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Quantum Memory for Light∗Jean-Louis Le GouëtLaboratoire Aimé Cotton, CNRS UPR3321, Univ Paris Sudbâtiment 505, 
ampus universitaire, 91405 Orsay 
edexjean-louis.legouet�la
.u-psud.frAbstra
tWe ouline two strategies for storage and re
overy of quantum lightin an ensemble of atoms. This series of le
tures has been devised as anelementary introdu
tion. Hen
e dis
ussion is essentially 
on�ned to asemi-
lassi
al pi
ture. We �rst 
onsider ele
tromagneti
ally indu
edtransparen
y (EIT) and stopped light. The roles of homogeneous andinhomogeneous broadening are examined. We propose both time- andfrequen
y-domain des
riptions. Then we dis
uss the total re
all of asignal after 
apture by an absorbing material. Rephasing pro
essesare brie�y reviewed. We refer to various re
ent experimental works,espe
ially those 
ondu
ted in solid state media. The 
ourse is intendedto be self 
ontained and in
ludes reminders on some quantum physi
selements su
h as the density operator and the Blo
h ve
tor.Contents1 Introdu
tion 32 Two ways of re
overing light 52.1 Ele
tromagneti
ally indu
ed transparen
yand stopped light . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Re
overy from an absorbing medium . . . . . . . . . . . . . . 7
∗This series of le
tures was delivered at E
ole Prédo
torale des Hou
hes, session XXIV,Quantum Opti
s, September 10-21, 2007. The session was dire
ted by Ni
olas Treps andIsabelle Robert-Philip. 1
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1 Introdu
tionTransport of quantum information is ideally a

omplished by light but, atsome stage, a material system is needed for pro
essing and/or storage. Manygroups around the world strive to build a quantum memory that should storethe non-
lassi
al properties of a light signal, then to restore the original signal.If long distan
e quantum 
ryptography is 
ommonly invoked to justify theseresear
hes[1℄, above all this is a fas
inating quantum physi
s problem, givinga new insight in light-matter intera
tion.Quantum information is related to noise. When the �u
tuations of a
lassi
al light sour
e are redu
ed to the quantum limit, noise is equally dis-tributed over a pair of 
onjugated observables su
h as photon number andphase, Stokes ve
tor 
omponents or �eld quadratures. A light beam 
ar-ries quantum information if the noise a�e
ting one observable is squeezedunder the standard quantum limit 
orresponding to equipartition of noise.Of 
ourse noise redu
tion on one observable entails in
reased noise on the
onjugate quantity. Naively speaking, a quantum memory should be able torestore a signal in the tiniest details, beyond the quantum limit.Resonant ex
itation of an atomi
 transition provides appropriate strong
oupling between light and matter. However, intera
tion with a single atomis not enough to trap the in
ident photon with absolute 
ertainty. One 
anin
rease the 
oupling by pla
ing the atom inside a high �nesse 
avity. Instead,in the present 
ourse, we only 
onsider trapping of light by a ma
ro
opi
ensemble of atoms.We also need interrogate the memory at will, 
ontrolling the momentwhen the signal is restored. This 
an be a
hieved through an auxilliaryopti
al transition, 
oupled to the quantum �eld 
apture transition. Severalproto
ols rely on the Lambda three-level system. A 
ommon upper levellinks the two transitions that are 
onne
ted to two sub-levels of the ele
troni
ground state.The quantum-properties preserving storage of one photon is an unitarypro
ess. Initially, the single ex
itation light state is 
ombined with the ma-terial medium ground state. The 
ompound system undergoes an unitarytransform towards a state where the unique ex
itation has been transposed tomatter. The stored information is retrieved with the help of the reverse uni-tary transform. What makes the pro
ess so di�
ult is pre
isely the unitarytransform that involves a ma
ros
opi
 ensemble of atoms. One 
an 
ertainly
onvert one photon into an ex
itation of a strongly absorbing medium. This3



is not enough to make a quantum memory. A single photon pulse is 
har-a
terized by a spatial mode and a spe
tro-temporal distribution. Generallyan in
ident photon only transfers its energy to the absorbing medium. Thephoton will be reemitted eventually, after multiple reabsorption and s
atter-ing, in a spatial and spe
tro-temporal state devoid of any 
onne
tion withthe initial state.The reason why energy alone is transferred to the medium is not so ob-vious. When exposed to opti
al ex
itation, a two-state atom, initially in theground level, is promoted to a quantum superposition state. Quantum infor-mation thus �ows from light to the atom. Provided that atoms are numerousenough one thus expe
ts that all the in
ident light 
ould be 
onverted intoquantum atomi
 ex
itation. However one is fa
ed with several issues. First,in general, the medium does not return to initial state after readout, a 
on-dition to be ful�lled for total re
overy of the quantum state of light. There
overed �eld, propagating along the same waveve
tor as the initial signal,grows from zero in the input side. Therefore the atoms 
lose to the input sideof the absorbing medium are the most strongly ex
ited by the in
oming lightsignal, but also undergo the smallest feedba
k from the restored �eld thatfails to take them ba
k to the ground state. The atomi
 state and retrieved�eld mismat
h results in partial absorption and in
omplete extra
tion of thestored information. In addition to this propagation issue, one should mentionrandom redistribution of light by spontaneous emission and quantum statedestru
tion by 
oheren
e relaxation. However, in many systems 
oheren
elifetime remains 
ompatible with the demonstration of quantum storage forlight.In this series of le
tures we shall essentially examine two ways of e�-
iently restoring the signal �eld, that is to say two ways of addressing thepropagation problem. One approa
h is known as Ele
tromagneti
ally In-du
ed Transparen
y. This is a radi
al way to deal with absorption. Thestorage medium is made transparent to the in
oming signal, operating as atrap that 
loses on
e the quantum �eld is inside. The other approa
h takesadvantage of rephasing pro
edures to optimize the signal re
onstru
tion. Weshall essentially restri
t the dis
ussion to semi
lassi
al theory, assuming that,within the limits of linear 
onditions, an e�
ient re
overy pro
edure generallyapplies to a quantum �eld if it works with a 
lassi
al �eld.
4
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Figure 1: Prin
iple of EIT. All atoms are initially prepared in state |a〉. The
oupling �eld, resonant with the b → c empty transition, opens a trans-paren
y window on the a → b transition. The absorption pro�le distortiongoes along with modi�ed dispersion of the index of refra
tion. This is re-�e
ted in group velo
ity redu
tion within the transparen
y window.2 Two ways of re
overing light2.1 Ele
tromagneti
ally indu
ed transparen
yand stopped lightAs noti
ed above, the re
onstru
ted signal tends to be reabsorbed duringpropagation through the storage medium. This problem is addressed in aradi
al way by Ele
tromagneti
ally Indu
ed Transparen
y (EIT), sin
e themedium is made transparent at the signal input and output [2, 3℄. With thehelp of an external 
ontrol, the material opa
ity is swit
hed on and o� atwill.To 
ontrol the opa
ity one resorts to an auxilliary opti
al transition thatshares an atomi
 level with the storage transition. Hen
e, instead of two-levelatoms, we have to 
onsider an ensemble of three-level Λ-systems. Initially5



all the atoms are in |a〉, whi
h makes the medium absorbing on the a → btransition. Let us remind that absorption results from the 
oupling of thein
ident �eld with the rea
tion of the medium, represented by the ma
ro-s
opi
 polarization density. EIT pre
isely pro
eeds through the annihilationof the polarization on the a→ b transition. This is a

omplished by a 
ontrol�eld that resonantly ex
ites the b → c auxilliary transition. When swit
hedon, the 
ontrol �eld 
onverts the a → b opti
al polarization into the Raman
oheren
e of states |a〉 and |c〉. The opti
al polarization vanishing rendersthe medium transparent on a→ b (see Fig. 1). Sin
e b → c 
onne
ts emptylevels, the medium is transparent on b → c too, so that all the atoms ex-perien
e the same 
ontrol �eld strength, wherever they are lo
ated in theabsorbing medium.The 
ontrol �eld does not just open a transparen
y window. In a

or-dan
e with Kramers Krönig relations, the distorsion of absorption pro�le isasso
iated with a disturban
e of the index of refra
tion, whi
h results in theredu
tion of the group velo
ity v. In terms of dispersion of the refra
tionindex n(ω), the group velo
ity v 
an be expressed as:
v

c
=

1n(ω) + ω
dn(ω)dω (1)The �eld amplitude is 
ontinuous at the va
uum-medium interfa
e. How-ever the spatial extension of a signal pulse is 
ompressed along the dire
tionof propagation be
ause of the velo
ity group redu
tion. The �eld envelopeundergoes a v/c shrinking. The energy 
arried by the pulse is redu
ed by thesame ratio, dropping 
lose to zero when v << c. A
tually energy transferfrom the signal pulse to the 
ontrol �eld 
omes along with the opti
al po-larization 
onversion into Raman 
oheren
e. It is rather intriguing that thesignal energy is taken away by the 
ontrol �eld, while the spatial and spe
tro-temporal signal properties keep stored in the medium. Reverse transforma-tion takes pla
e at the a
tive medium exit. The signal �eld then re
overs itsinitial energy together with its spatial and spe
tro-temporal properties.The EIT pro
ess has been demonstrated with 
lassi
al light in variousmaterials ranging from gas to 
ondensed matter. Light speed redu
tion to17 metres per se
ond was observed in an ultra
old atomi
 gas [4℄. Then itwas realized that light 
ould not only be slowed down but even "stopped" ina Λ-system. Indeed, if the 
ontrol �eld is swit
hed o� while the signal pulseis entirely 
ontained within the a
tive medium, the remaining properties6




arried by the signal �eld are absorbed and lost, but most of them have beensaved in the Raman 
oheren
e. If the 
ontrol �eld is restored before theRaman 
oheren
e relaxes, the signal �eld is rebuilt, resumes its progressionthrough the medium and �nally exits, having preserved most of its initial
hara
teristi
s [5, 6℄.In the next se
tions we analyti
ally derive the various operating 
ondi-tions of the memory. Right now we 
an list most of them. We already noti
edthat information transfer to the Raman 
oheren
e is subje
t to the 
ondition
v << c. In order to be entirely 
ontained within the L-thi
k material at themoment of the 
ontrol �eld swit
hing o�, the signal pulse must exhibit a du-ration T smaller than L/v. Besides the signal bandwidth ∆ must be smallerthan the width of the transparen
y window. Finally those 
onditions mustbe 
onsistent with the time and frequen
y Fourier 
onjugation, a

ording towhi
h ∆T > 1.It should be stressed that the 
ontrol �eld, intera
ting with a transitionbetween empty levels, does not ex
ite any atoms on its own. As a 
onse-quen
e this �eld does not generate any noise. The signal �eld alone 
onveysex
itation to the atomi
 ensemble.Finally it should be noti
ed that EIT 
on�guration imposes that the weaksignal �eld should be isolated from the intense 
ontrol �eld. This 
ould be amajor drawba
k.2.2 Re
overy from an absorbing mediumInstead of resorting to the radi
al solution of indu
ing transparen
y, one 
antry to retrieve the signal despite of medium absorption. We already noti
edthat the re
overed �eld shall be weaker at the input side of the medium,pre
isely in the region where the in
oming �eld is stronger. As a 
onsequen
ethe re
overed �eld is unable to turn the atoms ba
k into their initial state,whi
h hampers 
orre
t information retrieval. In order to evade this obsta
le,one 
an try to make the restored �eld to propagate in the opposite dire
tionof the in
oming signal �eld. This way, building up from the output side, therestored �eld gains strength all along the storage medium and is expe
tedto rea
h its maximum intensity at the input side and to be intense enoughthere to turn the atoms ba
k to the ground state.Ba
k s
attering of the signal �eld reminds of phase 
onjugation in non-linear opti
s. Three beams may be appropriate to reverse the dire
tion ofpropagation. Again this 
an be 
ombined with a three-level Λ-system. The7
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Figure 2: Signal re
overy with reversed dire
tion of propagation. Coun-terpropagating π-pulses are used to 
onvert opti
al ex
itation into Raman
oheren
e, then ba
k to opti
al ex
itation. Therefore the restored signalpropagates ba
kward with respe
t to the in
oming one.
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signal to be stored propagating along ~k1 ex
ites the a→ b transition. Then alight pulse propagating along ~k2, resonant with the b→ c transition, 
onvertsthe opti
al ex
itation of a → b into the Raman 
oheren
e of states |a〉 and
|c〉. A π-pulse 
an e�
iently a
hieve su
h a 
onversion. The notion of pulsearea will be de�ned later. Information is stored in the Raman 
oheren
e untilanother π-pulse, propagating along ~k3 
onverts ba
k the Raman 
oheren
einto opti
al ex
itation of a→ b. In a

ordan
e with general phase mat
hing
onditions, the signal 
an be re
onstru
ted in the dire
tion ~k3 +~k2 −~k1, thatis to say in dire
tion −~k1 provided ~k3 = −~k2 (see Fig. 2).If atoms are initially prepared in state |a〉, the medium is transparent tothe 
onversion pulses. In addition, those pulses do not indu
e any ex
itationnoise sin
e the in
oming signal �eld alone 
an 
onvey ex
itation to the atomi
ensemble.Unfortunately it does not work so easily. The pro
ess relies on the timeseparation of the di�erent steps, namely the 
apture of the in
oming signal,the 
onversion to Raman 
oheren
e, the ba
k 
onversion to opti
al ex
ita-tion and the re
overed signal emission. In order to be stored, the data pulsemust be shorter than the |a〉 and |b〉 superposition state lifetime. Equiv-alently, the data pulse bandwidth must ex
eed the homogeneous linewidth.Yet, in an homogeneously broadened medium, where all atoms have the sametransition frequen
y, the storage bandwidth is pre
isely limited by the ho-mogeneous width, given by the inverse duration of the superposition state.Therefore one is fa
ed with 
ontradi
tory 
onstraints, sin
e the in
omingpulse must simultaneously be narrower than the absorption pro�le, in orderto be 
aptured, and shorter than the superposition state lifetime, in orderto be stored. In an e�ort to over
ome the 
ontradi
tion, let us 
onsider aninhomogeneously broadened medium, where atoms exhibit di�erent transi-tion frequen
ies. The memory bandwidth is no longer limited by the inversesuperposition state lifetime and mu
h shorter signal pulses 
an be 
onsid-ered. Then one meets another obsta
le. The superposition states that arebuilt in di�erent atoms evolve at di�erent rates, whi
h entails relative phaseshift. The above des
ribed pulse sequen
e is unable to rephase the atoms,a ne
essary 
ondition for signal re
overy. We shall see how to solve thisproblem.After the general presentation of the two memory ar
hite
tures to be
onsidered, we now pro
eed to the detailed analysis of the underlying physi
s.9



3 Semi-
lassi
al des
ription of light-matter in-tera
tion3.1 Atom ex
itation by lightThe sample is illuminated by travelling plane waves. The ele
tromagneti
�eld is regarded as a 
lassi
al quantity. The 
omplex amplitude of the ele
tri
�eld is given by:
E(~r, t) =

1

2
(E(~r, t) + E∗(~r, t)) =

1

2
(A(~r, t)eiωLt−i~k.~r + c.c.) (2)The main time and spa
e variation is 
olle
ted in the phase fa
tor eiωLt−i~k.~rthat 
hara
terizes a wave with 
entral frequen
y ωL, propagating along awave ve
tor ~k. The envelope A(~r, t) little varies on the time and spa
es
ales of opti
al period and wavelength. The wave ve
tor length is de�nedas ωL = kc.The terms E(~r, t) and E∗(~r, t) respe
tively stand for the positive and nega-tive frequen
y 
omponents of the �eld. Indeed the time-to-frequen
y Fouriertransform of E(~r, t), E(~r, ω) = F[E(~r, t)], 
entered at opti
al frequen
y ωL, is
lose to 0 at −ωL.Intera
tion to the atomi
 system is des
ribed in ele
tri
 dipole approxi-mation by the hamiltonian:

HI = −q ~R. ~E (3)where q is the (negative) ele
tron 
harge. Thus q = −e, where e representsthe elementary 
harge. The transition dipole matrix element between states
|i〉 and |j〉:

~µij = 〈i|e~R|j〉 (4)is de�ned with appropriate phase 
hoi
e so that this element is real.The atom density matrix equation reads as:










i~ρ̇ = [H, ρ] +
dρ

dt

∣

∣

∣

∣relaxation
H = H0 − q ~R · ~E = H0 + e~R · ~E

(5)This equation 
ombines the unitary evolution, driven by the ele
tromagneti
�eld, and the non-unitary evolution 
aused by 
oupling with environment.The latter is des
ribed by the phenomenologi
al relaxation term.10



In order to be more spe
i�
, let us �rst 
onsider the intera
tion of a two-level atom with the in
oming �eld. Expanding the density matrix equationon the set of eigenstates |a〉, |b〉 one obtains:






ρ̇aa = i(ρab − ρba)(ΩeiωLt−i~k.~r + c.c.) + γbρbb

ρ̇bb = −ρ̇aa

ρ̇ab = i(ρaa − ρbb)(ΩeiωLt−i~k.~r + c.c.) + (iωab − γab)ρab

(6)where the Rabi frequen
y is de�ned as:
Ω(~r, t) =

µabA(~r, t)

2~
(7)If A(~r, t) is 
omplex, the Rabi frequen
y is 
omplex too. In order to separatethe fast os
illation at opti
al frequen
y, one substitutes ρab with:

ρab = ρ̃abe
iωLt−i~k.~r (8)This is not a swit
h to intera
tion pi
ture. In intera
tion representationone de�nes the operator ρI = exp(− i

~
H0t)ρ exp( i

~
H0t) that involves a fa
tor

exp(−iωabt), spe
i�
 to ea
h frequen
y 
lass. Instead, swit
hing to the frame"rotating" at laser frequen
y, one applies the same tranform to all frequen
y
lasses. This di�eren
e will prove important in inhomogeneously broadenedmedia where atoms os
illate at various frequen
ies.Then, negle
ting all the terms os
illating at harmoni
 overtones of ωL, oneobtains the Rotating Wave Approximation of the density matrix equation:






ρ̇aa = i(ρ̃abΩ
∗ − ρ̃baΩ) + γbρbb

ρ̇bb = −ρ̇aa

˙̃ρab = i(ρaa − ρbb)Ω + (i∆ − γab)ρ̃ab

(9)where ∆ = ωab − ωL. One may formally integrate these equations. One �rstintegrates the homogeneous equations. Then one takes the non-homogeneousterm into a

ount by the method of variation of the parameters. One obtains:














nab(t) = 1 + (nab(t0) − 1)e−γb(t−t0) + 2i

∫ t

t0

dt′(ρ̃abΩ
∗ − ρ̃baΩ)e−γb(t−t′)

ρ̃ab(t) = ρ̃ab(t0)e
(i∆−γab)(t−t0) + i

∫ t

t0

dt′Ωnabe
(i∆−γab)(t−t′) (10)Whether in di�erential or integral forms, these equations are known as opti
alBlo
h equations. They rely on the following assumptions:11



• intera
tion with the 
lassi
al �eld is des
ribed in ele
tri
 dipole approx-imation
• transition frequen
ies are 
onstant parameters
• relaxation pro
esses are des
ribed by phenomenologi
al de
ay ratesThe density matrix of a two-level atom is 
omprised of 4 
omponents, 2 ofwhi
h are 
omplex. The tra
e 
onservation and the symmetry property ρab =

ρ∗ba redu
e the number of independent parameters to 3, namely the populationdi�eren
e and the real and imaginary 
omponents of the 
oheren
e. Blo
hequations are nothing but the three linear di�erential equations that 
ouplethese three quantities.3.2 Radiative responseWhen prepared in a superposition of two states linked by an opti
al tran-sition, the atoms behave as os
illating dipoles, i.e. as radiating mi
ros
opi
antennas. They behave as real sour
es of Huyghens wavelets (see Fig. 3).In the same way as the virtual sour
es of Huyghens wavelets, the atomsa
quire the spa
e and time phase of the in
oming �eld. As long as phaseproperties are preserved, that is to say as long as the atomi
 
oheren
e hasnot been erased by homogeneous relaxation or phase-shift by inhomogeneousdetuning, the atoms radiate as the virtual sour
es of Huyghens di�ra
tiontheory. Spe
i�
ally, the spatial 
oheren
e of the sour
es makes the wavelets
onstru
tively interfere in the dire
tion of the in
oming wave. Elaboratingthe analysis a little further, one 
an determine the di�ra
tion limited angularaperture of the emitted signal.With this pi
ture in mind, let us pro
eed to the lo
al des
ription of theatomi
 response, as derived from Maxwell equations. In a diele
tri
 medium,in the absen
e of ele
tri
 
harges those equations read as:
rot( ~E) = −∂t

~B Faraday law
rot( ~B) = ∂t

~D Ampère theorem
div( ~D) = 0 Gauss theorem (11)where ~D 
an be expressed in terms of the ma
ros
opi
 polarization density

~P as:
~D = ǫ0 ~E + ~P (12)12
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Figure 3: The 
oherent atomi
 response to opti
al ex
itation 
an be under-stood within the frame of Huyghens di�ra
tion theory. The atomi
 dipolesbehave as real sour
es of Huyghens wavelets.These equations 
ombine into the wave equation with sour
es:
∆ ~E − µ0ǫ0

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
− 1

ǫ0
grad[div(~P )] (13)The atomi
 response is 
ontained in the ma
ros
opi
 polarization density ~P .We assume that the transverse variation of ~P is very small on the s
ale ofthe atomi
 wavelength. This enables us to drop the se
ond term on the righthand side of Eq.13.We have now to express the ma
ros
opi
 polarization density in terms ofthe opti
al Blo
h equation solutions. Let us 
onsider the N atoms sittingwithin an elementary volume V . The size of this volume is small enoughwith respe
t to the opti
al wave length so that all the atoms intera
t withthe same �eld. The total dipole moment is expressed as the sum of the

N individual dipoles. The expe
tation value of the 
orresponding quantumobservable reads as:
〈

N
∑

i=1

µi

〉

= Tr

[(

N
∑

i=1

µi)

)

ρ

] (14)13



where ρ represents N-atom density operator. The N -atom state is initiallyfa
torizable and is assumed to remain so under semi-
lassi
al ex
itation.In other words, semi-
lassi
al ex
itation is expe
ted not to entangle the Natoms. The density operator then reads as:
ρ = ρ1 ⊗ . . .⊗ ρi ⊗ . . .⊗ ρN (15)In order to express the total dipole in terms of the individual density matri
es,one uses the relation:

Tr
1···N 6=i

(ρ1 ⊗ . . .⊗ ρi ⊗ . . .⊗ ρN) = ρi (16)Then the total dipole expe
tation value redu
es to:
〈

N
∑

i=1

µi

〉

=

N
∑

i=1

Tr
i

[

Tr
1···N 6=i

(µiρ)

]

=

N
∑

i=1

Tr
i

(

µi Tr
1···N 6=i

ρ

)

=

N
∑

i=1

Tr(µiρi)(17)For the time being we ignore inhomogeneous broadening. All the atomshave the same transition frequen
y. Then the elementary volume dipolemoment reads as:
N
∑

i=1

Tr(µiρi) = −Nµab [ρab(~r, t) + ρba(~r, t)] (18)where the sum runs over all the atoms within the elementary volume, with
〈a|µ|a〉 = 〈b|µ|b〉 = 0. A minus sign appears be
ause µab has been de�nedfrom the elementary 
harge e and not from the ele
tron 
harge q = −e.Dividing by the volume V , one �nally gets the ma
ros
opi
 polarizationdensity:

P (~r, t) = −nµab [ρab(~r, t) + ρba(~r, t)] (19)where n denotes the density of a
tive atoms per unit volume.In the same way as the ele
tri
 �eld, the polarization density appears to be
omprised of positive and negative frequen
y 
omponents. Those 
omponentsdo not overlap spe
trally, being distant by hundreds of THz, so they satisfyun
oupled wave equations. The positive frequen
y 
omponent wave equationreads as:
1

2

(

∆ − 1

c2
∂2

∂t2

)

(

A(~r, t)eiωLt−i~k.~r
)

= −n µab

c2ǫ0

∂2

∂t2

(

ρ̃ab(~r, t)e
iωLt−i~k.~r

) (20)14



Within the frame of the slowly varying envelope approximation, we 
an ne-gle
t the 
ontributions of order ∂tA(~r, t)/[ωLA(~r, t)] and ∇A(~r, t)/[kA(~r, t)].The wave equation then redu
es to:
(

∂

∂z
+

1

c

∂

∂t

)

A(~r, t) = ink
µab

ǫ0
ρ̃ab(~r, t) (21)Substituting A(~r, t) with Eq.7 one obtains:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = ink
µ2

ab

2~ǫ0
ρ̃ab(~r, t) (22)It is worth expressing this equation of propagation in terms of the resonantabsorption 
oe�
ient α0. To �rst order in Ω(~r, t) the Blo
h equation for

ρ̃ab(~r, t) reads as:
ρ̃ab(~r, t) = i

∫ t

−∞

Ω(~r, t′)e−γab(t−t′)dt′ (23)whi
h redu
es to ρ̃ab(~r, t) = iΩ(~r, t′)/γab if Ω(~r, t) little varies on γ−1
ab times
ale. This 
ondition simply means that the �eld bandwidth is mu
h narrowerthan the absorption line, so that the polarization density instantaneouslyadjusts to the �eld variations. Substituting the expression of ρ̃ab(~r, t) inEq.22 one obtains:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = −nk µ2
ab

2~ǫ0γab
Ω(~r, t) = −α0

2
Ω(~r, t) (24)Finally the wave equation reads as:

(

∂

∂z
+

1

c

∂

∂t

)

Ω(~r, t) = i
α0γab

2
ρ̃ab(~r, t) (25)4 Three-level Λ-system, EIT4.1 Opti
al ex
itation of the Λ-systemIn a Λ-system an upper state |b〉 is 
onne
ted through opti
al transitions totwo lower states |a〉 and |c〉. The system is illuminated by two driving �elds.The a → b and b → c transitions are respe
tively driven at frequen
ies ω115



and ω2 with Rabi frequen
ies Ω1 and Ω2. Ea
h driving �eld is assumed toex
ite a single transition. Angular sele
tion rules may help to dis
riminatethe transitions. Indeed 
ross-polarizing the light beams may be enough toseparately drive the two transitions when su
h sele
tion rules apply. Other-wise, the splitting ωac must be mu
h larger than the homogeneous widths,the Rabi frequen
ies and the detunings |ωab−ω1| and |ωbc−ω2|. The adjun
-tion of a third state signi�
antly 
ompli
ates the density matrix formalism.Instead of 3 real independent parameters in a two-level system, one is leftwith 8 real parameters in a three-level atom. Those quantities are 
oupledby the following di�erential linear equations:






























ρ̇aa = i(ρ̃abΩ
∗
1 − ρ̃baΩ1) + raγbρbb

ρ̇cc = i(ρ̃cbΩ
∗
2 − ρ̃bcΩ2) + rcγbρbb

ρ̇bb = −ρ̇aa − ρ̇cc

˙̃ρab = [i(ωab − ω1) − γab]ρ̃ab + i(ρaa − ρbb)Ω1 + iρ̃acΩ2

˙̃ρcb = [i(ωbc − ω2) − γbc]ρ̃cb + i(ρcc − ρbb)Ω2 + iρ̃caΩ1

˙̃ρac = [i(ωac − ω1 + ω2) − γac]ρ̃ac + i(ρ̃abΩ
∗
2 − ρ̃bcΩ1)

(26)
The system is assumed to be 
losed. The 
oe�
ients ra and rc = 1 − raa

ount for the upper level relaxation distribution between the two groundsublevels. As usual in the rotating wave pi
ture, the o�-diagonal matrixelements have been substituted with:

ρab = ρ̃abe
iω1t−i ~k1.~r

ρcb = ρ̃cbe
iω2t−i ~k2.~r

ρac = ρ̃ace
i(ω1−ω2)t−i( ~k1− ~k2).~r

(27)The �rst three lines of Eq.26 express the population evolution. This doesnot di�er from the 
orresponding two-level system equations. The last threelines of Eq.26, a

ounting for 
oheren
e evolution, are more spe
i�
. Firstone observes that 
oheren
e ρac is ex
ited by the light �elds, although nodire
t transition 
onne
ts states |a〉 and |c〉. Besides, 
oheren
es ρab and
ρbc are 
oupled not only to level populations, but also to ρac. For instan
e,
oheren
e ρab is built not only from dire
t ex
itation of state |a〉 populationby �eld Ω1, but also from the ex
itation of 
oheren
e ρac by �eld Ω2.The system evolution is generally 
omplex when both �elds are appliedsimultaneously. One observes phenomena su
h as stimulated Raman adia-bati
 passage (STIRAP) [7℄, dark resonan
e [8℄, or the EIT pro
ess we areabout to examine more 
arefully. 16



However, the ex
itation of ρac, also known as the Raman 
oheren
e, givesrise to attra
tive features even when the �elds Ω1 and Ω2 do not intera
tsimultaneously with the system. We shall meet su
h features within theframe of signal re
onstru
tion in an absorbing medium.4.2 Solving the Blo
h equations with EIT 
onditionsIn this se
tion we follow the lines of Ref. [9℄. With the following assumptions:
• all the atoms are initially prepared in state |a〉

• Ω2, known as the "
oupling" or "
ontrol" �eld, is a 
onstant.
• Ω1, 
arrying the information to be stored, has a pulse area << 1the density matrix equations get mu
h simpler. To �rst order in Ω1, the levelpopulation does not vary and the term ρ̃bcΩ1 
an be negle
ted. Thereforethe equations of ρab and ρac turn into:

˙̃ρab = [i(ωab − ω1) − γab]ρ̃ab + iΩ1 + iρ̃acΩ2

˙̃ρac = [i(ωac − ω1 + ω2) − γac]ρ̃ac + iρ̃abΩ
∗
2

(28)In addition we assume the 
oupling �eld resonantly ex
ites the b → c tran-sition, and the signal pulse 
entral frequen
y ω1 
oin
ides with ωab. Theequations redu
e to:
˙̃ρab = −γabρ̃ab + i(Ω1 + ρ̃acΩ2) (29)
˙̃ρac = −γacρ̃ac + iρ̃abΩ

∗
2 (30)Substituting Eq. 30 into Eq. 29, one obtains:

ρ̃ac = −Ω1

Ω2
− i

Ω2
(∂t + γab)ρ̃ab = −Ω1

Ω2
− 1

|Ω2|2
(∂t + γab)(∂t + γac)ρ̃ac (31)If ρ̃ac redu
es to the �rst term on the right hand side of Eq. 31, then thedriving term Ω1 + ρ̃acΩ2 vanishes in Eq. 29. In other words, the Raman
oheren
e 
ontribution interferes with single-photon ex
itation to preventthe buildup of ρab. The absen
e of atomi
 response to Ω1 on the a → btransition is re�e
ted by the absen
e of Ω1 absorption.17



This o

urs if the se
ond term on the right hand side of Eq.31 
an benegle
ted, i.e. if:
(∂t + γab)(∂t + γac)Ω1 << Ω1/|Ω2|2 (32)Then ρ̃ac adiabati
ally follows the variations of Ω1. Given that ρaa

∼= 1, thesolution ρ̃ac = −Ω1/Ω2 a
tually 
orresponds to the dark state:
|D〉 =

Ω2
√

Ω2
1 + Ω2

2

|a〉 − Ω1
√

Ω2
1 + Ω2

2

|c〉 (33)This is an important feature of EIT: intera
tion with the signal �eld Ω1immediately starts in the dark state, unlike what o

urs in other three-levelpro
esses su
h as Coherent Population Trapping (CPT)[8℄.Substituting ρ̃ac into Eq. 30, one �nally obtains the expression of opti
al
oheren
e:
ρ̃ab =

i

|Ω2|2
(∂t + γac)Ω1, (34)from whi
h we 
an 
al
ulate the atomi
 feedba
k on the in
oming signal �eld

Ω1.4.3 EIT wave equationSubstituting Eq. 34 into Eq. 25 one obtains:
[

∂

∂z
+

(

1

c
+
α0γab

2|Ω2|2
)

∂

∂t

]

Ω1(~r, t) = −α0

2

γabγac

|Ω2|2
Ω1(~r, t) (35)This equation takes the usual form des
ribing resonant plane wave propaga-tion through an ensemble of two-level atoms in the linear regime. However,the propagation parameters are deeply altered:

• the absorption 
oe�
ient is redu
ed from α0 to:
αΩ = α0

γabγac

|Ω2|2
(36)With typi
al γab and γac values of about 106s−1 and 103s−1 respe
tively,an Ω2 
ontrol �eld Rabi frequen
y of order 3 105s−1 is enough to redu
eopa
ity by two orders of magnitude.18



• the group velo
ity is redu
ed from 
 to:
v =

(

1

c
+
α0γab

2|Ω2|2
)−1 (37)With the same numeri
al parameters, and with α0 = 103m−1, the groupvelo
ity amounts to no more than 200m/s!The wave equation also tells us that, within the transparen
y window, anin
oming travelling wave of the form Ω1(t− z/c) in free spa
e turns into theform Ω1(t − z/v) as it propagates through the a
tive medium. The wavepreserves its temporal pro�le, just undergoing spatial 
ompression by thefa
tor v/c. The �eld amplitude is also preserved due to 
ontinuity at theinterfa
e of free spa
e and a
tive medium. Therefore neither the in
omingsignal duration nor its spe
tral width is a�e
ted by slowing down, providedthat the signal is 
ontained within the transparen
y window. Now we need
larify the notion of transparen
y window.The EIT wave equation has been derived within the adiabati
 
onditionlimits. The in
oming �eld variations have been assumed to be slow enoughso that the Raman 
oheren
e 
an instantaneously adjust to them. One ex-pe
ts the adiabati
 
ondition to fail if the in
oming �eld varies too rapidly,i.e. if its spe
tral width ex
eeds some limiting value. Let us 
hara
terize thesignal spe
tra width by the quantity Ω−1

1 ∂tΩ1. Let the signal be narrowerthan the absorption linewidth γab, whi
h leads to: (∂t + γab)Ω1
∼= γabΩ1.Then the adiabati
 
ondition reads as (∂tΩ1)/Ω1 << |Ω2|2/γab. The trans-paren
y width would thus be given by δT = |Ω2|2/γab. This result needbe examined more 
arefully. The di�erential equations we rely on − Blo
hequation and wave equation − only 
onvey lo
al des
ription, as illustratedby the linear absorption 
oe�
ient. However, we need the overall transmis-sion through the entire atom ensemble to de�ne the transparen
y window.Let the absorption 
oe�
ient at ∆ from resonan
e be approximated by thefun
tion: α(∆) = α0[1 − e−(∆/δT )2 ]. Then the transmission fa
tor reads as

e−α(∆)L ∼= e−α0L(∆/δT )2 , whi
h �nally leads to the transparen
y width:
∆T = δT/

√

α0L =
|Ω2|2

γab

√
α0L

(38)
19



4.4 Storage and retrieval, stopped lightThe energy 
arried by the in
oming signal 
an be expressed as:
∫

|Ω1(t− z/c)|2 dz = c

∫

|Ω1(t− x)|2 dx (39)If one is able to have the entire pulse standing within the a
tive medium, the
arried energy be
omes, inside the material:
∫

|Ω1(t− z/v)|2 dz =
v

c

∫

|Ω1(t− z/c)|2 dz (40)whi
h represents a v/c redu
tion with respe
t to the free spa
e value. There-fore most of the energy has been extra
ted from the �eld if v << c. It 
anbe shown that energy has been transferred to the 
ontrol �eld, as soon asthe signal �eld 
rosses the free spa
e to material interfa
e. Nonetheless, theRaman 
oheren
e is expressed as Ω1/Ω2, being proportional to the instan-taneous signal �eld. Therefore, a spin wave propagates within the materialalong with the signal �eld, although the latter does not 
arry any energy.If one abruptly swit
hes o� the 
ontrol �eld, the residual signal �elddisappears, being absorbed by the material, while the spin wave stops prop-agating, but survives as long as permitted by de
oheren
e pro
esses. Oneimproperly says that light is "stopped". A
tually one should say that thesignal �eld has been split into two parts. On the one hand, its energy hasbeen removed by the 
ontrol �eld. On the other hand its information 
ontenthas been stored in the Raman 
oheren
e [10℄.When the 
ontrol �eld is turned ba
k on, the signal �eld is rebuilt fromthe Raman 
oheren
e. The restored �eld resumes its progression, pulling its
ompanion spin wave. Energy is fed ba
k to the �eld at the output of thea
tive medium.To "stop" light without losing information, one has to make the entiresignal pulse to stand within the boundaries of the a
tive medium. The partof the signal entering the storage medium after 
ontrol �eld shutdown is lostby absorption. The spatial extension of a pulse with duration τ is vτ . Thishas to be smaller than the material thi
kness L. Besides the signal spe
tralwidth ∆ must be smaller than the transparen
y width ∆T . Combining thosetwo 
onditions leads to:
∆ τ << ∆TL/v =

√

α0L (41)20



With the additional 
ondition ∆ τ > 1, be
ause of time-frequen
y Fourier
onjugation, the "stopped" light storage requirement reads as:
√

α0L >> 1 (42)4.5 Limits of the semi-
lassi
al pi
tureIn a "stopped" light pro
ess, a single photon trapping is expe
ted to leavethe atom ensemble in the following superposition state:
|Ψ1〉 =

1√
N

(

eiφ(~r1)|ca · · ·a〉 + eiφ(~r2)|ac · · ·a〉 + · · · + eiφ(~rN )|aa · · · c〉
) (43)This is a 
olle
tive single ex
itation state where the sum runs over all theatoms intera
ting with the �eld. All the atoms are 
onsidered on an equalfooting, whi
h does not perfe
tly a

ount for the �nite spatial extension of thestored light pulse. However this does not interfere with the general meaningof the present dis
ussion.The 
olle
tive state appears to be entangled. It 
annot be fa
torized asa produ
t of individual atom states. This is pre
isely the type of state that
annot be produ
ed in the frame of a semi
lassi
al pi
ture analysis. In thesemi
lassi
al approa
h the atoms 
ommuni
ate with outside world througha 
lassi
al �eld that does not 
onvey any quantum information. As a result,
olle
tive ex
itation, with all atoms 
onsidered on an equal footing, 
an onlybuild ensemble produ
t states su
h as the following:

(1 + ǫ2)−N/2
(

|a〉 + ǫeiφ(~r1)|c〉
) (

|a〉 + ǫeiφ(~r2)|c〉
)

· · ·
(

|a〉 + ǫeiφ(~rN )|c〉
) (44)This state 
an be expanded as a sum of n-ex
itation states:

(1 + ǫ2)−N/2

{

|Ψ0〉 + ǫ
√
N |Ψ1〉 + ǫ2

√

N(N − 1)

2!
|Ψ2〉 + · · · + ǫN |ΨN〉

}(45)where |Ψ1〉 is de�ned above and where:
|Ψ0〉 = |aa · · ·a〉
|Ψ2〉 =

√

2!
N(N−1)

(

ei(φ(~r1)+φ(~r2))|cca · · ·a〉 + ei(φ(~r1)+φ(~r3))|cac · · ·a〉 + · · ·
)

· · · · · · · · · · · · · · · · · ·
|ΨN〉 = ei(φ(~r1)+···+φ(~rN )) |cc · · · c〉 (46)21



The 1-ex
itation 
omponent 
oin
ides with the previously de�ned single ex
i-tation entangled state |Ψ1〉 . In the n-ex
itation states expansion, the weightof |Ψ1〉 , as given by ǫ2N/(1 + ǫ2)−N ∼= ǫ2Ne−Nǫ2 , never ex
eeds 1/e, a valuethat is rea
hed at ǫ2N = 1 and equals the weight of the 0-ex
itation state
|Ψ0〉 . Sin
e ǫ2 represents state |c〉 population in an individual atom, ǫ2N
orresponds to the average number of atoms in |c〉. Therefore the weight of
|Ψ1〉 is maximum when the average number of atoms in |c〉 is unity. Moregenerally, one easily 
he
ks that the n-ex
itation state distribution obeysPoisson statisti
s and is 
onsistent with ex
itation by a 
oherent state of the�eld but is never 
onsistent with ex
itation by a Fo
k state of the �eld, witha �xed number of photons.4.6 Single photon storage and retrieval: experimentThe �rst observation of single photon storage and retrieval is published inDe
ember 2005 [11℄. A laser-
ooled atom 
loud is used as the storage ma-terial. The 
loud 
ontains about 4 109 85Rb atoms, 
ooled to 100µK in amagneto-opti
 trap.The quantum light signal has to be narrower than the Rubidium D1line, a few MHz-wide. No parametri
 light sour
e is able to generate su
hmono
hromati
 single photons. A spe
i�
 sour
e has to be developed �rst.Another 
loud, identi
al to the memory ensemble, plays this role. A stronglyattenuated 
lassi
al beam, dire
ted along ~k1, illuminates this 
loud (see Fig.4. One waits for Raman s
attering in dire
tion ~k2. Dete
tion of a Ramanphoton in this dire
tion proje
ts the atom 
loud to the single ex
itation state:

1√
N

(

e−i(~k1−~k2).~r1 |ca · · ·a〉 + e−i(~k1−~k2).~r2 |ac · · ·a〉 + · · · + e−i(~k1−~k2).~rN |aa · · · c〉
)(47)where a and c refer to the ground substates of the atoms, 
onsidered as three-level Λ-systems. As soon as a photon is dete
ted on PD1, a rather intensepulse is dire
ted to the sour
e 
loud along −~k1. In syn
hrony with this pulse,a single photon is emitted in dire
tion −~k2, with probability 
lose to unity.This emission 
orresponds to stimulated Raman s
attering on the previouslyprepared single-ex
itation ensemble superposition state. The radiated singlephoton is then dire
ted through an opti
al �ber to the memory 
loud. Thearrival time in the memory is known from the event dete
tion on PD1. Oneswit
hes o� the 
ontrol �eld in order to "stop" or to "trap" the photon22
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Figure 4: Single photon storage and retrieval [11℄. The single photon sour
eand the memory are both 
louds of laser-
ooled Rb atoms. PD1, 2, 3 repre-sent photodete
tors.
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inside the memory. One turns ba
k on this �eld to restore the photon. To
he
k the uni
ity of the re
overed photon, one performs an anti-
orrelationmeasurement on PD2 and PD3, following the Hanbury Brown and Twisspro
edure. The memory lifetime appears to be no more than 10µs. This isassigned to magneti
 �eld inhomogeneity.5 EIT in a solid: inhomogeneous broadening5.1 Line broadening and relaxationThe most 
riti
al EIT parameter is the Raman 
oheren
e lifetime, but thisdoes not restri
t the 
hoi
e of material to su
h sophisti
ated systems asLCAC. Long 
oheren
e lifetime 
an also be found in solid materials at liquidhelium temperature. In su
h materials the absen
e of motion keeps the a
tive
enters from migrating outside the light beams, as in LCAC, but even bettersin
e motion is totally absent. One also avoids spatial dephasing that 
ana�e
t superposition states and 
an be 
aused by di�usion, even in LCAC.Rare earth ion doped 
rystals have been 
onsidered as potential solid mate-rial 
andidates for quantum memory appli
ations. O�ering similar 
oheren
elifetime properties as atomi
 samples, they di�er from LCAC by the largeinhomogeneous broadening of their spe
tral lines.In LCAC the atoms move so slowly that the Doppler shift does not a�e
tthe absorption line pro�le. In solid materials the absen
e of motion of theabsorbing 
enters re�e
ts the strength of their intera
tion with the 
rystal.Intera
tion entails energy level shift and, be
ause the 
rystal is never perfe
t,the shift varies from site to site. As a result the transition frequen
y isnot unique for all the absorbing 
enters. Instead the transition frequen
yis distributed over a broad spe
tral interval, whose width Wab, named theinhomogeneous width, typi
ally ranges from a few GHz to several tens of
GHz.Before in
orporating inhomogeneous broadening in EIT analysis, we need
larify di�erent aspe
ts of intera
tion with environment. On the one hand,the intera
tion shifts the energy levels, whi
h results in the inhomogeneousbroadening. This represents a stati
 aspe
t. Cooling down to a few Kelvinsdoes not signi�
antly 
hange the level shift. On the other hand, intera
tionalso exhibits a dynami
al aspe
t, 
orresponding to intera
tion �u
tuations.On an a → b transition, this is re�e
ted in the ex
ess of the homogeneous24



width γab with respe
t to half the population de
ay rate γb/2. When thesample is 
ooled down, γab de
reases and gets 
loser to γb/2.However homogeneous and inhomogeneous width are not di�erent inessen
e. This is a question of observation time s
ale. Su
h e�e
t that appearsas a �u
tuation at a given time s
ale, and thus 
ontributes to homogeneousbroadening, may be regarded as a stati
 feature on a shorter time s
ale, andthen pertain to inhomogeneous broadening.In the absen
e of inhomogeneous broadening we have performed the anal-ysis in the vi
inity of single-photon resonan
e. This is not valid anymorein 
ase of large inhomogeneous broadening. Spe
tral distan
e to single-photon resonan
e varies dramati
ally among the atoms. Instead of perform-ing the analysis in time domain, we now 
onsider a spe
tral domain approa
h,through time-to-frequen
y Fourier transform.5.2 Polarization and sus
eptibilityTo a

ount for the distribution of transition frequen
ies, we rewrite thema
ro
opi
 polarization density in the form:
P (~r, t) = −µab

∫

dωabG(ωab) [ρab(~r, t;ωab) + ρba(~r, t;ωab)] (48)where G(ωab) stands for the spe
tral and spatial distribution law, normalizedto the atom density per unit volume n as: ∫ dωabG(ωab) = n. Time tofrequen
y Fourier transform leads to:
P̂ (~r, ω) = −µab

∫

dωabG(ωab) [ρ̂ab(~r, ω;ωab) + ρ̂ba(~r, ω;ωab)] (49)In linear opti
s 
onditions, whi
h apply to our weak signal �eld, the polar-ization 
an be expressed as:̂
P (~r, ω) = ǫ0χ(ω)E(~r, ω) (50)where χ(ω) denotes the ele
tri
 sus
eptibility. This formula, well known inele
trostati
s, also applies to ele
trodynami
s, provided the relevant quan-tities are expressed in the frequen
y domain1. Splitting the sus
eptibility1If χ(ω) varies slowly over the �eld spe
tral width, the following approximation:

P (~r, t) = F
[

P̂ (~r, ω)
]

∼= ǫ0χ(ω)F [E(~r, ω)] = ǫ0χ(ω)E(~r, t)25



and the �eld amplitude into positive and negative frequen
y 
omponents oneobtains:
P̂ (~r, ω) = ǫ0

[

χ(+)(ω) + χ(−)(ω)
] 1

2

[

Ê(~r, ω) + Ê∗(~r,−ω)
] (51)The positive (resp. negative) frequen
y 
omponent of the �eld vanishes inthe ω ≈ −ω1 (resp. ω ≈ ω1) region. Likewise the positive (resp. negative)frequen
y 
omponent of the sus
eptibility vanishes in the ω ≈ −ωab (resp.

ω ≈ ωab) region. Therefore the 
ross-term χ(+)(ω)Ê∗(~r,−ω)+χ(−)(ω)Ê(~r, ω)vanishes and the polarization density �nally reads as:
P̂ (~r, ω) =

1

2
ǫ0

[

χ(+)(ω)Ê(~r, ω) + χ(−)(ω)Ê∗(~r,−ω)
] (52)In order to determine the sus
eptibility, let us 
ome ba
k to the three-levelsystem Blo
h equation. The transition frequen
y is now distributed over theinhomogeneous width of the absorption line. We still assume that:

• all atoms, whatever their transition frequen
y, initially sit in state |a〉
• the signal (resp. the 
ontrol) �eld only ex
ites the a→ b (resp. b→ c)transitionAs we already noti
ed, 
ross-polarizing the light beams may be enough toseparately drive the two transitions when angular sele
tion rules apply. How-ever, when the two transitions only di�er by their frequen
y, they are 
oupledto a single spe
i�
 �eld only if the ground state splitting is mu
h larger thanthe homogeneous widths, the Rabi frequen
ies and the transition detunings.This requires that Wab << ωac. We shall see how to 
ope pra
ti
ally withthis 
ondition.Sin
e Ω2 is a 
onstant, the Blo
h equations for ρ̃ab and ρ̃ac are linearexpressions of time dependent quantities and 
an be solved by Fourier trans-formation. In terms of ρab, E(~r, t) and the new variable ζ = ρ̃ace

i(ω1t−~k1.~r),makes the time dependent polarization density proportional to the �eld, as in the frequen
ydomain. This implies instantaneous response to opti
al ex
itation and obs
ures the 
ausal
hara
ter of the material rea
tion. The general expression, fully a

ounting for 
ausality,reads as:
P (~r, t) = F

[

P̂ (~r, ω)
]

= ǫ0

∫

dτχ̌(τ)E(~r, t − τ)where χ̌(τ) = 0 when τ ≤ 0 26



Eqs. 29 and 30 turn into:
ρ̇ab = [iωab − γab]ρab + i

µabE(~r, t)

2~
+ iζΩ2

ζ̇ = [i(ωac + ω2) − γac]ζ + iρabΩ
∗
2

(53)Pro
eeding to Fourier transformation one gets:
[i(ω − ωab) + γab]ρ̂ab(ω) = i

µabÊ(~r, ω)

2~
+ iζ̂(ω)Ω2

[i(ω − ωac − ω2) + γac]ζ̂(ω) = iρ̂ab(ω)Ω∗
2

(54)By eliminating ζ̂(ω) one �nally obtains the opti
al 
oheren
e expression2 :
ρ̂ab(ω) = i

µabÊ(~r, ω)

2~

i(ω − ωac − ω2) + γac

[i(ω − ωab) + γab][i(ω − ωac − ω2) + γac] + |Ω2|2
(55)This expression depends on both the ω − ωab detuning of the a → b single-photon transition to the Ê(~r, ω) signal �eld 
omponent, and the ω−ωac −ω2detuning of the a → c two-photon transition to the 
ompound ex
itationby Ê(~r, ω) and the 
ontrol �eld at ω2. Let ω(0)

ab represent the 
enter of theatom spe
tral distribution G(ωab). For sake of simpli
ity the splitting ωac isassumed to be the same in all the atoms. In other words, we suppose the
a→ c Raman transition is not inhomogeneously broadened. In general this isnot true in a solid, but a

ounting for Raman frequen
y distribution pro
eedsalong the same lines as the present 
al
ulation and 
an be extrapolated easily.2The 
oheren
e ρab(t) must satisfy the 
ausality 
ondition. Thus ρab(t) does not dependon E(~r, t′), with t′ > t. This 
ondition 
an be translated to the frequen
y domain. Byinverse Fourier transformation ρab(t) 
an be expressed as:
ρab(t) =

i

2π

µab

2~

∫

dt′E(~r, t′)

∫

dωeiω(t−t′) i(ω − ωac − ω2) + γac

[i(ω − ωab) + γab][i(ω − ωac − ω2) + γac] + |Ω2|2The non-
ausal 
ontribution, arising from t′ > t, is obtained by 
ontour integration inthe lower-half 
omplex plane. To make the non-
ausal 
ontribution to vanish, the sum ofresidues in the lower-half plane must 
an
el. However, one of the two poles at least mustsit in the upper-half plane to give the 
ausal 
ontribution. Therefore if a pole is lo
atedin the lower-half plane, the 
orresponding residue must vanish. One easily 
he
ks that
i(ω − ωac − ω2) + γac 
annot vanish at a pole sitting in the lower-half plane. Therefore
ausality imposes that both poles sit in the upper-half plane.27



Given the �xed ωac value, the 
enter of ωbc distribution is lo
ated at ω(0)
bc =

ω
(0)
ab − ωac. Assuming that the 
ontrol laser is tuned to resonan
e with this
entral frequen
y, so that ω2 = ω

(0)
bc , substituting Eq. 55 into Eq. 49, and
omparing with the sus
eptibility de�nition (Eq.52), one �nally obtains:

χ(+)(ω) = −i
µ2

ab

~ǫ0

∫

dωabG(ωab)
i(ω − ω

(0)
ab ) + γac

[i(ω − ωab) + γab][i(ω − ω
(0)
ab ) + γac] + |Ω2|2(56)The analyti
al 
al
ulation 
an be 
ompleted easily if the atom distributionis given the following Lorentzian form [12℄:

G(ωab) =
n

π

Wab

(ωab − ω
(0)
ab )2 +W 2

ab

(57)Summation over ωab is performed by 
ontour integral. One may noti
e thatthe only pole in the upper-half 
omplex plane is lo
ated at ωab = ω
(0)
ab +iWab.One obtains:

χ(+)(ω) = −in
µ2

ab

~ǫ0

i(ω − ω
(0)
ab ) + γac

[i(ω − ωab) +Wab + γab][i(ω − ω
(0)
ab ) + γac] + |Ω2|2

(58)Inhomogeneous broadening only results in the substitution of the homoge-neous width γab with the broadened linewidth Wab + γab. Without furtherinvestigation we 
an 
on
lude that the expressions for indu
ed transparen
yand redu
ed group velo
ity, we previously derived in the absen
e of inho-mogeneous broadening, are still valid provided γab is repla
ed everywhere by
Wab + γab. It 
ould be shown easily that Raman transition inhomogeneousbroadening is 
orre
tly des
ribed with substitution of Wac + γac to γac.5.3 Wave equation in the spe
tral domainThe temporal pi
ture developed in Se
tion 4 is 
onditioned by an adiabati
approximation. The present spe
tral analysis, not limited by su
h 
ondition,is worth visiting a little further.In the spe
tral domain the wave equation reads as:

∆Ê(~r, ω) +
ω2

c2
Ê(~r, ω) = −ω2µ0P̂ (~r, ω) (59)28



The polarization density being expressed in terms of sus
eptibility, the waveequation for the positive frequen
y �eld 
omponent reads as:
∆Ê(~r, ω) +

ω2

c2
[

1 + χ(+)(ω)
]

Ê(~r, ω) = 0 (60)The �eld is assumed to be a plane wave propagating along Oz. One looks fora solution in the form Ê(~r, ω) = E(ω)e−iκz. The wave equation then redu
esto:
(

ω2

c2
[

1 + χ(+)(ω)
]

− κ2

)

E(ω) = 0 (61)With κ = k′ − iα/2, the solution is given by:
k′2 − α2(ω)

4
= k2

[

1 + χ
(+)
r (ω)

]

α(ω) = − k2

k′2
χ

(+)
im (ω)

(62)where χ(+)
r (ω) and χ(+)

im (ω) respe
tively stand for the real and imaginary partof χ(+)(ω). Under the assumption that ∣∣
∣
χ

(+)
r (ω)

∣

∣

∣
<< 1 and α(ω) << ω/c,the wave ve
tor k' and the absorption 
oe�
ient α(ω) read as:

k′(ω) =
ω

c

√

1 + χ
(+)
r (ω)

α(ω) = −kχ(+)
im (ω)

(63)Substituting Eq. 58 into Eq. 63, one easily re
overs the previously obtainedexpression of opa
ity at resonan
e. In the same way one 
an 
al
ulate thevelo
ity group at resonan
e, given the de�nition as v = (dk′/dω)−1.More interestingly, the o�-resonan
e regime 
an be explored. Disregard-ing inhomogeneous broadening, and expanding sus
eptibility to se
ond orderas a fun
tion of detuning, one 
an express the transmitted power spe
trum
I(z = L, ω) as:
I(z = L, ω) = I(z = 0, ω) exp

{

−α0L

(

γacγab

|Ω2|2
+

[

(ω − ωab)γab

|Ω2|2
]2
)} (64)whi
h leads to a gaussian-shape transparen
y window whose width agreeswith Eq. 38. 29
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���������Figure 5: EIT transmission pro�le exhibiting the Autler Townes doublet.5.4 Memory bandwidthIn the prospe
t of signal pro
essing appli
ations, the transparen
y width isa 
riti
al parameter. This quantity has been derived above by limited orderexpansion of the sus
eptibility, but we need not restri
t to this small detuningregion. Considering Eq. 58, one observes that, in 
onditions required for theopening of the transparen
y window, when |Ω2|2 >> (Wab + γab)γac, χ(+)(ω)exhibits quasi-singularities at ω − ω
(0)
ab = ±|Ω2| (see Fig. 5 ). One easilyveri�es that, at these spe
tral positions, the absorption 
oe�
ient returnsto its maximum value α0. Those two absorptions peaks re�e
t the Autler-Townes splitting of level b. Therefore the transparen
y width appears to belimited by the 
ontrol �eld Rabi frequen
y.This result also gives some information on the validity range of Eq. 64.Transparen
y width limitation to |Ω2| requires that ∆T < |Ω2|, where ∆Tis given by Eq. 38. This is 
onsistent with ∆T < |Ω2| < γab

√
α0L, whi
h
orresponds to a transparen
y window narrower than the absorption pro�le.One might be tempted to in
rease the 
ontrol �eld Rabi frequen
y inorder to improve the memory operation bandwidth. However one must keepin mind that a small velo
ity group is ne
essary for e�
ient informationtransfer from the signal �eld to the Raman 
oheren
e. Under 
ondition

|Ω2| < γab

√
α0L, the transparen
y width 
an be expressed in terms of thegroup velo
ity as:

∆T = 2v
√

α0/L, (65)30
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Figure 6: Three-level Λ-system in Pr3+ : Y2SiO5. In addition to the two �eldsinvolved in the EIT pro
ess, a third beam is used to repump ions from the
3H4(±5/2) ground state sublevel. Repumping serves to sele
t the a
tive ionswithin a narrow spe
tral interval, thus redu
ing the e�e
tive inhomogeeouswidth.whi
h depends neither on the absorption linewidth nor on the Rabi frequen
y.Finally it should be noti
ed that, if Raman transition too is a�e
ted byinhomogeneous broadening, then the group velo
ity lower bound is deterio-rated, in
reasing from γac/α0 to Wac/α0.5.5 EIT demonstration in solidsThe EIT pro
ess was observed for the �rst time in a rare earth ion doped
rystal of Pr3+ : Y2SiO5 in 1997 [13℄. Experiment operated on transition
1D2 −3 H4 at 606nm (see Fig. 6). With a I = 5/2 nu
lear spin, ea
hele
troni
 level is six times degenerate. Hyper�ne intera
tion lifts degenera
yinto 3 pairs of sub-levels, with a splitting in the MHz range. A Λ system is31



obtained when two lower sublevels are 
onne
ted by opti
al transition to a
ommon upper sub-level.Inhomogeneous broadening rea
hes Wab = 4GHz. This is mu
h largerthan the opti
al homogeneous width and the sub-level spa
ing and does notsatisfy the inhomogeneous broadening 
onditions of the 
al
ulation in se
tion5.2. Indeed we performed this 
al
ulation under assumption that Wab <<
ωac.A
tually, a preparation step arti�
ially redu
es the e�e
tive inhomoge-neous broadening to make it 
onsistent with the above 
al
ulation. The two�elds involved in the EIT pro
ess opti
ally pump the ions to the third groundsublevel that plays the role of a shelving state. The absortion pro�le is thustotally blea
hed over the spe
tral interval within rea
h of the EIT �elds. Anarrow absorption band is then restored by a mono
hromati
 repump beamthat returns a spe
i�
 spe
tral 
lass of ions from the shelving state to |a〉state. The width of this group of ions, limited by the repump laser linewidth,represents the e�e
tive inhomogeneous broadening W eff

ab that easily satis�esthe 
ondition W eff
ab << ωac.One may wonder about the 
ontribution from ions, far from opti
al res-onan
e, but still satisfying the two-photon transition resonan
e 
ondition.A
tually only ions with unbalan
ed sublevel population 
an 
ontribute to atwo-photon pro
ess su
h as EIT, sin
e the Raman transition probability isproportional to the sublevel population di�eren
e. Far from opti
al ex
ita-tion by the di�erent �elds, the sublevels are equally populated at thermalequilibrium and those ions 
an be ignored.The Raman transition is a�e
ted by a ≈ 50kHz inhomogeneous broad-ening in Pr3+ : Y2SiO5. This broadening should be subsituted to γac in theEIT pro
ess des
ription. Finally, a 60kHz-wide EIT transparen
y windowwas observed.Observation of EIT was reported in various other solid state materialssu
h as semi
ondu
tors [14, 15℄, nitrogen-va
an
y 
olor 
enters in diamond[16℄, Nd3+-doped 
rystals [17℄ but, for the time being, Pr3+ : Y2SiO5 stillby far outgoes these systems in terms of Raman 
oheren
e lifetime or EITe�
ien
y.Stopped light was also demonstrated in a Pr3+-doped 
rystal [18℄, witha memory lifetime of a few hundreds of µs. The storage lifetime was thendramati
ally in
reased to more than 1s by an Australian group [19℄. Allthese works have been performed with 
lassi
al light. Quantum light storage32



in a solid has yet to be observed.6 Re
overy from an absorbing mediumIn EIT the operation bandwidth, given by the transparen
y window, is di-re
tly related to the 
ontrol �eld Rabi frequen
y. At storage and retrievalboth the signal and the 
ontrol �elds have to be present simultaneously withinthe memory. We now 
onsider an alternative proto
ol, �rst proposed inRef.[20℄, and examined in further details in [21℄. This is based on dire
tabsorption. The signal to be stored intera
ts alone with the a
tive mate-rial. The operation bandwidth is expe
ted to be related to the absorptionlinewidth.6.1 Polarization 
ollapse, 
oheren
e survivalAs already noti
ed in se
tion 2.2, sin
e information has to be stored �rstinto the opti
al 
oheren
e ρab, the information 
arrier pulse duration mustbe mu
h smaller than the inverse homogeneous width γab. Hen
e the pulsespe
tral width must be mu
h larger than γab. In addition, sin
e storage isbased on absorption, the pulse must be narrower than the absorption pro�le.In an homogeneously broadened medium, where all atoms have the sametransition frequen
y, the absorption linewidth is given by γab

√
α0L. Hen
eone is left with the very restri
tive 
ondition √

α0L >> 1, similar to the onealready met in the frame of EIT. Interestingly, the 
ondition 
an be easilyrelaxed in inhomogeneously broadened material where the absorption width
an by far ex
eed γab

√
α0L. In the following we thus restri
t the dis
ussion toinhomogeneously broadened media. One may noti
e that, in EIT regime, the
ondition √

α0L >> 1 prevails whether the line is inhomogeneously broad-ened or not.The atomi
 response to a weak pulse was 
onsidered already in the frameof EIT. To des
ribe simple absorption one just 
an
els Ω2 in Eq. 56 andobtains:
χ(+)(ω) = −i

µ2
ab

~ǫ0

∫

dωabG(ωab)
1

i(ω − ωab) + γab
(66)Assuming the homogeneous line is mu
h narrower than G(ωab), one simpli�es

33



χ(+)(ω) into:
χ(+)(ω) = −iπ

µ2
ab

~ǫ0
G(ω) (67)and the atomi
 response, as given by the polarization density, reads as (seeEq. 52):

P̂ (~r, ω) =
1

2
ǫ0

[

χ(+)(ω)Ê(~r, ω) + χ(−)(ω)Ê∗(~r,−ω)
] (68)Sin
e the inhomogeneous distribution G(ω) is assumed to be mu
h broaderthan the in
oming pulse spe
trum, the above equation tells us that the atomi
response mat
hes the in
oming pulse in the spe
tral domain. Therefore tem-poral pro�les 
oin
ide too. In other words the material response does notsurvive to the in
oming pulse, 
ollapsing as the �eld drops to zero. The in-stantaneous 
hara
ter of the material response is the reason why the pulsepropagation is just re�e
ted by an attenuation fa
tor.However, provided the homogeneous width is mu
h smaller than the in-verse pulse duration, the atomi
 
oheren
es subsists long after the pulse hasfaded away. This is 
on�rmed by the integral Blo
h equation. A

ording toEq. 10, to �rst order in the �eld amplitude, assuming all atoms are initiallyin state |a〉, one obtains :

ρab(ωab;~r, t) = i
µab

2~

∫ t

−∞

dt′E(~r, t′)e(iωab−γab)(t−t′) (69)The 
oheren
e, built by the in
oming pulse, relaxes with rate γab and maysurvive long after the �eld has vanished. The origin of the polarizationdensity 
ollapse lies in the phase shift of the di�erent atoms distributed overthe inhomogeneously broadened absorption pro�le. This is re�e
ted in theabove equation by the ωab-dependent phase fa
tor that keeps on buildingup after the pulse extin
tion. As a result, the di�erent atom 
ontributionsinterfere destru
tively as they are 
ombined into the polarization density.In order to extra
t the information stored in the atomi
 
oheren
es, onehas to rephase them. We shall demonstrate that phase reversal makes the
oheren
es to faithfully regenerate the initial light pulse.
34
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�Figure 7: Rephasing. All the atoms have the same phase at t1. Then phaseshift a

umulates between atoms with di�erent transition frequen
ies. At t2the phase is reversed so that all atoms are phased together again at 2t2 − t16.2 Information re
overy by phase reversalLet us assume that at time t2, after the extin
tion of the in
oming pulse, oneis able to a
hieve the following phase reversal operation:
ρab(ωab;~r, t

(+)
2 ) = ρba(ωab;~r, t

(−)
2 ) (70)In addition we assume that the operation does not entail any level population
hange, a 
ondition that will prove mostly important and di�
ult to satisfypra
ti
ally. Ena
ting the rule for ρab instead of ρ̃ab, we mean reversal a�e
tsboth the spatial and the spe
tral phase. At t2 both transformations kz →

−kz and ωab(t2 − t1) → −ωab(t2 − t1) shall o

ur.This phase reversal pro
edure is pure spe
ulation so far. Later on weshall examine pra
ti
al means to a
hieve this operation.After t2, the spe
tral phase keeps on growing at the same rate, in su
h away that at time t = 2t2 − t1 the phase shift ωab(t+ t1 − t2) simultaneouslyvanishes in all the atoms, whatever their transition frequen
y (see Fig. 7).35



Being phased together, the atoms radiate a light pulse at that moment. In anopti
ally thin sample we 
ould 
onsider that the 
oheren
es just evolve freely,independently from ea
h other. The feedba
k of the radiated pulse on theatoms would remain weak with respe
t to the initial pulse. On the 
ontrarywe are dealing with an opti
ally thi
k, opaque medium. We 
an no longernegle
t the radiated response feedba
k. Indeed the delayed radiated responsewill prove to rea
h the same amplitude as the initial in
oming pulse. Su
h afeedba
k is not unfamiliar to us. We impli
itly a

ounted for su
h a rea
tionwhen we derived the in
oming pulse wave equation: ea
h atom undergoesex
itation by a lo
al �eld that 
ombines the input �eld and the 
ontributionsof the upstream atoms. In order to 
al
ulate the restored �eld and the�nal atomi
 state, we take the usual steps, �rst deriving the individual atomresponse from the Blo
h equation, then 
ombining the elementary 
oheren
esinto the ma
ros
opi
 polarization density, that is �nally used as a sour
e termin the wave equation to be satis�ed by the restored �eld.Let Eout(~r, t) denote the �eld radiated by the atoms after t2. At t > t2,the Blo
h equation for 
oheren
es reads as:
ρab(ωab;~r, t) = ρab(ωab;~r, t

(+)
2 )e(iωab−γab)(t−t2)+i

µab

2~

∫ t

t2

dt′Eout(~r, t
′)e(iωab−γab)(t−t′)(71)The two terms on the right hand side respe
tively 
orrespond to the freeevolution of the initial 
oheren
e and to the radiated response feedba
k onthe 
oheren
es.Sin
e atoms evolve freely from initial ex
itation by Ein(~r, t) to time t2,the 
oheren
e at t2 is simply given by:

ρab(ωab;~r, t
(−)
2 ) = i

µab

2~

∫ t2

−∞

dt′Ein(~r, t′)e(iωab−γab)(t−t′) (72)Taking a

ount of the reversal rule (Eq. 70) and substituting into Eq. 71,one obtains:
ρab(ωab;~r, t) = −i

µab

2~

[
∫ t2

−∞

dt′E∗
in(~r, t′)eiωab(t+t′−2t2)−γab(t−t′)

−
∫ t

t2

dt′Eout(~r, t
′)e(iωab−γab)(t−t′)

] (73)The polarization density P (~r, t)is obtained by substitution of Eq. 73 into Eq.48. The positive frequen
y 
omponent of P (~r, t) 
an be split in two terms36



P
(+)
1 (~r, t) and P (+)

2 (~r, t) a

ording to:
P (+)(~r, t) = P

(+)
1 (~r, t) + P

(+)
2 (~r, t) (74)where P (+)

1 (~r, t) and P (+)
2 (~r, t) respe
tively 
orrespond to the atom free evo-lution from t2 and to the re
overed �eld feedba
k on the atoms. The �rstterm reads as:

P
(+)
1 (~r, t) = i

µ2
ab

2~

∫ t2

−∞

dt′E∗
in(~r, t′)e−γab(t−t′)

∫

dωabG(ωab)e
iωab(t+t′−2t2) (75)Sin
e the �eld spe
trum is assume to be mu
h narrower than G(ωab), thequantity E∗

in(~r, t′)eiωLt′ varies slowly with respe
t to ∫ dωabG(ωab)e
iωab(t+t′−2t2)that peaks abruptly at t′ = 2t2 − t. Taking E∗

in(~r, t
′)eiωLt′e−γab(t−t′) out of thesum over t′ at t′ = 2t2 − t, one obtains:

P
(+)
1 (~r, t) = 2iπ

µ2
ab

2~
G(ωL)E∗

in(~r, 2t2 − t)e−2γab(t−t2) (76)Fourier transformation to frequen
y domain leads to:
P̂

(+)
1 (~r, ω) = 2iπ

µ2
ab

2~
G(ωL)Ê∗

in(~r, ω)e−2iωt2−2γab(t2−t1) (77)As for the se
ond term P
(+)
2 (~r, t), we 
an pro
eed dire
tly to its frequen
ydomain expression. Indeed this term simply des
ribes the linear response to

Eout(~r, t), as given by Eqs 67 and 52:
P̂

(+)
2 (~r, ω) = −iπ

µ2
ab

2~
G(ωL)Êout(~r, ω) (78)The two terms P̂ (+)

1 (~r, ω) and P̂
(+)
2 (~r, ω) �nally 
ombine into the positivefrequen
y 
omponent of the polarization density as:

P̂ (+)(~r, ω) = −iπ
µ2

ab

2~
G(ωL)

[

Êout(~r, ω) − 2Ê∗
in(~r, ω)e−2iωt2−2γab(t2−t1)

] (79)This quantity 
an be substituted into the wave equation for the restored �eld:
1

2

(

∂2

∂z2
+ k2

)

Êout(~r, ω) = −ω2µ0P̂
(+)(~r, ω) (80)37



We look for a solution in the form Êout(~r, ω) = A(z, ω)eikz, 
ounterpropagat-ing with the in
oming �eld Êin(~r, ω). Indeed, given the form of P̂ (+)(~r, ω),the restored �eld is a fun
tion of Ê∗
in(~r, ω), a �eld that varies as eikz. Thelinearized wave equation �nally reads as:

∂

∂z
A(z, ω) =

1

2
α0

[

A(z, ω) − 2Ê∗
in(~r, ω)e−2iωt2−2γab(t2−t1)−ikz

] (81)where:
α0 =

πkµ2
ab

2~ǫ0
G(ωL) (82)With the boundary 
ondition A(L, ω) = 0 at the output side z = L of theabsorbing medium, and the in
oming �eld spatial distribution Ê∗

in(z, ω) =

E∗
in(0, ω)e−

1

2
α0z+ikz, expressed in terms of the amplitude in the input side at

z = 0, one easily3 gets the solution as:
Êout(z, ω) = Ê∗

in(z, ω)e−2iωt2−2γab(t2−t1)
[

1 − eα0(L−z)
] (83)Inverse Fourier transformation leads to the following solution in the timedomain:

Eout(z, t) = E∗
in(z, 2t2 − t)e−2γab(t2−t1)

[

1 − eα0(L−z)
] (84)Sin
e E∗

in(z, 2t2 − t) is 
entered at t1, the re
overed signal emission is 
en-tered at 2t2 − t1 as expe
ted. Otherwise, the restored �eld envelope is timereversed with respe
t to the initial pulse. Finally, the �eld amplitude isexa
tly restored at z = 0 provided α0L >> 1.We assumed the phase reversal operation does not in
rease the upperlevel population. In the opposite limit, let us assume that a side e�e
t of thephase reversal operation is to promote all atoms to the upper level. Then thestorage material be
omes an ampli�er, with gain equal to α0L for the regen-erated �eld emerging from the input side. Su
h an ampli�
ation 
ertainlymodi�es the quantum properties of the restored �eld. In addition ampli�edspontaneous emission then deteriorates the restitution �delity.3With the 
hange of variable: A(z, ω) = B(z, ω)eα0z/2, the wave equation is turned into:
∂zB(z, ω) = −α0Ê∗

in(0, ω)e−α0z−2iωt2−2γab(t2−t1). Summing from z to L with boundary
ondition B(L, ω) = 0, one obtains: B(z, ω) = Ê∗

in(0, ω)e−2iωt2−2γab(t2−t1)
(

e−α0z − e−α0L
)

38



Substitution of the restored �eld in Eq. 73 leads to:
ρab(ωab;~r, t) = −i

µab

2~
e−γab(t−t1)

[
∫ 2t2−t

−∞

dt′E∗
in(~r, t′)eiωab(t+t′−2t2)

+e−α0(L−z)

∫ t2

2t2−t

dt′E∗
in(~r, t

′)eiωab(t+t′−2t2)

] (85)As expe
ted, the 
oheren
e drops to zero whilst the light pulse is beingrestored, around t = 2t2 − t1. Indeed, during the re
overy step, ea
h atom isexposed to ex
itation 
oming up from the downstream atoms, that is to sayfrom atoms lo
ated further from the input side. This radiation gives a ki
kin dire
tion opposite to the initial pulse e�e
t, making the atom return tothe initial state. Closer to the input side, the restored signal a
ting on atomsgrows bigger, pre
isely where the atoms were exposed to larger ex
itation bythe initial pulse. A long time after t = 2t2 − t1, the 
oheren
e redu
es to:
ρab(ωab; z, t) = −i

µab

2~
e−α0(L− 1

2
z)Ê∗

in(0, ωab)e
iωab(t−2t2)e−γab(t−t1) (86)whi
h expresses the α0L dependen
e of the residual ex
itation.During the storage pro
ess, a part W/Win = (1− e−αoL) of the in
omingenergy stays in the medium, the remaining passing through without beingabsorbed. From the part that is stored, a fra
tion is lost at retrieval, evenin the absen
e of dipole relaxation. Indeed the restored �eld is (1 − e−αoL)times smaller than the in
oming one, a

ording to Eq. 84. Therefore onere
overs a fra
tion Wout/Win = (1 − e−αoL)2 of the in
oming energy. Theenergy W −Wout

∼= Wine−αoL remains within the material. To summarize,with a �nite length material, energy is lost in equal amounts at storage andretrieval, one part being transmitted without absorption, the other part beingleft as an atomi
 ex
itation.7 Pra
ti
al implementation of phase reversalThe signal re
overy pro
edure examined in the previous se
tion requires:
• spe
tral phase reversal of the opti
al 
oheren
e in all the atoms simul-taneously at a given time
• spatial phase reversal of the opti
al 
oheren
e in all the atoms39
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Figure 8: Two-pulse e
ho. (a) At time t1 a π/2-pulse brings the Blo
hve
tors of all frequen
y 
lasses along Ov. (b) The Blo
h ve
tors spread overthe equatorial plane and at time t1 +t12 a π-pulse reverses their v 
oordinate.(
) At time t1 + 2t12 all the Blo
h ve
tors are ba
k along Ov.
• no ex
itation to the upper level during the phase reversal pro
essWe review di�erent pra
ti
al phase reversal pro
edures and 
he
k their abilityto satisfy the above 
onditions.7.1 Two-pulse photon e
hoPhase reversal has been a
tively investigated for several de
ades, �rst in theframework of NMR, then in the opti
al domain after the advent of the laser.Known as spin e
ho in NMR and photon e
ho in opti
s, this phenomenon isbest des
ribed in the Blo
h ve
tor pi
ture (see Appendix B).Let an inhomogeneously broadened ensemble of two-level atoms be illu-minated at time t1 by a light pulse of duration τ and Rabi frequen
y Ω1.Under assumption that Ω1 is real, the driving ve
tor ~β is dire
ted along Ou.Let the pulse be too short for the inhomogeneous phase to build up duringthe pulse. In other words the detuning ∆ = ωab − ωL is assumed to be mu
hsmaller than τ−1. Then, driven by the applied �eld, the Blo
h ve
tor pre-
esses around ~β at angular velo
ity Ω1. The quantity ∫ +∞

−∞
Ω1(t

′)dt′, knownas the pulse area, represents the angle travelled by the Blo
h ve
tor around
Ou during the pulse. Initially the Blo
h ve
tor is dire
ted downward alongthe Blo
h sphere verti
al axis Ow. Let the pulse area equal π/2. Then thepulse makes the Blo
h ve
tor to travel a π/2 angle around Ou and brings italong Ov, in the equatorial plane of the Blo
h sphere, as shown in Fig. 8.After the π/2-pulse extin
tion, the Blo
h ve
tor pre
esses around the40



verti
al axis Ow at velo
ity ∆. At time t the Blo
h ve
tor 
oordinates readas:






u(t) = sin[∆(t− t1)]e
−γab(t−t1)

v(t) = cos[∆(t− t1)]e
−γab(t−t1)

w(t) = 0
(87)where the population relaxation has been negle
ted. The Blo
h ve
tors be-longing to di�erent frequen
y 
lasses rotate at di�erent angular velo
ities ∆and, as time elapses, they depart from ea
h other, generating a "pan
ake"that spreads over the Blo
h sphere equatorial plane.At time t2 a se
ond pulse is applied. Let the pulse area equal π. Thereforeea
h Blo
h ve
tor is made to travel a π angle around Ou, returning to theequatorial plane with reversed v 
oordinate. Just after the se
ond pulse theBlo
h ve
tor 
oordinates read as:







u(t2) = sin[∆t12]e
−γabt12

v(t2) = − cos[∆t12]e
−γabt12

w(t2) = 0
(88)This represents a symmetry with respe
t to the plane uOw. The slowestfrequen
y 
lasses �nd themselves in advan
e of the fastest ones. As timeelapses, the free evolution is depi
ted by:







u(t) = {u(t2) cos[∆(t− t2)] + v(t2) sin[∆(t− t2)]} e−γab(t−t1)

v(t) = {−u(t2) sin[∆(t− t2)] + v(t2) cos[∆(t− t2)]} e−γab(t−t1)

w(t) = 0
(89)The fastest ve
tors 
at
h up the slowest ones so that they all meet along -Ovat time 2t2 − t1, a

ording to:







u(2t2 − t1) = 0
v(2t2 − t1) = −e−2γabt12

w(2t2 − t1) = 0
(90)At that moment the dipoles are phased together and emit the photon e
hosignal.In the 
ontext of our quest for phase reversal, it is worth noti
ing thetransformation undergone at t2 
an be expressed, in terms of 
oheren
e, as:

ρ̃ab(t
(+)
2 ) = ρ̃ba(t

(−)
2 ) (91)41



In the above dis
ussion we have impli
itly supposed that both pulsespropagate in the same dire
tion. If pulses propagate in di�erent dire
tionone must noti
e that the 
hange of variable ρab → ρ̃ab depends on the waveve
tor of the referen
e pulse. Just before the se
ond pulse the 
hange ofvariable is still referred to the �rst pulse and reads as:
ρab(t

(−)
2 ) = ρ̃ab(t

(−)
2 )ei(ωLt2−~k1.~r) (92)A

ording to Eq. 91, at t2 the 
oheren
e, this time referred to the se
ondpulse, undergoes the transformation:

ρ̃ab(t
(+)
2 ) = ρ̃ba(t

(−)
2 ) (93)or, equivalently, in terms of ρab :

ρab(t
(+)
2 ) = ρba(t

(−)
2 )e2i(ωLt2−~k2.~r) (94)Then, substituting Eq. 92 in this expression one �nally obtains:

ρab(t
(+)
2 ) = ρ̃ba(t

(−)
2 )ei[ωLt2−(2~k2−~k1).~r] (95)where ρ̃ba(t

(−)
2 ) is a slowly varying fun
tion of ~r. The spa
e-dependent phasefa
tor indi
ates that the e
ho signal is emitted in dire
tion 2~k2 − ~k1. Dipole
ontributions are phase-mat
hed all along the sample of length L provided:

(

|2~k2 − ~k1| − k
)

L << π. As soon as L ex
eeds a few hundreds of wave-lengths, the 
ondition is satis�ed only when ~k2 is 
lose to ~k1, whi
h leads toemission in dire
tion 
lose to ~k1 and ~k2.The se
ond pulse in the photon e
ho sequen
e reverses the phase of ρ̃ab(see Eq. 91), not that of ρab, as requested in se
tion 6.2. Therefore, thespe
tral phase reversal requirement is satis�ed, as illustrated by the 
oheren
erephasing leading to e
ho emission, but spatial phase reversal is missing. Thephase mat
hing 
ondition for
ing e
ho emission in forward dire
tion re�e
tsthe absen
e of spatial phase reversal.Another 
ondition is not satis�ed. In the photon e
ho memory proto
ol,the information to be stored should be 
arried by the �rst pulse while these
ond pulse would be devoted to phase inversion. Initially all atoms areprepared in the ground state. The Blo
h ve
tor is verti
al, downward ori-ented. Unlike the π/2 pulse we 
onsidered in the brief presentation of photon42



e
ho, the weak signal pulse, with an area mu
h smaller than unity, hardlydispla
es the Blo
h ve
tor from its initial verti
al dire
tion. The se
ond pulseis expe
ted to 
onvert ρ̃ab into ρ̃ba, whi
h 
orresponds to a re�e
tion in theverti
al plane uOw. But light 
annot perform su
h a transformation! Light
an only rotate the Blo
h ve
tor around an horizontal axis. Now the produ
tof two re�e
tions is a
tually equivalent to a rotation around the interse
tionof the two planes of symmetry. Given one of the symmetries is taken withrespe
t to uOw, the other re�e
tion plane will have to interse
t uOw alongthe rotation axis. The only symmetry that preserves the phase inversion isthe re�e
tion with respe
t to the equatorial plane uOv, orthogonal to uOw.Combining those two symmetries 
orresponds to a π-rotation that keeps theBlo
h ve
tor nearly verti
al, but now pointing up. In other words, the se
-ond pulse, in order to a

omplish the expe
ted spe
tral phase inversion, shallalso promote all the atoms to the upper level. As already noti
ed, this woulddeeply a�e
t the restored signal.In 
on
lusion, the two-pulse photon e
ho proto
ol fails to satisfy two outof the three signal re
overy requirements.7.2 Tri-level e
hoThe photon e
ho pro
ess is easily extended to the three-level Λ-system wealready met in EIT [22℄. As in EIT, information is stored in the Raman
oheren
e but, unlike EIT, a single transition is ex
ited at a time.Let the system be illuminated by a three-pulse sequen
e. The time-separated driving pulses alternatively ex
ite the a → b and b → c transi-tions. All the atoms have been prepared initially in state |a〉. By ex
itingthe a → b transition, the �rst pulse builds the opti
al 
oheren
e ρab. These
ond pulse, resonant with the b → c transition, 
onverts ρab into the ρacRaman 
oheren
e. Then a third pulse ex
ites a → b again, 
onverting ρacinto the ρbc opti
al 
oheren
e that gives rise to the tri-level e
ho (see Fig. 9).Intera
tion with the �rst pulse does not need mu
h 
omment. Only states
|a〉 and |b〉 are implied at this stage. The system obeys the two-level Blo
hequation. After the pulse extin
tion the 
oheren
e ρ̃ab(ωab;~r, t1) evolves freelyto ρ̃ab(ωab;~r, t) = ρ̃ab(ωab;~r, t1)e

(i∆−γab)(t−t1), where ∆ = ωab −ω1. Intera
tionwith se
ond pulse must be examined more 
arefully sin
e the three levelsare now involved. Sin
e a single transition is ex
ited, Eq.26 splits into two43
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Figure 9: tri-level e
ho in a Λ-system. The �rst two pulses build the Raman
oheren
e ρac from the opti
al 
oheren
e ρab. The inhomogeneous phaseshift a

umulated by ρab between t1 and t2 is 
arried to ρac between t2 and
t3. Then ρac is turned into ρbc by the third pulse. The inhomogeneous phaseshift vanishes at t3, whi
h gives rise to e
ho emission.un
oupled sets of equations:











ρ̇cc = i
2
(ρ̃cbΩ

∗
2 − ρ̃bcΩ2)

ρ̇bb = −ρ̇cc

˙̃ρcb = i
2
(ρcc − ρbb)Ω2

(96)and
{

˙̃ρab = i
2
ρ̃acΩ2

˙̃ρac = i
2
ρ̃abΩ

∗
2

(97)where inhomogeneous dephasing and relaxation have been omitted, giventhe shortness of the pulse4. The �rst set of equations represents the 
oherentex
itation of a two-level system. The se
ond set des
ribes the 
oupling ofthe opti
al 
oheren
e ρ̃ab and the Raman 
oheren
e ρ̃ac. The solution of thelatter set reads as:
{

ρ̃ab(t
(+)
2 ) = ρ̃ab(t

(−)
2 ) cos(1

2

∫

Ω2dt) + iρ̃ac(t
(−)
2 ) sin(1

2

∫

Ω2dt)

ρ̃ac(t
(+)
2 ) = ρ̃ac(t

(−)
2 ) cos(1

2

∫

Ω2dt) + iρ̃ab(t
(−)
2 ) sin(1

2

∫

Ω2dt)
(98)4With respe
t to Eq.26 we have modi�ed the Rabi frequen
y de�nition in order to be
onsistent with the Blo
h ve
tor pi
ture. Rabi frequen
y is now de�ned as µabA(~r, t)/~instead of µabA(~r, t)/(2~). With this de�nition the Blo
h ve
tor pre
ession rate aroundaxis Ou 
oin
ides with Ω. Numeri
al fa
tors were simpler with the previous Ω de�nition.44



A π-pulse optimizes the 
onversion of ρ̃ab into ρ̃ac, leading to:
ρ̃ac(t

(+)
2 ) = iρ̃ab(t

(−)
2 ) = iρ̃ab(ωab;~r, t1)e

(i∆−γab)t12 (99)Therefore the Raman 
oheren
e inherits the inhomogeneous dephasing thatwas a

umulated by the opti
al 
oheren
e during interval t12.Total 
onversion of ρ̃ab into ρ̃ac means state |b〉 amplitude drops to 0. Thisis a
tually 
onsistent with the two-level system evolution as des
ribed by Eq.96. We assume the Raman transition is not a�e
ted by inhomogeneous broad-ening and is resonantly ex
ited by the driving �elds in su
h a way that
ωac = ω1 − ω2. In other words, both ρ̃ab and ρ̃cb de�nitions refer to the sameopti
al detuning ∆ = ωab − ω1 = ωbc − ω2. The Raman 
oheren
e, evolvingfreely until ex
itation by the third pulse at t3, reads as:

ρ̃ac(t
(−)
3 ) = iρ̃ab(ωab;~r, t1)e

(i∆−γab)t12−γact23 (100)just before the pulse arrival. On
e again, a π-pulse at frequen
y ω1, ex
itingthe system on the a → b transition, optimizes the 
onversion ba
k to theopti
al 
oheren
e ρ̃bc that, just after the extin
tion of the pulse reads as:
ρ̃bc(t

(+)
3 ) = ρ̃ab(ωab;~r, t1)e

(i∆−γab)t12−γact23 (101)On
e the driving �eld is o�, ρ̃bc evolves as: ρ̃bc(t) = ρ̃bc(t
(+)
3 )e(−i∆−γbc)(t−t3).The key point is that ρ̃bc phase fa
tor evolves with opposite rate with respe
tto ρ̃ab. Hen
e the inhomogeneous phase ∆(t12 − t + t3) vanishes at t3 + t12,making the dipoles to radiate the tri-level e
ho on the b→ c transition.In the above dis
ussion we impli
itly assume the three pulses propagatealong the same dire
tion. As already noti
ed for two-pulse e
hoes, in moregeneral 
onditions, we must take 
are that the "tilded" 
oheren
e de�nitiondepends on the relevant pulse wave ve
tor dire
tion. Let ~ki denote the ithpulse wave ve
tor. Transformation to the rotating frame asso
iated withthe �rst two pulses leads to: ρ̃ac = ρace

i(ω2−ω1)t−i(~k2−~k1).~r but the third pulseoperates on a Raman 
oheren
e de�ned as: ρ̃ac = ρace
i(ω2−ω1)t−i(~k2−~k3).~r. Toa

ount for this transformation one 
an perform the substitution: ρ̃ac(t

(−)
3 ) →

ρ̃ac(t
(−)
3 )ei(~k3−~k1), whi
h �nally leads to:

ρbc(ωab;~r, t) = ρ̃ab(ωab;~r, t1)e
−γabt12−γabt23−γab(t−t3)×

× e−iω2t−i∆(t−t3−t12)+i(~k3+~k2−~k1) (102)45



Therefore the e
ho signal is emitted in dire
tion ~k3 + ~k2 − ~k1. Then a phasemat
hed signal 
an be emitted in a dire
tion very di�erent from that of thedriving pulses. For instan
e, with ~k3 = −~k2 = −~k1 the e
ho signal is radiatedba
kward, 
ounterpropagating with the �rst pulse.At �rst sight the three-level e
ho seems to represent a signi�
ant progressin our quest for phase reversal. As in two-pulse e
ho, the spe
tral phaseis reversed but, unlike two-pulse e
ho, spatial phase 
an also be reversed,giving rise to ba
kward signal emission. One also noti
e that the se
ondpulse, despite of its large area, does not promote atoms to the upper level,avoiding ampli�
ation issues. Unfortunately the intense third pulse is 
oupledto a → b transition, strongly ex
iting the populated state |a〉 and massivelypromoting atoms to the upper ele
troni
 state.We 
ould be tempted to apply the third pulse to the empty transition
b → c again instead of a → b. However, this way, one 
annot reverse thespe
tral phase. Indeed two su

essive π-pulses make a 2π rotation, whi
h isno 
hange at all. In other words, the se
ond pulse builds ρac from ρab and,ex
iting b → c again, the third pulse turns ba
k ρab into ρac without anyphase inversion.In 
on
lusion, two out of the three signal re
overy 
onditions are satis�edby the three-level e
ho. The third 
ondition seems to be out of rea
h of theopti
al driving te
hniques. Non-opti
al pro
edures are thus 
onsidered.7.3 Controlled reversible inhomogeneous broadeningIt has been proposed to reverse the inhomogeneous spe
tral shift by invert-ing an external stati
 ele
tri
 �eld [23℄. A
tually the spe
tral shift must betotally 
ontrolled by an external �eld. In other words, the natural inho-mogeneous broadening does not help. Instead, out of the inhomogeneouslybroadened medium, one has to sele
t a group of atoms with the same transi-tion frequen
y. This 
an be a
hieved by opti
ally pumping the other atomsto an auxilliary shelving state. This works for instan
e in Pr3+-doped 
rys-tals sin
e three long lifetime sublevels are available in the ele
troni
 groundstate. A non-uniform external �eld is then used to s
atter the sele
ted atomsover an arti�
ially tailored bandwidth. The external non-uniform ele
tri
�eld is adjusted so that the engineered inhomogeneous broadening mat
hesthe bandwidth of the pulse to be stored. Provided that it is 
aused by linearStark e�e
t, the frequen
y shift 
an be reverted by inversion of the ele
tri
�eld. The pro
edure has been 
oined Controlled reversible inhomogeneous46
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Figure 10: tri-level CRIB time-diagram. Inhomogeneous broadening is gen-erated by Stark e�e
t. The applied voltage polarity determines the sign ofthe spe
tral shift.broadening [CRIB) by their instigators.This pro
edure, �rst demonstrated in a two-level system [24, 25℄, shouldwork best when 
ombined with the tri-level e
ho (see Fig. 10). As dis
ussedabove, a narrow bandwidth group of atoms is �rst sele
ted. They are pre-pared in state |a〉. The non-uniform ele
tri
 �eld is swit
hed on. The signal isdire
ted to the absorbing medium at t1. After signal extin
tion, the ele
tri
�eld is swit
hed o� and a π-pulse, tuned to the b→ c transition, 
onverts ρ̃abinto ρ̃ac at t3. The re
overy step 
ontrasts signi�
antly with the 
orrespond-ing step in the 
onventional three-level e
ho. Instead of ex
iting the a → btransition, the π-pulse at t3 is tuned again to the b → c empty transition,
onverting ρ̃ac ba
k to ρ̃ab. Then the ele
tri
 �eld is turned ba
k on, withinverted polarity. This way, ρ̃ab phase shift evolves at opposite rate and 
om-pensates for the previously a

umulated phase shift. Atoms are rephased attime t3 + t12 and the e
ho signal is emitted.The three 
riteria for total signal re
all appear to be satis�ed. Both spe
-tral and spatial phase shift are reverted, and no atom is promoted to upperlevel by the π-pulses sin
e both of them ex
ite a transition between unpop-ulated states. However, the opa
ity of the absorbing material is altered byCRIB. Indeed, the available atoms, initially distributed over a narrow inter-47



val δ, are spread by the external ele
tri
 �eld over the memory bandwidth
∆mem, whi
h redu
es the opa
ity by the fa
tor δ/∆mem. One may wonderabout the appropriate size of δ. A
tually the initial width δ gives rise to aninhomogeneous phase shift that 
annot be reverted. Be
ause of this phaseshift, the opti
al dipole available lifetime is limited to ≈ 1/δ, whi
h mustby far ex
eed the duration of the signal to be stored. As a 
onsequen
e, thetime-bandwidth produ
t of the memory is limited by the quantity ∆mem/δ,whi
h is nothing but the inverse redu
tion fa
tor of opa
ity. Therefore, itseems highly improbable to store anything but a single Fourier transformlimited pulse, 
arrying one single information, with the CRIB te
hnique.8 Con
lusionWe have reviewed two strategies for storing quantum light in a ma
ros
opi
ensemble of atoms. The dis
ussion has been essentially 
ondu
ted withinthe limits of the semi-
lassi
al pi
ture. Essential features su
h as the re-trieval e�
ien
y 
an be addressed 
orre
tly within the frame of this pi
ture.Moreover, this problem revives the interest in basi
 
oherent light-matter in-tera
tion pro
esses and sheds new light on them. However, a fully quantumanalysis is needed to a

ount for the entanglement of the atom ensemble,as resulting from 
oupling with quantum light. Despite of numerous e�ortsin this dire
tion, a lot of work has still to be a

omplished. Most of all,quantum memory for light has yet to be demonstrated experimentally in asolid. Both the theoreti
al obs
urities and the experimental 
hallenge makethis �eld of resear
h mostly attra
tive.A Density operatorA.1 statisti
al mixing and quantum 
oheren
eLet us 
onsider a two level atom. Let |a〉 and |b〉 be the eigenstates of atomi
hamiltonian with eigenvalues Ea and Eb. Let the atom be initially in state
|a〉. Ex
itation by a light �eld prepares the atom in a superposition state
|ψ〉 = a|a〉 + b|b〉. The notion of density operator 
lari�es the di�eren
ebetween a quantum state and a statisti
al mixture. The density operator isde�ned as:

ρ = |ψ〉〈ψ| = ρm + ρq (103)48



where ρm and ρq respe
tively denote the diagonal and o�-diagonal 
ompo-nants:
ρm = |a|2|a〉〈a| + |b|2|b〉〈b|
ρq = ab∗|a〉〈b| + a∗b|b〉〈a| (104)In an ensemble of N atoms, identi
ally 
oupled to the �eld, the expe
tationvalues of the atom numbers in ground and ex
ited states are repe
tively givenby N |a|2 and N |b|2. The diagonal operator ρm a

ounts for this statisti
almixture. However, ρm alone fails to des
ribe the quantum properties. Thoseare expressed by the non-diagonal operator ρq. The o�-diagonal elements

〈a|ρq|b〉 = 〈a|ρ|b〉 = ρab and 〈b|ρq|a〉 = 〈b|ρ|a〉 = ρba are named "quantum
oheren
e".To hold some physi
al meaning, the 
oheren
e has to be 
onne
ted withthe measure of an observable. The 
oheren
e asso
iated with observable X
an be de�ned as:
C(X) = Tr[(ρ− ρm)X]

= 〈a|(ρ− ρm)X|a〉 + 〈b|(ρ− ρm)X|b〉
= 〈a|(ρ− ρm)|b〉〈b|X|a〉 + 〈b|(ρ− ρm)|a〉〈a|X|b〉

(105)It appears that only observables with o�-diagonal elements give a

ess toquantum 
oheren
e. The ma
ros
opi
 polarization density pre
isely ownsthis property.A.2 Environment and relaxationThe density operator has helped us to introdu
e the notion of 
oheren
e.However, density operator is mostly known as a tool to a

ount for the inter-a
tion of a quantum system with an environment, a bath with many degreesof freedom. This may be a radiation reservoir or a ma
ros
opi
 materialsystem. Conne
tion with the environment usually leads to relaxation. So,intera
tion with radiation leads to de
ay from upper state to ground levelby spontaneous emission. This a�e
ts the diagonal elements of the densityoperator. The o�-diagonal elements are often more sensitive to 
oupling withenvironment and de
ay faster than population.The notions of partial tra
e and redu
ed density operator 
an be intro-du
ed with the example of spontaneous emission. Let |0E〉 and |1E〉 respe
-tively represent the 0- and 1-photon �eld state. In the produ
t Hilbert state
HA ⊗HE , the atom+�eld ensemble evolves a

ording to unitary dynami
s.49



The state |a〉⊗|0E〉 remains un
hanged sin
e the atom is in the ground state.On the 
ontrary the state |b〉 ⊗ |0E〉 evolves to |a〉 ⊗ |1E〉 with probability pduring the time interval ∆t. In other words, during the time interval ∆t, theunitary operator UAE transforms the 
ompound state |b〉 ⊗ |0E〉 into:
UAE|b〉 ⊗ |0E〉 =

√

1 − p |b〉 ⊗ |0E〉 +
√
p |a〉 ⊗ |1E〉 (106)This 
ompletes the unitary transform multipli
ation table, starting with a0-photon state. Therefore, starting from an initial separable state:

|ψ〉 ⊗ |0E〉 = (a|a〉 + b|b〉) ⊗ |0E〉 (107)the atom-�eld system evolves to the entangled state:
|Ψ(1)

AE〉 =
(

a|a〉 + b
√

1 − p |b〉
)

⊗ |0E〉 + b
√
p |a〉 ⊗ |1E〉 (108)after one time interval ∆t. Let ρAE denote the atom-�eld density operator.The expe
tation value of an observable OA that only depends on atomi
variables 
an be expressed as:

〈OA〉 = TrHA⊗HE
(OAρAE) = TrHE

(

OAρA(E)

) (109)where ρA(E) = TrHE
(ρAE)represents the redu
ed density operator, resultingfrom partial tra
e of the total density operator over the �eld Hilbert spa
e.Hen
e one just need the redu
ed density operator to determine any observablethat only depends on the atomi
 parameters. In our simple model the �eldHilbert spa
e is spanned by the two states |0E〉 and |1E〉. Therefore, afterone time interval ∆t, the redu
ed density operator reads as:

ρ
(1)
A(E) = TrHE

(

ρ
(1)
AE

)

= 〈0E|Ψ(1)
AE〉〈Ψ

(1)
AE|0E〉 + 〈1E|Ψ(1)

AE〉〈Ψ
(1)
AE|1E〉, (110)whi
h 
an be represented by the matrix:

ρ
(1)
A(E) =

[

〈a|ρ(1)
A(E)|a〉 〈a|ρ(1)

A(E)|b〉
〈b|ρ(1)

A(E)|a〉 〈b|ρ(1)
A(E)|b〉

]

=

[

1 − (1 − p)〈b|ρ(0)
A(E)|b〉

√
1 − p〈a|ρ(0)

A(E)|b〉√
1 − p〈b|ρ(0)

A(E)|a〉 (1 − p)〈b|ρ(0)
A(E)|b〉

]

(111)
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Let an evolution time interval t be des
ribed as a sequen
e of n elementaryintervals of duration ∆t = t/n. Assuming an iterative appli
ation of thistransform, i.e. :
ρ

(m)
A(E) =

[

1 − (1 − p)〈b|ρ(m−1)
A(E) |b〉 √

1 − p〈a|ρ(m−1)
A(E) |b〉

√
1 − p〈b|ρ(m−1)

A(E) |a〉 (1 − p)〈b|ρ(m−1)
A(E) |b〉

]

, (112)one �nally obtains:
ρA(E)(t) =

[

1 − e−γbt〈b|ρA(E)(0)|b〉 e−γbt/2〈a|ρA(E)(0)|b〉
e−γbt/2〈b|ρA(E)(0)|a〉 e−γbt〈b|ρA(E)(0)|b〉

]

, (113)where the ratio p/∆t has been substituted with the spontaneous de
ay rate
γb. This expresses the spontaneous emission e�e
t on both populations and
oheren
es. As expe
ted upper level population de
ays to the ground levelwith rate γb. Less obviously, the 
oheren
e terms de
ay with rate γb/2. Whilethe total density operator obeys unitary dynami
s, the redu
ed operatorappears to undergo non-unitary evolution.Spontaneous emission is an inelasti
 pro
ess. Atomi
 ex
itation energy istransferred to the radiation �eld. However 
oheren
e relaxation may o

urduring elasti
 pro
esses, the atom intera
ting with the environment with-out any population redistribution. Let an atom be 
oupled to a reservoir.Initially the atom+reservoir state reads as:

|ψ〉 ⊗ |Ξ〉 = (a|a〉 + b|b〉) ⊗ |Ξ〉 (114)where Ξ stands for the initial reservoir state. Let the 
ompound system evo-lution be determined by the unitary operator U(t) a

ording to the followingtable:
|a〉 ⊗ |Ξ〉 U(t)→ |a〉 ⊗ |Ξa(t)〉 |b〉 ⊗ |Ξ〉 U(t)→ |b〉 ⊗ |Ξb(t)〉 (115)where:

〈Ξa(t)|Ξa(t)〉 = 〈Ξb(t)|Ξb(t)〉 = 〈Ξ(t)|Ξ(t)〉 = 1 (116)The atom stays in its initial state but the reservoir evolution depends on theatomi
 state. With the transformation table, the evolution of an arbitray
ompound state reads as:
|ψ〉 ⊗ |Ξ〉 = (a|a〉 + b|b〉) ⊗ |Ξ〉 U(t)→ a|a〉 ⊗ |Ξa(t)〉 + b|b〉 ⊗ |Ξb(t)〉 (117)51



In the same way as in the spontaneous emission example, the system evolvesto an entangled state. By performing the partial tra
e of the density operatorover the reservoir states we then obtain the redu
ed density operator:
ρ(t) = Tr [ρat+Ξ(t)] =

∑

iΞ

〈iΞ|ρat+Ξ(t)|iΞ〉 (118)where states |iΞ〉 span the environment Hilbert spa
e. In the basis set ofve
tors |a〉, |b〉, the redu
ed operator reads as:
ρ(t) =

[

|a|2 ab∗〈Ξb(t)|Ξa(t)〉
a∗b〈Ξa(t)|Ξb(t)〉 |b|2

] (119)The atomi
 
oheren
e appears to be governed by the environment evolution.In general states Ξa(t)〉 and Ξb(t)〉 be
ome more and more orthogonal astime elapse, gaining the orthogonality of their asso
iated atomi
 states. Thisevolution 
an often be des
ribed as:
〈Ξb(t)|Ξa(t)〉 = e−γabt (120)Spontaneous emission de
ay, 
ombined with elasti
 relaxation, leads tothe following general relation:

γab ≥ γb/2 (121)B The Blo
h ve
torB.1 Conne
tion with NMRDeveloping the Nu
lear Magneti
 Resonan
e (NMR) theory, Felix Blo
h de-s
ribes the evolution of the magneti
 moment operator expe
ting value andshows this quantity satis�es the equation of motion of a 
lassi
al magneti
dipole. The Hamiltonian reads as H = − ~M. ~B where ~B and ~M respe
tivelyrepresent the magneti
 indu
tion and the magneti
 dipole moment. The lat-ter is 
onne
ted to the angular momentum ~J by ~M = γ~ ~J , where γ denotesthe gyromagneti
 ratio. From S
hrödinger equation, and with the help ofthe 
ommutation relations: [Jx, Jy] = iJz, [Jz, Jx] = iJy and [Jy, Jz] = iJx,one easily shows that d〈 ~M〉/dt = −γ ~B × 〈 ~M〉. For instan
e, the equation of52



〈Mx〉 reads as:
i~

d〈Mx〉
dt

= i~Tr (Mxdρ/dt) = −Tr
(

Mx

[

~M. ~B, ρ
])

= −Tr
{

Mx

(

~M. ~B
)

ρ
}

+ Tr
{

ρ
(

~M. ~BMx

)}

= −By (〈MxMy〉 − 〈MyMx〉) − Bz (〈MxMz〉 − 〈MzMx〉)

(122)The system evolves in 2J + 1 dimension Hilbert spa
e, the state degenera
ybeing totally lifted by the applied magneti
 �eld. The magneti
 dipole mo-ment operates in the Hilbert spa
e, but the expe
tation value of its x, y, z
omponents obey those equations of motion in real spa
e.Turning now to the two-level atoms, we know that the Hamiltonian 
anbe expressed in terms of the Pauli matri
es:
σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

] (123)that 
an be put together to form the ve
tor ~σ. Hen
e the Hamiltonian of anatom intera
ting with a 
lassi
al ele
tromagneti
 �eld reads as:
H0 + eRE =

1

2
~ωabσ3 + µabEσ1 (124)where the state ve
tor is expressed as: |ψ〉 = a|a〉 + b|b〉 =

[

b
a

]The Pauli matri
es obey the same 
ommutation rules as an angular mo-mentum. More pre
isely, the spin operator de�ned as: ~S = 1
2
~σ obeys the
ommutation rules of a J = 1/2 angular momentum. Hen
e ~σ 
an be re-garded as a magneti
 moment. In the two-level atom Hamiltonian, the opti-
al ele
tri
 �eld and the level spa
ing respe
tively play the same role as thehorizontal radio-frequen
y and the verti
al stati
 magneti
 �elds in NMR.B.2 Blo
h ve
tor de�nition. Equation of motionThe Blo
h ve
tor ~B 
an be de�ned as the expe
tation value Tr (ρ~σ) of thePauli operator. A

ording to the equation of motion, the Blo
h ve
tor rapidlypre
esses around axis ”3” at opti
al frequen
y ωab. The ele
tri
 �eld os
illat-ing at frequen
y ωL along axis ”1” 
an be broken up in two ve
tors rotatingwith opposite velo
ities ωL and −ωL within the plane orthogonal to axis

”3”. Only the ele
tri
 �eld 
omponent at velo
ity ωL 
lose to ωab 
ouples53



e�
iently to the Blo
h ve
tor. One negle
ts intera
tion with the other 
om-ponent rotating at −ωL. This is the rotating wave approximation.In the frame of the rotating ele
tri
 �eld 
omponent, the Blo
h ve
tor
oordinates u, v, w are dire
tly derived fom the de�nition ~B = Tr (ρ~σ) as:






u = ρ̃ab + ρ̃ba

v = i (ρ̃ba − ρ̃ab)
w = ρbb − ρaa

(125)The opti
al Blo
h equation reads as5. :






u̇ = −∆v + Im(Ω)w − γabu
v̇ = ∆u− Re(Ω)w − γabv
ẇ = −Im(Ω)u+ Re(Ω)v − γb(1 + w)

(126)In the same way as the motion of a magneti
 moment immersed in a magneti
�eld, the Blo
h equation 
an be written as:
d ~B

dt
= ~β × ~B − d ~B

dt

∣

∣

∣

∣

∣

relax

(127)where: ~β =







Re(Ω)
Im(Ω)
∆

, and d ~B

dt

∣

∣

∣

∣

∣

relax

=





γab 0 0
0 γab 0
0 0 γb




~B +





0
0
γb



Some geometri
al properties 
ome along with the pre
ession form of theequation of motion:
• in the absen
e of relaxation, the length of ~B does not vary.
• if the system starts in a pure state, the length of ~B remains unity inthe absen
e of relaxation.
• when ~β points to a �xed dire
tion, ~B pre
esses around ~β, at �xed angle.Proje
tion of ~B on ~β dire
tion is 
onstant.5In previous se
tions we had de�ned the Rabi frequen
y so as to get rid of uselessnumeri
al fa
tors. In those se
tions the Blo
h equation was expressed in terms of 
oheren
eand level population. From now on we modify the Rabi frequen
y de�nition in order tomake the Blo
h ve
tor pre
ession rate around axis Ou 
oin
ide with Ω. Rabi frequen
y isnow de�ned as µabA(~r, t)/~ instead of µabA(~r, t)/(2~).54



• the driving ve
tor ~β, the Blo
h ve
tor ~B and the in
rease of ~B form aright-handed trihedron.When atoms are resonantly ex
ited by a �xed �eld, the Blo
h ve
torrotates at angular frequen
y Ω in the plane orthogonal to ~β. The resultingos
illation of w, representing the level population di�eren
e, is known as theRabi os
illation.
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