Air showers and their radio component

Thierry Gousset (SubaTech, Nantes, France)

June 7, 2007

Air showers

Refs:

- Allan, in: Progress in elementary particle and cosmic ray physics, p. 169 (North Holland, Amsterdam, 1971)

Refs:

- Allan, in: Progress in elementary particle and cosmic ray physics, p. 169 (North Holland, Amsterdam, 1971)
— Stanev, High energy cosmic rays (Springer, 2004)
- Gaisser, Cosmic rays and particle physics (Cambridge University Press, 1990)
— Nagano-Watson, Rev Mod Phys 72, 689 (2000)
Air showers
Lengths
85 vs 1000
particle physics
secondary partspace and time
Time development
Shower extension
A first exercise\neq approaches
Air showers and the
primary radiation

Length in $\mathrm{m} \rightarrow$ length $\mathrm{in} \mathrm{g} / \mathrm{cm}^{2}$

Interaction of rays with matter described by various lengths ℓ \rightarrow mean free path for something to happen (coll, abs) probability of nothing to happen up to x :

$$
\frac{d p}{p}=-\frac{d x}{\ell}
$$

$\square 1 / \ell=$ particle density \times cross section $=n \times \sigma$

Length in $\mathbf{m} \rightarrow$ length $\mathrm{in} \mathrm{g} / \mathrm{cm}^{2}$

Interaction of rays with matter described by various lengths ℓ \rightarrow mean free path for something to happen (coll, abs) probability of nothing to happen up to x :

$$
\frac{d p}{p}=-\frac{d x}{\ell}
$$

$\square 1 / \ell=$ particle density \times cross section $=n \times \sigma$

- $n \rightarrow n(x)$, useful to use depth of material X such that $d X=\rho(x) d x$

$$
\frac{d p}{p}=-\frac{d X}{\lambda}
$$

with λ in units of X, in practice $\mathrm{g} / \mathrm{cm}^{2}$
$85 \mathrm{~g} / \mathrm{cm}^{2}$ vs $1000 \mathrm{~g} / \mathrm{cm}^{2}$

- Earth's atmosphere = cosmic-ray shield

A first exercise
\neq approaches

- High energy protons have interaction length in air $\lambda_{p A}=85 \mathrm{~g} / \mathrm{cm}^{2}$
- Note: A for air (or $80 \% \mathrm{~N}+20 \% \mathrm{O}$)
- For a downward vertical path to sea level $\int d X \approx 1000 \mathrm{~g} / \mathrm{cm}^{2}$

Cosmic rays and high energy physics

Air showers
Lengths
85 vs 1000
particle physics
secondary part
space and time
Time development
Shower extension
A first exercise
\neq approaches
\[\begin{array}{r} p\left(E_{p}=10^{17} \mathrm{eV}\right)+A \rightarrow X
s_{N N}=2 m_{N} c^{2} E_{p}=O\left((10 \mathrm{TeV})^{2}\right) , i.e. LHC \end{array} \]

Cosmic rays and high energy physics

Air showers
Lengths
85 vs 1000
particle physics
secondary part space and time

Time development
Shower extension
A first exercise
\neq approaches

$$
p\left(E_{p}=10^{17} \mathrm{eV}\right)+A \rightarrow X
$$

$$
s_{N N}=2 m_{N} c^{2} E_{p}=O\left((10 \mathrm{TeV})^{2}\right) \text {, i.e. LHC }
$$

- Tevatron $\rightarrow(2 \mathrm{TeV})^{2}$ and RHIC $\rightarrow(200 \mathrm{GeV})^{2}$
\rightarrow need to extrapolate
\rightarrow hadronic models (more in Stanev sec 8.3)

Secondary particles

$$
p+A \rightarrow X
$$

- X

Air showers
Lengths
85 vs 1000
particle physics
secondary part space and time

Time development
Shower extension
A first exercise
\neq approaches
$-\sim 10^{2}$ pions (20\% something else) + target fragments

+ "original" baryon with a fraction of the initial energy
— pions are π^{+}, π^{-}and π^{0}
- $\pi^{0} \xrightarrow{99 \%} 2 \gamma$
$-c \tau \pi^{0}=25 \mathrm{~nm} ; \pi^{0}$'s desintegrate before reinteracting
- γ 's initiate the electromagnetic component of the shower

1. pair creation $\gamma+A \rightarrow e^{+} e^{-}+X$
2. bremsstrahlung $e+A \rightarrow e+\gamma+X$
3. repeat 1 and 2

Shower in space and time

- multiplicative process
- energy distributed among a vast number of secondary particles
- almost forward development

Air showers
Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

Time development and energy distribution

Time development

Time development $N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches
which N ?

- electrons and positrons
- charges
- charges above an energy threshold (in practice that of particle detection)

$N(X)$ trend results from competition
- multiplicative processes $\Rightarrow d N>0$ and E

■ ionisation loss $\Rightarrow E \searrow$

Heitler model

Toy model for cascade development

Time development $N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- $1 \rightarrow 2$ process, with daughter particles each carrying half the parent energy
- Branching at every step of length $X_{1 / 2}$
- After the k th branching $X=k \times X_{1 / 2}, N=2^{k}$ and the energy per particle is E_{p} / N
- Assume branching process stops when $E \leq E_{C}$

$$
N_{\max }=\frac{E_{p}}{E_{C}}, \quad X_{\max }=X_{1 / 2} \log _{2}\left(E_{p} / E_{C}\right)
$$

initiated shower

■ $\gamma+A \rightarrow e^{+} e^{-}+X$ and $e+A \rightarrow e+\gamma+X$ are $1 \rightarrow 2$ processes
$\square \approx$ same length scale 'radiation length' $=X_{0} \approx 40 \mathrm{~g} / \mathrm{cm}^{2}$

- $X_{1 / 2} \approx \ln 2 \times X_{0}=30 \mathrm{~g} / \mathrm{cm}^{2}$
- these branchings dominate for $E>E_{C}$, with a critical energy in air $\approx 100 \mathrm{MeV}$

Shower extension
A first exercise
\neq approaches

$$
N_{\max }=\frac{E_{\gamma}}{100 \mathrm{MeV}}, \quad X_{\max }=100 \mathrm{~g} / \mathrm{cm}^{2} \times \log _{10}\left(E_{\gamma} / 100 \mathrm{MeV}\right)
$$

γ initiated shower

- $\gamma+A \rightarrow e^{+} e^{-}+X$ and $e+A \rightarrow e+\gamma+X$ are $1 \rightarrow 2$ processes
$\square \approx$ same length scale 'radiation length' $=X_{0} \approx 40 \mathrm{~g} / \mathrm{cm}^{2}$
- $X_{1 / 2} \approx \ln 2 \times X_{0}=30 \mathrm{~g} / \mathrm{cm}^{2}$
- these branchings dominate for $E>E_{C}$, with a critical energy in air $\approx 100 \mathrm{MeV}$

$$
N_{\max }=\frac{E_{\gamma}}{100 \mathrm{MeV}}, \quad X_{\max }=100 \mathrm{~g} / \mathrm{cm}^{2} \times \log _{10}\left(E_{\gamma} / 100 \mathrm{MeV}\right)
$$

model misses energy loss by ionisation $\Rightarrow N_{\max }$ overestimated

Greisen parametrization

(Stanev p. 175)

Air showers
$\frac{\text { Time development }}{N(X)}$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum hadron content
in practice nucleus shower charge excess

Shower extension
A first exercise
\neq approaches

$$
N_{e}^{\gamma}=\frac{0.31}{\sqrt{\ln E_{\gamma} / E_{C}}} \exp \left[\left(1-\frac{3}{2} \ln s\right) X / X_{0}\right], \quad s=\frac{3 X}{X+2 X_{\max }}
$$

$N_{\max }$ from total track length

Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- Energy dissipated in ionisation loss; for relativistic particle the rate is $d E / d X \approx-2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$
- $N(X)$ number of charged particles at depth X
- Energy dumped in $[X, X+d X]$ slice

$$
d E=\left(2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}\right) \times N(X) d X
$$

$N_{\max }$ from total track length

$N_{\text {max }}$ energy spectrum hadron content in practice nucleus shower charge excess

Shower extension
A first exercise
\neq approaches

- Energy dissipated in ionisation loss; for relativistic particle the rate is $d E / d X \approx-2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$
- $N(X)$ number of charged particles at depth X
- Energy dumped in $[X, X+d X]$ slice

$$
\Rightarrow
$$

$$
\begin{aligned}
& d E=\left(2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}\right) \times N(X) d X \\
& \int N(X) d X \approx \frac{E_{p}}{2 \mathrm{GeV}} \times 1000 \mathrm{~g} / \mathrm{cm}^{2}
\end{aligned}
$$

$N_{\max }$ from total track length

$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- Energy dissipated in ionisation loss; for relativistic particle the rate is $d E / d X \approx-2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$
- $N(X)$ number of charged particles at depth X
- Energy dumped in $[X, X+d X]$ slice

$$
d E=\left(2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}\right) \times N(X) d X
$$

\Rightarrow

$$
\int N(X) d X \approx \frac{E_{p}}{2 \mathrm{GeV}} \times 1000 \mathrm{~g} / \mathrm{cm}^{2}
$$

(\rightarrow fluorescence method, more in Nagano-Watson)

$N_{\text {max }}$ from total track length (cont’d)

$\int N(X) d X=N_{\max } \times$ characteristic shower length
Air showers
Time developmen
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches
taking 1 atmospheric thickness:

$$
N_{\max }=\frac{E_{p}}{2 \mathrm{GeV}}
$$

Energy spectrum (e-m component)

in Heitler model:
$\frac{\text { Time development }}{N(X)}$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- total track length associated with particles of energy greater than $E=E_{\gamma} / 2^{k}$
$=30 \mathrm{~g} / \mathrm{cm}^{2} \times 2^{k}(1 / 2+1 / 4+\cdots) \approx\left(E_{\gamma} / E\right) \times 30 \mathrm{~g} / \mathrm{cm}^{2}$

Energy spectrum (e-m component)

in Heitler model:

Time development $N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- total track length associated with particles of energy greater than $E=E_{\gamma} / 2^{k}$
$=30 \mathrm{~g} / \mathrm{cm}^{2} \times 2^{k}(1 / 2+1 / 4+\cdots) \approx\left(E_{\gamma} / E\right) \times 30 \mathrm{~g} / \mathrm{cm}^{2}$
- an electron with $E=E_{C}$ loses it in one radiation length
- total track length associated with particles of energy lower than $E_{C}=\left(E_{\gamma} / E_{C}\right) \times 40 \mathrm{~g} / \mathrm{cm}^{2}$

Energy spectrum (e-m component)

in Heitler model:

Time development $N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- total track length associated with particles of energy greater than $E=E_{\gamma} / 2^{k}$
$=30 \mathrm{~g} / \mathrm{cm}^{2} \times 2^{k}(1 / 2+1 / 4+\cdots) \approx\left(E_{\gamma} / E\right) \times 30 \mathrm{~g} / \mathrm{cm}^{2}$
- an electron with $E=E_{C}$ loses it in one radiation length
\square total track length associated with particles of energy lower than $E_{C}=\left(E_{\gamma} / E_{C}\right) \times 40 \mathrm{~g} / \mathrm{cm}^{2}$
- more weight to low energy in actual fact

$$
\int_{>E} N d X \approx 40 \mathrm{~g} / \mathrm{cm}^{2} \times \frac{E_{\gamma}}{E_{C}} \times \frac{30 \mathrm{MeV}}{E+30 \mathrm{MeV}}
$$

Energy spectrum (e-m component)

in Heitler model:

Time development $N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- total track length associated with particles of energy greater than $E=E_{\gamma} / 2^{k}$

$$
=30 \mathrm{~g} / \mathrm{cm}^{2} \times 2^{k}(1 / 2+1 / 4+\cdots) \approx\left(E_{\gamma} / E\right) \times 30 \mathrm{~g} / \mathrm{cm}^{2}
$$

- an electron with $E=E_{C}$ loses it in one radiation length
- total track length associated with particles of energy lower than $E_{C}=\left(E_{\gamma} / E_{C}\right) \times 40 \mathrm{~g} / \mathrm{cm}^{2}$
- more weight to low energy in actual fact

$$
\int_{>E} N d X \approx 40 \mathrm{~g} / \mathrm{cm}^{2} \times \frac{E_{\gamma}}{E_{C}} \times \frac{30 \mathrm{MeV}}{E+30 \mathrm{MeV}}
$$

this is for the whole shower \rightarrow at and around maximum

$$
N(>E) / N
$$

Hadronic component

- $\pi^{ \pm}: c \tau=8 \mathrm{~m}$

Air showers
Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches
$-\lambda_{\pi A}=120 \mathrm{~g} / \mathrm{cm}^{2} \rightarrow \ell_{\pi A} \approx 1 \mathrm{~km}$ for $n(z=0)=1 \mathrm{mg} / \mathrm{cm}^{3}$

- at high energy pions reinteract
- otherwise they decay $\rightarrow \mu \nu$; muons (only lose $2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$) \rightarrow direct information on pions

Hadronic component

- $\pi^{ \pm}: c \tau=8 \mathrm{~m}$

Air showers
Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches
$-\lambda_{\pi A}=120 \mathrm{~g} / \mathrm{cm}^{2} \rightarrow \ell_{\pi A} \approx 1 \mathrm{~km}$ for $n(z=0)=1 \mathrm{mg} / \mathrm{cm}^{3}$

- at high energy pions reinteract
- otherwise they decay $\rightarrow \mu \nu$; muons (only lose $2 \mathrm{MeV} / \mathrm{g} / \mathrm{cm}^{2}$) \rightarrow direct information on pions
- π^{0} : estimate of $X_{\max }$ and $N_{\max }$ for proton induced shower assuming that the e.m. showers are initiated by 1st generation π^{0} 's

$$
X_{\max }=\lambda_{p A}+X_{0} \ln \left[\frac{(1-K) E_{p}}{2\langle m\rangle E_{C}}\right], \quad N_{\max }=\frac{(1-K) E_{p}}{3 E_{C}}
$$

in practice

Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

average behavior (adjusted with Monte-Carlo)

Gaisser-Hillas formula (Stanev p. 186)

$$
N(X)=N_{\max }\left(\frac{X-X_{1}}{X_{\max }-\lambda}\right)^{X_{\max } / \lambda-1} \exp -\left(\frac{X-X_{1}}{\lambda}\right)
$$

in practice

average behavior (adjusted with Monte-Carlo)

Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

Gaisser-Hillas formula (Stanev p. 186)

$$
N(X)=N_{\max }\left(\frac{X-X_{1}}{X_{\max }-\lambda}\right)^{X_{\max } / \lambda-1} \exp -\left(\frac{X-X_{1}}{\lambda}\right)
$$

+ fluctuations:
- on $X_{1} \rightarrow X_{\text {max }}$

■ on shape and $N_{\text {max }}$: individual realizations of fi rst hadronic collisions (inelasticity, multiplicity, energy of secondaries)

Nucleus vs proton initiated shower

Time development
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- in the superposition approximation: nucleus $=A \times$ independent nucleons with energy E_{p} / A
- nucleus shower $=A \times$ nucleon showers
- shift of $X_{\text {max }}: X_{\max }\left(E_{p}, A\right)=X_{\max }\left(E_{p} / A, p\right)$
- less shower to shower fluctuation

Negative charge excess

Air showers
Time developmen
$N(X)$
Heitler model
γ shower
Greisen
$N_{\text {max }}$
energy spectrum
hadron content
in practice
nucleus shower
charge excess
Shower extension
A first exercise
\neq approaches

- below E_{C}

$$
e(\gamma)+A \rightarrow e(\gamma)+e^{-}+X
$$

delta rays (Compton recoil)

- positron annihilate in flight
$\rightarrow 10-20 \% e^{-}$excess in the energy range below E_{C}

Lateral spread and longitudinal dispersion

Multiple scattering

- Emission \rightarrow spread of hadrons

Time development
Shower extension
Multiple scattering NKG

A first exercise
\neq approaches

- Multiple scattering \rightarrow spread of electrons
spread of hadrons limited to a few meters

Multiple scattering

- Emission \rightarrow spread of hadrons

Time development
Shower extension Multiple scattering NKG

A first exercise \neq approaches

- Multiple scattering \rightarrow spread of electrons
spread of hadrons limited to a few meters electrons
- typical scattering angle $\theta \sim 1 / \gamma$
- $\theta^{2}(n)=n \times(1 / \gamma)^{2}$
- proportion of scatterings with radiation $\sim 1 / \alpha$
$\Rightarrow d \theta^{2}=\left(E_{s} / E\right)^{2} d X / X_{0}$, with $E_{s}=4 \pi m_{e} c^{2} / \alpha=21 \mathrm{MeV}$

Multiple scattering (cont’d)

Time development
Shower extension
Multiple scattering NKG

A first exercise \neq approaches
including energy loss $X_{i} \rightarrow X_{f}, E(X)=E\left(X_{f}\right) \times e^{\frac{X_{f}-X}{X_{0}}}$

$$
X^{\prime}=X_{f}-X,
$$

$$
\theta^{2}(i \rightarrow f)=\int d \theta^{2}=\frac{E_{s}^{2}}{E_{f}^{2}} \int_{0}^{X_{i}-X_{f}} e^{-2 X^{\prime} / X_{0}} \frac{d X^{\prime}}{X_{0}}, \quad\left(E_{f}>E_{C}\right)
$$

Multiple scattering (cont’d)

Time development
Shower extension
Multiple scattering NKG

A first exercise
\neq approaches
including energy loss $X_{i} \rightarrow X_{f}, E(X)=E\left(X_{f}\right) \times e^{\frac{X_{f}-X}{X_{0}}}$

$$
\begin{gathered}
X^{\prime}=X_{f}-X, \\
\theta^{2}(i \rightarrow f)=\int d \theta^{2}=\frac{E_{s}^{2}}{E_{f}^{2}} \int_{0}^{X_{i}-X_{f}} e^{-2 X^{\prime} / X_{0}} \frac{d X^{\prime}}{X_{0}}, \quad\left(E_{f}>E_{C}\right)
\end{gathered}
$$

and lateral displacement

$$
D^{2}(i \rightarrow f)=\int X^{\prime 2} d \theta^{2} \Rightarrow D=\frac{10 \mathrm{MeV}}{E} X_{0} \quad\left(E>E_{C}\right)
$$

i.e., 40 m at 100 MeV at sea level

Multiple scattering (cont’d)

Shower extension
Multiple scattering NKG

A first exercise
\neq approaches
including energy loss $X_{i} \rightarrow X_{f}, E(X)=E\left(X_{f}\right) \times e^{\frac{X_{f}-X}{X_{0}}}$

$$
\begin{gathered}
X^{\prime}=X_{f}-X, \\
\theta^{2}(i \rightarrow f)=\int d \theta^{2}=\frac{E_{s}^{2}}{E_{f}^{2}} \int_{0}^{X_{i}-X_{f}} e^{-2 X^{\prime} / X_{0}} \frac{d X^{\prime}}{X_{0}}, \quad\left(E_{f}>E_{C}\right)
\end{gathered}
$$

and lateral displacement

$$
D^{2}(i \rightarrow f)=\int X^{\prime 2} d \theta^{2} \Rightarrow D=\frac{10 \mathrm{MeV}}{E} X_{0} \quad\left(E>E_{C}\right)
$$

i.e., 40 m at 100 MeV at sea level
\rightarrow multiple scattering longitudinal lag 3 m , also \searrow with energy

Lateral distribution

Time development
Shower extension
Multiple scattering NKG

A first exercise
\neq approaches
flux of electrons given by NKG formula (Gaisser p 226, Stanev p 179)

$$
n_{e}(r, X)=N_{e}(X) \frac{C}{r r_{1}}\left(\frac{r}{r_{1}}\right)^{s-1}\left(1+\frac{r}{r_{1}}\right)^{s-9 / 2},
$$

with

$$
r_{1}=\frac{E_{s}}{E_{C}} \frac{X_{0}}{\rho_{\mathrm{air}}}
$$

From showers to electric fields

Time development
Shower extension
A first exercise
Detour
Coherence
\neq approaches

A first exercise

A detour: Cerenkov light in air

consider Cerenkov radiation of a charge particle ($q=Z e$) energy spectrum per unit length

Coherence
\neq approaches

$$
\frac{d^{2} E_{C}}{d L d \omega}=\alpha Z^{2} \sin ^{2} \theta_{C} \frac{\omega}{\hbar c}
$$

A detour: Cerenkov light in air

consider Cerenkov radiation of a charge particle ($q=Z e$) energy spectrum per unit length

$$
\frac{d^{2} E_{C}}{d L d \omega}=\alpha Z^{2} \sin ^{2} \theta_{C} \frac{\omega}{\hbar c}
$$

- Cerenkov in air $\theta_{C} \ll 1$
- vertical downward moving particle
- trajectory bit of length Δz around z_{0} shines on a ring of mean radius $z_{0} \theta_{C}$ and width $\Delta z \theta_{C}$

$$
\frac{\Delta E_{C}}{2 \pi z_{0} \Delta z \theta_{C}^{2}}=\alpha Z^{2} \frac{\omega \Delta \omega}{h c z_{0}}
$$

Cerenkov radio

Time development
Shower extension
A first exercise
Detour
Coherence
\neq approaches
$\Rightarrow d E_{C} / d S \sim 10^{2} \mathrm{MeV} / \mathrm{m}^{2}$ using $h c=1.24 \mathrm{eV} \mu \mathrm{m}, Z=1$, $z_{0}=4 \mathrm{~km}, N_{e}=510^{7}, \lambda=0.6 \mu \mathrm{~m}$ and $\Delta \lambda=0.4 \mu \mathrm{~m}$

Cerenkov radio

Coherence
\neq approaches
$\Rightarrow d E_{C} / d S \sim 10^{2} \mathrm{MeV} / \mathrm{m}^{2}$ using $h c=1.24 \mathrm{eV} \mu \mathrm{m}, Z=1$, $z_{0}=4 \mathrm{~km}, N_{e}=510^{7}, \lambda=0.6 \mu \mathrm{~m}$ and $\Delta \lambda=0.4 \mu \mathrm{~m}$
radio (decametric)

- divide ω by $\sim 10^{7}$ and $\Delta \omega$ by $\sim 10^{7}$
- take $A_{e} \sim 10 \mathrm{~m}^{2}$

$$
\Rightarrow \Delta E_{C}=10^{-5} \mathrm{eV}
$$

Cerenkov radio

$$
\begin{aligned}
\Rightarrow & d E_{C} / d S \sim 10^{2} \mathrm{MeV} / \mathrm{m}^{2} \text { using } h c=1.24 \mathrm{eV} \mu \mathrm{~m}, Z=1, \\
& z_{0}=4 \mathrm{~km}, N_{e}=510^{7}, \lambda=0.6 \mu \mathrm{~m} \text { and } \Delta \lambda=0.4 \mu \mathrm{~m}
\end{aligned}
$$

radio (decametric)

- divide ω by $\sim 10^{7}$ and $\Delta \omega$ by $\sim 10^{7}$
- take $A_{e} \sim 10 \mathrm{~m}^{2}$

$$
\Rightarrow \Delta E_{C}=10^{-5} \mathrm{eV}
$$

- much too small since galactic noise gives

$$
k_{B} T \times \Delta \nu \times \Delta t \rightarrow 2.5 \mathrm{eV} \times 40 \mathrm{MHz} \times 10 \mathrm{~ns}=1 \mathrm{eV}
$$

Coherence: a must in radio

solution: replace $N_{e} \rightarrow N_{e}^{2}$; incoherent \rightarrow coherent

Air showers
Time development
Shower extension
A first exercise Detour
Coherence
\neq approaches

- at fi rst: $N=N_{+} \Rightarrow$ no fi eld at all
- but systematic charge separation by

1. earth magnetic fi eld (and E fi eld in thunderstorms)
2. elementary processes below $E_{C} \rightarrow$ negative charge excess

Various approaches

\neq approaches
Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b

Overview

Shower extension
A first exercise
\neq approaches
Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b

- $\sum_{k=1}^{N} \vec{E}(t, A)$ with \vec{E} single-charge electric fi eld taken from textbook \rightarrow Monte-Carlo based approach
- $\vec{E}[\rho, \vec{\jmath}]$
- Feynman formula for relativistic charges:

$$
\vec{E}=\frac{-q}{4 \pi \epsilon_{0} c^{2}} \vec{e}_{r^{\prime}}^{\prime \prime}
$$

From individual charges

More thorough study to date: T Huege, H Falcke, Astronomy \&

Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b Astrophysics 412, 19 (2003); Astronomy \& Astrophysics 430, 779 (2005); Astropart. Phys. 24, 116 (2005); T Huege et al, Astropart. Phys. 27, 392 (2007)

From individual charges

More thorough study to date: T Huege, H Falcke, Astronomy \&
 Astrophysics 412, 19 (2003); Astronomy \& Astrophysics 430, 779 (2005); Astropart. Phys. 24, 116 (2005); T Huege et al, Astropart. Phys. 27, 392 (2007) Building block:

$$
\vec{E}_{q}(t, A)=\frac{q}{4 \pi \epsilon c^{2}} \frac{\vec{R} \wedge[(\vec{R}-R \vec{v} / c) \wedge \vec{a}]}{\|R-\vec{R} \cdot \vec{v} / c\|^{3}}
$$

with

$$
\vec{a}=\frac{q \vec{v} \wedge \vec{B}}{\gamma m_{e}}
$$

From charges and currents

Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b
shower electromagnetic fi eld as a standard electromagnetism exercise

$$
(\vec{E}, \vec{B})=F[\rho, \vec{\jmath}]
$$

From charges and currents

shower electromagnetic fi eld as a standard electromagnetism exercise

$$
(\vec{E}, \vec{B})=F[\rho, \vec{\jmath}]
$$

how to carry out such a program ?

- Kahn and Lerche approach
— ringlike geometry
- no shower evolution (contribution around $N_{\text {max }}$) + estimate for shower decay
- formulation in Fourier space
- geomagnetic contribution > Askaryan effect (charge excess)

From charges and currents

shower electromagnetic fi eld as a standard electromagnetism exercise

$$
(\vec{E}, \vec{B})=F[\rho, \vec{\jmath}]
$$

how to carry out such a program ?

- Kahn and Lerche approach
—ringlike geometry
- no shower evolution (contribution around $N_{\text {max }}$) + estimate for shower decay
-formulation in Fourier space
- geomagnetic contribution > Askaryan effect (charge excess)
- more realistic model, numerical implementation. . . not (yet) followed

Time scales

Air showers
Time development
Shower extension
A first exercise
\neq approaches
Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b

- particle Q moves at $\approx c$
- $Q=$ B at $t=0$
- $c t_{i}=\sqrt{d_{i B}^{2}+b^{2}}-d_{i B}$
- $\Delta t_{12} \approx 0.4 b^{2}($ small $\theta)$
- $\Delta t_{2 B}=3.3 \mathrm{~b}$
(time in $\mu \mathrm{S}$ and distance in km)

Time scales

A first exercise

- particle Q moves at $\approx c$
- $Q=$ B at $t=0$
- $c t_{i}=\sqrt{d_{i B}^{2}+b^{2}}-d_{i B}$
- $\Delta t_{12} \approx 0.4 b^{2}($ small $\theta)$
- $\Delta t_{2 B}=3.3 \mathrm{~b}$
(time in $\mu \mathrm{s}$ and distance in km)

■ Doppler distorsion: fast rise and slow decay
$\square v \approx c$ valid at $\theta \gg|c-v|$

Time scales

A first exercise

- particle Q moves at $\approx c$
- $Q=$ B at $t=0$
- $c t_{i}=\sqrt{d_{i B}^{2}+b^{2}}-d_{i B}$
- $\Delta t_{12} \approx 0.4 b^{2}($ small $\theta)$
- $\Delta t_{2 B}=3.3 \mathrm{~b}$
(time in $\mu \mathrm{s}$ and distance in km)

■ Doppler distorsion: fast rise and slow decay
$\square v \approx c$ valid at $\theta \gg|c-v|$

- $\Delta t_{32} \approx l / c+b r /\left(c d_{2 B}\right)$, both terms $<30 \mathrm{~ns}$

Large impact parameters

\Rightarrow at large $b \rightarrow$ (distorted) image of $N(X)$

Time development
Shower extension
A first exercise
\neq approaches
Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b

- pointlike approximation: all timescales but obliquity set to 0

Large impact parameters

\Rightarrow at large $b \rightarrow$ (distorted) image of $N(X)$

A first exercise
\neq approaches
Overview
$\Sigma \vec{E}$
$\vec{E}[\rho, \vec{\jmath}]$
Time scales
Large b

- pointlike approximation: all timescales but obliquity set to 0

$$
\begin{gathered}
-c t^{\prime} \gg b^{2} / 2 \gg c t \\
c t c t^{\prime} \approx-b^{2} / 2 \\
E(t, A)=\frac{e N_{e e}\left(t^{\prime}\right) a_{T}}{4 \pi \epsilon c^{2}} \frac{b^{2}}{2(c t)^{3}} \\
a_{T}=\frac{e c B \sin \alpha}{\gamma m_{e}}
\end{gathered}
$$

Large impact parameters (cont’d)

(vertical, $10^{19} \mathrm{eV}, 700 \mathrm{~m}$)

Large impact parameters (cont’d)

(vertical, $10^{19} \mathrm{eV}, 700 \mathrm{~m}$)

- problem inversion
- discussion of antenna spacing for a giant array

