
HAL Id: cel-00119891
https://cel.hal.science/cel-00119891

Submitted on 12 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homology and cohomology of associative algebras. A
concise introduction to cyclic homology

Christian Kassel

To cite this version:
Christian Kassel. Homology and cohomology of associative algebras. A concise introduction to cyclic
homology. École thématique. Août 2004 à ICTP, Trieste (Italie), 2006. �cel-00119891�

https://cel.hal.science/cel-00119891
https://hal.archives-ouvertes.fr


Advanced School on Non-commutative Geometry
ICTP, Trieste, August 2004

Homology and cohomology of

associative algebras

- A concise introduction to cyclic homology -

Christian Kassel

Noncommutative geometry can be considered as the study of (not necessarily com-
mutative) associative algebras with ideas coming from differential geometry.

The aim of this course is to define certain (co)homological invariants for asso-
ciative algebras such as Hochschild (co)homology, cyclic (co)homology, algebraic
K-theory, and to exhibit the connections between these invariants. In the dic-
tionary between manifolds (or varieties) and associative algebras, which is at the
heart of Alain Connes’s noncommutative geometry, differential forms correspond
to elements of the Hochschild homology groups, de Rham cohomology to cyclic
homology, vector bundles to elements of the algebraic K0-group, and the Chern
character of a vector bundle to the algebraic Chern character of Section 8.

An interesting feature of these invariants is that they are related to the
trace map. It is therefore not surprising that we shall deal with functionals
τ(a0, a1, . . . , an) invariant (up to sign) under cyclic permutations of the variables.

In the world of noncommutative algebras, there is a concept that does not
appear for commutative algebras, namely the concept of Morita equivalence. For
instance, every algebra is Morita equivalent to the algebra Mn(A) of n×n-matrices
with entries in A. The (co)homological invariants we shall define are invariant
under Morita equivalence.

The ideas underlying noncommutative geometry as presented here are es-
sentially due to Alain Connes. The basic references for this course are Connes
[1985], [1994], Feigin & Tsygan [1983], [1985], [1987], Karoubi [1987], Loday
& Quillen [1984], Tsygan [1983].
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1. Associative algebras

We start by defining precisely the main objects of interest in noncommutative
geometry, namely the associative algebras.

We shall work over a fixed field k (although it would often be possible to
assume that k is a commutative ring). The symbol ⊗ will denote the tensor
product of vector spaces over k.

1.1. Definition.— (a) An associative k-algebra is a triple (A,µ, η), where A is
a vector space over the field k, µ : A ⊗ A → A and η : k → A are linear maps
satisfying the conditions
• (Associativity) µ(µ⊗ idA) = µ(idA ⊗ µ),
• (Unitality) µ(η ⊗ idA) = idA = µ(idA ⊗ η).
(b) A morphism of algebras f : (A,µ, η)→ (A′, µ′, η′) is a linear map f : A→

A′ such that fµ = µ′(f ⊗ f) and fη = η′.

For simplicity we shall simply say algebra for an associative k-algebra. Using
the notation ab = µ(a⊗ b) for a, b ∈ A, and 1 = µ(1), we see that the associativity
condition is equivalent to

(ab)c = a(bc) (1.1)

for all a, b, c ∈ A. The unitality condition is equivalent to

1a = a = a1 (1.2)

for all a ∈ A. The linear map µ is called the product of the algebra whereas the
element 1 = η(1) is called its unit.

With this notation we see that f : A → A′ is a morphism of algebras if and
only if f(1) = 1 and

f(ab) = f(a)f(b) (1.3)

for all a, b ∈ A.
An algebra A = (A,µ, η) is said to be commutative if

ab = ba (1.4)

for all a, b ∈ A. The simplest examples of commutative algebras are the field
k itself and the polynomial algebras k[x1, . . . , xN ] where N is a positive integer.
As a vector space, k[x1, . . . , xN ] has a basis formed by the monomials xa1

1 · · ·x
aN

N ,
where a1, . . . , aN run over all nonnegative integers. The product is given on this
basis by the formula

(xa1
1 · · ·x

aN

N )(xb1
1 · · ·x

bN

N ) = xa1+b1
1 · · ·xaN+bN

N . (1.5)

We now give examples of noncommutative algebras, that is of algebras that
are not commutative.
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1.2. Examples. (a) (Opposite algebra) If A = (A,µ, η) is an algebra, let µop be
the composite map A⊗A σ−−→ A⊗A µ−−→ A, where σ : A⊗A→ A⊗A is the flip
defined by σ(a0 ⊗ a1) = a1 ⊗ a0 for all a0, a1 ∈ A. The triple Aop = (A,µop, η) is
an algebra, called the opposite algebra of A. Observe that µop = µ if and only if
A is commutative.

(b) (Tensor product of algebras) If A and B are algebra, then the tensor
product A⊗B becomes an algebra with product

(a0 ⊗ b0)(a1 ⊗ b1) = a0a1 ⊗ b0b1 (1.6)

(a0, a1 ∈ A and b0, b1 ∈ B) and unit 1⊗ 1.
(c) (Endomorphism algebra and matrix algebra) If M is a vector space over k,

then the vector space Endk(M) of k-linear endomorphisms of M is an algebra
whose product is given by the composition of endomorphisms and the unit is the
identity map idM . If M is finite-dimensional of dimension n over k, then the
algebra Endk(M) is isomorphic to the matrix algebra Mn(A) of n × n-matrices
with entries in A.

(d) (Tensor algebras) For any vector space V over k and any integer n ≥ 1
set Tn(V ) = V ⊗n, where the latter means the tensor product of n copies of V .
We also set T 0(V ) = k. Observe that there are natural isomorphisms

T p(V )⊗ T q(V ) ∼= T p+q(V )

for all p, q ≥ 1, and

T 0(V )⊗ Tn(V ) ∼= Tn(V ) ∼= Tn(V )⊗ T 0(V )

for all n ≥ 0. There is a unique algebra structure on the direct sum

T (V ) =
⊕
n≥0

Tn(V )

whose product µ : T (V )⊗ T (V )→ T (V ) is induced by the natural isomorphisms
T p(V ) ⊗ T q(V ) ∼= T p+q(V ) (p, q ≥ 0) and the unit is the natural inclusion k =
T 0(V )→ T (V ).

Now suppose that the vector space V is finite-dimensional of dimension N
and let {v1, . . . , vN} be a basis of V . For any n ≥ 0 we denote Wn the set of all
words vi1 · · · vin

of length n in the alphabet {v1, . . . , vN}. By convention there is
only one word of length 0, namely the empty word. It is easy to check that Wn is
a basis of Tn(V ). Therefore T (V ) has a basis consisting of the union of all sets Wn

(n ≥ 0). Under the product structure of T (V ) the product of two words w and w′

is their concatenation, namely the word ww′ obtained by putting w′ after w and
gluing them together. The empty word is the unit of T (V ).

(e) (Quantum plane) Let q be an element of k. On the polynomial algebra
k[x, y] we consider the following product

xayb ∗q xcyd = qbcxa+cyb+d (1.7)
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for all a, b, c, d ≥ 0. This product is associative and its unit is 1 = x0y0. We
denote kq[x, y] the algebra equipped with this product and call it the “quantum
plane”. By (1.5) we have y ∗q x = q x ∗q y, which shows that the quantum plane
is not commutative unless q = 1. For more details on the quantum plane, see
Kassel [1994], Chapter IV.

(f) (Weyl algebra) It is the algebra A1(k) generated by two noncommuting
variables p and q subject to the relation pq−qp = 1. The algebra A1(k) acts on the
polynomial algebra k[X] as follows: p acts by derivation and q by multiplication
by X:

p(f) =
df

dx
and q(f) = Xf

for all f ∈ k[X]. Through this action, A1(k) coincides with the algebra of polyno-
mial differential operators of k[X]. It can be checked that (pmqn)m, n∈N is a basis
of A1(k) as a vector space.

1.3. Exercises. (a) Given N ≥ 1 show that for any commutative algebra A
and any N -uple (a1, . . . , an) ∈ AN there is a unique morphism of algebras f :
k[x1, . . . , xN ]→ A such that f(xk) = ak for all k = 1, . . . , N .

(b) Let u : V → A be a linear map from a vector space V to an algebra A.
Prove the existence of a unique morphism of algebras f : T (V ) → A whose re-
striction to T 1(V ) = V is u.

(c) Fix q ∈ k. Show that for any algebra A and any couple (a, b) ∈ A2

satisfying ba = qab there is a unique morphism of algebras f : kq[x, y] → A such
that f(x) = a and f(y) = b.

2. Modules and bimodules

The natural objects linking an algebra to another algebra are bimodules. We start
with the definition of left and right modules.

2.1. Definition.— (a) Let A = (A,µ, η) be an algebra. A left A-module is a couple
M = (M,µM ), where M is a vector space over the field k and µM : A⊗M →M
is a linear map satisfying the conditions
• (Associativity) µM (µ⊗ idM ) = µM (idA ⊗ µM ),
• (Unitarity) µM (η ⊗ idM ) = idM .
(b) A morphism of left A-modules f : (M,µM ) → (M ′, µM ′) is a linear map

f : M →M ′ such that fµM = µM ′(idA ⊗ f).

Using the notation am = µM (a⊗m) for a ∈ A and m ∈ M , we see that the
associativity condition is equivalent to

(ab)m = a(bm) (2.1)

for all a, b ∈ A, m ∈M . The unitarity condition is equivalent to

1m = m (2.2)

for all m ∈M . The map µM is called the action of the algebra on the module.
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With this notation we see that f : M →M ′ is a morphism of left A-modules
if and only if

f(am) = af(m) (2.3)
for all a ∈ A and m ∈M .

2.2. Definition.— (a) A right A-module is a couple M = (M,µ′M ) where M is
a vector space over the field k and µ′M : M ⊗ A → M is a linear map satisfying
the conditions
• (Associativity) µ′M (idM ⊗ µ) = µ′M (µ′M ⊗ idA),
• (Unitarity) µ′M (idM ⊗ η) = idM .
(b) A morphism of right A-modules f : (M,µ′M )→ (M ′, µ′M ′) is a linear map

f : M →M ′ such that fµ′M = µ′M ′(f ⊗ idA).

Recall the opposite algebra Aop. Any right A-module (M,µ′M ) is a left Aop-
module (M,µM ), where µM is the composite map A⊗M σ−−→ M ⊗A µ′

M−−→ M . We
can therefore pass easily from right module structures to left module structures
and vice versa.

2.3. Definition.— (a) Let A and B be algebras. An A-B-bimodule is a vector
space M equipped with a left A-module structure and a right B-module structure
such that

a(mb) = (am)b
for all a ∈ A, m ∈M , b ∈ B.

(b) A linear map f : M → M ′ between A-B-bimodules is a morphism of
A-B-bimodules if it is a morphism of left A-modules and a morphism of right
B-modules.

An A-B-bimodule structure is equivalent to a left A⊗Bop-module structure
and to a right Aop ⊗ B-module structure. One passes from one structure to the
others by the formulas

amb = (a⊗ b)m = m(a⊗ b) (2.4)

(a ∈ A, m ∈M , b ∈ B).
Note that an A-k-bimodule is the same as a left A-module. A k-B-bimodule

is the same as a right B-module. Therefore we could have defined the concept of
bimodule before defining the concept of a module.

2.4. Examples. (a) (Direct sum of modules) If M and N are left A-modules, then
so is the direct sum M ⊕N , the action of A on M ⊕N being given by

a(m,n) = (am, an)

for all a ∈ A, m ∈M , n ∈ N .
(b) Let f : A → B be a morphism of algebras. Then B becomes an A-B-

bimodule by the formula abb′ = f(a)bb′ for all a ∈ A, b, b′ ∈ B. We shall denote
this bimodule by fB.

Similarly, B becomes a B-A-bimodule by b′ba = b′bf(a) for a ∈ A, b, b′ ∈ B.
We denote this bimodule by Bf .

In particular, if B = A, we have the natural A-A-bimodule idA
A = AidA

.
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2.5. Exercises. (a) Let M be a left A-module, where A is an algebra. Define
a linear map ρ : A → Endk(M) by ρ(a)(m) = am for a ∈ A and m ∈ M . Show
that ρ is a morphism of algebras. Conversely, show that, if there is a morphism
of algebras ρ : A → Endk(M), where M is a vector space, then there is a left
A-module structure on M .

(b) Let M be a right B-module and let EndB(M) be the vector space of
all endomorphisms of B-modules of M , i.e., of all k-linear endomorphisms of M
satisfying f(mb) = f(m)b for all m ∈ M and b ∈ B. Show that EndB(M) is an
algebra for the composition of endomorphisms.

Suppose there is a morphism of algebra ρ : A → EndB(M). Show that the
formula amb = ρ(a)(mb) (a ∈ A, m ∈M , b ∈ B) defines a A-B-bimodule structure
on M , and vice versa.

2.6. Tensor Product of Bimodules. Let A, B, C be algebras, M be an A-
B-bimodule, N be a B-C-bimodule. Consider the tensor product M ⊗B N , that
is the quotient of the vector space M ⊗N by the subspace spanned by all tensors
of the form

mb⊗ n−m⊗ bn,

where m ∈ M , b ∈ B, n ∈ N . We shall keep the notation m⊗ n for the image of
m⊗n in the quotient spaceM⊗BN . The vector spaceM⊗BN is an A-C-bimodule
by

a(m⊗ n)c = (am)⊗ (nc)

for all a ∈ A, m ∈M , n ∈ N , c ∈ C.

2.7. Two Categories of Algebras. It is natural to consider the category A
whose objects are associative k-algebras and whose arrows are the morphisms of
algebras. But there is a more interesting category, which we denote Ã; it has the
same objects as A, namely the associative k-algebras, but different objects.

Given algebras A and B, we define the class Ã(A,B) of morphisms from A

to B in Ã to be the set of isomorphism classes of all A-B-bimodules. In order to
make Ã into a category, we have to define a composition map

Ã(A,B)× Ã(B,C)→ Ã(A,C).

This map is given by the tensor product of bimodules defined above. The isomor-
phism class of the natural A-A-bimodule idA

A = AidA
is the identity of the object

A in this category. There is a natural functor A → Ã, which is the identity on
objects and sends a morphism of algebras f : A → B to the class of the A-B-
bimodule fB ∈ Ã(A,B). We leave as an exercise to check that, if f : A→ B and
g : B → C are morphisms of algebras, then

(fB)⊗B (gC) = (g◦f)C.

The categories A and Ã have very different features. For instance, whereas
A(k,B) consists of the unique morphism of algebras η : k → B, the class Ã(k,B)
consists of all isomorphism classes of right B-modules.
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The set A(A, k) consists of all morphisms of algebras A→ k; it may be empty
(which happens for simple algebras). The class Ã(A, k) is never empty: it consists
of all isomorphism classes of left A-modules.

2.8. Morita Equivalence. What is an isomorphism in the category A? It is a
morphism of algebras f : A → B such that there exists a morphism of algebras
g : B → A satisfying g◦f = idA and f ◦g = idB . Clearly, a morphism of algebras f
is an isomorphism if and only if it is bijective. If A(A,B) contains an isomorphism,
we say that A and B are isomorphic algebras and we write A ∼= B.

The situation is very different with Ã. An isomorphism in the category Ã
is the isomorphism class of an A-B-bimodule P such there is a B-A-bimodule Q
together with bimodule isomorphisms α : P ⊗B Q→ A and β : Q⊗A P → B.

The sextuple (A,B, P,Q, α, β) is called a Morita context and A and B are said
to be Morita equivalent if there is a Morita context (A,B, P,Q, α, β) or, equiva-
lently, if there is an isomorphism A→ B in the category Ã. The bimodules P and
Q have an important additional property: they are projective over A and over B
(for a definition of a projective module, see Section 4.2).

We also point out that Morita equivalent algebras have isomorphic centres.
Therefore, Morita equivalence reduces to isomorphism in the case of commuta-
tive algebras. For a complete treatment of Morita equivalence, see Bass [1968],
Jacobson [1989].

Let us present the basic example of a Morita context. Let A be an algebra
and for any integers p, q ≥ 1 let Mp,q(A) be the vector space of p×q-matrices with
entries in A. We write Mp(A) for Mp,p(A). Consider the matrix multiplication

µp,q,r : Mp,q(A)⊗Mq,r(A)→Mp,r(A).

It allows to equip Mp,q(A) with a Mp(A)-Mq(A)-bimodule structure.

2.9. Proposition.— The induced map

µp,q,r : Mp,q(A)⊗Mq(A) Mq,r(A)→Mp,r(A)

is an isomorphism of Mp(A)-Mr(A)-bimodules.

Proof.— Clearly, µp,q,r is the direct sum of pr copies of the map

µ1,q,1 : M1,q(A)⊗Mq(A) Mq,1(A)→M1(A) = A.

Now in the vector space on the left-hand side we have for a1, . . . , aq, b1, . . . , bq ∈ A,

( a1, . . . , aq )⊗

 b1
...
bq

 = ( a1, . . . , aq )⊗

 b1 0 · · · 0
...

...
...

bq 0 · · · 0

 1
...
0


= ( a1, . . . , aq )

 b1 0 · · · 0
...

...
...

bq 0 · · · 0

⊗
 1

...
0


= ( c, . . . , 0 )⊗

 1
...
0

 ,
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where c = a1b1 + · · · aqbq. From this one concludes that µ1,q,1 is bijective. �

2.10. Corollary.— For any algebra A and any integer q ≥ 2 the sextuple

(A,Mq(A),M1,q(A),Mq,1(A), µ1,q,1, µq,1,q)

is a Morita context. Hence Mq(A) and A are Morita equivalent.

2.11. Exercise. Let A be an algebra and e ∈ A an idempotent, i.e., an element
such that e2 = e. Show that the set eAe of all elements of the form eae (a ∈ A) is
an algebra with unit e. Assuming that for any element c ∈ A there are elements
a1, . . . , aq, b1, . . . , bq ∈ A such that c = a1eb1 + · · · aqebq (which can be shortened
to A = AeA), prove that the algebras A and eAe are Morita equivalent.

3. Trace maps

Trace maps are important in noncommutative geometry. The cyclic cohomology
groups introduced in Section 6 can be considered as higher analogues of the group
of trace maps.

3.1. The Group H0(R). Let R be a ring and C an abelian group. We say that
a homomorphism of groups τ : R→ C is a trace if

τ(rs) = τ(sr)

for all r, s ∈ R. In other words, τ vanishes on the subgroup [R,R] of R spanned
by all commutators [r, s] = rs− sr (r, s ∈ R). Hence, a trace factors through the
quotient group R/[R,R]. Conversely, any homomorphism of groups τ : R → C
factoring through [R,R] is a trace. It follows from these considerations that the
group of traces τ : R → C is in bijection with the group Hom(R/[R,R], C) of
all homomorphisms of groups from R/[R,R] to C, and the canonical surjection
R→ R/[R,R] is the universal trace on R.

For reasons that will become clear later, we denote R/[R,R] by H0(R).

3.2. Examples. (a) (Commutative ring) Observe that a ring R is commutative if
and only if [R,R] = 0. Hence, H0(R) = R when R is a commutative ring.

(b) (Matrix algebra) For a matrix M ∈ Mp(R) denote its trace, i.e., the sum
of its diagonal entries by tr(M). Since the ring R is not necessarily commutative,
we do not have tr(MN) = tr(NM) in general, but we always have

tr(MN) ≡ tr(NM) modulo [R,R]. (3.1)

Therefore, the map tr : Mp(R) → R sends [Mp(R),Mp(R)] into [R,R], and thus
induces an homomorphism H0(Mp(R))→ H0(R). It will be shown in Exercise 3.3
below that this homomorphism is an isomorphism

H0(Mp(R)) ∼= H0(R). (3.2)
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(c) (Tensor algebra) Let V be a vector space and n ∈ N. Consider the cyclic
operator τn acting on the space Tn(V ) = V ⊗n by

τn(v1 ⊗ v2 ⊗ · · · ⊗ vn−1 ⊗ vn) = vn ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vn−1 (3.3)

for all v1, v2, . . . , vn−1, vn ∈ V . Then

H0(T (V )) = k ⊕ V ⊕
⊕
n≥2

V ⊗n/(id− τn)V ⊗n. (3.4)

(d) (Weyl algebra) Let A1(k) be the algebra introduced in Example 1.2 (f).
The defining relation [p, q] = 1 induces commutation relations such as

[p, pmqn] = npmqn−1 and [pmqn, q] = mpm−1qn

for all m, n. From these relations it follows that [A1(k), A1(k)] = A1(k), hence
H0(A1(k)) = 0, if the ground field k is of characteristic zero.

3.3. Exercise. Fix a ring R and an integer p ≥ 2. For any r ∈ R and integers
i, j satisfying 1 ≤ i ≤ p and 1 ≤ j ≤ p, define Eij(r) as the p × p-matrix whose
entries are all zero, except the (i, j)-entry, which is r.

(a) Compute the commutator [Eij(r), Ek`(s)].
(b) For 2 ≤ i ≤ p and r ∈ R, set Fi(r) = Eii(r) − E11(r). Show that Fi(r)

can be written as a commutator in Mp(R).
(c) Show that any matrix M = (rij)1≤i≤p, 1≤j≤p can be written uniquely

under the form

M =
∑

1≤i 6=j≤p

Eij(rij) +
∑

2≤i≤p

Fi(rii) + E11(tr(M)).

(d) Deduce that the trace induces an isomorphism H0(Mp(R)) ∼= H0(R).

4. The group K0 of algebraic K-theory

We give a concise introduction to the algebraic K-theory group K0 and relate it by
the Hattori-Stallings trace to the group H0(R) introduced in the previous section.

4.1. Free Modules. Let R be a ring. We say that a left R-module M is free if it
the direct sum of copies of the left R-module R. In other words, a free R-module
M has a basis, i.e., a family (mi)i∈I of elements of M such that any element
m ∈M can be written in a unique way

m =
∑
i∈I

rimi,

where (ri)i∈I is a family of elements of the ring R satisfying the condition that all
of them are zero, except a finite number of them.

A free R-module is said to be finitely generated if it is the direct sum of a
finite number of copies of R. A finitely generated free module has a finite basis.
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4.2. Projective Modules. We say that a left R-module P is projective it is
a direct summand of a free module. In other words, P is projective if there is a
R-module P ′ such that P ⊕P ′ is a free module. A projective R-module is said to
be finitely generated if it is a direct summand of a finitely generated free module.

Suppose that e ∈ Mn(R) (n ≥ 1) is an idempotent matrix (e2 = e). Then
P = Rne is a left R-module. We claim it is finitely generated projective. Indeed,
consider the left R-module P ′ = Rn(1 − e) and the linear map i : P ⊕ P ′ → Rn

defined by i(p, p′) = p+ p′, where p ∈ P and p′ ∈ P ′. It suffices to check that i is
an isomorphism. Firstly, i is surjective: any m ∈ Rn can be written

m = me+m(1− e),

and we have me ∈ P and m(1 − e) ∈ P ′. Secondly, if m0, m1 ∈ Rn satisfy
m0e + m1(1 − e) = 0, then multiplying the latter on the right by e, we have
0 = m0e

2 +m1(e− e2) = m0e. Hence, m1(1− e) = 0. This proves the injectivity
of i.

Conversely, let us show that for any finitely generated projective left R-
module P there is a natural integer n and an idempotent e ∈ Mn(R) such that
P ∼= Rne. Indeed, since P is a direct summand of a free module Rn for some n,
there are R-linear maps u : P → Rn and v : Rn → P such that vu = idP . Consider
the linear endomorphism uv of Rn. It corresponds to a matrix e ∈ Mn(R) with
respect to the canonical basis of Rn. This matrix is idempotent since

(uv)(uv) = u(vu)v = uidP v = uv.

It is easy to check that v induces an isomorphism from Rne = Im(uv) to P .
If R is a field, then any R-module is a vector space. It is well known that all

vector spaces have bases. Therefore, in this case any R-module is free, and such a
module is finitely generated if and only if it is finite-dimensional.

4.3. The Group K0(R). For a ring R we define K0(R) to be the abelian group
generated by symbols of the form [P ], one for each finitely generated projective left
R-module P , subject to the relations [P ] = [Q] whenever P and Q are isomorphic
left modules and

[P ⊕Q] = [P ] + [Q]

for all finitely generated projective left R-modules P , Q.
It follows from the definition that for any integer n ≥ 1 we have

[Rn] = [R] + · · ·+ [R]︸ ︷︷ ︸
n

= n[R] (4.1)

in K0(R). For more details on K0(R), see Bass [1968] and Weibel [2004].
Quillen [1973] defined higher analogues Ki(R) of the group K0(R) for all

i > 0. These groups are called the algebraic K-groups of the ring R. They are
closely related to the homology of the general linear groups GLn(R) and are very
difficult to compute.

Let us give the computation of K0(R) in the easiest possible case.
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4.4. Proposition.— If R is a field, or the ring Z of integers, or the ring K[X]
of polynomials in one variable over a field K, then

K0(R) ∼= Z.

Proof.— Consider the map i : Z→ K0(R) given by i(n) = n[R] (n ∈ Z). For the
rings under consideration any submodule of a free module is free. Therefore, any
finitely generated projective left R-module P is isomorphic to Rn for some n ∈ N.
It follows from (4.1) that [P ] = n[R] = i(n). This shows that i is surjective.

Any finitely generated free leftR-module P has a well-defined rank rk(P ) ∈ N:
it is the unique natural integer n such that P ∼= Rn. Moreover,

rk(P ⊕Q) = rk(P ) + rk(Q)

for all finitely generated free left R-modules P , Q. Therefore there exists a linear
map j : K0(R)→ Z such that j([P ]) = rk(P ) for every finitely generated free left
R-module P . We have

(ji)(n) = j(n[R]) = n rk[R] = n

for all n ∈ N. This proves the injectivity of i. �

For general rings the group K0(R) is different from Z. Combining Proposi-
tion 4.4 and Exercise 4.5, we can find examples of rings R with K0(R) ∼= Z2.

4.5. Exercise. For two rings R0 and R1 define the product ring R = R0 × R1

whose product is given by

(r0, r1)(r′0, r
′
1) = (r0r′0, r1r

′
1) (4.2)

(r0, r′0 ∈ R0 and r1, r′1 ∈ R1) and with unit 1 = (1, 1) ∈ R. Observe that e0 = (1, 0)
and e1 = (0, 1) are idempotents of R such that e0 + e1 = 1.

(a) Prove that for any R-module M we have M ∼= Me0 ⊕Me1.
(b) Deduce the product formula

K0(R) ∼= K0(R0)⊕K0(R1). (4.3)

4.6. The Hattori-Stallings Trace. We now connect Sections 3 and 4 by
constructing a group homomorphism

τ : K0(R)→ H0(R)

for any ringR. This map was first defined by Hattori [1965] and Stallings [1965].
Let P be a finitely generated projective left R-module. We know that there

exist an integer n ≥ 1, an idempotent matrix e ∈ Mn(R) and an isomorphism
α : P → Rne of R-modules. Define T (P ) as the image in H0(R) = R/[R,R] of
the trace tr(e) of the matrix e.

11



4.7. Theorem.— For any finitely generated projective left R-module P the element
T (P ) ∈ H0(R) depends only on the isomorphism class of P . If Q is another finitely
generated projective left R-module, then

T (P ⊕Q) = T (P ) + T (Q).

It follows from this theorem that there is a unique homomorphism of groups
τ : K0(R)→ H0(R) such that τ([P ]) = T (P ) for any finitely generated projective
left R-module P . This homomorphism is called the Hattori-Stallings trace.

Proof.— Suppose that P ∼= Rne and P ∼= Rmf for some idempotent matrices
e ∈ Mn(R) and f ∈ Mm(R). We have to prove that tr(e) ≡ tr(f) modulo [R,R].
A moment’s thought shows that there is an invertible matrix u ∈Mn+m(R) such
that (

e 0
0 0

)
= u

(
f 0
0 0

)
u−1.

Then modulo [R,R] we have

tr(e) = tr
(
e 0
0 0

)
= tr

(
u

(
f 0
0 0

)
u−1

)

≡ tr

((
f 0
0 0

)
u−1u

)
= tr

(
f 0
0 0

)
= tr(f).

Finally, suppose that P ∼= Rne and Q ∼= Rmf for some idempotent matrices
e ∈Mn(R) and f ∈Mm(R). Then clearly, P ⊕Q ∼= Rn+mg, where g ∈Mn+m(R)
is the idempotent matrix

g =
(
e 0
0 f

)
.

Since tr(g) = tr(e) + tr(f), we obtain T (P ⊕Q) = T (P ) + T (Q). �

4.8. Example. We now give an example which shows the usefulness of the Hattori-
Stallings trace. Let λ ∈ k be a nonzero scalar. Consider the following 2×2-matrix
with coefficients in the Weyl algebra A1(k) (see Example 1.2 (f)):

eλ =
1
λ

(
pq −p

(qp− λ)q −(qp− λ)

)
.

Check that eλ is a idempotent matrix. We have

tr(eλ) =
(pq − qp) + λ

λ
= 1 +

1
λ
. (4.4)

Unfortunately, by Example 3.2 (d), if the characteristic of k is zero, H0(A1(k)) = 0,
so that the Hattori-Stallings trace will not enable us to distinguish the projective
modules obtained as the images of the various idempotents eλ.
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Now, let Aλ be the algebra generated by E, F , H subject to the relations

HE − EH = 2E, HF − FH = −2F, EF − FE = H,

2EF + 2FE +H2 = λ2 − 1.

Dixmier showed that Aλ = k1 ⊕ [Aλ, Aλ]. It follows that H0(Aλ) = k. There is
an injective morphism of algebras ϕλ : Aλ → A1(k) defined by

ϕλ(E) = −p, ϕλ(F ) = q(qp− λ+ 1), ϕλ(H) = −2qp+ λ− 1.

The idempotent eλ ∈M2(A1(k)) is the image under ϕλ of the idempotent matrix

fλ =
1
2λ

(
λ+ 1−H 2E

2F λ+ 1 +H

)
∈M2(Aλ).

It follows that that the Hattori-Stallings trace of the projective Aλ-module A2
λfλ

is given by

τ [A2
λfλ] = tr(fλ) = 1 +

1
λ
∈ k = H0(Aλ). (4.5)

This shows that the modules A2
λfλ are pairwise nonisomorphic when λ varies over

k − {0}. For details on K0(Aλ), see Kassel & Vigué-Poirrier [1992].

5. Hochschild (co)homology

In this section we define homology groups H∗(A,M) and cohomology groups
H∗(A,M) attached to pairs (A,M) where A is an algebra and M is an A-A-
bimodule (for simplicity we shall say that M is an A-bimodule). Recall from (2.4)
that a A-bimodule is the same as a left A⊗Aop-module or a right Aop⊗A-module.
The definition of the Hochschild (co)homology groups is the following:

H∗(A,M) = TorA⊗Aop

∗ (M,A) and H∗(A,M) = Ext∗A⊗Aop(A,M).

See, for instance, Jacobson [1989], Weibel [1994] for the definition of Tor- and
Ext-groups.

Let us compute the groups H0(A,M) and H0(A,M). By definition of Tor0
and Ext0 we have

H0(A,M) = M ⊗A⊗Aop A

and
H0(A,M) = HomA⊗Aop(A,M).

For any A-bimodule M , define [A,M ] as the subspace of M generated by the
elements am−ma, where a ∈ A and m ∈M . Set also

MA = {m ∈M | am = ma for all a ∈ A}.
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5.1. Lemma.— We have

H0(A,M) ∼= M/[A,M ] and H0(A,M) ∼= MA.

Proof.— On one hand, M ⊗A⊗Aop A is the quotient of M ⊗ A by the subspace
spanned by elements of the form am ⊗ b −m ⊗ ba and ma ⊗ b −m ⊗ ab for all
a, b ∈ A and m ∈ M . The linear map M ⊗ A → M/[A,M ] sending m ⊗ a to
ma factors through M ⊗A⊗Aop A. Conversely, the map m 7→ m ⊗ 1 from M to
M ⊗A⊗Aop A factors through M/[A,M ]. The induced maps between M ⊗A⊗Aop A
and M/[A,M ] are inverse of each other.

To any element m ∈MA associate the map fm : A→M defined by fm(a) =
am = ma. This map is a morphism of A-bimodules. It thus defines a map MA →
HomA⊗Aop(A,M). Conversely, to any morphism of A-bimodules f : A → M
associate the element m = f(1) ∈M . We have

am = af(1) = f(a1) = f(1a) = f(1)a = ma,

which shows that m ∈MA. The conclusion follows immediately. �

Recall that, in order to compute Tor- and Ext-groups, it suffices to exhibit
free resolutions of the algebra A in the category of A-bimodules. We first construct
a free resolution working for any algebra; this is the so-called Hochschild standard
resolution. We shall also exhibit special resolutions for special algebras, which will
allow us to compute the Hochschild groups for these algebras.

5.2. The Hochschild Standard Resolution. For an algebra A consider the
positively graded A-bimodule C ′∗(A) defined for q ∈ N by

C ′q(A) = A⊗A⊗q ⊗A.

For q = 0 set C ′0(A) = A ⊗ A. The vector space C ′q(A) is an A-bimodule, where
A acts by left (resp. right) multiplication on the leftmost (resp. rightmost) tenso-
rand A; it is clearly a free A-bimodule.

For 0 ≤ i ≤ q define di : C ′q(A)→ C ′q−1(A) by

di(a0 ⊗ a1 ⊗ · · · ⊗ aq ⊗ aq+1) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq+1. (5.1)

The maps di : C ′q(A) → C ′q−1(A) are morphisms of bimodules. Define also s :
C ′q(A)→ C ′q+1(A) by

s(a0 ⊗ a1 ⊗ · · · ⊗ aq ⊗ aq+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ aq ⊗ aq+1. (5.2)

Observe that s is not a morphism of A-bimodules (but it is a morphism of right
A-modules). The following lemma follows from straightforward computations.
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5.3. Lemma. (a) We have didj = dj−1di for i < j, and d0s = id and dis = sdi−1

for i > 0.
(b) Set b′ =

∑q
i=0 (−1)idi : C ′q(A)→ C ′q−1(A). Then

b′2 = 0 and b′s+ sb′ = id.

5.4. Corollary. The complex (C ′∗(A), b′) is a resolution of A by free A-bimodules.

Proof.— By Lemma 5.3 the complex (C ′∗(A), b′) is acyclic. We have already
observed that it consists of free bimodules and morphisms of bimodules. It suffices
now to compute the cokernel of b′ : C ′1(A) = A⊗A⊗A→ C ′0(A) = A⊗A. Now

b′(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2 − a0 ⊗ a1a2.

There is a map from the cokernel of b′ to A, sending a0 ⊗ a1 to the product a0a1.
Conversely, there is a map from A to the cokernel of b′ that sends a to 1⊗a. They
are clearly inverse of each other. �

5.5. The Standard Complexes. By definition of the Tor- and Ext-groups,
H∗(A,M) are the homology groups of the chain complex

(M ⊗A⊗Aop C ′∗(A), id⊗ b′),

and H∗(A,M) are the cohomology groups of the cochain complex

(HomA⊗Aop(C ′∗(A),M),Hom(b′, id)).

Let us simplify these complexes. There is a linear isomorphism

ϕ : M ⊗A⊗Aop C ′q(A)→ Cq(A,M) = M ⊗A⊗q

defined by ϕ(m⊗a0⊗a1⊗· · ·⊗aq⊗aq+1) = aq+1ma0⊗a1⊗· · ·⊗aq. If we push the
differential id⊗b′ to C∗(A,M), we obtain a differential b : Cq(A,M)→ Cq−1(A,M)
given by

b(m⊗ a1 ⊗ · · · ⊗ aq) = ma1 ⊗ · · · ⊗ aq

+
q−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq

+ (−1)qaqm⊗ a1 ⊗ · · · aq−1.

(5.3)

The complex (C∗(A,M), b) is called the Hochschild standard chain complex.
Similarly, there is a linear isomorphism

ψ : Cq(A,M) = Homk(A⊗q,M)→ HomA⊗Aop(C ′q(A),M)

15



given by ψ(f)(a0 ⊗ a1 ⊗ · · · ⊗ aq ⊗ aq+1) = a0f(a1 ⊗ · · · ⊗ aq)aq+1. If we pull
the differential Homk(b′, id) back to Cq(A,M), we obtain a degree +1 differential
δ : Cq(A,M)→ Cq+1(A,M) given by

δ(f)(a0 ⊗ a1 ⊗ · · · ⊗ aq)1259 = a0f(a1 ⊗ · · · ⊗ aq)

+
q∑

i=1

(−1)if(a0 ⊗ a1 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ aq)

+ (−1)q+1f(a0 ⊗ a1 ⊗ · · · ⊗ aq−1)aq.
(5.4)

The complex (C∗(A,M), δ) is called the Hochschild standard cochain complex.

5.6. Low-Dimensional Computations. By (5.3) the map

b : C1(A,M) = M ⊗A→ C0(A,M) = M

is given by
b(m⊗ a) = ma− am. (5.5)

Its cokernel is clearly H0(A,M) = M/[A,M ].
By (5.4) the map δ : C0(A,M) = M → C1(A,M) = Homk(A,M) is given by

δ(m)(a) = am−ma. (5.6)

Its kernel is H0(A,M) = MA.
The map δ : C1(A,M) = Homk(A,M) → C2(A,M) = Homk(A ⊗ A,M) is

given by
δ(f)(a0 ⊗ a1) = a0f(a1)− f(a0a1) + f(a0)a1. (5.7)

Therefore, the 1-cocycles for the cochain complex (C∗(A,M), δ) are the linear
maps f : A→M satisfying the condition

f(a0a1) = a0f(a1) + f(a0)a1 (5.8)

for all a0, a1 ∈ A. A map f satisfying (5.8) is called a bimodule derivation. The
1-coboundaries are the bimodule derivations of the form a 7→ am −ma; they are
called inner derivations. Consequently, H1(A,M) is the space of all bimodule
derivations f : A→M modulo inner derivations.

5.7. Idempotents and Homology of the Ground Field. Let e ∈ A be an
idempotent in an algebra: e2 = e. For n ≥ 0 set en = e⊗ · · · ⊗ e︸ ︷︷ ︸

n+1

∈ Cn(A,A). An

easy computation shows that

b(en) =
{
en−1 if n is even > 0,
0 otherwise.

(5.9)
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Let us apply this to the case when A = k is the ground field. Then Cn(A) is the
one-dimensional vector space spanned by 1n = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n+1

. By (5.9),

Hn(k, k) =
{
k if n = 0,
0 otherwise.

(5.10)

The case A = k is essentially the only one when we can use the standard com-
plex to compute Hochschild homology. In general, when we want to compute the
Hochschild homology of a specific algebra A, we have to find a specific resolution
of A by free A-bimodules. Let us illustrate this method on three examples.

5.8. The Tensor Algebra. Let A = T (V ) be the tensor algebra on a vector
space V . We claim that the complex

0→ A⊗ V ⊗A ∂−−→A⊗A→ 0

with ∂(a ⊗ v ⊗ a′) = av ⊗ a′ − a ⊗ va′ (a, a′ ∈ A, v ∈ V ) is a resolution of A by
free A-bimodules. Indeed, it suffices to check that the complex

0→ A⊗ V ⊗A ∂−−→A⊗A µ−−→A→ 0 (5.11)

is acyclic. Define s : A→ A⊗ A by s(a) = a⊗ 1 and s : A⊗ A→ A⊗ V ⊗ A by
s(a⊗ 1) = 0 and for a ∈ A, v1, . . . , vn ∈ V

s(a⊗ v1 · · · vn) =− a⊗ v1 ⊗ v2 · · · vn

−
n−1∑
i=2

av1 · · · vi−1 ⊗ vi ⊗ vi+1 · · · vn

− av1 · · · vn−1 ⊗ vn ⊗ 1.

Check that µs = idA, ∂s + sµ = idA⊗A, and s∂ = idA⊗V⊗A, which proves that
the complex (5.11) is acyclic. Tensoring by A⊗A⊗Aop −, we obtain the complex

0→ A⊗ V b−−→A→ 0 (5.12)

whose homology is the Hochschild homology of the tensor algebra. Here b(a⊗v) =
av − va (a ∈ A, v ∈ V ). As a consequence, we obtain

Hn(T (V ), T (V )) =


k ⊕ V ⊕

⊕
n≥2 V

⊗n/(id− τn)V ⊗n if n = 0,

V ⊕
⊕

n≥2 (V ⊗n)τn if n = 1,
0 otherwise,

(5.13)

where τn : V ⊗n → V ⊗n is the cyclic operator (3.3) of Example 3.2 (c).
Consider now the special case when dimV = 1. Then T (V ) is isomorphic to

the polynomial algebra k[X] in one variable X. It follows from (5.13) that

Hn(k[X], k[X]) =


k[X] if n = 0,
Xk[X] if n = 1,
0 otherwise.

(5.14)
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5.9. The Truncated Polynomial Algebra. Let P be a polynomial of degree d
in one variable X with coefficients in k. We wish to compute the Hochschild ho-
mology of the truncated polynomial algebra A = k[X]/(P ). We leave the following
as an exercise. The complex

· · · Q−−→ A⊗A X⊗1−1⊗X−−−−−−→ A⊗A Q−−→ A⊗A X⊗1−1⊗X−−−−−−→ A⊗A→ 0 (5.15)

with Q = (P ⊗ 1− 1⊗ P )/(X ⊗ 1− 1⊗X) is a resolution of A by free rank one
A-bimodules. It follows that H∗(A,A) is the homology of the complex

· · · P ′

−−→ A
0−−→ A

P ′

−−→ A
0−−→ A→ 0, (5.16)

where P ′ is the derivative of the polynomial P .

5.10. The Weyl Algebra. Recall the algebra A1(k) of Example 1.2 (f). Let
V be a two-dimensional vector space with basis {u, v}. There is a resolution of
A = A1(k) by free A-bimodules given by

0→ A⊗Aop ⊗ Λ2V
β′

−−→ A⊗Aop ⊗ V β′

−−→ A⊗Aop → 0, (5.17)

where β′ is the degree −1 morphism of A⊗Aop-modules defined by

β′(1⊗ 1⊗ u ∧ v) = (1⊗ q − q ⊗ 1)⊗ v − (1⊗ p− p⊗ 1)⊗ u,

β′(1⊗ 1⊗ u) = 1⊗ q − q ⊗ 1,

β′(1⊗ 1⊗ v) = 1⊗ p− p⊗ 1.

Tensoring with A ⊗A⊗Aop −, we obtain the following complex, whose homology
are the Hochschild groups H∗(A,A):

0→ A⊗ Λ2V
β−−→ A⊗ V β−−→ A→ 0. (5.18)

Here β is given for all a ∈ A by

β(a⊗ u ∧ v) = (aq − qa)⊗ v − (ap− pa)⊗ u,

β(a⊗ u) = aq − qa, β(a⊗ v) = ap− pa.

When the ground field k is of characteristic zero, we obtain

Hn(A1(k), A1(k)) =
{
k if n = 2,
0 otherwise.

(5.19)

This computation is consistent with the computation of H0(A1(k)) in Exam-
ple 3.2 (d), but what is more striking is that all Hochschild homology groups of
A1(k) are zero, except the one in degree 2. This is related to the existence of a
symplectic structure on the plane. For more on this subject, see Wodzicki [1987],
Kassel [1988a], [1992], Wambst [1996].
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5.11. Morita Invariance. Let (A,B, P,Q, α, β) be a Morita context in the
sense of Section 2.8. Let Φ be the functor from the category of A-bimodules to
the category of B-bimodules defined by

Φ(M) = Q⊗A M ⊗A P.

Similarly, let Ψ be the functor from the category of B-bimodules to the category
of A-bimodules defined by

Ψ(N) = P ⊗B N ⊗B Q.

Since P and Q are projective both as A-modules and as B-modules, these func-
tors are exact and send any projective resolution of A-bimodules to a projective
resolution of B-bimodules, and vice versa. It then follows from basic arguments in
homological algebra that there are isomorphisms between the Hochschild homology
groups

H∗(A,M) ∼= H∗(B,Φ(M)) and H∗(B,N) ∼= H∗(A,Ψ(N)) (5.20)

for all A-bimodules M and all B-bimodules N . In particular, since

Φ(A) = Q⊗A A⊗A P ∼= Q⊗A P ∼= B,

we obtain
H∗(A,A) ∼= H∗(B,B) (5.21)

for all pairs (A,B) of Morita equivalent algebras. We then say that Hochschild
homology is Morita-invariant. Hochschild cohomology groups are Morita-invariant
in a similar way.

5.12. Exercise. Let A, B be algebras, M an A-bimodule, N a B-bimodule. If P∗
is a projective resolution of M by A-bimodules and Q∗ is a projective resolution
of N by B-bimodules, show that P∗ ×Q∗ is a projective resolution of M ×N by
A×B-bimodules. Deduce that

H∗(A×B,M ×N) ∼= H∗(A,M)×H∗(B,N).

6. Cyclic (co)homology

In this section we define cyclic (co)homology groups using various (co)chain com-
plexes.

6.1. Hochschild Groups Revisited. Any algebra A has two natural A-bi-
modules, namely A itself, where the left and right A-modules structures are given
by multiplication, and the dual vector space A∗ = Homk(A, k) of linear forms on A.
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The latter has the following A-bimodule structure: if a0, a1 ∈ A and f ∈ A∗, then
a0fa1 is the linear form defined by

(a0fa1)(a) = f(a1aa0) (6.1)

for all a ∈ A. To simply notation, we shall henceforth write HH∗(A) for the
Hochschild homology groups H∗(A,A), and HH∗(A) for the Hochschild cohomol-
ogy groups H∗(A,A∗).

From Section 5.5 and from (5.3) it follows that HH∗(A) are the homology
groups of the chain complex (C∗(A), b) defined by Cq(A) = A⊗(q+1) for all q ≥ 0,
with differential

b(a0 ⊗ a1 ⊗ · · · ⊗ aq) =
q−1∑
i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq

+ (−1)qaqa0 ⊗ a1 ⊗ · · · aq−1

(6.2)

for all a0, a1, . . . , aq ∈ A.
We leave as an exercise for the reader to check from Section 5.5 and (5.4)

that HH∗(A) are the cohomology groups of the cochain complex (C∗(A), δ) dual
to the chain complex (C∗(A), b). In particular, Cq(A) = Hom(A⊗(q+1), k) consists
of all q-multilinear forms on A, and the differential of f ∈ Cq−1(A) is given by

δ(f)(a0 ⊗ a1 ⊗ · · · ⊗ aq) =
q−1∑
i=0

(−1)if(a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq)

+ (−1)qf(aqa0 ⊗ a1 ⊗ · · · ⊗ aq−1).

(6.3)

Observe that the differential δ : C0(A) = A∗ → C1(A) is given for f ∈ A∗ by

δ(f)(a0 ⊗ a1) = f(a0a1 − a1a0) (6.4).

Hence HH0(A) consists of all trace maps from A to k in the sense of Section 3.1.
Since the cochain complex (C∗(A), δ) is dual to the chain complex (C∗(A), b),

we have the following duality between HH∗(A) and HH∗(A):

HH∗(A) ∼= Homk(HH∗(A), k). (6.5)

It also follows from the above that HH∗(A) and HH∗(A) are functorial in A,
meaning that for any morphism of algebra f : A → B we have graded linear
maps f∗ : HH∗(A) → HH∗(B) and f∗ : HH∗(B) → HH∗(A) compatible with
composition.
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6.2. The Cyclic Operator. For any q ≥ 0 consider the endomorphism t of
Cq(A) = A⊗(q+1) defined for all a0, . . . , aq−1, aq ∈ A by

t(a0 ⊗ · · · ⊗ aq−1 ⊗ aq) = (−1)q aq ⊗ a0 ⊗ · · · ⊗ aq−1 (6.6)

The operator t is of order q + 1 on Cq(A) and therefore defines an action of the
cyclic group of order q + 1 on Cq(A) and on the dual space Cq(A). We denote
by N the associated norm map

N = id + t+ t2 + · · ·+ tq : Cq(A)→ Cq(A). (6.7)

We have
(id− t)N = N(id− t) = id− tq+1 = 0. (6.8)

Now recall the degree −1 differential

b′ : C ′q(A) = Cq+1(A)→ C ′q−1(A) = Cq(A)

of Lemma 5.3. The following lemma follows from a straightforward computation.

6.3. Lemma.— We have

b(id− t) = (id− t)b′ and NB = b′N.

The first relation shows that the differential b sends the image of id− t in the
vector space Cq(A) to the image of id− t in Cq−1(A). Therefore, if we define

Ccyc
q (A) = Cq(A)/Im(id− t), (6.9)

we obtain a chain complex (Ccyc
∗ (A), b), which is a quotient of the Hochschild chain

complex (C∗(A), b).
In the dual setting, the elements f of Cq(A) = Homk(A⊗(q+1), k) satisfying

the condition

f(aq ⊗ a0 ⊗ · · · ⊗ aq−1) = (−1)q f(a0 ⊗ · · · ⊗ aq−1 ⊗ aq) (6.10)

for all a0, . . . , aq−1, aq ∈ A form a cochain subcomplex (C∗cyc(A), δ) of the Hochschild
cochain complex (C∗(A), δ). The observation that the Hochschild cocycles satis-
fying (6.10) are preserved by the differential δ was first made by Connes [1985],
who used this to give the first historical definition of cyclic cohomology.
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6.4. The Cyclic Bicomplex. Consider the following diagram, where for sim-
plicity we set Cq for Cq(A):

...
...

...
b
y −b′

y b
y

C3
id−t←−− C3

N←−− C3
id−t←−− · · ·

b
y −b′

y b
y

C2
id−t←−− C2

N←−− C2
id−t←−− · · ·

b
y −b′

y b
y

C1
id−t←−− C1

N←−− C1
id−t←−− · · ·

b
y −b′

y b
y

C0
id−t←−− C0

N←−− C0
id−t←−− · · ·

(6.11)

By (6.8) and Lemma 6.3 this forms a bicomplex, which we denote CC∗∗(A). Let
CC∗(A) be the associated chain complex; it is defined by

CCq(A) = Cq(A)⊕ Cq−1(A)⊕ Cq−2(A)⊕ Cq−3(A)⊕ · · · ⊕ C0(A) (6.12)

with differential ∂ mapping (aq, aq−1, aq−2, aq−3, . . .) to(
b(aq)+ (id− t)(aq−1),−b′(aq−1)+N(aq−2), b(aq−2)+ (id− t)(aq−3), . . .

)
. (6.13)

We define the cyclic homology groups HC∗(A) of the algebra A as the homol-
ogy groups of the chain complex (CC∗(A), ∂). Taking the dual complex, we obtain
the cyclic cohomology groups HC∗(A).

6.5. The Characteristic Zero Case. Let V be a vector space on which an
operator t of order q + 1 acts. Define the operator N : V → V by (6.7) as above.
Assume that the ground field k is of characteristic zero. The identity

id =
id

q + 1
N − (id− t) t+ 2t2 + · · ·+ qtq

q + 1
(6.14)

implies Ker(id− t) = Im(N) and Ker(N) = Im(id− t). Therefore all rows in the
bicomplex CC∗∗(A) are exact, except for the group in the leftmost column; hence,
the homology of a row is equal to C∗(A)/Im(id − t), which we denoted above
by Ccyc

∗ (A). This observation implies the following result.

6.6. Proposition.— When the algebra A contains the field Q of rational numbers,
then

H∗(Ccyc
∗ (A), b) ∼= HC∗(A) and H∗(C∗cyc(A), δ) ∼= HC∗(A).

The use of the adjective “cyclic” comes from this interpretation of cyclic
(co)homology.
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6.7. Connes’s Operator B. Recall the map

s : C ′q−1(A) = Cq(A)→ C ′q(A) = Cq+1(A)

from Section 5.2. By Lemma 5.3 we have

b′s+ sb′ = id. (6.15)

This implies that all odd-numbered columns in the bicomplex CC∗∗(A) are acyclic.
In a sense they are useless, and we want to get rid of them. Before we do this, let
us introduce the degree +1 operator

B = (id− t)sN : Cq(A)→ Cq+1(A), (6.16)

called Connes’s operator B. The following is a consequence of (6.8) and (6.15).

6.8. Lemma.— We have B2 = Bb+ bB = 0.

6.9. The b−B-Bicomplex. In view of the previous lemma we may consider the
following bicomplex, which we denote B∗∗(A):

...
...

...
...

b
y b

y b
y b

y
C3

B←−− C2
B←−− C1

B←−− C0 ←−− · · ·
b
y b

y b
y y

C2
B←−− C1

B←−− C0 ←−− 0 ←−− · · ·
b
y b

y y y
C1

B←−− C0 ←−− 0 ←−− 0 ←−− · · ·
b
y y y y
C0 ←−− 0 ←−− 0 ←−− 0 ←−− · · ·

(6.17)

where for simplicity we have written Cq instead of Cq(A). Let B∗(A) be the
associated chain complex; it is defined by

Bq(A) = Cq(A)⊕ Cq−2(A)⊕ Cq−4(A)⊕ · · · (6.18)

with differential ∇ mapping (aq, aq−2, aq−4, aq−6, . . .) to(
b(aq) +B(aq−2), b(aq−2) +B(aq−4), b(aq−4) +B(aq−6), . . .

)
. (6.19)
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6.10. Proposition.— There is a morphism of complexes i : B∗(A),∇ → CC∗(A), ∂
inducing an isomorphism in homology

H∗(B∗(A),∇) ∼= HC∗(A) = H∗(CC∗(A), ∂).

The formulas for the morphism of complexes i : B∗(A) → CC∗(A) and the
proof of the proposition can be found in Loday-Quillen [1984] and in Lo-
day [1992a]. A formula for a morphism of complexes j : CC∗(A), ∂ → B∗(A),∇
and for homotopies between the composition of i and j and the identity can be
found in Kassel [1990] (the latter paper is among other devoted to a detailed
study of the chain maps and homotopies connecting the three complexes Ccyc

∗ (A),
CC∗(A), B∗(A); it uses a very useful tool in homological algebra, namely the
so-called perturbation lemma).

Using Proposition 6.10, we can freely switch between the cyclic bicomplex
CC∗(A) and the b−B-bicomplex B∗(A).

6.11. Mixed Complexes and Connes’s Long Exact Sequence. A mixed
complex is a triple C = (C∗, b, B), where C∗ = (Cq)q≥0 is a positively graded
vector space, b : C∗ → C∗ is a linear endomorphism of degree −1, B : C∗ → C∗ is
a linear endomorphism of degree +1 satisfying

b2 = B2 = Bb+ bB = 0. (6.20)

The chain complex (C∗, b) is called the underlying Hochschild complex of the mixed
complex C and its homology H∗(C∗, b) will be denoted by HH∗(C).

A morphism f : (C∗, b, B)→ (C ′∗, b, B) of mixed complexes is a degree 0 linear
map f : C∗ → C ′∗ such that bf = fb and Bf = fB. As Lemma 6.8 shows, any
algebra A gives rise to a mixed complex C(A) = (C∗(A), b, B) and any morphism of
algebras gives rise to a morphism of mixed complexes. We shall see more examples
of mixed complexes in Section 7.

To a mixed complex we can associate the bicomplex B∗∗(C) described by (6.17).
We denote by (B∗(C),∇) the associated complex. We define the cyclic homology
of the mixed complex C = (C∗, b, B) by

HC∗(C) = H∗(B∗(C),∇). (6.21)

The underlying Hochschild complex of a mixed complex C, viewed as the
leftmost column of the bicomplex B∗∗(C), is a subcomplex of (B∗(C),∇). The
quotient chain complex is the chain complex associated to the bicomplex B∗∗(C)
from which we have removed the leftmost column. Therefore we have the short
exact sequence of chain complexes

0→ C∗
I−−→ B∗(C) S−−→ s2B∗(C)→ 0, (6.22)
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where s2B∗(C) is the complex defined by (s2B∗(C))q = s2B∗(C)q−2 and the same
differential ∇. The exact sequence (6.22) gives rise to a long exact sequence in
homology, which is called Connes’s long exact sequence:

· · · B−−→HHq(C) I−−→HCq(C) S−−→HCq−2(C) B−−→HHq−1(C) I−−→HCq−1(C) S−−→ · · ·
(6.23)

This sequence ends in low degrees with

· · · S−−→ HC0(C) B−−→ HH1(C) I−−→ HC1(C)→ 0→ HH0(C) I−−→ HC0(C)→ 0.
(6.24)

The degree −2 map S : HCq(C)→ HCq−2(C) is called the periodicity map.
Connes’s long exact sequence has the following immediate consequence.

6.12. Proposition.— For any mixed complex C we have HC0(C) ∼= HH0(C).
Moreover, if there is q such that HHi(C) = 0 for all i > q, then the periodicity map
S : HCi+2(C) → HCi(C) is an isomorphism when i ≥ q and a monomorphism
(injection) when i = q − 1

Observe that the periodicity map S also exists on the level of the cyclic com-
plex CC∗(A); it is induced by killing the two leftmost columns in the bicom-
plex (6.11).

6.13. Exercises. (a) Show that the cyclic homology groups of the ground field k
are given by

HCq(k) =
{
k if q is even,
0 if q is odd,

(6.25)

(b) For the Weyl algebra A1(k) over a field of characteristic zero show that

HCq(A1(k)) =
{
k if q is even ≥ 2,
0 otherwise,

(6.26)

(c) Compute the cyclic homology of the tensor algebra T (V ), of the truncated
polynomial algebra of Section 5.9.

7. Cyclic homology and differential forms

In this section we assume that all algebras are commutative.

7.1. Differential Forms. For a commutative algebra A let Ω1
A be the left A-

module generated by all symbols of the form da, where a runs over all elements
of A, subject to the relations

d(a1a2) = a1da2 + a2da1 (7.1)

for all a1, a2 ∈ A. Relation (7.1) states that the k-linear map d : A → Ω1
A is

a derivation. The A-module Ω1
A is called the module of 1-differential forms (or

Kähler differentials) on A. It satisfies the following universal property: for any
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derivation D : A → M on A with values in a left A-module M , there is a unique
A-linear map f : Ω1

A →M such that D(a) = f(da) for all a ∈ A.
The k-linear map d : A→ Ω1

A can be extended into a cochain complex

0→ A
d−−→ Ω1

A
d−−→ Ω2

A
d−−→ Ω3

A
d−−→ · · · (7.2)

called the de Rham complex of A; the differential d is called the de Rham differ-
ential. For q ≥ 2, the vector space Ωq

A is defined as the q-th exterior power of the
A-module Ω1

A:
Ωq

A = Λq
AΩ1

A. (7.3)

Its elements are linear combinations of expressions of the form a0da1 · · · daq, where
a0, a1, . . . , aq ∈ A. These expressions are antisymmetric in the variables a1, . . . , aq.
By convention we set Ω0

A = A. The de Rham differential d : Ωq
A → Ωq+1

A is defined
by

d(a0da1 · · · daq) = da0da1 · · · daq. (7.4)

It satisfies d2 = 0. The cohomology H∗
DR(A) of the cochain complex (7.2) is called

the de Rham cohomology of the (commutative) algebra A.
As an exercise, compute the de Rham cohomology of k and of k[X] when k

is a field of characteristic zero.
Let us denote by ΩA the mixed complex (Ωq

A, 0, d) in the sense of Section 6.11.
Its Hochschild and cyclic homology are clearly given for all q by

HHq(ΩA) = Ωq
A (7.5a)

and
HCq(ΩA) = Ωq

A/dΩ
q−1
A ⊕Hq−2

DR (A)⊕Hq−4
DR (A)⊕ · · · (7.5b)

7.2. Relating Cyclic Homology and de Rham Cohomology. Assume that
k is of characteristic zero. For q ≥ 0 let µ : Cq(A) = A⊗(q+1) → Ωq

A be defined by

µ(a0 ⊗ a1 ⊗ · · · ⊗ aq) = a0da1 · · · daq. (7.6)

The following relations are easy to check:

µb = 0 and µB = dµ. (7.7)

This implies that µ defines a morphism of mixed complexes (C∗(A), b, B) →
(Ωq

A, 0, d), hence there are maps

HHq(A)→ Ωq
A (7.8a)

and
HCq(A)→ Ωq

A/dΩ
q−1
A ⊕Hq−2

DR (A)⊕Hq−4
DR (A)⊕ · · · (7.8b)
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For a commutative algebra A the Hochschild complex turns out to be

· · · b−−→ A⊗A⊗A b−−→ A⊗A 0−−→ A→ 0

in low degrees. Therefore, as we already know, HH0(A) = A = Ω0
A, and in degree

one we obtain HH1(A) = A⊗A/b(A⊗A⊗A), where b(A⊗A⊗A) is spanned by
all expressions of the form

a0a1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1.

From this it follows immediately that µ induces an isomorphism

HH1(A) ∼= Ω1
A. (7.9)

Together with the exact sequence (6.24), this implies

HC1(A) ∼= Ω1
A/dA. (7.10)

In higher degree Hochschild homology is in general different from differential
forms. Nevertheless for an important class of algebras, we still have isomorphisms.
This is the class of so-called smooth algebras. I will not give a definition of a smooth
algebra. Let me just mention that the algebras of functions on a smooth affine
variety are smooth. For instance, the polynomial algebras are smooth, the algebra
k[x, y]/(x2 + y2 − 1) is smooth, but the truncated polynomial algebra k[x]/(x2) is
not smooth (it has a singularity at 0).

7.3. Theorem.— If A is a smooth commutative algebra over a field of character-
istic zero, then µ induces isomorphisms

HHq(A) ∼= Ωq
A and HCq(A) ∼= Ωq

A/dΩ
q−1
A ⊕Hq−2

DR (A)⊕Hq−4
DR (A)⊕ · · ·

for all q ≥ 0.

For Hochschild homology this theorem is due to Hochschild, Kostant,
Rosenberg [1962]. The implication for cyclic homology is an immediate conse-
quence; it is due to Loday & Quillen [1984].

The Hochschild and cyclic homology of a singular (i.e., non-smooth) com-
mutative algebra A can also be expressed in terms of differential forms, but we
must replace the differential forms on A by differential forms on a resolution of A
in the category of commutative differential graded algebras, see Burghelea &
Vigué-Poirrier [1988], Vigué-Poirrier [1991].

We may retain from this section that Connes’s operator B is the noncom-
mutative analogue of the de Rham differential and that cyclic homology is the
noncommutative version of de Rham cohomology. It was introduced by Connes
precisely to have a version of de Rham cohomology for noncommutative algebras.

27



7.4. Brylinski’s Mixed Complex. Before we close this section, we give another
interesting example of a mixed complex, also related to differential forms.

Let A be a filtered algebra, i.e., equipped with an increasing filtration

0 = A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Aq ⊂ · · ·

of subspaces of A such that
⋃

q≥0 = A, the multiplication of A induces a map
Ap ⊗Aq → Ap+q for all p, q ≥ 0, and the unit of A belongs to A0.

To any filtered algebra A we associate a graded algebra S = ⊕q≥0 Sq, where
Sq = Aq/Aq−1 for all q ≥ 0. If S happens to be commutative, then it is a Poisson
algebra, i.e., S possesses a bilinear map { , } : S × S → S, called the Poisson
bracket, satisfying the relations

{g, f} = −{f, g}, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, (7.11a)

{f, gh} = {f, g}h+ g{f, h} (7.11b)

for all f , g, h ∈ S. The Poisson bracket {f, g} is defined as follows for f ∈ Sp and
g ∈ Sq: lift f to a ∈ Ap and g to b ∈ Aq. Since S is assumed to be commutative,
the commutator [a, b] = ab − ba ∈ A, which belongs to Ap+q, actually sits in the
smaller subspace Ap+q−1. We define {f, g} to be the image of [a, b] in Sp+q−1. It
is an exercise to check that this bracket is well-defined and is a Poisson bracket.

Brylinski [1988] showed that, when A is a filtered algebra over a field of
characteristic zero such that the associated graded algebra S is commutative and
smooth, then there exists a mixed complex (Ω∗S , δ, d), where δ is the degree −1
differential on the differential forms on S defined for all f0, f1, . . . , fq ∈ S by

δ(f0df1 · · · dfq) =
q+1∑
i=1

(−1)i+1{f0, fi}df1 · · · d̂fi · · · dfq

+
∑

1≤i<j≤q

(−1)i+j f0d{fi, fj}df1 · · · d̂fi · · · d̂fj · · · dfq,

(7.12)

where we have removed the expressions under the hats in the previous sums.
The following result was proved in Kassel [1988a].

7.5. Theorem.— If A is a filtered algebra over a field of characteristic zero
such that the associated graded algebra S is isomorphic to a polynomial algebra
k[x1, . . . , xn], then the Hochschild and cyclic homology of A are isomorphic to the
Hochschild and cyclic homology of the mixed complex (Ω∗S , δ, d):

HHq(A) ∼= Hq(Ω∗S , δ) and HCq(A) ∼= HCq(Ω∗S , δ, d)

for all q ≥ 0.

This applies in particular to the Weyl algebra A1(k) and to the universal
enveloping algebra of a Lie algebra. See an application of this theorem to the
computation of the cyclic homology of the universal enveloping algebras of all Lie
algebras of dimension three in Nuss [1991].
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8. The algebraic Chern character

In this section we give a bivariant version of cyclic (co)homology and of algebraic
K-theory. We connect these bivariant theories through a map that is a noncom-
mutative analogue of the Chern character in differential geometry.

8.1. Bivariant Cyclic Cohomology. John Jones and the author (see Jones &
Kassel [1989], Kassel [1989]) introduced bivariant Hochschild cohomology groups
HHq(A1, A2) and bivariant cyclic cohomology groups HCq(A1, A2), depending on
a rational integer q ∈ Z and on two algebras A1, A2. These groups satisfy the
following properties:

(a) they are contravariant functors in A1 and covariant functors in A2,
(b) they are equipped with natural associative composition products

HHq(A1, A2)⊗HHr(A2, A3)
∪−−→ HHq+r(A1, A3) (8.1a)

and
HCq(A1, A2)⊗HCr(A2, A3)

∪−−→ HCq+r(A1, A3), (8.1b)

(c) there is a Connes-type long exact sequence

· · · B−−→HCq−2(A1, A2)
S−−→HCq(A1, A2)

I−−→HHq(A1, A2)
B−−→HCq−1(A1, A2)

S−−→ · · ·
(8.2)

(d) When A2 = k, then we recover Hochschild and cyclic cohomology:

HHq(A1, k) ∼= HHq(A1) and HCq(A1, k) ∼= HCq(A1). (8.3)

When A1 = k, we recover Hochschild homology:

HHq(k,A2) ∼= HH−q(A2). (8.3)

The groupsHCq(k,A2) are not isomorphic to the cyclic homology groupsHC−q(A2),
but to Goodwillie’s negative cyclic homology groups HC−−q(A2). We will not define
HC−∗ here; the reader may take

HC−q (A) = HC−q(k,A) (8.4)

as a definition.
The bivariant Hochschild cohomology groups HH∗(A1, A2) are defined as the

cohomology groups of the Hom-complex

Hom∗(C∗(A1), C∗(A2))

whose elements in degree q are families of degree −q maps from the Hochschild
complex C∗(A1) to the Hochschild complex C∗(A2).

Similarly, the bivariant cyclic cohomology groups HC∗(A1, A2) are defined as
the cohomology groups of the Hom-complex

Hom∗
S(CC∗(A1), CC∗(A2))
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whose elements in degree q are families of degree −q maps from the cyclic complex
CC∗(A1) to the cyclic complex CC∗(A2), with the additional requirement that
such families commute with the periodicity map S. The composition products
(8.1) are induced by the composition in the Hom-complexes.

Let us concentrate on the group HC0(A1, A2): each of its elements can be
represented by a (degree 0) morphism of complexes

u : CC∗(A1)→ CC∗(A2)

such that Su = uS. Let us give a few examples of such morphisms.
(a) A morphism of algebras f : A1 → A2 clearly induces a morphism of com-

plexes CC∗(A1)→ CC∗(A2) commuting with S. Let us denote the corresponding
element of HC0(A1, A2) by [f ]. In particular, for any algebra A we have the
canonical element [idA] ∈ HC0(A,A).

If g : A2 → A3 is another morphism of algebras, then we immediately have

[g ◦ f ] = [f ] ∪ [g] ∈ HC0(A1, A3). (8.5)

From the definition of the complex CC∗ we see that, in order for [f ] to be
defined, we do not need the morphism of algebras f to preserve the units. This
observation is very useful when we deal with matrix algebras. For instance, the
inclusion i of an algebra A into the matrix algebra Mp(A) given by

i(a) =
(
a 0
0 0

)
(8.6)

is not unit-preserving, but nevertheless it induces an element [i] ∈ HC0(A,Mp(A)).
(b) The trace of matrices tr : Mp(A) → A can be extended to a morphism

of complexes tr∗ : CC∗(Mp(A)) → CC∗(A) commuting with S; it thus defines
an element [tr] ∈ HC0(Mp(A), A). The morphism tr∗ is given on Cq(Mp(A)) =
Mp(A)⊗(q+1) by

a(0)⊗ a(1)⊗ · · · ⊗ a(q) 7→
∑

1≤i0,i1,...,iq≤p

a(0)i0i1 ⊗ a(1)i1i2 ⊗ · · · ⊗ a(q)iqi0 (8.7)

(a(0), a(1), . . . , a(q) ∈ Mp(A)). When we take the composition product of [i] ∈
HC0(A,Mp(A)) with [tr] ∈ HC0(Mp(A), A), we obviously obtain

[i] ∪ [tr] = [idA] ∈ HC0(A,A). (8.8)

The following was proved in Jones & Kassel [1988] and Kassel [1990].
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8.2. Proposition.— We have

[tr] ∪ [i] = [idMp(A)] ∈ HC0(Mp(A),Mp(A)).

Let us say that two algebras A1 and A2 are HC-equivalent of there are elements
α ∈ HC0(A1, A2) and β ∈ HC0(A2, A1) such that α ∪ β = [idA1 ] and β ∪ α =
[idA2 ]. It is clear that if, A1 and A2 are HC-equivalent, then there are natural
isomorphisms

HC∗(A,A1) ∼= HC∗(A,A2), HH∗(A,A1) ∼= HH∗(A,A2) (8.9a)

HC∗(A1, A) ∼= HC∗(A2, A), HH∗(A1, A) ∼= HH∗(A2, A) (8.9b)

for all algebras A. This means that HC-equivalent algebras are undistinguishable
from the point of view of cyclic and Hochschild (co)homology.

As a consequence of (8.8) and of Proposition 8.2, any algebra A is HC-
equivalent to any of its matrix algebras Mp(A).

8.3. Bivariant Algebraic K-Theory. Given two algebrasA1, A2, letRep(A1, A2)
be the category of all A1-A2-bimodules that are finitely generated projective as
right A2-modules. This category, equipped with all exact sequences, gives rise to
algebraic K-groups following Quillen [1973]. In particular, we have a K0-group
defined as in Section 4.3, which we denote by K0(A1, A2).

The group K0(A1, A2) is clearly a contravariant functor in A1 and a covariant
functor in A2.

If P is an object of Rep(A1, A2) and Q is an object of Rep(A2, A3), then
it is easy to check that P ⊗A2 Q is an object of Rep(A1, A3). This induces a
composition product

K0(A1, A2)⊗Z K
0(A2, A3) −−→ K0(A1, A3). (8.10)

Observe that Rep(k,A2) is the category of finitely generated projective right
A2-modules and that K0(k,A2) is the group K0(A2) of Section 4.3.

The category Rep(A1, k) is the category of all finite-dimensional representa-
tions A1 →Mp(k) of A1.

8.4. The Bivariant Chern Character. To any object P of Rep(A1, A2) we
now attach an element of HC0(A1, A2). As we observed in Exercise 2.5 (b), the
bimodule P gives rise to a morphism of algebras ρ : A1 → EndA2(P ). It thus
defines an element [ρ] ∈ HC0(A1,EndA2(P )).

The bimodule P being finitely generated projective over A2, there are an A2-
module P ′, an integer p ≥ 1 and an isomorphism P ⊕P ′ ∼= Ap

2 of A2-modules. Let
ι be the composite map

ι : EndA2(P )
idP⊕0P ′−−−−→ EndA2(P ⊕ P ′)

∼=−−→ Mp(A2);
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this map is a morphism of algebras that does not preserve the units. It defines an
element [ι] ∈ HC0(EndA2(P ),Mp(A)).

Define ch(P ) to be the element

ch(P ) = [ρ] ∪ [ι] ∪ [tr] ∈ HC0(A1, A2). (8.11)

The following theorem was proved in Kassel [1989] (see also Kassel [1988b]).

8.5. Theorem.— (a) The element ch(P ) ∈ HC0(A1, A2) depends only of the class
of P in K0(A1, A2) and it defines a homomorphism of abelian groups

ch : K0(A1, A2)→ HC0(A1, A2).

(b) If P is an object of Rep(A1, A2) and Q is an object of Rep(A2, A3), then
we have

ch(P ⊗A2 Q) = ch(P ) ∪ ch(Q).

Theorem 8.5 has the following immediate consequence (which was proved in
a different way by McCarthy [1988]).

8.6. Corollary.— Two Morita equivalent algebras are HC-equivalent.

Proof.— Let (A,B, P,Q, α, β) be a Morita context as in Section 2.8. Then P is
an object in Rep(A,B) and Q is an object in Rep(B,A) such that P ⊗AQ ∼= idA

A
and Q⊗B P ∼= idB

B. Applying Theorem 8.5, we obtain

ch(P ) ∪ ch(Q) = ch(idA
A) and ch(Q) ∪ ch(P ) = ch(idB

B).

It is easy to see that ch(idA
A) = [idA] ∈ HC0(A,A) and ch(idB

B) = [idB ] ∈
HC0(B,B). Therefore, A and B are HC-equivalent. �

8.7. Remarks. (a) When A1 = k, we obtain a Chern character

ch : K0(A2) = K0(k,A2)→ HC0(k,A2) = HC−0 (A2). (8.12)

This is the right formalization for the characteristic classes defined by Connes
[1985] and Karoubi [1982] on the level of K0. When composing the map (8.12)
with the map I : HC0(k,A2) = HC−0 (A2) → HH0(k,A2) = HH0(A2) of (8.2),
we recover the Hattori-Stallings trace of Section 4.6.

(b) Connes [1985] (for the case i = 1) and Karoubi [1983b] (for all i ≥ 1)
defined Chern characters for higher algebraic K-groups

Ki(A2)→ HC−i(k,A2) = HC−i (A2). (8.13)

One can extend these to higher bivariant Chern characters

Ki(A1, A2)→ HCi(A1, A2).
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(c) There are other objects having an image in bivariant cyclic cohomology,
such as the quasi-homomorphisms introduced by Cuntz in order to simplify the
definition of Kasparov’s KK-theory (see Kassel [1989], Section III.6).

(d) Using the periodicity map S in the long exact sequence (8.2), we may
define the bivariant periodic cyclic cohomology groups HP ∗(A1, A2) as the limit
of the inductive system

{· · · S−−→ HC∗+2p(A1, A2)
S−−→ HC∗+2p+2(A1, A2)

S−−→ · · ·}. (8.14)

These groups are periodic of period two. They have the important additional
property that they are homotopy-invariant, i.e., when one evaluates an element
α(t) ∈ HP ∗(A1, A2[t]) at t = 0 and at t = 1, the elements α(0) and α(1) we obtain
coincide in HP ∗(A1, A2).

Notes

Hochschild cohomology was introduced by Hochschild [1945], [1946]. The first
presentation as derived functor was given in Cartan & Eilenberg [1956]. Hoch-
schild homology was related to differential forms for the first time by Hochschild,
Kostant, Rosenberg [1962]. The operator B, as named by Connes [1985], had
actually been defined by Rinehart [1963], who also defined on the Hochschild
complex the Lie derivative and the interior produit with respect to a derivation.

The bicomplex CC∗∗(A) of Section 6, implicit in Tsygan [1983], was made
explicit by Loday & Quillen [1984]. The cyclic complex C∗cyc(A) and the b−B-
bicomplex are due to Connes [1985], as well as Connes’s long exact sequence.
The computation of the cyclic homology of smooth algebras is due to Loday
& Quillen [1984] in the algebraic case and to Connes [1985] in the C∞-case.
Mixed complexes (whose name was suggested by A. Borel) were introduced and
extensively studied in Kassel [1987].

For Künneth formulas allowing to compute the cyclic homology of the tensor
products of two algebras, see Burghelea & Ogle [1986] and Kassel [1987]. An
important property of cyclic homology, namely excision, was proved by Wodz-
icki [1989], with applications to K-theory (see Suslin & Wodzicki [1992]).

Below we have given a number of other references relevant to the subject.
In addition to the above-mentioned references, we recommend reading Cuntz
& Quillen [1995a], [1995b], Feigin & Tsygan [1987], Goodwillie [1985a],
[1985b], [1986], Jones [1987], Kassel [1988a], [1990], [1992], Loday [1989],
Wambst [1993], [1997].

A standard textbook on cyclic homology is Loday [1992a], see also Huse-
möller [1991], Weibel [1994].
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Paris 297 (1983), 447–450 and 513–516.

35



C. Kassel [1987]: Cyclic homology, comodules and mixed complexes, J. Algebra
107 (1987), 195–216.
— [1988a]: L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91
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7 rue René Descartes
67084 Strasbourg Cedex, France
E-mail: kassel@math.u-strasbg.fr

Fax: +33 (0)3 90 24 03 28
http://www-irma.u-strasbg.fr/˜kassel/

(19 August 2004)

37


