilinear equa-
tions, is started in [GrGu] for small layers and symmetric systems (see
also the results in one space dimension given in [Gis, GiSe, GrRo] and in
[GoXi, Rou2] for shocks). The case of characteristic boundaries is much more
delicate: in the example of Navier-Stokes equations, the PDE’s governing
the layer which are expected after formal computations, are Prandtl’s equa-
tions, which are known to present strong instabilities, in accordance with
well known physical instabilities. This is why, motivated by the analysis of
shock waves and some particular examples of in or out-flow boundary con-
ditions for Navier-Stokes and MHD equations (see [GMWZ8] and the refer-
ences therein), we will restrict our attention to noncharacteristic boundaries.

In [GrGu], the linear and nonlinear stability of the layer is proved under
a sufficient smallness condition, whose analogue for shocks is never satisfied.
The sharp conditions for stability can be analyzed using a spectral (Fourier-
Laplace) analysis. The spectral stability conditions have a nice natural for-
mulation in terms of Evans function. Evans functions have been introduced
in the study of the stability of planar viscous shock and boundary layers (see,
e.g., [GaZu, ZuHo, ZuSe, Zum2, Ser, Rou1], and references therein). They
play the role of the Lopatinski determinant for boundary value problems
with constant coefficients. When they vanish in the open left half plane, the
problem is strongly unstable and when they do not vanish in the closed half
space, the problem is expected to be strongly stable. In space dimension
one, this has been proved to be correct for boundary layers in [GrRo] and
in [Rou2] for shocks. Next, this has been extended to any dimension in
[MéZu1], for fully parabolic perturbations of hyperbolic systems with con-
stant multipliciy (see also [GMWZ1, GMWZ2, GMWZ3] for shocks). The
case of partial viscosities such as Navier-Stokes equations and hyperbolic
systems with variable multiplicity such as magneto-hydodynamics is treated
in [GMWZ4, GMWZ5, GMWZ6].

We now briefly describe the main lines of these lectures. We denote by t
the time variable and by (y, x) ∈ R

d−1 ×R the space variables. We consider
a boundary value problems, for simplicity in the half space {x > 0},

(1.1) L(u, ∂)u− εB(u, ∂u, ∂2u) = 0, Υ(u, ε∂u) = 0.

Here L is a first order hyperbolic problem, B a second order term, partially
elliptic in the spatial derivatives and Υ denote the boundary conditions.
The precise assumptions are given in Section 2. The main goal is to study
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the small viscosity limit ε→ 0. The limiting hyperbolic equation is

(1.2) L(u, ∂)u = 0

for which the the boundary conditions Υ are not (in general) adapted. In
the interior, the solutions uε of (1.1) converge to a solution u0 of (1.2). Part
of the problem is to find the boundary conditions

(1.3) Γ0(u) = 0

satisfied by the limit u0. In general, uε − u0 is small in the interior but
is large at the boundary because of the mismatch of the boundary values.
This means that uε − u0 has a rapid variation near the boundary : this is
the boundary layer.

Example 1.1. Consider the model case

(1.4)

{
∂tuε − ∂xuε − ε∂2

xuε = f, x > 0,

uε(0) = 0.

The limiting problem is
∂tu− ∂xu = f,

without any boundary condition (the field is propagating to the left). For
f = e−x, the stationary solution is

uε(x) =
1

1 − ε
e−x − 1

1 − ε
e−x/ε.

The first term converges to u0(x) = e−x and the second term is the boundary
layer which makes the connection with the boundary conditions uε(0) = 0.
It is exponentially decaying in x/ε; this will be a general feature of the layers
considered in these notes.

The main idea is that the solutions uε of (1.1) look like

(1.5) uε(t, y, x) = u0(t, y, x) + U(t, y,
x

ε
) +O(ε)

where u0 is a solution of (1.2) and U satisfies

lim
z→+∞

U(t, y, z) = 0.
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Plugging (1.5) into the equation, reveals a singular term in ε−1. Equating
this term to 0 shows that for fixed (t, y, x), the function z 7→ w(z) :=
u(t, y, x) + U(t, y, z) satisfies a second order ordinary differential system

(1.6) L′
0(w, ∂zw, ∂

2
zw) = 0.

Moreover, for x = 0, w must satisfy the boundary condition

(1.7) Υ(w, ∂zw)|z=0 = 0

and the end point condition

(1.8) lim
z→+∞

w(z) = u0(t, y, 0).

This indicates what are the natural boundary conditions for u0:

Definition 1.2. Let C denote the set of end points u such that there is
a solution of (1.6)(1.7) which converges to u at infinity. Then the natural
boundary conditions for the limiting hyperbolic system (1.2) are

(1.9) u0|x=0 ∈ C.

In these lectures, we will discuss the following aspects of the problem:
- Construction of layer profiles; they are exact solutions

(1.10) uε(x) = w
(x
ε

)
,

of (1.1). The profiles w(z) are solutions of (1.6) (1.7) They converge to a
limit as z tends to infinity:

(1.11) lim
z→∞

w(z) = w.

The form of the equations L′
0 implies that constants are solutions of (1.6).

The central-stable manifold theorem gives the solutions of the profile equa-
tion near infinity, with end state close to a given w. The problem is to
find solutions which extend to z ∈ [0,∞[ and satisfy the boundary condi-
tion (1.7). Given such a solution, the regularity properties of the set C near
the end point w depend on transversality properties of the central-stable
manifold and the boundary conditions. This is detailed in Section 3.
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- Spectral stability ; it expresses the well posedness of the linearized
equations near a layer profile. These linearized equations have the form :

(1.12) L
(x
ε
, ε∂t, ε∂y, ε∂x

)
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ.

They have constant coefficients in (t, y), and following the usual theory
of constant coefficient evolution equations, one performs a Laplace-Fourier
transform in (t, y). After rescaling, one obtains the spectral equation :

(1.13) L(z, γ + iτ, iη, ∂z)u = f, Υ′(u, iηu, ∂zu)|z=0 = g.

The spectral stability conditions concern the well posedness of the equations
(1.13) for γ ≥ 0. They can be formulated using a suitable Evan’s function. A
key point is to link the spectral stability of the viscous and inviscid problems:
this was done first in [ZuSe] (see also [Rou1]). We will present here a new
proof which reduces the analysis to a nonsingular perturbation problem and
does not require any constant multiplicity assumption. This is explained in
Sections 4 and 5.

- Symbolic symmetrizers; their construction is the main topic discussed
in these lectures, developed in Sections 6 to 9. They are Fourier multipliers
that are used to prove L2 a-priori estimates for the solutions of (1.13).
Indeed the one space dimension methods used in [GrRo, Rou2] do not extend
to the multidimensional case and the Lp estimates of the Green’s function
(see [Zum2] and the reference therein) are insufficient. This is a consequence
of focusing and spreading in the underlying hyperbolic propagation. We
want uniform estimates which gives the hyperbolic estimates in the limit
ε → 0, which translates in the limit ζ := (τ, η, γ) → 0 in (1.13) due to
the rescaling. This leads to look for methods which are suitable for the
analysis of both hyperbolic boundary-value problems and their parabolic
regularizations. In multi-dimensions we are restricted by the hyperbolic limit
to seeking L2 → L2 bounds. To satisfy these requirements, we follow Kreiss’
analysis of hyperbolic equations based on the construction of symmetrizers.
The basic estimate concerns the L2 stability of the linearized equations, and
is proved using symmetrizers and a suitable extension of Kreiss’ analysis to
parabolic-hyperbolic problems.

- The linear stability ; the question is to prove that the linearized equa-
tions near an approximate solution uε of the form (1.5) are well-posed. Keep-
ing only the main terms, they read

(1.14) L
(
t, y, x,

x

ε
, ε∂t, ε∂y, ε∂x

)
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ.
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They are slow perturbations in (t, y, x) of (1.12). The main goal is to prove
that the L2 estimates obtained by using Fourier multipliers when uε is a
profile (1.10) extend to the case where uε has the more general form (1.5).
This is done using a suitable pseudo or para-differential calculus, which
transforms the Fourier multiplier calculus into an operator calculus. In this
analysis, the Fourier multipliers are used as the symbols of the operators.
However, several calculi are needed to reflect both the semi-classical aspects
and the different homogeneities. This is briefly discussed in Section 10.

- The nonlinear stability ; the objective is to prove the existence, on an
interval of time independent of ε, of exact solutions satisfying (1.5) of the
parabolic-hyperbolic equations (1.1). In a first step, one construct approxi-
mate solutions

(1.15) uapp
ε (t, y, x) =

n∑

k=0

εk
(
uk(t, y, x) + Uk(t, y,

x

ε
)
)

which satisfy the equation up to source term of size O(εn). Next one con-
struct exact solutions of the form

(1.16) uε = uapp
ε + εnvε.

The equations for vε are solved by iterative methods which involve the res-
olution of linearized problems. Bounds for the iterates and convergence
follow from the L2 and Sobolev estimates which have been obtained for the
linearized equations. Two methods are presented in Section 11: for fully
elliptic viscosities, strong parabolic estimates are available for the linearized
equations and the standard implicit function theorem yields the results with
first order approximate solutions (n = 1). In the general case, one uses hy-
perbolic type iterates starting from an accurate approximate solution, that
is with n large in (1.15).

2 Hyperbolic-parabolic boundary value problems

2.1 Structure of equations

Consider a system of equations

(2.1) Lε(u) := A0(u)∂tu+

d∑

j=1

Aj(u)∂ju− ε

d∑

j,k=1

∂j

(
Bj,k(u)∂ku

)
= 0.
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When ε = 0, L0 is first order and assumed to hyperbolic; ε plays the role
of a non-dimensional viscosity and for ε > 0, the system is assumed to be
parabolic or at least partially parabolic, see below. Systems of conservation
laws

(2.2) Lε(u) := ∂tf0(u) +
d∑

j=1

∂jfj(u) − ε
d∑

j,k=1

∂j

(
Bj,k(u)∂ku

)
= 0

are particular cases of systems (2.1) with Aj(u) = ∇ufj(u). Classical exam-
ples are Navier-Stokes equations of gas dynamics, or equations of magneto-
hydrodynamics.

The form of the equation is preserved by changes of unknowns u = Φ(ũ)
and by multiplying on the left the equations by constant invertible matrices.
To cover the case of partial viscosity and motivated by the examples of
Navier-Stokes equations and MHD, we make the following assumtion

Assumption 2.1. (H0) (Smooth fluxes and viscosity) The matrices Aj and
Bj,k are C∞ N ×N real matrices of the variable u ∈ U∗ ⊂ R

N . Moreover,
for all u ∈ U∗, the matrix A0(u) is invertible.

(H1) (Block form) Possibly after a change of unknowns u and multiply-
ing the system on the left by an invertible constant coefficient matrix, there
are coordinates u = (u1, u2) ∈ R

N1 × R
N2

and f = (f1, f2) ∈ R
N1 × R

N2

,
with N1 + N2 = N , such that the following block structure condition is
satisfied :

(2.3) A0(u) =

(
A11

0 0
A21

0 A22
0

)
, Bjk(u) =

(
0 0
0 B22

jk

)
,

We refer to [GMWZ4] for a geometric formulation of condition (H1),
independent of coordinates u ∈ U∗ and we also refer to [Zum3] for further
comments and explanations. From now on we work with variables u =
(u1, u2) ∈ U∗ such that (2.3) holds. We set

Aj = f ′j , Aj = A−1
0 Aj , Bj,k = A−1

0 Bj,k,(2.4)

and systematically use the notation Mαβ for the sub-blocks of a matrix M
corresponding to the splitting u = (u1, u2). Note that

(2.5) Bj,k(u) := A0(u)
−1Bjk(u) =

(
0 0

0 B
22
jk(u)

)
.
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The triangular form of the equations also reveals the importance of the (1, 1)
block which plays a special role in the analysis :

(2.6) L11(u, ∂) =
d∑

j=0

A11
j (u)∂j , or L

11
(u, ∂) =

(
A11

0 (u)
)−1

L11(u, ∂).

In this spirit, the high frequency principal part of the equation is

(2.7)

{
L

11
(u, ∂)u1

∂tu
2 − εB

22
(u, ∂)u2

with B
22

(u, ξ) =
∑d

j,k=1 ξjξkB
2,2
j,k(u). The first natural hypothesis is that

L11(u, ∂) is hyperbolic and ∂t −B
22

(u, ∂) is parabolic in the direction dt.

Assumption 2.2. (H2) (Partial parabolicity) There is c > 0 such that for

all u ∈ U∗ and ξ ∈ R
d, the eigenvalues of B

22
(u, ξ) satisfy Reµ ≥ c|ξ|2.

(H3) (Hyperbolicity of the 1-1 block) For all u ∈ U∗ and all ξ ∈ R
d\{0},

A
11

(u, ξ) =
∑d

j=1 ξjĀ
11
j (u) has only real eigenvalues.

For the applications we have in mind such as Navier-Stokes and MHD,

the operator L
11

is a transport field and (H3) is trivially satisfied.
Next we assume that the inviscid equations are hyperbolic and that

Kawashima’s genuine coupling condition is satisfied for u, in some open
subdomain U ⊂ U∗. Let

A(u, ξ) =
d∑

j=1

ξjAj(u) and B(u, ξ) =
d∑

j,k=1

ξjξkBj,k(u).(2.8)

Assumption 2.3. (H4) (Strict dissipativity near the end states) There is
c > 0 such that for u ∈ U and ξ ∈ R

d, the eigenvalues of iA(u, ξ) + B(u, ξ)
satisfy

(2.9) Reµ ≥ c
|ξ|2

1 + |ξ|2 .

Remark 2.4. (H4) implies hyperbolicity of the inviscid equation : for all
u ∈ U and ξ ∈ R

d\{0} the eigenvalues of A(u, ξ) are real. It is important
for applications that U , the domain of hyperbolicity which will contain end
states of the layers, can be strictly smaller than U∗.
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Symmetric systems play an important role, and symmetry will be an
important assumption in some of our results. In particular, the Assump-
tion (H4) is satisfied when the following conditions are satisfied (see [KaS1,
KaS2]):

Definition 2.5. The system (2.1) is said to be symmetric dissipative if there
exists a real matrix S(u), which depends smoothly on u ∈ U , such that for
all u ∈ U and all ξ ∈ R

d\{0}, the matrix SA0 is symmetric definite positive,
S(u)A(u, ξ) is symmetric and ReS(u)B(u, ξ) is non negative with kernel of
dimension N −N2.

Proposition 2.6. If the system is symmetric dissipative, (2.9) is equivalent
to the genuine coupling condition of Kawashima: no eigenvector of Ā(u, ξ)
lies in the kernel of B̄(u, ξ) for ξ ∈ R

d \ {0}.

Navier-Stokes equations satisfy this condition (see e.g. [KaS2]).

Remark 2.7. For systems of conservation laws (2.2), symmetry is implied
by the existence of a strictly convex entropy, see [KaS2]

2.2 Boundary conditions

We consider a boundary value problem for (2.1) in the model case of a
half space, which is given by {x > 0}, in some coordinates (y1, . . . , yd−1, x)
for the space variables. We assume that the boundary is not characteristic
both for the viscous and the inviscid equations. The principal term of the
viscous equation is block diagonal as indicated in (2.7). The B22 block is
noncharacteristic by (H2). Restricting U∗ to a component where the profiles

will take their values, the condition for the A
11

block reads

Assumption 2.8. (H5) U∗ is connected and for all u ∈ U∗, detA11
d (u) 6= 0.

For the inviscid equation, restricting U to the component where the
hyperbolic solutions will take their value, the condition reads

Assumption 2.9. (H6) U is connected and for all u ∈ U , det
(
Ad(u)

)
6= 0.

By Assumption (H3) and Remark 2.4, A
11
d (u) and Ad(u) have only real

eigenvalues, which by (H5) and (H6) never vanish. This leads to two impor-
tant indices :

Notations 2.10. With assumptions as above, N+ denotes the number of
positive eigenvalues of Ad(u) for u ∈ U and N1

+ the number of positive

eigenvalues of A
11
d (u) for u ∈ U∗. We also set Nb = N2 +N1

+.
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The block structure (2.7) suggests that Nb is the correct number of
boundary conditions for the well posedness of (2.1), for solutions with values
in U∗. Indeed, the high frequency decoupling (2.7) suggests that N2 bound-
ary conditions for u2 and N1

+ boundary conditions for u1 are required. On
the other hand, N+ is the correct number of boundary conditions for the
inviscid equation for solutions with values in U . Thus we supplement (2.1)
with boundary conditions

(2.10) Υ(u, ε∂yu
2, ε∂xu

2)|x=0 = 0.

Without pretending to maximal generality, we assume that they decouple
into zero-th order boundary conditions for u1 and zero-th order and first
order conditions for u2:

(2.11)





Υ1(u
1)|x=0 = 0,

Υ2(u
2)|x=0 = 0,

Υ3(u, ε∂yu
2, ε∂xu

2)|x=0 = 0.

with

Υ3(u, ∂yu
2, ∂xu

2) = Kd∂xu
2 +

d−1∑

j=1

Kj(u)∂ju
2.

Assumption 2.11. (H7) (Smooth boundary conditions) Υ1, Υ2 and Υ3

are smooth functions of their arguments with values in R
N1

+, R
N2−N3

and
R

N3

respectively, where N3 ∈ {0, 1, . . . , N2}. Moreover, Kd has maximal
rank N3 and for all u ∈ U∗ the Jacobian matrix Υ′

1(u
1) and Υ′

2(u
2) have

maximal rank N1
+ and N2 −N3 respectively.

3 Layers profiles

3.1 The profile equation

To match constant solutions u of the inviscid problem to solutions satisfying
the boundary conditions, one looks for exact solutions of (2.1) (2.10) of the
form:

(3.1) uε(t, y, x) = w
(x
ε

)
,

such that

(3.2) lim
z→+∞

w(z) = u .
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The equation and boundary conditions for w read

Ad(w)∂zw − ∂z

(
Bd,d(w)∂zw

)
= 0, z ≥ 0(3.3)

Υ(w, 0, ∂zw
2)|z=0 = 0.(3.4)

Solutions are called layer profiles. This equation can be written as a first
order system for U = (w, ∂zw

2), which is nonsingular if and only if A11
d is

invertible (this indicates the strong link between Assumption 2.8 and the
ansatz (3.1)):

(3.5)





∂zw
1 = −(A11

d )−1A12
d w

3,

∂zw
2 = w3,

∂z

(
Bd,dw

3) =
(
A22

d −A21
d (A11

d )−1A12
d

)
w3,

and the matrices Ab and Bd,d are evaluated at w = (w1, w2).
For conservative systems, the equations read

(3.6) ∂zfd(w) − ∂z(Bd,d(w)∂zw) = 0.

They can be integrated once and, splitting the components w1 and w2 they
are equivalent to

(3.7)

{
f1

d (w1, w2) − k1 = 0

Bd,d(w
1, w2)∂zw

2 = f2
d (w1, w2) − k2,

with k = (k1, k2) constant.

3.2 Existence of profiles

The constants are trivial solutions of the layer equation (3.3). The invariant
manifold theorem, implies that near u ∈ U , there is a variety of dimension
N +Nb −N+ of solutions

(3.8) Φ(z, p, a),

depending on the parameters p near u and a in a neighborhood of 0 in
R

Nb−N+ , and such that

lim
z→∞

Φ(z, p, a) = p and Φ(z, p, 0) ≡ p,

(see [Mét4] for fully parabolic viscosity and [GMWZ5] for partial viscosity).
Extend these solutions as maximal solutions. The layer profiles are then
determined by solving the boundary conditions (3.4):

(3.9) T(p, a) := Υ(Φ, 0, ∂zΦ
2)|z=0 = 0.
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The existence of small layers can be proved by perturbation arguments
(see e.g. [GiSe] or [GrGu, Mét4]). For shocks the existence of small ampli-
tude profiles is proved in [MaPe, Peg]. In [Gil] the existence of large profiles
for gas dynamics is studied.

3.3 The inviscid boundary conditions

The natural limiting boundary conditions for the inviscid problem read

(3.10) u|x=0 ∈ C,
where C denotes the set of end points u such that there is a layer profile
w ∈ C∞(R+;U∗) satisfying (3.2) (3.3). The properties of the set C depend
on the well posedness of the equation (3.9), which is a system ofNb equations
for N +Nb−N+ unknows. This property is called transversality in [MéZu1,
Mét4, GMWZ5, GMWZ6].

Definition 3.1. The layer profile w(z) = Φ(z, p, a), supposed to be defined
on [0,+∞[, is said to be transversal if the following two conditions holds

rank∇aT(p, a) = Nb −N+ ,(3.11)

rank∇a,pT(p, a) = Nb .(3.12)

This definition immediately implies the following

Proposition 3.2. If the profile w(z) = Φ(z, p, a), supposed to be defined
on [0,+∞[ is transversal, then near p, C is s smooth manifold of dimension
N −N+, defined by N+ independent equations, T (p) = 0.

Thus, the limiting inviscid boundary conditions (3.10), can be written
T (u) = 0. Note that N+ is the correct number of boundary conditions for
the inviscid equation. For small layers, the transversality condition is sat-
isfied (see e.g. [GrGu]) It is noticeable that for Lax shocks, the analogue
limiting boundary condition always reduce to the usual Rankine-Hugoniot
conditions. Note also that for extreme Lax shocks, the transversality condi-
tions is automatic. The discussion in [Gil] also includes transversality.

These geometric conditions can be rephrased in terms of properties of
the linearized equations from (3.3) (3.4) near w(z), since the derivatives
∂p,aΦ(z, p, a) are solutions of these linearized equations and form a basis of
the space of bounded solutions. We abbreviate the linearized equation and
boundary condition as

(3.13)

{
L(z, ∂z)ẇ, z ≥ 0,

Υ′(ẇ, ∂zẇ
2)|z=0
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Proposition 3.3. The layer profile w is transversal if and only if
i) there is no nontrivial solution ẇ of Lẇ = which satisfies the bound-

ary conditions Υ′(ẇ, ∂zẇ
2)|z=0 = 0,

ii) the mapping ẇ 7→ Γ(ẇ, ∂zẇ
2)|z=0 from the space of solutions of

Lẇ = 0 to C
Nb has rank Nb.

3.4 Examples

1. Burgers equation. In space dimension one, consider for x ≥ 0 the
Burgers-Hopf equation:

(3.14) ∂tu+ u∂xu− ε∂2
xu = 0 , u(0) = 0.

In this case, the inner-layer o.d.e is

(3.15) ∂2
zu = u∂zu , u(0) = 0 .

The equation can be integrated once yielding

∂zu =
1

2
u2 + k , u(0) = 0 .

Depending on the sign of the constant k, there are two families of solutions:

1) u(z) = −λ tanh
(
λz/2)

2) u(z) = µ tan
(
µz/2) .

Changing λ into −λ or µ into −µ does not change the solution, so we can
assume that the parameters are nonnegative. The two families intersect only
on the constant solution u = 0. Solutions of the second family, have a finite
time of existence: they do not provide solutions of (3.14) on the half line.
Thus, we restrict attention to solutions of the first family, which are globally
defined. In this case, we have

lim
z→+∞

u(z) = −λ ≤ 0 .

The end state −λ is non characteristic (i.e. satisfies (H4)) if λ 6= 0. Thus
we have shown:

for the Burgers equation (3.14), the set of noncharacteristic end states p
which can be connected to 0 by a solution of (3.15) is C̃ =] −∞, 0[.
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2. The linear case. Suppose that Ad and Bd,d are constant (independent
of u). The o.d.e. reads

(3.16)

{
∂zu

1 = G12
d ∂zu

2 ,

∂2
zu

2 = G22
d ∂zu

2 ,

with G12
d = −(A11

d )−1A12
d ) and G22

d = (B22
dd)

−1(A22
d +A21

d G
12
d ). The solutions

of the o.d.e are

(3.17)

{
u1(z) = u2(z) + p1 ,

u2(z) = p2 + ezG22
d a ,

with arbitrary constants p and a. Because the eigenvalues of G22
d are real

and different from zero, the explicit formula implies the following results.
1. The solution is bounded if and only if a ∈ E−(G22

d ), the invariant

space for G22
d associated to eigenvalues in the left half space {Imµ < 0}.

2. Bounded solutions of (3.16) converge at an exponential rate at

infinity.

3. The bounded solutions of (3.16) form a manifold of dimension

N +N2
−, where N2

− = dim E−(G22
d ).

We now add boundary conditions for u1 and Dirichlet boundary condi-
tions for u2

Γ1u1
|z=0 = 0, u2

|z=0 = 0

For the solutions of (3.17) this is equivalent to

Γ1p1 = 0, p2 = −a.
Therefore:

4. The set of end states p = (p1, p2) which can be connected to a data

satisfying the boundary condition is the linear space ker Γ1 × E−(G22
d ).

3. Shock profiles for isentropic Navier-Stokes equations. Consider in R
d

the isentropic Navier-Stokes equations

(3.18)

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + ∇p = ε∆u

with p = P (ρ). The profile equations with speed velocity σ, that is relative
to the front xd = σt, read

(3.19)





∂zm = 0,

∂z(p+mud) = ∂2
zud,

∂z(mutg) = ∂2
zutg
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with m := ρ(ud − σ). We look for solutions defined for z ∈ R which end
points (ρ−, u−) and (ρ+, u+). Integrating once the equations and taking the
limits at +∞ and −∞ yields the necessary Rankine-Hugoniot conditions:

(3.20)





[m] = 0 ⇔ [ud] = m[τ ]

[p] +m[ud] = 0,

m[utg] = 0.

with τ = 1/ρ. Thus,

(3.21) m2 = −[p]/[τ ], [ud] = m[τ ], σ = u+
d −mτ+ = u−d −mτ−.

The integrated system (3.19) reads:

(3.22)





ud(z) − σ = mτ(z)

∂z(ud(z) − σ) = m(ud(z) − σ) + p(z) − k

utg(z) = u−tg = u+
tg

with m and k constant. We end up with a scalar equation

(3.23) ∂zτ = mτ +
1

m
ψ(τ) − b,

with ψ(τ) = P (1/τ) and parameters which satisfy the constraints

(3.24) m = [ud]/[τ ], b = mτ+ +
1

m
ψ(τ+) = mτ− +

1

m
ψ(τ−).

The constant k in (3.22) is k = m(u+
d − σ) + p+ = m(u−d − σ) + p−.

A 1-shock satisfies

(3.25) u+ − c+ < σ < u+, u− − c− > σ,

where c = c(ρ) = (1
ρP

′(ρ))
1

2 is the sound speed for the state ρ. Thus

(3.26) 0 < mτ+ = u+ − σ < c+, mτ− = u− − σ > c−.

This is equivalent to

(3.27) m > 0, (c−/τ−)2 < m2 < (c+/τ+)2.

Since c2/τ2 = −ψ′(τ), the Lax conditions for 1-shocks reduce to

(3.28) ψ′(τ+) <
ψ(τ+) − ψ(τ−)

τ+ − τ−
= −m2 < ψ′(τ−) < 0, m > 0
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The sign condition for ψ′(τ−) ensures the hyperbolicity of the end states.
Similarly, for 3-shocks the conditions read

(3.29) u+ + c+ < σ u− + c− > σ > u−,

(3.30) mτ+ = u+ − σ < −c+, 0 > mτ− = u− − σ > −c−,

(3.31) m < 0, (c+/τ+)2 < m2 < (c−/τ−)2.

We end up with the conditions

(3.32) ψ′(τ−) <
ψ(τ+) − ψ(τ−)

τ+ − τ−
= −m2 < ψ′(τ+) < 0, m < 0

As expected, we get the same condition as (3.28) with τ+ and τ− exchanged,
since one passes from 1-shocks to 3-shocks changing x to −x, u, σ,m to
−u,−σ,−m, keeping ρ and inverting the indices + and −.

The equation (3.23) reads

(3.33) ∂zτ = F (τ).

The Rankine Hugoniot condition (3.24) implies that F (τ−) = F (τ+) =
0. Thus, for all initial data in the open interval limited by τ+ and τ−,
the solution of (3.23) is globally defined and remains in this interval. The
stability conditions at ±∞ read

F ′(τ+) < 0, F ′(τ−) > 0,

that is

(3.34)

1

m

{
ψ′(τ+) − ψ(τ+) − ψ(τ−)

τ+ − τ−

}
< 0,

1

m

{
ψ′(τ−) − ψ(τ+) − ψ(τ−)

τ+ − τ−

}
> 0.

As expected, they are implied by the Lax shock conditions (3.28) (3.32).
Moreover, for a, and therefore all, solution to pass from τ− to τ+, it

is necessary and sufficient that F has no rest points in the open interval I
limited by τ− and τ+:

(3.35) ∀τ ∈ I : F (τ) =
τ − τ+

m

(ψ(τ) − ψ(τ+)

τ − τ+
− ψ(τ−) − ψ(τ+)

τ− − τ+

)
6= 0.
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If ψ is strictly decreasing and strictly convex, all these conditions are satisfied
when

(3.36) m2 = −ψ(τ+) − ψ(τ−)

τ+ − τ−
, m(τ+ − τ−) < 0.

Lemma 3.4. Assume that ψ′ < 0 and ψ′′ > 0 on an interval I ⊂]0,+∞[.
Then for all (τ−, τ+) ∈ I × I and m satisfying the stability condition (3.36)
and for all initial data in the open interval limited by τ+ and τ−, the solu-
tion of (3.23) is globally defined, remain in this interval and converges at
exponential rate to τ± at ±∞.

When the profile for τ is known, we deduce the profile for u using (3.22).

Remark 3.5. The profile is determined up to an arbitrary choice of τ(0)
in the interval ]τ+, τ−[. This means that there is a one parameter family
of solutions of the profile equations (3.19). Since the profile τ is strictly
monotone, (because F does not vanish) this is equivalent to the expected
translation indeterminacy due to the translation invariance of the shock
profiles equations.

4 Spectral stability

4.1 The linearized equations

For further use, it is convenient to enlarge the class of functions w: consider
a function C∞(R+;U∗) which converges at an exponential rate to and end
state u ∈ U : there is δ > 0 such that for all k ∈ N

(4.1) eδz
∣∣∂k

z (w(z) − u)
∣∣ ∈ L∞(R+).

We refer to such a function as a profile; it need not be a solution of (3.3),
though it will be in applications. Note that solutions of (3.3) (3.2) satisfy
the exponential convergence above.

Consider the linearized equations from (2.1) (2.10) around uε = w(x/ε):

(4.2) L′
uε
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ.

Here Υ′ is the differential of Υ at (w(0), 0, ∂zw(0)). L′
uε

is a differential
operator with coefficients that are smooth functions of z := x/ε. Factoring
out ε−1 it also appears as an operator in ε∂t, ε∂y, ε∂x:

(4.3) L′
uε

=
1

ε
L
(x
ε
, ε∂t, ε∂y, ε∂x

)
.
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It has constant coefficients in (t, y), and following the usual theory of con-
stant coefficient evolution equations, one performs a Laplace-Fourier trans-
form in (t, y), with frequency variables denoted by γ̃+ iτ̃ and η̃ respectively,
yielding the systems

1

ε
L
(x
ε
, ε(γ̃ + iτ̃), iεη̃, ε∂x

)
.

Next, we introduce explicitely the fast variable z = x/ε, rescale the fre-
quency variables as ζ = (τ, η, γ) = ε(τ̃ , η̃, γ̃) = and multiply the equation by
ε, revealing the equation

(4.4) L(z, γ + iτ, iη, ∂z)u = f, Υ′(u, iηu, ∂zu)|z=0 = g,

with

(4.5) L = −B(z)∂2
z + A(z, ζ)∂z + M(z, ζ)

with in particular, B(z) = Bd,d(w(z)) and A11(z, ζ) = A11
d (w(z)). We do not

give here the explicit form of A and M. Using (H2) and Assumption 2.2,
the equation is written as a first order system

(4.6) ∂zU = G(z, ζ)U + F, Γ(ζ)U|z=0 = g.

for

(4.7) U =

(
u

∂zu
2

)
=




u1

u2

∂zu
2


 ∈ C

N+N2

(4.8) F =




A11(z))−1f1

0
(B22(z))−1(−f2 + A21(z)(A11(z))−1f1)


 .

Similarly, one considers the linearized equations from the inviscid hyper-
bolic problem L0(u) = 0 around the constant solution u:

(4.9) L′
0,uu̇ = ḟ .

After performing a Laplace-Fourier transform, this equation reads

(4.10) L0(u, γ + iτ, iη, ∂x)u = f
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or

(4.11) ∂xu = H0(u, ζ)u+A−1
d (u)f,

with

(4.12) H0(u, ζ) := −(Ad(u))
−1
(
(iτ + γ)A0(u) +

d−1∑

j=1

iηjAj(u)
)
.

4.2 Structure of the linearized equations

The analysis of (4.4) or (4.6) depends on the size of the frequencies ζ. When
ζ is large, the parabolic character is prominent for the components u2. For
small or bounded frequencies ζ, we use the conjugation lemma of [MéZu1].
The condition (4.1) implies that there is δ > 0 and an end state matrix
G(u, ζ), depending on the endstate u of w, such that

(4.13) ∂k
z (G(z, ζ) −G(u, ζ)) = O(e−δz).

Lemma 4.1. Given ζ ∈ R
d+1, there is a smooth invertible matrix Φ(z, ζ)

for z ∈ R+ and ζ in a neighborhood of ζ, such that (4.6) is equivalent to

(4.14) ∂zŨ = G(u, ζ)Ũ + F̃ , Γ̃(ζ)Ũ|z=0 = g.

with U = Φ(z, ζ)Ũ , F = Φ(z, ζ)F̃ and Γ̃(ζ) = Γ(ζ)Φ(0, ζ). In addition, Φ
and Φ−1 converge to the identity matrix at an exponential rate when z → ∞.

Moreover, if the coefficients of the operator and w depend smoothly on
extra parameters p (such as the end state u), then Φ can also be chosen to
depend smoothly on p, on a neighborhood of a given p.

Remark 4.2. The linearized profile equations from (3.3) around w, are
exactly (4.4) at the frequency ζ = 0. In particular, Lemma 4.1 implies
that these equations are conjugated to constant coefficient equations, via
the conjugation by Φ(·, 0).

Next we investigate the spectral properties of the matrix G. Below,

R
d+1
+ denotes the open half space {ζ = (τ, η, γ) : γ > 0} and R

d+1
+ its closure

{γ ≥ 0}. In addition to H0 defined in (4.12), we also introduce the matrix

P0(u) := (B22
dd)

−1
(
A22

d −A21
d (A11

d )−1A12
d

)
,(4.15)
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Lemma 4.3. i) For u ∈ U , P0(u) has no eigenvalue on the imaginary axis.
We denote by N2

− the number of its eigenvalues in {Reµ < 0}.
ii) For u ∈ U and ζ ∈ R

d+1
+ \{0}, G(u, ζ) has no eigenvalue on the

imaginary axis. The number of its eigenvalues, counted with their multiplic-
ity, in {Reµ < 0} is equal to N+ +N2

− = Nb := N2 +N1
+.

iii) For a given u ∈ U , there are smooth matrices V (u, ζ) on a neigh-
borhood of (u, 0) such that

(4.16) V −1GV =

(
H 0
0 P

)

with H(u, ζ) of dimension N ×N , P (u, ζ) of dimension N2 ×N2, and
a) the eigenvalues of P satisfy |Reµ| ≥ c for some c > 0,
b) there holds

(4.17) H(u, ζ) = H0(u, ζ) +O(|ζ|2)

c ) at ζ = 0, V has a triangular form

(4.18) V (u, 0) =

(
Id V
0 Id

)
.

Proof. i) Take u ∈ U . If v2 ∈ kerP0(u), then t
(
−(A11

d )−1A12
d v

2, v2) ∈ kerAd,
implying that 0 is not an eigenvalue of P0. Similarly, if iξ is an eigenvalue
of P then 0 is an eigenvalue of iξAd + ξ2Bd, which is impossible by (H4) if
ξ 6= 0 is real.

ii) Direct computations show that G(u, ζ) = Gd(u, ζ)
−1M(u, ζ) with

Gd(u, ζ) =

(
−Ãd B̃d

J 0

)
, M =

(
M̃ 0N×N2

0N2×N IdN2×N2

)

with, in the splitting u = (u1, u2),

B̃d(u) =

(
0N−N2×N2

B
22
d,d(u)

)
, J =

(
0N2×N−N2 IdN2×N2

)
.

and




Ã(u, ζ) = Ad(u) −
d−1∑

j=1

iηj(Bj,d(u) +Bd,j(u))

M̃(u, ζ) = (iτ + γ)A0(u) +

d−1∑

j=1

iηjAj(u) +

d−1∑

j,k=1

ηjηkBj,k(u) .
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In particular, iξ is an eigenvalue of G(u, ζ) if and only if −(γ + iτ) is an
eigenvalue of iA(η, ξ) +B(η, ξ), which, by (H4), implies either that γ < 0 if
ξ is real and (η, ξ) 6= 0 or that ζ = 0.

Thus G(u, ζ) has no eigenvalues on the imaginary axis and the number

Ñ of eigenvalues in {Reµ < 0} is constant for u ∈ U and ζ ∈ R
d+1
+ \{0}.

That this number is equal to Nb = N1
+ + N2 is a consequence of the high

frequency analysis in Lemma 9.3 below (see also Lemma 1.7 in [Zum3]).
iii) Because M̃(u, 0) = 0 and Ã(u, 0) = Ad(u), there holds

(4.19) G(u, 0) =


 0N×N

(
−(A11

d )−1A12
d

IdN2×N2

)

0N2×N P0(u)




Since P0 is invertible, G can be smoothly conjugated to a block diagonal
matrix as in (4.16), with V satisfying (4.18) andH(u, 0) = 0. More precisely,
the matrix V is

(4.20) V =

(
−(A11

d )−1A12
d P

−
0 1

P−1
0

)

The expansion (4.17) can be easily obtained by standard perturbation ex-
pansions.

For ζ small, the number of eigenvalues of P in {Reµ < 0} is equal to
N2

−, and for γ > 0, the number of eigenvalues of H0(u, ζ) in the negative
half space is constant, by hyperbolicity, and equal to N+. This implies that
Ñ = N+ +N2

−.

As mentioned in Remark 4.2, the linearized equations from (3.1) around
w correspond exactly to the first order system (4.4) with ζ = 0. Thus the
homogeneous problem for (3.13) read

(4.21)

{
L(z, 0, ∂z)ẇ = 0, z ≥ 0,

Υ′(ẇ, 0, ∂zẇ
2)|z=0 = 0.

A corollary of Lemmas 4.1 and 4.3 is that the solutions of the homogeneous
equation L(z, 0, ∂z)ẇ = 0 form a space of dimension N +N2, parametrized
by (uH , uP ) ∈ C

N × C
N2

:

(4.22) ẇ(z) = ΦH(z, 0)uH + ΦP (z, 0)ezP0(u)uP

where the matrices ΦH(z, 0) and ΦP (z, 0) are smooth and bounded on R+

and ΦH(z, 0) → Id as z → Id. The solution is bounded if and only if uP
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belongs to the negative space E
−(P0(u)) of P0(u), that is the invariant space

of P0(u) associated to the spectrum lying in {Reµ < 0}; thus the space S
of bounded solutions has dimension N + N2

−. The space of solutions that
tend to zero at infinity, denoted by S0, has dimension N2

−, corresponding to
the conditions uH = 0 and uP ∈ E

−(P0(u)).
The boundary conditions in (3.13) read

(4.23) ΓHuH + ΓPuP := Γ(ẇ, ∂zẇ
2)|z=0 = 0.

Because of Proposition 3.3, the next definition extends to profiles the
previous definition of transversality given in Definition 3.1 for layer profiles.

Definition 4.4. The profile w is said to be transversal if
i) there is no nontrivial solution ẇ ∈ S0 which satisfies the boundary

conditions Γ(ẇ, ∂zẇ
2)|z=0 = 0,

ii) the mapping ẇ 7→ Γ(ẇ, ∂zẇ
2)|z=0 from S to C

Nb has rank Nb.

Equivalently, i) means that ker ΓP ∩ E
−(P0(u)) = {0} and ii) that the

rank of the matrix (ΓH ,ΓP ) from C
N × E

−(P0(u)) to C
Nb is Nb.

If the profile satisfies condition i), there is a decomposition

(4.24) C
Nb = FH ⊕ FP , FP := ΓP E

−(P0(u))

with dim FH = N+ and dim FP = N2
−. Denote by πH and πP the projections

associated to this splitting.
For ẇ ∈ S given by (4.22), one can eliminate uP from the boundary

conditions (4.23) and write them

(4.25) ΓreduH = 0, uP = RPuH ,

with

(4.26) Γred := πHΓH , RP := −(ΓP )−1πP ΓH

and (ΓP )−1 is the inverse of the mapping ΓP from E
−(P0(u)) to FP .

With these notations, ii) means that Γred has rankN+. Its kernel ker Γred

is the space of u̇ ∈ R
d such that there is a solution of ẇ of (3.13) with end

point u̇. It has dimension N −N+.

Remark 4.5. When w is a layer profile, solution of (3.3), the transversality
condition implies that near the end point u, the set C in (3.10) which de-
scribes the limiting hyperbolic conditions is a smooth manifold of dimension
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N− = N − N+ and ker Γred is the tangent space to C at u. Therefore, the
natural boundary condition for the linearized hyperbolic equation, and in
particular for (4.9), are

(4.27) Γredu = h.

4.3 Evans functions and Lopatinski determinant; weak sta-
bility

For a given ζ ∈ R
d+1
+ \{0}, we now investigate the well-posedness of equation

(4.4) or equivalently (4.6) or (4.14). Introduce the space E
−(ζ) of initial

conditions (u(0), ∂zu
2(0)) (or equivalently U(0)) such that the corresponding

solution of L(z, ζ, ∂z)u = 0 (or ∂zU−G(z, ζ)U = 0) is exponentially decaying
at +∞. Lemmas 4.1 and 4.3 show that

(4.28) E
−(ζ) = Φ(0, ζ)E−(G(u, ζ))

where we use the following notations:

Notations 4.6. Given a square matrix M , E
−(M) [resp. E

+(M) denotes
the invariant space of M associated to the spectrum of M contained in
{Reµ < 0} [resp {Reµ > 0}].

In particular, by Lemma 4.3, E
−(ζ) is a smooth vector bundle for ζ ∈

R
d+1
+ \{0} and dim(E−(ζ)) = Nb.

The problems (4.4), (4.6) or (4.14) are well posed if and only if

(4.29) E
−(ζ) ∩ ker Γ(ζ) = {0} or E

−(G(u, ζ)) ∩ ker Γ̃(ζ) = {0}.

Note that, because the rank of Γ is at most Nb and the dimension of E
− is

Nb, this condition implies and is equivalent to

(4.30) C
N+N2

= E
−(ζ) ⊕ ker Γ(ζ) or C

N+N2

= E
−(G(u, ζ)) ⊕ ker Γ̃(ζ).

This condition can be expressed using the notion of Evans function,
which measures the “angle” between the two spaces (see e.g. [Zum2, Zum3]
and the references therein ). It is defined as

(4.31) D(ζ) =
∣∣ det N+N2

(
E
−(ζ), ker Γ(ζ)

)∣∣

where, for subspaces E and F of C
n, detn(E,F) is equal to 0 if dim E+dim F 6=

n and is the n× n determinant formed by orthonormal bases in E and F if
dim E + dim F = n.
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Remark 4.7. The definition of the determinant above depends on choices
of bases. Note that changing orthonormal bases in E and F changes the
determinant by a complex number of modulus one, thus leaves |det(E,F)|
invariant. But it also depends on the choice of a scalar product on C

n.
Changing the scalar products (or arbitrary changes of bases in C

n)) changes

the function det(E,F) to a new function d̃et(E,F) such that c|det(E,F)| ≤
|d̃et(E,F)| ≤ c−1|det(E,F)| where c > 0 is independent of the spaces E and
F. We will denote by

(4.32) det ≈ d̃et or D ≈ D̃

this property. In particular all the stability conditions stated below are
independent of orthonormal bases in E

− and ker Γ and independent of the
choice of the scalar product.

Remark 4.8. If the coefficients of the operator and the profile depend
smoothly on parameters p, then the Evans function is also a smooth function
of the parameters.

These notations being settled, the weak stability condition is a necessary
condition for well the posedness of (4.2) in Sobolev spaces. It reads:

Definition 4.9. Given a profile w, the linearized equation (4.4) satisfies the

weak spectral stability condition if D(ζ) 6= 0 for all ζ ∈ R
d+1
+ \{0}.

The next lemma is useful and elementary.

Lemma 4.10. Suppose that E ⊂ C
n and Γ : C

n 7→ C
m, with rankΓ =

dim E = m. If |det(E, ker Γ)| ≥ c > 0, then there is C, which depends only
on c and |Γ∗(ΓΓ∗)−1| such that

∀U ∈ E |U | ≤ C|ΓU |.

Conversely, if this estimate is satisfied then |det(E, ker Γ)| ≥ c where c > 0
depends only on C and |Γ|.

Proof. Let π = Γ∗(ΓΓ∗)−1Γ denote the orthogonal projector on (ker Γ)⊥.
Diagonalizing the hermitian form (πe, πe), yields orthonormal bases {ej}
and {fj} in E and (ker Γ)⊥ respectively, such that πej = λjfj with 0 <
λj ≤ 1. Take any basis {gk} of ker Γ. Expressing the ej in the base {fk, gl},
implies that |det(E, ker Γ)| =

∏
λj . Since λj ≤ 1 for all j, if this determinant

is larger than or equal to c > 0, then minλj ≥ c and for all e ∈ E

c|e| ≤ |πe| ≤ |Γ∗(ΓΓ∗)−1| |Γe|.
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Conversely, if the estimate is satisfied, then |e| ≤ C|Γ| |πe| since Γe = Γπe
for all e ∈ E. Therefore λjC|Γ| ≥ 1 and the determinant is at least equal to
(C|Γ|)−m.

Proposition 4.11. For fixed ζ ∈ R
d+1
+ \{0}, the following properties are

equivalent:
i) the weak stability condition D(ζ) 6= 0 is satisfied,
ii) there is a constant C such that for all f ∈ L2(R+) and g ∈ C

Nb, the
problem (4.4) has a unique solution u ∈ H1(R+) and

(4.33) ‖u‖L2 + ‖∂zu
2‖L2 + |u(0)| + |∂zu

2(0)| ≤ C(‖f‖L2 + |g|).

iii) there is a constant C such that for all F ∈ L2(R+) and g ∈ C
Nb, the

problem (4.6) has a unique solution U ∈ L2(R+) and

(4.34) ‖U‖L2 + |U(0)| ≤ C(‖F‖L2 + |g|).

Proof. We show that ii) ⇒ i) ⇒ iii).
a) Uniqueness in ii) implies that E

−(ζ) ∩ ker Γ = {0}, thus i).
b) By Lemma 4.1, the linearized equation (4.6) is conjugated to the

constant coefficient system (4.14). By Lemma 4.3 the kernel of ∂z −G(u, ζ)
in L2 has dimension equal to Nb, which is the number of boundary condi-
tion. Thus the operator (∂z −G(u, ζ),Γ) has index 0 from H1 to L2 ×C

Nb .
Therefore, condition i) which means that it is injective, implies that it is
surjective and iii) follows.

c) By reduction to first order (4.4) is equivalent to (4.6) for particular
F . Thus iii) immediately implies ii).

There are analogous definitions for the linearized hyperbolic problem
(4.9) with boundary conditions (4.27). For γ > 0, H0(u, ζ) has no eigen-
values on the imaginary axis, as a consequence of the hyperbolicity as-
sumption (see Remark 2.4). The Lopatinski determinant is defined for
ζ ∈ R

d+1
+ := {γ > 0} by

(4.35) DLop(ζ) =
∣∣ det

(
E
−(H0(u, ζ), ker Γred

)∣∣.

By homogeneity of H0, this determinant is homogeneous of degree zero in ζ
and it is sufficient to consider the case where ζ ∈ Sd = {|ζ| = 1}.

Definition 4.12. The linearized equation (4.9) (4.27) satisfies the weak
spectral stability condition if DLop(ζ) 6= 0 for all ζ ∈ R

d+1
+ .

Moreover, there is an analogue of Proposition 4.11, for γ > 0.
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4.4 Maximal estimates and uniform spectral stability condi-
tions

The next step in the study of the linearized equation is to perform an inverse
Fourier-Laplace transform. This requires suitable estimates for the solutions
of (4.4), with a precise description of the constants in the estimate (4.33)
above.

By continuity in ζ, the weak stability condition implies that the estimate
(4.33) is satisfied with a uniform constant C when ζ remains in a compact

subset of R
d+1
+ \{0}. Thus the true question is to get a detailed behavior of

the estimate when ζ → 0 and when |ζ| → ∞.

4.4.1 Low and medium frequencies

Consider first the low frequency case. Following [MéZu1], the expected max-
imal estimates for low and medium frequencies for the solutions of (4.4) read

(4.36)

ϕ‖u‖L2(R+) + ‖∂zu
2‖L2(R+) + |u(0| + |∂zu

2(0)| ≤

C
( 1

ϕ
‖f‖L2(R+) + |g|

)

where ϕ = (γ + |ζ|2) 1

2 with C independent of ζ ∈ R
d+1
+ \{0}, |ζ| ≤ ρ0. Note

that for fixed |ζ| > 0, this estimate is equivalent to (4.33).
Similarly, the maximal estimates for solutions of the first order system

(4.6) read :

(4.37) ϕ‖u‖L2(R+) + ‖u3‖L2(R+) + |U(0| ≤ C
( 1

ϕ
‖F‖L2(R+) + |g|

)

where U = (u, u3) ∈ C
N × C

N2

. For the constant coefficient system (4.14)
the analogous expected estimates read :

(4.38) ϕ‖ũ‖L2(R+) + ‖ũ3‖L2(R+) + |Ũ(0| ≤ C
( 1

ϕ
‖F̃‖L2(R+) + |g|

)
.

Lemma 4.13. The estimates (4.38) imply (4.37) which imply (4.36).

Proof. (See [MéZu1]). Clearly, (4.36) is a particular case of (4.37) applied
to source terms F of the special form (4.8). Moreover, using the conjugation
Lemma 4.1, there holds U = O(1)Ũ and Ũ = O(1)U and similar estimates
for F and F̃ . Moreover,

U1 = O(1)Ũ , U2 = O(e−θz)Ũ1 +O(1)Ũ2
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with θ > 0. We use the inequality

‖e−θzŨ1‖L2 . |Ũ1(0)| + ‖∂zŨ
1‖L2 .

Moreover, the form of G(u, ζ) at ζ = 0 shows that

∂zŨ
1 = O(|ζ|)Ũ1 +O(1)Ũ2 + F̃ 1.

Therefore,

‖U2‖L2 . ‖Ũ2‖L2 + |Ũ1(0)| + |ζ|‖Ũ1‖L2 + ‖F̃ 1‖L2 .

Since |ζ| ≤ ϕ, this shows that (4.38) implies (4.37).

Taking f = 0, we point out the following necessary condition for the
validity of the maximal estimates:

Proposition 4.14. A necessary condition for (4.36) to be valid for 0 <
|ζ| ≤ ρ0, is that there are C and ρ0 > 0 such that

(4.39) ∀ζ ∈ R
d+1
+ , 0 < |ζ| ≤ ρ0, ∀U ∈ E

−(ζ) : |U | ≤ C|Γ(ζ)U |.

By Assumption 2.11, the rank of Γ(ζ) is alwaysNb, and the norms of Γ(ζ)
and (ΓΓ∗)−1 are uniformly bounded for ζ bounded. Thus, by Lemma 4.10,
the condition (4.39) is equivalent to requiring that D is bounded from below
by a positive constant for 0 < |ζ| ≤ ρ0. This leads to the following definition
(see [MéZu1])

Definition 4.15. Given a profile w, the uniform spectral stability condition
for the linearized equation (4.2) is satisfied for low frequencies when there

are c > 0 and ρ0 > 0 such that D(ζ) ≥ c for all ζ ∈ R
d+1
+ with 0 < |ζ| ≤ ρ0.

We have seen that the low frequency uniform stability condition holds is
necessary for the validity of the maximal estimates. A major issue, which
is discussed in Sections 6 to 8 is to prove a converse statement.

4.4.2 High frequencies

For the high frequency analysis, we use the special form (2.11) of the bound-
ary conditions. Their linearized version, Υ′(u, iηu2, ∂zu

2) = g reads

(4.40)





Γ1u
1(0) := Υ′

1(w
1(0)) · u1(0) = g1,

Γ2u
2(0) := Υ′

2(w
2(0)) · u2(0) = g2,

Γ3(ζ)(u
2(0), ∂zu

2(0)) := Kd∂zu
2(0) +Ktg(η)u

2(0) = g3.
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with

(4.41) Ktg(η) =
d−1∑

j=1

iηjKj(w(0))

The maximal extimates that are proven in [GMWZ4, GMWZ6] read

(4.42)

(1 + γ)‖u1‖L2(R+)+Λ‖u2‖L2(R+) + ‖∂zu
2‖L2(R+)

+(1 + γ)
1

2 |u1(0)|+Λ
1

2 |u2(0)| + Λ− 1

2 |∂zu
2(0)| ≤

C
(
‖f1‖L2(R+) + Λ−1‖f2‖L2(R+)

)

+ C
(
(1 + γ)

1

2 |g1| + Λ
1

2 |g2| + Λ− 1

2 |g3|
)

with C independent of ζ ∈ R
d+1
+ large. Here, Λ is the natural parabolic

weight

(4.43) Λ(ζ) =
(
1 + τ2 + γ2 + |η|4

)1/4
.

Remark 4.16. The balance between the weights for u1 and for u2 is subtle:
these components are decoupled in the high frequency principal system (2.7)
and the choice of the weights depends on the actual coupling of u1 and for
u2 through the nondiagonal lower order terms and the boundary conditions.

Taking f = 0, (4.42) implies the following necessary condition : there
are C and ρ1 > 0 such that

(4.44)

∀ζ ∈ R
d+1
+ , |ζ| ≥ ρ1, ∀U = (u1, u2, u3) ∈ E

−(ζ) :

(1 + γ)
1

2 |u1| + Λ
1

2 |u2)| + Λ− 1

2 |u3| ≤
C
(
(1 + γ)

1

2 |Γ1u
1| + Λ

1

2 |Γ2u
2)| + Λ− 1

2 |Γ3(ζ)(u
2, u3)|

)
.

This can be reformulated in terms of a rescaled Evans function (see [MéZu1] :
In C

N+N2

and C
Nb introduce the mappings

(4.45)
Jζ(u

1, u2, u3) :=
(
(1 + γ)

1

2u1,Λ
1

2u2,Λ− 1

2u3
)

Jζ(g
1, g2, g3) :=

(
(1 + γ)

1

2 g1,Λ
1

2 g2,Λ− 1

2 g3
)
.

Note that JζΓ(ζ)U = Γsc(ζ)JζU with

(4.46) ΓscU =
(
Γ1u

1,Γ2u
2,Kdu

3 + Λ−1Ktg(η)u
2
)
.
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Thus (4.44) reads

(4.47) ∀U ∈ JζE
−(ζ) : |U | ≤ C|JζΓ(ζ)J−1

ζ U |

Introducing the rescaled Evans function

(4.48) Dsc(ζ) =
∣∣ det

(
JζE

−(ζ), Jζ ker Γ(ζ)
)∣∣.

we see that this stability condition is equivalent to the following definition:

Definition 4.17. Given a profile w, the linearized equation (4.2) satisfies
the uniform spectral stability condition for high frequencies when there are

c > 0 and ρ1 > 0 such that Dsc(ζ) ≥ c for all ζ ∈ R
d+1
+ with |ζ| ≥ ρ1.

Note that for ζ in bounded sets, Jζ and J−1
ζ are uniformly bounded and

D(ζ) ≈ Dsc(ζ), thus the condition Dsc(ζ) 6= 0 is nothing but a reformulation
of the weak stability condition.

By Lemma 4.10, the high frequency uniform stability is equivalent to
(4.44). In section 9, we will recall from [GMWZ4] that the uniform spectral
stability implies the high frequency maximal estimates (4.42), under struc-
tural assumptions on the system that are satisfied in many examples, includ-
ing Navier-Stokes and MHD.

4.4.3 The inviscid case

There are analogous definitions for the linearized hyperbolic problem (4.9)
with boundary conditions (4.27). Recall that the Lopatinski determinant is
defined at (4.35). Definition 4.12 of weak stability is strengthened as follows.

Definition 4.18. The linearized equation (4.9) (4.27) satisfies the uniform
spectral stability condition when there are c > 0 such that DLop(ζ) ≥ c for
all ζ ∈ Sd

+ := Sd ∩ {γ > 0}.

This uniform stability condition is equivalent to a uniform estimate for
all ζ ∈ Sd

+:

(4.49) ∀u ∈ E
−(H0(u, ζ)) :

∣∣u
∣∣ ≤ C

∣∣Γredu
∣∣

The expected maximal estimates for solutions of (4.9) (4.27) are

(4.50) γ
1

2 ‖u‖L2 + |u(0)| ≤ C
(
γ−

1

2 ‖f‖L2 + |h|
)

with C independent of ζ ∈ R
d+1
+ .
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Remark 4.19. The uniform stability condition is satisfied for small ampli-
tude layers (see [GrGu] for artificial viscosity and [Rou1] for real viscosity
in 1D). In [GMWZ8] layers for Navier-Stokes equations and in or out-flow
boundary conditions are studied. The analogous uniform stability condition
for weak Lax shocks has been recently proved in [PlZu]. In the inviscid
case, we also refer to [Maj1] for the verification of the uniform Lopatinski
condition for Euler’s equation and to [Mét1] for weak Lax shocks.

5 The Zumbrun-Serre-Rousset Theorem and the
reduced low frequency problem

A famous result of [ZuSe] and [Rou1] links the low frequency uniform sta-
bility of the viscous regularizations and the uniform stability of the limiting
inviscid problem. We give here the extension proved in [GMWZ6].

5.1 Transversality is necessary

Proposition 5.1. Given a profile w, if the low frequency uniform spectral
stability condition is satisfied, then w is transversal.

Proof. Lemma 4.3 implies that for ζ 6= 0 small enough, Ũ is a solution of
(4.14) if and only if t(uH , uP ) = V −1(ζ)Ũ satisfies

∂zuH = H(u, ζ)uH + fH ,(5.1)

∂zuP = P (u, ζ)uP + fP ,(5.2)

ΓH(ζ)uH(0) + ΓP (ζ)uP (0) := Γ̃(ζ)Ũ(0) = g,(5.3)

where t(fH , fP ) = V −1(ζ)F̃ and ΓH [resp ΓP ] denotes the restriction of Γ̃V
to C

N × {0 } [resp. {0} × C
N2

]. In particular,

E
−(G(u, ζ)) = V (ζ)

(
E
−(H(u, ζ)) ⊕ E

−(P (u, ζ))
)
.

With (4.39), this shows that the low frequency uniform stability condition

holds if and only if there are C and ρ0 > 0 such that for all ζ ∈ R
d+1
+ with

0 < |ζ| ≤ ρ0

(5.4)
∀uH ∈E

−(H(u, ζ)), ∀uP ∈ E
−(P (u, ζ)) :∣∣uH

∣∣+
∣∣uP

∣∣ ≤ C
∣∣ΓH(ζ)uH + ΓP (ζ)uP

∣∣.

In particular,

(5.5) ∀uP ∈ E
−(P (u, ζ)) :

∣∣uP

∣∣ ≤ C
∣∣ΓP (ζ)uP

∣∣.

32



By Lemma 4.3, E
−(P (u, ζ)) is a smooth bundle for ζ in a neighborhood

of 0. Moreover, Γ̃(ζ) and ΓP (ζ) are smooth around the origin. This im-
plies that

∣∣uP

∣∣ ≤ C
∣∣ΓP (0)uP

∣∣ on E
−(P (u, 0)), implying that condition i) of

Definition 4.4 is satisfied.
Since dim(E−(G(ζ)) = rankΓ̃(ζ) = Nb, (5.4) implies that for all h ∈ C

Nb

and all ζ ∈ R
d+1
+ with 0 < |ζ| ≤ ρ0, there is Ũ(ζ) = V (ζ)

(
uH(ζ), uP (ζ)

)
in

E
−(ζ) ⊂ V (ζ)

(
C

N ⊕ E
−(P (ζ))

)
such that Γ̃(ζ)Ũ(ζ) = h and |Ũ(ζ))| ≤ c|h|.

By compactness and continuity, letting ζ tend to zero, implies that there is
Ũ = V (0)

(
uH , uP

)
in V (0)

(
C

N ⊕ E
−(P (0))

)
such that Γ̃(0)Ũ = h, showing

that condition ii) of Definition 4.4 is also satisfied.

5.2 The reduced problem

Suppose that the profile w is transversal. Then, by i) of Definition 4.4 and
Remark 4.2, ΓP (ζ) is an isomorphism from E

−(P (u, ζ)) to its image F0,P

when ζ = 0; by continuity this extends to a neighborhood of the origin and
the decomposition (4.24) valid at ζ = 0, extends smoothly on a neighborhood
of the origin:

(5.6) C
Nb = FH ⊕ FP (ζ), FP (ζ) := ΓP (ζ)E−(P (u, ζ)).

Denote by πH(ζ) and πP (ζ) the projections associated to this splitting and
define the reduced boundary operator as

(5.7) Γred(ζ) := πH(ζ)ΓH(ζ),

as well as the reduced boundary value problem

(5.8) ∂zuH −H(u, ζ)uH = fH , Γred(ζ)uH(0) = h.

The reduced Evans function is

(5.9) Dred(ζ) =
∣∣ det

(
E
−(H(u, ζ)), ker Γred(ζ)

)∣∣.

Definition 5.2. The reduced uniform stability condition is satisfied if Dred(ζ) ≥
c > 0 for all ζ ∈ R

d+1\{0} with |ζ| small enough.

This is equivalent to the condition

(5.10) ∀u ∈ E
−(H(u, ζ)) : |u| ≤ C|Γred(ζ)u|,

for ζ ∈ R
d+1\{0} small.
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Theorem 5.3. Given a profile w, the linearized equation (4.4) satisfies the
low frequency uniform spectral stability condition if and only if

i) w is transversal,
ii) the reduced problem (5.8) satisfies the reduced uniform stability con-

dition.

Proof. We have already shown that the low frequency uniform stability re-
quires that w is transversal. Moreover, using the splitting (5.6), we see that
the uniform stability conditions (4.39) or (5.4) are equivalent to

(5.11)
∣∣uH

∣∣+
∣∣uP

∣∣ ≤ C
(∣∣ΓreduH

∣∣+
∣∣ΓPuP + πP ΓHuH

∣∣
)

for all uH ∈ E
−(H) and uP ∈ E

−(P ) (to lighten notations we have omitted
the ζ dependance). Since ΓP is surjective from E

−(P ) onto FP , for all
uH ∈ E

−(H) there is uP ∈ E
−(P ) such that ΓPuP = −πP ΓHuH and (5.11)

implies (5.10).
Conversely, if the profile is transverse, the estimate (5.5) is valid at ζ = 0

and extend by continuity to ζ in a neighborhood of 0. With (5.10), this
clearly implies (5.11).

5.3 The ρ → 0 limit for Evans functions

It remains to link the reduced uniform stability condition to the uniform
(Lopatinski) stability condition for the hyperbolic boundary value problem,
that is for the problem (4.9) with boundary conditions (4.27). Note that
these boundary conditions are given by Γred = Γred(0) (see Remark 4.5).

Because H vanishes at ζ = 0, it is natural to use polar coordinates:

(5.12) ζ = ρζ̌, ρ = |ζ|, ζ̌ ∈ Sd.

In these coordinates

(5.13) H(u, ζ) = ρȞ(u, ζ̌, ρ), Ȟ(u, ζ̌, ρ) = H0(u, ζ̌) +O(ρ).

Changing z to ž = ρz, u(z) to ǔ(ž) and f(z) to ρf̌(ž) the reduced problem
(5.8) is equivalent to

(5.14) ∂žǔH −H(u, ζ̌, ρ)ǔH = f̌H , Γred(ζ)ǔH(0) = h,

which, for ρ = 0, is exactly the inviscid problem (4.11) (4.27). We are thus
led to a nonsingular perturbation problem.

Clearly, for ζ ∈ S
d
+ := Sd ∩ {γ̌ ≥ 0}, there holds E

−(H(u, ζ)) =
E
−(Ȟ(u, ζ̌, ρ) and Dred(ζ) = Ď(ζ̌, ρ) with

(5.15) Ď(ζ̌, ρ) =
∣∣ det

(
E
−(Ȟ(u, ζ̌, ρ), ker Γred(ρζ̌)

)∣∣
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Remark 5.4. For γ̌ > 0, H0(u, ζ̌) has no eigenvalues on the imaginary axis,
as a consequence of hyperbolicity (see Remark 2.4). By perturbation, this
property holds true for Ȟ(u, ζ̌, ρ) for ρ small enough (depending on γ̌ >
0). This shows that the vector bundle E

−(Ȟ(u, ζ̌, ρ) which was defined on

S
d
+×]0, ρ0] has a smooth extension to ∈ S+×[0, ρ0], as well as Ď. Comparing

with the definition of the Lopatinski determinant (4.35), we see that

(5.16) DLop(ζ̌) = Ď(ζ̌, 0), for γ̌ > 0.

The next theorem, combined with Theorem 5.3, extends Rousset’s the-
orem [Rou1] (see also [ZuSe] for shocks).

Theorem 5.5. Given a transverse profile w, if the reduced uniform spec-
tral stability condition is satisfied, then the linearized hyperbolic problem
(4.9) (4.27) satisfies the reduced uniform stability condition.

Conversely, if the linearized hyperbolic problem is uniformly stable and

the vector bundle E
−(Ȟ(u, ζ̌, ρ) has a continous extension to S

d
+ × [0, ρ0],

then the reduced uniform spectral stability condition is satisfied and the lin-
earized problem (4.2) satsifies the uniform low frequency stability condition.

Proof. The uniform estimate (5.10) implies that

|u| ≤ C|Γred(ζ)u|

for u ∈ E
−(Ȟ(u, ζ̌, ρ), ζ̌ ∈ S

d
+ and ρ > 0 small. If γ̌ > 0, every term is

continuous up to ρ = 0 and the estimate above implies (4.49), that is

|u| ≤ C|Γred(0)u|

for u ∈ E
−(H0(u, ζ̌), ζ̌ ∈ Sd

+. This implies that the hyperbolic problem in
uniformly stable.

If E
−(Ȟ(u, ζ̌, ρ) has a continous extension to S

d
+ × [0, ρ0], the reduced

Evans function has a continuous extension to S
d
+ × [0, ρ0]. The hyperbolic

uniform stability and (5.16) imply that

Ď(ζ̌, ρ) ≥ c > 0

for ζ̌ ∈ Sd
+ and ρ = 0. By continuity, this extends first to ζ̌ ∈ S

d
+ and next

to ρ ∈ [0, ρ1] for some ρ1 > 0.

Remark 5.6. It is proved in [MéZu3] that when the eigenvalues of the hy-
perbolic symbol A(u, ξ) have constant multiplicity, and more generally when
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there is a smooth K family of symmetrizers (see the definition below), then
the vector bundle E

−(Ȟ(u, ζ̌, ρ) has a continuous extension to ρ = 0. The
main concern of this paper is to construct K-families for systems with vari-
able multiplicity. This is possible under suitable assumptions, and therefore
the two theorems above extend a result of F.Rousset [Rou1]. However, we
will also show that the bundle E does not always admit a continuous exten-
sion, with the result that the hyperbolic problem can be uniformly stable
while the viscous problem is strongly unstable in the low frequency regime.
This seems to be a new phenomenon.

5.4 The ρ → 0 limit for maximal estimates

Assuming transversality of w, Theorem 5.3 implies that the uniform spectral
stability for low frequency is equivalent to the spectral stability for the re-
duced problem. There is an analogue for maximal estimates. The maximal
estimates for the reduced problem (5.14) read

(5.17) (γ̌ + ρ)
1

2 ‖ǔH‖L2 + |ǔH(0)| ≤ C
(
(γ̌ + ρ)−

1

2 ‖f̌H‖L2 + |h|
)

with C independent of ζ̌ ∈ S
d
+ and ρ ∈]0, ρ0]. Note that for ρ = 0 and γ̌ > 0,

this is the maximal estimate for the inviscid problem. Scaling back to the
original variables, this estimate is equivalent to

(5.18) (γ + |ζ|2) 1

2 ‖uH‖L2 + |uH(0)| ≤ C
(
(γ + |ζ|2)− 1

2 ‖fH‖L2 + |h|
)

for the solutions of (5.8).

Theorem 5.7. Suppose that the profile w is transversal. Then the maximal
estimates (4.38) are valid for low frequencies if and only if the maximal
estimates (5.17) for the reduced problem hold true.

Proof. By Lemma 4.3 P (u, ζ) has no purely imaginary eigenvalues. Thus,
using symmetrizers (see e.g. [MéZu1] and Section 6 below), there holds

‖u+
P ‖L2 + |u+

P (0)| . ‖f+
P ‖L2 ,(5.19)

‖u−P ‖L2 . ‖f−P ‖L2 + |u−P (0)|,(5.20)

where ± denotes the smooth projections on the spaces E
±(P (u, ζ).

The splitting (5.6) implies that the boundary condition (5.3) reads

πHg = ΓreduH(0) + πHΓPu
+
P (0),

πP g = ΓPu
−
P (0) + πP ΓHuH(0) + πHΓPu

+
P (0).
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Moreover ΓP is invertible on E
−(P ), hence |ΓPu

−
P (0)| ≈ |u−P (0)| and

|ΓreduH(0)| . |πHg| + |u+
P (0)|,

|u−P (0)| . |πP g| + |uH(0)| + |u+
P (0)|.

Suppose that the estimate (5.18) is satisfied. Then,

ϕ‖uH‖L2 + |uH(0)| . ϕ−1‖fH‖L2 + |πHg| + |u+
P (0)|.

With (5.19), this implies that

ϕ‖uH‖L2 + ‖u−P ‖L2+|uH(0)| + |u−P (0)|
. ϕ−1‖fH‖L2 + ‖f−P ‖L2 + |g| + |u+

P (0)|.

Thus, with (5.19), we obtain that

ϕ‖uH‖L2 + ‖uP ‖L2 + |uH(0)| + |uP (0)| . ϕ−1‖fH‖L2 + ‖fP ‖L2 + |g|.

Because V (u, 0) has the special form (4.18), Ũ = V (uH , uP ) = (Ũ1, Ũ2)
satisfies

Ũ1 = O(1)uH +O(1)uP , Ũ1 = O(|ζ|)uH +O(1)uP

Therefore, the solutions of (4.14) satisfy

ϕ‖Ũ1‖L2 + ‖Ũ2‖L2 + |Ũ(0)| . ϕ−1‖F̃‖L2 + |g|.

that is the maximal estimate (4.38).

Conversely, assume that the maximal estimate (4.38) is satisfied. Sup-
pose that uH is a solution of (5.1). By transversality, ΓP is surjective from
E
−(P, ζ) to its image FP (ζ) and there exists there is uP (0) in E

−(P, ζ) such
that

(5.21) ΓPuP (0) = −πP ΓHuH(0) ∈ FP (ζ).

Consider uP = ezPuP (0) which is well defined and rapidly decaying at
infinity since uP (0) ∈ E

−(P, ζ). It is a solution of (5.2) with fP = 0.
Then Ũ = V (uH , uP ) is a solution of (4.14) with F̃ = V (fH , 0). Thus
(uH , uP ) = V −1Ũ and there holds

‖uH‖L2 . ‖Ũ‖L2 , |uH(0)| . |Ũ(0)|, ‖F̃‖L2 . ‖fH‖L2

and, by (5.21), Γ̃Ũ(0) = ΓHuH(0) + ΓPuP (0) = ΓreduH(0). Thus the esti-
mate (4.38) immediately implies (5.18).
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5.5 Viscous instabilities

The analysis above indicates that when the negative space E
− is not con-

tinuous in (ζ̌, ρ), then the Evans function is likely not continuous and one
can expect that the low frequency uniform stability condition for the vis-
cous problem is strictly stronger than the similar condition for the inviscid
problem. In particular, the inviscid problem can be strongly stable while
the viscous one is strongly unstable. We illustrate here this phenomenon on
an explicit example.

1. An example. Consider the system

(5.22)

{
(∂t + ∂y)u1 + ∂xu2 = εµ∆u1,

(∂t + ∂y)u2 + ∂xu1 = εν∆u2.

Taking linear combinations and changing ε, the system is equivalent to

(5.23) (∂t + ∂y)Id +A∂x − εB∆, A =

(
1 0
0 −1

)
, B =

(
1 a
a 1

)
,

with a = |ν − µ|/(ν + µ) ∈ [0, 1[. This system is symmetric and satisfy the
assumptions (H1) and (H2).

The hyperbolic part is diagonal: the eigenvalues are

(5.24) λ1 = η + ξ, λ2 = η − ξ.

They cross on the line ξ = 0 and are trivially geometrically regular (see
Definition 8.1 below) since the system is already in diagonal form. One of
the eigenvalue is incoming, one is outgoing. The decoupling condition (8.9)
is satisfied if and only if a = 0. In the sequel, we assume that a > 0.

2. Boundary conditions. Next, consider boundary conditions for (5.23):

(5.25) u|x=0 + εΓ∂xu|x=0 = 0.

We first compute the limiting inviscid boundary conditions, using boundary
layers. The bounded solutions u = w(x/ε) of (5.23) are

(5.26) w(z) = u+ ezB−1Ah, h ∈ E
−
B−1A

, u ∈ C
2.

where E
−
B−1A

is the negative space of B−1A. Therefore, u is the endpoint of
a profile which satisfies the boundary condition (5.25), if and only if

(5.27) u ∈
(
Id + ΓB−1A

)
E
−
B−1A

.
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Note that given any complex number c, one can choose Γ such that this
boundary condition reads

(5.28) u1 = cu2

3. Low frequency stability. The first order system (4.6) reads

(5.29) ∂zU −G(ζ)U, G(ζ) =

(
0 Id

σB−1 + η2Id B−1A

)
,

with ζ = (τ, η, γ) and σ = γ+i(τ+η). Perform the small frequency reduction
(4.16), using the change of unknows

(
u
∂zu

)
= V (ζ)

(
uH

uP

)
.

Then, by Lemma 8.24, there holds

V −1GV =

(
H 0
0 P

)

with P (0) = B−1A and

(5.30) H(ζ) = −σA+ (σ2 − η2)AB +O(|ζ|3),

Since V (0) has the triangular form (4.18), we see that the boundary
condition reads

(5.31) uH + Γ̃(ζ)uP = 0, Γ̃(0) = Γ +A−1B.

The Evans condition is violated at ζ if there is uH ∈ E
−
H(ζ) and uP ∈ E

−
P (ζ)

satisfying this boundary condition. The negative space of P (ζ), E
−
P (ζ) is

smooth in ζ and equal to E
−
B−1A

when ζ = 0. Thus, the Evans condition is
violated at ζ if

E
−
H(ζ) ∩ Γ̃(ζ)E−

P (ζ) 6= {0}
Since A−1B = (B−1A)−1, there holds

Γ̃(0)E−
P (0) = (Id + ΓB−1A)E−

B−1A
.

Comparing with (5.27) and (5.28), we see that for ζ small, the space Γ̃(ζ)E−
P (ζ)

is generated by t(c(ζ), 1) where c(ζ) is a smooth function such that c(0) = c.
Therefore, the Evans condition is violated at ζ if and only if

(5.32)

(
c(ζ)
1

)
∈ E

−
H(ζ).
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Remark 5.8. The analysis above shows that the reduced boundary condition
for the hyperbolic part H(ζ) reads

(5.33) u1 = c(ζ)u2.

Taking ζ = 0 in this equation, we recover that (5.28) is the natural limiting
boundary condition for the hyperbolic operator H0.

Proposition 5.9. There are choices of a and Γ, such that
i) the inviscid problem (5.23) for ε = 0 with the boundary condition

(5.28) is maximal striclty dissipative thus uniformly stable,
ii) the viscous problem with boundary conditions (5.25) is strongly un-

stable for small frequencies, in the sense that there are arbitrarily small
frequencies ζ with γ > 0 where the Evans functions vanishes.

Proof. The matrix

(5.34) S =

(
1 0
0 s

)
, s > 0

is a symmetrizer for the inviscid problem. If

(5.35) |c|2 < s,

the boundary condition is strictly dissipative for S. This implies that the
uniform Lopatinski condition is satisfied.

We consider frequencies ζ = ρζ̌ with ζ̌ close to (−1, 1, 0) whereH0(ζ̌) = 0
has a double eigenvalue. More precisely we consider frequencies

(5.36) ζ = (−ρ+ ρ2τ̂ , ρ, ρ2γ̂).

In this case, we see that G is a function of σ̂ = γ̂ + iτ̂ and ρ, holomorphic
in σ̂, as well as V , P , H and c. Moreover

(5.37) H(ζ) = −ρ2(σ̂A+A−1B +O(ρ)) = ρ2Ĥ(σ̂, ρ).

The model operator is

Ĥ(σ̂, 0) = −σ̂A−A−1B =

(
−σ̂ − 1 −a
a σ̂ + 1

)

Ĥ(1, 0) has one eigenvalue with positive real part, with eigenvector t(b, 1)
with b = (2 +

√
4 − a2)/a (Note here the importance of the assumption

a 6= 0). Therefore, for σ̂ close to 1 and ρ small , the negative space of
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Ĥ(σ̂, ρ) is generated by t(b(σ̂, ρ), 1) where b is smooth and holomorphic in
σ̂ and b(1, 0) = b. Moreover

(5.38) ∂σ̂b(1, 0) =
1

a

(
1 +

2√
4 − a2

)
6= 0.

Comparing with (5.32), we see that the stability condition is violated at ζ
given by (5.36), if and only if

(5.39) b(σ̂, ρ) = c(ζ) = ĉ(σ̂, ρ).

Given a ∈]0, 1[, we choose c = b and Γ such that the inviscid boundary
condition reads (5.28). Note that ĉ(σ̂, 0) = c for all σ̂. Thus the equation
(5.39) holds at σ̂ = 1 and ρ = 0. Moreover, with (5.38), the implicit function
theorem shows that for ρ > 0 small, there is σ̂(ρ close to 1 solution of (5.39),
providing frequencies ζ(ρ) = O(ρ) with γ(ρ) ∼ ρ2 > 0, where the stability
condition is violated.

4. Smooth symmetrizers. We briefly discuss here the existence of smooth
symmetrizers for the hyperbolic operator Ȟ (6.24). In the present case, we
deduce from (5.30) that in polar coordinates ζ = ρζ̌, there holds

(5.40) Ȟ(ζ̌, ρ) = −σ̌A+ ρ(σ̌2 − η̌2)AB +O(ρ2), σ̌ = γ̌ + i(τ̌ + η̌).

Fix ζ̌ = (1,−1, 0), which corresponds to a multiple root of the hyperbolic

part. Then σ̌ = 0, and near (ζ̌, 0)

(5.41) Ȟ(ζ̌, ρ) = −A(σ̌Id + ρβ(ζ̌)B) +O(ρ2)

with β(ζ̌) = 1. Dropping the ˇ , and changing ρb to ρ, the matrix Ȟ is a
perturbation for (σ, ρ) close to (0, 0) of the following canonical example

(5.42)

(
1 0
0 −1

)
∂x + σ

(
1 0
0 1

)
+ ρ

(
1 a
a 1

)
, Reσ ≥ 0, ρ ≥ 0,

Note that (5.37) derives from (5.41) choosing σ̌ = ρσ̂.
Denote by E

− the negative space of Ȟ for Reσ + ρ > 0. On can check
directly on this example that the negative spaces have no limit as (σ, ρ) →
(0, 0): the limits are different when ρ = 0 and σ = 0, since the positive
spaces of A and AB are different when a 6= 0.

On the other hand, blowing up once more the local coordinates near ζ̌,
that is taking polar coordinates (σ, ρ) = r(σ̂, ρ̂), is is clear from (5.41) that
E
− is a smooth function of (σ̂, ρ̂).
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If Σ(ζ̌, ρ) is a smooth symmetrizer for Ȟ, then (6.25) implies that Σ =
Σ(ζ̌, 0) must be a symmetrizer for −(σA+ρAB) for all σ and ρ, equivalently
that S = ΣA is a symmetrizer for (5.42), that is

(5.43) S = S∗ ≫ 0, SA = AS, Re (SB) ≫ 0.

The first two conditions are satisfied if and only if S is diagonal and positive.
Multiplying it by a positive factor, it must be of the form (5.34).

The third condition holds if and only if

s > a2(1 + s)2/4.

Denoting by smin(a) < 1 < smax(a) < ∞ the roots of the equation 4s =
a2(1 + s2), the condition reads

(5.44) smin(a) < s < smax(a).

This shows that the choice of symmetrizers is much more limited in the
viscous case compared to the inviscid one. In particular, when a is close to
1, (5.44) forces to choose s in a small interval around 1.

The boundary condition (5.33) is strictly dissipative for Σ, then (5.28)
is strictly dissipative for Σ. This holds if and only if s > |c|2. Therefore:

There is a smooth symmetrizer Σ(ζ̌, ρ) for Ȟ on a neighborhood of (ζ̌, 0),
adapated to the boundary conditions (5.33) only if

(5.45) |c|2 < smax(a).

6 LF and MF symmetrizers

6.1 The method of symmetrizers

This “method” applies to general boundary value problems

(6.1) ∂xu = G(x)u+ f , Γu(0) = g .

Here, u and f are functions on [0,∞[ with values in some Hilbert space
H, and G(x) is a C1 family of (possibly unbounded) operators defined on
D, dense subspace of H. In this section we apply the method to finite
dimensional spaces H = C

N+N2

. However, after inverse tangential Fourier
transform, the space which is actually considered is rather L2(Rd; CN+N2

).
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Moreover, when passing to variable coefficients, one has to work directly in
this infinite dimensional space.

A symmetrizer is a family of C1 functions x 7→ S(x) with values in the
space of operators in H such that there are C0 and c > 0 such that

∀x , S(x) = S(x)∗ and |S(x)| ≤ C0 ,(6.2)

∀x , ReS(x)G(x) +
1

2
∂xS(x) ≥ cId .(6.3)

In (6.2), the norm of S(x) is the norm in the space of bounded operators in
H. Similarly S∗(x) is the adjoint operator of S(x). The notation ReT =
1
2(T + T ∗) is used in (6.3) for the real part of an operator T . When T
is unbounded, the meaning of ReT ≥ λ, is that all u ∈ D belongs to the
domain of T and satisfies

(6.4) Re
(
Tu, u

)
H ≥ λ|u|2 ,

where ( · )H is the scalar product in H. The property (6.3) has to be under-
stood in this sense.

Taking the scalar product of Su with the equation (6.1) and integrating
over [0,∞[, (6.2) and (6.3) imply

(6.5) c‖u‖2 +
(
S(0)u(0), u(0)

)
H ≤ C2

0

c
‖f‖2,

where f = ∂xu−Gu. Here, ‖ · ‖ is the norm in L2([0,∞[;H).
The symmetrizer S is adapted to the boundary condition Γ if there are

constants δ and C1 such that:

(6.6) S(0) ≥ δId− C1Γ
∗Γ .

Hence,

Lemma 6.1. If there is a symmetrizer S adapted to the boundary condition
Γ, then for all u ∈ C1

0 ([0,∞[;H) ∩ C0([0,∞[;D), one has

(6.7) λ‖u‖2 + δ|u(0)|2 ≤ C2
0

λ
‖f‖2 + C1|Γu(0)|2 ,

where f := ∂xu−Gu.

In the finite dimensional constant coefficient case, the usual construction
of symmetrizers has two parts: first, one constructs families of symmetrizers
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Sκ satisfying (6.2) and (6.3). This only uses the structural hyperbolicity-
parabolicity Assumptions and independent of the boundary conditions. Sec-
ond, one chooses κ such that the third condition (6.6) holds. There we use
the stability condition for the boundary condition. In this spirit, we end this
section with noticing a general recipe linking Evans-Lopatinski conditions
to (6.6).

Proposition 6.2. Suppose that G is a n×n matrix with no eigenvalues on
the imaginary axis and n− of them in the half space {Reµ > 0}. Denote by
E
− the invariant space associated to these eigenvalues. Suppose that Γ is a

n− × n matrix and

(6.8) |det(E−, ker Γ)| ≥ c > 0.

Suppose that Sκ is a symmetrizer for G such that

(6.9)
(
Sκu, u

)
≥ κ|Π+u|2 − |Π−u|2,

where Π± denote the projectors associated to a decomposition

(6.10) C
n = Ẽ

− ⊕ Ẽ
+, dim Ẽ

− = n−,

Then, there are κ0 and C1 which depend only on c, |Γ| and |Γ∗(ΓΓ∗)−1|
such that for κ ≥ κ0 there holds

(6.11)
(
Sκu, u

)
≥ |u|2 − C1|Γu|2,

Proof. By Lemma 4.10, there is C such that

(6.12) ∀u ∈ E
− : |u| ≤ C|Γu|.

Next, we note that all element in E
− is an initial data for an exponentially

decaying solution of ∂xu − Gu = 0. Therefore, (6.5) implies that for all
symmetrizer S of G there holds

(6.13) ∀u ∈ E
− : (Su, u) ≤ 0.

In particular, the assumption implies that

(6.14) ∀u ∈ E
− : |Π+u| ≤ ε|Π−u|, ε = κ−

1

2 .

Thus the mapping Π− from E
− to Ẽ

− is injective. Because dim E
− = dim Ẽ

−

this implies that there is a linear mapping A from Ẽ
− to Ẽ

+ with |A| ≤ ε
such that

(6.15) E
− =

{
u− +Au−; u− ∈ Ẽ

−}.
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Combining with (6.12), we see that if ε(1 + C|Γ|) ≤ 1
2 , then

(6.16) ∀u− ∈ Ẽ
− : |u−| ≤ 2C|Γu−|.

This inequality implies that for κ ≥ 2 + 24C2|Γ|2

κ|u+|2 − |u−|2 ≥ |u+ + u−|2 − C1|Γu+ + Γu−|2

and the proposition is proved.

Remark 6.3. In the limit κ → +∞, (6.14) implies that Ẽ
− → E

−. This
shows that in the splitting (6.10) there is little choice for Ẽ

−. On the con-
trary, there is no need for Ẽ

+ to be close to the positive invariant space E
+.

This is important for the construction of symmetrizers for G(ζ) when the
frequency is close to “glancing frequencies”.

6.2 Elliptic points and MF symmetrizers

Lemma 6.4. Suppose that G is a matrix with spectrum in {Reµ > 0}.
Then, there is a symmetric definite positive matrix S such that ReSG ≥ Id.

Proof. The assumption implies that e−tG and e−tG∗

are exponentially de-
caying. A symmetrizer is

S = 2

∫ ∞

0
e−tG∗

e−tGdt.

Note that this formula shows that one can choose S depending smoothly
on G in the space of matrices with spectrum in the right open half space.

Proposition 6.5. Suppose that G(p) is a n×n matrix which depend smoothly
on parameters p in a neighborhood of p, with no eigenvalues on the imaginary
axis. Then, for p in a neighborhood of p, there is a family of symmetrizers
Sκ(p) for G(p) which satisfy (6.9) in the decomposition of C

n in invariant
spaces E

±(p) for G(p) associated to the eigenvalues in {±Reµ > 0}.

Proof. The spaces E
±(p) depend smoothly on p, in a neighborhood of p and

there is a smooth matrix V (p) such that

V GV −1 =

(
G+ 0
0 G−

)
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with G± having their spectrum in {±Reµ > 0}. Then there are self adjoint
matrices S±(p) such that ±S±G± ≥ Id. Then,

Sκ = V ∗
(
κS+ 0

0 −S−

)
V

symmetrizes G and satisfies (6.9)

Thanks to Lemma 4.3, this proposition directly applies to the linearized
equations (4.14) for ζ 6= 0. For clarity, we drop the tildes and reserve the
notation u, U... for the unknowns and call p ∈ U the parameter called u in
this equation, which now reads

(6.17) ∂zU = G(p, ζ)U + F, Γ(p, ζ)U(0) = g.

We assume that the assumptions of Section 2 are satisfied.

Proposition 6.6. For all ζ ∈ R
d+1\{0}, there is a neighborhood of (p, ζ) in

U ×R
d+1 such that for (p, ζ) in this neighborhood there is a smooth splitting

(6.18) C
N2

= E
−(p, ζ) ⊕ E

+(p, ζ).

where E
±(p, ζ) denote the invariant space of G(p, ζ) associated to the spec-

trum in {±Reµ > 0}. Denoting by Π±(p, ζ) the smooth spectral projectors
associate to this splitting, there is a smooth family Σκ(p, ζ) of self adjoint
matrices such that for all (p, ζ) in the given neighborhood and all κ ≥ 1:

(6.19)
i) Re ΣκG > 0,

ii) Re Σκ ≥ κ(Π+)∗Π+ − (Π−)∗Π−.

This provides another proof of the estimates (4.34):

Corollary 6.7. If the weak spectral stability condition is satisfied, then for

all ζ ∈ R
d+1\{0}, there are a constant C and a neighborhood of (p, ζ) in

U × R
d+1 such that for (p, ζ) in this neighborhood the solutions of (6.17)

satisfy

(6.20) ‖U‖L2 + |U(0)| ≤ C
(
‖F‖L2 + |g|

)
.
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6.3 LF symmetrizers

We now concentrate on low frequencies. By Lemma 4.3, the matrix G(p, ζ) is
locally smoothly conjugated to a block diagonal matrix (4.16) with diagonal
blocks with H(p, ζ) of dimension N ×N and P (p, ζ) of dimension N2 ×N2.
The system (6.17) is therefore equivalent to the equations (5.1) (5.2) coupled
by the boundary conditions (5.3).

In the block diagonal reduction (4.16), we construct symmetrizers

(6.21) Σκ =

(
Σκ

H 0
0 Σκ

P

)

such that the property (6.9) is satisfied for each block independently.
The construction for the elliptic block P is given by Proposition 6.5,

since P (p, 0) has no eigenvalues on the imaginary axis. Denote by E
±
P (p, ζ)

the subspaces of C
N2

, invariant for P (p, ζ), associated to the spectrum in
{±Reµ > 0}. Thus, for (p, ζ) in a neighborhood of (p, 0), there is a smooth
splitting

(6.22) C
N2

= E
−
P (p, ζ) ⊕ E

+
P (p, ζ).

Denote by Π±
P (p, ζ) the smooth spectral projectors associate to this splitting.

Proposition 6.8. There is a smooth family of self adjoint matrices Σκ
P on

a neighborhood of (p, 0) such that

(6.23)
i) Re Σκ

PP > 0,

ii) Re Σκ
P ≥ κ(Π+

P )∗Π+
P − (Π−

P )∗Π−
P

This implies the estimates (5.19) (5.20) which where used in the previous
section.

To analyze H, we use polar coordinates for ζ = ρζ̌ as in (5.12) so that

(6.24) H(p, ζ) = ρȞ(p, ζ̌, ρ), Ȟ(p, ζ̌, ρ) = H0(p, ζ̌) +O(ρ).

By Lemma 4.3, for ζ ∈ R
d+1
+ \{0}, Ȟ has no eigenvalue on the imaginary

axis, hence the number N− of eigenvalues of Ȟ in {Reµ < 0} is constant.

We fix a point ζ̌ ∈ S
d
+, that is ζ̌ = (τ̌ , η̌, γ̌) in the unit sphere with γ̌ ≥ 0.

The goal is to construct smooth symmetrizers for Ȟ, for (p, ζ̌, ρ) close to
(p, ζ̌, 0). For convenience we introduce the following terminology.
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Definition 6.9. A smooth symmetrizer for Ȟ on a neighborhood ω of (p, ζ̌, 0)

is a smooth self adjoint matrix Σ̌H(p, ζ̌, ρ) such that

(6.25) Re Σ̌HȞ =
∑

V ∗
k ΣkVk,

where the Vk and Σk are smooth matrices on ω of appropriate dimension so
that the products make sense, satisfying

i)
∑
V ∗

k Vk is definite positive,
ii) either Σk is definite positive or Σk = γΣk,1 + ρΣk,2 with Σk,1 and

Σk,2 definite positive.

Definition 6.10. A family of smooth symmetrizers Σκ on neigborhoods ωκ

of (p, ζ̌, 0) is called a K-family of symmetrizers for Ȟ if there are a decom-
position

(6.26) C
N = E

−
H ⊕ E

+
H

with dim E
− = N− and m(κ) → +∞ as κ→ +∞ such that for all κ

(6.27) Σκ(p, ζ̌, 0) ≥ m(κ)Π∗
+Π+ − Π∗

−Π−.

where Π± are the projectors associated to the splitting (6.26).

Using (6.14), one proves the following result (see [MéZu3]):

Theorem 6.11. Suppose that there exists a K-family of symmetrizers near
(p, ζ̌, 0). Then E

−
H is the limit of the negative spaces E

−
H(p, ζ̌, ρ) as (p, ζ̌, ρ)

tends to (p, ζ̌, 0) with ρ > 0.

Remark 6.12. This theorem shows that E
−
H is uniquely determined. On

the other hand, E
+
H is arbitrary, provided that the the splitting (6.26) holds:

if (6.27) holds for some choice of E
+, then it also holds for another choice

for a multiple of Σκ with some other function m(κ).

Remark 6.13. The advantage of the notion of K-families is that it is inde-
pendent of the boundary conditions. Therefore, their construction depends
only on an analysis of Ȟ. In particular, we can use a spectral block decom-
positions of Ȟ.

Fix ζ̌ ∈ S
d
+. Consider the distinct eigenvalues µ

k
of H0(p, ζ̌). For (p, ζ̌, ρ)

in a neighborhood of (p, ζ̌, 0), there is a smooth block reduction

(6.28) V −1ȞV = diag(Ȟk)
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where the Hk have their spectrum in small discs centered at µ
k

that are
pairwise disjoints. Equivalently, there is a smooth decomposition

(6.29) C
N =

⊕

k

Ek(p, ζ̌, ρ)

in invariant spaces for Ȟ(p, ζ̌, ρ) and Ȟk is the restriction of Ȟ to Ek. We
denote by Nk the dimension of Ek, that is the size of Ȟk.

The K-families of symmetrizers are constructed for each block Ȟk sep-
arately. If Σκ

k is a K-family for Ȟk, it is clear that Σκ = V ∗diag(Σκ
k)V has

the form (6.25) and is a K-family for Ȟ.
When the mode is elliptic, that is when Reµ

k
6= 0, the construction of

symmetrizers is given by Proposition 6.5

Proposition 6.14. Suppose that µ
k

is an eigenvalue of H0(p, ζ̌) with Reµ
k
6=

0. Then is a smooth family of self adjoint matrices Σκ
k on a neighborhood of

(p, ζ̌, 0) such that

(6.30)

i) Re (Σκ
kȞk) > 0,

ii) Re Σκ
k ≥ κId if Reµ

k
> 0,

Re Σκ
k ≥ −Id if Reµ

k
< 0.

Therefore we now restrict our attention to a nonelliptic mode:

(6.31) µ
k

= iξ̌
d
, ξ̌

d
∈ R.

By definition of H0, this implies that −τ̌ + iγ̌ is an eigenvalue λ of A(p, ξ̌)

with ξ̌ = (η̌, ξ̌
d
). In particular, by hyperbolicity, this can only happen when

γ̌ = 0. By Lemma 4.3, Ȟk has no eigenvalues on the imaginary axis when
ρ > 0, thus the number of eigenvalues in {Reµ < 0} is constant. We call it
N−

k . The next definition reformulates Definitions 6.9 and 6.10 for nonelliptic
blocks Ȟk.

Definition 6.15. A smooth symmetrizer for a nonelliptic block Ȟk on a
neighborhood ω of (p, ζ̌, 0) is a smooth self adjoint matrix Σ(p, ζ̌, ρ) such

that, for some C, c > 0, there holds for all (p, ζ̌, ρ) ∈ ω,

(6.32) Re ΣȞk = γ̌Σ1 + ρΣ2,

with Σ1(p, ζ̌, 0) and Σ2(p, ζ̌, 0) definite positive.
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A family of smooth symmetrizers Σκ
k on neigborhoods ωκ of (p, ζ̌, 0) is

called a K-family of symmetrizers for Ȟk if there are a decomposition

(6.33) Ek(p, ζ̌, 0) = E
−
k ⊕ E

+
k

with dim E
−
k equal to N−

k and m(κ) → +∞ as κ→ +∞ such that for all κ

(6.34) Σκ
k(p, ζ̌, 0) ≥ m(κ)(Π+

k )∗Π+
k − (Π−

k )∗Π−
k .

where Π±
k are the projectors associated to the splitting (6.33).

7 Symmetrizers for nonelliptic blocks; Examples

In this section and the next one, we consider a block Ȟk associated to
a purely imaginary eigenvalue µ

k
= iξ̌

d
of H0(p, ζ̌) with ζ̌ = (τ̌ , η̌, 0) .

Equivalently, −τ̌ is an eigenvalue of A(p, ξ̌), with ξ̌ = (η̌, ξ̌
d
). To build

symmetrizers, some knowledge of properties of Ȟk is necessary. Part of the
analysis, is to relate them to properties of the eigenvalue −τ . In this section,
we give examples which help to understand the general analysis.

7.1 Simple hyperbolic points

Suppose that −τ is a simple eigenvalue of A(p, ξ̌). Thus, in the vicinity of

(p, ξ̌, 0), iA(p, ξ̌) + ρB(p, ξ̌) has a simple eigenvalue

(7.1) iλ(p, ξ̌, ρ), with τ̌ + λ(p, ξ̌, 0) = 0.

Moreover, by Assumption (H4),

(7.2) Imλ(p, ξ, 0) = 0, ∂ρImλ(p, ξ̌, 0) < 0.

In a neighborhood of (p, ζ̌, 0), the eigenvalue H(p, ζ̌, ρ) close to µ are µ = iξ̌

where ξ̌ solves

(7.3) τ̌ − iγ̌ + λ(p, η̌, ξ̌, ρ) = 0.

The easiest case occurs when ξ̌ is a simple root of this equation at the

base point (p, ζ̌, 0), that is when

(7.4) β := ∂ξd
λ(p, ξ̌, 0) 6= 0.
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Note that β ∈ R. In this case, (τ̌ , ξ̌) is called a simple hyperbolic character-
istic point.

The condition (7.4) implies that there is a simple eigenvalue µ(p, ζ̌, ρ) of
H(p, ζ̌, ρ) such that

µ(p, ζ̌, 0) = µ,(7.5)

sign∂ρReµ(p, ζ̌, 0) = sign∂γ̌Reµ(p, ζ̌, 0) = −signβ.(7.6)

From that, we see that the invariant space Ek(p, ζ̌, ρ) has dimension equal
to one, and that

(7.7)
E
−
k = Ek, E

+
k = {0}, when β > 0,

E
−
k = {0}, E

+
k = Ek, when β < 0.

Moreover, Ȟk is the multiplication by µ, and therefore, K-families of sym-
metrizers for Ȟk are multiplications by

(7.8)
Σκ

k = −1 when β > 0,

Σκ
k = κ when β < 0.

7.2 Simple glancing modes

We still assume that −τ is a simple eigenvalue but that (7.4) is not satisfied.
In geometric optics which applies to the analysis of propagation of singular-
ities or oscillations, ∇ξλ(p, ξ, 0) is the group velocity at frequency ξ, and the
lines x+ t∇ξλ(p, ξ, 0) are the rays of propagation (the equation has constant
coefficients). The condition ∂ξd

λ = 0 means that the corresponding ray is
parallel to the boundary, it is called a glancing and we say that (τ̌ , ξ̌) is a
glancing mode.

The simplest case occurs when

(7.9) ∂ξd
λ(p, ξ̌, 0) = 0, β := ∂2

ξd
λ(p, ξ̌, 0) 6= 0.

In this case, one can show that dim Ek = 2 and that in a smooth basis Ȟk

has the form

(7.10) Ȟk = iξ
d
Id + i

(
a 1
b 0

)

with

a(p, ζ̌, 0) = b(p, ζ̌, 0) = 0,(7.11)

Im a = Im b = 0 when γ̌ = ρ = 0,(7.12)

∂γ̌Im b 6= 0, ∂ρIm b 6= 0,(7.13)

sign ∂γ̌Im b = sign ∂ρIm b = signβ.(7.14)
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The prototype for Ȟk at p = p, ζ̌ = (τ̌ , η̌, γ̌) and ρ = 0 is

(7.15) Ȟ =

(
0 i

−βγ̌ 0

)
.

For γ̌ > 0 the invariant spaces are

(7.16) E
− = C

(
1
µ

)
, E

+ = C

(
1
−µ

)

where µ is the square root of −iβγ̌ such that Reµ < 0. Note that these
spaces have the same limit as γ̌ → 0. Hence, the spectral projections are
not uniformly bounded so that they cannot be used simultaneously in the
construction of symmetrizers. However, Theorem 6.11 clearly imposes the
choice

(7.17) E
− = C

(
1
0

)

which we supplement with

(7.18) E
+ = C

(
0
1

)
.

Using Taylor expansions at γ̌ = 0 and ρ = 0

Ȟk = G0 + γ̌G1 + ρG2.

The symmetrizers are constructed as

Σκ = Σκ
0 + γ̌Σκ

1 + ρΣκ
2 .

The first term is searched as

Σκ
0 =

(
σκ ǫ
ǫ κ

)

with σκ(p, τ̌ , η̌) real, vanishing at (p, τ̌ , η̌), and ǫ ∈ {−1,+1} to be chosen

later. In particular, with E
± as above, there holds at (p, ζ̌):

(Σκ
0u, u) ≥ (κ− 1)|u2|2 − |u1|2.

Thus, the condition (6.34) will be satisfied with m(κ) = κ − 2 on a small
neighborhood of (p, ζ). The function σκ is determined by requiring that

Re Σκ
0G0 = 0.
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Denoting by a0 and b0 the restrictions of a and b respectively at γ̌ = ρ = 0,
which are real by (7.12), the condition above reads

σκ = ǫa0 + κb0.

Next, Σκ
1 and Σκ

2 are searched under the form

Σκ
1 = i

(
0 σκ

1

−σκ
1 0

)
, Σκ

2 = i

(
0 σκ

2

−σκ
2 0

)

with σκ
1 and σκ

2 real. Since

Re ΣκȞk = γ̌Re (Σκ
0G1 + Σκ

1G0) + ρRe (Σκ
0G2 + Σκ

2G0) +O(γ̌2 + ρ2),

for the condition (6.32) to be satisfied on a neigborhood of (p, ζ̌), it is suffi-
cient that

Re (Σκ
0G1 + Σκ

1G0) > 0 and Re (Σκ
0G2 + Σκ

2G0) > 0

at the base point. There,

G1 = i

(
a1 0
b1 0

)
, G2 = i

(
a2 0
b2 0

)

with Im b1 6= 0 and Im b2 6= 0, having the same sign as β. At the base point,

Re (Σκ
0G1 + Σκ

1G0) = Re

(
iǫb1 0

iǫa1 + iκb1 σκ
1

)
.

Choosing ε = −signβ and σκ
1 large enough this matrix is definite positive.

Proceeding similarly for σκ
2 , this finishes the construction of a K-family of

symmetrizers. Note that the condition (7.14) is essential for the simultane-
ous construction of Σκ

1 and Σκ
2 .

7.3 Hyperbolic modes with constant multiplicity

We suppose here that for (p, ξ̌) near (p, ξ̌), A(p, σ̌) has a smooth real and

semi-simple eigenvalue λ(p, ξ̌) of constant multiplicity m, such that

(7.19) τ̌ + λ(p, ξ̌) = 0.

This eigenvalue has a complex analytic extension in ξ̌, near ξ̌. We further
assume that this mode in nonglancing, that is

(7.20) β := ∂ξ̌d
λ(p, ξ̌) 6= 0.
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In this case, near (p, ξ̌, 0), iA(p, ξ̌) + ρB(p, ξ̌) has an invariant space E of
dimension m and its restriction to this space has the form

(7.21) iλ(p, ξ̌)Id + ρB♯(p, ξ̌, ρ).

Moreover, Assumption (H4) implies that the spectrum of B♯(p, ξ̌, 0) is con-
tained in the right half plane {Reµ > 0}.

For (p, ζ̌) near (p, ζ̌), the equation in ξ̌d

(7.22) τ̌ − iγ̌ + λ(p, η̌, ξ̌d) = 0

has a unique solution near ξ̌ and µ(p, ζ̌) = iξ̌d is a semi-simple eigenvalue of

Ȟ0(p, ζ̌) with µ(p, ζ̌) = µ
k
. Thus

(7.23) Ȟk(p, ζ̌, ρ) = µ(p, ζ̌)Id + ρB♭(p, ζ̌, ρ).

Moreover, denoting by ǫ the sign of β, there holds

Reµ(p, ζ̌) = 0 when γ̌ = 0,(7.24)

sign ∂γ̌Reµ(p, ζ̌) = −ǫ,(7.25)

spectrumB♭(p, ζ̌) ⊂ {−ǫReµ > 0}.(7.26)

This implies that

(7.27)
E
−
k = Ek, E

+
k = {0}, when ǫ = +1,

E
−
k = {0}, E

+
k = Ek, when ǫ = −1.

By Lemma 6.4, there is a smooth symmetric definite positive matrix S(p, ζ̌, ρ)
on Ek such that −ǫSB♭ is definite positive. Therefore, a smooth K-family
of symmetrizers is

(7.28)
Σκ

k = −S when β > 0,

Σκ
k = κS when β < 0.

7.4 Smoothly diagonalizable hyperbolic modes

Consider here the more general situation where −τ̌ is a semi-simple eigen-
value of A(p, ξ̌) of mutliplicity m and A(p, ξ̌) has, near (p, ξ̌), m smooth

eigenvalues λj(p, ξ̌), such that

(7.29) τ̌ + λj(p, ξ̌) = 0.

54



We further assume that there exist m smooth eigenvectors, ej(p, ξ̌), linearly
independent:

(7.30) A(p, ξ̌)ej(p, ξ̌) = λj(p, ξ̌)ej(p, ξ̌)

We assume that the λj ’s and ej ’s have complex analytic extension in ξ̌, near
ξ̌. We denote by ℓj a dual basis of left eigenvectors:

(7.31) ℓj(p, ξ̌)A(p, ξ̌) = λj(p, ξ̌)ℓj(p, ξ̌), ℓj · ej′ = δj,j′ .

Thus, near (p, ξ̌, 0), iA(p, ξ̌)+ρB(p, ξ̌) has an invariant space E of dimension
m and its restriction to this space has the form

(7.32) idiag{λj(p, ξ̌)} + ρB♯(p, ξ̌, ρ).

Moreover, Assumption (H4) implies that the spectrum of B♯(p, ξ̌, 0) is con-
tained in the right half plane {Reµ > 0}.

Assume that none of the mode in glanging, that is

(7.33) ∀j, βj := ∂ξ̌d
λj(p, ξ̌) 6= 0.

7.4.1 The inviscid case

In the inviscid case, which corresponds exactly to the case ρ = 0, the anal-
ysis is parallel to the constant multiplicity case. For (p, ζ̌) near (p, ζ̌), the

equations in ξ̌d
τ̌ − iγ̌ + λj(p, η̌, ξ̌d) = 0

have unique solutions ξd,j(p, ζ̌) near ξ̌ which define eigenvalues µj(p, ζ̌) of

Ȟ0(p, ζ̌) with µ(p, ζ̌) = µ
k
. Moreover the

e♯j(p, ζ) = ej(p, η̌, ξ̌d,j(p, ζ̌))

are eigenvectors of H0(p, ζ̌) associated to the eigenvalues µj , and there are
linearly independent near (p, ζ̌). Thus

(7.34) Ȟk(p, ζ̌, 0) = diag{µj(p, ζ̌)}.

As above, denoting by ǫj the sign of βj , there holds

Reµj(p, ζ̌) = 0 when γ̌ = 0,

sign ∂γ̌Reµj(p, ζ̌) = −ǫj .
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This implies that

(7.35)
E
−
k = span{e♭j : ǫj = +1},

E
+
k = span{e♭j : ǫj = −1}.

One obtain a smooth K-family of symmetrizers setting

(7.36) Σκ
k = diag{σκ

j }

with

(7.37) σκ
j =

{
−1 when ǫj = +1,

κ when ǫj = −1.

7.4.2 The viscous case

The viscous case is much more delicate. In the basis e♭j there holds

(7.38) Ȟk(p, ζ̌, ρ) = diag{µj(p, ζ̌)} + ρB♭(p, ζ̌, ρ).

In general, B♯ is a full matrix and, if the βj ’s have different signs, the
real part of eigenvalues of B♭ have different signs. As seen in (7.36), the
symmetrizers Σκ do not give the same weight to indices with positive and
negative ǫj . This leads to impose a natural decoupling condition, which
means that all the entries B♭

j,j′ of B♭ with ǫj 6= ǫj′ , vanish. But this condition
is not yet sufficient: for instance, if all the ǫj ’s are equal, the diagonal form
(7.36) is necessary to symmetrize diag{µj}. On the other hand, the spectral
condition on B♯ is too weak to ensure the existence of a symmetrizer of B♭

having this diagonal form. This leads to a second condition, which requires
that there exists a basis {ej} adapted to B♯ (see Definition 8.8 below). These
questions will be discussed in Section 8.2 below.

7.5 Totally nonglancing modes and symmetrizable systems

Proposition 7.1 ([GMWZ6]). Suppose that the system is symmetric in the
sense of Definition 2.5. Then, there are K-families of symmetrizers for Ȟk

if either E
−
k = Ek or E

−
k = {0}.

Proof. By symmetry, −τ̌ is a semi-simple eigenvalue of A(p, ξ̌), say of mul-

tiplicity m. In [MéZu2], it is proved that the assumption on E
−
k implies that

the multiplicity of µ
k

as an eigenvalue of H0(p, ζ̌) = Ȟ(p, ζ̌, 0) is equal to
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m. Denote by Vk a N ×m matrix the columns of which form a basis of Ek,
so that Ek(p, ζ̌, ρ) = Vk(p, ζ̌, ρ)C

m. Thus

(7.39) VkȞk = ȞVk

By assumption, there is a definite positive matrix S(p) such that the
SAj and SBj,k are symmetric.

Lemma 7.2. The symmetric matrix

(7.40) Σk,0(p, ζ) = −V ∗
k (p, ζ, 0)S(p)Ad(p)Vk(p, ζ, 0) .

is a symmetrizer for Ȟk on a neighborhood of (p, ζ̌, 0). More precisely, there
holds

(7.41) Re ΣkȞk = γR1 + ρR2

with Σ1(p, ζ̌, 0) and Σ2(p, ζ̌, 0) definite positive.

In addition, Σk(p, ζ, 0) is definite positive [resp. negative] when E
−
k = Ek

[resp. E
−
k = {0} ].

Proof. According to (6.24), there holds

Ȟ(p, ζ̌, ρ) = H0(p, ζ̌) + ρH ′(p, ζ̌, rho).

Using (7.39) and the definition (4.12) of H0, one obtains the identity (7.41)
with

R1 = V ∗
k SVk,(7.42)

R2 = V ∗
k (ReSAdH

′)Vk.(7.43)

Because S is definite positive, R1 also has this property. Next, Lemma 8.24
implies thatH ′(p, ζ̌, 0) = −H1(p, ζ̌) withH1 given by (8.52). SinceH0(p, ζ̌) =

µkId = −iξkId on Ek(p, ζ̌, 0), there holds

H ′(p, ζ̌, 0)Vk(p, ζ̌, 0) = −A−1
d (p)B(p, ξ̌).

Therefore, at the base point (p, cz, 0), there holds

R2(p, cz, 0) = V ∗
k (ReSB)Vk.

The symmetry assumption implies that SB is definite positive on the space
Ek(p, ζ̌, 0) = ker(A(p, ξ̌) + τ̌ Id), implying that R2 is definite positive at
(p, cz, 0), hence on a neighborhood of that point.

That Σk(p, ζ, 0) is definite positive [resp. negative] when the mode is
totally incoming [resp. outgoing] is proved in [MéZu2].
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This implies that

(7.44) Σκ
k =

{
Σk in the incoming case,
κΣk in the outgoing case.

are K-familes of symmetrizers for Ȟk.

8 Main results from [MéZu2] and [GMWZ6]

The reader is refereed to [MéZu2] and [GMWZ6] for complete proofs of the
results quoted in this section.

8.1 Hyperbolic multiple roots

We first recall from several notations and definitions concerning the char-
acteristic roots of the hyperbolic part L. For simplicity, we suppose, as we
may, that the coefficient of ∂t is A0 = Id, so that, with notations (2.4),
L = L. The characteristic determinant is denoted by

(8.1) ∆(p, τ, ξ) := det(τ Id +A(p, ξ)).

Definition 8.1. Consider a root (p, τ , ξ) of ∆(p, τ , ξ)) = 0, of algebraic
multiplicity m in τ .

i) (p, τ , ξ) is algebraically regular, if on a neighborhood ω of (p, ξ) there
are m smooth real functions λj(p, ξ), analytic in ξ, such that λj(p, ξ) = −τ
and for (p, ξ) ∈ ω:

(8.2) ∆(p, τ, ξ) = e(p, τ, ξ)

m∏

j=1

(
τ + λj(p, ξ)

)

where e is a polynomial in τ with smooth coefficients such that e(p, τ , ξ) 6= 0.
ii) (p, τ , ξ) is geometrically regular if in addition there are m smooth

functions ej(p, ξ) on ω with values in C
N , analytic in ξ, such that

(8.3) A(p, ξ)ej(p, ξ) = λj(p, ξ)ej(p, ξ),

and the e1, . . . , em are linearly independent.
iii) (p, τ , ξ) is semi-simple with constant multiplicity if all the λj’s are

equal.

58



Case iii) occurs when λ(p, ξ) is a continuous semi-simple eigenvalue of
A(p, ξ) with constant multiplicity near (p, ξ), such τ + λ(p, ξ) = 0. This
implies that λ is smooth and analytic in ξ as well as the eigenspace ker(A−λ).
In this case, one can choose for {ej} any smooth basis of of this eigenspace.

If all the roots at (p, ξ) are geometrically regular, then, locally near (p, ξ),
A(p, ξ) is smoothly diagonalizable, meaning that it has a smooth basis of
eigenvectors.

Example 8.2. For the inviscid MHD, the multiple eigenvalues are alge-
braically regular, but some are not geometrically regular (see [MéZu2]).

The second notion which plays an important role in the analysis of hy-
perbolic boundary value problems is the notion of glancing modes . Recall
from [MéZu2] the following definition. If τ is a root of multiplicity m of the
polynomial ∆(p, ·, ξ), then by hyperbolicity, the Taylor expansion of ∆ at
(p, τ , ξ) at the order m− 1 vanishes so that

(8.4) ∆(p, τ + τ, ξ + ξ) = ∆m(τ, ξ) +O(|τ, ξ|m+1)

and ∆m is homogeneous of degreem. Moreover, ∆m is hyperbolic in the time
direction. Indeed, any direction of hyperbolicity for ∆(p, ·) is a direction of
hyperbolicity for ∆m. Denote by Γ+ the open convex cone of hyperbolic
directions fot ∆m which contains dt.

Definition 8.3. The root (p, τ , ξ) of ∆, of multiplicity m, is said nonglanc-
ing when the boundary is noncharacteristic for ∆.

It is totally incoming [resp. outgoing] when the inward [resp. outward]
conormal to the boundary belongs to Γ+.

It is totally nonglancing if is either totally incoming or totally outgoing.

Example 8.4. This definition agrees with the usual one for simple roots,
given by τ + λ(p, ξ) = 0. In this case ∂t + ∇ξλ · ∂x is is the Hamiltonian
transport field for the propagation of singularities or oscillations and the
glancing condition ∂ξd

λ = 0 precisely means that the field is tangent to the
boundary. More generally, if the root (p, τ , ξ) of ∆ is algebraically regular,
then, with notations as in (8.2)

(8.5) ∆m(τ, ξ) = e(p, τ , ξ)
m∏

j=1

(
τ + ξ · ∇ξλj(p, ξ)

)

The mode is nonglancing if none of the tangential speed ∂ξd
λj(p, ξ) vanish.

It is totally incoming [resp. outgoing] if they all are positive [resp. negative].
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In particular, in the constant multiplicity case, all the λj are equal and they
are all glancing, incoming or outgoing at the same time.

In the study of boundary value problems, the dichotomy incoming vs out-
going plays a crucial role: for instance, for transport equations one boundary
condition is needed in the first case and none in the second. The symmetriz-
ers are constructed in opposite ways. The general Kreiss construction also
reflects this dichotomy. Introduce the following definition:

Definition 8.5. Suppose that (p, τ , ξ) is an algebraically regular root of ∆.
With notations as in (8.2), denote by νj the order of ξ

d
is a root of order

of the equation τ +λj(p, ξ1, . . . , ξd−1
, ·) = 0, that is the positive integer such

that

(8.6) ∂a
ξd
λj(p, ξ) = 0 for a < νj and βj :=

1

νj !
∂

νj

ξd
λj(p, ξ) 6= 0.

We say that λj is of type I when either νj is even or νj is odd and βj > 0.
It is of type O when νj is odd and βj < 0.

We denote by JO [resp. JI ] the set of indices j of the corresponding type.

Remark 8.6. When (p, τ̌ , ξ̌) is non glancing, then the all the νj are equal to
1, and being of type I [resp. type O] means to be incoming [resp. outgoing].
They are all of the same type exactly when the mode is totally nonglancing.

Remark 8.7. The details of the construction of Kreiss’ symmetrizers de-
pend strongly on being of type I or O, see [Kre, ChPi, Mét4]. There are no
reason other than technical why even roots are of type I rather than O.

8.2 The decoupling condition

The spectral properties of A(ξ) are modified by the perturbation B. In
particular, since the construction of symmetrizers depends deeply on the
property of being incoming/outgoing, it is very important that the pertur-
bation respects the decoupling between the different type of modes.

Definition 8.8. Suppose that (p, τ , ξ) is a geometrically regular root of ∆
of order m. Consider a basis {ej} as in (8.3) and dual left eigenvectors ℓj
such that

(8.7) ℓj
(
τ Id +A(p, ξ)

)
= 0, ℓj · ej′(p, ξ) = δj,j′ .

Consider the and the m×m matrix with entries

(8.8) B♯
j,j′ = ℓjB(p, ξ)ej′(p, ξ)
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i) We say that the decoupling condition is satisfied if

(8.9) B♯
j,j′ = 0 when (j, j′) ∈ (JO × JI) ∪ (JI × JO)

where J0 and JI are introduced in Definition 8.5.
ii) We say that the basis {ej} is adapted to B if

(8.10) ReB♯ > 0.

Definition 8.9. We say that the root (p, τ , ξ) of ∆ satisfies the condition
(BS) if is is geometrically regular root, satisfies the decoupling condition
(8.9) and there is an eigenbasis basis {ej} adapted to B.

We give now several examples and counterexamples.

Theorem 8.10 (Constant multiplicity). Suppose that (p, τ , ξ) is a semi-
simple characteristic root with constant multiplicity of ∆. Then the condi-
tion (BS) is satisfied.

Proof. For semi-simple characteristic root λ with constant multiplicity either
JO or JI is empty so that the decoupling condition (8.9) is trivially satsifeid.
Moreover, it is proved in [MéZu1] that (H1) implies that the spectrum of
B♯ is located in {Re z > 0}. Thus there is a basis {ej} in ker(A(p, ξ) + τ Id)

such that ReB♯ is definite positive. Next, since any smooth basis {ej} in
ker(A− λ) satisfies (8.3), one can choose it such that ej(p, ξ) = ej .

Proposition 8.11 (Artificial viscosity). Suppose that (p, τ , ξ) is geomet-
rically regular for iA + B in the sense that there are m smooth functions
λj(p, ξ, ρ) and m linearly independent smooth vectors ej(p, ξ, ρ) on a neigh-
borhood of (p, ξ, ρ), analytic in ξ, such that λj(p, ξ, 0) = −τ for all j and

(8.11)
(
iA(p, ξ) + ρB(p, ξ)

)
ej(p, ξ, ρ) = iλj(p, ξ, ρ)ej(p, ξ, ρ).

Then, the decoupling condition is satisfied and the basis {ej |ρ=0} is adapted
to B.

Proof. Alternately, differentiating (8.3) with respect to ρ and multiplying on

the left by ℓj′ , implies that B♯
j′,j = 0 when j 6= j′. Moreover, (H1) implies

that B♯
j,j > 0.

For example, if (p, τ , ξ) is geometrically regular for A in the sense of
Definition 8.1 and if B = ∆xId is an artificial viscosity, then (p, τ , ξ) is
geometrically regular for iA+ B. However, this condition is too restrictive
for applications, in particular when A and B do not commute.
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Example 8.12. If the root is totally nonglancing, then the decoupling con-
dition is trivially satisfied since either JI or JO is empty. This applies to
fast shocks in MHD.

Counter example 8.13. Slow shocks in MHD do not satisfy the decoupling
condition, see [GMWZ6].

The decoupling condition is crucial in the construction of symmetrizers.
The second condition (8.10) is more technical. One could expect that with
the positivity Assumption (H1), one could always find an adapted basis.
This is not clear, except for mutliplicity 2 or symmetric systems.

Proposition 8.14. Suppose that (p, τ , ξ) is geometrically regular of multi-
plicity m. Assume that either m = 2 or that the symmetry assumption (H1’)
is satisfied. There is a basis {ej} adapted to B.

If in addition all the eigenvalues λj are of the same type O or I, then
the condition (BS) is satisfied.

Finally, we recall from [GMWZ6] that the decoupling condition is nec-
essary for the existence of K-family of symmetrizers and even more, for the
continuity of the negative space E

−
k .

Theorem 8.15. Suppose that (p, τ̌ , ξ̌) is geometrically regular and nonglanc-
ing and suppose that there exist j ∈ JI and j′ ∈ J0 such that

(8.12) B♯
j′,j 6= 0.

Then the negative space E
−
k (p, ζ̌, ρ) has no limit as (ζ̌, ρ) → (ζ̌, 0).

In particular, there are no smooth K-families of symmetrizers for Ȟk

near (p, ζ̌).

8.3 The hyperbolic block structure condition

We turn back to the construction of symmetrizers for nonelliptic blocks Ȟk in
the splitting (6.28). The construction of K-families is performed in [MéZu1]
provided that Ȟk can be put in a suitable normal form. This is the so called
block structure condition. We first review this condition in the hyperbolic
case, and next extend it to the hyperbolic-parabolic case.

Consider p and a frequency ζ̌ = (τ̌ , η̌, 0) 6= 0 and a purely imaginary

eigenvalue (6.31) µ
k

= iξ̌
d

of H0(p, ζ̌). Let ξ̌ = (η̌, ξ̌
d
). Then (p, τ̌ , ξ̌) is a

root of ∆. We consider the block Ȟk associated to µ
k

and denote by Ek

the corresponding invariant space of Ȟ. We use the notations Ȟk,0(p, ζ̌) =
Ȟk(p, ζ̌, 0) and Ek,0(p, ζ̌) = Ek(p, ζ̌, 0).
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Definition 8.16. Ȟk,0 has the block structure property near (p, ζ̌) if there
exists a smooth invertible matrix Vk,0 on a neighborhood of that point such
that V −1

k,0 Ȟk,0Vk,0 is block diagonal,

(8.13) V −1
k,0 Ȟk,0Vk,0 =



Q1 0

0
. . . 0
0 Qm′


 ,

with diagonal blocks Qj of size νj × νj such that :
Qj(p, ζ̌) has purely imaginary coefficients when γ̌ = 0,

(8.14) Qj(p, ζ̌) = µ
k
Id + i




0 1 0

0 0
. . . 0

. . .
. . . 1
· · · 0



,

and the real part of the lower left hand corner of ∂γ̌Qj(p, ζ), denoted by q♭
j,

does not vanish.

When νj = 1, Qj(p, ζ̌) is a scalar. In this case, (8.14) has to be under-
stood as Qj(p, ζ̌) = µ

k
, with no Jordan’s block. The lower left hand corner

of the matrix is Qj itself and the condition reads q♭
j := ∂γ̌Qj(p, ζ̌) 6= 0.

Proposition 8.17 ([MéZu2]). If the root (p, τ̌ , ξ̌) is geometrically regular in

the sense of Definition 8.1, the corresponding block Ȟk,0 satisfies the block
structure condition.

Conversely, if Ȟk,0 satisfies the block structure condition with matrices
V that are real analytic in ζ̌, then the root (p, τ̌ , ξ̌) is geometrically regular.

Remark 8.18. There is a slight discrepancy here between the necessary
and the sufficient condition, due to analyticity conditions. Definition 8.1
requires analyticity in ξ̌. This is used in the proof of sufficiency. In addition,
it implies that the block structure condition holds with matrices V that are
real analytic in ζ̌. Thus, there is an “if and only if” theorem. However,
for the construction of symmetrizers, analyticity of Vk is not needed, this is
why we do not insist on it in the definition above. In addition, note that
for fixed p, the existence of C∞ eigenvalues and eigenvectors for A, implies
that these eigenvalues are real analytic in ξ and that one can choose analytic
eigenvectors (see e.g [Shi, Mal]. The question is to control the domain of
analyticity as p varies. In applications, for this problem, proving analyticity
is not harder than proving the C∞ smoothness.
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To prepare the hyperbolic-parabolic analysis, we have to review the
proof of Proposition 8.17. In particular, we reformulate the conditions
of Definition 8.16 in a more intrinsic way. The choice of a smooth ma-
trix Vk,0 is equivalent to the choice of a smooth basis of Ek,0, denoted by
{ϕj,a(p, ζ̌)}1≤j≤m′,1≤a≤νj

. The property (8.14) reads

(H0(p, ζ̌) − µ
k
)ϕj,1(p, ζ̌) = 0,(8.15)

(H0(p, ζ̌) − µ
k
)ϕj,a(p, ζ̌) = iϕj,a−1(p, , ζ̌), 2 ≤ a ≤ νj .(8.16)

With (6.29), there is a unique smooth dual basis ψj,a(p, ζ̌) such that

(8.17)
ψj,a · E

′
k,0 = 0,

ψj,a · ϕj′,a′ = δj,j′δa,a′ .

Here, E
′
k,0 denotes the invariant space ofH0(p, ζ̌) such that C

N = Ek,0⊕E
′
k,0.

It is the sum of invariant subspaces associated to eigenvalues µ
k′
6= µ

k
.

In the basis ϕj,a, the entries of the matrix V −1
k,0 Ȟk,0Vk,0 are ψj,aH0ϕj′,a′ .

The diagonal block structure means that

(8.18) ψj,aH0ϕj′,a′ = 0 when j 6= j′.

The other conditions read:

Re (ψj,aH0ϕj,a′) = 0 when γ̌ = 0,(8.19)

Re ∂γ̌(ψj,νj
H0ϕj,1)(p, ζ̌) 6= 0.(8.20)

We first show how to compute this quantity in terms of A only.

Lemma 8.19. Suppose that Ȟk,0 has a block diagonal decomposition (8.13)
in a smooth basis ϕj,a of Ek(p, ζ̌, 0) which satisfies (8.15) (8.16). Let ψj,a

denote a dual basis satisfying (8.17). The lower left hand corner entry of
∂γ̌Qj(p, ζ̌) is equal to the lower left hand corner entry of −i∂τ̌Qj(p, ζ̌) and
equal to

(8.21) q
j

= −ψj,νj
(p, ζ̌)A−1

d (p)ϕj,1(p, ζ̌).

Proof. Let H0 = H0(p, ζ̌). Then H0 − µ
k

is invertible on E
′
k,0(p, ζ̌). With

(8.15) (8.16), this implies that

range
(
H0 − µ

k
Id
)

= {ψ1,ν1
(p, ζ̌), . . . , ψm′,νm′

(p, ζ̌)}⊥,(8.22)

ker
(
H0 − µ

k
Id
)

= {ϕ1,1(p, ζ̌), . . . , ϕm′,1(p, ζ̌)}.(8.23)
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In particular,

(8.24)
(
H0 − µ

k
Id
)
ϕj,1 = 0 and ψj,νj

(
H0 − µ

k
Id
)

= 0.

The entry in consideration is

qj(p, ζ̌) = ψj,νj
H0ϕj,1 = ψj,νj

(
H0 − µ

k
Id
)
ϕj,1 + µ

k
δνj ,1.

Therefore, differentiating in γ̌ and τ̌ and using (4.12), implies that

(8.25) ∂γ̌qj(p, ζ̌) = −i∂τ̌qj(p, ζ̌) = q
j

is given by (8.21).

We now discuss how much flexibility there is in the choice of the basis
ϕj,a. Recall that we are considering a purely imaginary eigenvalue µ

k
= iξ

d

of H0(p, ζ̌), so that −τ̌ is an eigenvalue λ of A(p, ξ̌) with ξ̌ = (η̌, ξ̌
d
).

Lemma 8.20. Suppose that Ȟk,0 has the block structure property near (p, ζ̌)
in a smooth basis ϕj,a and denote by ψj,a the dual basis (8.17). Then,

i) λ is a semi-simple eigenvalue of A(p, ξ̌) with multiplicity m equal to
the number m′ of blocks Qj,

ii) on a neighborhood of (p, ξ̌), there are m smooth eigenvalues λj(p, ξ̌)

of A(p, ξ̌) and m smooth linearly independent eigenvectors ej(p, ξ̌), such that

λj(p, ξ̌) = λ,(8.26)

A(p, ξ̌)ej(p, ξ̌) = λj(p, ξ̌)ej(p, ξ̌),(8.27)

ej(p, ξ̌) = ϕj,1(p, ζ̌),(8.28)

iii) the order of ξ̌
d

as a root of τ̌ + λj(p, η̌, ·) = 0 is equal to νj,
iv) denoting by {ℓj} the left eigenvector dual basis of {ej} as in (8.7),

there holds

(8.29) ℓjAd(p) = βjψj,νj
(p, ζ̌).

with βj := 1
νj !
∂

νj

ξd
λj(p, ξ̌) as in (8.6),

v) the lower left hand corner entry of ∂γ̌Qj(p, ζ̌) is

(8.30) q
j

= −1/βj ∈ R.
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Proof. a) Define ϕ̃j,νj
= ϕj,νj

and for a < νj

(8.31) ϕ̃j,a(p, ζ) = −i
(
H0(p, ζ) − µ

k

)
ϕj,νj

.

By (8.13)(8.14), there holds

(8.32) ϕ̃j,a(p, ζ̌) = ϕj,a(p, ζ̌).

Moreover, in the new basis ϕ̃j,a, the matrix of Qj has the form

(8.33) Qj = iξ̌
d
Id + i




∗ 1 . . . 0
... 0

. . . 0
∗ 0 . . . 1
∗ 0 . . . 0




Thanks to (8.32), the dual basis {ψ̃j,a} associated to {ϕ̃j,a} also satisfies

ψ̃j,a(p, ζ̌) = ψj,a(p, ζ̌). This implies that the lower left hand corner of

∂γ̌Qj(p, ζ̌) is unchanged in the new basis.

b) Consider the determinant

∆j(p, ζ̌, ξ̌d) = det
(
ξdId + iQj(p, ζ̌)

)
.

It is independent of the basis {ψj,a} or {ψ̃j,a}. Thus, it is real when γ̌ = 0
and vanishes at (p, ζ̌, ξ̌

d
). Moreover, (8.14) implies that

∂τ̌∆j(p, ζ̌, ξd
) = −q

j
.

As a byproduct, using also (8.25) this shows that

(8.34) q
j
∈ R thus q

j
= Re q

j
= q♭

j 6= 0.

In particular, the implicit function theorem implies that there is a smooth
function λj(p, ξ̌), in a real neighborhood of (p, ξ̌), such that λj(p, ξ̌) = −τ̌
and for ζ̌ = (τ̌ , η̌, 0):

(8.35) ∆j(p, ζ̌, ξ̌d) = αj(p, ζ̌, ξ̌d)
(
τ̌ + λj(p, ξ̌)

)

with αj(p, ζ̌, ξ̌d
) 6= 0.
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c) Consider next the eigenvector equation

(8.36)
(
ξ̌dId + iQj(p, ζ̌)

)
ej = 0.

By (8.33), in the basis {ψ̃j,a}, the νj − 1 first equation determine the last
νj − 1 components of ej

(8.37) (ej)a = (ξ̌d − ξ̌
d
)a−1(ej)1, a ≥ 2.

Substituting these values, the last equation is a scalar equation equivalent
to ∆j = 0. Introduce

ζj(p, η̌, ξ̌) =
(
− λj(p, ξ̌), η̌, 0

)
,

and

(8.38) ej(p, ξ̌) = ϕ̃j,1(p, ζ̌) +

νj∑

a=2

(ξ̌d − ξ̌
d
)j−1ϕ̃j,a(p, ζ̌).

This vector is smooth and satisfies (8.36), thus

(
A(p, ξ̌) − λj(p, ξ̌)Id

)
ej(p, ξ̌) = Ad(p)

(
iH0(p, ζ̌j) + ξ̌dId

)
ej(p, ξ̌) = 0.

Moreover, the ej(p, ξ̌) = ϕj,1(p, ζ̌) are linearly independent.

d) By (8.35), for ζ̌ = (τ̌ , η̌, 0), there holds

det
(
τ̌ Id +A(p, ξ̌)

)
= det(Ad) det

(
iH0(p, ζ̌) + ξ̌dId

)

= α(p, τ̌ , ξ̌)

m′∏

j=1

(
τ̌ + λj(p, ξ̌)

)

where α(p, τ̌ , ξ̌) 6= 0 and m′ is the number of blocks Qj . This shows that −τ̌
is an eigenvalue of algebraic order m′ of A(p, ξ̌)

)
. By step c), the geometric

multiplicity is at least m′, implying that −τ̌ is semi-simple of order m′.
Moreover, by (8.15), there holds

∆j(p, ζ̌, ξ̌d) = (ξ̌d − ξ̌
d
)νj ,

showing that ξ̌
d

is a root of multiplicity νj of ∆j , thus of τ̌ +λj(p, η̌, ξ̌) = 0.
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e) Let ℓj satisfy (8.7). Thus

Range
(
Ȟ0(p, ζ̌) − µ

k
Id
)

= A−1
d (p)Range

(
τ̌ Id +A(p, ξ̌)

)

= A−1
d (p){ℓ1, . . . , ℓm}⊥.

.

Comparing with (8.22), this implies that

(8.39) span
{
ψj,νj

(p, ζ̌), 1 ≤ j ≤ m
}

= span
{
ℓj , 1 ≤ j ≤ m

}
.

For a ∈ {1, . . . , νj}, introduce

(8.40) ej,a =
1

(a− 1)!
∂a−1

ξd
ej(p, ξ̌).

Because ξ̌
d

is a root of order νj of τ̌ + λj(p, η̌, ξ̌) = 0, the definition (8.38)
implies that

ej,a = ϕ̃j,a(p, ζ̌) = ϕj,a(p, ζ̌) for 1 ≤ a ≤ νj .

In particular, (8.17) implies that

(8.41) ψj′,νj′
(p, ζ̌) · ej,νj

= ψj′,νj′
(p, ζ̌) · ϕj,νj

(p, ζ̌) = δj,j′ .

Differentiating the equation

(8.42)
(
A(p, ξ̌) − λj(p, ξ̌)

)
ej(p, ξ̌) = 0

with respect to ξ̌d and at order νj yields

(
τ̌ Id +A(p, ξ̌)

)
∂

νj

ξj
ej(p, ξ̌) = −νjAd(p)∂

νj−1
ξd

ej(p, ξ̌) + ∂
νj

ξj
λj(p, ξ̌)ej(p, ξ̌).

Multiplying on the left by ℓj′ annihilates the left hand side, implying

ℓj′Ad(p)ej,νj
(p, ζ̌) = βjℓj′ · ej(p, ξ̌) = βjδj′,j .

By (8.39), the ℓjAd and ψj,νj
span the same space. , Therefore, comparing

with (8.41) implies that ℓj′Ad(p) = βjψj′,νj′
(p, ζ̌).

f) By (8.21) and (8.29), we have

−βjqj
= ℓjϕj,1(p, ζ̌) = ℓjej(p, ξ̌) = 1.

The proof of the lemma is complete.
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Remark 8.21. This lemma is a variation on the necessary part in Propo-
sition 8.17 (see [MéZu2]), with useful additional remarks. It shows that
the block structure condition is closely related to a smooth diagonalisa-
tion of A. Conversely, if one starts from a smooth basis ej and a root of
τ̌+λj(p, ξ̌) with (8.6), one constructs a basis ϕj,a such that ϕj,a(p, ζ̌) is given

by (8.40), using an holomorphic extension of ej to complex values of ξ̌d (see
[MéZu2]). Lemma 8.20 implies that the change of bases which preserve the
block structure form are linked to change of bases which preserve the smooth
diagonalization of A.

The construction of K-families of symmetrizers for the blocks Qj is per-
formed in [Kre, Maj1, Mét4]. The sign of βj and the parity of νj play an
important role. Hyperbolicity implies that H0 and thus the Ȟk and Qj have
no purely imaginary eigenvalues when γ̌ > 0. Denote by E

−
Qj

the invariant

space of Qj associated to the spectrum in {Reµ < 0} since the definition of
the limiting space E

−
Qj

. Recall that the limit space at (p, ζ̌) is

(8.43) E
−
Qj

= C
ν′

j × {0}νj−ν′

j

with

(8.44) ν ′j =





νj/2 when νj is even,
(νj + 1)/2 when νj is odd and βj > 0,
(νj − 1)/2 when νj is odd and βj < 0.

Remark 8.22. As a corollary, we have the following characterization of the
sets J0 and JI :

(8.45)

{
j ∈ JI if νj is even or νj is odd and q

♭
j < 0,

j ∈ J0 if νj is odd and q
♭
j > 0.

8.4 The hyperbolic-parabolic case

We still consider a block Ȟk associated to a purely imaginary eigenvalue
(6.31). In the next section, we show that the following technical conditions
are the natural one for the construction of Kreiss symmetrizers.

Definition 8.23. Ȟk has the generalized block structure property near (p, ζ̌, 0)
if there exists a smooth invertible matrix Vk on a neighborhood of that point
such that

(8.46) V −1
k ȞkVk =




Q1 · · · 0
...

. . .
...

0 · · · Qm


+ ρ




B̃1,1 · · · B̃1,m
...

. . .
...

B̃m,1 · · · B̃m,m
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where the Qj(p, ζ̌) satisfy the properties of Definition 8.16. Moreover, the
m × m matrix B♭ with entries B♭

j,j′ equal to the lower left hand corner of

B̃j,j′(p, ζ̌, 0) satisfies

(8.47) B♭
j,j′ = 0 when (j, j′) ∈ (JO × JI) ∪ (JI × JO)

where J0 and JI are defined by (8.45) and there is a real diagonal matrix
D♭, with entries d♭

j such that

(8.48) d♭
jq

♭
j > 0, ReD♭B♭ > 0.

We show that these conditions are related to the condition (BS) of Def-
inition 8.9 formulated on the original system. We need first a more detailed
form of the block reduction H in (4.16). Introduce the following notations:

B∗∗(p, ζ) :=
d−1∑

j=1,k

ηjηkBj,k(p),(8.49)

B∗d(p, ζ) :=
d−1∑

j=1

ηj(Bj,d(p) +Bd,j(p))(8.50)

Lemma 8.24. One can choose the matrix V in (4.16) such that there holds

(8.51) H(p, ζ) = H0(p, ζ) −H1(p, ζ) +O(|ζ|3)

where

(8.52) H1 = A−1
d

(
B∗,∗ − iB∗,dH0 −Bd,dH

2
0

)
,

Proof. Direct computations show that the kernel of G(p, 0) is C
N ×{0} and,

using that Ad is invertible, that kerG(p, 0)∩ rangeG(p, 0) = {0} This shows
that 0 is a semi-simple eigenvalue of G(p, 0).

If µ is a purely imaginary eigenvalue of G(p, 0), then 0 is an eigenvalue
of iA(p, ξ) + B(p, ξ) with ξ = (0,−iµ). By Assumption (H1) this requires
that ξ = 0, thus µ = 0. This shows that the nonvanishing eigenvalues of
G(p, 0) are not on the imaginary axis.

This implies that there is a smooth matrix V (p, ζ) on a neighborhood of
(p, 0) such that (4.16) holds with H(p, 0) = 0 and P (p, 0) invertible with no
eigenvalue on the imaginary axis.

The image of the first N columns of V is the invariant space of G, and
H is the restriction of G to that space. At ζ = 0 this space is kerG, and

70



performing a smooth change of basis in C
N , we can always assume that the

first N columns of V are of the form

(8.53) VI(p, ζ) =

(
IdN×N

W (p, ζ)

)

with W of size N2 ×N vanishing at ζ = 0. This implies (4.18).
By (4.16) GVI = VIH, hence MVI = GdVIH and

M = −AH +BdWH, W = JH.

Therefore,

(8.54) M = −AH +BdJH
2 = −AH +Bd,dH

2.

Taking the first order term at ζ = 0 shows that the first order term in H0

in H satisfies

(iτ + γ)Id +
d−1∑

j=1

iηjAj = −Ad(p)H0

and hence is given by (4.12). The second order term H1 in H satsifies

B∗,∗ = −AdH1 + iB∗,dH0 +Bd,dJH
2
0

implying (8.51) and (8.52).

Parallel to Lemma 8.19, we can now state:

Lemma 8.25. Suppose that the matrix of Ȟk is given by the right hand
side of (8.46) in a smooth basis ϕj,a of Ek(p, ζ̌, ρ) which satisfies (8.15) and
(8.16) for ρ = 0. Let {ℓj} denote the dual basis of {ej = ϕj,1} satisfying

(8.7). The entries of B♭ are

(8.55) B♭
j,j′ = − 1

βj
ℓj B(p, ξ̌)ϕj′,1(p, ζ̌, 0).

Proof. In the block reduction (8.46), the lower left hand corner entry of the
(j, j′)-block is

hj,j′ = ψj,νj
Ȟϕj′,1 = ψj,νj

(
Ȟ − µ

k
)ϕj′,1 + µ

k
δj,j′ .

Differentiating in ρ and using the relations (8.24) yields

−B♭
j,j′ = ∂ρhj,j′(p, ζ̌, 0) = −ψ

j,νj
B̃(p, ζ̌)ϕ

j,1
,
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where ψ
j,νj

and ϕ
j,1

stand for the evaluation at (p, ζ̌, 0) of the corresponding

function. Using the explicit form of B̃ and the relations

H0ϕj,1
= iξ̌

d
ϕ

j,1
, ψ

j,νj
H0 = iξ̌

d
ψ

j,νj

we obtain

ψ
j,νj

B̃(p, ζ̌)ϕ
j,1

= ψ
j,νj

A−1
d

(
B∗,∗(p, η̌) + ξ̌

d
B∗;d(p, η̌) + ξ̌

2

d
Bd,d(p)

)
ϕ

j,1

= ψ
j,νj

B(p, ξ̌)ϕ
j,1

With (8.29), this implies (8.55).

Theorem 8.26. If (p, τ̌ , ξ̌) is a geometrically regular characteristic root of
∆ which satisfies the condition (BS) of Definition 8.9. Then the associated
block Ȟk satisfies the generalized block structure condition.

Proof. Since (p, τ̌ , ξ̌) is geometrically regular, the hyperbolic part Ȟk,0 sat-
isfies the block structure condition. Moreover, if ej is a basis analytic in
ξ, there is a basis ϕj,a such that ϕj,a(p, ζ̌) = ej(p, ξ̌) (see Remark 8.21 or
[MéZu2]). By Lemma 8.25, (8.9) is equivalent to (8.47).

If once can choose the base {ej} such that (8.10) holds, then choose
d♭

j = −βj and by (8.30) and (8.55) there holds d♭
jq

♭
j = 1 so that DB♭ = B♯

satisfies (8.48).

Remark 8.27. Conversely, if the generalized block structure condition
holds with matrices Vk which are real analytic in ζ̌, then, by Proposition 8.17
(p, τ̌ , ξ̌) is geometrically regular. By (8.55), (8.47) is equivalent to the de-
coupling condition (8.9). Moreover, (8.48) implies that there is a diagonal

matrix with positive entries d♯
j = d♭

j/q
♭
j such that ReD♯B♯ > 0. Consider the

diagonal matrix C = (D♯)−1/2 = diag(cj) and the new basis ẽj = cjej . The
new dual basis is ℓ̃j = c−1

j cj and the new matrix B̃♯ is C−1B♯C = CD♯B♯C

and therefore Re B̃♯ = CRe (D♯B♯)C is definite positive.

8.5 Existence of K-families of symmetrizers

We can now state the main results of [MéZu2] and [GMWZ6].

Theorem 8.28. Suppose that the Assumptions of Section 2 are satisfied.
Assume further that one of the following two condition is satisfied:

i) all the real characteristic roots (p, τ, ξ) with |ξ| = 1 satisfy the con-
dition (BS) of Definition 8.9.
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ii) the system is symmetric dissipative in the sense of Definition 2.5
and the real characteristic roots (p, τ, ξ) with |ξ| = 1 are either totally
nonglancing in the sense of Definition 8.3 or satisfy the condition (BS) of
Definition 8.9.

Then, for all ζ̌ ∈ S
d
+, there exists K-families of smooth symmetrizers for

Ȟ(p, ζ, ρ) near (p, ζ̌, 0).

Recall that Theorem 8.10 gives sufficient conditions for the condition
(BS) to be satisfied. In particular, there holds

Corollary 8.29. Suppose that the full system (2.1) is symmetric dispersive
in the sense of Definition 2.5. Suppose in addition that the eigenvalues of the
inviscid system are either semi-simple with constant multiplicity or totally
nonglancing in the sense of Definition 8.3. Then, there are K-families of
symmetrizers for the associated reduced system Ȟ.

Finally, we recall that the existence of a K-family of symmetrizers implies
that the maximal estimates are satisfied when the uniform spectral stability
condition is verified.

Theorem 8.30. Suppose that there exists a K-families of symmetrizers for
Ȟ near (p, ζ̌, 0) and suppose that the boundary conditions are such that the
uniform spectral stability condition is satisfied for low frequencies. Then the
uniform stability estimates (4.38) are satisfied.

Similarly, if the reduced boundary conditions satisfy the reduced uniform
stability condition then the uniform estimates (5.17) and (5.18) hold true.

9 The high frequency analysis

9.1 The main high frequency estimate

This section is devoted to an analysis of uniform maximal estimates for high
frequencies. We still assume that the Assumptions of Section 2 are satis-
fied and we prove that the anticipated estimates (4.42) are satisfied when
the uniform spectral stability conditions are satisfied, under the following
additional structural assumptions which strengthens (H3):

Assumption 9.1. (H8) For all u ∈ U∗, L11(u, ∂) is hyperbolic with con-
stant multiplicities in the direction dt.

(H9) L11(u, ∂) is also hyperbolic with respect to the normal direction dxd.
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For Navier-Stokes and MHD equations and in many examples L11 is a
transport field

(9.1) L11 = ∂t +

d∑

j=1

aj(u)∂j

and the condition reduces to ad(u) 6= 0 for u ∈ U∗, that is to Assumption 2.8,
which means inflow or outflow boundary conditions. The hyperbolicity con-
dition (H9) in the normal direction is important as shown on an example
below. On the other hand the constant multiplicity condition (H8) is more
technical, and could be replaced by symmetry conditions: this is briefly
discussed in Remark 9.12.

We consider the linearized equation (4.6):

(9.2) ∂zu = G(z, ζ)u+ f, Γ(ζ)u(0) = g

with u = t(u1, u2, u3), f = t(f1, f2, f3), Γ as in (4.40) and g = t(g1, g2, g3).

Theorem 9.2. With assumptions as indicated above, assume that the uni-
form spectral stability condition is satisfied for high frequencies. Then there

are ρ1 > 0 and C such that for all ζ ∈ R
d+1
+ with |ζ| ≥ ρ1, the solutions of

(9.2) satisfy

(9.3)

(1 + γ)‖u1‖L2 + Λ‖u2‖L2 + ‖u3‖L2

+(1 + γ)
1

2 |u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |u3(0)|
≤ C

(
‖f1‖L2 + ‖f2‖L2 + Λ−1‖f3‖L2

)

+ C
(
(1 + γ)

1

2 |g1| + Λ
1

2 |g2| + Λ− 1

2 |g3|
)
.

High frequencies require a particular analysis for two reasons. First, the
splitting hyperbolic vs parabolic is quite different in this regime and sec-
ond the conjugation operator Φ of Lemma 4.1 is not uniform for large ζ.
The analysis is made in [MéZu1] for full viscosities and Dirichlet boundary
conditions. For partial viscosities and shocks, that is for transmission con-
dition, the problem is solved in [GMWZ4]. The presentation below is more
systematic and allows for more general boundary conditions of the form
(2.11).

We now explain the general strategy of the proof. We use the notations

(9.4)

‖u‖sc = (1 + γ)‖u1‖L2 + Λ‖u2‖L2 + ‖u3‖L2 ,

‖f‖′sc = ‖f1‖L2 + ‖f2‖L2 + Λ−1‖f3‖L2 ,

|u(0)|sc = (1 + γ)
1

2 |u1(0)| + Λ
1

2 |u2(0)| + Λ− 1

2 |u3(0)|,
|g|sc = (1 + γ)

1

2 |g1| + Λ
1

2 |g2| + Λ− 1

2 |g3|.
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1) The main step in the proof of the theorem is to separate off the
incoming and outgoing components of u. This is done using a change of
variables û = V−1(z, ζ)u which transforms the equation (9.2) to

(9.5) ∂zû = Ĝ(z, ζ)û+ f̂ , Γ̂(ζ)û(0) = g.

There are norms similar to (9.4) for û and f̂ as well; with little risk of
confusion, we use here the same notations. An important property is that:

(9.6)
‖u‖sc ≤ C‖û‖sc, ‖f̂‖′sc ≤ C‖f‖′sc,
|u(0)|sc ≤ C|û(0)|sc, |û(0)|sc ≤ C|u(0)|sc,

with C independent of ζ. Moreover, Γ̂(ζ) = Γ(ζ)V(0, ζ) satisfies

(9.7) |Γ̂(ζ)û(0)|sc ≤ C|û(0)|sc.

The new matrix Ĝ has the important property that

(9.8) Ĝ =

(
Ĝ+ 0

0 Ĝ−

)
+ Ĝ′

with

(9.9) ‖Ĝ′û‖′sc ≤ ε(ζ)‖û‖sc

where ε(ζ) tends to 0 as |ζ| tends to infinity. The block structure corresponds
to a splitting û = (û+, û−) with û− ∈ C

Nb and û+ ∈ C
N+N2−Nb denoting

the incoming and outgoing components respectively.

2) One proves separate estimates for the incoming and outgoing com-
ponents:

‖û+‖sc + |û+(0)| ≤ C‖(∂z − Ĝ+)û+‖sc,(9.10)

‖û−‖sc ≤ C‖∂z − Ĝ−)û−‖sc + C|û−(0)|,(9.11)

with C independent of ζ. (The norms are defined, identifying û− ∈ C
Nb to

(0, û−) ∈ C
N etc). As a result, with (9.9), this implies that if û is a solution

of (9.5), then

‖û+‖sc + |û+(0)| ≤ C‖f̂‖sc + ε(ζ)‖û‖sc,(9.12)

‖û−‖sc ≤ C‖f̂‖sc + ε(ζ)‖û‖sc + C|û−(0)|,(9.13)
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3) We show that the estimates above imply that, if the uniform spectral
stability condition is satisfied, then the solutions of (9.5) satisfy for |ζ| large
enough

(9.14) ‖û‖sc + |û(0)|sc ≤ C
(
‖f̂‖sc + |g|sc

)

implying that the solutions of (9.2) satisfy

(9.15) ‖u‖sc + |u(0)|sc ≤ C
(
‖f‖sc + |g|sc

)

that is (9.3).
• Indeed, by definition, h ∈ E

−(ζ) if and only if there is u solution of
∂zu = Gu with u(0) = h. The corresponding û = V−1u satisfies by (9.13)

‖û−‖sc ≤ C|u−(0)| + ε(ζ)‖û+‖sc

if ζ is large enough. Therefore, (9.12) implies that for ζ large and all h ∈
E
−(ζ), ĥ = V−1(0, ζ)h = (ĥ+, ĥ−) satisfies

(9.16) |ĥ+|sc ≤ ε(ζ)|ĥ−|sc.
• In addition Ê

−(ζ) := V−1(0, ζ)E−(ζ) has dimension equal to Nb, as
the space of the ĥ−. Therefore, (9.16) shows that for ζ large, the projection
h 7→ h− is bijective from Ê

−(ζ) to C
Nb , with inverse uniformly bounded in

the norm | · |sc.
The uniform spectral stability condition reads

(9.17) ∀h ∈ E
−(ζ), |h|sc ≤ C|Γ(ζ)h|sc

(see (4.44)). Using (9.6), this implies

(9.18) ∀ĥ ∈ Ê
−(ζ), |ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc.

Using the isomorphism between Ê
−(ζ) and C

Nb , we see that for ζ large
enough and ĥ− ∈ C

Nb , there is ĥ+ such that (ĥ+, ĥ−) ∈ Ê
−(ζ). Together

with (9.16) and (9.7), there holds

|ĥ−|sc ≤ |ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc ≤ C|Γ̂(ζ)(0, ĥ−)|sc + ε(ζ)|ĥ−|sc.
For ζ large, the last term can be dropped, increasing C. Finally, we conclude
that for all ĥ ∈ C

N

(9.19) |ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc + C|ĥ+|sc.
Applying this estimate to û(0), combining with (9.10) and (9.11) and ab-
sorbing the error term Ĝ′û for ζ large, we immediately obtain (9.14).

The third part of the proof will not be repeated. We will focus on the
reduction (9.5) and on the proof of the estimates for û±.
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9.2 Spectral analysis of the symbol

Consider the linearized operator (4.5)

−B∂2
z + A∂z + M.

The coefficients satisfy

(9.20)

B(z) = Bdd(w(z))

A(z, ζ) = Ad(w(z)) −
d−1∑

j=1

iηj

(
Bjd +Bd,j

)
(w(z)) + Ed(z)

M(z, ζ) = (iτ + γ)A0(w(z)) +

d−1∑

j=1

iηj

(
Aj(w(z)) + Ej(z)

)

+

d−1∑

j,k=1

ηjηkBj,k(w(z)) + E0(z)

where the Ek are functions, independent of ζ, which involve derivatives of
w and thus converge to 0 at an exponential rate when z tends to infinity.
Moreover, we note that

(9.21) E11
k = 0, E12

k = 0 for k > 0.

With (2.3), we also remark that M12 does not depend on τ and γ

We start with a spectral analysis of the matrix G in (4.6). It is conve-
nient to use here the notations u = (u1, u2, u3) ∈ C

N−N2 × C
N2 × C

N2

. In
the corresponding block decomposition of matrices and using the notations
above, there holds

(9.22) G =



G11 G12 G13

0 0 Id
G31 G32 G33




where

G11 = −(A11)−1M11, G31 = (B22)−1(A21G11 + M21),

G12 = −(A11)−1M12, G32 = (B22)−1(A21G12 + M22),

G13 = −(A11)−1A12, G33 = (B22)−1(A21G13 + A22).

Note that G11, G12, G31 and G33 are first order (linear or affine in ζ), that
G32 is second order (at most quadratic in ζ) and that G13 is of order zero
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(independent of ζ). We denote by Gab
p their principal part (leading order

part as polynomials). We note that

(9.23) Gab
p (z, ζ) = Gab

p (w(z), ζ) when (a, b) 6= (3, 1),

with

G11
p (u, ζ) = −(A11

d (u))−1
(
(γ + iτ)A11

0 (u) +
∑d−1

j=1 iηjA
11
j (u)

)
,

G12
p (u, ζ) = −(A12

d (u))−1
∑d−1

j=1 iηjA
12
j (u)

G13
p (u) = −(A11

d (u))−1A12
d (u)

G32
p (u, ζ) = (B22(u))−1

∑d−1
j,k=1 ηjηkB

22
j,k(u)

)
,

G33
p (u, ζ) = −(B22(u))−1

∑d−1
j=1 iηj

(
B22

j,d(u) +B22
d,j(u)

)
.

The principal term of G3,1 involves derivatives of the profile w. Denoting by
p = limz→+∞w(z) = w(∞) the end state of the profile w, we note that the
end state of G31

p is

G31
p (∞, ζ) = (B22(p))−1

(
(γ + iτ)A21

0 (p) +

d−1∑

j=1

iηjA
21
j (p) +A21

d (p)G11
p (p, ζ)

)
.

There are similar formulas using the matrices Aj and Bj,k of (2.4).
The spectral analysis is easier when all the terms are reduced to first

order. If u = (u1, u2, u3) is replaced by ũ = h|ζ|u := (u1, u2, |ζ|−1u3), G is
replaced by

(9.24) G̃ = h|ζ|Gh−1
|ζ| =




G11 G12 |ζ|G13

0 0 |ζ|Id
|ζ|−1G31 |ζ|−1G32 G33


 :=

(
G11 P12

P21 P22

)

with obvious definitions of Pab. Note that G̃ is or order one, while P21 is of
order zero. Thus

(9.25) G̃(z, ζ) = G̃p(z, ζ) +O(1), G̃p =

(
G̃11

p P12
p

0 P22
p

)
= O(|ζ|).

Moreover, since the coefficients in G converge exponentially at infinity, the
remainder in (9.25) is uniform in z ∈ R+ and |ζ| ≥ 1. Moreover, the principal
part of P̃22 is if the form P̃22

p (z, ζ) = P 22
p (w(z), ζ).

Lemma 9.3. i) For all ζ ∈ R
d+1
+ with γ > 0 and η 6= 0 and for all and

z ≥ 0, G̃p(z, ζ) has no eigenvalues on the imaginary axis; moreover, the
number of eigenvalues in {Reµ < 0} is Nb = N1

+ +N2.
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ii) for all compact subset of U∗, there are c > 0 and δ > 0 such that for

all u in the given compact and all ζ ∈ R
d+1
+ such that either γ ≤ δ|ζ| or

|η| ≤ δ|ζ|, the distance between the spectrum of G11
p (u, ζ) and the spectrum

of P 22
p (u, ζ) is larger than c|ζ|.

Proof. The spectrum of G̃p is the union of the spectra of G11
p and P 22

p . By

homogeneity, it suffices to consider ζ ∈ S
d
+.

a) G11
p is related to L11 since A11

d (iξ+G11
p (u, ζ)) = L11(u, γ+ iτ, iη, iξ).

By Assumption (H3), L11 is hyperbolic in the time direction, hence G11
p has

no eigenvalues on the imaginary axis when γ > 0; moreover, the boundary
is noncharacteristic for L11 by Assumption 2.8, implying that the number
of eigenvalues of G11

p in {Reµ < 0} is equal to the number of positive
eigenvalues of A11

d , that is is N1
+.

Next, note that

P 22
p =

(
0 |ζ|Id

|ζ|−1G32
p G33

p

)

Thus, iξ is an eigenvalue of P 22
p if and only if 0 is an eigenvalue of B22(η, ξ),

which is impossible by (H2) if η 6= 0. Thus, the eigenvalues of P 22
p are

not purely imaginary when η 6= 0. Moreover, the number of eigenvalues in
{Reµ < 0} is N2 (see [MéZu1]). This finishes the proof of i).

b) If η = 0, G32
p and G33

p vanish, hence the spectrum of P 22
p is {0}. On

the other hand 0 is not an eigenvalue of G11
p = −(γ + iτ)(A11

d )−1A11
0 since

A11
d and A11

0 are invertible and |γ + iτ | = |ζ| = 1.
If γ = 0 and η 6= 0, the eigenvalues of P 22

p are not in iR. On the other
hand, by Assumption (H9) the eigenvalues of G11

p are purely imaginary, thus
P 22

p and G11
p have no common eigenvalue. This finishes the proof of ii).

The analysis in a purely “elliptic” zone {γ ≥ δ|ζ| and |η| ≥ δ|ζ|} with
δ > 0, is easy, see below. The most difficult and important part is to
understand the “hyperbolic-parabolic” decoupling in an arbitrarily small
cone

(9.26) Cδ = {0 ≤ γ ≤ δ|ζ|} ∪ {|η| ≤ δ|ζ|}

with δ such that property ii) of Lemma 9.3 holds for u in a simply connected
neighborhood U∗

0 of a compact set which contains the curve {w(z), z ∈
[0,+∞[}. There, the usual homogeneity and the parabolic homogeneity are
in competition, leading to different classes of symbols. We use the following
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terminology: let ζ = (τ, γ, η) and for a multi-index α = (ατ , αη, αγ) ∈
N × N

d−1 × N, set

|α| = ατ + |αη| and 〈α〉 = 2(ατ + αγ) + |αη|.

Recall that the parabolic weight is Λ = (1 + τ2 + γ2 + |η|4) 1

4 .

Definition 9.4. i ) Γm(Ω) denotes the space of homogeneous symbols of
order m, that is of functions h(z, ζ) ∈ C∞(R+ ×Ω) such that there is θ > 0
such that for all α ∈ N

d+1 and all k ∈ N, there are constants Cα,k such that
for |ζ| ≥ 1 :

|∂α
ζ h| ≤ Cα,0|ζ|m−|α|, if k = 0,(9.27)

|∂k
z ∂

α
ζ h| ≤ Cα,ke

−θz|ζ|m−|α|, if k > 0,(9.28)

ii ) PΓm(Ω) denotes the space of parabolic symbols of order m, that is
of functions h(z, ζ) ∈ C∞(R+×Ω) satisfying similar estimates with |ζ|m−|α|

replaced by Λm−〈α〉.
We use the same notation for spaces of homogeneous or parabolic matrix

symbols of any fixed dimension.

Lemma 9.5. For all ζ̂ ∈ Sd ∩ Cδ, there is a a conical neighborhood Ω of ζ̂
and there are matrices W12

p ∈ Γ0(Ω) and W21
p , homogenous of degree 0 in ζ

for u ∈ U∗
0 such that

W21
p G11

p − P22
p W21

p = |ζ|P21
p .(9.29)

G11
p W12

p −W12
p P22

p = −P12
p .(9.30)

Proof. By homogeneity, it is sufficient to construct W21
p for |ζ| = 1. By

Lemma 9.3, for ζ ∈ Sd+1 ∩ Cδ and u ∈ U∗
0 , the spectra of G11

p (u, ζ) and
P 22

p (u, ζ) do not intersect, so that the linear system of equation

XG11
p (u, ζ) − P 22

p (u, ζ)X = Y

has a unique solutionX = X (u, ζ)Y . Therefore W21
p (z, ζ) = |ζ|X (w(z), ζ)P21

p (z, ζ)
satisfies (9.29) (Note that P21 is of degree 0).

The construction of W12
p is similar, noticing that P12

p is of degree 1.

In the block structure of G, there holds

(9.31) W21
p =

(
V21

p

V31
p

)
, W12

p =
(
V12

p V13
p

)
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and (9.29) reads

V21
p G11

p − |ζ|V31
p = 0,(9.32)

V31
p G11

p − |ζ|−1G32
p V21

p − G33
p V31

p = G31
p .(9.33)

Similarly,

G11
p V12

p − |ζ|−1V13
p G32

p = −G12
p(9.34)

G11
p V13

p − |ζ|V12
p − V13

p G33
p = |ζ|G13

p .(9.35)

For further use, we make the following remark : by (9.23), we see that G12
p

and G32
p vanish when η = 0. Therefore, (9.34) implies that V12 also vanishes

when η = 0 and hence

(9.36) V12(z, ζ) = O(|η|/|ζ|).

With these notations, let

VI(z, ζ) =




Id 0 0
|ζ|−1V21

p Id 0

V31
p 0 Id


 , VII(z, ζ) =




Id V12
p |ζ|−1V13

p

0 Id 0
0 0 Id




and V = VIVII . Using the conjugation u = Vû, f = V f̂ , for ζ in the in the
cone Cδ, the equation (9.2) is transformed to

(9.37) ∂zû = Ĝû+ f̂ , Γ̂û(0) = g

with Ĝ = V−1GV − V−1∂zV and Γ̂(ζ) = Γ(ζ)V(0, ζ).

Lemma 9.6. The entries of Ĝ satisfy:

Ĝ11 −
(
G11 + |ζ|−1G12V21

p + G13V31
p

)
∈ Γ−1,

Ĝ12 ∈ Γ0, Ĝ13 ∈ Γ−1, Ĝ21 ∈ Γ−1, Ĝ31 ∈ Γ0,

Ĝ22 ∈ Γ0, Ĝ23 − Id ∈ Γ−1,

Ĝ32 − (G32 − V 31G12) ∈ Γ0, Ĝ33 − G33 ∈ Γ0,

Proof. We first compute the entries of GI = V−1
I GVI . Direct computations

show that

G11
I = G11 + |ζ|−1G12V21

p + G13V31
p , G12

I = G12, G13
I = G13

G32
I = G32 − V 31G12, G33

I = G33 − V 31G13.
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Moreover,

G21
I = −|ζ|−1V21

p G11 + V31 − |ζ|−1V21
(
|ζ|−1G12V21

p + G13V31
p

)
.

The first two terms are of degree zero, and by (9.32), the sum of their
principal terms vanishes; the third term is of degree −1 thus G21

I ∈ Γ−1.
Similarly, G31

I is of degree 1 and its principal part vanishes by (9.33). Thus,

G21
I ∈ Γ−1, G31

I ∈ Γ0.

Next

G22
I = −|ζ|−1V21

p G12 ∈ Γ0, G22
I − Id = −|ζ|−1V21G13 ∈ Γ−1.

The computations for GII = V−1
II GIVII are quite similar. This new con-

jugation annihilates the principal parts of G12
I and G13

I and contributes to
remainder terms in the other entries.

Finally, direct computations show that V−1∂zV only contributes to re-
mainder.

The main idea is to consider (9.37) as a perturbation of the decoupled
system

∂zû
1 = Ĝ11û1 + f̂1,(9.38)

∂z

(
û2

û3

)
=

(
0 Id
G32 G33

)(
û2

û3

)
+

(
f̂2

f̂3

)
.(9.39)

Introduce then

(9.40) G′ = Ĝ −



Ĝ11 0 0
0 0 Id
0 G32 G33




The next lemma how the estimates are transported by the change of variables
u = Vû. We use the notations (9.4) for the scaled norms.

Lemma 9.7. There are constant C and ρ1 such that for all ζ in the cone
Cδ with |ζ| ≥ ρ1, there holds

(9.41)
‖V−1û‖sc ≤ C‖û‖sc, ‖Vf‖′sc ≤ C‖f‖′sc,
|V−1û(0)|sc ≤ C|û(0)|sc, |Vu(0)|sc ≤ C|u(0)|sc,

and

(9.42) |Γ̂(ζ)û(0)|sc ≤ C|û(0)|sc.
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Moreover,

(9.43) ‖G′û‖sc ≤ CΛ−1‖û‖sc.

Proof. Direct computations, using (9.36), show that u = Vû satisfies

u1 = O(1)û1 +O(|η| |ζ|−1)û2 +O(|ζ|−1)û3,

u2 = O(|ζ|−1)û1 +O(1)û2 +O(|ζ|−1)û3,

u3 = O(1)û1 +O(1)û2 +O(1)û3.

This implies the first estimate in (9.41), using the inequalities

(1 + γ)|η|/|ζ| . Λ, (1 + γ)/|ζ| . 1, Λ/|ζ| . 1.

The proof of the other estimates of (9.41) is similar, using in particular for

the traces the inequality (1 + γ)
1

2 |η|/|ζ| . Λ
1

2 .
The inequality (9.42) follows from the second line of (9.41) and the

estimate |Γu(0)|sc ≤ |u(0)|sc which is a direct consequence of the form (4.40)
of the boundary conditions.

Finally, Lemma 9.6 implies that f̂ = G′û satisfies

f̂1 = O(1)û2 +O(|ζ|−1)û3,

f̂2 = O(|ζ|−1)û1 +O(1)û2 +O(|ζ|−1)û3,

f3 = O(1)û1 +O(1)û2 +O(1)û3.

and (9.43) follows.

The parabolic bloc (9.39) is studied in [MéZu1]. We now focus on the
hyperbolic block (9.38), recalling and extending the analysis of [GMWZ4].

9.3 Analysis of the hyperbolic block.

9.3.1 The genuine coupling condition

For u ∈ U∗, denote by λj(u, ξ) the distinct eigenvalues of A
11

(u, ξ), which
are real and have constant multiplicity νj by Assumption (H8). Assumption
(H9) implies the following:

Lemma 9.8. For all u ∈ U∗, all ξ ∈ R
d and all j, there holds ∂ξd

λj(u, ξ) 6=
0, and all these derivatives have the same sign.
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Proof. If ∂ξd
λj(u, η, ξd

) = 0, then the equation τ + λ(η, ξd) = 0 would have
complex roots in ξd for some τ close to τ = −λj(u, η, ξd

) (recall that λj is
real analytic). Thus hyperbolicity in the normal direction prevents glancing.
Moroever, by continuity the sign of ∂ξd

λj(u, η, ξd) is constant for all ξd ∈ R

when η 6= 0. Thus the functions ξd 7→ λj(u, η, ξd) are monotone and tend
to infinity as ξd tends to ±∞. Since λj 6= λk when j 6= k, they must be all
increasing or all decreasing. This remains true for η = 0 by continuity.

According to the terminology of Section 4, we will say that the hyperbolic
block L11 is incoming [resp. outgoing ] when the derivatives ∂ξd

λj(u, ξ) are
positive [resp. negative].

Corollary 9.9. i) The matrix G11
p (u, ζ) has no purely imaginary eigenvalues

when γ > 0. They are all lying in {Reµ > 0} if the 11-block is outgoing and
in {Reµ < 0} if it is incoming.

ii) Near points ζ with γ = 0, G11
p (u, ζ) has semi-simple eigenvalues

µj(u, ζ) of constant multiplicity νj, which are purely imaginary when γ = 0.
Moreover, ∂γReµj > 0 when the 11-block is outgoing and ∂γReµj < 0 when
the 11-block is incoming.

Proof. Note that µ is an eigenvalue of G11
p (u, ζ) if and only if −τ + iγ is an

eigenvalue of A
11

(u, η, ξ) with ξ = −iµ.
Consider the equations in ξd : τ + λj(u, η, ξd) = 0. Since λj is strictly

monotone and tends to infinity at both infinity, it always have a unique
solution, ψj(u, η, τ) and ∂τψj has the same sign as −∂ξd

λj . This solu-
tion extends analytically for Im τ small. This yields distinct eigenvalues
µj(u, ζ) = iψj(u, η, τ − iγ) of G11

p for ζ close to the real domain. In partic-
ular ∂γµj = ∂τψj and the eigenvalues all lie in {Reµ > 0} if the 11-block is
outgoing and in {Reµ > 0} if it is incoming.

The kernel of G11
p −µj is the kernel of A

11−λj , thus has dimension equal
to the multiplicity of λj . Since these dimensions add up to N1, this shows
that G11

p has only semi-simple eigenvalues of constant multiplicity, which all
lie in a given half space when γ > 0.

Hyperbolicity of L11 implies that G11
p (u, ζ) has no purely imaginary

eigenvalues when γ 6= 0 and by continuity they all lie in the same half
space.

Next we need more information on the zero-th order correction of Ĝ11.
From (9.20) (9.21) and (9.22) we see that

(9.44) Ĝ11(z, ζ) − (V−1∂zV)11 = G11
p (w(z), ζ) + E(z, ζ),
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where E ∈ Γ0. Denote its principal part by Ep. Its limit at z = ∞ is

(9.45) Ep(p, ζ) = |ζ|−1G12
p (p, ζ)V 21

p (p, ζ)G13
p (p, ζ)V 31

p (p, ζ)

where p = limz→+∞w(z) and V 21
p (p, ζ), V 31

p (p, ζ) denote the end points of
V21

p and V31
p , that is the solutions of the intertwining relations (9.32) (9.33)

with matrices Gab
p replaced bay their endpoint values Gab

p (p, ζ). The next
result is crucial and follows from the genuine coupling condition (H4).

Proposition 9.10. Fix ζ with |ζ| = 1 and γ = 0. For ζ in a neighborhood of
ζ, consider a basis where G11(u, ζ) has the block diagonal form diag(µjIdνj

).
Denote by Ej,k(u, ζ) the corresponding blocks of E is this basis. Then, for
u ∈ U the eingenvalues of the diagonal blocks ReEj,j have a positive [resp.
negative] real part if the 11-block is outgoing [resp. incoming].

Proof. It is sufficient to prove the positivity at ζ. Suppose that γ = 0, denote
by ϕj,p with p ∈ {1, . . . , νj} a basis of eigenvectors of G11(u, ζ). Fix j and
set ξd = −iµj(u, ζ) ∈ R, ξ = (η, ξd). Then the ϕj,p are right eigenvectors of

A
11

(u, ξ) associated to the eigenvalue −τ = λj(u, ξ).

Consider left eigenvectors ℓj,p of A
11

(u, ξ), dual to the ϕj,p. Then, the left

eigenvectors of G11
p (u, ζ) associated to µj are 1

βj
ℓjA

11
d with βj = ∂ξd

λj(u, η, ξ,

wee Lemma 8.20. The entries of the block Ej,j are

(9.46)
1

βj
ℓj,pA

11
d Ep(u, ζ)ϕj,p′ .

Computing the eigenvalues of order ε of B(u, ξ)+iεA(u, ξ), leads to consider
the matrix

(9.47) iA
11

+ εA
12

(B
22

)−1A
21
.

The genuine coupling condition (H4) implies that for u ∈ U , its spectrum
lies in Reµ > cε for ε small, and this implies that the matrix Fj,j with
entries

(9.48) ℓj,pA
12

(B
22

)−1A
21
ϕj,p′

has its eigenvalues in the right half plane {Reµ > 0}.
Because G11

p ϕj,p′ = iξdϕj,p′ , the relation (9.32) implies

V 31
p ϕj,p′ = |ζ|−1V 21

p G11
p ϕj,p′ = iξd|ζ|−1V 21

p ϕj,p′ ,
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and, using the expressions of the matrices Ga,b yields

(|ζ|−1G12
p V

21
p +G13

p V
31
p )ϕj,p′ = −i|ζ|−1(A

11
d )−1A

12
(η, ξ)V 21

p ϕj,p′

and

(|ζ|−1G32
p V

21
p +G33

p V
31
p − V 31

p G11
p )ϕj,p′ = |ζ|−1(B

22
dd)

−1B22(η, ξ)V
21
p ϕj,p′

By (9.33) this is equal to

−G31
p ϕj,p′ = −i(B22

dd)
−1A

21
(η, ξ)ϕj,p′ .

Thus
|ζ|−1V 21

p ϕj,p′ = −i
(
B22(η, ξ)

)−1
A

21
(η, ξ)ϕj,p′ .

and
Epϕj,p′ = −(A

11
d )−1A

12
(η, ξ)

(
B22(η, ξ)

)−1
A

21
(η, ξ)ϕj,p′ .

Multiplying on the left by ℓjA
11
d , this shows that the coefficients in (9.46)

and (9.48) only differ by the factor −1/βj , and the proposition follows.

9.3.2 Estimates

We are now in position to prove maximal estimates for the solutions of the
equation (9.38).

Proposition 9.11. There are constants C and ρ1 ≥ 1 such that for all ζ
in the cone Cδ with |ζ| ≥ ρ1 and all û1 and f̂1 in L2(R+) satisfying (9.38),
there holds

(9.49)
(1 + γ)‖û1‖L2 + (1+γ)

1

2 |û1+(0)|

≤ C
(
‖f̂1‖L2 + (1 + γ)

1

2 |û1−(0)|
)

where û1+ = û1 and û1− = 0 if the 11-block is outgoing and û1+ = 0 and
û1− = û1 if it is incoming.

Proof. a) Fix ζ ∈ S
d+1
+ . We prove the estimate for ζ in a conical neigh-

borhood of ζ. Suppose first that γ = 0 (the most difficult case). By
Corollary 9.9 there is a matrix V11(z, ζ) homogeneous of degree 0 such that
(V11)−1G11

p V11 = diag(µj(w(z), ζ)Idνj
. Setting û1 = V11u1 transforms the

equation to

(9.50) ∂zu
1 = (diag(µj(w(z), ζ)Idνj

+ Ẽ)u1 + f1
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with Ẽ = E − (V11)−1∂zV11 ∈ Γ0, whose principal part Ẽp has the same end
point Ep(p, ζ) as Ep.

As usual, since the µj are pairwise distinct, there is a new change u1 =
(Id + V−1)ũ

1 with V11
−1 ∈ Γ−1, such that the resulting system has the same

form with the additional property that the zero-th order part is also block
diagonal, so that Ẽp = diag(Ej,j) and the end points of the blocks Ej,j are
Ej,j introduced in Proposition 9.10.

The term (Ẽ − Ẽp)u is O(|ζ|−1|u|), is incorporated to f1 and finally
absorbed from the right to the left of the inequality by choosing |ζ| large
enough. This reduces the proof to the case where the equation reads

(9.51) ∂zû
1 = µj(w(z), ζ)û1 + Ej,j(ζ)û

1 + Fj,j(z, ζ)û
1 + f̂1

with |Fj,j | ≤ C0e
−θz.

Consider the outgoing case. Then, Corollary 9.9 implies that there is
a constant c > 0 such that Reµj(u, ζ) ≥ cγ. Moreover, Proposition 9.10
implies that the eigenvalues of Ej,j have a positive real part. Thus, there
is a positive definite (constant) matrix S(ζ) ≥ Id such that ReSEj,j is
definite positive, say ReSEj,j ≥ Id. Introduce a = C0|S|

∫ z
0 e

−θsds such
that ∂za ≥ |SFj,j | and a is bounded in L∞ uniformly with respect to ζ.
Therefore, multiplying the equation by e2a(z)S and taking the L2 scalar
product with û1 implies that

(1 + cγ)‖eaû1‖2
L2 + |û1(0)|2 ≤ C‖eaû1‖L2‖eaf̂1‖L2

which implies (9.49). The proof in the incoming case is similar.

b) Suppose next that γ = 0. Consider again the outgoing case. Then,
the eigenvalues of G11

p satisfy Reµ ≥ c|ζ| in a conical neighborhood of ζ.
This is the classical “elliptic” case. There is a symmetric definite positive
matrix S(u, ζ) ∈ Γ0 such that ReSG11 ≥ c|ζ|Id and usual integrations by
parts imply that

c|ζ|‖û1‖2
L2 + |û1(0)|2 ≤ C‖û1‖L2‖f̂1‖L2 + C1‖û1‖2

L2

where C1 involve estimates of the zero-th order terms, which include ∂zS(w(z), ζ).
This term is eliminated choosing |ζ| large enough. The proof in the incoming
case is similar.

Remark 9.12. The proof above contains two ingredients. First, the 11-
block is totally incoming or totally outgoing, in analogy with the terminol-
ogy of Section 4. Thus the decoupling incoming/outgoing is trivial. More
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generally, this could be replaced by a decoupling condition in the spirit
of Section 4. For instance, for shocks, such a decoupling is immediate in
[GMWZ4] corresponding to equations on each side of the front. Next, we
construct symmetrizers for the incoming and outgoing components. There
we use the genuine coupling condition. If the eigenvalues are not of constant
multiplicity one can introduce adapted bases or use symmetry also in the
spirit of Section 4.

9.3.3 About Assumption (H9)

We show on an example that hyperbolicity in the normal direction is crucial
in the proof of estimates of the form (9.49). Suppose that the L11- block
reads

(9.52)

{
∂tu− ∂yu+ ∂xv,
∂tv + ∂yv + ∂xu.

Then, on the Fourier side, the 11 equation will be of the form

(9.53)

{
(i(τ − η) + γ)u+ ∂zv + a(z)u = f,
(i(τ + η) + γ)v + ∂zu+ a(z)v = g,

and the only information we have from the genuine coupling condition is
that a is positive at z = +∞. Suppose that a(z0) < 0 for some z0 > 0.
Then glancing waves for (9.52) will propagate parallel to the boundary and
thus may remain in a region where a is negative and thus may never be
damped. This is illustrated by choosing τ = η, large, γ = −a(z0) > and

uτ (z) = χ(τ
1

3 (z − z0)), vτ (z) =
−∂zuτ

2iτ + γ + a

with χ ∈ C∞
0 (R). Then (9.53) is satisfied with f = (a(z) − a(z0))uτ + ∂zvτ

and g = 0. Moreover, ‖f‖L2 = O(τ−
1

3 )‖u‖L2 and u(0) = v(0) = 0, showing
that no estimate of the form (9.49) can be valid.

9.4 Proof of Theorem 9.2

9.4.1 In the cone Cδ

We consider now the equation (9.39) and briefly recall the results from
[MéZu1]. It is natural to rescale the problem using the parabolic weights:
with v2 = û2 and v3 = Λ−1û3 and g2 = f̂2 and g3 = Λ−1f̂3the system reads

(9.54) ∂z

(
v2

v3

)
= GP

(
v2

v3

)
+

(
g2

g3

)
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with

GP =

(
0 ΛId

Λ−1G32 G31

)
∈ PΓ1

of quasi-homogenenous degree one and principal part GP (w(z), ζ) with

(9.55) GP (u, ζ) =

(
0 ΛId

Λ−1
(
(iτ + γ)(B

22
)−1 +G32

p (u, η)
)

G31
p (u, η)

)

Lemma 9.13 ([MéZu1]). There is c > 0 such that the spectrum of GP lies
in {|Reµ| ≥ cΛ}, with N2 eigenvalues, counted with their multiplicity, of
positive real part. There is a smooth change of variables W ∈ PΓ0 such that

W−1GPW =

(
P+ 0
0 P−

)

with P± ∈ PΓ1 having their eigenvalues satisfying ±Reµ ≥ cΛ.

Introduce (
v+

v−

)
= W−1

(
v2

v3

)

Corollary 9.14 ( [MéZu1]). There are C and ρ1 such that for all ζ ∈ Cδ

with |ζ| ≥ ρ1, there holds

Λ‖v+‖L2 + Λ
1

2 |v+(0)| ≤ C‖(∂z − P+)v+‖L2 ,

Λ‖v−‖L2 ≤ C‖(∂z − P−)v−‖L2 + CΛ
1

2 |v−(0)|.

Scaling back, introduce

(9.56)

(
û2,+

û3,+

)
=

(
Id 0
0 Λ

)
W
(
v+

0

)
,

(
û2,−

û3,−

)
=

(
Id 0
0 Λ

)
W
(

0
v−

)
.

Because, W−1∂zW is uniformly bounded, the Corollary implies the following
estimate:

Proposition 9.15. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ| ≥
ρ1, there holds

Λ‖u2,+‖L2+‖u3,+‖L2 + Λ
1

2 |u2,+(0)| + Λ− 1

2 |u3,+(0)|
≤ C‖f̂2‖L2 + CΛ−1‖f̂3‖L2 + ‖û2‖L2 + CΛ−1‖û3‖L2 ,

Λ‖u2,−‖L2+‖u3,−‖L2 ≤ CΛ
1

2 |u2,−(0)| + CΛ− 1

2 |u3,−(0)|
+ C‖f̂2‖L2 + CΛ−1‖f̂3‖L2 + ‖û2‖L2 + CΛ−1‖û3‖L2 .
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Finally, with û1,± as in Proposition 9.11, introduce

(9.57) û± = t(û1,±, û2,±, û2,±)

Adding up the various estimates and using (9.43), one obtains the following
estimates.

Proposition 9.16. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ| ≥ ρ1

and all û ∈ H1(R+):

‖û+‖sc + |û+(0)| ≤ C‖(∂z − G)û‖sc + Λ−1‖û‖sc,(9.58)

‖û−‖sc ≤ C‖(∂z − G)û‖sc + Λ−1‖û‖sc + C|û−(0)|.(9.59)

As indicated at the end of Section 7.1, these estimates imply the max-
imal estimates of Theorem 9.2 provided that the boundary conditions are
uniformly spectral stable.

9.4.2 Analysis in the central zone

We now consider the remaining cone where

(9.60) ζ ∈ R
d+1, γ ≥ δ|ζ| and |η| ≥ δ|ζ|.

We consider the rescaled G̃ matrix (9.25), for the rescaled unknows ũ =
h|ζ|u := (u1, u2, |ζ|−1u3), f̃ = h|ζ|f := (f1, f2, |ζ|−1f3). We note that in
the region under consideration we now have (1 + γ) ≈ Λ ≈ |ζ|, so that the
rescaled norms (9.4) are equivalent to

(9.61)

‖u‖sc ≈ |ζ|‖ũ‖L2 ,

|u(0)|sc ≈ |ζ| 12 |ũ(0)|,
‖f‖′sc ≈ ‖f̃‖L2 .

By Lemma 9.3, there is a smooth matrix V ∈ Γ0 such that

V−1(zζ)Gp(z, ζ)V(z, ζ) =

(
G+

p 0

0 G−
p

)
:= Gdiag

p

where the spectrum of G±
p ∈ Γ1 is contained in {±Reµ ≥ c|ζ|}. We use the

notations

(9.62) û := Vũ =

(
û+

û−

)
.
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ũ+ has dimension N +N2 −Nb and u− has dimension Nb. The equation for
û reads

(9.63) ∂zû = Ĝû+ f̂ ,

with Ĝ = Gdiag + O(1). The ellipticity of Gdiag immediately implies the
following estimates.

Proposition 9.17. There are constants C and ρ1 such that for all ζ satis-
fying (9.60) and |ζ| ≥ ρ1 and all ũ ∈ H1(R+) satisfying (9.63), there holds

|ζ| ‖û+‖L2 + |ζ| 12 |u+(0)| ≤ C‖f̂‖L2 + C‖û‖L2 ,(9.64)

|ζ| ‖û−‖L2 ≤ C‖f̂‖L2 + C‖û‖L2 + C|ζ| 12 |û−(0)|2.(9.65)

Thanks to (9.61), this is the exact analogue of Proposition 9.16 and
these estimates imply the maximal estimates of Theorem 9.2 provided that
the boundary conditions are uniformly spectral stable, as explained in Sec-
tion 7.1.

10 Linear stability

In the previous sections, we have studied the validity of maximal estimates
(see (4.36) and (4.42) in Section 4) for the spectral equation. Scaling back
to the original variables, and using Plancherel’s formula for inverting the
Laplace-Fourier transform, they imply weighted L2 estimates for the lin-
earized equations (4.3) near a function uε(t, y, x) = w(x/ε) where w satisfies
(4.1). The main goal of this section is to extend these estimates (see (10.14)
below) for the linearized equation near slow perturbations of w(x/ε), con-
sidering the Fourier-Laplace calculus developed in the preceding sections as
a symbolic calculus for suitable pseudo-differential symmetrizers.

10.1 Linearized equations, spectral stability conditions

A possible formalism is the following. Instead of considering a single profile
as in Section 4, we consider now a family of profiles W (p, z), which are
smooth functions defined for p in a domain P and z ∈ R+, with values in U∗

and such that their derivatives converge at an exponential rate as z → +∞:
there are δ > 0 and a smooth function W on P with values in U , such that

(10.1) sup
p,z

eδz
∣∣∂α

p,z(W (p, z) −W (p)
∣∣ < +∞
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We further assume that we are given a family of functions pε(t, x, y) on R
1+d,

with values in a compact subset of P, with at least

(10.2) sup
ε

‖pε‖W 1,∞(R1+d) < +∞.

The functions pε stand for the coordinates themselves or some additional
function depending on the iteration process in the resolution of the nonlinear
problem.

For ε ∈]0, 1], we consider the linearized equations from (2.1) (2.10)
around

(10.3) ũε(t, x, y) = W
(
pε(t, x, y),

x

ε

)
.

With abbreviated notations, they read

(10.4) L′
ũε
u̇ = ḟ , Υ′

ũε
u̇||x=0 = ġ.

L′
ũε

is a differential operator with coefficients that are smooth functions of
(t, y, x), z := x/ε and ε ∈ [0, 1]. Factoring out ε−1 it also appears as an
operator in ε∂t, ε∂y, ε∂x:

(10.5) L′
ũε

=
1

ε
L̃ε

(
t, y, x,

x

ε
, ε∂t, ε∂y, ε∂x

)
.

The analysis of Section 4 applies for all fixed p ∈ P to the linearized equa-
tions

(10.6) L′
up,ε

u̇ = ḟ , Υ′
up,ε

u̇|x=0 = ġ.

near

(10.7) up,ε(x) = W
(
p,
x

ε

)
.

With notations parallel to (4.3), we have

(10.8)





L′
up,ε

u̇ =
1

ε
L
(
p,
x

ε
, ε∂t, ε∂y, ε∂x

)
u̇,

Υ′
up,ε

u̇ = Υ′(p, u̇, ε∂yu̇, ε∂xu̇).

The main idea is that, as far as local stability properties are studied,
the operator Lũε is sort of a perturbation of the family of operators L′

uε(p),
meaning that
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- the terms which involve derivatives of ũε with respect to the slow
variables (t, y, x) in (10.3) (i.e. derivatives of pε) contribute only to admis-
sible errors which do not change the form of the estimates;

- the stability conditions are expressed by freezing the slow coefficients
of L̃ε at each point (t, y, x).

Accordingly, we set

Assumption 10.1. (H10) For all p ∈ P, the linearized equations (10.6)
satisfy the uniform spectral stability conditions of Definitions 4.15 and 4.17.

10.2 Maximal stability estimates

In order to use the symmetrizers of Sections 8 and 9, we supplement the
structural assumptions of Section 2 with the following “technical” condi-
tions:

Assumption 10.2. (H11) (Existence of low frequency symmetrizers) Near

all p ∈ P and ζ̌ ∈ S
d
+, there exist a K-family of symmetrizers for the matrix

Ȟ(p, ζ̌, ρ) associated to the profile W (p, ·).
We refer to Section 8 for geometric sufficient conditions which imply

(H11). For the existence of high frequency symmetrizers, we will further
assume that the Assumptions (H8) and (H9) of Section 9 are satisfied.

The stability estimates for (10.5) are expressed using weighted estimates.
Define the weights

Λǫ(ζ) = Λ(ǫζ) = (1 + (ǫτ)2 + (ǫγ)2 + |ǫη|4) 1

4 ,(10.9)

λǫ(ζ) =

{
(γ + ǫ|ζ|2) 1

2 , when |ǫζ| ≤ 1,
1√
ǫ
, when ǫ|ζ| ≥ 1,

(10.10)

Observe that the expressions defining λǫ in the two frequency regimes are
of the same order when |ǫζ| ≈ 1. Moreover, on any set of frequencies such
that 0 ≤ |ǫζ| ≤ R, we have 1 ≤ Λǫ ≤ CR.

Given a weight function φ(ζ) we use the notation

|u|φ =

(∫

Rd

φ(τ, γ, η)2|û(τ, η)|2dτdη
) 1

2

.(10.11)

where û denotes the Fourier transform of u. When u also depends on x, we
set

(10.12) ‖u‖φ =

(∫ ∞

0
|u( · , x)|2φdx

) 1

2

.
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Theorem 10.3 (L2 estimate). Suppose that W and pε satisfy (10.1) and
(10.2) respectively. Assume (H1) to (H11). Then, there exist positive con-
stants C, γ0 > 0, and ǫ0 > 0 such that for γ and ǫ satisfying

(10.13) γ ≥ γ0, ǫ ∈ (0, ǫ0]

and all solution u̇ of the linearized boundary value problem (10.4), with u̇,

and ḟ C∞ with compact support on R
d+1
+ and ġ C∞ with compact support

on R
d, there holds

(10.14)

‖e−γtu1‖λ2
ǫ
+ ‖e−γtu2‖λ2

ǫΛǫ
+
√
ǫ‖∂xe

−γtu2‖λǫ

+|e−γtu1
|x=0|λǫ

+|e−γtu2
|x=0|

λǫΛ
1
2
ǫ

+ ǫ|e−γt∂xu2|x=0|
λǫΛ

−
1
2

ǫ

≤
C
(
‖e−γtf1‖+‖e−γtf2‖Λ−1

ǫ

)

+C
(
|e−γtg1|λǫ

+ |e−γtg2|
λǫΛ

1
2
ǫ

+ |e−γtg3|
λǫΛ

−
1
2

ǫ

)
.

For instance, this implies the following uniform estimates:

Corollary 10.4. With assumptions as in Theorem 10.3, if g = 0, then

(10.15)
γ‖e−γtu‖L2(R1+d

+

+ +
√
γ‖e−γtu|x=0‖L2(Rd) ≤

C‖e−γtf‖L2(R1+d
+

).

10.3 Hints for the proof

Consider the linearized equations (10.4). Introduce uγ = e−γtu̇, fγ = e−γtḟ
and gγ = e−γtġ. Thus

(10.16)
1

ε
L̃ε

(
t, y, x,

x

ε
, ε(∂t + γ), ε∂y, ε∂x

)
uγ = fγ , Υ′

ũε
uγ |x=0 = gγ .

We prove estimates for the uγ similar to (10.14), with additional “error”
terms in the right hand side, which are arbitrarily small compared to the
left hand side, uniformly in ǫ, when γ is large.

a) We note that the terms in

1

ε

(
L̃ε

(
t, y, x,

x

ε
, ε(∂t +γ), ε∂y, ε∂x

)
−L
(
pε(t, y, x),

x

ε
, ε(∂t +γ), ε∂y, ε∂x

))
uγ

and
Υ′

ũε
uγ − Υ(pε(t, y, 0), uγ , ε∂yuγ , ε∂xuγ)
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only contribute to error terms and thus can be neglected. Therefore, it is
sufficient to study the equations

(10.17)





1

ε
L
(
pε,

x

ε
, ε(∂t + γ), ε∂y, ε∂x

)
u = f,

Υ′(pε, u, ε∂yu, ε∂xu)|x=0 = g.

and prove estimates

(10.18)

‖u1‖λ2
ǫ
+ ‖u2‖λ2

ǫΛǫ
+
√
ǫ‖∂xu

2‖λǫ

+|u1
|x=0|λǫ

+|u2
|x=0|

λǫΛ
1
2
ǫ

+ ǫ|∂xu2|x=0|
λǫΛ

−
1
2

ǫ

≤ C
(
‖f1‖ + ‖f2‖Λ−1

ǫ
+|g1|λǫ

+ |g2|
λǫΛ

1
2
ǫ

+ |g3|
λǫΛ

−
1
2

ǫ

)
+ errors

where the errors are arbitrarily small compared to the left hand side when
γ is large.

Next, we transform (10.17) to a first order system in x, introducing
U = t(u, ε∂xu

2):

(10.19)




∂xU =

1

ε
G
(
pε,

x

ε
, ε(∂t + γ), ε∂y, εγ

)
U + F,

Γ(pε)U|x=0 = g.

b) In Sections 4 to 9, we have studied these equations, when pε is a
constant, using localizations and symmetrizers. We follow the same analysis.
The LF / MF / HF localizations are performed with semi-classical operators

UI = χ(εDt, εDy, εγ)U,

with χ(ζ) supported in a neighborhood of the origin / in compact sets
in R

d+1\{0} / in |ζ| large respectively. Here Dt = 1
i ∂t, Dy = 1

i ∂y and
χ(εDt, εDy, εγ) is defined as a Fourier multiplier. We use the notations

(10.20) D = (Dt, Dy, γ)

Rule 1 : Commutators

[
1

ε
G(pε,

x

ε
, εD), χ(εD)]

contribute to error terms.

Indeed, the semiclassical calculus does not touch the fast variable x
ε and

the commutators win one factor ε, erasing the singular factor 1
ε in front of

G, and one semiclassical derivative.
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c) In the LF and MF regime, we use conjugation operators

UII = Φ(pε,
x

ε
, εD)UI

with symbols Φ(p, z, ζ) given by Lemma 4.1 for all fixed p. Using the same
commutator argument as in Rule 1, we see that

(10.21)




∂xUII =

1

ε
G
(
pε(t, y, x), εD

)
UII + FII ,

Γ̃(pε)UII |x=0 = gII ,

where fII and gII are controlled by the right hand side of (10.18).

d) The symbols S(p, ζ) of the MF symmetrizers are given by Proposi-
tion 6.6. We consider the operators Sε := S(pε(t, x, y), εD). The semiclassi-
cal calculus implies the following :

Rule 2 (Semi-classical elliptic G̊arding’s inequality) Because

ReS(p, ζ)G(p, ζ) ≥ cId, the following inequality is satisfied in the sense of

symmetric operators:

ReS(pε, εD)
1

ε
G(pε, εD) +

1

2
∂xS(pε, εD) ≥ c

ε
−O(1)

Together with similar estimates for the boundary terms (using now ii)
of (6.19)), this implies L2 estimates for χMF (εD)U and its traces.

e) In the LF regime, we use now the block diagonalization

(10.22)

(
uH

uP

)
= V (pε, εD)UII

with symbol V (p, ζ) given by Lemma 4.3. This leads to equations

∂xuH =
1

ε
H(pε, εD)uH + fH(10.23)

∂xuP =
1

ε
P (pε, εD)uP + fP(10.24)

For the elliptic block uP , we use the symmetrizers given by Proposi-
tion 6.8 and use Rule 2 again.

For the hyperbolic block uH , we use the polar coordinates

H(p, ζ) = |ζ|Ȟ(p, ζ̌, |ζ|), ζ̌ =
ζ

|ζ|
and note that
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Lemma 10.5.

1

ε
H(pε, εD) = |D|Ȟ(pε, Ď, ε|D|), Ď =

D

|D|

is a classical pseudo-differential operator of degree 1 in (t, y) with parameter
γ, depending smoothly on x.

As a consequence, for the component uH , we use the classical pseudo-
differential (tangential) calculus with parameter γ (see [ChPi]). In par-
ticular, the LF symmetrizers are given by symbols S(p, ζ̌, ρ) (see Defini-
tion 6.9) and we quantify them as classical tangential pseudo’s of degree 0:
Sε = S(pε, Ď, ε|D|).
Rule 3 (Calssical elliptic G̊arding’s inequality) The conditions of Defini-

tion 6.9 imply that

Re
(
S(pε, Ď, ε|D|)|D|Ȟ(pε, Ď, ε|D|)

)
≥ c(γ̌ + |εD|)|D| − 0(1)

≥ c(γ + ε|D|2) − 0(1)

Note that the conditions of Definition 6.9 imply but are stronger than

ReS(p, ζ̌, ρ)Ȟ(p, ζ̌, ρ) ≥ c(γ̌ + ρ).

Knowing only this weaker estimate would force to use the sharp G̊arding’s
inequality. With the stronger conditions of Definition 6.9, one can use the
usual elliptic estimates.

Combining the estimates for uP and uH , one obtains the desired inte-
rior estimates for ULF . To deal with the traces, we note that semiclassical
operators of degree 0 supported in a compact frequency set, are classical
pseudo-differential operators of degree 0. Thus, we can again convert the
ellipticity of the operators acting on the traces into estimates.

f) In the HF regime, part of the analysis is made with semi-classical
operators S(pε,

x
ε , εD) : this concerns the block reduction and the use of

symmetrizers in the central zone and also in the cone {γ ≤ δ|ζ|}∪{|η| ≤ δ|ζ|}
for the hyperbolic 1-1 block . In this cone, for the parabolic block, as already
noticed in Section 9, the correct homogeneity is the parabolic homogeneity
given by the weight Λ. There we use a semi-classical quasi-homogeneous
calculus

S(pε,
x

ε
, εD), S(p, z, ζ) ∈ PΓ.
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where PΓ denotes here classes of symbols analogous to those introduced in
Definition 9.4, depending smoothly on the parameter p.

g) To deal with Lipschitzean coefficients, we use para-differential calculi
in place of pseudo-differential calculi. To summarize, we need three different
calculi:

- the semiclassical homogeneous calculus,
- the semiclassical quasi-homogeneous calculus,
- the classical homogeneous calculus,

all depending on the parameter γ. We also need to compare them and to
combine them in certain zones.

For details on these calculi, we refer to the Appendix of [MéZu1] and
for the complete proof of the estimates, to the papers [MéZu1, GMWZ3,
GMWZ4, GMWZ5].

10.4 Further steps

Theorem 10.3 gives global in time weighted L2 a-priori estimates. From
here, the path to the nonlinear stability analysis follows more or less classical
steps. We briefly overview four of them, without precise statements.

a) Sobolev estimates. The classical analysis for noncharacteristic prob-
lems is to obtain first tangential Hs estimates and then get the normal
derivatives from the equation. However, in the equation 10.19,

1

ε
G(pε,

x

ε
, εD)

contains 0-th order terms of amplitude O(1
ε ). They depend on (t, y) and

commuting the equation (10.19) with ∂t,y yields terms in O(1
ε ) which are

not admissible errors in the LF regime.
To obtain tangential Hs low frequency estimates, one can follow the

scheme of the proof of the L2 estimates. After the reduction to equations
(10.23) (10.24), the commutator

[∂t,y,
1

ε
P (pε, εD)]uP = O(

1

ε
)uP

is admissible because of ε−1uP is controlled. Moreover, since H(p, ζ) van-
ishes at ζ = 0, the commutator

[∂t,y,
1

ε
H(pε,

x

ε
, εD)]uH = O(1)uH
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is non singular and yields admissible errors.
Following these ideas, one can actually prove tangential Hs estimates,

see [MéZu1] an also the next section. But, for purely technical reasons, the
proof given in this paper requires W s,∞ smoothness for the coefficients in
place of the expected Hs smoothness (for s large enough). Clearing up this
difficulty is an open question.

On the other hand semiclassical Hs tangential estimates are easy to
prove, since the commutators of εDt,y with the equation (10.19) contains no
singular terms.

One final word about the normal derivatives. Because the equation
(10.19) is singular, the easy thing is to get estimates for ε∂x derivatives.
Moreover, the presence of the boundary layer implies large variations in x
at the scale ε. Thus the ε∂x derivatives are natural in the problem. However,
note that the maximal estimate of Theorem 10.3 implies that

√
ε∂xu

2 ∈ L2.
To make better the transition with the interior estimates, one can also

introduce the x∂x derivatives. This shows that conormal Sobolev regular-
ity plays a natural role in this problem. This also indicates some similarity
with characteristic problems in the proof of Sobolev estimates.

b) Existence of smooth solutions to the linear boundary value
problem. For fully parabolic problems, at any fixed ε > 0, this follows
from the general theory of parabolic equations. For hyperbolic-parabolic
problem, the existence of smooth solutions is less classical. It follows from
the usual semi-group approach at least for dissipative equations and bound-
ary conditions. One can also follow the general scheme of hyperbolic equa-
tions (see [ChPi]): study the backward dual problem and prove that it has
the same form as the original system with time reversed; prove that it satis-
fies the uniform stability conditions (only the HF part is necessary for fixed
ε); deduce uniform estimates for the backward dual problem which imply
existence of weak solutions for the forward system; prove a weak=strong the-
orem, showing that the weak solutions are unique and satisfy the a-priori
estimates; and finally prove smoothness of the solutions along the lines of
a), for fixed ε.

c) The causality principle and local in time estimates. Roughly
speaking, letting γ → ∞ in the estimates, one proves local uniqueness : if
the data vanish for t < 0, then u = 0 for t < 0. One can replace 0 by any
time T , and this shows that the solution up to time t depends only on the
data for smaller time. This implies that the estimates (10.14) or (10.15)
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can be localized on ]−∞, T ]× R
d
+. We refer to [ChPi] or [Mét4] for details

concerning this general consequence of the estimates.

d) The mixed initial boundary value problem and semi-group esti-
mates. Using steps b) and c) one solves the initial boundary value (IBV)
problem with vanishing initial data, provided that the data can be extended
by 0 in the past. For general initial data and source terms, compatibility
conditions at the edge {t = x = 0} are needed, their number depending
on the desired smoothness of the solution (see e.g. [ChPi] or [Mét4]). For
general data, one can solve first the equation in the sense of Taylor expan-
sions at {t = 0} (that is one determines the traces ∂j

t u|t=0 and lift up the
traces). Using the compatibility conditions, this reduces the question to
finding smooth solutions of the boundary value problem which vanish in the
past. For fully parabolic problem, this method is perfectly efficient (see e.g;
[Mét4]). For hyperbolic problem this method yields a loss of 1/2 derivatives
from the initial data to the solution. This difficulty persists for hyperbolic-
parabolic problem. The important question hidden behind this difficulty is
the proof of semi-group estimates (pointwise in time with values in Sobolev
spaces). The general proof for hyperbolic problems is not easy (see [Rau1]),
unless the system is symmetric, because then usual integrations by parts
yield pointwise estimates in time, knowing L2 in space- time estimates of
the traces, which are given by the main Kreiss estimate (see e.g. [Mét3]).
This extends to hyperbolic-parabolic systems.

11 Nonlinear stability

11.1 Statement of the problem and main result

We consider the viscous boundary value problem (2.1) (2.10), assuming that
the Assumptions (H1)–(H10) are satisfied. For simplicity, we restrict here
our attention to problems in a half space, but R

d
+ could be replaced by any

smooth open set Ω ⊂ R
d. To start the discussion, we assume that a family

of solutions of the profile equation is chosen, connecting 0 to a set of end
states C ⊂ U :

Assumption 11.1. (H12) We are given a smooth manifold C ⊂ U of di-
mension N −N+ and a smooth function W from C × [0,∞[ to U∗, such that
for all u ∈ C,

i) W (u, ·) is a solution of (3.3)(3.4);
ii) W (u, z) converges to u when z tends to +∞, at an exponential

rate, which can be chosen uniform on compact subsets of C;
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iii) the layer profile W (u, ·) is transversal in the sense of Defini-
tion 4.4;

iv) the uniform spectral stability condition is satisfied for the linearized
equation associated to the profile W (u, ·).

In particular, by Theorem 5.5, the inviscid problem

(11.1) L0(u0) = 0, u0|x=0 ∈ C.

satisfies the uniform stability condition. Following A.Majda [Maj2], this
implies that the mixed boundary value-Cauchy problem

(11.2) L0(u0) = 0, u0|x=0 ∈ C, u|t=0 = h0,

is locally well posed, provided that h0 satisfies sufficiently many compat-
ibility conditions at the edge. In order to avoid technical discussions on
compatibility conditions at the edge {t = x = 0}, we consider here the
simple case where the Cauchy data is compactly supported away from the
boundary and takes its values in U and

Assumption 11.2. (H13) 0 ∈ C and W (0, z) = 0. In particular, Υ(0) = 0.

Of course, the state 0 has no real significance and can be replaced by
any fixed constant u ∈ U , changing u into u− u.

For ε > 0, consider next the viscous problems:

(11.3) Lε(u) = 0, Υ(uε)|x=0 = 0, uε|t=0 = hε,

where the family {hε}ε≥0 is uniformly bounded in Hs(Rd
+), supported in a

fixed compact subset of {x > 0}, and such that hε → h0 as ε → 0. The
goal is to prove that the solution exists on a fixed interval of time [0, T ]
independent of ε and that uε → u0 as ε → 0. However, the essence of the
problem is that this convergence cannot be uniform, due to the existence
of boundary layers. Instead, a first approximation of the expected solution
is obtained by adding to u0 a layer corrector, so that to satisfy the viscous
boundary conditions:

(11.4) ũ0,ε(t, x, y) = W (u0(t, y, 0), x/ε) − u0(t, y, 0) + u0(t, y, x).

Note that ũ0,ε converges to u0 when x > 0.

Theorem 11.3 (Non linear stability). Suppose that the Assumptions (H1)
to (H10) and (H12), (H13) are satisfied. Then if the regularity index s is
large enough, there are T > 0 and ε0 > 0 such that for all ε ∈]0, ε0], the
problem (11.3) has a unique solution uε ∈ W 2,∞([0, T ] × R

d
+) and uε − ũ0,ε

tends to 0 in L∞([0, T ] × R
d
+).
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Remark 11.4. In general, (H13) must be replaced by suitable compatibility
conditions. Another possible statement is of the form : given a very smooth
inviscid solution u0 of (11.1), there are uε solutions of the viscous equations
such that uε −u0,ε → 0. We refer to [GMWZ2, GMWZ3, GMWZ4] for such
statements in the case of shock waves.

As usual, solving initial-boundary value problems involves technicalities,
in part because the linearized estimates of Section 10 are not semi-group
estimates. It is more convenient to reduce first the problem to solving a
continuation theorem, that is constructing an extension of a solution known
in the past {t < 0}, to the price of introducing source terms. One can
proceed as follows.

First, using the equation, one computes the Taylor expansion at t = 0
of the solutions

∂j
t uε|t=0 = hj,ε.

They are uniformly bounded in Hs−2j− 1

2 , if s is large, and supported in
a fixed compact subset of R

d
+. Next we lift the traces to find uTay,ε ∈

Hs−J(R1+d such that

∂j
t uTay,ε|t=0 = hj,ε for j ≤ J.

and uTay,ε = 0 near x = 0. fε = Lε(uTay,ε) satisfies

∂j
t fε|t=0 = 0 for j ≤ J − 1.

With f̃ε = fε in the past and f̃ε = 0 for t > 0, we are thus reduced to solve

(11.5) Lε(uε) = f̃ε, Υ(uε)|x=0 = 0, uε = uTay,ε for t < 0.

11.2 High order approximate solutions

By suitable extension of the methods of [GrGu, GuWi, GMWZ3, Mét4],
one proves that provided (i) the inviscid solution u0 satisfies the spectral
stability condition imposed by Majda on his constructed solutions and (ii)
each tangent profile equation has a transversal planar viscous profile, then
we may construct a hierarchy of approximate solutions

(11.6) uε,M
a =

∑

0≤n≤M

εnUn(t, y, x, x/ε) ,

of (2.1). In this expansion one can look for Un as

Un(t, y, x, z) = un(t, y, x) + Vn(t, y, z)(11.7)
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where the Vn(t, y, z) decays exponentially to zero as z → +∞; they describe
the successive terms of the viscous boundary layer. The first term u0 is
a solution of the limiting inviscid hyperbolic boundary value problem and
W0(t, y, z) := U0(t, y, 0, z) satisfies the viscous profile equation (3.3), (3.4).
The approximate solution uε,M

a solves the equation with an error O(εM ).
The terms Un are obtained inductively:

- un satisfies the linearized hyperbolic boundary value problem at u0,
with source term depending on (U0, . . . , Un−1);

- Vn satisfies the linearized profile equation and initial condition at
W0, with source term depending on (U0, . . . , Un−1);

- the boundary conditions of un are precisely those needed for the
existence of Wn(t, x, y) = un(t, y, 0) + Vn(t, y, z) satisfying the linearized
profile equation and initial condition, converging to un(t, y, 0) when z tends
to +∞.

Knowing the approximate solution uε,M
a , we look for exact solutions as

uε = ũε,M
a + vε.

11.3 Parabolic methods

When the perturbation is fully parabolic one can use the standard local
inversion theorem to solve the equation for the remainder vε. We recall here
the principle of the method developed in [MéZu1].

We assume here that the perturbation is fully parabolic that is N2 = N .
For simplicity we consider Dirichlet boundary conditions and the following
problem similar to (11.5)

(11.8) Lε(uε) = f, uε|x=0 = 0, uε = 0 for t < 0.

assuming that fε is smooth and vanishes for t < 0 (see the more general
form in [MéZu1]).

Consider a smooth solution u0 on [−T, T ]×R
d
+, of the hyperbolic bound-

ary value problem. Let u0,ε be given by (11.4) and consider a first order
corrector u1,ε such that

(11.9) ua,ε = u0,ε + εu1,ε

satisfies

(11.10) Lε(ua,ε) = f +O(ε), ua,ε|x=0 = 0, ua,ε = 0 for t < 0.
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The solution of (11.8) is constructed as

(11.11) uε = ua,ε + εvε.

The equation for vε is written as

(11.12) L′
ua,ε

vε + εQε(vε) = eε

where Qε is at least quadratic in v and eε = 0(1) is a given source term
which vanishes in the past.

As mentioned in the previous section, conormal Sobolev spaces play an
important role. Such spaces have already been widely used in the study of
boundary value problems, see e.g. [Rau2], [Gue2]. Let {Zk}0≤k≤d denote a
finite set of generators of vector fields tangent to {x = 0}:

Z0 = ∂t, Zj = ∂yj
for 1 ≤ j ≤ d− 1, Zd =

x

1 + x
∂x.

For U ⊂ R × Ω and m ∈ N, define the space

(11.13)
Hm(U) :=

{
u ∈ L2(U) :Zk1

. . . Zkp
u ∈ L2(U) ,

∀p ≤ m,∀(k1, . . . , kp) ∈ {0, . . . d}p
}

This space is equipped with the obvious norm, denoted by ‖ · ‖Hm(U).
In order to solve nonlinear problems, we need work in Banach algebras

which means here that we have to supplement the Hm estimates with L∞

estimates. Introduce the following norms

(11.14) ‖u‖Wµ(U) = ‖u‖L∞ +

µ∑

p=1

∑

1≤k1,...,kp≤k

‖Zk1
. . . Zkp

u‖L∞ .

We first give estimates for the linearized equation at ua,ε:

(11.15) L′
ua,ε

u = f, u|x=0 = 0, ut<0 = 0.

Assume that on ΩT0
:= [−T0, T0] × Ω,

(11.16)




u0 ∈Wm+2,∞(ΩT0

) ,

sup
ε∈]0,1]

‖u1,ε‖Wm + ε‖∇t,xu1,ε‖Wm + ε2‖∇2
xu1,ε‖Wm <∞ .
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Theorem 11.5. There are C > 0 and ε0 such that all ε ∈]0, ε0] and all
f ∈ Hm([−T0, T0] × Ω) vanishing for t < 0, the solution of equation (11.15)
satisfies

(11.17) ‖u‖Hm +
√
ε‖∂xu‖Hm + ε3/2‖∂2

xu‖Hm ≤ C‖f‖Hm

If in addition m ≥ 2 + d+1
2 and f ∈ L∞([−T0, T0] × Ω), then the solution u

also satisfies

(11.18) ‖u‖W2 + ε‖∂xu‖W1 + ε2‖∂2
xu‖L∞ ≤ C

(
‖f‖Hm + ε‖f‖L∞

)
.

Denote by ‖ · ‖Xm
ε

[resp. ‖ · ‖Ym
ε

] the norm given by adding the left
[resp right] hand sides of (11.17) and (11.18). Then the theorem implies the
estimates

(11.19) ‖u‖Xm
ε

≤ C‖L′
ua,ε

u‖Ym
ε

with C independent of ε.

Suppose that (11.16) holds with indices m such that

(11.20) m >
d+ 1

2
.

Proposition 11.6. The quadratic term in (11.8) satisfies the following es-
timates:

(11.21)
‖εQε(v

ε)‖Ym
ε

≤ ε1/4C(M) ,

‖ε(Qε(v
ε
1) −Qε(v

ε
2))‖Ym

ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,

provided that

(11.22)
ε‖v1‖L∞ ≤ 1 , ε‖v1‖L∞ ≤ 1

ε‖v1‖Xm
ε

≤M , ε‖v1‖Xm
ε

≤M ,

where C(M) is independent of ε ∈]0, 1].

The nonlinear equations (11.12) and thus (11.8) can be solved using
(11.19) (11.21) and the standard local inversion theorem in Xm

ε (see [MéZu1]
for details).

Theorem 11.7. There is ε0 > 0 such that for all ε ∈]0, ε0] the problem
(11.8) has a unique solution uε = ua,ε + εvε with vε bounded in Xm

ε . In
particular,

(11.23) ‖uε − uε
0‖Hm + ‖u− uε

0‖L∞ = O(ε) .
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11.4 Hyperbolic-like methods

The method sketched in the preceding section relies on inverting the lin-
earized operator L′

ua,ε
at the approximate solution. The key argument uses

maximal parabolic type estimates (with precised dependence on ε) for all
the components of u. For partial viscosities this property fails and, one
has to switch to iterative schemes which use the linearized operators L′

un

for a sequence of un, following the lines of iterative schemes for hyperbolic
equations.

We mention here a method of proof for Theorem 11.3 which has been
used for example in [GrGu, Gue1, GMWZ4]. The idea is to start form a
high order approximate solution

uM
a,ε =

M∑

k=0

εkUk(t, y, x,
x

ε
)

which solves the equation up to an error O(εM ) (see Section 11.2). Next
one looks for the solution as

uε = uM
a,ε + εMvε

where vε solves an equation of the form

L′
uM

a,ε+εMvε
vε = fε = O(1).

To solve this equation, one uses Picard’s iterates

L′
uM

a,ε+εMvn
ε
vn+1
ε = fε

in semiclassical Sobolev spaces Hs
ε . The core of the analysis is to prove

maximal estimate in Hs
ε -type spaces for vn+1

ε using only the same control
for vn

ε . They are obtained by commutator arguments, as mentioned in Sec-
tion 10.4, using Moser-Gagliardo-Nirenberg inequalities in Hs

ε . Just to give
one typical ingredient, a minimal requirement is a Lipschitzean control of
the coefficients a(uM

a,ε+εMvnε) of the linearized equation which follows from
the estimate

‖εM∇v‖L∞ ≤ C‖v‖Hs
ε

if s > 1+d/2 and M ≥ 1+d/2. Here we see that it is crucial for this method
that M can be chosen large enough. This means here that we do start from a
high order approximate solution. We refer to the cited references for details
and precise statements.
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