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Abstract

We ouline two strategies for storage and recovery of quantum light
in an ensemble of atoms. This series of lectures has been devised as an
elementary introduction. Hence discussion is essentially confined to a
semi-classical picture. We first consider electromagnetically induced
transparency (EIT) and stopped light. The roles of homogeneous and
inhomogeneous broadening are examined. We propose both time- and
frequency-domain descriptions. Then we discuss the total recall of a
signal after capture by an absorbing material. Rephasing processes
are briefly reviewed. We refer to various recent experimental works,
especially those conducted in solid state media. The course is intended
to be self contained and includes reminders on some quantum physics
elements such as the density operator and the Bloch vector.
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1 Introduction

Transport of quantum information is ideally accomplished by light but, at
some stage, a material system is needed for processing and /or storage. Many
groups around the world strive to build a quantum memory that should store
the non-classical properties of a light signal, then to restore the original signal.
If long distance quantum cryptography is commonly invoked to justify these
researches|1], above all this is a fascinating quantum physics problem, giving
a new insight in light-matter interaction.

Quantum information is related to noise. When the fluctuations of a
classical light source are reduced to the quantum limit, noise is equally dis-
tributed over a pair of conjugated observables such as photon number and
phase, Stokes vector components or field quadratures. A light beam car-
ries quantum information if the noise affecting one observable is squeezed
under the standard quantum limit corresponding to equipartition of noise.
Of course noise reduction on one observable entails increased noise on the
conjugate quantity. Naively speaking, a quantum memory should be able to
restore a signal in the tiniest details, beyond the quantum limit.

Resonant excitation of an atomic transition provides appropriate strong
coupling between light and matter. However, interaction with a single atom
is not enough to trap the incident photon with absolute certainty. One can
increase the coupling by placing the atom inside a high finesse cavity. Instead,
in the present course, we only consider trapping of light by a macrocopic
ensemble of atoms.

We also need interrogate the memory at will, controlling the moment
when the signal is restored. This can be achieved through an auxilliary
optical transition, coupled to the quantum field capture transition. Several
protocols rely on the Lambda three-level system. A common upper level
links the two transitions that are connected to two sub-levels of the electronic
ground state.

The quantum-properties preserving storage of one photon is an unitary
process. Initially, the single excitation light state is combined with the ma-
terial medium ground state. The compound system undergoes an unitary
transform towards a state where the unique excitation has been transposed to
matter. The stored information is retrieved with the help of the reverse uni-
tary transform. What makes the process so difficult is precisely the unitary
transform that involves a macroscopic ensemble of atoms. One can certainly
convert one photon into an excitation of a strongly absorbing medium. This



is not enough to make a quantum memory. A single photon pulse is char-
acterized by a spatial mode and a spectro-temporal distribution. Generally
an incident photon only transfers its energy to the absorbing medium. The
photon will be reemitted eventually, after multiple reabsorption and scatter-
ing, in a spatial and spectro-temporal state devoid of any connection with
the initial state.

The reason why energy alone is transferred to the medium is not so ob-
vious. When exposed to optical excitation, a two-state atom, initially in the
ground level, is promoted to a quantum superposition state. Quantum infor-
mation thus flows from light to the atom. Provided that atoms are numerous
enough one thus expects that all the incident light could be converted into
quantum atomic excitation. However one is faced with several issues. First,
in general, the medium does not return to initial state after readout, a con-
dition to be fulfilled for total recovery of the quantum state of light. The
recovered field, propagating along the same wavevector as the initial signal,
grows from zero in the input side. Therefore the atoms close to the input side
of the absorbing medium are the most strongly excited by the incoming light
signal, but also undergo the smallest feedback from the restored field that
fails to take them back to the ground state. The atomic state and retrieved
field mismatch results in partial absorption and incomplete extraction of the
stored information. In addition to this propagation issue, one should mention
random redistribution of light by spontaneous emission and quantum state
destruction by coherence relaxation. However, in many systems coherence
lifetime remains compatible with the demonstration of quantum storage for
light.

In this series of lectures we shall essentially examine two ways of effi-
ciently restoring the signal field, that is to say two ways of addressing the
propagation problem. One approach is known as Electromagnetically In-
duced Transparency. This is a radical way to deal with absorption. The
storage medium is made transparent to the incoming signal, operating as a
trap that closes once the quantum field is inside. The other approach takes
advantage of rephasing procedures to optimize the signal reconstruction. We
shall essentially restrict the discussion to semiclassical theory, assuming that,
within the limits of linear conditions, an efficient recovery procedure generally
applies to a quantum field if it works with a classical field.
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Figure 1: Principle of EIT. All atoms are initially prepared in state |a). The
coupling field, resonant with the b — ¢ empty transition, opens a trans-
parency window on the a — b transition. The absorption profile distortion
goes along with modified dispersion of the index of refraction. This is re-
flected in group velocity reduction within the transparency window.

2 Two ways of recovering light

2.1 Electromagnetically induced transparency
and stopped light

As noticed above, the reconstructed signal tends to be reabsorbed during
propagation through the storage medium. This problem is addressed in a
radical way by Electromagnetically Induced Transparency (EIT), since the
medium is made transparent at the signal input and output |2, 3]. With the
help of an external control, the material opacity is switched on and off at
will.

To control the opacity one resorts to an auxilliary optical transition that
shares an atomic level with the storage transition. Hence, instead of two-level
atoms, we have to consider an ensemble of three-level A-systems. Initially



all the atoms are in |a), which makes the medium absorbing on the a — b
transition. Let us remind that absorption results from the coupling of the
incident field with the reaction of the medium, represented by the macro-
scopic polarization density. EIT precisely proceeds through the annihilation
of the polarization on the a — b transition. This is accomplished by a control
field that resonantly excites the b — ¢ auxilliary transition. When switched
on, the control field converts the a — b optical polarization into the Raman
coherence of states |a) and |c). The optical polarization vanishing renders
the medium transparent on a — b (see Fig. 1). Since b — ¢ connects empty
levels, the medium is transparent on b — ¢ too, so that all the atoms ex-
perience the same control field strength, wherever they are located in the
absorbing medium.

The control field does not just open a transparency window. In accor-
dance with Kramers Kronig relations, the distorsion of absorption profile is
associated with a disturbance of the index of refraction, which results in the
reduction of the group velocity v. In terms of dispersion of the refraction
index n(w), the group velocity v can be expressed as:

v 1
c dn(w) (1)
n(w) +w W

The field amplitude is continuous at the vacuum-medium interface. How-
ever the spatial extension of a signal pulse is compressed along the direction
of propagation because of the velocity group reduction. The field envelope
undergoes a v/c shrinking. The energy carried by the pulse is reduced by the
same ratio, dropping close to zero when v << c¢. Actually energy transfer
from the signal pulse to the control field comes along with the optical po-
larization conversion into Raman coherence. It is rather intriguing that the
signal energy is taken away by the control field, while the spatial and spectro-
temporal signal properties keep stored in the medium. Reverse transforma-
tion takes place at the active medium exit. The signal field then recovers its

initial energy together with its spatial and spectro-temporal properties.
The EIT process has been demonstrated with classical light in various
materials ranging from gas to condensed matter. Light speed reduction to
17 metres per second was observed in an ultracold atomic gas [4]. Then it
was realized that light could not only be slowed down but even "stopped" in
a A-system. Indeed, if the control field is switched off while the signal pulse
is entirely contained within the active medium, the remaining properties




carried by the signal field are absorbed and lost, but most of them have been
saved in the Raman coherence. If the control field is restored before the
Raman coherence relaxes, the signal field is rebuilt, resumes its progression
through the medium and finally exits, having preserved most of its initial
characteristics [5, 6].

In the next sections we analytically derive the various operating condi-
tions of the memory. Right now we can list most of them. We already noticed
that information transfer to the Raman coherence is subject to the condition
v << c. In order to be entirely contained within the L-thick material at the
moment of the control field switching off, the signal pulse must exhibit a du-
ration 7" smaller than L/v. Besides the signal bandwidth A must be smaller
than the width of the transparency window. Finally those conditions must
be consistent with the time and frequency Fourier conjugation, according to
which AT > 1.

It should be stressed that the control field, interacting with a transition
between empty levels, does not excite any atoms on its own. As a conse-
quence this field does not generate any noise. The signal field alone conveys
excitation to the atomic ensemble.

Finally it should be noticed that EIT configuration imposes that the weak
signal field should be isolated from the intense control field. This could be a
major drawback.

2.2 Recovery from an absorbing medium

Instead of resorting to the radical solution of inducing transparency, one can
try to retrieve the signal despite of medium absorption. We already noticed
that the recovered field shall be weaker at the input side of the medium,
precisely in the region where the incoming field is stronger. As a consequence
the recovered field is unable to turn the atoms back into their initial state,
which hampers correct information retrieval. In order to evade this obstacle,
one can try to make the restored field to propagate in the opposite direction
of the incoming signal field. This way, building up from the output side, the
restored field gains strength all along the storage medium and is expected
to reach its maximum intensity at the input side and to be intense enough
there to turn the atoms back to the ground state.

Back scattering of the signal field reminds of phase conjugation in non-
linear optics. Three beams may be appropriate to reverse the direction of
propagation. Again this can be combined with a three-level A-system. The
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Figure 2: Signal recovery with reversed direction of propagation. Coun-
terpropagating m-pulses are used to convert optical excitation into Raman
coherence, then back to optical excitation. Therefore the restored signal
propagates backward with respect to the incoming one.



signal to be stored propagating along k1 excites the a — b transition. Then a
light pulse propagating along /;2, resonant with the b — c transition, converts
the optical excitation of @ — b into the Raman coherence of states |a) and
|c). A m-pulse can efficiently achieve such a conversion. The notion of pulse
area will be defined later. Information is stored in the Raman coherence until
another m-pulse, propagating along /;3 converts back the Raman coherence
into optical excitation of a — b. In accordance with general phase matching
conditions, the signal can be reconstructed in the direction Eg + EQ — El, that
is to say in direction —k; provided ks = —k, (see Fig. 2).

If atoms are initially prepared in state |a), the medium is transparent to
the conversion pulses. In addition, those pulses do not induce any excitation
noise since the incoming signal field alone can convey excitation to the atomic
ensemble.

Unfortunately it does not work so easily. The process relies on the time
separation of the different steps, namely the capture of the incoming signal,
the conversion to Raman coherence, the back conversion to optical excita-
tion and the recovered signal emission. In order to be stored, the data pulse
must be shorter than the |a) and |b) superposition state lifetime. Equiv-
alently, the data pulse bandwidth must exceed the homogeneous linewidth.
Yet, in an homogeneously broadened medium, where all atoms have the same
transition frequency, the storage bandwidth is precisely limited by the ho-
mogeneous width, given by the inverse duration of the superposition state.
Therefore one is faced with contradictory constraints, since the incoming
pulse must simultaneously be narrower than the absorption profile, in order
to be captured, and shorter than the superposition state lifetime, in order
to be stored. In an effort to overcome the contradiction, let us consider an
inhomogeneously broadened medium, where atoms exhibit different transi-
tion frequencies. The memory bandwidth is no longer limited by the inverse
superposition state lifetime and much shorter signal pulses can be consid-
ered. Then one meets another obstacle. The superposition states that are
built in different atoms evolve at different rates, which entails relative phase
shift. The above described pulse sequence is unable to rephase the atoms,
a necessary condition for signal recovery. We shall see how to solve this
problem.

After the general presentation of the two memory architectures to be
considered, we now proceed to the detailed analysis of the underlying physics.



3 Semi-classical description of light-matter in-
teraction

3.1 Atom excitation by light

The sample is illuminated by travelling plane waves. The electromagnetic
field is regarded as a classical quantity. The complex amplitude of the electric
field is given by:

E(F.t) — %(5(?, D+ E (7)) = (A, )R 4 ee)  (2)

The main time and space variation is collected in the phase factor ert=iF
that characterizes a wave with central frequency wy, propagating along a
wave vector k. The envelope A(7,t) little varies on the time and space
scales of optical period and wavelength. The wave vector length is defined
as wy, = kec.

The terms E(7, t) and £*(7, t) respectively stand for the positive and nega-
tive frequency components of the field. Indeed the time-to-frequency Fourier
transform of E(7,t), E(7,w) = F[E(T, )], centered at optical frequency wy, is
close to 0 at —wy,.

Interaction to the atomic system is described in electric dipole approxi-
mation by the hamiltonian:

H; = —qR.E (3)

where ¢ is the (negative) electron charge. Thus ¢ = —e, where e represents
the elementary charge. The transition dipole matrix element between states
i) and |): )
fiiy = {ile ) (4)
is defined with appropriate phase choice so that this element is real.
The atom density matrix equation reads as:
dp

dt relaxation (5)

H =Hy—qR-E=Hy+eR-E

This equation combines the unitary evolution, driven by the electromagnetic
field, and the non-unitary evolution caused by coupling with environment.
The latter is described by the phenomenological relaxation term.
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In order to be more specific, let us first consider the interaction of a two-
level atom with the incoming field. Expanding the density matrix equation
on the set of eigenstates |a), |b) one obtains:

faa = 1(pab — Poa) (QeWETET 4 cc) + vy
pbb = _paa . . (6)
pab - i(paa - pbb)(QeMLt_lk'T + C-C-) + (iwab - ’Yab)pab

where the Rabi frequency is defined as:

(1) = L2t )

If A(7,t) is complex, the Rabi frequency is complex too. In order to separate
the fast oscillation at optical frequency, one substitutes py, with:
Dab = ﬁabez‘th—ik.F (8)

This is not a switch to interaction picture. In interaction representation
one defines the operator p; = exp(—+%Hot)pexp(%Hot) that involves a factor
exp(—iwgpt), specific to each frequency class. Instead, switching to the frame
"rotating" at laser frequency, one applies the same tranform to all frequency
classes. This difference will prove important in inhomogeneously broadened
media where atoms oscillate at various frequencies.

Then, neglecting all the terms oscillating at harmonic overtones of wy,, one
obtains the Rotating Wave Approzimation of the density matrix equation:

Paa = 1(PabSY* — Pa2) + Yo Pr
/:)bb = _paa (9)
ﬁab - Z.(paa - Pbb)Q + (ZA - ’Yab)ﬁab

where A = wy, —wy. One may formally integrate these equations. One first
integrates the homogeneous equations. Then one takes the non-homogeneous
term into account by the method of variation of the parameters. One obtains:

t
nap(t) =14 (ng(ty) — 1)ewltt0) 4 Qi/ At (V= fpaQ)e 1)
to
t
ﬁab(t) — ﬁab(to)e(iA*’Yab)(t*to) +i/ dt’Qnabe(iA—%b)(t—t')
to
(10)
Whether in differential or integral forms, these equations are known as optical
Bloch equations. They rely on the following assumptions:
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e interaction with the classical field is described in electric dipole approx-
imation

e transition frequencies are constant parameters

e relaxation processes are described by phenomenological decay rates

The density matrix of a two-level atom is comprised of 4 components, 2 of
which are complex. The trace conservation and the symmetry property p,, =
P, reduce the number of independent parameters to 3, namely the population
difference and the real and imaginary components of the coherence. Bloch
equations are nothing but the three linear differential equations that couple
these three quantities.

3.2 Radiative response

When prepared in a superposition of two states linked by an optical tran-
sition, the atoms behave as oscillating dipoles, i.e. as radiating microscopic
antennas. They behave as real sources of Huyghens wavelets (see Fig. 3).
In the same way as the virtual sources of Huyghens wavelets, the atoms
acquire the space and time phase of the incoming field. As long as phase
properties are preserved, that is to say as long as the atomic coherence has
not been erased by homogeneous relaxation or phase-shift by inhomogeneous
detuning, the atoms radiate as the virtual sources of Huyghens diffraction
theory. Specifically, the spatial coherence of the sources makes the wavelets
constructively interfere in the direction of the incoming wave. Elaborating
the analysis a little further, one can determine the diffraction limited angular
aperture of the emitted signal.

With this picture in mind, let us proceed to the local description of the
atomic response, as derived from Maxwell equations. In a dielectric medium,
in the absence of electric charges those equations read as:

rot(E) = —8,B Faraday law
rot(é) =9,D  Ampére theorem (11)
div(D) =0 Gauss theorem

where D can be expressed in terms of the macroscopic polarization density
P as:
D=¢FE+P (12)

12
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Figure 3: The coherent atomic response to optical excitation can be under-
stood within the frame of Huyghens diffraction theory. The atomic dipoles
behave as real sources of Huyghens wavelets.

These equations combine into the wave equation with sources:

ﬁ °F 2p
AFE — Moﬁoa— = 0

1 .=
oz~ Mo am T ;grad[dlv(P)] (13)

The atomic response is contained in the macroscopic polarization density P.
We assume that the transverse variation of P is very small on the scale of
the atomic wavelength. This enables us to drop the second term on the right
hand side of Eq.13.

We have now to express the macroscopic polarization density in terms of
the optical Bloch equation solutions. Let us consider the N atoms sitting
within an elementary volume V. The size of this volume is small enough
with respect to the optical wave length so that all the atoms interact with
the same field. The total dipole moment is expressed as the sum of the
N individual dipoles. The expectation value of the corresponding quantum

observable reads as:
N N
<Z m> =Tr (Z Ni)) p] (14)
i=1 i=1
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where p represents N-atom density operator. The N-atom state is initially
factorizable and is assumed to remain so under semi-classical excitation.
In other words, semi-classical excitation is expected not to entangle the N
atoms. The density operator then reads as:

P=pIR...0pR...RpN (15)

In order to express the total dipole in terms of the individual density matrices,
one uses the relation:

T (e @p®..@pn) = p (16)

Then the total dipole expectation value reduces to:

N N N N
(S =S o] =2 (n,30) = S
(17)
For the time being we ignore inhomogeneous broadening. All the atoms

have the same transition frequency. Then the elementary volume dipole
moment reads as:

Z Tr(pipi) = =N pap [pab (7, t) + pra (7 1)] (18)

where the sum runs over all the atoms within the elementary volume, with
(alpla) = (blp]b) = 0. A minus sign appears because (i, has been defined
from the elementary charge e and not from the electron charge ¢ = —e.
Dividing by the volume V, one finally gets the macroscopic polarization
density:

P(7,t) = =nptay [pa(7 1) + poa(7 1)) (19)

where n denotes the density of active atoms per unit volume.

In the same way as the electric field, the polarization density appears to be
comprised of positive and negative frequency components. Those components
do not overlap spectrally, being distant by hundreds of THz, so they satisfy
uncoupled wave equations. The positive frequency component wave equation
reads as:

1 1 02 S\ dwpt—ikT) fa 0% (. iwp t—ik.7
3 (A - ?ﬁ) <A(7‘,t)e ) =-n N (,oab(r,t)e ) (20)
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Within the frame of the slowly varying envelope approrimation, we can ne-
glect the contributions of order 0, A(7,t)/[wr.A(7,t)] and VA(7,t)/[kA(T,1)].
The wave equation then reduces to:

o 10 SN e g Mab -
(% + Ea) A(r,t) = lnkgpab@’t) (21)

Substituting A(7, t) with Eq.7 one obtains:

o 10 2
— 4+ 2 ) Q(F ) = ink =2 5 (7, t 22
(5 + 257) 9070) =ik 22 (22)
It is worth expressing this equation of propagation in terms of the resonant
absorption coefficient ag. To first order in Q(r,¢) the Bloch equation for
Pap(T, t) Teads as:

t
ﬁab<F7 t) _ i/ Q(F, t/>e*7ab(t7t')dt/ (23)

—00

which reduces to (7, t) = iQ(7, ') /v if Q(7,t) little varies on v,' time
scale. This condition simply means that the field bandwidth is much narrower
than the absorption line, so that the polarization density instantaneously
adjusts to the field variations. Substituting the expression of pu (7, ) in
Eq.22 one obtains:

o 10 w2 ap
— ) QF ) = —nk——% _Q(F.t) = ——Q(F. t 24
Finally the wave equation reads as:
a 1 a - o .O0Yab ~ -
(& + E§> Q(rit) = lTpab(rat) (25)

4 Three-level A-system, EIT

4.1 Optical excitation of the A-system

In a A-system an upper state |b) is connected through optical transitions to
two lower states |a) and |c). The system is illuminated by two driving fields.
The a — b and b — ¢ transitions are respectively driven at frequencies w;

15



and wy, with Rabi frequencies €2; and €)5. Each driving field is assumed to
excite a single transition. Angular selection rules may help to discriminate
the transitions. Indeed cross-polarizing the light beams may be enough to
separately drive the two transitions when such selection rules apply. Other-
wise, the splitting w,. must be much larger than the homogeneous widths,
the Rabi frequencies and the detunings |wq, —ws| and |wp. — ws|. The adjunc-
tion of a third state significantly complicates the density matrix formalism.
Instead of 3 real independent parameters in a two-level system, one is left
with 8 real parameters in a three-level atom. Those quantities are coupled
by the following differential linear equations:

p

paa = i(ﬁabQT - ﬁban) + TaYbPbb
pcc 1<ﬁch§ — ﬁbCQQ) + Yo Pbb
P;bb fpaa - pcc R ' - (26)
p'ab = [1(wab - UJ1> - f)/ab]pab + 1<paa - pbb)Ql + 1pacQ2
Pch [i(wbc - w?) - ’ch]ﬁcb + i(pcc - pbb)QQ + iﬁcagzl
\ ﬁac [i(wac — w1 + w?) - ’Yac]ﬁac + i(ﬁabQ; - ﬁbcgl)

The system is assumed to be closed. The coefficients r, and r. = 1 —r,
account for the upper level relaxation distribution between the two ground
sublevels. As usual in the rotating wave picture, the off-diagonal matrix
elements have been substituted with:

Pab = ﬁabeiwltfik_i.f’
pcb — ﬁcbeiwgtfikg.F (27)
Pue = ﬁacei(wl—m)t—i(kl—kz)f

The first three lines of Eq.26 express the population evolution. This does
not differ from the corresponding two-level system equations. The last three
lines of Eq.26, accounting for coherence evolution, are more specific. First
one observes that coherence p,. is excited by the light fields, although no
direct transition connects states |a) and |c). Besides, coherences p, and
Pre are coupled not only to level populations, but also to p,.. For instance,
coherence pg, is built not only from direct excitation of state |a) population
by field €2y, but also from the excitation of coherence p,. by field £25.

The system evolution is generally complex when both fields are applied
simultaneously. One observes phenomena such as stimulated Raman adia-
batic passage (STIRAP) [7], dark resonance [8|, or the EIT process we are
about to examine more carefully.

16



However, the excitation of p,., also known as the Raman coherence, gives
rise to attractive features even when the fields 2; and €y do not interact
simultaneously with the system. We shall meet such features within the
frame of signal reconstruction in an absorbing medium.

4.2 Solving the Bloch equations with EIT conditions

In this section we follow the lines of Ref. [9]. With the following assumptions:
e all the atoms are initially prepared in state |a)
e ()5, known as the "coupling" or "control" field, is a constant.
e (), carrying the information to be stored, has a pulse area << 1

the density matrix equations get much simpler. To first order in €2y, the level
population does not vary and the term p,.£2; can be neglected. Therefore
the equations of py, and p,. turn into:

p?ab = [i(wab - wl) - f)/ab]ﬁab + IQI + iﬁacQ2 (28)
ﬁac - [i(wac — w1 + w?) - ’Yac]ﬁac + iﬁabgz

In addition we assume the coupling field resonantly excites the b — ¢ tran-
sition, and the signal pulse central frequency w; coincides with wy,. The
equations reduce to:

pLab = _’Yabﬁab + I(Ql + ﬁacQQ) (29)
ﬁac = _fyacﬁac + iﬁabQ; (30)

Substituting Eq. 30 into Eq. 29, one obtains:

- 9 1 N 04 1
Pac = = — (O + Vab) Pab = o, W(

QQ QQ at + /Yab) (8t + ’Yac)pac (31)

If pg. reduces to the first term on the right hand side of Eq. 31, then the
driving term €; + p..£2o vanishes in Eq. 29. In other words, the Raman
coherence contribution interferes with single-photon excitation to prevent
the buildup of p,. The absence of atomic response to €2y on the a — b
transition is reflected by the absence of €2y absorption.

17



This occurs if the second term on the right hand side of Eq.31 can be
neglected, i.e. if:

(0 + Yab) (Or + Yac) 1 << /| Q|? (32)

Then p,. adiabatically follows the variations of £2;. Given that p,, = 1, the
solution p,. = —€2; /€y actually corresponds to the dark state:

Q Q
D) = —|a) - -

V2 + Q2 V2 + Q3

This is an important feature of EIT: interaction with the signal field €2
immediately starts in the dark state, unlike what occurs in other three-level
processes such as Coherent Population Trapping (CPT)|8].

Substituting p,. into Eq. 30, one finally obtains the expression of optical
coherence:

) (33)

i

ﬁ(lb - ‘Q2|2<at + 7&0)917 (34)
from which we can calculate the atomic feedback on the incoming signal field

Q.

4.3 EIT wave equation
Substituting Eq. 34 into Eq. 25 one obtains:

0 1 AoYab 0 N Qo YabVac —
z — | (7 t) = —— Oy (r,t
[32 - (c * 2‘Q2|2) 315} (1) 2 [Qy)? ) %)

This equation takes the usual form describing resonant plane wave propaga-
tion through an ensemble of two-level atoms in the linear regime. However,
the propagation parameters are deeply altered:

e the absorption coefficient is reduced from ay to:

YabVac
P (36)

an =

With typical v, and 7, values of about 1065~ and 103s7! respectively,
an {2, control field Rabi frequency of order 3 10°s™! is enough to reduce
opacity by two orders of magnitude.
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e the group velocity is reduced from c to:

1 QpYab !
v = — —|— 37
(& + s o
With the same numerical parameters, and with o = 103m ™!, the group
velocity amounts to no more than 200m/s!

The wave equation also tells us that, within the transparency window, an
incoming travelling wave of the form Q;(¢ — z/c¢) in free space turns into the
form (¢t — z/v) as it propagates through the active medium. The wave
preserves its temporal profile, just undergoing spatial compression by the
factor v/c. The field amplitude is also preserved due to continuity at the
interface of free space and active medium. Therefore neither the incoming
signal duration nor its spectral width is affected by slowing down, provided
that the signal is contained within the transparency window. Now we need
clarify the notion of transparency window.

The EIT wave equation has been derived within the adiabatic condition
limits. The incoming field variations have been assumed to be slow enough
so that the Raman coherence can instantaneously adjust to them. One ex-
pects the adiabatic condition to fail if the incoming field varies too rapidly,
i.e. if its spectral width exceeds some limiting value. Let us characterize the
signal spectra width by the quantity Q;'9,Q;. Let the signal be narrower
than the absorption linewidth ~,,, which leads to: (9 + Yap)1 = Yapfl1-
Then the adiabatic condition reads as (9;Q1)/Q1 << [Q2]?/7ap. The trans-
parency width would thus be given by dr = |Q3]?/74. This result need
be examined more carefully. The differential equations we rely on — Bloch
equation and wave equation — only convey local description, as illustrated
by the linear absorption coefficient. However, we need the overall transmis-
sion through the entire atom ensemble to define the transparency window.
Let the absorption coefficient at A from resonance be approximated by the
function: a(A) = ag[l — e (»/%7)°], Then the transmission factor reads as
e~ AL o o= L(A/07)7 which finally leads to the transparency width:

|2
Ar =7/ = — 38
T T .
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4.4 Storage and retrieval, stopped light

The energy carried by the incoming signal can be expressed as:

/\Ql(t—z/c)|2dz:c/|Ql(t—a:)\2d:c (39)

If one is able to have the entire pulse standing within the active medium, the
carried energy becomes, inside the material:

/|Q1(t — ) ds = %/|Q1(t —z/e)|?dz (40)

which represents a v/c reduction with respect to the free space value. There-
fore most of the energy has been extracted from the field if v << c¢. It can
be shown that energy has been transferred to the control field, as soon as
the signal field crosses the free space to material interface. Nonetheless, the
Raman coherence is expressed as {1/, being proportional to the instan-
taneous signal field. Therefore, a spin wave propagates within the material
along with the signal field, although the latter does not carry any energy.

If one abruptly switches off the control field, the residual signal field
disappears, being absorbed by the material, while the spin wave stops prop-
agating, but survives as long as permitted by decoherence processes. One
improperly says that light is "stopped". Actually one should say that the
signal field has been split into two parts. On the one hand, its energy has
been removed by the control field. On the other hand its information content
has been stored in the Raman coherence [10].

When the control field is turned back on, the signal field is rebuilt from
the Raman coherence. The restored field resumes its progression, pulling its
companion spin wave. Energy is fed back to the field at the output of the
active medium.

To "stop" light without losing information, one has to make the entire
signal pulse to stand within the boundaries of the active medium. The part
of the signal entering the storage medium after control field shutdown is lost
by absorption. The spatial extension of a pulse with duration 7 is v7. This
has to be smaller than the material thickness L. Besides the signal spectral
width A must be smaller than the transparency width Ar. Combining those
two conditions leads to:

AT <<ArL/v=+/ayL (41)
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With the additional condition A 7 > 1, because of time-frequency Fourier
conjugation, the "stopped" light storage requirement reads as:

VoL >>1 (42)

4.5 Limits of the semi-classical picture

In a "stopped" light process, a single photon trapping is expected to leave
the atom ensemble in the following superposition state:

L ) g a) 4+ ) ae e g) et &) g
|U)) NI (e ca---a) +e*"|ac---a) +---+e laa---c)) (43)
This is a collective single excitation state where the sum runs over all the
atoms interacting with the field. All the atoms are considered on an equal
footing, which does not perfectly account for the finite spatial extension of the
stored light pulse. However this does not interfere with the general meaning
of the present discussion.
The collective state appears to be entangled. It cannot be factorized as
a product of individual atom states. This is precisely the type of state that
cannot, be produced in the frame of a semiclassical picture analysis. In the
semiclassical approach the atoms communicate with outside world through
a classical field that does not convey any quantum information. As a result,
collective excitation, with all atoms considered on an equal footing, can only
build ensemble product states such as the following:

(1+ 62)_N/2 (|a) + eei¢(F1)|c)) (|a) + eei¢(F2)|c)) e (|a) + eei¢(FN)|c)) (44)

This state can be expanded as a sum of n-excitation states:

N(N —1
(1+€e)~N2 {|\I/0) + eV N |U;) + ¢ % W) + - N |\1;N>}
(45)
where |U;) is defined above and where:
W) = laa---a)
|\I/2> e N(]?/!fl) (ei(¢(F1)+¢(F2))|Ccal e a> + el(¢(F1)+¢(F3)) |Cac e a> + . )
|\I/N> e ei(¢(F1)+"'+¢(FN)) |CC P C>
(46)
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The 1-excitation component coincides with the previously defined single exci-
tation entangled state |¥1). In the n-excitation states expansion, the weight
of [U,), as given by €2N/(1+ €2)™N = 2Ne N never exceeds 1/e, a value
that is reached at €2N = 1 and equals the weight of the 0-excitation state
|Wo). Since € represents state |¢) population in an individual atom, 2N
corresponds to the average number of atoms in |¢). Therefore the weight of
|Wy) is maximum when the average number of atoms in |c) is unity. More
generally, one easily checks that the n-excitation state distribution obeys
Poisson statistics and is consistent with excitation by a coherent state of the
field but is never consistent with excitation by a Fock state of the field, with
a fixed number of photons.

4.6 Single photon storage and retrieval: experiment

The first observation of single photon storage and retrieval is published in
December 2005 [11]. A laser-cooled atom cloud is used as the storage ma-
terial. The cloud contains about 4 10° 8 Rb atoms, cooled to 100uK in a
magneto-optic trap.

The quantum light signal has to be narrower than the Rubidium D1
line, a few M H z-wide. No parametric light source is able to generate such
monochromatic single photons. A specific source has to be developed first.
Another cloud, identical to the memory ensemble, plays this role. A strongly
attenuated classical beam, directed along /;1, illuminates this cloud (see Fig.
4. One waits for Raman scattering in direction k. Detection of a Raman
photon in this direction projects the atom cloud to the single excitation state:

1 (efi(k‘l*];,?)'f‘l |ca e a) + efi(];;lflg?)'?? ‘a/c e a/> _|_ e + efi(];}*];?)'?]\’ ‘a/a e C))

VN
(47)

where a and c refer to the ground substates of the atoms, considered as three-
level A-systems. As soon as a photon is detected on PD1, a rather intense
pulse is directed to the source cloud along —k. In synchrony with this pulse,
a single photon is emitted in direction —EQ, with probability close to unity.
This emission corresponds to stimulated Raman scattering on the previously
prepared single-excitation ensemble superposition state. The radiated single
photon is then directed through an optical fiber to the memory cloud. The
arrival time in the memory is known from the event detection on PD1. One
switches off the control field in order to "stop" or to "trap" the photon
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Figure 4: Single photon storage and retrieval [11|. The single photon source
and the memory are both clouds of laser-cooled Rb atoms. PD1, 2, 3 repre-
sent photodetectors.
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inside the memory. One turns back on this field to restore the photon. To
check the unicity of the recovered photon, one performs an anti-correlation
measurement on PD2 and PD3, following the Hanbury Brown and Twiss
procedure. The memory lifetime appears to be no more than 10us. This is
assigned to magnetic field inhomogeneity.

5 EIT in a solid: inhomogeneous broadening

5.1 Line broadening and relaxation

The most critical EIT parameter is the Raman coherence lifetime, but this
does not restrict the choice of material to such sophisticated systems as
LCAC. Long coherence lifetime can also be found in solid materials at liquid
helium temperature. In such materials the absence of motion keeps the active
centers from migrating outside the light beams, as in LCAC, but even better
since motion is totally absent. One also avoids spatial dephasing that can
affect superposition states and can be caused by diffusion, even in LCAC.
Rare earth ion doped crystals have been considered as potential solid mate-
rial candidates for quantum memory applications. Offering similar coherence
lifetime properties as atomic samples, they differ from LCAC by the large
inhomogeneous broadening of their spectral lines.

In LCAC the atoms move so slowly that the Doppler shift does not affect
the absorption line profile. In solid materials the absence of motion of the
absorbing centers reflects the strength of their interaction with the crystal.
Interaction entails energy level shift and, because the crystal is never perfect,
the shift varies from site to site. As a result the transition frequency is
not unique for all the absorbing centers. Instead the transition frequency
is distributed over a broad spectral interval, whose width W,,, named the
inhomogeneous width, typically ranges from a few GHz to several tens of
GHz.

Before incorporating inhomogeneous broadening in EIT analysis, we need
clarify different aspects of interaction with environment. On the one hand,
the interaction shifts the energy levels, which results in the inhomogeneous
broadening. This represents a static aspect. Cooling down to a few Kelvins
does not significantly change the level shift. On the other hand, interaction
also exhibits a dynamical aspect, corresponding to interaction fluctuations.
On an a — b transition, this is reflected in the excess of the homogeneous
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width v, with respect to half the population decay rate +,/2. When the
sample is cooled down, ~y,, decreases and gets closer to 7;/2.

However homogeneous and inhomogeneous width are not different in
essence. This is a question of observation time scale. Such effect that appears
as a fluctuation at a given time scale, and thus contributes to homogeneous
broadening, may be regarded as a static feature on a shorter time scale, and
then pertain to inhomogeneous broadening.

In the absence of inhomogeneous broadening we have performed the anal-
ysis in the vicinity of single-photon resonance. This is not valid anymore
in case of large inhomogeneous broadening. Spectral distance to single-
photon resonance varies dramatically among the atoms. Instead of perform-
ing the analysis in time domain, we now consider a spectral domain approach,
through time-to-frequency Fourier transform.

5.2 Polarization and susceptibility

To account for the distribution of transition frequencies, we rewrite the
macrocopic polarization density in the form:

P, 1) = — s / e C(w) [P (7 £ o) + pra(F tiwa)]  (48)

where G(w,) stands for the spectral and spatial distribution law, normalized
to the atom density per unit volume n as: fdwabG(wab) = n. Time to
frequency Fourier transform leads to:

P w) = —jias / oG () [Pt (7 3 wat) + fra(F i )] (49)

In linear optics conditions, which apply to our weak signal field, the polar-
ization can be expressed as:

A

P(7,w) = egx(w)E(T,w) (50)

where y(w) denotes the electric susceptibility. This formula, well known in

electrostatics, also applies to electrodynamics, provided the relevant quan-

tities are expressed in the frequency domain'. Splitting the susceptibility

'Tf x(w) varies slowly over the field spectral width, the following approximation:

P(Ft) =F {P(m)} > cox(w)F [E(7,w)] = eox(w)E(F, 1)
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and the field amplitude into positive and negative frequency components one
obtains:
. 174 A
P(rw) = e [P (@) + X)) 5 [EFw) + € F —w)|  (51)
The positive (resp. negative) frequency component of the field vanishes in
the w &~ —w; (resp. w = w) region. Likewise the positive (resp. negative)
frequency component of the susceptibility vanishes in the w ~ —wg A(resp.
w =~ wy) Tegion. Therefore the cross-term ) (w)E* (7, —w) + x (W) E(F, w)
vanishes and the polarization density finally reads as:
b(i L [ @ (é( ) () E*(F
P(riw) = 560 [X (W) E(T,w) + X (w)E(F, —w) (52)
In order to determine the susceptibility, let us come back to the three-level
system Bloch equation. The transition frequency is now distributed over the
inhomogeneous width of the absorption line. We still assume that:

e all atoms, whatever their transition frequency, initially sit in state |a)

e the signal (resp. the control) field only excites the a — b (resp. b — ¢)
transition

As we already noticed, cross-polarizing the light beams may be enough to
separately drive the two transitions when angular selection rules apply. How-
ever, when the two transitions only differ by their frequency, they are coupled
to a single specific field only if the ground state splitting is much larger than
the homogeneous widths, the Rabi frequencies and the transition detunings.
This requires that W, << w,.. We shall see how to cope practically with
this condition.

Since ()5 is a constant, the Bloch equations for p,, and p,. are linear
expressions of time dependent quantities and can be solved by Fourier trans-
formation. In terms of pu, £(7,t) and the new variable ( = jy.ei@1t=F17),

makes the time dependent polarization density proportional to the field, as in the frequency
domain. This implies instantaneous response to optical excitation and obscures the causal
character of the material reaction. The general expression, fully accounting for causality,
reads as:

P(F 1) =F [P(F,w)} — ¢ / dry(T)E(7,t — 7)

where x(7) = 0 when 7 <0
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Egs. 29 and 30 turn into:

. . . ,uabg<ﬁ t) .

ab = |[Wab = Vab)Pab T 17— + 1§Q
Pab = [{Wab — YabPab oF 2 (53)
¢ = [((Wae + w2) = YaclC + 1pas§5

Proceeding to Fourier transformation one gets:

_ iﬂabé(ﬁ w) I
2h (54)
[1<w — Wae — w?) + f)/ac]é(w) = iﬁab(w)Q;

[i(w — Wab) + Yab] Par(w)

By eliminating ¢ (w) one finally obtains the optical coherence expression? :

_ () i = Wae = W) +
2h [l(w - wab) + /Yab] [l(w — Wge — w?) + ’Yac] + |QZ|2

Pab(w) (55)
This expression depends on both the w — w,, detuning of the a — b single-
photon transition to the (‘:'(F, w) signal field component, and the w — wy. — ws
detuning of the a — ¢ two-photon transition to the compound excitation
by c‘f(F, w) and the control field at wy. Let wég) represent the center of the
atom spectral distribution G(w,). For sake of simplicity the splitting wg, is
assumed to be the same in all the atoms. In other words, we suppose the
a — ¢ Raman transition is not inhomogeneously broadened. In general this is
not true in a solid, but accounting for Raman frequency distribution proceeds
along the same lines as the present calculation and can be extrapolated easily.

2The coherence p,p(t) must satisfy the causality condition. Thus p,,(t) does not depend
on &(7,t'), with ¢ > t. This condition can be translated to the frequency domain. By
inverse Fourier transformation p.(t) can be expressed as:

_ 1 fap Io(= 4 iw(t—t") (W — waec — wa) + Yac
wt) = —22 [ are,¢) | dwe , .
P b( ) 271' 2FL (T )/ n [1(w - wab) + Vab] [l(w — Wae — w2) + Wac] + |522|2

The non-causal contribution, arising from ¢ > t, is obtained by contour integration in
the lower-half complex plane. To make the non-causal contribution to vanish, the sum of
residues in the lower-half plane must cancel. However, one of the two poles at least must
sit in the upper-half plane to give the causal contribution. Therefore if a pole is located
in the lower-half plane, the corresponding residue must vanish. One easily checks that
i(w — Wae — w2) + Yac cannot vanish at a pole sitting in the lower-half plane. Therefore
causality imposes that both poles sit in the upper-half plane.
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Given the fixed w,. value, the center of wy. distribution is located at wég) =

wég) — Wge- Assuming that the control laser is tuned to resonance with this

central frequency, so that wy = wég), substituting Eq. 55 into Eq. 49, and
comparing with the susceptibility definition (Eq.52), one finally obtains:
2 : (0)
P (w) = _jHab dwap G (wap) = o _ “ab) Jr(o)%c
heo [i(w = wap) + Yab][i{w = wgp') + Yac] + [
(56)
The analytical calculation can be completed easily if the atom distribution
is given the following Lorentzian form [12]:

n Wab
Glwa) = T (09 2
(wab wab ) + Wab

(57)

Summation over w,y, is performed by contour integral. One may notice that
the only pole in the upper-half complex plane is located at w,, = wé(;) +iWap.
One obtains:
2 s (0)
VO (w) = —intat_ e = ) e (58)
heo [i(w — wap) + Wap + Yas|[i(w — Wy )+ Yac) + [Q2]?

Inhomogeneous broadening only results in the substitution of the homoge-
neous width v, with the broadened linewidth W, + 7v,. Without further
investigation we can conclude that the expressions for induced transparency
and reduced group velocity, we previously derived in the absence of inho-
mogeneous broadening, are still valid provided 7, is replaced everywhere by
Wap + Yap- It could be shown easily that Raman transition inhomogeneous
broadening is correctly described with substitution of W, 4+ 74 t0 Yae.

5.3 Wave equation in the spectral domain

The temporal picture developed in Section 4 is conditioned by an adiabatic
approximation. The present spectral analysis, not limited by such condition,
is worth visiting a little further.

In the spectral domain the wave equation reads as:

2
AE(F,w) + S E(F,w) = —’ o P(F,w) (59)

c2
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The polarization density being expressed in terms of susceptibility, the wave
equation for the positive frequency field component reads as:

AE(F,w) + i—j [1+xP(W)]EFw) =0 (60)

The field is assumed to be a plane wave propagating along Oz. One looks for
a solution in the form &£(r,w) = £(w)e™™*. The wave equation then reduces
to:

W (+) 2

= 1+ xP(w)] —r*)Ew)=0 (61)

With k = k' — ia /2, the solution is given by:

B2 — O‘Qflw) — 12 [14+ 3P (w)]
y (62)
aw) ==X (@)

where X&”(w) and XE::L) (w) respectively stand for the real and imaginary part

of x'*)(w). Under the assumption that ))@Qﬂ (w)‘ << 1 and a(w) << w/c,

the wave vector k’ and the absorption coefficient a(w) read as:

Fw) =21+

a(w) = —kxi, (@)

(63)

Substituting Eq. 58 into Eq. 63, one easily recovers the previously obtained
expression of opacity at resonance. In the same way one can calculate the
velocity group at resonance, given the definition as v = (dk’/dw)™".

More interestingly, the off-resonance regime can be explored. Disregard-
ing inhomogeneous broadening, and expanding susceptibility to second order

as a function of detuning, one can express the transmitted power spectrum
I(z = L,w) as:

=Lw)=I1(z=0,w)exp{ —« JacTYab (W — Wab)Vab ?
I(z=L,w)=1(z=0,w) p{ 0L<|QQ|2+{ P })} (64)

which leads to a gaussian-shape transparency window whose width agrees
with Eq. 38.
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Figure 5: EIT transmission profile exhibiting the Autler Townes doublet.

5.4 Memory bandwidth

In the prospect of signal processing applications, the transparency width is
a critical parameter. This quantity has been derived above by limited order
expansion of the susceptibility, but we need not restrict to this small detuning
region. Considering Eq. 58, one observes that, in conditions required for the
opening of the transparency window, when [Q5]2 >> (Wa + Yap) Yae, X (W)
exhibits quasi-singularities at w — w((l?)) = £[Qs| (see Fig. 5 ). One easily
verifies that, at these spectral positions, the absorption coefficient returns
to its maximum value ag. Those two absorptions peaks reflect the Autler-
Townes splitting of level b. Therefore the transparency width appears to be
limited by the control field Rabi frequency.

This result also gives some information on the validity range of Eq. 64.
Transparency width limitation to || requires that Ar < |Qs], where Ar
is given by Eq. 38. This is consistent with Ar < [Q3] < vev/ oL, which
corresponds to a transparency window narrower than the absorption profile.

One might be tempted to increase the control field Rabi frequency in
order to improve the memory operation bandwidth. However one must keep
in mind that a small velocity group is necessary for efficient information
transfer from the signal field to the Raman coherence. Under condition
|| < YV oL, the transparency width can be expressed in terms of the

group velocity as:
AT = 2’0\/ O[Q/L, (65)
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Figure 6: Three-level A-system in Pr®* : Y55:05. In addition to the two fields
involved in the EIT process, a third beam is used to repump ions from the
3 H,(£5/2) ground state sublevel. Repumping serves to select the active ions

within a narrow spectral interval, thus reducing the effective inhomogeeous
width.

which depends neither on the absorption linewidth nor on the Rabi frequency.

Finally it should be noticed that, if Raman transition too is affected by
inhomogeneous broadening, then the group velocity lower bound is deterio-
rated, increasing from v,./ag to We./ayp.

5.5 EIT demonstration in solids

The EIT process was observed for the first time in a rare earth ion doped
crystal of Pr3t : Y55i05 in 1997 [13]. Experiment operated on transition
'D, =3 Hy at 606nm (see Fig. 6). With a I = 5/2 nuclear spin, each
electronic level is six times degenerate. Hyperfine interaction lifts degeneracy
into 3 pairs of sub-levels, with a splitting in the M Hz range. A A system is
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obtained when two lower sublevels are connected by optical transition to a
common upper sub-level.

Inhomogeneous broadening reaches W, = 4GHz. This is much larger
than the optical homogeneous width and the sub-level spacing and does not
satisfy the inhomogeneous broadening conditions of the calculation in section
5.2. Indeed we performed this calculation under assumption that W,, <<
Wae-

Actually, a preparation step artificially reduces the effective inhomoge-
neous broadening to make it consistent with the above calculation. The two
fields involved in the EIT process optically pump the ions to the third ground
sublevel that plays the role of a shelving state. The absortion profile is thus
totally bleached over the spectral interval within reach of the EIT fields. A
narrow absorption band is then restored by a monochromatic repump beam
that returns a specific spectral class of ions from the shelving state to |a)
state. The width of this group of ions, limited by the repump laser linewidth,
represents the effective inhomogeneous broadening ng ! that easily satisfies
the condition ngf << Wee

One may wonder about the contribution from ions, far from optical res-
onance, but still satisfying the two-photon transition resonance condition.
Actually only ions with unbalanced sublevel population can contribute to a
two-photon process such as EIT, since the Raman transition probability is
proportional to the sublevel population difference. Far from optical excita-
tion by the different fields, the sublevels are equally populated at thermal
equilibrium and those ions can be ignored.

The Raman transition is affected by a ~ 50kH z inhomogeneous broad-
ening in Pr®* : Y55i05. This broadening should be subsituted to 7, in the
EIT process description. Finally, a 60kH z-wide EIT transparency window
was observed.

Observation of EIT was reported in various other solid state materials
such as semiconductors [14, 15], nitrogen-vacancy color centers in diamond
[16], Nd**-doped crystals [17] but, for the time being, Pr3* : Y55i05 still
by far outgoes these systems in terms of Raman coherence lifetime or EIT
efficiency.

Stopped light was also demonstrated in a Pr®"-doped crystal [18], with
a memory lifetime of a few hundreds of us. The storage lifetime was then
dramatically increased to more than 1s by an Australian group [19]. All
these works have been performed with classical light. Quantum light storage
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in a solid has yet to be observed.

6 Recovery from an absorbing medium

In EIT the operation bandwidth, given by the transparency window, is di-
rectly related to the control field Rabi frequency. At storage and retrieval
both the signal and the control fields have to be present simultaneously within
the memory. We now consider an alternative protocol, first proposed in
Ref.[20], and examined in further details in [21]. This is based on direct
absorption. The signal to be stored interacts alone with the active mate-
rial. The operation bandwidth is expected to be related to the absorption
linewidth.

6.1 Polarization collapse, coherence survival

As already noticed in section 2.2, since information has to be stored first
into the optical coherence p,,, the information carrier pulse duration must
be much smaller than the inverse homogeneous width ~,,. Hence the pulse
spectral width must be much larger than v,. In addition, since storage is
based on absorption, the pulse must be narrower than the absorption profile.
In an homogeneously broadened medium, where all atoms have the same
transition frequency, the absorption linewidth is given by 7.+ aoL. Hence
one is left with the very restrictive condition v/ ayL >> 1, similar to the one
already met in the frame of EIT. Interestingly, the condition can be easily
relaxed in inhomogeneously broadened material where the absorption width
can by far exceed v,/ L. In the following we thus restrict the discussion to
inhomogeneously broadened media. One may notice that, in EIT regime, the
condition y/agL >> 1 prevails whether the line is inhomogeneously broad-
ened or not.

The atomic response to a weak pulse was considered already in the frame
of EIT. To describe simple absorption one just cancels 2, in Eq. 56 and
obtains:

2
1
) (w) = —i@ dw., G(wq
X ( ) héo ’ ( b)i(w - wab) + Yab

Assuming the homogeneous line is much narrower than G(w), one simplifies

(66)
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Y (w) into:

2
P (w) = —irE2G(w) (67)
FLEO

and the atomic response, as given by the polarization density, reads as (see
Eq. 52):

B(7 ) = 3o [XP @) w) + X @R ~) (68)
Since the inhomogeneous distribution G(w) is assumed to be much broader
than the incoming pulse spectrum, the above equation tells us that the atomic
response matches the incoming pulse in the spectral domain. Therefore tem-
poral profiles coincide too. In other words the material response does not
survive to the incoming pulse, collapsing as the field drops to zero. The in-
stantaneous character of the material response is the reason why the pulse
propagation is just reflected by an attenuation factor.

However, provided the homogeneous width is much smaller than the in-
verse pulse duration, the atomic coherences subsists long after the pulse has
faded away. This is confirmed by the integral Bloch equation. According to
Eq. 10, to first order in the field amplitude, assuming all atoms are initially
in state |a), one obtains :

t
pas i T 1) = 12 / A E (7, ¢ Yelivan= 1)t~ (69)

—00

The coherence, built by the incoming pulse, relaxes with rate 7, and may
survive long after the field has vanished. The origin of the polarization
density collapse lies in the phase shift of the different atoms distributed over
the inhomogeneously broadened absorption profile. This is reflected in the
above equation by the w,,-dependent phase factor that keeps on building
up after the pulse extinction. As a result, the different atom contributions
interfere destructively as they are combined into the polarization density.

In order to extract the information stored in the atomic coherences, one
has to rephase them. We shall demonstrate that phase reversal makes the
coherences to faithfully regenerate the initial light pulse.
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Figure 7: Rephasing. All the atoms have the same phase at ¢;. Then phase
shift accumulates between atoms with different transition frequencies. At ¢,
the phase is reversed so that all atoms are phased together again at 2ty — ¢

6.2 Information recovery by phase reversal

Let us assume that at time ¢, after the extinction of the incoming pulse, one
is able to achieve the following phase reversal operation:

par(@War; T, 157 = ppa(wap; 7, 157)) (70)

In addition we assume that the operation does not entail any level population
change, a condition that will prove mostly important and difficult to satisfy
practically. Enacting the rule for p,, instead of p,,, we mean reversal affects
both the spatial and the spectral phase. At ¢y both transformations kz —
—kz and wgp(ty — 1) — —wap(ta — t1) shall occur.

This phase reversal procedure is pure speculation so far. Later on we
shall examine practical means to achieve this operation.

After t9, the spectral phase keeps on growing at the same rate, in such a
way that at time ¢ = 2ty — ¢ the phase shift wy(t + t; — t5) simultaneously
vanishes in all the atoms, whatever their transition frequency (see Fig. 7).
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Being phased together, the atoms radiate a light pulse at that moment. In an
optically thin sample we could consider that the coherences just evolve freely,
independently from each other. The feedback of the radiated pulse on the
atoms would remain weak with respect to the initial pulse. On the contrary
we are dealing with an optically thick, opaque medium. We can no longer
neglect the radiated response feedback. Indeed the delayed radiated response
will prove to reach the same amplitude as the initial incoming pulse. Such a
feedback is not unfamiliar to us. We implicitly accounted for such a reaction
when we derived the incoming pulse wave equation: each atom undergoes
excitation by a local field that combines the input field and the contributions
of the upstream atoms. In order to calculate the restored field and the
final atomic state, we take the usual steps, first deriving the individual atom
response from the Bloch equation, then combining the elementary coherences
into the macroscopic polarization density, that is finally used as a source term
in the wave equation to be satisfied by the restored field.

Let Eput(7,t) denote the field radiated by the atoms after t5. At t > i,
the Bloch equation for coherences reads as:

t
Pab (wab; Fu t) = pab<wab; ﬁ tgr))e(iwabiﬂyab)(tib)_'_i@ / dt’ out (ﬁ t/>e(iwabiwab)(tit/)

2h J,
(71)
The two terms on the right hand side respectively correspond to the free
evolution of the initial coherence and to the radiated response feedback on
the coherences.
Since atoms evolve freely from initial excitation by &;,(7,t) to time ¢,
the coherence at ¢ is simply given by:

to
Pab(wab§ 7, té—)) _ i% / dt/gm(ﬁ t/)e(lwar’yab)(t—t/) (72)

— 00

Taking account of the reversal rule (Eq. 70) and substituting into Eq. 71,
one obtains:

to
P (wap; T 1) = —i% [ / AE & (7, /) eian i+ =2t2) v (t=t)

t
_/ dt’gout(f”t’)e(iwab_’)/ab)(t_tl) (73)

to

The polarization density P(7,t)is obtained by substitution of Eq. 73 into Eq.
48. The positive frequency component of P(7,t) can be split in two terms
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P(+)( t) and P. +)(r t) according to:

where P\ (7 t) and P{"(F,t) respectively correspond to the atom free evo-
lution from ¢, and to the recovered field feedback on the atoms. The first
term reads as:

2 to
P, 1) :i% / dt' &, (7, t)e Yo (=1 / dwap G (wep)ear (T =22) (75)

—00

Since the field spectrum is assume to be much narrower than G(wg), the
quantity &, (7, t')er? varies slowly with respect to [ dwa,G(wep)ewartH =2t2)
that peaks abruptly at ¢ = 2t, — t. Taking & (7, t')e“rt e (=) out, of the
sum over t' at t' = 2ty — ¢, one obtains:

P(Ft) = 217#“2‘%’7@(%)5* (7, 2ty — t)e~ 2 (t—t2) (76)

Fourier transformation to frequency domain leads to:
P ) = 2n kG 0y ) (e Bt (1)

As for the second term P2(+)(F, t), we can proceed directly to its frequency
domain expression. Indeed this term simply describes the linear response to
Eout(T, 1), as given by Eqs 67 and 52:

PO 0) = i Gl ) (78)

The two terms ]51(+)('F,w) and ]52(+)(F,w) finally combine into the positive
frequency component of the polarization density as:

PH(F w) = IW@G@)L) [n‘fom(ﬁ w) — 2&5 (7, w)e’Qth2’2%"(t2’t1)] (79)
This quantity can be substituted into the wave equation for the restored field:

— (— + k2) c‘fout(F,w) = —w2u0]5(+)(F,w) (80)



We look for a solution in the form Efout('r?, w) = A(z,w)el**| counterpropagat-
ing with the incoming field &, (7,w). Indeed, given the form of P(H(7 w),
the restored field is a function of & (7, w), a field that varies as e**. The
linearized wave equation finally reads as:

1 R . .
9 A(zyw) = 2ag [Az,w0) — 26,7 w)e_2‘“t2_Q%b(h—tl)—lkz] (81)
0z 2
where: )
_ T Mab
Y he Glwr) (82)

With the boundary condition A(L,w) = 0 at the output side z = L of the
absorbing medium, and the incoming field spatial distribution éjn(z,w) =
5§*n(0,w)e_%aoz+ikz, expressed in terms of the amplitude in the input side at
z = 0, one easily® gets the solution as:

~

5Out(2’, w) _ é;L(z’ w)e—Zith—Q’Yab(m—tl) [1 _ eaO(L_Z)] (83)

Inverse Fourier transformation leads to the following solution in the time
domain:

50ut<z7 t) - S;;L(Z, 2t2 — t)e_Q’yab(tQ_tl) [1 _ eOéo(L—z)} (84)

Since &, (z,2ty —t) is centered at ¢y, the recovered signal emission is cen-
tered at 2ty — t; as expected. Otherwise, the restored field envelope is time
reversed with respect to the initial pulse. Finally, the field amplitude is
exactly restored at z = 0 provided ayL >> 1.

We assumed the phase reversal operation does not increase the upper
level population. In the opposite limit, let us assume that a side effect of the
phase reversal operation is to promote all atoms to the upper level. Then the
storage material becomes an amplifier, with gain equal to agL for the regen-
erated field emerging from the input side. Such an amplification certainly
modifies the quantum properties of the restored field. In addition amplified
spontaneous emission then deteriorates the restitution fidelity.

*With the change of variable: A(z,w) = B(z, w)e®#/2 the wave equation is turned into:
0.B(z,w) = —ap€f, (0,w)e”0r2wk2=2va(t2=t)  Qumming from z to L with boundary
condition B(L,w) = 0, one obtains: B(z,w) = &}, (0, w)e2wtz=27av(ta=t1) (g=a0= _ g=aol)
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Substitution of the restored field in Eq. 73 leads to:

2to—t

—00

t
ool / e (e ) (s5)
2

to—t

As expected, the coherence drops to zero whilst the light pulse is being
restored, around ¢t = 2ty — t;. Indeed, during the recovery step, each atom is
exposed to excitation coming up from the downstream atoms, that is to say
from atoms located further from the input side. This radiation gives a kick
in direction opposite to the initial pulse effect, making the atom return to
the initial state. Closer to the input side, the restored signal acting on atoms
grows bigger, precisely where the atoms were exposed to larger excitation by
the initial pulse. A long time after t = 2t — t1, the coherence reduces to:

pab(wab; 2 t) = _i%e*ao@*%z)é;;(o’ wab)eiwab(ti2t2)eiwab(titl) (86)
which expresses the agL dependence of the residual excitation.

During the storage process, a part W/W;, = (1 — e~ ?Z%) of the incoming
energy stays in the medium, the remaining passing through without being
absorbed. From the part that is stored, a fraction is lost at retrieval, even
in the absence of dipole relaxation. Indeed the restored field is (1 — e™@%)
times smaller than the incoming one, according to Eq. 84. Therefore one
recovers a fraction W, /Wi, = (1 — e~*L)2 of the incoming energy. The
energy W — W = Wi,e~ @l remains within the material. To summarize,
with a finite length material, energy is lost in equal amounts at storage and
retrieval, one part being transmitted without absorption, the other part being
left as an atomic excitation.

7 Practical implementation of phase reversal

The signal recovery procedure examined in the previous section requires:

e spectral phase reversal of the optical coherence in all the atoms simul-
taneously at a given time

e spatial phase reversal of the optical coherence in all the atoms
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Figure 8: Two-pulse echo. (a) At time ¢; a 7/2-pulse brings the Bloch
vectors of all frequency classes along Ov. (b) The Bloch vectors spread over
the equatorial plane and at time ¢; +t5 a m-pulse reverses their v coordinate.
(c) At time t; + 2t12 all the Bloch vectors are back along Owv.

e no excitation to the upper level during the phase reversal process

We review different practical phase reversal procedures and check their ability
to satisfy the above conditions.

7.1 Two-pulse photon echo

Phase reversal has been actively investigated for several decades, first in the
framework of NMR, then in the optical domain after the advent of the laser.
Known as spin echo in NMR and photon echo in optics, this phenomenon is
best described in the Bloch vector picture (see Appendix B).

Let an inhomogeneously broadened ensemble of two-level atoms be illu-
minated at time ¢; by a light pulse of duration 7 and Rabi frequency €2;.
Under assumption that €2; is real, the driving vector B is directed along Ou.
Let the pulse be too short for the inhomogeneous phase to build up during
the pulse. In other words the detuning A = w,, — wy, is assumed to be much
smaller than 77!, Then, driven by the applied field, the Bloch vector pre-
cesses around 3 at angular velocity ;. The quantity fj;o Q4 (t')dt’, known
as the pulse area, represents the angle travelled by the Bloch vector around
Owu during the pulse. Initially the Bloch vector is directed downward along
the Bloch sphere vertical axis Ow. Let the pulse area equal /2. Then the
pulse makes the Bloch vector to travel a 7/2 angle around Ou and brings it
along Ow, in the equatorial plane of the Bloch sphere, as shown in Fig. 8.

After the m/2-pulse extinction, the Bloch vector precesses around the
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vertical axis Ow at velocity A. At time ¢ the Bloch vector coordinates read

© u(t) =sin[A(t — ty)]e veelt—t)
(t) = cos[A(t — t;)]e rar(t=t) (87)

where the population relaxation has been neglected. The Bloch vectors be-
longing to different frequency classes rotate at different angular velocities A
and, as time elapses, they depart from each other, generating a "pancake"
that spreads over the Bloch sphere equatorial plane.

At time t5 a second pulse is applied. Let the pulse area equal w. Therefore
each Bloch vector is made to travel a m angle around Owu, returning to the
equatorial plane with reversed v coordinate. Just after the second pulse the
Bloch vector coordinates read as:

u(ty) = sin[Atyp]eVavt12
v(ty) = — cos[Atyp|eVabt12 (83)

This represents a symmetry with respect to the plane uOw. The slowest

frequency classes find themselves in advance of the fastest ones. As time

elapses, the free evolution is depicted by:

u(t) = {u( ) cos[A(t — to)] + v(ts) sin[A(t — t5)]} e Varlt—t1)
( to

—u(ty) sin[A(t — t5)] 4+ v(ta) cos[A(t — t5)]} e eelt=t)  (89)

O/—H

The fastest vectors catch up the slowest ones so that they all meet along -Owv
at time 2ty — t1, according to:

U(th - tl) =0
U(2t2 — t1> = —e_z“/ab“? (90)
U}(2t2 — tl) =0

At that moment the dipoles are phased together and emit the photon echo
signal.

In the context of our quest for phase reversal, it is worth noticing the
transformation undergone at ¢, can be expressed, in terms of coherence, as:

av(t57) = poa(tS7)) (91)



In the above discussion we have implicitly supposed that both pulses
propagate in the same direction. If pulses propagate in different direction
one must notice that the change of variable p,, — p. depends on the wave
vector of the reference pulse. Just before the second pulse the change of
variable is still referred to the first pulse and reads as:

pan(ts”) = pan(ty”)el 2 (92)

According to Eq. 91, at to the coherence, this time referred to the second
pulse, undergoes the transformation:

Pav(t5”) = foalts”)) (93)
or, equivalently, in terms of pgy :
panlts”) = ooty )2 (94)
Then, substituting Eq. 92 in this expression one finally obtains:
pas(t5") = Pralts)ellerta RO (95)

where ﬁba(tgf)) is a slowly varying function of 7. The space-dependent phase
factor indicates that the echo signal is emitted in direction 2k — k;. Dipole
contributions are phase-matched all along the sample of length L provided:

<|2152 — k| — )L << m. As soon as L exceeds a few hundreds of wave-

lengths, the condition is satlsﬁed only when k2 is close to kl, which leads to
emission in direction close to lﬁ and k;2

The second pulse in the photon echo sequence reverses the phase of py
(see Eq. 91), not that of p,, as requested in section 6.2. Therefore, the
spectral phase reversal requirement is satisfied, as illustrated by the coherence
rephasing leading to echo emission, but spatial phase reversal is missing. The
phase matching condition forcing echo emission in forward direction reflects
the absence of spatial phase reversal.

Another condition is not satisfied. In the photon echo memory protocol,
the information to be stored should be carried by the first pulse while the
second pulse would be devoted to phase inversion. Initially all atoms are
prepared in the ground state. The Bloch vector is vertical, downward ori-
ented. Unlike the 7/2 pulse we considered in the brief presentation of photon
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echo, the weak signal pulse, with an area much smaller than unity, hardly
displaces the Bloch vector from its initial vertical direction. The second pulse
is expected to convert p,, into py,, which corresponds to a reflection in the
vertical plane uOw. But light cannot perform such a transformation! Light
can only rotate the Bloch vector around an horizontal axis. Now the product
of two reflections is actually equivalent to a rotation around the intersection
of the two planes of symmetry. Given one of the symmetries is taken with
respect to uOw, the other reflection plane will have to intersect uOw along
the rotation axis. The only symmetry that preserves the phase inversion is
the reflection with respect to the equatorial plane uOw, orthogonal to uOw.
Combining those two symmetries corresponds to a w-rotation that keeps the
Bloch vector nearly vertical, but now pointing up. In other words, the sec-
ond pulse, in order to accomplish the expected spectral phase inversion, shall
also promote all the atoms to the upper level. As already noticed, this would
deeply affect the restored signal.

In conclusion, the two-pulse photon echo protocol fails to satisfy two out
of the three signal recovery requirements.

7.2 Tri-level echo

The photon echo process is easily extended to the three-level A-system we
already met in EIT [22]. As in EIT, information is stored in the Raman
coherence but, unlike EIT, a single transition is excited at a time.

Let the system be illuminated by a three-pulse sequence. The time-
separated driving pulses alternatively excite the a — b and b — ¢ transi-
tions. All the atoms have been prepared initially in state |a). By exciting
the a — b transition, the first pulse builds the optical coherence py,. The
second pulse, resonant with the b — ¢ transition, converts p,, into the p,.
Raman coherence. Then a third pulse excites a — b again, converting p,.
into the py. optical coherence that gives rise to the tri-level echo (see Fig. 9).

Interaction with the first pulse does not need much comment. Only states
la) and |b) are implied at this stage. The system obeys the two-level Bloch
equation. After the pulse extinction the coherence pu,(wap; 7, t1) evolves freely
t0 Pab(Wap: T 1) = Pap(Wap; Ty t1 )8 70)E=41) "where A = wy, —wy. Interaction
with second pulse must be examined more carefully since the three levels
are now involved. Since a single transition is excited, Eq.26 splits into two
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Figure 9: tri-level echo in a A-system. The first two pulses build the Raman
coherence p,. from the optical coherence p,. The inhomogeneous phase
shift accumulated by pg, between ¢; and ¢, is carried to p,. between ¢ and
t3. Then p,. is turned into p,. by the third pulse. The inhomogeneous phase
shift vanishes at t3, which gives rise to echo emission.

uncoupled sets of equations:

pcc = %(ﬁch; - ﬁchZ)
pbb = _pcc (96)
ﬁcb %(pcc — /)bb)Q2

and ) _
5 =15 Q)
G e (97)
Pac = §pabQQ
where inhomogeneous dephasing and relaxation have been omitted, given
the shortness of the pulse*. The first set of equations represents the coherent
excitation of a two-level system. The second set describes the coupling of
the optical coherence p,, and the Raman coherence p,.. The solution of the
latter set reads as:

- + -
pab(tg )) Pab(ts 5 ) cos(3 [ Qadt) 1pac(t§ )sin(s [ Qadi)
T NI ) 0 () 0.d (98)
Pac(ts ) Pac(ty ') cos(5 [ Qadt) 4+ ipa(ty ') sin(s [ Qadi)
4With respect to Eq.26 we have modified the Rabi frequency definition in order to be
consistent with the Bloch vector picture. Rabi frequency is now defined as . A(7, t)/h

instead of papA(7,t)/(2R). With this definition the Bloch vector precession rate around
axis Ou coincides with 2. Numerical factors were simpler with the previous 2 definition.
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A m-pulse optimizes the conversion of p,, into pg., leading to:
ﬁac(té+)) = lﬁab(té_)) — iﬁab<wab; 'f’? t1>e(iA77ab)t12 (99)

Therefore the Raman coherence inherits the inhomogeneous dephasing that
was accumulated by the optical coherence during interval ¢5.

Total conversion of pg, into p,. means state |b) amplitude drops to 0. This
is actually consistent with the two-level system evolution as described by Eq.
96.

We assume the Raman transition is not affected by inhomogeneous broad-
ening and is resonantly excited by the driving fields in such a way that
Wae = W1 — wy. In other words, both p,, and p., definitions refer to the same
optical detuning A = wy, — w1 = wpe — wy. The Raman coherence, evolving
freely until excitation by the third pulse at t3, reads as:

Pac(ts”)) = iPap(wap; 7, £1) 047 ap)t12 = 2uctzs (100)

just before the pulse arrival. Once again, a m-pulse at frequency w;, exciting
the system on the a — b transition, optimizes the conversion back to the
optical coherence py. that, just after the extinction of the pulse reads as:

Boc(tS) = Pap(Wap; 7, 11 )elATaw) 12~ actas (101)

Once the driving field is off, py. evolves as: py.(t) = ﬁbc(t§+))e(*iAﬂbc)(t*t?’).

The key point is that py. phase factor evolves with opposite rate with respect
to pap. Hence the inhomogeneous phase A(t12 — t + t3) vanishes at t3 + 12,
making the dipoles to radiate the tri-level echo on the b — ¢ transition.

In the above discussion we implicitly assume the three pulses propagate
along the same direction. As already noticed for two-pulse echoes, in more
general conditions, we must take care that the "tilded" coherence definition
depends on the relevant pulse wave vector direction. Let k; denote the ith
pulse wave vector. Transformation to the rotating frame associated with
the first two pulses leads to: pge = pacel@2 «1)t=ik2=k1)-7 hyt the third pulse
operates on a Raman coherence defined as: ppe = pocel(@2w)t=ilka=ka).7 g
account for this transformation one can perform the substitution: ﬁac(t‘g:)) —

Fac(t57)ei®s=F1) which finally leads to:

Poc(Wab; T 8) = P (wap; T 1y ) Tel12 7 Tevt23Tan(t713) 50

o p—iwat—iA(t—ts—t1z)+i(Rs+k2—F1) (102)
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Therefore the echo signal is emitted in direction /;3 + /;2 - El. Then a phase
matched signal can be emitted in a direction very different from that of the
driving pulses. For instance, with Eg — —ky = —k; the echo signal is radiated
backward, counterpropagating with the first pulse.

At first sight the three-level echo seems to represent a significant progress
in our quest for phase reversal. As in two-pulse echo, the spectral phase
is reversed but, unlike two-pulse echo, spatial phase can also be reversed,
giving rise to backward signal emission. One also notice that the second
pulse, despite of its large area, does not promote atoms to the upper level,
avoiding amplification issues. Unfortunately the intense third pulse is coupled
to a — b transition, strongly exciting the populated state |a) and massively
promoting atoms to the upper electronic state.

We could be tempted to apply the third pulse to the empty transition
b — c again instead of a — b. However, this way, one cannot reverse the
spectral phase. Indeed two successive m-pulses make a 27 rotation, which is
no change at all. In other words, the second pulse builds p,. from py, and,
exciting b — ¢ again, the third pulse turns back py into p,. without any
phase inversion.

In conclusion, two out of the three signal recovery conditions are satisfied
by the three-level echo. The third condition seems to be out of reach of the
optical driving techniques. Non-optical procedures are thus considered.

7.3 Controlled reversible inhomogeneous broadening

It has been proposed to reverse the inhomogeneous spectral shift by invert-
ing an external static electric field [23]. Actually the spectral shift must be
totally controlled by an external field. In other words, the natural inho-
mogeneous broadening does not help. Instead, out of the inhomogeneously
broadened medium, one has to select a group of atoms with the same transi-
tion frequency. This can be achieved by optically pumping the other atoms
to an auxilliary shelving state. This works for instance in Pr3*-doped crys-
tals since three long lifetime sublevels are available in the electronic ground
state. A non-uniform external field is then used to scatter the selected atoms
over an artificially tailored bandwidth. The external non-uniform electric
field is adjusted so that the engineered inhomogeneous broadening matches
the bandwidth of the pulse to be stored. Provided that it is caused by linear
Stark effect, the frequency shift can be reverted by inversion of the electric
field. The procedure has been coined Controlled reversible inhomogeneous
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Figure 10: tri-level CRIB time-diagram. Inhomogeneous broadening is gen-
erated by Stark effect. The applied voltage polarity determines the sign of
the spectral shift.

broadening [CRIB) by their instigators.

This procedure, first demonstrated in a two-level system [24, 25|, should
work best when combined with the tri-level echo (see Fig. 10). As discussed
above, a narrow bandwidth group of atoms is first selected. They are pre-
pared in state |a). The non-uniform electric field is switched on. The signal is
directed to the absorbing medium at ¢;. After signal extinction, the electric
field is switched off and a 7-pulse, tuned to the b — ¢ transition, converts pg
into pg. at t3. The recovery step contrasts significantly with the correspond-
ing step in the conventional three-level echo. Instead of exciting the a — b
transition, the m-pulse at t3 is tuned again to the b — ¢ empty transition,
converting p,. back to py. Then the electric field is turned back on, with
inverted polarity. This way, p., phase shift evolves at opposite rate and com-
pensates for the previously accumulated phase shift. Atoms are rephased at
time t3 + t1o and the echo signal is emitted.

The three criteria for total signal recall appear to be satisfied. Both spec-
tral and spatial phase shift are reverted, and no atom is promoted to upper
level by the 7-pulses since both of them excite a transition between unpop-
ulated states. However, the opacity of the absorbing material is altered by
CRIB. Indeed, the available atoms, initially distributed over a narrow inter-
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val §, are spread by the external electric field over the memory bandwidth
Appem, which reduces the opacity by the factor 6/Aem. One may wonder
about the appropriate size of §. Actually the initial width § gives rise to an
inhomogeneous phase shift that cannot be reverted. Because of this phase
shift, the optical dipole available lifetime is limited to ~ 1/9, which must
by far exceed the duration of the signal to be stored. As a consequence, the
time-bandwidth product of the memory is limited by the quantity A,,em/0,
which is nothing but the inverse reduction factor of opacity. Therefore, it
seems highly improbable to store anything but a single Fourier transform
limited pulse, carrying one single information, with the CRIB technique.

8 Conclusion

We have reviewed two strategies for storing quantum light in a macroscopic
ensemble of atoms. The discussion has been essentially conducted within
the limits of the semi-classical picture. Essential features such as the re-
trieval efficiency can be addressed correctly within the frame of this picture.
Moreover, this problem revives the interest in basic coherent light-matter in-
teraction processes and sheds new light on them. However, a fully quantum
analysis is needed to account for the entanglement of the atom ensemble,
as resulting from coupling with quantum light. Despite of numerous efforts
in this direction, a lot of work has still to be accomplished. Most of all,
quantum memory for light has yet to be demonstrated experimentally in a
solid. Both the theoretical obscurities and the experimental challenge make
this field of research mostly attractive.

A Density operator

A.1 statistical mixing and quantum coherence

Let us consider a two level atom. Let |a) and |b) be the eigenstates of atomic
hamiltonian with eigenvalues E, and FE,. Let the atom be initially in state
la). Excitation by a light field prepares the atom in a superposition state
|) = ala) + b|b). The notion of density operator clarifies the difference
between a quantum state and a statistical mixture. The density operator is
defined as:

p =)V = pm + pq (103)
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where p,, and p, respectively denote the diagonal and off-diagonal compo-
nants:

pm = lal?la)(al + [b]*|b) (D]
pg = ab’la){b+a"blb){a|

In an ensemble of N atoms, identically coupled to the field, the expectation
values of the atom numbers in ground and excited states are repectively given
by Nlal? and N|b>. The diagonal operator p,, accounts for this statistical
mixture. However, p,, alone fails to describe the quantum properties. Those
are expressed by the non-diagonal operator p,. The off-diagonal elements
(alpg|b) = (alp|b) = pap and (b|p,la) = (b|pla) = pes are named "quantum
coherence".

To hold some physical meaning, the coherence has to be connected with
the measure of an observable. The coherence associated with observable X
can be defined as:

C(X) = Tr[(p— pm)X]
(al(p = pm)X]a) + (b (p — pm) X|b) (105)
= {(al(p — pm)|b) (b| X |a) + (bl(p — pm)|a){al X|b)

It appears that only observables with off-diagonal elements give access to

quantum coherence. The macroscopic polarization density precisely owns
this property.

(104)

A.2 Environment and relaxation

The density operator has helped us to introduce the notion of coherence.
However, density operator is mostly known as a tool to account for the inter-
action of a quantum system with an environment, a bath with many degrees
of freedom. This may be a radiation reservoir or a macroscopic material
system. Connection with the environment usually leads to relaxation. So,
interaction with radiation leads to decay from upper state to ground level
by spontaneous emission. This affects the diagonal elements of the density
operator. The off-diagonal elements are often more sensitive to coupling with
environment and decay faster than population.

The notions of partial trace and reduced density operator can be intro-
duced with the example of spontaneous emission. Let |0g) and |1g) respec-
tively represent the 0- and 1-photon field state. In the product Hilbert state
Ha ® Hg, the atom-+field ensemble evolves according to unitary dynamics.
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The state |a) ® |0g) remains unchanged since the atom is in the ground state.
On the contrary the state |b) ® |0g) evolves to |a) ® |1g) with probability p
during the time interval At. In other words, during the time interval At, the
unitary operator U,p transforms the compound state |b) ® |0g) into:

Uaglb) ® 0g) = /1 —p |b) ® |0g) +f| a) ® |1g) (106)

This completes the unitary transform multiplication table, starting with a
0-photon state. Therefore, starting from an initial separable state:

¥) @10g) = (ala) +b|b)) ©[0) (107)

the atom-field system evolves to the entangled state:

w8 = (ala) + by/T=p ) ©105) + by/B |a) ® 15) (108)

after one time interval At. Let pap denote the atom-field density operator.
The expectation value of an observable O4 that only depends on atomic
variables can be expressed as:

(0a) = Tryyem (Oapar) = Tryy, (Oapaim) (109)

where pag) = Try, (pag)represents the reduced density operator, resulting
from partial trace of the total density operator over the field Hilbert space.
Hence one just need the reduced density operator to determine any observable
that only depends on the atomic parameters. In our simple model the field
Hilbert space is spanned by the two states |0g) and |1g). Therefore, after
one time interval At, the reduced density operator reads as:

1 1 1 1 1 1
Py = T (P45 ) = (0l RN LI0m) + (@) (s, (110)

which can be represented by the matrix:

I 1 1
p(l) _ <a\pf4()E)|a) <a\pf4()E)|b)
= 1 1
Al la) (Lo b)

(111)

1= =)l 18 ¢—p<a|p<°> |b>]
VI= DOl la) (1= )bl b
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Let an evolution time interval t be described as a sequence of n elementary
intervals of duration At = t/n. Assuming an iterative application of this
transform, i.e. :

w 1= A=)l 1By VT=plalps b
pA<E>‘[ TR0 (1= o)l ”|b>] e
one finally obtains:
1= e Blpae (0)B) e P2 (alpas (0)[b)
pA(E)(t) - |: e—ybt/2<b|pA(E)(0)|a> e*'ybt(b|pA (0)| > :| y (113)

where the ratio p/At has been substituted with the spontaneous decay rate
~p. This expresses the spontaneous emission effect on both populations and
coherences. As expected upper level population decays to the ground level
with rate 7. Less obviously, the coherence terms decay with rate ,/2. While
the total density operator obeys unitary dynamics, the reduced operator
appears to undergo non-unitary evolution.

Spontaneous emission is an inelastic process. Atomic excitation energy is
transferred to the radiation field. However coherence relaxation may occur
during elastic processes, the atom interacting with the environment with-
out any population redistribution. Let an atom be coupled to a reservoir.
Initially the atom-reservoir state reads as:

[¥) @ [E) = (ala) +b[b)) ® |Z) (114)

where = stands for the initial reservoir state. Let the compound system evo-
lution be determined by the unitary operator U(t) according to the following
table:

e E) Wi Ee) o= e =) (115)

where:
(Ea(B)Za(1)) = Eu(t)[E(1)) = (E(H)[Z(F)) =1 (116)
The atom stays in its initial state but the reservoir evolution depends on the

atomic state. With the transformation table, the evolution of an arbitray
compound state reads as:

) ©E) = (ala) +b]6)) ® [2) 2 ala) ® [Za(1)) + blb) @ [Z(1)) (117)
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In the same way as in the spontaneous emission example, the system evolves
to an entangled state. By performing the partial trace of the density operator
over the reservoir states we then obtain the reduced density operator:

p(t) = Tr [pars=(t)] = D _{izlparr=(t)liz) (118)

iz

where states |iz) span the environment Hilbert space. In the basis set of
vectors |a), |b), the reduced operator reads as:

B a2 b E0E0)
plt) = [a*bea(mzb(m b2 } (119)

The atomic coherence appears to be governed by the environment evolution.
In general states =,(¢t)) and Z,(¢)) become more and more orthogonal as
time elapse, gaining the orthogonality of their associated atomic states. This
evolution can often be described as:

(Zp(t)[Za(t)) = 77! (120)

Spontaneous emission decay, combined with elastic relaxation, leads to
the following general relation:

Yab = /2 (121)

B The Bloch vector

B.1 Connection with NMR

Developing the Nuclear Magnetic Resonance (NMR) theory, Felix Bloch de-
scribes the evolution of the magnetic moment operator expecting value and
shows this quantity satisfies the equation of motion of a classical magnetic
dipole. The Hamiltonian reads as H = — M .B where B and M respectively
represent the magnetic induction and the magnetic dipole moment. The lat-
ter is connected to the angular momentum J by M = yhj, where v denotes
the gyromagnetic ratio. From Schrédinger equation, and with the help of
the commutation relations: [J,, J,] = i.J,, [J., J,] = iJ, and [J,, J,] = iJ,,
one easily shows that d(M)/dt = —yB x (M). For instance, the equation of
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(M) reads as:

d{M,)

in
SN

— KTy (M,dp/dt) = —Tr (Mx [M.E, p])
— v {a, (M.8) p} + 1 {p (31,800, ) | (122)
= =B, ((M; M) — (M,M,)) — B. ((M; M) — (M.M,))

The system evolves in 2J + 1 dimension Hilbert space, the state degeneracy
being totally lifted by the applied magnetic field. The magnetic dipole mo-
ment operates in the Hilbert space, but the expectation value of its x, y, 2
components obey those equations of motion in real space.

Turning now to the two-level atoms, we know that the Hamiltonian can
be expressed in terms of the Pauli matrices:

o o e o e

that can be put together to form the vector ¢. Hence the Hamiltonian of an
atom interacting with a classical electromagnetic field reads as:

1
Hy+ eRE = §hwab03 + pap Eoy (124)

where the state vector is expressed as: [¢)) = ala) + b|b) = {Z}

The Pauli matrices obey the same commutation rules as an angular mo-
mentum. More precisely, the spin operator defined as: S = %6 obeys the
commutation rules of a J = 1/2 angular momentum. Hence & can be re-
garded as a magnetic moment. In the two-level atom Hamiltonian, the opti-
cal electric field and the level spacing respectively play the same role as the

horizontal radio-frequency and the vertical static magnetic fields in NMR.

B.2 Bloch vector definition. Equation of motion

The Bloch vector B can be defined as the expectation value Tr (p&) of the
Pauli operator. According to the equation of motion, the Bloch vector rapidly
precesses around axis 73" at optical frequency wy,. The electric field oscillat-
ing at frequency wy, along axis ”1” can be broken up in two vectors rotating
with opposite velocities w; and —w; within the plane orthogonal to axis
73”. Only the electric field component at velocity wy, close to w,, couples
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efficiently to the Bloch vector. One neglects interaction with the other com-
ponent rotating at —wy. This is the rotating wave approximation.

In the frame of the rotating electric field component, the Bloch vector
coordinates u, v, w are directly derived fom the definition B = Tr (p&) as:

u = ﬁab + ﬁba
v =1(Pba — Pab) (125)
W = Pvb — Paa

The optical Bloch equation reads as®. :

U —Av 4+ Im(Q)w — yepu
0 = Au—Re(Q)w — yupv (126)
w = —Im(Q)u + Re(Q)v — (1 + w)

In the same way as the motion of a magnetic moment immersed in a magnetic
field, the Bloch equation can be written as:

dB - -~ dB
where: = ¢ Im(Q) , and ry =10 7 OB+ 10
A relax 0 0 Vo Vb

Some geometrical properties come along with the precession form of the
equation of motion:

e in the absence of relaxation, the length of B does not vary.

e if the system starts in a pure state, the length of B remains unity in
the absence of relaxation.

e when ﬁpoints to a fixed direction, B precesses around ﬁ, at fixed angle.
Projection of B on (3 direction is constant.

In previous sections we had defined the Rabi frequency so as to get rid of useless
numerical factors. In those sections the Bloch equation was expressed in terms of coherence
and level population. From now on we modify the Rabi frequency definition in order to
make the Bloch vector precession rate around axis Ou coincide with Q. Rabi frequency is
now defined as piqpA(7, t) /h instead of papA(7, t)/(25).
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e the driving vector ﬁ, the Bloch vector B and the increase of B form a
right-handed trihedron.

When atoms are resonantly excited by a fixed field, the Bloch vector
rotates at angular frequency €2 in the plane orthogonal to ﬁ The resulting
oscillation of w, representing the level population difference, is known as the
Rabi oscillation.

%)



References

[1]

2]

3]

4]

[5]

6]

7]

8]

[9]

[10]

L.-M. Duan, M. Lukin, J. I. Cirac, P. Zoller, Long-distance quantum
communication with atomic ensembles and linear optics, Nature 414
(2001) 413-418

S.E. Harris, Electromagnetically Induced Transparency, Physics Today
50(7)(1997) 36-42

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagneti-
cally induced transparency: Optics in coherent media, Rev. mod. Phys.
77 (2005) 633

L.V. Hau, S.E. Harris, Z. Dutton and C.H. Behroozi, Light speed re-
duction to 17 metres per second in an ultracold atomic gas, Nature 397
(1999) 594-598

C. Liu, Z. Dutton, C.H. Behroozi and L.V. Hau, Observation of coher-
ent optical information storage in an atomic medium using halted light
pulses, Nature 409 (2001) 490-493

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M.D.
Lukin, Phys. Rev. Lett. 86 (2001) 783

N.V. Vitanov, M. Fleischhauer, B.W. Shore, and K. Bergmann, Coher-
ent Manipulation of Atoms and Molecules by Sequential Pulses, Adwv.
At. Mol. Opt. Phys. 46 (2001) 55-190 (eds. B. Bederson, H. Walther,
Academic Press)

E. Arimondo, Coherent population trapping in laser spectroscopy,
Progress in Optics 35 (1996) 257

M. Fleischhauer and M. D. Lukin, Quantum memory for photons:
Dark-state polaritons, Phys. Rev. A 65 (2002) 022314

A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S. Zibrov, and
M. O. Scully, Nonadiabatic approach to quantum optical information
storage Phys. Rev. A 64 (2001) 043809; A. S. Zibrov, A. B. Matsko,
O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully,
Transporting and Time Reversing Light via Atomic Coherence, Phys.
Rev. Lett. 88 (2002) 103601

26



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S. -Y. Lan, T. A.
B. Kennedy and A. Kuzmich, Storage and retrieval of single photons

transmitted between remote quantum memories, Nature 438 (2005)
833

E. Kuznetsova, O. Kocharovskaya, Ph. Hemmer, and M. O. Scully,
Atomic interference phenomena in solids with a long-lived spin coher-
ence, Phys. Rev. A 66 (2002) 063802

B.S. Ham, P.R. Hemmer, and M.S. Shahriar, Efficient Electromag-
netically Induced Transparency in a Rare-Earth Doped Crystal, Opt.
Commun. 144 (1997) 227-230

Mark Phillips and Hailin Wang, Spin Coherence and Electromagneti-
cally Induced Transparency via Exciton Correlations, Phys. Rev. Lett.
89 (2002) 186401

M. Phillips, H. Wang, [. Rumyantsev, N. H. Kwong, R. Takayama, and
R. Binder, Electromagnetically Induced Transparency in Semiconduc-
tors via Biexciton Coherence, Phys. Rev. Lett. 91 (2003) 183602

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, J. A. Musser, Raman-
excited spin coherences in nitrogen-vacancy color centers in diamond,
Opt. Lett. 26 (2001) 361

R. A. Akhmedzhanov, A. A. Bondartsev, L. A. Gushchin, N. A.
Zharova, and A. G. Petrosyan, Electromagnetically Induced Trans-
parency on Zeeman Sublevels in Nd3* : LaFy Crystals, JETP Lett.
85 (2007) 389-92

A. V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S.
Ham, and P.R. Hemmer, Observation of Ultraslow and Stored Light
Pulses in a Solid, Phys. Rev. Lett. 88 (2002) 023602

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped
Light with Storage Times Greater than One Second Using Electromag-
netically Induced Transparency in a Solid, Phys. Rev. Lett. 95 (2005)
063601

57



[20]

[21]

22]

23]

[24]

[25]

S. A. Moiseev and S. Kroll, Complete Reconstruction of the Quan-
tum State of a Single-Photon Wave Packet Absorbed by a Doppler-
Broadened Transition, Phys. Rev. Lett. 87 (2001) 173601

N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Analysis of a quan-
tum memory for photons based on controlled reversible inhomogeneous
broadening Phys. Rev. A 75 (2007) 032327

T. W. Mossberg, R. Kachru, S. R. Hartmann, and A. M. Flusberg,
Echoes in gaseous media: A generalized theory of rephasing phenom-
ena, Phys. Rev. A 20 (1979) 1976-1996

M. Nilsson and S. Kroll, Solid state quantum memory using complete
absorption and re-emission of photons by tailored and externally con-
trolled inhomogeneous absorption profiles, Opt. Commun. 247 (2005)
393

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson,
Photon Echoes Produced by Switching Electric Fields, Phys. Rev. Lett.
96 (2006) 043602

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars,
Gradient Echo Quantum Memory for Light using Two-level Atoms,
arXiv:quant-ph /0612169

28



