Air showers and their radio component

Thierry Gousset (SubaTech, Nantes, France)

June 7, 2007

Air showers

Refs:

— Allan, in: Progress in elementary particle and cosmic ray physics, p.
 169 (North Holland, Amsterdam, 1971)

Refs:

— Allan, in: Progress in elementary particle and cosmic ray physics, p.
 169 (North Holland, Amsterdam, 1971)

- Stanev, High energy cosmic rays (Springer, 2004)
- Gaisser, Cosmic rays and particle physics (Cambridge University Press, 1990)
- Nagano-Watson, Rev Mod Phys 72, 689 (2000)

Air showers

Lengths

85 vs 1000

particle physics

secondary part

space and time

Time development

Shower extension

A first exercise

 \neq approaches

Air showers and the primary radiation

Length in m \rightarrow length in g/cm^2

Air showers

Lengths

85 vs 1000 particle physics

secondary part

space and time

Time development

Shower extension

A first exercise

 \neq approaches

Interaction of rays with matter described by various lengths ℓ \rightarrow mean free path for something to happen (coll, abs) probability of nothing to happen up to x:

 $\frac{dp}{p} = -\frac{dx}{\ell}$

 $\blacksquare 1/\ell = \text{particle density} \times \text{cross section} = n \times \sigma$

Length in m \rightarrow length in g/cm^2

Air showers

Lengths

85 vs 1000 particle physics

secondary part

space and time

Time development

Shower extension

A first exercise

 \neq approaches

Interaction of rays with matter described by various lengths ℓ \rightarrow mean free path for something to happen (coll, abs) probability of nothing to happen up to x:

 $\frac{dp}{p} = -\frac{dx}{\ell}$

 $\blacksquare 1/\ell = \text{particle density} \times \text{cross section} = n \times \sigma$

■ $n \to n(x)$, useful to use depth of material X such that $dX = \rho(x)dx$

$$\frac{dp}{p} = -\frac{dX}{\lambda}$$

with λ in units of X, in practice g/cm^2

$85 \text{ g/cm}^2 \text{ vs} 1000 \text{ g/cm}^2$

Air showers

Lengths 85 vs 1000

particle physics

secondary part

space and time

Time development

Shower extension

A first exercise

 \neq approaches

Earth's atmosphere = cosmic-ray shield

■ High energy protons have interaction length in air $\lambda_{pA} = 85 \text{ g/cm}^2$

Note: A for air (or 80% N+ 20% O)

■ For a downward vertical path to sea level $\int dX \approx 1000 \text{ g/cm}^2$

Cosmic rays and high energy physics

Air showers	$p(E_p = 10^{17} \text{ eV}) + A \rightarrow X$
85 vs 1000 particle physics secondary part space and time	$s_{NN} = 2m_N c^2 E_p = O\Big((10 \text{ TeV})^2\Big)$, i.e. LHC
Time development	
Shower extension	
A first exercise	
\neq approaches	

Cosmic rays and high energy physics

Air showersLengths85 vs 1000particle physicssecondary partspace and timeTime development \blacksquare TeShower extensionA first exercise \neq approaches

 $p(E_p = 10^{17} \text{ eV}) + A \to X$ $s_{NN} = 2m_N c^2 E_p = O((10 \text{ TeV})^2), \text{ i.e. LHC}$ $\bullet \text{ Tevatron} \to (2 \text{ TeV})^2 \text{ and RHIC} \to (200 \text{ GeV})^2$

\rightarrow need to extrapolate

 \rightarrow hadronic models (more in Stanev sec 8.3)

Secondary particles

$$p + A \to X$$

Air showers

- Lengths
- 85 vs 1000
- particle physics
- secondary part
- space and time
- Time development
- Shower extension
- A first exercise
- \neq approaches

— $\sim 10^{2}$ pions (20% something else) + target fragments + "original" baryon with a fraction of the initial energy — pions are π^{+} , π^{-} and π^{0}

$$\blacksquare \ \pi^0 \xrightarrow{99\%} 2\gamma$$

 $-c\tau_{\pi^0} = 25$ nm; π^0 's desintegrate before reinteracting

 \blacksquare γ 's initiate the electromagnetic component of the shower

- 1. pair creation $\gamma + A \rightarrow e^+e^- + X$
- 2. bremsstrahlung $e + A \rightarrow e + \gamma + X$
- 3. repeat 1 and 2

Shower in space and time

multiplicative process

Air showers Lengths 85 vs 1000 particle physics secondary part space and time

Time development

Shower extension

A first exercise

 \neq approaches

- energy distributed among a vast number of secondary particles
- almost forward development

Air showers

Time developmentN(X)Heitler model γ showerGreisen N_{max} energy spectrumhadron contentin practicenucleus showercharge excessShower extensionA first exercise

 \neq approaches

Time development and energy distribution

Time development

Air showers

Time development

N(X)

Heitler model

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

electrons and positrons

charges

which N?

charges above an energy threshold (in practice that of particle detection)

N(X) trend results from competition

• multiplicative processes $\Rightarrow dN > 0$ and $E \searrow$

• ionisation loss $\Rightarrow E \searrow$

Heitler model

Toy model for cascade development

Air showers

 $\frac{\text{Time development}}{N(X)}$ Heitler model

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

1 \rightarrow 2 process, with daughter particles each carrying half the parent energy

Branching at every step of length $X_{1/2}$

■ After the *k*th branching $X = k \times X_{1/2}$, $N = 2^k$ and the energy per particle is E_p/N

Assume branching process stops when $E \leq E_C$

$$N_{\max} = \frac{E_p}{E_C}, \quad X_{\max} = X_{1/2} \log_2(E_p/E_C)$$

γ initiated shower

Air showers

Time development

N(X)

Heitler model

$\gamma \ {\rm shower}$

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

• $\gamma + A \rightarrow e^+e^- + X$ and $e + A \rightarrow e + \gamma + X$ are $1 \rightarrow 2$ processes

same length scale 'radiation length' = X₀ ≈ 40 g/cm²
X_{1/2} ≈ ln 2 × X₀ = 30 g/cm²

■ these branchings dominate for $E > E_C$, with a critical energy in air ≈ 100 MeV

 $N_{\rm max} = \frac{E_{\gamma}}{100 \text{ MeV}}, \quad X_{\rm max} = 100 \text{ g/cm}^2 \times \log_{10}(E_{\gamma}/100 \text{ MeV})$

γ initiated shower

Air showers

Time development

N(X)

Heitler model

$\gamma \ {\rm shower}$

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

■ $\gamma + A \rightarrow e^+e^- + X$ and $e + A \rightarrow e + \gamma + X$ are $1 \rightarrow 2$ processes

same length scale 'radiation length' = X₀ ≈ 40 g/cm²
X_{1/2} ≈ ln 2 × X₀ = 30 g/cm²

■ these branchings dominate for $E > E_C$, with a critical energy in air ≈ 100 MeV

 $N_{\rm max} = \frac{E_{\gamma}}{100 \text{ MeV}}, \quad X_{\rm max} = 100 \text{ g/cm}^2 \times \log_{10}(E_{\gamma}/100 \text{ MeV})$

model misses energy loss by ionisation $\Rightarrow N_{max}$ overestimated

Greisen parametrization

(Stanev p. 175)

 N_e^{γ}

Time development

N(X)

Heitler model

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

$$I = \frac{0.31}{\sqrt{\ln E_{\gamma}/E_C}} \exp\left[(1 - \frac{3}{2}\ln s)X/X_0\right], \quad s = \frac{3X}{X + 2X_{\max}}$$

$N_{\rm max}$ from total track length

Air showers

Time development

N(X)

Heitler model

 γ shower

Greisen

N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

■ Energy dissipated in ionisation loss; for relativistic particle the rate is $dE/dX \approx -2 \text{ MeV/g/cm}^2$

 $\blacksquare N(X) \text{ number of charged particles at depth } X$

• Energy dumped in [X, X + dX] slice

$$dE = (2 \text{ MeV/g/cm}^2) \times N(X) dX$$

$N_{\rm max}$ from total track length

Air showers

Time development

N(X)

Heitler model

 γ shower

Greisen

N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

Energy dissipated in ionisation loss; for relativistic particle the rate is $dE/dX \approx -2 \text{ MeV/g/cm}^2$

 $\blacksquare N(X) \text{ number of charged particles at depth } X$

• Energy dumped in [X, X + dX] slice

$$dE = (2 \text{ MeV/g/cm}^2) \times N(X) dX$$

$$\int N(X)dX \approx \frac{E_p}{2 \text{ GeV}} \times 1000 \text{ g/cm}^2$$

$N_{\rm max}$ from total track length

Air showers

Time development

N(X)

Heitler model

 γ shower

Greisen

N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

• Energy dissipated in ionisation loss; for relativistic particle the rate is $dE/dX \approx -2 \text{ MeV/g/cm}^2$

N(X) number of charged particles at depth X

Energy dumped in [X, X + dX] slice

$$dE = (2 \text{ MeV/g/cm}^2) \times N(X) dX$$

$$\int N(X)dX \approx \frac{E_p}{2 \text{ GeV}} \times 1000 \text{ g/cm}^2$$

 $(\rightarrow$ fluorescence method, more in Nagano-Watson)

$N_{\rm max}$ from total track length (cont'd)

 $\int N(X)dX = N_{\max} \times \text{characteristic shower length}$ taking 1 atmospheric thickness:

Time development

N(X)

Heitler model

Air showers

 γ shower

Greisen

N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

$$N_{\rm max} = \frac{E_p}{2 \,\,{\rm GeV}}$$

in Heitler model:

Air showers

Time development N(X)Heitler model γ shower Greisen N_{max} energy spectrum hadron content in practice nucleus shower charge excess

Shower extension

A first exercise

 \neq approaches

total track length associated with particles of energy greater than $E = E_{\gamma}/2^k$ = 30 g/cm² × 2^k(1/2 + 1/4 + · · ·) ≈ (E_{γ}/E) × 30 g/cm²

in Heitler model:

Air showers

Time development N(X)Heitler model γ shower Greisen N_{max} energy spectrum hadron content in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

■ total track length associated with particles of energy greater than $E = E_{\gamma}/2^k$ = 30 g/cm² × 2^k(1/2 + 1/4 + · · ·) ≈ (E_{γ}/E) × 30 g/cm²

an electron with $E = E_C$ loses it in one radiation length

total track length associated with particles of energy lower than $E_C = (E_{\gamma}/E_C) \times 40 \text{ g/cm}^2$

in Heitler model:

Air showers

Time developmentN(X)Heitler model γ showerGreisen N_{max} energy spectrumhadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

total track length associated with particles of energy greater than $E = E_{\gamma}/2^k$ = 30 g/cm² × 2^k(1/2 + 1/4 + ···) ≈ (E_{γ}/E) × 30 g/cm²

an electron with $E = E_C$ loses it in one radiation length

total track length associated with particles of energy lower than $E_C = (E_{\gamma}/E_C) \times 40 \text{ g/cm}^2$

more weight to low energy in actual fact

$$\int_{>E} NdX \approx 40 \text{ g/cm}^2 \times \frac{E_{\gamma}}{E_C} \times \frac{30 \text{ MeV}}{E + 30 \text{ MeV}}$$

in Heitler model:

Air showers

Time development N(X)Heitler model γ shower Greisen N_{max} energy spectrum hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

total track length associated with particles of energy greater than $E = E_{\gamma}/2^k$ = 30 g/cm² × 2^k(1/2 + 1/4 + ···) ≈ (E_{γ}/E) × 30 g/cm²

an electron with $E = E_C$ loses it in one radiation length

total track length associated with particles of energy lower than $E_C = (E_{\gamma}/E_C) \times 40 \text{ g/cm}^2$

more weight to low energy in actual fact

$$\int_{>E} NdX \approx 40 \text{ g/cm}^2 \times \frac{E_{\gamma}}{E_C} \times \frac{30 \text{ MeV}}{E + 30 \text{ MeV}}$$

this is for the whole shower ightarrow at and around maximum N(>E)/N

Hadronic component

I
$$\pi^{\pm}$$
: $c\tau = 8$ M

Air showers

Time development N(X)Heitler model γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

 $- \lambda_{\pi A} = 120 \text{ g/cm}^2 \rightarrow \ell_{\pi A} \approx 1 \text{ km for} \\ n(z=0) = 1 \text{ mg/cm}^3$

- at high energy pions reinteract

— otherwise they decay $\rightarrow \mu\nu$; muons (only lose 2 MeV/g/cm^2) \rightarrow direct information on pions

Hadronic component

I
$$\pi^{\pm}$$
: $c au=8$ M

Air showers

Time developmentN(X)Heitler model γ showerGreisen N_{max} energy spectrumhadron contentin practicenucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

 $- \frac{\lambda_{\pi A}}{n(z=0)} = \frac{120 \text{ g/cm}^2}{m(z=0)} \rightarrow \ell_{\pi A} \approx 1 \text{ km for}$

- at high energy pions reinteract
- otherwise they decay $\rightarrow \mu\nu$; muons (only lose 2 MeV/g/cm^2) \rightarrow direct information on pions

■ π^0 : estimate of X_{max} and N_{max} for proton induced shower assuming that the e.m. showers are initiated by 1st generation π^0 's

$$X_{\max} = \lambda_{pA} + X_0 \ln \left[\frac{(1-K) E_p}{2\langle m \rangle E_C} \right], \quad N_{\max} = \frac{(1-K) E_p}{3 E_C}$$

in practice

average behavior (adjusted with Monte-Carlo)

Gaisser-Hillas formula (Stanev p. 186)

Time development

N(X)

Heitler model

Air showers

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

$$N(X) = N_{\max} \left(\frac{X - X_1}{X_{\max} - \lambda}\right)^{X_{\max}/\lambda - 1} \exp \left(\frac{X - X_1}{\lambda}\right)$$

in practice

average behavior (adjusted with Monte-Carlo)

Gaisser-Hillas formula (Stanev p. 186)

Time development

N(X)

Heitler model

Air showers

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

$$N(X) = N_{\max} \left(\frac{X - X_1}{X_{\max} - \lambda}\right)^{X_{\max}/\lambda - 1} \exp\left(\frac{X - X_1}{\lambda}\right)$$

+ fluctuations:

• on $X_1 \to X_{\max}$

• on shape and N_{max} : individual realizations of first hadronic collisions (inelasticity, multiplicity, energy of secondaries)

Nucleus vs proton initiated shower

Air showers

Time development N(X)Heitler model γ shower Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

■ in the superposition approximation: nucleus = $A \times$ independent nucleons with energy E_p/A

nucleus shower = $A \times$ nucleon showers

■ shift of X_{\max} : $X_{\max}(E_p, A) = X_{\max}(E_p/A, p)$

less shower to shower fluctuation

Negative charge excess

below E_C

Air showers

 $\frac{\text{Time development}}{N(X)}$ Heitler model

 γ shower

Greisen

 N_{\max}

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

 \neq approaches

 $e(\gamma) + A \rightarrow e(\gamma) + e^- + X$

delta rays (Compton recoil)

positron annihilate in flight

 \rightarrow 10–20% e^- excess in the energy range below E_C

Air showers

Time development

Shower extension Multiple scattering

NKG

A first exercise

 \neq approaches

Lateral spread and longitudinal dispersion

Multiple scattering

Air showers

Time development

Shower extension Multiple scattering NKG ■ Multiple scattering → spread of electrons

spread of hadrons limited to a few meters

A first exercise

 \neq approaches

Multiple scattering

Air showers

Time development

Shower extension Multiple scattering NKG

A first exercise

 \neq approaches

Emission \rightarrow spread of hadrons
 Multiple scattering \rightarrow spread of electrons
 spread of hadrons limited to a few meters
 electrons
 typical scattering angle $\theta \sim 1/\gamma$

 $\blacksquare \ \theta^2(n) = n \times (1/\gamma)^2$

 \blacksquare proportion of scatterings with radiation $\sim 1/\alpha$

 $\Rightarrow d\theta^2 = (E_s/E)^2 dX/X_0$, with $E_s = 4\pi m_e c^2/\alpha = 21 \text{ MeV}$

Multiple scattering (cont'd)

Air showersincluding energy loss
$$X_i \to X_f$$
, $E(X) = E(X_f) \times e^{\frac{X_f - X}{X_0}}$ Air showers $X' = X_f - X$,Time development $X' = X_f - X$,Shower extension $X' = X_f - X$,Multiple scattering $e^{2}(i \to f) = \int d\theta^2 = \frac{E_s^2}{E_f^2} \int_0^{X_i - X_f} e^{-2X'/X_0} \frac{dX'}{X_0}$, $(E_f > E_C)$ A first exercise \neq approaches

Multiple scattering (cont'd)

including energy loss
$$X_i \to X_f$$
, $E(X) = E(X_f) \times e^{\frac{X_f - X}{X_0}}$

Air showers

Time development

Shower extension Multiple scattering NKG

$$\theta^2(i \to f) = \int d\theta^2 = \frac{E_s^2}{E_f^2} \int_0^{X_i - X_f} e^{-2X'/X_0} \frac{dX'}{X_0}, \quad (E_f > E_C)$$

 $\overline{X'} = \overline{X_f} - \overline{X},$

A first exercise

 \neq approaches

and lateral displacement

$$D^{2}(i \to f) = \int X'^{2} d\theta^{2} \Rightarrow D = \frac{10 \text{ MeV}}{E} X_{0} \quad (E > E_{C})$$

i.e., 40 m at 100 MeV at sea level

Multiple scattering (cont'd)

including energy loss
$$X_i \to X_f$$
, $E(X) = E(X_f) \times e^{\frac{X_f - X}{X_0}}$

Air showers

Time development

Shower extension Multiple scattering NKG

$$\theta^2(i \to f) = \int d\theta^2 = \frac{E_s^2}{E_f^2} \int_0^{X_i - X_f} e^{-2X'/X_0} \frac{dX'}{X_0}, \quad (E_f > E_C)$$

 $X' = \overline{X_f} - \overline{X_f},$

A first exercise

 \neq approaches

and lateral displacement

$$D^{2}(i \to f) = \int X'^{2} d\theta^{2} \Rightarrow D = \frac{10 \text{ MeV}}{E} X_{0} \quad (E > E_{C})$$

i.e., 40 m at 100 MeV at sea level \rightarrow multiple scattering longitudinal lag 3 m, also \searrow with \nearrow energy

Lateral distribution

Air showers Time development Shower extension Multiple scattering

$$n_e(r, X) = N_e(X) \frac{C}{r r_1} \left(\frac{r}{r_1}\right)^{s-1} \left(1 + \frac{r}{r_1}\right)^{s-9/2},$$

with

A first exercise \neq approaches

NKG

$$r_1 = \frac{E_s}{E_C} \frac{X_0}{\rho_{\rm air}}$$

From showers to electric fields

Air showers

Time development

Shower extension

A first exercise

Detour

Coherence

 \neq approaches

A first exercise

A detour: Cerenkov light in air

consider Cerenkov radiation of a charge particle (q = Z e)energy spectrum per unit length

Air showers

Time development

Shower extension

A first exercise

Detour

Coherence

 \neq approaches

$$\frac{d^2 E_C}{dL d\omega} = \alpha Z^2 \sin^2 \theta_C \frac{\omega}{\hbar c}$$

A detour: Cerenkov light in air

consider Cerenkov radiation of a charge particle (q = Z e) energy spectrum per unit length

Time development

Shower extension

A first exercise

Detour

Coherence

Air showers

 \neq approaches

$$\frac{d^2 E_C}{dL d\omega} = \alpha Z^2 \sin^2 \theta_C \frac{\omega}{\hbar c}$$

Cerenkov in air $\theta_C \ll 1$

vertical downward moving particle

■ trajectory bit of length Δz around z_0 shines on a ring of mean radius $z_0 \theta_C$ and width $\Delta z \theta_C$

$$\frac{\Delta E_C}{2\pi z_0 \Delta z \theta_C^2} = \alpha Z^2 \frac{\omega \Delta \omega}{h c z_0}$$

Cerenkov radio

Air showers

Time development

Shower extension

A first exercise

Detour

Coherence

 \neq approaches

$$\Rightarrow dE_C/dS \sim 10^2 \text{ MeV/m}^2 \text{ using } hc = 1.24 \text{ eV } \mu\text{m}, Z = 1,$$

$$z_0 = 4 \text{ km}, N_e = 5 10^7, \lambda = 0.6 \mu\text{m} \text{ and } \Delta\lambda = 0.4 \mu\text{m}$$

Cerenkov radio

Air showers
Time development
Shower extension

A first exercise

Detour

Coherence

 \neq approaches

 $\Rightarrow dE_C/dS \sim 10^2 \text{ MeV/m}^2 \text{ using } hc = 1.24 \text{ eV } \mu\text{m}, Z = 1,$ $z_0 = 4 \text{ km}, N_e = 5 10^7, \lambda = 0.6 \mu\text{m} \text{ and } \Delta\lambda = 0.4 \mu\text{m}$

radio (decametric)

divide
$$\omega$$
 by $\sim 10^7$ and $\Delta \omega$ by $\sim 10^7$

• take $A_e \sim 10 \text{ m}^2$

 $\Rightarrow \Delta E_C = 10^{-5} \text{ eV}$

Cerenkov radio

Air showers Time development Shower extension A first exercise Detour Coherence \neq approaches

 $\Rightarrow dE_C/dS \sim 10^2 \text{ MeV/m}^2$ using $hc = 1.24 \text{ eV} \mu \text{m}$, Z = 1, $z_0 = 4$ km, $N_e = 5 \, 10^7$, $\lambda = 0.6 \ \mu$ m and $\Delta \lambda = 0.4 \ \mu$ m

radio (decametric)

```
divide \omega by \sim 10^7 and \Delta \omega by \sim 10^7
```

 \blacksquare take $A_e \sim 10 \text{ m}^2$

 $\Rightarrow \Delta E_C = 10^{-5} \text{ eV}$

much too small since galactic noise gives

 $k_BT \times \Delta\nu \times \Delta t \rightarrow 2.5 \text{ eV} \times 40 \text{ MHz} \times 10 \text{ ns} = 1 \text{ eV}$

Coherence: a must in radio

excess

solution: replace $N_e \to N_e^2$; incoherent \to coherentAir showersImage: Time developmentImage: Time developmentImage: Time developmentShower extensionImage: Time developmentImage: Time developmentShower extensionImage: Time developmentImage: Time developmentA first exerciseImage: Time developmentImage: Time developmentDetourImage: Time developmentImage: Time developmentCoherenceImage: Time developmentImage: Time developmentImage: Time developmentImage: Time developmentImage: Time developmentA first exerciseImage: Time developmentImage: Time developmentDetourImage: Time developmentImage: Time developmentCoherenceImage: Time developmentImage: Time developmentA first exerciseImage: Time developmentImage: Time developmentDetourImage: Time developmentImage: Tim

Air showers

Time development

Shower extension

A first exercise

 \neq approaches Overview

 $\Sigma \vec{E}$ $\vec{E}[
ho, \vec{\jmath}]$ Time scales Large b

Various approaches

Overview

Air showers

Time development

Shower extension

A first exercise

 \neq approaches

 $\begin{array}{l} \textbf{Overview} \\ \Sigma \vec{E} \\ \vec{E}[\rho, \vec{\jmath}] \end{array}$

Time scales

Large b

■ $\sum_{k=1}^{N} \vec{E}(t, A)$ with \vec{E} single-charge electric field taken from textbook → Monte-Carlo based approach

 $\blacksquare \vec{E}[\rho, \vec{\jmath}]$

Feynman formula for relativistic charges:

$$\vec{E} = \frac{-q}{4\pi\epsilon_0 c^2} \vec{e}_{r'}^{\prime\prime}$$

From individual charges

Air showers

Time development

Shower extension

A first exercise

 \neq approaches

Overview

 \Sigmaec{E}

 $ec{E}[
ho,ec{j}]$

Time scales

Large b

More thorough study to date: T Huege, H Falcke, Astronomy & Astrophysics 412, 19 (2003); Astronomy & Astrophysics 430, 779 (2005); Astropart. Phys. 24, 116 (2005); T Huege et al, Astropart. Phys. 27, 392 (2007)

From individual charges

Air showers Time development

Shower extension

A first exercise

 \neq approaches Overview $\Sigma \vec{E}$ $\vec{E}[\rho, \vec{j}]$ Time scales Large b More thorough study to date: T Huege, H Falcke, Astronomy & Astrophysics 412, 19 (2003); Astronomy & Astrophysics 430, 779 (2005); Astropart. Phys. 24, 116 (2005); T Huege et al, Astropart. Phys. 27, 392 (2007) Building block:

$$\vec{E}_q(t,A) = \frac{q}{4\pi\epsilon c^2} \frac{\vec{R} \wedge \left[(\vec{R} - R\vec{v}/c) \wedge \vec{a} \right]}{||R - \vec{R} \cdot \vec{v}/c||^3}$$

 $ec{a}=rac{qec{v}\wedgeec{B}}{ec{B}}$

 γm_{e}

with

From charges and currents

shower electromagnetic fi eld as a standard electromagnetism exercise

$$(\vec{E},\vec{B}) = F[\rho,\vec{\jmath}]$$

Air showers

Time development

Shower extension

A first exercise

 \neq approaches

Overview

 $\Sigma \vec{E}$

$ec{E}[ho,ec{\jmath}]$

Time scales

Large b

From charges and currents

Air showers

Time development

Shower extension

A first exercise

 \neq approaches

Overview

 $\Sigma ec E$

 $\vec{E}[
ho, \vec{j}]$

Time scales Large b shower electromagnetic fi eld as a standard electromagnetism exercise

$$(\vec{E},\vec{B}) = F[
ho,\vec{\jmath}]$$

how to carry out such a program ?

- Kahn and Lerche approach
 - ringlike geometry
 - no shower evolution (contribution around $N_{\rm max}$) + estimate for shower decay
 - formulation in Fourier space
 - geomagnetic contribution > Askaryan effect (charge excess)

From charges and currents

Air showers

Time development

Shower extension

A first exercise

 \neq approaches

Overview

 $\Sigma \vec{E}$

 $\vec{E}[
ho, \vec{j}]$

Time scales Large b

shower electromagnetic fi eld as a standard electromagnetism exercise

$$(\vec{E},\vec{B}) = F[\rho,\vec{\jmath}]$$

how to carry out such a program ?

- Kahn and Lerche approach
 - ringlike geometry
 - no shower evolution (contribution around $N_{\rm max}$) + estimate for shower decay
 - formulation in Fourier space
 - geomagnetic contribution > Askaryan effect (charge excess)

more realistic model, numerical implementation...not (yet) followed

Time scales

• particle Q moves at $\approx c$

•
$$Q = \mathsf{B} \text{ at } t = 0$$

$$\blacksquare ct_i = \sqrt{d_{iB}^2 + b^2} - d_{iB}$$

•
$$\Delta t_{12} \approx 0.4 \, b^2$$
 (small θ)

$$\bullet \Delta t_{2B} = 3.3 \, b$$

(time in μ s and distance in km)

Time scales

particle Q moves at ≈ c
Q =B at t = 0 $ct_i = \sqrt{d_{iB}^2 + b^2} - d_{iB}$ $\Delta t_{12} \approx 0.4 b^2$ (small θ) $\Delta t_{2B} = 3.3 b$ (time in us and distance)

(time in μ s and distance in km)

Doppler distorsion: fast rise and slow decay

• $v \approx c$ valid at $\theta \gg |c - v|$

Time scales

particle Q moves at ≈ c
Q =B at t = 0 $ct_i = \sqrt{d_{iB}^2 + b^2} - d_{iB}$ $\Delta t_{12} \approx 0.4 b^2$ (small θ) $\Delta t_{2B} = 3.3 b$ (time in us and distance)

(time in μ s and distance in km)

Doppler distorsion: fast rise and slow decay

• $v \approx c$ valid at $\theta \gg |c - v|$

• $\Delta t_{32} \approx l/c + b r/(cd_{2B})$, both terms < 30 ns

Large impact parameters

Air showers	
Time development	
Shower extension	
A first exercise	
\neq approaches	
Overview	
$\Sigma ec E$	
$ec{E}[ho,ec{\jmath}]$	
Time scales	
Large b	

 \Rightarrow at large $b \rightarrow$ (distorted) image of N(X)

pointlike approximation: all timescales but obliquity set to 0

Large impact parameters

 \Rightarrow at large $b \rightarrow$ (distorted) image of N(X)

Air showersTime developmentShower extensionA first exercise \neq approachesOverview $\Sigma \vec{E}$ $\vec{E}[\rho, \vec{j}]$ Time scales

Large b

emission time: t' Z reception time:t V \approx C origin of time when Q=B B C A

pointlike approximation: all timescales but obliquity set to 0

Large impact parameters (cont'd)

(vertical, 10^{19} eV, 700 m)

Large impact parameters (cont'd)

(vertical, 10^{19} eV, 700 m)

problem inversion

discussion of antenna spacing for a giant array