Résumé

Le but est de faire un tour d'horizon concernant la dynamique des systèmes critiques (ceux qui présentent une transition de phase de second ordre). Plus exactement, on part d'une température initiale et l'on refroidit le système jusqu'à une température finale, très proche de la température critique. Entre les deux températures, le paramètre d'ordre relaxe d'une valeur initiale à une valeur finale. C'est cette cinétique qui nous intéresse ici. Pour l'étudier, le point de départ est la fameuse équation de Langevin, qui est satisfaite par le paramètre d'ordre dépendant de l'espace et du temps. Nous examinons d'abord le problème par application de la théorie de champ moyen, ensuite par le Groupe de Renormalisation.

Chapitre 1

Phénomènes critiques.

Dans ce chapitre, nous passons en revue les fondements des phénomènes critiques.

Plus exactement, l'attention sera portée sur les comportements et exposants critiques.

Définition des systèmes critiques.

Un système est dit critique si ses propriétés à grande échelle ne dépendent que d'un petit nombre de paramètres macroscopiques, et si cette dépendance présente un caractère universel.

A titre d'exemples, je peux citer les transitions de phase thermales de second ordre, les longs polymères en solution, les mélanges critiques de liquides simples ou de polymères, les agrégats de particules, les transitions géométriques (transitions sol-gel, percolation), et certains systèmes dynamiques.

La caractéristique commune des systèmes critiques est que leurs propriétés spatiales ne dépendent que d'une seule longueur, qui est la longueur de corrélation ξ t (taille des domaines). En plus, au voisinage de la température critique T → T c , la longueur de corrélation diverge. La divergence de ξ t à T = T c signifie que le système critique devient invariant d'échelle.

Historiquement, trois grandes périodes ont marquée le développement des phénomènes critiques.

La première et la plus longue période fut l'élaboration de la théorie du champ moyen (TCM) par van der Waals, dans le but de décrire la transition liquide-gaz classique [1]. Par la suite, la TCM a été étendue par Weiss (champ moléculaire), pour décrire la transition paramagnétique-ferromagnétique [1,2]. Aussi, cette même TCM a été étendue (avec succès) par Bardeen, Cooper et Schrieffer (théorie BCS) [2], pour étudier la supraconductivité conventionnelle. Mais, les expériences et les simulations ont montré que, généralement, la TCM est quantitativement incorrecte.

L'esprit de la TCM consiste à remplacer les interactions subies par un constituant de la part de ses semblables par un champ moyen. Si cette approche n'est pas souvent correcte, c'est parce qu'elle sous-estime les fortes fluctuations du paramètre d'ordre au voisinage de la température de transition.

La deuxième période, autour de 1968, a été inaugurée par L. Kadanoff [3 -5], qui a repris les défauts de la TCM et émis deux hypothèses fondamentales, à savoir l'invariance d'échelle et l'universalité. La première hypothèse signifie qu'au point critique, le système devient invariant d'échelle (ξ t → ∞). L'universalité stipule que bien que des systèmes soient physiquement différents, ils se comportent de la même manière.

La troisième et la plus importante période, qui a commencé en 1971, fut marquée par une série de brillants papiers par K. Wilson [START_REF] Wilson | Renormalization Group and Critical Phenomena I[END_REF][START_REF] Wilson | Renormalization Group and Critical Phenomena II[END_REF], un physicien issu de la Physique des Particules. Ce dernier a repris les idées de Kadanoff et les a converti en des calculs réels du comportement critique, et ceci par application du Groupe de Renormalisation (GR).

Quelques années plus tard, P.-G. de Gennes [START_REF] De Gennes | Scaling Concept in Polymer Physics[END_REF] remarqua qu'on pouvait étendre les idées du GR à un autre domaine différent, qui est la physique des polymères.

Il montra qu'un long polymère en solution est équivalent à un système magnétique critique, dans la limite où le nombre de composantes de son aimantation, n, tend vers zéro. C'est la fameuse limite n → 0. Dans cette même limite, la fonction de partition du polymère est la transformée de Laplace inverse de la fonction de corrélation, où le degré de polymérisation, N, de la chaîne et l'écart à la température critique, T -T c , sont les variables conjuguées de Laplace. J. des Cloizeaux [START_REF] Cloizeaux | Polymers in Solution[END_REF] étendit l'équivalence de de Gennes aux solutions concentrées de polymères. Ainsi, une solution concentré est équivalente à un système magnétique critique sous champ, dans la limite n → 0, où le champ magnétique est l'analogue de la fugacité.

A la même époque, le physicien russe Polyakov [10] remarqua qu'en dimension 2, les fonctions de corrélation sont invariantes sous les transformations conformes. Ce sont des transformations qui conservent les angles. Par ailleurs, le Groupe Conforme à deux dimensions est isomorphe au groupe des fonctions analytiques. C'est cette richesse qui est dernière la détermination exacte des exposants critiques en cette dimension [START_REF] Cloizeaux | Polymers in Solution[END_REF]11].

Les idées du GR ont été étendues, par la suite, à d'autres systèmes, comme les membranes.

Dans cet article de revue, je décris les fondements de la dynamique critique. L'analyse se fera d'abord dans le cadre de la TCM, ensuite, par utilisation du GR.

Pour cela, l'équation de base sera l'équation de Langevin, car les systèmes considérés ici sont purement dissipatifs (paramètre d'ordre non conservé).

Comportements et exposants critiques.

Pour définir ces exposants, je commence par les polymères en solutions. Pour ces polymères, le premier exposant rencontré est l'exposant critique de gonflement ν, qui définit le comportement du rayon de giration. Celui-ci peut être mesuré dans une expérience de diffusion de rayons X [START_REF] De Gennes | Scaling Concept in Polymer Physics[END_REF][START_REF] Cloizeaux | Polymers in Solution[END_REF]. L'on a la loi d'échelle [START_REF] De Gennes | Scaling Concept in Polymer Physics[END_REF][START_REF] Cloizeaux | Polymers in Solution[END_REF],

dans la limite N → ∞, R G ∼ σN ν , (1.1) 
où σ est la taille du monomère et ν l'exposant critique du gonflement. Ce dernier est universel, en ce sens qu'il ne dépend que de la dimension de l'espace d. Le second exposant rencontré est l'exposant de configuration, γ, qui définit le nombre de configurations 

Z (N ) ∼ µ N N γ-1 . ( 1 
H = 0, ϕ ∼          0 , T > T c , A 0 (T c -T ) βt , T ≤ T c .
M ∼ ±A 1 |H| 1/δ t . (1.4)
Ce comportement définit l'exposant critique δ t .

L'exposant critique γ t définit le comportement de la susceptibilité (ou compress-

ibilité isotherme) χ = (∂M/∂H) H=0 . L'on a [1, 3 -5] χ ∼          χ + (T -T c ) -γt , T > T c , χ -(T c -T ) -γt , T ≤ T c .
(1.5)

Au voisinage de la transition, la chaleur spécifique

C se comporte comme [1, 3 -5] C ∼          A + + B + (T -T c ) -αt , T > T c , A -+ B -(T c -T ) -αt , T ≤ T c . (1.6)
Ceci définit l'exposant critique α t .

Les deux exposants critiques restants définissent le comportement de la fonction de corrélation 

G (r) = ϕ (0) ϕ (r) -ϕ (0) ϕ (r) . (1.7) 
G (r) ∼ e -r/ξt , r > ξ t , (1.8) 
où ξ t est la longueur de corrélation [1, 3 -5]

ξ t ∼          ξ + (T -T c ) -ν t , T > T c , ξ -(T c -T ) -νt , T ≤ T c .
(1.9)

La longueur de corrélation diverge donc à la transition, avec l'exposant critique ν t .

Le dernier exposant critique est l'exposant η t [1, 3 -5], qui caractérise le comportement de la fonction de corrélation à petite distance, en comparaison avec la longueur de corrélation, 

G (r) ∼ r 2-d-ηt , a < r < ξ t , ( 1 
α t + 2β t + γ t = 2 , α t + (δ t + 1) β t = 2 , (1.11) 
γ t = ν t (2 -η t ) , α t = 2 -ν t d .
(1.12)

Ces exposants sont universels et ne dépendent pas des détails particuliers du problème. En champ moyen, ils prennent les valeurs [1, 3 -5] : Le but de ce chapitre est l'étude de la dynamique critique, d'abord par la théorie de champ moyen, ensuite, par le Groupe de Renormalisation (GR).

α t = 0, β t = 1/2, ν t = 1/2, γ t = 1, δ t =

Equation de Langevin.

Je rappelle que les systèmes thermodynamiques hors équilibre peuvent être décrits à l'aide de deux méthodes équivalentes. L'une est basée sur l'utilisation de l'équation de Smoluchowski, et l'autre sur l'équation de Langevin. La première est une conséquence directe des principes de la Thermodynamique des phénomènes irréversibles. Alors que la seconde est une équation phénoménologique, qui modélise toute une classe de processus stochastiques. L'équation de Smoluchowski décrit les phénomènes de diffusion dans l'espace des phases. L'équation de Langevin décrit ces mêmes phénomènes dans l'espace direct. 

ζ d -→ r dt = - -→ ∇ U + -→ f (t) , ( 2 
→ f (t) = -→ 0 , (2.2) -→ f (t) . -→ f (t ′ ) = 2dζk B T δ (t -t ′ ) . (2.3)
Pour U = 0, la solution de l'équation de Langevin est triviale

-→ r (t) = -→ r (t ′ ) + 1 ζ t 0 dt ′′ f (t ′′ ) .
(2.4) Donc, les premier et second moments de la distance bout-à-bout sont

-→ r (t) --→ r (t ′ ) = -→ 0 , (2.5) [ -→ r (t) --→ r (t ′ )] 2 = 2d ζ k B T |t -t ′ | = 2d.D |t -t ′ | , (2.6) 
D = k B T ζ . ( 2.7) 
Ici, D étant le coefficient de diffusion. La fonction de distribution bout-à-bout est alors

P ( -→ r , t; -→ r ′ , t ′ ) = [4πD |t -t ′ |] -d/2 exp - ( -→ r --→ r ′ ) 2 4D |t -t ′ | . (2.8)
qui représente la probabilité de trouver la particule à la position -→ x , à l'instant t, sachant qu'elle occupait la position -→ x ′ , à l'instant t ′ .

Enfin, je note, que pour une particule browienne dans un potentiel harmonique, on sait résoudre exactement l'équation de Langevin, mais cette même équation reste insoluble dans le cas général.

2.2 Dynamique critique par la théorie de champ moyen.

2.2.1 Paramètre d'ordre à l'équilibre.

Le point de départ est l'énergie libre de Landau, F , définie par [1 -4]

F [ϕ] = a 2 ϕ 2 + u 4 ϕ 2 , a = T -T c T c . (2.9) 
Ici, ϕ est le paramètre d'ordre, T la température absolue, T c la température critique, et u la constante de couplage.

Le paramètre d'ordre à l'équilibre, ϕ, est celui qui minimise cette énergie libre,

c'est-à-dire δF δϕ ϕ = 0 . (2.10) L'on trouve ϕ =          0 , T > T c , -a u ∼ √ T c -T , T ≤ T c . (2.11) 
2.2.2 Facteur de structure.

Le facteur de structure, S (q), est directement proportionnel à l'intensité diffusée, dans une expérience de diffusion de lumière, de rayons X ou de neutrons. Ici, q = (4π/λ) sin (θ/2) est le module du vecteur d'onde de transfert -→ q , où λ est la longueur d'onde incidente et θ l'angle de diffusion.

Pour calculer le facteur de structure, on part de l'énergie libre d'Ornstein-Zernike

[1 -3] F [ϕ] k B T = d -→ r 1 2 (∇ϕ) 2 + a 2 ϕ 2 + u 4 ϕ 2 -J ( -→ r ) , (2.12 
) où J ( -→ r ) est une source auxiliaire, qui va servir pour calculer la fonction de corrélation

G ( -→ r --→ r ′ ) = ϕ ( -→ r ) ϕ ( -→ r ′ ) -ϕ ( -→ r ) ϕ ( -→ r ′ ) = δϕ ( -→ r ) δJ ( -→ r ′ ) J=0 . ( 2.13) 
La minimisation de l'énergie libre (2.12) donne

-∆ϕ + aϕ + uϕ 3 = J , (2.14) 
Par dérivation fonctionnelle par rapport à la source, l'on trouve

-∆ r + ξ -2 t G ( -→ r --→ r ′ ) = δ ( -→ r --→ r ′ ) , (2.15) 
avec ξ t la longueur de corrélation, telle que

ξ t = (a + 3uϕ) -1/2 ∼ |T -T c | -ν 0 t , ν 0 t = 1 2 . ( 2.16) 
Par passage à l'espace de Fourier, l'équation (2.15) donne le facteur de structure

S (q) = d -→ r e i -→ q . -→ r G ( -→ r ) = 1 q 2 + ξ -2 t .
(2.17)

La susceptibilité est alors

χ ∼ S -→ q = -→ 0 ∼ |T -T c | -γ 0 t , γ 0 t = 1 . (2.18) 
Au point critique (ξ t → ∞), le facteur de structure se comporte comme S (q) ∼ q 2-ηt , η 0 t = 0 .

(2.17a) Ce comportement peut être réécrite en terme de la longueur de corrélation ξ t τ ∼ ξ z 0 t , z 0 = 2y 0 = 2 .

τ -1 = a + 3uϕ 2 , (2.23) 
(2.25)

La quantité z 0 représente l'exposant dynamique [1].

Je note que la divergence du temps de relaxation est une signature d'une transition de phase.

Maintenant, je vais réexaminer le phénomène de relaxation, en tenant compte des fluctuations spatiales. Dans ce cas, la cinétique sera décrite en terme du "taux de relaxation".

Pour cela, je part de l'énergie libre d'Ornstein-Zernike suivante (2.28)

F [ϕ] = d -→ r 1 2 (∇ϕ) 2 + a 2 ϕ 2 + u 4 ϕ 4 ( -→ r ) . ( 2 
Cette équation se réécrit dans l'espace réciproque comme δϕ q (t) = δϕ q (0) e -t/τq , (2.29) où le taux de relaxation τ q est donné par

τ -1 q = Γq 2 + a + 3uϕ 2 .
(2.30)

Cette relation suggère que le mode critique τ 0 = τ q (q = 0) diverge à la transition.

Il reste à déterminer le facteur de structure dynamique, S (q, t), qui est la transformée de Fourier de la fonction de corrélation dynamique, solution de l'équation différentielle

∂ ∂t -Γ∆ r + a + 3uϕ 2 G ( -→ r --→ r ′ , t) = Γδ ( -→ r --→ r ′ ) . (2.31) 
D'où l'équation du facteur de structure dynamique

∂ ∂t + τ -1 q S (q, t) = Γ , (2.32) 
dont la solution est S (q, t) = S f (q) + [S i (q) -S f (q)] e -t/τq . (2.33) Ici, S i (q) et S f (q) sont respectivement les facteurs de structure initial et final. Le facteur de structure dynamique dépend alors de trois échelles de longueur, qui sont la longueur d'onde q -1 , la longueur de corrélation ξ t , et l'échelle de temps L = Γ 

σ → σ R , a → a R , u → u R , ϕ → ϕ R . (2.38) 
A la criticalité, la constante de couplage renormalisée u tend vers une valeur fixe u * , celle qui annule la fonction de Wilson.

4.

Pour avoir de l'information sur le facteur de structure dynamique S (q, t), on écrit une équation du GR. Sa résolution donne le comportement critique de S (q, t).

En particulier, on montre que la loi d'échelle pour le temps de relaxation [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF] τ ∼ ξ z , z = 4 -η t 2v t + 1 .

(2.39)

  Plus précisément, je m'intéresse à la cinétique d'un système critique quelconque, lorsque sa température est diminuée d'une valeur initiale T i à une valeur finale T f , très proche du point critique. Dans l'intervalle de temps qui sépare les deux états d'équilibre, le paramètre d'ordre et les autres quantités physiques (facteur de structure...) relaxent, et je m'intéresse donc au temps (ou taux) de relaxation.

(1. 3 )

 3 Lorsqu'on est exactement à la température critique (T = T c ), mais le champ H est faible, le paramètre d'ordre se comporte comme[1, 3 -5] 

  Cette fonction mesure l'effet sur le paramètre d'ordre à l'origine, suite à sa fluctuation au point situé à la distance r. A grande distance, la fonction de corrélation décroît avec la distance d'une manière exponentielle[1, 3 -5] 

  .10) où a est une certaine échelle atomique.Comme les quantités physiques définies par ces exposants critiques sont reliées entre elles, alors les exposants critiques ne sont pas indépendants les uns des autres et satisfont alors les relations[1, 3 -5] 

3 .

 3 En dimension 2, ces exposants sont connus exactement [9 -11]. Mais à trois dimensions, on les calcule d'une manière approchée, par application du GR ou par des calculs sur machine [1, 3 -5]. Enfin, je rappelle que la dimension critique du système est d c = 4. Cette dimension délimite le domaine en dimension où la TCM est applicable (d > d c ). A présent, je vais rappeler la définition des classes d'universalité. Je note d'abord que les exposants critiques ne dépendent que de la dimension d'espace d et de la symétrie du paramètre d'ordre. Cette symétrie peut être décrite à l'aide du nombre de composantes n du paramètre d'ordre. Les nombres les classes d'universalité. On met, dans une même classe, tous les systèmes qui possèdent les mêmes exposants critiques. La classe avec n = 0 contient uniquement les polymères en solution [8, 9]. La classe avec n = 1 [1, 3 -5] englobe les systèmes magnétiques de type Ising, la séparation de phase des liquides et la transition liquidegaz au point critique. La classe avec n = 2 [1, 3 -5] contient la transition-λ d'hélium et les systèmes magnétiques de type XY . La classe n = ∞ [1, 3 -5] contient seulement les systèmes magnétiques pouvant être décrits par le modèle sphérique. Enfin, la valeur pathologique n = -1 correspond à des système idéaux [1, 3 -5, 9].

  Pour introduire l'équation de Langevin qui m'intéresse ici, je considère une particule en suspension dans un liquide. En plus, l'on suppose que cette particule subit l'action d'un potentiel extérieur, U ( -→ r ), où -→ r ∈ R d est sa position. L'équation de Langevin est la suivante[1] 

  Donc, le temps de relaxation diverge à la transition, c'est-à-dire τ ∼ |T -T c | -y 0 , y 0 = 1 . (2.24)

  .26) Sa minimisation donne l'équation du paramètre d'ordre -∆ϕ + aϕ + uϕ 3 = 0 , (2.27) En utilisant la décomposition (2.20), l'on obtient l'équation de la fluctuation dδϕ dt = -Γ -∆ + a + 3uϕ 2 δϕ .

2 . 3 .

 23 Ensuite, le comptage de puissances montre qu'à d = 4 (dimension critique), l'on assiste à des divergences à courtes distances. Pour régulariser la théorie, on choisit la régularisation dimensionnelle[5 -7], avec le régulateur ǫ = 4 -d. Le pas suivant consiste à renormaliser la théorie, c'est-à-dire passer des paramètres et champ nus aux paramètres et champ renormalisés[1] 

  On part d'une température initiale T i , où le paramètre d'ordre est ϕ i , et on change cette température jusqu'à une température finale T f très proche de T f . L'on désigne par ϕ f le paramètre d'ordre final. On est intéressé par la relaxation du paramètre d'ordre de sa valeur initiale ϕ i à sa valeur finale ϕ f . Le temps nécessaire pour le passage ϕ i → ϕ f est le "temps de relaxation", noté τ .
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