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Preface

This book is a revised and extended version of Mécanique des Vibrations
Linéaires published by Masson in 1980. This version has been translated
and adapted for English use by F. C. Nelson.

The book is a basis for the study of linear, mechanical vibrations. It is
intended primarily for the use of students and practising mechanical
engineers. Its purpose is to provide engineering students and practitioners
with:

- an understanding of vibration phenomena and concepts

- the ability to formulate and solve the equations of motion of vibrating

systems

- an appreciation of the role and technique of vibration measurement.

The authors have adopted a systematic but practical approach in order to
make the book both brief and useful. Special care has been taken to make
the presentation easy to read and to understand. It is, however, necessary to
have some background in rigid-body mechanics, strength of materials, and
matrix calculation.

This book treats the vibrations of structures with a sequence of structural
models: first, discrete elements such as springs and masses; then, continuous
elements such as beams and plates; and finally, simple structures using finite
elements and the method of substructures.

Chapter 1 presents spring-mass systems which have one degree of free-
dom. In Chapters 2 and 3, these are extended, respectively, to 2 and N
degrees of freedom. Chapter 4 presents continuous systems and emphasizes
energy methods which then provide an introduction to the widely used finite
element method which is described in Chapter 5. Chapter 6 discusses simple
measurement devices and introduces modern measurement systems. Chapter
7 presents 12 computer programs written in BASIC and suitable for use
with a desk-top computer and graphical display. These programs allow
students and practising engineers to consider applications which cannot be
considered with hand calculations.

The book also contains over 100 exercises, many of which consider
problems of practical interest. All have answers and most have their
solutions given in some detail. These exercises are an important part of the
book and the reader is encouraged to work as many as possible.

vii



viii

When calculations are performed in an exercise, both with or without the
aid of a computer program, at least 8 digits are used for the entire set of
calculations. The results are in most cases rounded-off to 4 significant
figures. When the results of one exercise are used in another, the rounded-
off results of the original exercise are used.

At the end there is an Appendix on Lagrange’s equations, a short
Bibliography, and an Index.

‘We wish to thank particularly Mrs. J. Aiello for the careful typing of the
manuscript.
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Single Degree-of-Freedom Systems

The study of single degree-of-freedom systems is a good introduction to the
basic phenomena of mechanical vibrations such as resonance, damping, and
forced response. It also facilitates an understanding of the behavior of
complex systems having a large number of degrees of freedom. In addition,
single degree-of-freedom systems can often be used as a convenient first
approximation to a real structure. Finally, they are helpful in understanding
the behavior of widely used measuring devices such as piezoelectric ac-
celerometers.

The contents of the chapter are as follows:
1.1 Free vibration

1.2 Forced vibration

1.3 Damping in real systems

1.4 Rayleigh’s method

1.5 Applications

1.6 Exercises

1.1 Free Vibration

One degree-of-freedom systems are illustrated by the system shown in
Figure 1 for which the motion is assumed to be only vertical. Let x be the
displacement of the mass m from the equilibrium position established by the
action of gravity; k be the stiffness of the spring; ¢ be the viscous damping
coefficient of the damper. The force exerted by the spring on the mass is
—kx; the force exerted by the damper on the mass is —cx°. The time-
dependent external force acting on the mass is F(t).
From Newtonian mechanics, the differential equation of motion is

mx®=—cx°—kx + F(1) 1)

which for free vibration, that is vibration in the absence of an external force,
becomes

mx®+cx°+kx=0 2)
The solutions of this linear differential equation with constant coefficients
1



l Figure 1 Single degree-of-freedom system with viscous
F(t) damping

have the exponential form:

x = Ae" 3)
Substituting (3) into (2) gives
mri+cr+k=0 (@)
This characteristic equation has two roots r, and r, given by:
nag VG o) ®
hence the solutions of (2) can be written as:
x=A.e"+ Ay ®6)

The expression for r; and r, is best put into a form in which the
parameters are much easier to measure. Define the parameters » and o
such as:

w? =£ V)]
¢
a= - 8

where o is the angular frequency in rad/sec and « is the viscous damping
ratio. The critical viscous damping coefficient ¢, is defined by the vanishing
of the discriminant in (5):

from which
c. =2Vkm =2me (10)
then

¢ =2maw an




and
c
a= (12)
2Vkm
Using (7) and (11), the expression (5) becomes
r,=—awtova’-1 (13)

This clearly shows that the behavior of the system of Figure 1 is completely
characterized by the two parameters a and . The form of the solution of
the differential equation (2) depends on the value of the parameter a.
Case 1: o<1

In practice, this is the most important case. Equation (13) gives

ria=—awkx jovi—a? (14)
with
j=v-1 (15)
and the general solution (6) is written
x=A, exp [—awt + jov1—a® t]+ A, exp [—aot — jovi—a®t]  (16)
This can be put into the more convenient form:
x = Ae™*sin (wvV1—a2 t+¢)
= Ae~" sin (wyt + ) a7
where
wig=ovl—a (18)

is the angular frequency of the damped system. A similar analysis shows that
o is the angular frequency of the undamped system. The two constants A
and ¢ are determined from the two initial conditions: displacement x, and
velocity x,° at the initial time ¢,.

Also, one can define the frequency £, in hertz (Hz), which is related to the
angular frequency o by

o =2xaf 19
and to the period of oscillation by
1
T=-= ‘ 20)
F (

The period is not as widely used in practice as are the frequencies @ and f.
In this first chapter of the text, we are careful to call w the angular
frequency and f the frequency. As has been shown, they are the frequencies
with which the undamped system undergoes free vibration. As such, some
texts call them the natural frequencies. In subsequent chapters, this distinc-
tion in terminology will be dropped and both @ and f will be called the

ao,
* hp=—F——=1ja,
Vi-«a
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frequency of the system. Which frequency is intended will be clear from the

symbol used or the units required.
The experimental determination of & can be achieved by obtaining the
logarithmic decrement 3, the natural logarithm of the ratio of two successive

maxima of response:

5=1In—2

Xp+1

exp [—awt,]
exp [~aw(t,+ T)] 1)

=In

This latter expression is an approximation because the points of contact with
the exponential envelope curve do not coincide exactly with the maximum
response points. From (21),

- 27a 22)

For a small, the usual case in practical situations, this simplifies to
=27« (23)

The smaller @, the more difficult it will be to measure the ratio of two
successive maxima accurately since this ratio will approach unity. It is then
better to measure response maxima which are separated by an integral
number of periods and

In % = qawT
Xp+q
=2waq (24)
hence
=t 25)
27 Xpiq
Case 2: =1

This case is seldom encountered in mechanical systems. The characteristic
equation has a double root:

ra2=—o (26)
The response is aperiodic with critical damping and is given by
x=Ae" +Ayte™
=e ““(A,+ Ay ()]
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Figure 2 Free motion of the system of Figure 1 for various amounts of
damping

Case 3: a>1
This case is also rare in mechanical systems. The solution has the form

x=A, exp [~awt+ova>—1t]+ A, exp [~awt—wVa®—1t] (28)

Figure 2 shows the free vibration of a system with initial conditions x = x,,
x°=0 for t,=0 and for damping ratios of a =0.1, 1, and 3. The calculations
give, for:
a=0.1: x=1.005x,¢"%*" sin (0.995wt +1.471)
a=1: x=x(1+wt)e™ (29)
a=3: x=1.030x0e %715~ 0.030x,e 5528
In these three types of free response, x tends toward zero and this fact will
justify the subsequent decision to ignore the transient part of the forced

response for large time. Also notice that the case a = 1 returns the system to
rest in the minimum time.

1.2 Forced Vibration

The general solution of equation (1) is equal to the sum of the solution to
the homogeneous equation, (2), and a particular solution of (1). In the most
frequent case of a <1, one has

x = Ae~*'sin (wvV1—0a2 t+¢)
+a particular solution of equation (1) (30)
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Frequently only the steady-state motion is of interest; that is, the system
motion existing after a sufficient length of time that the initial transient
motion associated with the free vibration has become negligible. Three cases
of excitation will be considered: harmonic; periodic; and general function of
time. The solutions to harmonic and periodic excitation will be limited to
steady-state motion.

1.2.1 Harmonic excitation

Let
F(#) = F sin Ot (31)

where F is the amplitude of the exciting force and Q is the angular forcing

frequency in rad/sec. The symbol © will be used for the angular forcing

frequency to distinguish it from o, the angular frequency of the system. In

subsequent chapters, {2 will simply be called the forcing frequency.
Equation (1) becomes

mx®+cx°+ kx = Fsin Qt (32)
The steady-state solution has the form
x= Xsin(.Q t— ¢) (33)

where X is the amplitude of the steady-state solution and ¢ is the phase
angle. Substituting (33) in (32) gives

(k—mQ?) X sin (Qt— @) +cQX cos (Ut — ) = F sin Ot (34)
which can be written as

[cQ cos ¢ —(k —mO?) sin ¢]X cos Ot
+[(k—mQ>)X cos ¢ +cQX sin ¢—F]sin Q=0 (35)

Equation (35) holds for any time ¢, hence

cQcosP—(k—mOQ3sing=0 ' (36)
[(k—mQ?) cos p+cQsin p]X—F=0 (37

Equation (36) permits sin ¢ to be obtained in terms of cos ¢:

., _cQcosd
sind =1 (38)
On substituting this expression into (37) one obtains
_ 2

cos ¢ = F k—mQQ (39)

X (k— mQ?>*+c2Q2

in which F, X, and (k — mQ??+ c2Q? are positive quantities.




Using (38) and (39), it can be shown that:

for Q<\/_—E-=w
m

sin >0
cos ¢ >0

hence 0<d¢ <g (40)

for Q> \/-_Er-w
m

sin¢ >0
cos ¢ <0

hence 32—7 <¢p<mw (41)

Since 0 < ¢ < the phase can be uniquely defined by its tangent taken from

(38):
cQ)
0 T mO?

_ 2a(Qw)
= 1= (@) “2)

Using the identity
cos’ p+sin’p=1

and (38) and (39),
F X
X= = 3t 43
V(k-m0?»?+c20? V[1-(Q/w)?P+[2a(Q/w)] “

with

“F
Xa=1 (44)

which is the displacement of the system subjected to a static force F.
It can be shown that the amplitude X has a maximum for

%=\/1-—2a§ 45)
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and that the corresponding value of X is
X

X, == e
2av1—-a?
At this maximum, the tangent of the phase angle is

tan ¢ = ——1—;2—0[2 @n

(46)

This is the definition of amplitude resonance. Note that if a>1/v/2, the
maximum amplitude occurs at Q=0.
If, on the other hand, one takes
Q
—_— 1
w
tan ¢ becomes infinite at ¢ = #/2 and X, = X,,/2a. This is the definition of
phase resonance.
For most practical systems the damping is small, i.e. «<0.1, and (45),
(46), and (47) become

921-—0:2=1 (48)
w
X a?
X’"’z‘Z(Hz)
~Xa_g.x, 49)
2a
tan b=
an ¢ =~ (50)

where Q is the so-called Q-factor. This definition of Q can be used for any
form of damping.

Thus for small damping the angular forcing frequency associated with
amplitude resonance and that associated with phase resonance are essen-
tially equal and it is not necessary to distinguish between them. Under these
restrictions, resonance occurs when Q matches the frequency of the system
for free vibration, w. For this reason, o will often be referred to as the
resonant frequency.

At resonance, the forces in the system elements can be very large if the
damping is small. In the spring the force amplitude is

F=kX;
_kXo_ F_
=5e —5a=QF (51)

which can become very large because of the term 1/2c. This, of course, is
the reason why the determination of resonance is important in structures.
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Figure 3 Steady-state amplitude and phase response of the system of Figure 1 fora
sinusoidal forcing function

The curves of Figure 3 show X/X,, and ¢ as a function of (/e for several
values of the damping factor a.

For the case of damping so small that we may take a =0, equations (42)
and (43) give:

X, sin
<w: = =8
Q<w: ¢=0 and x - Q) (52
Q=w: ¢=-g and x—®
. X, sin (Qt—)
Q> = St
o: ¢=7m and (Qo)y—1 (53)
These are the equations for the steady-state response of the undamped

system.
The results (52) and (53) can also be obtained by considering the solution
of

mx®°+ kx = F sin )t (54)
in the form
x =X sin Q¢ (55)
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from which
_ _1:" sin {1t
k 1-(Q/w)?

which is the same expression as (52). If 0>}, equation (56) will have the
same form as (53).

(56)

Energy dissipation per cycle

The energy supplied by the external force F(t) during one cycle of
vibration is

E= L F(t)—dt 57

2w/

= QXF(t) cos (Qt— ) dt

27/Q

=QXF sin Q¢ cos (Qt— o) dt

2n/Q

27w/L

=QXF U; sin Q¢ cos Qt cos ¢ dt + L sin® Qt sin ¢ dt]

= 77 XF sin ¢ (58)
Using (38) and (39), one has
cQcos ¢
k—-mQ?
_ cQF?

X[(k — mO3»?+c*0?]

=cQX

and combining (58) and (59), the expression for energy dissipation in one
cycle of motion becomes

Fsing¢ = F

(59)

E = wcQX? (60)

One could also obtain this result by considering the energy dissipated per
cycle in the damper:

2w/ dx

E= gy dt (61)

Bandwidth

For sufficiently small values of damping, the bandwidth is the frequency
interval (f,—f;) situated around the resonance frequency such that the
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amplitude of response at frequencies f; and f, is equal to the resonant
amplitude divided by V2. Equation (60) shows that the energies dissipated at
the frequencies f, and f, are then equal to one-half of the energy dissipated
at tesonance. For this reason, the above bandwidth is sometimes called the
half-power bandwidth. Then if « is small,

X 1 X
X(Q)=X(Q)="F="7""= (62)
O =X )= ™ R 2a
Q, and ), must be solutions of the following equation:
1 1
= (63)
2av2 V[1-(Q/0)?’P+[2aQ/0P
Rewriting equation (63) gives
4 2
(9) +(4a2—2)<9) +1-8a%=0 (64)
\w w
hence
Q 2
(;,—) =1-2a?+v(1-2a%*-(1—-8a?
=1-2a?+2avV1+a>
=142« (65)
then
2 2
-2~
1) )
or:
2 2 —_
B-gyesmen e
o) ® © ©
- AS:‘ 22(0 68)
From the relations (66) and (68), one finds
AQ Af 1
w—f-—Za-—Q_ (69)

with Af=f,—f,, the bandwidth, and f the resonant frequency. A very
useful way of determining a is to measure the bandwidth. Note that

X(Q,) X
Xrl =20 10g10 (Xfrb)

which justifies the frequently used technique of determining the half power

201log;, =-3dB (70)
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bandwidth by locating the frequencies on either side of resonance for which
the response has decreased by 3 decibels (dB).

1.2.2 Periodic excitation

Consider next an excitation force which can be developed in a Fourier
series. If the forcing frequency is given by Q = 24/T, this series has the form

F(1) =£29+ 21 (a, cos pQt+ b, sin pQt) (71)
Sy
with

2 T

a,,=—,I—,j F(t) cos pQt dt p=0,1,2,... (72)
0

2 T

b, =-,1: L F(t) sin pQt dt p=12,... (73)

In steady-state motion, the response to each harmonic component is calcu-
lated separately and these responses are then added to obtain the complete

solution.
Consider, for example, a spring-mass system with small damping under the

h F(t)

bt

7 25 3n 4% at

Figure 4 Periodic square-wave
forcing function

action of the force shown in Figure 4. Using equations (71), (72), and (73):

Fy=2o42e ¢ sinpt (74)
2 p=13,... 4
The system equation is then
FO 2Fo - sin th
mx®+kx =4 — 75
2 = p=1§i.... p 75

The solutions to (75) for each term of F(t) given in (74) is obtained in the
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same manner as used for (56). It follows that

x=ﬂ+2—F—0 3 sin pt

2w & Pk —m(pOy] (76)

Resonance will occur whenever
k—m(pQ)*=0 an

L (78)
pYm p

1.2.3 General function of time

In this case, the system response is required starting from the initial time
t,=0. In practice, a numerical step-by-step method is usually used (see
Chapter 3). However, one can also solve this problem with the Laplace
transform applied to equation (1). This method will be briefly reviewed
without a discussion on the question of convergence.

For a function f(t) defined for ¢>0 and zero otherwise, the Laplace
transform, $#(p), is given by:

which is equivalent to

oo

LIf0]=5) = | i) ds (79
0
The Laplace transform of the first and second derivatives of f(t) are
obtained from (79). If f(0) and f°(0) are respectively the values of f(t) and of
its first derivative at ¢t =0, integration by parts gives

dfo_ '
L[4O0)= 0 +p50) (50
PO porm )
L[ ar ]— £°(0)—pf(0)+p*¥#(p) (81)

From equations (1), (80), and (81), the Laplace transform of x(t) is found to
be x(p), where

F(p) (p +2a0)x(0) x°(0)
m(p®+2awp+0?) p?+2awp+e® p’+2awp+e?

x(p)= (82)

and $(p) is the Laplace transform of the exciting force. The last two.terms
of (82) are well-known Laplace transforms of simple functions and hence can
be easily: inverted. But to invert the first term, Borel’s theorem must be
used. This theorem shows that if $,(p), $.(p) are the transforms of f,(t),
fo(1), the transform

F(p)=F:(p) - F2(p) (83)
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originates from
f)= L (1) - fat =) dr 84)

The inverse of (82) is then

x(t)= 1 L F(1)e™*** " sin wy(t—7) dr
mo,

d

*0) e ™ sin w;t  (85)

[+4
+x(0)e™ " (cos wyt +(T;—c-!—2—)—1—,5 sin wdt) + .
where the terms containing x(0) and x°(0) correspond to the transient
response. This form shows very clearly that the transient response is
necessary to satisfy the initial conditions at t =0 but as time grows large it
decays to zero, leaving only the steady-state solution. Also notice that one
must carefully distinguish between ® and w, in (85).
Thus the steady-state motion of a damped system is given by

1
ma,

x(t)= Ll F(r)e ™% " sin w,(t~7) dr (86)

and for an undamped or very lightly damped system by

x()= —rr—ulw— ‘[: F(r)sinw(t—7)dr (87)

1.3 Damping in Real Systems

Actual systems always have some damping but rarely is this damping
viscous. Among the most common forms of damping are structural damping
and Coulomb damping. Structural damping is a material characteristic
whose value can be strongly dependent on both temperature and forcing
frequency. Coulomb damping arises from the relative motion between dry
surfaces in contact; it is quite difficult to quantify this phenomenon because
it depends on so many parameters.

An equivalent viscous damping coefficient can be defined for the case of
harmonic excitation by using the previous expression for energy dissipated
per cycle (60).

For structural damping it has been observed that the energy dissipated per
cycle has the form

E=aX? (88)
over a limited range of frequency and temperature. X is the displacement

amplitude and a is a constant of proportionality. The coefficient of equival-
ent viscous damping is found from (60) and (88):

aX?=mc 0X? (89)
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1 F Cos Qt
X
J B
k(1+jn)
Figure 5 Single degree-of-freedom system with structural
damping
hence
a
Ceq =" 90
70 (90)

The calculation of systems with structural damping subjected to harmonic
excitation is more conveniently achieved with the use of complex notation.
A single degree-of-freedom system with structural damping and excited by
the force F cos Qt is shown in Figure 5. It has the equation

mx®+—= x°+ kx = F cos Qt (91)
w{)
In complex notation, this becomes
mz*®+—— 2°+ kz = Fe!® (92)
)

where x =Re[z], the real part of the complex quantity z. Solutions are
sought in the form

z=Ze'™ (93)
which, when substituted in (92), gives
(k-mOHZ+ j-s Z=F (94)
Equation (94) is conveniently written as:
~mQPZ+k(1+jn)Z=F (95)
with '
= ;s; the structural damping factor (96)
and, in addition, one can define
k*=k(1+jn) the complex stiffness o7

The term m in equations (96) and (97) is often referred to as the loss factor.
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Equation (95) gives

= m (98)
which can be put into the form
Z=\Zle™* ' 99
with
F
SN Py (100)
and where
. nk
W T mar T e
s 0= k — mQ? (101)
Vik - mQ»*+ k>
Since
x =Re [Ze'™] (102)
one has
x= F cos (Qt—¢) (103)
V(e ~mQ?)? +7%k?
with
tng=—TC_  g<p<a (104)
k—mQ
Equations (103) and (104) are more conveniently written in the form
x= N (QI;ZC)Z]Z-’_ = cos (Qt—¢) (105)
tan “"TT(;TJ)? (106)
The determination of n is easy because
n=f (107)

where Af is the half-power bandwidth. This then provides a means of
measuring damping during steady-state vibration (see exercise 15).

It is important to note that the use of complex notation results in a major
reduction in the algebra required to solve the equation of motion of a
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harmonically forced oscillator: compare the number of steps required to get
(43) with the number of steps to get (95). For this reason, complex notation
will be used in subsequent analysis.

1.4 Rayleigh’s Method

This method was proposed by Rayleigh to obtain a close approximation to
the lowest frequency of free vibration for an undamped system. In this
chapter, Rayleigh’s method will be applied to single degree-of-freedom
systems only.

The method proceeds as follows: from a reasonable hypothesis about the
motion of the system, calculate the approximate kinetic and strain energies
and then use the theorem of conservation of mechanical energy or the
equations of Lagrange to obtain the approximate frequency.

Let us apply the method to estimate the effect of the mass of the spring on
the dynamic behavior of a spring—-mass system, as shown in Figure 6, where:
m,= pL, mass of the spring; L, spring length; p, mass per unit length of the
spring.

Figure 6 Influence of spring mass on the frequency of a
spring-mass system

The motion of the system is assumed to be separable; that is, if u(x,t)is
the displacement of a point on the spring located at a distance x from the
fixed end, then it is assumed that u(x, t) can be separated into the product

u(x, t) = ¢(x)p(t) (108)

By analogy with the static case, a reasonable hypothesis for ¢(x) is
o(x)=ax (109)
where a is a constant of proportionality. The expression for kinetic energy is

L
=%ma2L2p02(t)+% L pazxz dxp°2(t)

1( ms)zzz
== Zs o 11
2m+3aLp(t) (111)
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and the expression for strain energy is

U =3ka*L?p*(t) (112)
Application of Lagrange’s equation gives
(m +%s)p°°(t)+kp(t) =0 (113)
and then the approximate angular frequency is -

/ k
= m (114)

As stated above, this result can also be obtained by writing that the sum of
(111) and (112) is constant in time.

1.5 Applications

The two applications described below are important because they are
first-order models for systems such as vehicle suspensions, accelerometers,
and vibration isolators. Only the expressions for response amplitudes are
developed since the phase responses are usually of less interest.

1.5.1 System on a moving foundation

The system represented in Figure 7 models a machine mounted to a
foundation by a spring and viscous damper. The foundation has a displace-

m I"
L.

I ‘s *  Figure 7 Single degree-of-freedom system on a mov-
ing foundation

ment of the form
& =A cos Qt ‘ (115)

and it is desired to keep the machine motion, that 1s the motion of the mass,
to the smallest possible value. This situation also arises for a vehicle going
over a rough road or for a container of delicate electronics attached to a
vibrating surface.

The movement of the mass can be deduced from the equation of motion:

mx®=§k(8-x)+c(8°—x° (116)
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Substituting (115) into (116) gives

mx>+ cx°+ kx = A(k cos Qt —cQ) sin Qt) 117)
In order to use complex notation, we associate (118) with (117):
j(my®+cy®+ ky) = jA(k sin Qt +cQ cos Q) (118)
and obtain the equation
mz® + cz°+ kz = A(k + jc Q) ™™ (119)
The real part of z is x. The amplitude of the mass displacement X is
k2+c20?
X=AN G morr+ P (120)
+[2a(Q
—A 1+2a(Q/w)F (121)

[1— () P+[2«(@/o)F

The ratio X/A is plotted in Figure 8 as a function of Q/w with « as a
parameter. In order to have a small motion of the mass, that is, good
isolation, it is required that Q/w > 1. In other words, the resonant frequency
of the system, w, must be as low as possible. In practice, this is limited by the

X e TTTTTTTTTT T TTTTTTY
A a=0
5 a=0.1
4
3
a=0.2
2
a=0.5
a=1
1
a=2
0 Legwssevvadygroaveatlygnta O
¢ 1 2 /w

Figure 8 Transmissibility curves for a
single degree-of-freedom system



20

increasing static displacement of the mass due to gravity:

kx,=mg (122)

1.5.2 Transmissibility

Now let the mass of the system just considered be subjected to a force
Fsin Ot and require that the force transmitted to the foundation, which is
now fixed, be as small as possible.

The force transmitted is

F,= kx+cx° (123)
or if
x = X sin (Qt— @) (124)
F, = X{k sin (Qt — ¢) + cQ cos (Qt — )] (125)
The amplitude of F, can be shown to be
‘ |F| = XVEZT 2P
=kXV1+[2a(Q/w)] (126)
and after using (43),
F|=F 1+[2a(Q/e)P 127)

[1-(Q/0)’P+[2e(Q/w)F

The ratio |FJ|/F is identical to X/A and the conclusion is therefore: to
limit the transmitted force, it is necessary that Q/w > 1.

1.6 Exercises
Exercise 1: Calculate the equivalent stiffness k of two springs of stiffness k,
and k, which are in parallel.

The forces and displacements are shown in Figure 9 in their positive
directions. Then

F=F,+F,
Fy=ky(x2—xy)
Fo=ky(x,—xy)
hence
F=(ki+k2)(x2—x7) = k(x,—x,)
and
k=k,+k,
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Figure 9

Exercise 2: Repeat exercise 1 for two springs in series.

The answer is
1 1 1

k ki ki
Exercise 3: The influence of gravity. Consider the vertical spring-damper—

mass system shown in Figure 10. Derive the equation of motion using as
origin for X the unextended length of the spring.

Lot

mg F(t)

Figure 10

Newton’s law gives
mX>=+cX°+ kX =F(t)+mg

In introducing

X=x,+x
where
mg
Xst =7
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the equation of motion becomes
mx>+cx®+ kx = F(t)

The influence of gravity is therefore just a change of origin and does not
affect the dynamic response.

Exercise 4: Find the free vibration of the system shown in Figure 11 for

o

m

I X Figure 11

a <1.0 with initial condition x(0) = x, and x°(0) = x,°.

The displacement x(t) has the form:
x=Ae"**sin (wV1—a? t+ )
Applying the initial conditions gives
Xo=A sin ¢
X° = —awA sin ¢+ AoVl —aZ cos ¢
xo0vV1—a®

Xo®+ awXg

tan Y =

When ¢ is known, one can find sin ¢ and then A.

Exercise 5: Consider the same system as in exercise 4. Find the free vibration
of the system for a =0.05 and the initial conditions x(0) =0, x°(0) = x,°.

The answer is
1.00125

xo°e %% sin 0.99875 wt

x(t)=

Exercise 6: The base of the system shown in Figure 12 has a prescribed
displacement & = A sin Qt. Calculate the steady-state response and the base
force necessary to impose this displacement. -

The equation of motion is
mx® + kx = kA sin Qt
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n Ix

k 1 A SinQt

Figure 12

If the motion of the mass has the form

x =X sin Qt
the response is
A .
x= 1_(Q/w)2sm Qt
The force necessary to produce this displacement is
F=k(6—x)
kA(Q/w)? .
= ’m sin (ot

At resonance of the undamped system, this force becomes infinite. In
practical testing situations, since it is impossible to produce a force of this
magnitude, it is necessary to significantly reduce the displacement amplitude
whenever a system becomes resonant.

Exercise 7: Consider the same system as shown in exercise 4. Find the
steady-state motion of the system subjected to F(t) = F sin Qt by using complex
notation.
An equation

my*+cy°+ky = F cos (0t
can be combined with the standard equation (32):

mx® +cx°+ kx = F sin £t
so that x is the imaginary part of z, which is the solution of

mz* + cz°+ kz = Fe'™
where

2 = Zeit
=|z| PRIC D)
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It can be shown that
F

Vlk—mOPP+ 2P
k—mQ?
k= mQ??+ 2P
cQ
V(k —mQ?)?+c2Q?
Equation (42) for tan ¢ can then be obtained and it can be seen that
0<¢ <. Finally,
x=Im[z(t)]
=Im [l Zl ei(m-—<b)]
_ F
k= mQP +(c)?

1Z|

cos ¢p =

sing =

sin (Ot — @)

Exercise 8: Write the equation of motion in terms of 0 for the system shown in
Figure 13 for the case of small 6. The beam ADB is rigid and is pinned at

- L

1 e
e A Fsinat
l' _/«e D '

A pEmm—t————y_
k C

Figure 13

point A and free at point B. The mass moment of inertia of the beam with
respect to A is I.. Find the value of the damping factor « if the values of the
various system parameters are as follows:

I, k c l L

SI 0.065 m? - kg|3 % 10* N/m 1 Ns/m 04m | 0.5m

English
units | 0.048 ft*>slug | 2056 Ibf/ft | 0.06851bf - sec/ft | 1.31ft | 1.64 ft

The equation of motion in SI units is
0.0656°+0.166°+ 48006 = 0.4F sin Ot
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and therefore

—-.__L: 0.45%

a =
2v0.065 x 4800

The equation of motion in English units is
0.0480>°+0.1186°+352860 = 1.31F sin Ot

Exercise 9: For the system shown in exercise 8, calculate the steady-state
response in terms of the vertical displacement x(t) at point B. Draw X/F as a
function of Q using both log-log and linear-linear scales. Discuss the approxi-
mations which can be obtained for frequencies much less than the resonant
frequency and for frequencies much more than the resonant frequency.
The equation of motion (in SI units) is
0.13x*°+0.32x°+9600x = 0.4F sin Ot
which is a specific form of:
m*x® +c*x°+ k*x = F*sin 1t
The solution is
x = Xsin (Ut — )
with
X= F
V(k* —~m*Q?)? +(c*Q)?

At low frequency (i.e. Q«vVk/m):

F*
X= F
At high frequency (i.e. Q>»>Vk/m):
F*
X= m*Q?

In this latter case, on the logarithm scales:

log — = —log (m*Q%) = —logm*—2log O

X
F*
which corresponds to a straight line of slope —2.

The graphs are shown in Figure 14. From this exercise one is able to see
that logarithm scales are more appropriate for showing system response at
low and high frequencies than are linear scales.
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Exercise 10: The mass shown in Figure 15 is subjected to a force step of
magnitude F at t =0. The initial conditions are x(0) =0, x°(0) =0. Calculate

X Figure 15

x(t) fora=0 and for a <]

The equation is
mx®+cx°+kx=F (t>0)

For a =0, the general solution is
. F
x = A sin wt + B cos wt+7c—
and after applying the initial conditions this becomes
F
x =E(1—cos wt)

For @ <] the general solution is

x=e *“(Asinovl—a’t+BcoswVi—az t)+£

where
—aF F
A= B=——
kvVl-a? k

Hence

F _ ,( a . = ) F
x=——e sinwvl—a’t+coswvi—azt)+=
k. WVi-a? @ k

Exercise 11: Consider the same system as in exercise 10 for the case o<1 but
now consider the force step of magnitude F to be a general function of time.
Calculate x(t) for the same initial conditions.

Due to the initial conditions, equation (86) is used:

1
mawy

x(t)= L' F(r)e™™* M sin wy(t— 1) d7
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In this case
F(r)=F
and, if one lets
t—T=Uu
dr=~du

x(t) can be written in the simpler form:

t
x(t)= L e " sin wqu du
mawy
from which:
F t
x(t) =—————— J e sin wau du
movi—a?d
or since:

[e™**(—aw sin wyu — @, cos wau)ly
a’e?+ w3

t
I e ™" sin wau du =
0

Fe™™ [—awsinoJl-a’t—ovl-a’cos oVl-a?t]+ovl—a®

mov1-a? ?

x(t) =

As @®=k/m, the corresponding result of exercise 10 is obtained.

Exercise 12: The system shown in Figure 16 represents an elementary model
of a rotating machine of mass (M —m) which is attached to a foundation by a
spring k and_damper c. The machine has a rotating unbalance of mass m

A
‘4 L=

a

i

77 Figure 16

which is located at radial distance d from an axis of rotation about which the
radius has a constant angular velocity ). Assume that only motion in the x
direction is possible. Determine the displacement amplitude X and the am-
plitude of the force transmitted to the foundation F.,.
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The answers are
equation of motion:
Mx®+ cx°+ kx = mdQ? sin Qt
amplitude of displacement:
mdQ?
~ Jk-MOPP+ (0P

amplitude of transmitted force:

Ty
= 2
F=mdQ \/(k—M92)2+c292

Exercise 13: Develop the force shown in Figure 17 in a Fourier series. The
force is applied to the mass of a spring—mass—-damper system. Calculate the
steady-state motion x(t).

AF(t)

AF

Figure 17

The force expansion is
F(t)=F€——l ¥ ?.‘P.PQ.‘)
™ p=1 p
and

F ¢ )
e Z X, sin (pQt—¢,)
2k =

x(t)=
with
%= ~Flpm
VIk —m(pQ)?P + (cpQ)?

_ 2a(pQw)
T 1-(pQ/w)?

tan ¢, C0<d, <

Exercise 14: Figure 18 shows a spring—mass system with structural damp-
ing. Show that the conditions of amplitude resonance and phase resonance are
identical.



30

K(1+jn)

Figure 18

The phase angle equal to 7/2 defines the phase resonance, see equation
(106), and it occurs for = w.

The amplitude resonance occurs for maximum amplitude, see equation
(105), and that can also be shown to occur for Q=w at which the
displacement amplitude is X, = F/nk.

Exercise 15: Calculate the half-power frequency bandwidth for the system in
the previous exercise.

The limits of the bandwidth correspond to one-half of the energy dis-
sipated at resonance. Using equations (88), (105), and the result obtained in
exercise 14:

1 1
V2 VI (/)P0
from which
2
(2 1o
w
2
(25
w
Hence if n«1,
-0 _AQ 1
n= 2 o Q

Exercise 16: The Nyquist diagram. For the system of exercise 14 draw the
locus of values of Z|F = u+ jv in the complex plane. Show that this locus is a
circle passing through the origin and having its center on the imaginary axis.
Explain how to obtain w, m, k, and m from this locus.

Let

1

—————— +'
k—mOP+jmk ©

Z_
F
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and identify 1 1~ (Qoy?
= QoY Pt n
1 -7

Tk [I- Q)P+ a2

These two relations yield the equation of a circle:

u?+ (v +—1—)2 -1
2nk/  4n3k?

where () increases in a clockwise sense (see Figure 19).

0

@ Figure 19

Point B corresponds to the maximum amplitude and therefore at point B,
(= w. Since points A and C are such that OA =0OC=OB/v2, at point A,
Q=(), and at point B, Q@=(,. Then if, as in exercise 15, n is small,
=\Qz"0'1

(0]

n

Finally, if R is the radius of the circle:

1
k=—
2nR
and it follows that the mass of the system is
ok
‘02

Exercise 17: Coulomb friction damping. A system consists of a spring and
mass supported on a horizontal plane. Let F be the friction force opposing the
system motion. At the initial time t=0 the system starts from rest with
Xo= aF/k >0. Find the motion of the system and then plot x(t) for a=15.5.
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As the initial position is positive, the equation of motion has the form
mx*+kx=F

with the solution

X =§+ (a_J)—gcoscor
The velocity is

x°= —(a—l)fw sin wt
For this solution to be valid, the velocity must be negative; that is, a>1.
This motion will exist until the velocity becomes zero at:
ot =

and at this instant,

X =£(2—a)

If 1<a<2, the mass stops at a position between 0 and F/k.
If 2<a <3, the mass stops at a position between —F/k and 0.
If a >3 the motion continues in the positive x-direction and is governed
by the equation
mx*+kx=-F

which can be solved as before.

x(t) REELLRREL rTriiTrthi llllllll‘llllllllll IR RN

- 15.5 F/k .

11.5 F/k ]

10 F/k - N 3

- 7.5 F/k 3

- \i”/k =

o E / 3

- 10 F/k \/ .
_ZOF/k :lllllllll BNV EREARERAEENN AN AR RSN ||||l|||l:

-+

0 T 2T 3T 4T
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The system is piecewise linear with pieces of length #/w. The motion of
the mass is shown in Figure 20 for a =15.5.

It can be shown that the envelope curves of the maximum values of
response are straight lines.

Exercise 18: Transfer matrices. The transfer matrix links force and displace-
ment at two different points of a system. Determine the transfer matrix of a
spring and a mass. Then use these matrices to obtain the frequency of free
vibration of a spring-mass system.

For a system undergoing undamped free vibration, the forces and dis-
placements will be sinusoidal. If F and X are the force and displacement

Xy X3
R L e
Fl N Y ' N Fg
k
Fa " F3
e ot

X, X3 Figure 21

amplitudes at a point in the system (see Figure 21), one has for the spring:
F,—-F,=0
F=k(X;-X;)
for the mass:
F;—F,=-mw?X,
X3=X,

The transfer matrices are obtained from these equations and have the
following form
for the spring:

for the mass:
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hence for the system, spring and mass in series,

mw
1-22 —me?

el el 5 |

1
= 1
k
If the spring-mass system is attached at point 1 and free at point 3.

2
F3=0=<1—m;” >F1

and since F, # 0, the frequency is
k
@ = -
Vm

Exercise 19: Find the spring and mass transfer matrices for sinusoidal forced
vibration. Then use these matrices to obtain the forced response of the
spring—-mass system subjected to a sinusoidal excitation of amplitude F and
frequency Q applied to the mass.

It has been shown that in sinusoidal forced vibration, the force and
displacement are sinusoidal with the same frequency. Using the same
notation as in exercise 18 with F the amplitude of force excitation, one has

for the mass:

F3_F2+F= "“mQZXZ
X3=X,

and the transfer matrix can be written as:

F. 3 1 - sz —~F Fz Fz
1 0 0 1 1 1

for the spring:

AT R F 0SS
X2 =]=- 10 Xl = T‘t . X1
1 k 1 1

0 01

then
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and
mQ?
1-— —-m? -
[Fs] k A F [FI:I
X;51= 1 X,
- 1
1 k 0 1
0 0 1
Because of the boundary conditions
2
F;=0= (1—'"1? )Fl—F
and
F,
X; =~
>k
Finally,
F
X = A= maEk)
and
xal) = Fsin Ot
T k-m0?)

Exercise 20: Damped transfer matrices for sinusoidal excitation. Determine
* the transfer matrices for the parallel spring—viscous damper system shown in
Figure 22 by separating the real and imaginary parts of the forces and
displacements. Then, for this system attached to a mass m, derive the
displacement amplitude of the steady-state motion.

c

Fi _iJ Fa
L e i
k
| e | s o .
Xy X2  Figure 22

For the parallel spring—viscous damper system shown:
Fe'™ = k(X,'™ — X,&'™) + jcUX,e'™ - X,e/™)
Then
Fp=(k+jc)(X,—X)
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Since F, =F,
1 0 0
F, 1 F,
X2 1= k+jcQ 1o X‘]
1 1
0 01

and separating the real and imaginary parts,

1 0 0 0 0]
F k cQd ol [Fu
X, k?+c2Q? 1 k24P 0 X,
Fxl=| o o 1 0 o]]|F,
) - X..
X2; CQ 0 " k — 1 0 1i
1 k%+c%Q? k2+ c2(y 1
0o 0o 0 0 1

The transfer matrix for the mass is found in a similar manner, and is equal
to

F] [1 -m02 0 o -El|[F,
X, o 1 0o o 0 ||x
Fyl=lo o 1 -m0* -E||E,
X5 lo o o 1 0 ||

1 0 0 0 0 1 1

Because of the boundary conditions, F;, and F,; are obtained as a
function of the components of the excitation force F, and F;. Then Xj;, and
X3; can be obtained.
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Two Degree-of-Freedom Systems

Two degree-of-freedom systems, even though included in N degree-of-
freedom systems, are treated separately. This is because their small size
allows analytical solution, understanding of more general methods, and an
introduction to the concept of coupling. In addition, they provide an
explanation of useful applications such as the dynamic vibration absorber.

Certain properties of a vibrating sysem used here will not be proven until
the next chapter and, as a preparation for the next chapter, the modal
method is used even though direct calculations are simpler.

The contents of the chapter are as follows:
2.1 Undamped systems

2.2 Damped systems

2.3 Vibration absorber

2.4 Exercises.

2.1 Undamped Systems

These are illustrated by the example of Figure 1. The two masses rest on a
frictionless horizontal plane.

Xy X2
— —

k k k.
3"\"’\'\4'3'“ WA @
IS —

Fi(t) Fa(t)

Figure 1 Two degree-of-freedom
undamped system

37



38

From Newtonian mechanics, the two differential equations of motion are

3mx1°°+ 2kx1 - kX2 = Fl(t)
mX2°° + 2kX2 - kx1 = Fz(t)

€Y

where F(t) and F,(t) are the forcing functions acting respectively on masses

3m and m.

The equations (1) can also be obtained from Lagrange’s equations (see the
Appendix). For this purpose, the kinetic energy T, strain energy U, and

virtual work of the external forces 8W are

3mx,;*2  mx,*?
B e e s

T
2 2

ke, kGo=x)?

U= 2 2

W = Fl(t) 8x1 +F2(t) 8x2

Equations (1) can be written more compactly in the following form:

Mx*+Kx =F(t)
3m O 2k -k
M‘[o m] K'[-k 2k]

being the mass matrix and stiffness matrix and

o] o[

being the displacement and external force vectors.

with

2.1.1 Free vibration
In the case of F(t)=0, equations (1) become
3mx,*+2kx,—kx,=0
mx,>°+2kx, —kx, =0
Solutions are sought in the form
x; = X, e"
x,=X.e"
Substituting (9) in (8) gives the homogeneous equations
GBmrr+2k)X; - kX,=0
(mr?+2k)X,—-kX;=0

)

3

@

)

6

M

®

9

(10)
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In matrix form, these equations are
[r2M+K][§1]=A(r2)[§1]=O (11)
2 2

3mr*+2k -k ]
-k mr’+2k

with

ar=| (12)

The trivial solution X, = X, =0 is not of interest. The nontrivial solution
is associated with the condition A(r?) = 0. The expansion of the determinant
gives

Bmr?+2k)(mr*+2k)-k*=0 (13)
and the two roots are
r’=-0.4514 E—
m
(14)
5 k
r;=-2.215—
m
From (14),
) k
r, = =%j0.6719 \/;n:
== =
Jwq (15)

ro=xj1.488 /—

25

= jw,

where ®, and w, are the frequencies of the system.
Substituting , and w, into (11) gives

A-ad[ 5] =Aadd, =0
? (16)
A(-w3) [i:] =A(~w3)d,=0

where ¢, and ¢, are the mode shapes of the system.

In a broad sense w,, ¢; and w,, ¢, characterize respectively the two
modes of vibration of the system. The word ‘mode’ is used throughout this
text to describe either the mode of vibration w;, ¢; or the mode shape ¢..

Relationships between X; and X, can be obtained from each of equations
(16)

for wq: X2= 0.6458X1

a7
for (00 X2 = _4.646X1
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It is important to realize that X, and X, are not independent because (13)
implies that the two equations (10) are no longer independent. The two com-
ponents X; and X, can therefore only be determined to within a multiplicative
constant. The process of choosing this constant is called normalization and
there is no unique way to proceed. For systems with only a few degrees of
freedom several choices are possible, for example:

(a) Set one of the components equal to unity, then

¢:= E{i] - [0.63158] 2= [)}2] - [——4.1646] (18)

(b) Set the magnitude of the vector equal to unity, then

X2+ Xi=1 (19)
and hence
0.8401 0.2104
é:1= [0.5425] 2= [-—0.9776] (20)

(c) Set the matrix product ¢:Md; equal to the total mass of the system,
then

BX:+XHm=4m (21)
and hence
_[1.082 B 0.4034]
6= [0.6986] é2= [—1.874 (22)

From (9) and (18), the motion in free vibration of the system is
x,(t) = a;e™ + B e 7t + g e + Be IO
x,(t) = 0.6458(0t €1 + B, €771 — 4.646(a e/ + Bre %)

Equation (23) can be rewritten in the more convenient form:

(23)

xl(t) =a, sin w,t+ b1 CcOs w t+a, sin Wyt + bz COS wot

xZ(t) = 0.6458((11 sin wt+ b1 cos (01t)"‘4.646(a2 sin w,t + b2 Ccos (.02[)
(24)

where the four constants are determined from the initial conditions. If, at
the instant ¢ =0, one takes the initial conditions to be
x,(0)=x,
x,(0)=0
x,°(0)=0
x,°(0)=0

(25)
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the four constants are solutions to the set of equations
bl + bz = X0
0.6458b; —4.646b,=0

a0+ arw, =0 (26)
0.6458a,0, —4.646a,w, =0
After completing this solution,
%, (1) = x4(0.8780 cos w,t+0.1220 cos w,t) @

x5(t) = x¢(0.5669 cos @t —0.5669 cos w,t)

Figure 2 shows x,(t)/x, as a function of tvk/m. Note that the solution is
not sinusoidal.

xz(t)
X
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Figure 2 Free motion of mass no. 2 in Figure 1

For the example choosen, it is possible to verify that the modes ¢; are
related to the mass matrix and the stiffness matrix as follows:

¢1Md, =0
t —
$iKe=0 - odes
By analogy with the scalar vector product, the V~ are said to be orthogonal

with respect to M and K. This orthogonality property will be proven for
general systems in the next chapter. In addition, from (16):

wj_M¢1 = K¢
wiM¢, =Ko,

(28)

29
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and after premultiplying respectively by ¢! and &5,
w§¢iM¢1 =¢1Ke,
03¢ Md, = 3K,

The expressions ¢;M¢p, and ¢p5Md, are called the modal masses, and the

expressions ¢1K¢; and ¢5Keé, the modal stiffnesses. If the first method of
normalization is used in the above example, one obtains

&\ Mp, =3.417m
S5 M, =24.58m
&'\ Kb, =1.542k
LK, =54.46k

(30)

(31

2.1.2 Forced vibration

The transient part of the solution of equation (1) is the general solution of
(8). Since engineering systems always possess some damping, this transient
solution decays to zero with time. In this section the steady-state solution of
(1) is presented. Two cases are discussed: harmonic excitation and excitation
which is a general function of time.

Harmonic excitation: direct method

Let
F;(t)=Fsin Q¢ (32)
F(t)=0
then (1) becomes
3mx1°° + 2kx1 - ka = Fsin Ot (33)
mX2°°+2kx2 - kx1 =0
Solutions are sought in the form:
xl(t)=A1 sin QI+B1 cos Qt (34)

x2(t) = A, sin Qt + B, cos Q¢

These are then substituted into (33). Since equations (33) must hold for all
time, each equation gives two relations corresponding to the vanishing of the
coefficients of sin Q¢ and cos Qt. The results are

Bl = Bz = O
_ Fk—mQ?) A Fk
(k=-3mQ*)Q2k-mO-k? * T (2k-3mOD(2k - mOP) - k2
(35)

Ay
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hence

()= F(2k - m?) sin Ot o t) = Fk sin Ot
T 0k —3mPk-mOD—k2 T 2k-3mQD(2k-mQD)—k2
(36)

The values of () for which the denominators of x,(t) and x,(t) vanish
correspond to the frequencies @, and w, found for free vibration. If the
system is subjected to a harmonic force whose frequency is equal to w, or
®,, the amplitude of the response will approach infinity. This is the
phenomenon of undamped resonance. However, if some damping is in-
cluded, the constants B; and B, will be nonzero, and the amplitude of
response at resonance will be finite.

B8y TTYT T T T T T T T T T T T T [X2| T T
F7k F/k

5 5

4 4

3 3

2 /J 2

— \N.& DAY,

.+ e e e [ (NENEENENEANEN) ERENEN

0 (RANERANEN]

0 1 2 a/%/m 0 1 2 a//k/m

Figure 3 Steady-state amplitude responses of the system of Figure 1 for a
sinusoidal forcing function applied to mass no. 1

Figure 3 shows | X;|/(F/k) and | X,|/(F/k) as a function of Q/vk/m in linear
coordinates. Figure 4 shows the phases of x,(t) and x,(f) as a function of
Q/Vk/m. The phases are /2 for = w, and Q = w,, but the phase of x,(t) is
also /2 at the antiresonance (| X;|=0).

General function of time: modal method

The main advantage of the modal method for two degree-of-freedom
systems is to uncouple the equations of motion. This can be accomplished by
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Figure 4 Steady-state phase responses of
the system of Figure 1 for a sinusoidal
forcing function applied to mass no. 1

using the following change of variable:

x=[¢y, ¢2][“‘]=¢q €y
_ q

where ¢, and ¢, are the modes of the system and q, and g, are the new
variables. Substituting (37) into (1) and premultiplying by ¢" gives

&'Mdq™+¢'Kdq = &'F(t) (38)

Because of the orthogonality conditions (28), the system (38) consists of two
uncoupled differential equations. At this point it is straightforward to obtain
q4:=¢,(t) and q,=q,(t) by proceeding as in section 1.2.3. Finally, x,(t)
and x,(t) can be recovered by using (37).

The previous example solved by the direct method will now be solved by
the modal method. Equation (37) gives

[::] = [0.6}458 —4.1646][3:] (39)
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and (38) becomes

[3.417m 0 ][q1“]+ [1.542k 0 ][ql]_ [F sin Qt] (40)
0 24.58m lLg,*™° 0 54.46k ilq, F sin Ot

The steady-state solutions of the two uncoupled equation in (40) are

_ Fsin Qt _ F sin Ot
BT 1502k —341TmQ> 7 54.46k-24.58mQ?

and the physical displacements become
xl(t) =q; -+ g2, X2(t) = 0.6458q1 - 4.646q2 (42)

If Q is near w, then (42) becomes

(41

x1(t)=q,
xz(t) = 0.6458q1

The system response is then a function of g; only. A comparison of x, and
x, shows that only the mode associated with @, appears. A similar conclu-
sion is reached when Q is near w,. This provides a means of measuring the
systemn modes.

For the case of a periodic force represented by a Fourier series, the
procedure is the same as above. Let F5(t)=0 and F,(t) the force presented
in Figure 4 of Chapter 1, then (38) can be written as:

3.417mq,”+1.542kq, —f—°+2F 0 Z
p=13,.. p ( 43)
2 < Qt
24. 58mq2°°+5446kq2—f-9+ Fo ¢ sinpH

w p=1.3,... p

sin p{}t

It is easy to obtain the steady-state solutions, which are

1) = F, +21_-7_9 - sin pQit
WO=3 086k w ,.5. pl1.542k—3.41Tm(pO)] I
Fo 2F, < sin pQt
alt) = 0 o) Z 1n p.

+
1089k 7 ,.1%.. p[54.46k —24.58m(pQ)?]
Then x,(t) and x,(¢) can be recovered with the aid of (39).

2.2 Damped Systems

Only viscous damping is considered here; a damper of this type is shown in
Figure 5. Structural damping is reserved for the exercises. The differential
equations of motion of the system can be obtained as in the case of
undamped system by using either Newtonian or Lagrangian mechanics. In
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the latter case, the dissipation function R has the form

R =3c(x,°—x,°)? (45)
The general form of the equation of motion is
Mx*+ Cx°+ Kx = F(t) (46)

where C is the viscous damping matrix.

2.2.1 Free vibration

In this case,
Mx®+Cx°+Kx=0 47
and solutions are sought in the form (9). One finds
A(r) X‘] =0 (48)
2

The nontrivial solutions are associated with the condition A(r)=0. The
expansion of the determinant gives

a1r4+a2r3+a3r2+a4r+a5=0 (49)

where, in general, the coefficients are nonzero. As these coefficients are real,
the roots of (49) are real or in complex conjugate pairs. In the case of small
damping, two pairs of complex conjugate roots are obtained:

rn=—a;+jB;
r=—a;—jpB; (50)
r3=~a+jB,

ra=—a;—jB,
where «; and a, are positive. Then x,(t) may be written as:
x4(1) = e (A cos B;t+ B, sin B,t) 51
+e7**(A, cos Bt + B, sin B,1)

and x,(t) can be obtained by using the relationship between modes expres-
sed by (48). The quantities a, and a, characterize the damping and the
quantities B8, and B, the frequencies.
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In practice, Bairstow’s method is often used to find the roots of equations
such as (49).

2.2.2 Forced vibration
If the matrix C can be put in the form
C=aM+bK (52)

where a and b are constants, the damping is said to be proportional. An
orthogonality relation identical to (28) can then be shown to hold; that is,

$1Cd, = adp 1M, + bd1Kd, =0 (53)

Hence the modal method can be used as in the case of undamped systems
because the differential equations of motion are uncoupled.
In practice, the matrix C is most often nonproportional and therefore

¢1Cé, #0.

Harmonic excitation: direct method
The steady-state solutions are sought in the form:
x,(t) = A, sin Qt+ B, cos Ot
x,(t) = A, sin Qt+ B, cos (it
These are substituted into (46) and the constants A,, B;, A,, B,, are
determined as in the undamped case.

The method has been applied to the system shown in Figure 6, which has
the equations of motion:

m O x1°°] [O 0][x1°] [Zk -—k][xl] [F sin Qt]
+ =
[0 m][x2°° 0 cllxy° * -k 2klLx, 0 53)
Plots of |X,|/(F/k) = vAZ+ B2/(F/k) are shown in Figure 7 for three values
of the damping coefficient ¢ = avkm.

(54)

X1 X2
k
k k '

" AW
—
C

e
F SinQt

Figure 6 Two degree-of-freedom sys-
tem with viscous damping
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Figure 7 Steady-state amplitude response of
mass no. 1 in Figure 6 for various amounts of
damping

It can be seen from these curves that, for a reasonable value of damping
(a=0.2), the response shows two resonant peaks. For a higher value of
damping (a = 1.0), the two peaks are barely discernible. Finally, for very
high damping (a=10), mass 2 is nearly motionless and the system is
reduced to that of mass 1 between the two springs of stiffness k which is a
single degree-of-freedom system with small damping. As a result, only one
resonant peak is observed.

2.3 Vibration Absorber

The pﬁnciple of a vibration absorber is simple and this device is frequently
used to reduce the amplitude of a vibrating system. Let a single degree-of-
freedom system (ky, m;) be subjected to a force F cos Qt. In steady-state
motion,

F
x(t)= m—i cos (it _ (56)
Suppose now that one adds to the original system a second spring—mass

system (k,, m,) (see Figure 8). The equations of this combined system are
then

mlxloo + (kl + kz)x1 - kzxz =F cos Ot

(57
m2x2°°+ kzxz - kle =0
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FCothl [ ™ le

m, IX Figure 8 Vibration absorber (kz, m,) attached to
2 the original spring-mass system (k;, my)

The steady-state solutions for this undamped system have the form
x,(t) = X, cos Q¢

58
x,(1) = X, cos Ot (58)
where
_ Fi (kz - mzﬂz)

S A T PR 9
S I T R (60

In particular, for vk,/m, chosen equal to £, the forcing frequency,
X,=0 and x,==F (61)

k,

Equation (61) shows that for vk,/m,=() the motion of the original
spring-mass system is completely suppressed. This is the principle of the
vibration absorber. In practice, it is more usual to reduce the vibration
amplitude of the original system when Q=+k;/m;. Then the vibration of

mass m, is absorbed if
m, mo

In using these results for designing vibration absorbers it is necessary to
fulfil three requirements:

1. The frequency Q must be constant or varying only over a small range
because the attachment of the absorber splits w; into two resonant
frequencies, one on either side of w,. Thus, if Q is too far above or
below its design value of w,, one will get resonance instead of
absorption of its motion.

2. The addition of an auxiliary system to the original system must be
technically feasible. '

3. The absorber spring (k,) must be capable of withstanding the force of
excitation F cos Qt; see equation (61).
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Figure 9 Steady-state amplitude response of the
original spring-mass system (k;, m,) in Figure 8 for
two different values of absorber damping (c,)

Vibration absorbers are sometimes incorporated at the design stage. They
are commonly used to reduce torsional vibration in engines and shafts.
Figure 9 shows the response | X,|/(F/k,) as a function of Q/vVk,/m, for the

case where
m, ms,

A viscous damper of coefficient ¢2=0.1vk,m, has also been included to
show a more realistic situation. Notice that damping results in some motion
of the original system (k,, m,) at the design conditions.

2.4 Exercises

Exercise 1: Calculate the frequencies, the associated modes, the modal masses,
and the modal stiffnesses for the system shown in Figure 10. Normalize the
modes by setting the first modal component equal to unity.
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X1 Xo

k k k
}wwm AW o
Figure 10

The answers are

_\/’E _ Bk
W= r—n.’ Wy = -';l—
o[l el

1M, =2m,  $:Md,=2m
1Ko, =2k, $2Ke, =6k

Exercise 2: Find the free motion x,(t) and x,(t) for the system of exercise 1.
The initial conditions at t=0 are x;=x,=0; x,°=1g; x,°=0. Also find the
force in the spring connecting the two masses.

The general solutions are
x,(f) = a, sin @, + by cOs @t + a; sin w,t + b, cos w,t
x5(t) = a, sin w,t+ b, cos @t~ a, sin w,t — b, cos w;t
Applying the initial conditions gives
0=>by+b,
0=b,—b,
Vo = Q17 + a0
0=a,0,~ a0,

then
b,;=b,=0
3100, = Gy, = =2
1491 2072 2
Hence
vofl . 1 .
Xq = — 8in @yt +-—SIn w5yt
2 Wy Wy
vl . 1 .
Xp === | — SIn @ —— SIn wot
2 W1 w>



52

and X
F=k(x3— %)= ——2sin wot
Wy

Exercise 3: Find the steady-state motion of the system in exercise 1. The force
of excitation is harmonic of the form F cos Qt and it is applied to mass 2. Use
the direct method.

The equations are
mx, %+ 2kx; — kx, =0
mx,™ +2kx, — kx, = F cos {t
As there is no damping, solutions are sought in the form
x, =X, cos Ot
x> =X, cos Ot
X; and X, are solutions of
2k-mO»HX;-kX,=0
QRk-mO»)X,—-kX,=F
After completing the calculations,

= Fk cos Ot
1 Bk —-mQ?)(k —mQ?)
= FQk —~mQ3 cos Ot
27 Bk~mQ?)(k - mQ?)

x, and x, become infinite for

Q=0)1= J‘E

N

Exercise 4: Repeat exercise 3 but use the modal method.

The modes, the modal stiffnesses and the modal masses have been
calculated in exercise 1. Therefore:

[ 2 [ ][qz

2mq,”+2kq, = F cos Ot
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For steady-state motion:

q; = Qy cos ¢
g = Q, cos {2t
then
_ FoosQt
B ok 2m?
_ —Fcos(t
= 6k —2mQ?
and finally
X1=q1%q
X2=q1—q2

Exercise 5: Calculate the frequencies, the associated modes, the modal mas-
ses and the modal stiffnesses for the system shown in Figure 11. Normalize the
mode so that the modulus of each mode is equal to unity.

Xy X2

i K o

2k Figure 11

The springs in parallel have an equivalent stiffness of 3k; those in series
have an equivalent stiffness of 3k/4.
The equations of motion are

mx,*+3.75kx, —3kx,=0
me°°+ 3kX2_ 3kx1 = (}
After completing the calculations, one finds

3 0.6618
@ = 0'593‘/;? 6= [0.7497]
_ k _ 0.7497]
0, =2.529 \/; é.= [—0.6618

$1Me;=m $:Mey=m
1K, =0.3517k  ¢5Kd,=6.398k

Exercise 6: Rigid-body modes. Calculate the frequencies, the associated
modes, the modal stiffnesses, and the modal masses for the system shown in
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X1 X2
B e

Figure 12

Figure 12. Normalize the modes by setting the first modal component equal to
unity.
The equations of motion are
' mx;*°+kx,~kx.=0
m2X2°° + kxz"' kxl =0

The solutions are found from (9), which gives

[m1r2+k —k ][};1]_0
-k m2r2+k 2 h

The expansion of the determinant is as follows:
mymor®+ k(m; +my)r2=0

and the roots are

r2=0
2= k(m;+m,)
mym;
Then
1
w;=0, &, = 1

= ,k(m1+m2) _ [ 1 ]
[0F) . mym, > ¢2" —mllmz

The mode associated with w, is the rigid-body mode. Finally, it can be
shown that:
¢ 1Mo, =m;+m,  ¢1K¢;=0
m? m,\?
GiMbz=m T GiKg,= k(1472

2

Exercise 7: Consider the same system as in exercise 6 with m,=m,=m. Find
x1(t) and x,(t) for free vibration using the modal method. The initial condi-
tions at t=0 are x; =x,=0; x,°=10g; x°=0.
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The uncoupled modal equations are
2mq,*°=0
2mq,”+4kq,=0
The solutions for g, and g, are

q1=at+B

gz=vysin \[—t+dcos \/[—t
m m

X1=q;+q
X2=q:—q>
Using the initial conditions:
0=B+8
0=B8-6

E
Vo=a-+y ;;[
2k

m
[

and

Then

and finally,

x —ﬂ[t+ n in 2-’ft]
T TV TV,
. ..E[,_,/.ﬂ - \/.2—_15,]
255 2k N

Exercise 8: Consider the same system as in exercise 7. Find the steady-state
motion x,(t) and x,(t) by the direct method. The forcing function is F sin Ot
and is applied to mass m,.

The equations of motion are
mx,”+kx; —kx,=0
mx,” + kx, — kx, = F sin Qt
The solutions have the form
x;, =X, sin Ot
xo =X, sin Ot
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Substituting into the equations of motion gives
(k—mOHX,-kX,=0
(k—mQ»X,—kX,=F

After completing the necessary calculations,

T mQ22k—mQd)

- —F(k—m?
2T mQP(2k —mO?)

Note that x,(t) and x,(t) become infinite for =0 and Q =+2k/m.

X, sin Q¢

sin Q¢

Exercise 9: The behavior of a two degree-of-freedom system is described by
the following equations of motion:

(5 smlllE sclil-lrinal

where the frequencies and modes can be shown to be

k 1 k 1
@ =09194 ‘/'—nT $= [2 155]’ ©2=1.776 \/% 2= [—0 1547]

Find the steady-state response if (1=w,.

It is sufficient to write the equation corresponding to g,:

¢2Md.q."° + ¢5Kb2q, = GLF(1)
1.072mqg,* +3.381kq, = —0.1547F sin Ot
which implies
_ —0.1547F sin Q¢
©=3381k - 1.072mO2

Then
_ —0.1547F sin Qt
T 3.381k—1.072mQ?

+, = 0-0239F sin Ot
27 3.381k—1.072m0?

X

Exercise 10; Calculate the frequencies and modes of the system shown in
Figure 13 using the method of transfer matrices.

The transfer matrix between points 6 and 1 is

<l el-e -l ]
=T - Tm T - Tm - T = =
[X6 . , , 1 1 I llX;
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The frequencies are obtained by applying the appropriate boundary
conditions. As Xg=X;=0,

t21F1 =0

and w; and w, are the values of @ which make t,, vanish. Since

1 2 mo?
w=g (1-7)(5-")

k 3k
W= r_n' Wy = —r-n_

The ratio between X, and X, establishes the mode:

one finds

[B]-nlE)- |2 |5
=T, =
X, 1 X 1j{LO
hence
. F,
F2=F1 and X2="‘c"
Also,
1 —me?
F,
[X4]=Tk'Tm[;2]= 1 1 me? [f;]
4 > |k k 2
and then
E, ( mwz) [1 1( mwz)]
R =F|=+={1~-
X, % 1 X X,=F,; k+k ~1 a
=1_’1( _mf)
k k
For
\/?
0=w,=\[—
m
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and for

Exercise 11: Find the steady-state response of the system shown in exercise
10 using the method of transfer matrices. The mass whose motion is x,(t) =
x3(t) is subjected to a force F sin Q.

The transfer matrix between points 6 and 1 is

F th t 5[ F,
Xel=|13 5 || X,
1 5 15 1

From the boundary conditions given before, one can obtain Fi:
Xe=13,F;+15;=0
from which
135
Fy=——==
! 13
Knowing F,, X;, one can calculate, successively, F,, X;; F3, X5;.... After
all the calculations have been completed,

F ( mﬂz)
K o e —
t23 k 2 k
5 =1y (see exercise 10 where Q=w).

and
Fo F(2—-mQ?/k)
T (1-mQ¥k)E—-mQk)
_F_F 2—-mQk
>k k(1-mQ¥k)(G-mQk)
x,=L L
Tk (1-mQ¥k)3—mQ¥k)
Finally,

x,(t) = X, sin Ot
x4(t) = X, sin Ot

Exercise 12: Find the response for the vibration absorber using complex
notation.
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The equations of motion

myy,*+ (ki + k) y, — kay, = Fsin Qt
My, +koy,—kay, =0
can be combined with equations (57) so that
m,z,°+(ky + k2)zy — kpz, = Fe'™
m222°° + k222‘— k221 =0

then x,; and x, are the real parts of z; and z,.
The solutions have the form:

Zy= Zlejﬂ'
zy=Z,e'™
and by elimination,
= F(k,— m292)
(k,+ kz —m Q) (ky,—m Q%) k3

which is a real quantity.
Then the motion of the base mass is

Z,

x, = Z, cos it

Exercise 13: A two degree-of-freedom system (2m, k,2m) is mounted on a
rigid support by a spring of stiffness ak; see Figure 14. The two frequencies of
the complete system are w,, @,, the nonzero frequency of the initial system is
w. Use the computer program no. 5 (see Chapter 7) to calculate w,/w and
w,/o for the parameter a in the range 107><a<1.

“ng
=

m
2m

From the results of exercise 6,
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The results from the computer analysis are as tabulated below:

a 1 0.5 0.2 0.1 0.05 0.02 0.01
/@ 0.44 0.33 0.22 0.16 0.11 0.07 0.05
@/ 1.14 1.068 1.026 1.013 1.006 1.003 1.001

Note that for a <0.1, w,~w. Therefore, a vibration experiment can be
performed on a free system by suspending it on a weak spring without the
support appreciably affecting the results.

Exercise 14: A single degree-of-freedom system with frequency w, =k,/m,
is mounted on another single degree-of -freedom system having frequency
@1 =vky/m,, as illustrated in Figure 15. The resulting two degree-of-freedom
system has frequencies w¥, w¥. Using computer program no. 5, calculate
(03— w))/w, as a function of wy/w, and my/m,.

my

s

m

E?kl
Figure 15

The results of the computer calculation for (0% - w,)/w, are as tabulated
below:

my/m, 1 1.5 2 3 10 100

0.001 0.016 0.0009 0.0007 0.0006 0.0005 0.0005
0.003 0.029  0.003 0.002 0.0017  0.0015 0.0015
0.01 0.05 0.009 0.007 0.006° 0.005 0.005
0.03 0.09 0.025 0.02 0.016 0.015 0.015

0.1 0.17 0.08 0.06 0.05 0.05 0.05
0.3 0.33 0.20 0.17 0.15 0.14 0.14
1 0.62 0.50 0.46 0.43 0.42 0.41

Values of w,/w; and m,/m, (or values of k;, m, for k,, m, constant)
which are in the upper right-hand corner of this table result in % = w,. This
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implies that with judiciously chosen values of k; and m,, it is possible to
‘soft’ mount a system k,, m, and still measure its ‘hard’ mounted, or
fixed-base, frequency.

Exercise 15: Torsional vibration absorber. In Figure 16 a hollow disk of
inertia I, is coupled to a solid disk of inertia I, by a liquid. The damping
coefficient of the resulting viscous coupling element is c. The torsional stiffness
of the elastic shaft is k. The hollow disk is subjected to a harmonic couple of
amplitude T. Write the equations of motion for the system and find the
amplitude of response, ®,. Use complex notation. For I,/1,=2, plot |©,|/(T'/k)
as a function of Q/Vk/I, for values of viscous damping factor equal to
a=c/VkI;=0.05, 0.5 and 10.

y4

82

yy. "

Figure 16

The equations of motion are
1101°° + c01° + k91 - C02° = reiﬂ'
120200+ C02°_ 601° =0

Solutions are sought in the form

01 = @1em'
02 = ezein‘
from which
0. = T{cQ—-LO%»
1T LOX(IL,0% - k) + jeQk - O~ LOP)
=[0le —ie
and:
10,/ =T O+ 207

BOYIL,0% - k) + c2Q%(k — I,O* — LO?)?

One can obtain |@,|/(T/k) for different values of a, as illustrated in Figure
17. i
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|o1]

r/k

10

-1
10

Notice the difference between these response curves and those of Figure 9
in the text. In particular, a viscously coupled absorber does not have a point
at which the response of the primary system is brought almost to rest. On
the other hand, it does not introduce any new resonances and this allows

1411

I

LELR LI

operation over a wider speed range.

Exercise 16: Structural damping. Find expressions for the displacement am-
plitudes of the system shown in Figure 18 by using the direct method with

complex notation.

X1 X
A —

(1+3n) k
W WA Z
z

——

5 N
- ~
1 ) 1 i 1 1 1 1 |
0 0.5 Q/VE/Il

Figure 17

F Cos ot Figure 18
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Proceeding as in exercise 12:

x;=Re[z,]

x,=Re[z,]
and )

z,=Z e’

zy=Z,e'™
with

F=(F,+]F)e’™ = Fe'™
Then the equations of motion are
m 01z 12k —k[z k 0Y[Z:]_[0
o |25 Tz 2]
¥ “ [zz]+[—k k][Zz] Mo ollzl7 L

Separating the real parts (Z,,, Z,,) and imaginary parts (Zy;, Z,;) of Z,
and Z, gives

(2k-mQ? -~k —nk 0
mQ? Zir 0
—k k== 0 0 z| |k
nk 0 2k-mQ* -k Zy; 0
2 ZZi 0
0 0 P '"20

For each value of (}, this system gives Z,,(Q), Z,,(Q), Z,;(Q), and Z,;(Q).
Then

xl(t) = Zl,(ﬂ) cos Ot — Zli (Q) sin Ot
and the response amplitudes are

|X1| =vZi( Q)+ Z3(Q)
IXal =vZ3(0)+ Z5(Q)

It should be clear that it is a very tedious pfocess to perform these
calculations by hand.

Exercise 17: Using program no. 6 of Chapter 7, plot | X,|/(F/k) as a function
of Q/Vk/m for the results of exercise 16. Consider the cases 7 =0.1, 1.0, a
10. :

The results are shown in Figure 19.
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N Degree-of-Freedom Systems

The equations of motion for these systems can be obtained from either
Newtonian or Lagrangian mechanics. In this chapter, only viscous damping
will be considered; however, some of the system properties demonstrated
are general and will be used in subsequent chapters. In contrast, some of the
numerical methods employed here cannot be used for predicting the vibra-
tion behavior of systems having a very large number of degrees of freedom,
such as engineering structures which are modeled by the finite element
method.

The contents of the chapter are as follows:
3.1 Matrix properties

3.2 Calculation of frequencies and modes
3.3 Response to excitation

3.4 Exercises.

3.1 Matrix Properties
The equations of motion of an N degree-of-freedom system have the form
Mx>®+ Cx°+ Kx = F(t) (1)

where M, C, K are, respectively, the mass matrix, the viscous damping
matrix, and the stiffness matrix. F(t) and x are the force and displacement
vectors.

3.1.1 Symmetry

To simplify the presentation, suppose that each mass of the system has only
one degree of freedom.

Mass matrix
The Kinetic energy has the form
N
T=% Y mx> @
i=1

65
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and can be written as
T =3x""Mx° 3)
with
x°=(x° ..., %)

m, zero
M= . (4)
ero  my
where it is noted that the mass matrix M is diagonal. Systems which are

modeled by having their mass lumped at discrete points will have diagonal
mass matrices. If the linear transformation

x = Ay (5)
is substituted into (3), one obtains
T=}Ay)'MAY*

= %yot AtMAyo
=1y M*y° ©
where
M*=A‘MA @

Symmetry of M* is guaranteed by the fact that M is premultiplied by A®
and postmultiplied by A.

Stiffness matrix

Let k; be the stiffness of a spring connecting the x; to the x; degree-of-
freedom. The corresponding strain energy is

Uy = by (= 2 ®
From equation (8), one constructs a symmetric submatrix. When this sub-
matrix is inserted into the system stiffness matrix, it appears in a symmetric
position. Therefore, the stiffness matrix of the system K is also symmetric.

This process of building the matrix of a system from the submatrices of its
elements is called assembly. Thus, the system strain energy is given by

U=41x'Kx )
If the linear transformation (5) is used, one finds
U=1y'A'KAy (10)
and
K*= A'KA (11)

which is also a symmetric matrix.
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Viscous damping matrix

Let ¢; be the coefficient of a viscous damper connecting the x; to the x;
degree of freedom. The dissipation function R;; is

R; =36;(x°—x°) (12)

As before, it can be shown that the two matrices C and C* are symmetric,
where _

C*=A'CA 13)

3.1.2 Positive definite and positive semi-definite matrices

The kinetic energy of the system is always positive unless all the velocities
are zero. The mass matrix is then said to be positive definite. The dissipation
function R and the strain energy U can be zero with one or more
displacements not equal to zero; for example, for rigid-body motion of the
system. The matrices C and K are then said to be positive semi-definite.

3.1.3 Properties of the modes

Consider the modes or the mode shapes of the conservative, i.e. undamped,
system:

Mx*+Kx=0 (14

Orthogonality relations

Solutions to (14) are sought in the form

x = Xe" (15)
which gives
rrMX+KX=0 (16)
or, alternatively,
0’MX =KX amn
in which
r =zjo ~ (18)

It can be shown that the solutions w of (17) are real since the matrix M is
symmetric, positive definite and the matrix K is symmetric, positive semi-
definite.
Let w;, ¢; and w;,, ¢; be two solutions of (17); that is,
o?Md; = K¢ (19)
o?Md; = Ky (20)
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Premultiply (19) by ¢; and (20) by ¢;. This yields

w?$;Md; = ;K (21)
w7 $iMd; = iKe; (22)
Since M and K are symmetric, equation (22) can be transposed to give
w}diMd; = ;Ko (23)
and combining (21) with (23) gives
(0f —w?)diMdy =0 (24)
If w;# w;, which is the most general case, it follows that
diMd, =0 (25)

Similarly, from (23), one finds
$;Ke¢; =0 (26)

Equations (25) and (26) are the orthogonality relations of the modes
associated with (14). It follows that if ¢ is the square modal matrix such
that

¢=[ds,...,¢n] @7

then the matrices ¢*Md and ¢'K¢ are diagonal.

Consider now the important case of a system having several rigid-body
modes for which, of course, the frequencies are zero. For the case of two
rigid-body modes, i.e.

(01=0,¢1; 0)2=0,¢2; wi,¢i i=3:-'-’N
it follows that:

s
w?M¢, = K¢ i=3,...,N (29)
As a result of (28):
¢ Kd, = diKd, =0 (30)
and postmultiplying by ¢; then ¢,, the transpose of (29) becomes
$iMé, = $;Md, =0 (31)

The classical orthogonality relations among modes, i.e. (25) and (26), are
thereby verified between the rigid body modes and the others. In contrast,
equation (28) implies that between the two rigid-body modes, one has the
relation

¢1K,=0 (32)



69
but, in general
d1Md, #0 (33)

Thus rigid-body modes can give rise to off-diagonal terms in the matrix
product ¢*Md.

Modal mass and modal stiffness

Premultiplying (19) by ¢; gives

w?diMd; = $iKd; (34)
o ¢:Ké ki
2_ @ilG K

@ oMo, m; G3)

where k; and m; are the modal stifiness and modal mass associated with the
mode w;, ¢i'

Viscous damping

The matrix ¢*C¢ is symmetric. If, in addition, C can be written in the
form
C=aM+bK (36)
where a and b are constants, the matrix C is said to be proportional. Then
¢*'C¢ is diagonal and

6:Cd, = ap;Mde; + bd:Kd; (37
=q
= am, + bk, (38)
and by analogy with the single degree-of-freedom system:
PO N
. Cei 2"";‘“1
which can also be written
a b
; = — 39
“=3ot2 (39)

This property allows an uncoupled solution for system response and
permits the definition of the modal damping factors. Notice that this last
equation allows any two modal damping factors to be chosen at will, but then
all the others are automatically determined.

3.2 Calculation of Frequencies and Modes

Recall from Chapter 1 that small damping has only a second-order effect on
frequency. The effect of small damping on modes could also be shown to be
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small. Therefore, little error is introduced by neglecting damping when it is
small.

This section describes methods of finding the frequencies w; and modes ¢;
of an undamped system of N degrees of freedom where the frequencies are
arranged so that 0; <w,<...<wy.

3.2.1 Direct method
Solutions are sought in the form

x = Xe" = Xe™* (40)
This yields

(K-0®’M)X=0 41)

The procedure is the same as in Chapter 2: the frequencies are obtained
by setting the determinant of the matrix K~ M equal to zero; then for
each w;, the components of X are determined and normalized to give ¢..
This direct method is efficient only for a few degrees of freedom.

3.2.2 The Rayleigh-Ritz method

This is a generalization by Ritz of Rayleigh’s method described in Chapter
1. It is used to reduce the number of degrees of freedom of the system and
to estimate the lowest frequenciesAs before, one begins by making a
reasonable hypothesis about the displacement of the system. Ritz suggested
that this hypothesis be taken in the form of an expansion; for example, in

the form:
P1
x=[71,---’7n] :
Pn

=Yp (42)

where vy, are N-dimensional vectors with n<« N. Equation (42) must satisfy
the geometry boundary conditions of the system, i.e. boundary conditions on
displacements and slopes. On substituting (42) into (3) and (9),

T =4py'Myp®

43
U=3p"v'Kyp “

and using Lagrange’s equations, one finds
v Myp=+y'Kyp=0 (44)

The order of the system (44) is n, which is much lower than that of the
system (1). This reduction in order simplifies the process of finding the
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frequencies and modes but the solution will not be exact. After solving
equations (44) by the direct method, or any other method, the physical
displacements are recovered from (42). In fact, it is not obvious how to
select the vectors v;. A reasonable choice for v, is the static solution of the
system subjected to forces equal to the weight of the masses.

In Chapter 5, the Rayleigh~Ritz method will be shown to be very useful in
predicting the effects of small changes in structural parameters.

Finally, notice that for n =1 this method reduces to Rayleigh’s method.

3.2.3 Iterative method

Iterative methods are very useful. In the iterative method illustrated below,
which is only one of many, the frequencies and modes are calculated in
succession. Recall equation (17):

o*MX =KX (45)
and rewrite it in the form
AX= —-1-5 X (46)
w
with
A=K'M

Choose a so-called trial vector ¢;, which is sufficiently general that it can
be written as an expansion in terms of all the modes of the system; that is,

b= ard;tazxdat. .. 47
with
a19a2:"-a#0

Note the similarity of (47) to an expansion of a n-dimensional cartesian
vector in terms of scalar components and unit base vectors. Now the product

Ad)u) = 01A¢1 + 02A¢2+ e (48)
when account is taken of (46), that is,
by &2
1, 2, 4
A(bl 0’21” A¢2 w% ? ( 9)
becomes
a a
Ady =251, 8%, (50)

(0% >
Repeating this process with the new trial vector
b= Adqa) (51)
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gives
Ady Ad,
=a,—5+ +...
Adpy=a; m% a w%
=a1‘?—:+a2£§+. . (52)
Lo 2
After r iterations, the result is
a;$,
= s 53
Adyy e (53)
and after (r+1) iterations,
a
A¢<,+1>=-—2%% (54)
w1
Combining (53) and (54) gives
1
Adgin= = Ad(r) (55
w3

Equations (54) and (55) allow the determination of w, and ¢,. The con-
vergence of this process will be rapid, i.e. r will be small, if ;< w,.

The calculation of w,, ¢, proceeds in the same manner except that the
new trial vector ¢;, must satisfy

1M, =0 (56)
Combining (56) and (47) gives
diM(a ¢+ ad,+. . )= a,0 1M+ ad 1M, +. .. =0 (57
After using the orthogonality relations (25), equation (57) becomes
a,6iMd, =0 (58)

since ¢} M, #0, it follows that a,=0. Therefore condition (56) ensures
that ¢, contains no component of ¢,. The use of this ¢y, will then lead to a
sequence which converges t0 @, and ¢,. '

The process of eliminating the component ¢; from the trial vector is
called ‘sweeping’ ¢, out of ¢. To determine higher frequencies, it is
necessary to use a trial function which has been swept of all previous modes.

The above iterative procedure can also be done using MK instead of
K™'M. The advantage of this is that when M is diagonal, M™' is easy to
obtain. The disadvantage is that the procedure will converge to the frequen-
cies in the order wy, Wn-1, . - . , @;. This alternative is used only for systems
having a few degrees of freedom.

The problem of finding the solutions of equations (17) or (46) is an
algebraic eigenvalue problem. The eigenvalues and eigenvectors correspond
to the frequencies and modes.
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3.3 Response to Excitation

Modern methods for calculating the response of N degree-of-freedom
systems to excitation when N is large are usually based on a step-by-step
method (numerical integration in time) and frequently are preceded by a
modal transformation to reduce the number of degrees of freedom. If the
motion of interest is the steady-state response to a harmonic force and if N
is not too large, the direct method can also be used.

3.3.1 Steady-state response

Direct method for harmonic excitation
For brevity, complex notation is used. Let
F(t)=(F,+jF)e'™

x(t) = (X, +jX,)e'™ (59

Using (59) in (1) gives.
~PM(X, +jX;) +jQCC, + X))+ K(X, +jXi) = F, +]F; (60)
Separation of the real and imaginary parts results in

el -
ac k-o*Mllx ) LR
These equations must be solved for each value of Q and the response
constructed using the amplitude and phase of each component of x(z).
This method has disadvantages when N is large; the order of equation
(61) is 2N and the matrix is no longer symmetric, which causes difficulties
with computer calculations. Also, if the damping is small, which is the usual

case, it is difficult to obtain the response in the vicinity of resonances
because the resonant frequencies are not known.

Modal method

Suppose that the damping is either zero or is proportional. Find the first n
frequencies and modes for the undamped system; that is, solve the eigen-
value problem of equation (14) for w;, ¢y,. .., @y, ¢, With n<N. This
allows the following transformation from physical to modal coordinates:

Q1
x=[bn. .., ] ] ©62)
qn

=dq (63)

The modal matrix in (62) is a truncated form of the modal matrix defined in
@7.
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Using (63) in (1) and premultiplying by ¢* gives
¢'Mdq™+ & 'Cdq°+ &' Kq = ¢'F(1) (64)

According to the orthogonality conditions (25), (26), and (37), equation (64)
is a set of n uncoupled differential equations. The first of these equations is

m1q,* +¢1G:°+ k1g, = F(1) (65)

with
m; = 1Mo, k= ¢1Ke,
¢, =¢1Cd, = am, + bk, F,(t)= ¢1F(t)
The solution of equations of the type (65) is now straightforward because we
can use the results of Chapter 1. Equation (62) is used to recover the
physical degrees of freedom. This ability to uncouple the equations of motion

is the value of the modal method, and it is a value in both theory and
practice.

In many cases of practical interest, the damping is small but is not
proportional. In this case, it is possible to use a ‘pseudo-modal’ method. The
coupled modal equations of motion for harmonic excitation have the form:

my zero([q, q: kd. zero [ g, Fi(t)
[ ", }[ Z1+¢‘%[ I]+L . ][ ]=[ . ] (67)
zero ‘m, llq,> 4.° ero k., JLq F.(t)

and they can be solved using the direct method described above because the
disadvantages of the direct method identified previously do not exist in this

(66)

case; that is, n < N and the frequencies w;, ..., ®,, at which resonance will
occur, have already been found. Of course, the response obtained is valid
only for Q< w,.

For the case of structural damping and harmonic excitation, equation (67)
assumes the form

- =P MP(Q, +jQ) + (K, + JK)D(Q. +jQ) = ¢%(F, +jF,)  (68)

If the damping is constant throughout the structure, the orthogonality
relations will uncouple (68). If this is not the case, the pseudo-modal method
is used.

3.3.2 General response

The general response can be obtained by a step-by-step method which gives
the response of a system at time ¢ in terms of its response at times prior to t.
The method given here is not the most convenient for computation nor does
it always converge but it has the advantage of being easy to understand. The
step-by-step computer program given in Chapter 7 (program no. 8) uses a
related method which can converge.
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Develop x(t) in a Taylor series and keep only terms up to the third order,
then:

3
x()=x(t— At)+-—x°(t At)+%t'— x°°(t—~At)+—A§tT x°(t—At)  (69)
Similarly, for x°(t) and x*(t):

2
x°(t) = x°(t — At) +—?—'t x®(t—At) +92—t'— x°°(t— At) (70

x°(t) = x*°(t - At) +%t x°(t—At) . (71)

This results in an acceleration which is a linear function of the time step At.
From (69),

x*°(t—At)= 6 [x(t) —x(t—At)—-Atx°(t— At)————x°°(t At)] (72)
Substituting (72) in (70) and (71) gives

x°(t) =3 x(t)—% x(t—-At)-—2x°(t-—At)-—-A§-t x°(t—At)

=300 (73)
x°(t) = x(t) At2 x(t—At)—— x°(t Ar)—2x%(t—At)
= ?A? x(t)— Ax(1) 74)
where
3 At
A()=—x(t—A)+2x°(t — At) +— x°(t — At) (75)
At 2
2(f) = ——6—2 x(t—At) +—6— x°(t—Ar) +2x(t— At) (76)
A At At

Putting (73) and (74) in (1) gives

(6M 3C
A? At

If x, x°, x™ are known at (t — A1), then A;(t) and A,(t) can be determined
from (75) and (76) and x(#) can be determined from (77). Finally, (73) and
(74) are used to determine x°(t) and x*°(t). The process is then repeated for
t=t+At

+K)x(t) F(t)+ MA,(t)+ CA, () 7
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3.4 Exercises
Exercise 1: Write the equations of motion of the system shown in Figure 1 and
calculate the frequencies and modes by the direct method. Normalize the

modes by setting the first modal component equal to unity.

X1 X2 X3
R e e D

3‘k DZkaD

2m m 3m  Figure 1

The equations of motion are

B AR Hi

If solutions are sought in the form

X1 X]_
Xj] = Xz]em
X 3

the system of equations becomes

3k —2me? -2k 0 X,
[ =2k 3k —me? -k ]L}?;]=O
0 -k k—3moe?

The determinant of the square matrix vanishes for

»3=0.1052 L3
m

=0.8086 k
m

©3=3.920 %

For which it can be shown that:

w,=0.3243 \/;’;'— : E 395]

038
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-1
w,=0.8992 \/-:7; = [ 0.6914]

—0.4849
n 1
w3=1.980 ';n_; ¢3= —~2.420
0.2249
Exercise 2: Consider the same system as in exercise 1. Calculate w, by
Rayleigh’s method. Assume the displacement pattern obtained by subjecting
each mass to a static force proportional to its weight. Normalize the first

component of this pattern to unity.

The deformation pattern is obtained from

[ 3 M

x1=6; x2=8; x3=11

and is

Normalizing the x-vector gives

X, 1
xz] = 1.333] p
3 1.833

The expressions for kinetic and strain energy become

T =6.928mp**
U =0.7359kp?

w,=0.3259 \/}%

This estimate is high by only 0.5% (see exercise 1).

and therefore:

Exercise 3: Consider the same problem posed in exercise 2 but now obtain the
displacement pattern by subjecting only mass 3.to a static force of unit

magnitude.
Xy 1
xi] = 1.5]p
2.5

This leads to
T=11.5mp**

U =1.25kp?
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and

o, =0.3297 \/%

Exercise 4: Consider the same system as in exercise 1. Calculate w, and o,
by the Rayleigh~Ritz method. The first displacement pattern, vy, in equation
(42), is the same as in exercise 2. The second pattern, v,, is arbitrarily chosen
to be (1,2, 3).

This estimate is high by 2%.

In this case:
X1 1 1
xs =[1.333 2]["1]
| x,] L1833 3]P2
and
T= p:°T[13.86m 21.16m][p1°]
p2°

1
2lp2ll21.16m  33m
1

U__'pl]‘[1.472k 2.166k][p1]
2lp.Jl2.166k 4k llp,

The differential equations of motion become

13.86 21.16][p1°°]+k 1.472 2.166][1)1]___0
1.16 33 ilp,™ 166 4 P2

Solving by the direct method gives the estimates

w, =0.3249 \"E
m
m

Comparison to the exact solutions in exercise 1 shows that the estimate for
, is high by 0.2% and the estimate for w, is high by 20%.
The modes can be calculated as follows.

X, 1 1 1.132
Xz] =[1.333] +O.131{2] =1 1.597
Xs 1.833 3 2.229,

then



79

Making the first component unity gives

1
&, =[1.411]
1.969

which is very near the exact result.

Xy 1 1 0.3475
X | = 1.333]—-0.6526 2= 0.02808]
X. 1.833 3 -0.1244
Making the first component unity gives
1
&=} 0.0808
—0.3579.

This last result is quite different from the exact result. This is to be expected
since the value of w, is a distant estimate.

then

Exercise 5: Consider the same problem as posed in exercise 4. Use only
v1=(1,1,1) and v,=(1, 1.333, 1.833)".

=0.3244 \/— [1 412]

2.030

1
©,=0.9343 \/:n—k: ; o= [ 0.4292]

—0.4279,

The answers are

Exercise 6: Find the expressions for kinetic energy and strain energy for the
system shown in Figure 2. Find the equations of motion. Calculate the
frequencies, modes, modal masses, and modal stiffnesses. Normalize the
modes by setting the first modal component equal to unity.

| The energies are
2T = mx,*%+ mx,°% + mx;>*
2U = k(x; — %)%+ Sk (xy— x3)% + k (x; — x5)*
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X1 Xa X3

k 5k

Figure 2

and the equations of motion are

m 0 0 ~k
0 m OJL el +[—k 6k —Sk]
0 0 m 6k

Solutions are sought in the form

X3
xj]=0
X,

x = Xe*

and result in
me*(m2w* - 14mkow®+33k%) =0

which gives solutions

1
. = . ¢1Me, =
W) = 0, ¢1 [i] with ¢;K¢1 =0

!
k . M, =1.5m
=1.732\/—; =|-0.5 2
w2=1132y05 4 o 5] With K, = 4.5k

25

_ k. 1 L M=
@3 = 3.317 M ¢3 = 1] with ¢t3K¢3 =22k

Exercise 7: Consider the same system as in exercise 1. Calculate, using the
results of exercise 1, the matrix products ¢iKd;, $iMd;. Take the first
component of the modes equal to unity.
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& K= 1.725k
&K= 2.574k
d5Kd3=31.39k

81

1M, =16.41m
M, = 3.183m
d5Md;= 8.008m

All the other products are zero.

Exercise 8: Consider the same system as in exercise 1. Calculate w, and ¢,
by iteration using the trial vector (1, 1, 1)".

1'1 11
K'1=E 1 3 3
m"2 1 3 ‘m
A=K7'M=212 3 §|=7B
RN
Then
BX= k X

2

In what follows, the iteration vector is normalized at each step by making its
first component unity.

2 1 371 6 1
Bouy = E 3 %:H:l] =1 8|= 1-333] =6d)
2 Bl 11 1.833

-1 - 1A
B¢, =8.8321 1.385 B3y =9.409] 1.393

| 2.008] 2.033]
By, =9.492) 1.393 B¢y, =9.501] 1.394

[ 2.036] 2.036]

The mode calculated from Bds, is very near that calculated from By, and
the number of iterations can therefore be considered sufficient. The fre-
quency is obtained from

k

2
1

9.501=
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or

w;=0.3244 \/'E
m
1
¢1 = [;.394]
036,

The results for w, and ¢, have been deduced rapidly because, as exercise 1
shows, w, is much smaller than w,.

and the mode is

Exercise 9: Consider the same system as in exercise 1. Calculate w, and ¢,
by iteration using the trial vector (1, 1, 1)%.

The successive vectors ¢y, are such that
2m 0 0 [ dun
[1 1394 2036}]] 0 m O ][d;(i)z:, =0
0 0 3m ¢(i)3

where ¢); is the jth element of ¢, at the ith iteration. Expanding the
expression gives

2¢(i)1 + 1.394¢(,-)2 +6. 1084)(;)3 =0

This can be considered in the following form:

%] [0 —0.6970 —3.0541[bex
¢;';)2]= 0 1 0 ] dm)zJ
ok 0 0 1 b6

where ¢f, are now the successive trial vectors. The iteration is then
performed using the matrix C:

0 —0.6970 -3.054 0 —-0.394 -3.10
C=B|0 1 0 ]= 0 0.106 -1.608
0 0 1 0 0106 1.392
Then ‘

1 1
Coy=C [1] = —3.502[ 0.4288]
1 -0.4277

1 1
Coey= 1.160[ '0.6319] 5 Cog= 1.224[ 0.6773]
—0.4740 —0.4843
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1 7 1
Couy= 1.238[ 0.6869 | ; Cds = 1.241[ 0.6890]
—0.4865 —0.4869
1 A
C¢(6) = 1.241[ 0.6896
~0.4872]
The iteration can now be stopped; the frequency is obtained from
1.241= k
32
and 1
w,=0.8977 \/%; ¢2=[ 0.6896]
—-0.4872

Exercise 10: Structural modification. Consider the same system as in exercise
1 except that mass 2 is modified to have a mass of 1.3m. Usmg Rayleigh’s
method, calculate the third frequency of the modified system, oF.

This calculation can be done easily because the exact mode corresponding
to w, is known from exercise 1. The additional kinetic energy due to the
mass addition 0.3m is

AT =20.3m(—2.42)*p°* = 0.8785mp°>

Then using the results of exercise 7, the kinetic energy of the modified
system is
T* = 4.004mp°>+0.8785mp°*

=4.882mp°?

Since the strain energy is constant

=w; \/—,I’{;*= 1.793 \/;n'lf-

The exact values w** and ¢%* of the modified system can be shown to be:

1
o%*=1.807 \/— —[—1 766 ]
7

0.200

so it can be seen that this technique gives convenient estimates of the effect
on frequency of small changes of a structure.

Exercise 11: Consider the same system as in exercise 1. Find the steady-
state response to a force Fsin Qt acting on_mass m. Use the modal method
and plot |X,|/(F/k) as a function of Q/Vk/m.
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The results of exercises 1 and 7 are used to obtain the three uncoupled
equations:

16.41mq,*+1.725kq, = 1.395F sin Ot
3.183mq,*+2.574kg, = 0.6914F sin Ot
8.008mgq;*°+31.39kq; = —2.420F sin Qt

The steady-state solution for q, is

_ 1.395Fsin Q¢
B 725k — 16 41mQ2

or
_ 0.8087F sin Q¢
B = Q)]
Similarly,
_ 0.2686F sin Ot
& = Qw)]
_—0.07709F sin Ot
& - (@) P

[Xa]
F/k 3 L) 1 L LI R ] LI ] L | LA E
X — e |1 mode ]
- —— | 2 MOdes
e | 3 modes ]
10 L ‘ .
4 = \ \
E \ / “\‘ <] / \ E
: \/ NoT ]
5 J/ ~L 4
- ! ~
0 | ™ RS e
s i ~ e \ N
r S~ -
~ 3
2 "~ -~ 7
10 SR [ (IR Ll L1y '\INL
0 0.5 1 1.5 2 2.5 qo/k/m

Figure 3
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Then
x1=[ 0.8087 __0.2686 _ 0.07709 FsinQt
1- Qo) 1-( Q) 1-(Qws)*l k
=X, sin (Ot
Also

x3 s 6’_033‘3‘ - ©.48438q:+ 0.22434;
x,=1.395q, +0.6914q,—2.420q;
The results are plotted in Figure 3.

Exercise 12: The system shown in Figure 4 is in the vertical plane. The three
rods of length L have negligible mass but have a concentrated mass of
magnitude m at their tip. The rods are pinned at A, B, and C; their positions
are defined by the angular coordinates 6, 6,, and 6s. The coordinates 6, 6,,
0 all remain small during the motion of the system. Take the acceleration of

gravity to be g. Write the equations of motion for free vibration. Calculate the
frequencies and modes.

The equations of motion are

mL?> 0 0 1r6,
[0 mL?* 0 ] qu
0 0 mL%2lLe™
"mgL+kL>  —kL? 0 0,
+| -kL?*  mgL+2kL®*  —kL? ][Oj]=0
2

0 —kL? mgL+kL*1L6

The frequencies and modes are

1 1
k
o=y ¢1=[;] wr= P ¢2=[_0]

1
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Exercise 13: Imposed displacement. When a displacement is imposed on a
mass point of a spring—mass system, that degree of freedom is lost and the
frequencies and modes of the system are changed. Consider the system of
exercise 1 with a displacement x5 = X sin Qt imposed on mass 3. Calculate
the frequencies and modes and the steady-state response.

The displacement x; is known and the three unknowns are x;, x,, and

F(t), the force required to generate the displacement x; at mass 3. The
equations of motion are

2m 0 0 x> 3k =2k O x, 0
0 m O x5 ] + [~2k 3k - ] b =! 0
0 0 3mldl-0%X;sinQt 0 -k kJLX;sinQt F(t)
Consider just the first two equations:
[2m 0 ][x1“]+ [ 3k —Zk][x,]__ [ 0 ]
0 mlix,” -2k 3kllx, kX, sin Ot

The frequencies and modes are deduced from the homogeneous form of these
equations, i.e.
(o mlllae S]]
0 mllx,™ -2k  3klix, 0
from which

o alyla] s o]
“’1“0-8057\/;’ ""“[0.8508]’ @=L 97| a3

The steady-state response can be obtained by seeking solutions of the
form

x, =X, sin Ot
_ x, = X, sin Ot
One finds
Xy - 2k*
X; (Bk—mQ>(3k-2mQO> - 4k?
X, (Bk—2mOPk

X, (k-mOP(3k-2mQ?) —ak>

where it is observed that X; and X, approach infinity for Q) =, or = w,.
The force on mass 3 is found from the third equation of motion:

F(t) =[—kX, + (k~3mQ?X,] sin Ot

Some thought will show that if a displacement is imposed on the
base of a system, the frequencies and modes do not change. For example, if
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the system of exercise 1 has a displacement 8 =Asin{)t imposed on its
base, the equations of motion are the same as for that system with a fixed
base and with a force kA sin {3t imposed on mass 1.

Exercise 14: Step-by-step response. The system shown in Figure 5 has a
viscous damping coefficient of ¢ = 0.2vkm. It is subjected to a constant force F
at t=0. The initial conditions are x(0)=0, x°(0)=0. Find x(t) in an exact
manner and then by the step-by-step method using At = T/10 where T is the
period of undamped frequency.

CL.,.J k

lF Figure 5

The equation of motion is
mx*+0.2vkm x°+kx=F (t>0)

Taking account of the initial conditions, the exact solution of this equation is
x(t) =€ [1-1.005e%*sin (0.995wt +1.471)]

where the phase angle is in radians.
The expressions utilized in the step-by-step calculation are the following:

6M 3C
Kt—2'+-A—t+K— 17.15k

A (1)=4.775 \/% x(t—At) +2x°(t—At)+0.3142\/%x°°(t— At)

A,(0)=15.20 ;nk- x(t— A +9.549 \/g x°(t— At) +2x>°(t—At)

F

- +0.05830 % A,(1)+0.01166 \/% A

x(t)=0.05830

x°()=4.775 \/E x()— A1)
m

x°°(t) = 15.20 ?’;— x(1)—Ax(D)
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The resultant shown in Figure 6 for step-by-step solution has been
calculated with the aid of program no. 8 of Chapter 7 with 6 = 1. As the size
of the time step At is reduced, the step-by-step solution will approach the
exact solution.

Exercise 15: Consider a system of eight degrees of freedom consisting of a
chain of identical springs and masses; see Figure 7. It can be shown that the

Xy X2 Xg
i L e
i k [ l k [] D k E
m m m
Figure 7

frequencies of this system are o, =2vk/mcos (9—i)n/18,i=1,2,...,8.

1. Calculate the modes ¢, and ¢, corresponding to @, and w,.

2. The first two springs, beginning from the left, are modified so as to have
stiffnesses 1.5k. Calculate the two lowest frequencies 0% and w* and
their corresponding modes ¢% and ¢%. Use program no. 5.

3. Recalculate 0¥, 0%; ¢%, ¢% by the Rayleigh—-Ritz method using as
displacement patterns the first two modes of the unmodified system.
Designate these estimates as w**, w%*; ¢¥*, d3*.



89

For part 1:

w,=0.3473 \/—:-;;

¢:=[1, 1.879,2.532,2.879, 2.879, 2.532, 1.879, 1T

w,=0.6840 \/g;

$>=[1,1.532, 1.347,0.5321, —0.5321, —1.347, -1.532, —-1T
For part 2:

«}=0.3728 \/—E;
m

&1=[1,1.907,3.003, 3.682, 3.849, 3.482, 2.630, 1.413]

03=0.7219 JE;
m

¢3%=[1,1.653,1.770,0.9651, —0.3429, —1.472, —1.834, ~1.240T

For part 3:
For the modified system, one has

(b1, $TIM* b1, ] = m[38{)46 10(.)89]

5.525  0.7338
[1, TTK T b1, b,]= k[0.7338 2.737 ]

from which ©%* and w%* and the associated modes of this two degree-~of-
freedom system can be deduced.

/ k . [ 1 ]
*k fud .
wir=0.3746 with | 0.1744 )}

k 1
ok _ \ /._ .
w3 =0.7281 - with [20.26]

Then the modes of the modified system are:
¥*=[1,1.952,2.782, 3.375, 3.599, 3.351, 2.599, 1.422T

and:
$3*=[1, 1.548, 1.403, 0.6425, —0.3716, —1.165, —1.372, —0.9060T

Exercise 16: A rotating shaft subjected to torsion is modeled by three disks of
inertia I, I, I/2 and three rods of identical torsional stiffness k; see Figure 8.
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8, 89 63

HH]
I

I 1/2 Figure 8

LL
»
a3

x

LL.

The shaft rotates with a constant angular velocity Q0 and 0,, 6,, 05 are
measured with respect to the instantaneous shaft position. Write the kinetic and
strain energies of this system in terms of 0,, 6,, 65. Calculate the frequencies
and modes.

The kinetic energy associated with shaft rotation is a constant. As such, it
makes no contribution to the equations of motion and will, therefore, be
ignored in what follows. The kinetic and strain energies are

2T =10, +16,+310,
2U= k0%+ k(ez"" 01)2+ k(03-— 02)2

6,
02] =)
05

The equations of motion are

1 0 096, 2 -1 0
Ijo 1 0] 6,°1+kl-1 2 —1}
0 0 3JLes™ 6 -1 1

from which -1
,;=0.5176 \/E D = 1.732]
I 2

- -1
a)2=1.414\/-;; &,= 0]

-1

. -1
ws=1.932 \/-;; b= ~1.732]
)

Exercise 17: Two torsion shafts are connected by a coupling of ratio n,
65 = —n0,; see Figure 9. The shafts rotate at constant speed. The model is of

1 172
i k k [
N 92
3 - _J
1 k
el 93 ]eh
T 1
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the same kind as used in exercise 16. Write the equations of motion and
calculate the frequencies and modes for n=2.

The kinetic and strain energies are

2T = 16,°2 +116,° + 10;°%+ 10,
= 10,2+ I+ n?6,°>+ 10,
2U= k0§+ k(oz_ 01)2+ k(0,— 93)2
= k02 +k(0,— 6,)*+ k(0,+n@,)*

The resulting equations of motion are

1 0 o6y 2 -1 0re;
I[O %+n2 0 02°° +kj—1 1+n2 n] 6, =0
0 0 116> 0 n 1lLe

and if n=2: .
k [ 17
w; =0.2358 T &= L 1.944
—4.118.
K !
w,=1.299 'f; ¢.=] 0.3114
.0.9046
T -1
w;=1.538 —I'; b= —0.3670]
L—0.5369,

Exercise 18: The system in exercise 17 is subjected to a couple T sin ()t
applied to disk 1. In order to suppress the resonance at @, a torsional vibration
absorber of inertia I/2 and stiffness 0.844k is attached to disk 4; see Figure 10.

0.844k

1/2 Figure 10

[s i
r
g~

[

Plot |®,)/(T'/k) with and without the absorber as a function of QVK/I Use
program no. 6.

The response plot is shown in Figure 11.



92

_l_ell_ 1 | LA 1 1 LR I
r/k wi thout .
absorber
B with .
absorber
10
5
a , ]
\ | -
-\ /1 ]
N % y; \
0 I T | L i 1. L Peale -
0 0.5 1 1.5 KT

Figure 11

Exercise 19: Figure 12 shows a five degree-of-freedom system which has a
chain of identical masses m coupled by identical springs k and dampers

X1 Xz xs
k >k

L

Figure 12

c¢=10"%Vkm. Mass is subjected to a forcing function F cosQt. Plot
| Xs|/(FIk) versus Qv k/m Use the modal method together with program no. 7.
First, obtain the plot by using only the first two modes and then by using the
first four modes.

The response plot is shown in Figure 13.
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Continuous Systems

Many practical structures are built up using simple elements like beams,
plates, and shells which have continuous distributions of mass and elasticity.
Except possibly for the important case of straight beams of constant cross-
section, analytical solutions for the dynamic behavior of these basic struc-
tural elements are limited to simple geometries and boundary conditions.

In cases where analytical approaches are laborious, it is better to go
directly to numerical methods. In this chapter, the Rayleigh—Ritz method is
usually chosen; in .the following chapter, the finite element method is
utilized. Also in this chapter, damping is not taken into account and only
steady-state response is considered.

The contents of the chapter are as follows:

4.1 Equations of motion for bars, rods, and beams

4.2 Frequencies, modes, and orthogonality

4.3 Approximate methods

4.4 Response to excitation

4.5 Kinetic and strain energies of plates

4.6 Frequencies and modes for plates, response to excitation
4.7 Kinetic and strain energies of rotor elements

4.8 Exercises

4.1 Equations of Motion for Bars, Rods, and Beams

In the following sections, the classical equations for straight members with
continuous distributions of mass and elasticity are derived for longitudinal,
torsional, and bending motion. Continuous systems are the next logical step
in this text, since they may be considered as N degree-of-freedom systems
with N—> o0,

4.1.1 Longitudinal motion of a bar

The motion is defined by:
u, axial displacement
P, axial force acting on the cross-section

94
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P.,, external axial force per unit length
S, cross-sectional area
E, Young’s modulus
p, mass density.
The application of Newton’s laws along the longitudinal axis of the element

u
u u+ﬁdx

— e e e = D
] T
14
P j : P"’ﬁ-dx
[ e )
dx

Figure 1 Element of a bar in
longitudinal motion

in Figure 1 gives

ru oP
pS dx pye) P o dx-P+P,dx (1)
which becomes
u P
pS Yoy P, 2

<=E— )

Combining (2) and (3) gives the classical partial differential equation of a bar
in longitudinal motion:

Pu 9 ( 6u>
— = | ES~ }+ P, 4
pS > ox ax = “)
which for a constant cross-section becomes
u u '
oS ‘é—t; =ES 5;3 + Py 5)

4.1.2 Torsional motion of a rod

The motion is defined by:
6, angle of twist
T, torsional couple
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T.,, external torsional couple per unit length

I,, mass moment of inertia about longitudinal axis, per unit length
J, area moment of inertia about the longitudinal axis

G, shear modulus of the rod material.

T T+-57dx
>_}@_}_}*
L
1 ! 96
8 1 ! e+ﬁdx
dx

Figure 2 Element of a rod in torsion

The application of Newton’s laws about the x direction of the element in
Figure 2 gives

90 aT
— T e — - T+
I, dx py> T e dx—-T+T,dx 6)
which becomes
36 8T
—=— 7
L o oz L ™

The relation between torsional couple and the angle of twist is
T=cr2 @®
ax

Combining (7) and (8) gives the classical partial differential equation of a
rod in torsion:

0 8 ( ae)
e 2 s —
at ax Gjax Tex ©)

which for a constant cross-section becomes

%0 3%6
Io'gt—z——GJ(j’;E-i- T (10)

Note that equations (5) and (10) are mathematically the same. It can be
shown that I, =Jp is valid only for rods of circular cross-section. Using
this relationship for other cross-sections, e.g. rectangular, can lead to serious
error.
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4.1.3 Bending motion of a beam

The motion is defined by:

v, lateral deflection

¥, slope of neutral axis

Q, lateral shear force

M, bending moment

Q.,, lateral external force per unit length

I, . area moment of inertia of beam cross-section about the neutral axis

a, shear factor which appears in the expression for lateral deflection due
to shear; it is of the order of unity for beam cross-sections usually
found in practice. '

v v
y
M
Mg 1 ; M+de
' 3Q
E‘g—x’: Q+de

X

Figure 3 Element of a beam in
bending

The application of Newton’s laws to the element in Figure 3 in the lateral
y-direction and about the z-direction gives

v aQ
dx—=Q-Q——"dx+
Y oM
m—— T + P —
| pIdxat2 M+M+ o dx—Qdx (12)
which simplify to
#v  8Q
ps atz - X + ch (13)
¢ oM .
pI F) t2 - ax Q (14)
From the theory of strength of materials, the relations among Q, M, v, ¥ are
W M
ax EI s
_Q & (16)
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The terms pl 8°Y/at> and Q/aSG are usually second-order effects. The
first is the rotatory inertia introduced by Rayleigh and the second is the
shear deformation introduced by Timoshenko. In so-called Timoshenko
beams these effects are considered; in Bernoulli-Euler beams they are not.

In the following, we shall ignore these secondary effects and obtain the
equations of motion for the Bernoulli-Euler beam. Equations (13), (14),
(15), (16) become

- : - PS5 =——+Q«

9 | a7

Eliminating Q, M, ¢ among these four equations gives the classical partial
differential equation of a beam in bending:

e (B 53) 3= s

which for a constant cross section becomes
a“ v
x ps atz Qex ( )

Note that (19) is mathematically different from both (5) and (10).

4.2 Frequencies, Modes, and Orthogonality

Consider the case for which equations (5) and (19) are homogeneous, i.e.
P.x=0, Q,=0. The free-vibration solutions to these equations will be
obtained by the method of separation of variables. Since the differential
equation of motion for torsion is mathematically 1dent1cal to that for
longitudinal motion, the case of torsion will not be treated

4.2.1 Longitudinal motion

Let
u(x, t) = d(x)f(t) (20)
and substitute into (5). This gives
2 2
pS6) LD Espn T2 @1)

de?
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which can be separated into two ordinary differential equations of motion,
one in space and one in time:
E 1 d&¢kx) 1 &f@® > ’
T —— e t. = — 22
pd0) A f@ aP o =
The separation constant has been set equal to —w? so that the solutions will
be bounded in time. It follows that

dz(f)+aff(t>=o @3
Pox), 0 .\ _
—_at—z“'-l-w E cb(x)—O (24)

These have the solutions

f(t) = A sin wt+ B cos wt (25)

¢(x)=Csinw\/rgx+Dcosw

~

x (26)
hence for each value of w, one has a solution of the form
u(x, t) = (A sin wt+ B cos wt)(C sin @ \/% x+D cosw \/% x) 27N

The frequencies @ are obtained by application of the boundary condi-
tions. For example, in the case of the clamped-free (C-F) bar shown in

E,0,S,L

>
X

L LLLLLL

Figure 4 Clamped-free bar
in longitudinal motion

Figure 4, one must have for all instants of time
¢(0)=0

and .

P(L,t)=ES f(t)—qﬂ—)fl

=0 28) -
& (28)

(x=L)

The first condition requires that D =0 and the second that

P
—L= 29
Ccosw\/;L 0 (29)
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After discarding solutions which are identically zero, this requires that

ey _
cOs @ \/; L=0 (30)
and therefore the frequencies are given by
w |[E
w,,—(2n-—1)i\/; n=12,.... (31)
To within an arbitrary constant, the modes associated with , are then
) mx
@, (x)=sin 2n—1) 5L 32)
and the general solution for free vibration has the form
ulx, t)= Z (A, sin w,t+ B, cos w,t)sin 2n—1) %‘% (33)
n=1

The constants A, and B, are determined by the initial conditions; see

exercise 12.
In other cases, such as clamped-clamped bars (C-C) or free-free bars

(F-F), the calculation proceeds in the same fashion. All the above results are
summarized in Table 1.

Table 1
__(2n—1)'rr\/1-5 . X . _
C-Flw, = L p & (x)=sin 2n 1)2L with n=1,2,...
E

C-Clw, === [ ¢ (x)=sinn = with n=1,2,...

L VYp L

nr |E X .
F-F (@, =— y[— b (x)=cos n— with n=0,1,2,...

L Yp L

Orthogonality relations
Using the preceeding results, equation (4) for free vibration can be written
4 ( i?) a2
ax \ES gy )= 7eSe"e (34)

where, for simplicity, ¢ is written for ¢(x). Equation (34) is true for each of
the solution pairs: w;, ¢;; w;, ¢;. Hence,

< (B5S2)=-psute, (35)
& (m2)-s
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If the coordinates of the ends of the bar are 0 and L then after multiplying (35)
by ¢; and (36) by ¢;, one obtains

j o~ (ES f,"") —w?jo pSbiy dx e
I -2 ( ddh) dx =—w? J;LPSQS@,' dx (38)

Integrating (37) and (38) by parts and assuming free (ES d¢/dx=0) or
clamped (¢ =0) boundary conditions yields the results:

do; d¢, t
_ de; d¢, @2 L
Subtracting (40) from (39) gives
L
(@?-wd) L oSt dx =0 @1
and since w; # w;
L
j pShd; dx =0 (42)
0
and from (39)
L oodd; de¢;
J ES G dx dx dx=0 (43)

Equations (42) and (43) are the orthogonality conditions for a continuous
system deforming as a bar. Note that (42) and (43) are generalizations of
equations (25) and (26) in Chapter 3.

Also note that multiplying both sides of (35) by ¢, and integrating from 0
to L gives

(od(@oumulmte o

which, on integration by parts and use of the boundary conditions, becomes

mg=ﬂ5§ﬁx=ﬁ (45)

0
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with
k= L Sy (6)

m; =L pS$? dx (47)

where k; and m; are the ith modal stiffness and modal mass of this continuous
system.

4.2.2 Bending motion

Let
v(x, 1) = P (x)f(t) (48)
and substitute in (19). This gives
4 2.
B 23 0+ o560 O (49)

which can be separated into

Bl 1 d'o@_ 1 &0 50)

pS d(x) dx* f@®) dar?

where, in this case, the separation constant must be set equal to +w? It
follows that

2
%(;—)wzf(t) =0 (51)
d :;(x)—ﬁ @?¢(x)=0 (52)
The solution to (51) is
' f(t)= A sin ot + B cos ot (53)

Solutions to (52) are sought in the form e™ resulting in the characteristic
equations:

pSw®
4 _ — .
r o7 0 (54)
which has the roots
r= B: "B’ ]Ba '-jB
with
B=+ pSw” (55)
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Hence for each value of B, one has a solution of the form
@ (x)= Csin Bx + D cos Bx + E sinh Bx + F cosh Bx (56)

The frequencies @ associated with each B are determined by application of
the boundary conditions. The most frequent boundary conditions for beams

are
Free (F): M=0, Q=0

Clamped (C): v=0, Y=0 (57)
Simply-supported (S): v=0, M=0
In the case of a beam which is clamped at x=0 and free at x=1L,
equations (17), (56), and (57) give
D+F=0
C+E=0
— C'sin BL —D cos BL + E sinh BL + F cosh BL =0
—C cos BL+ D sin BL + E cosh BL + F sinh BL =0

After discarding solutions which are identically zero, these equations require
that the determinant of their coefficients must vanish. Completing this
calculation gives

(58

1+cos BL cosh BL=0 (59)
The solutions to this equation have the form
B.L=X, ' (60)
Accordingly, the frequencies become
Xz /EI
W, = L2 S (61)

The five lowest values of XZ are given in Table 2 for the most common
boundary conditions. Except for the case of X3 for the C-F beam, all these
values of X?Z can be easily obtained; see exercises 7 and 8. In addition, there
are two rigid-body modes for the F-F beam and one rigid-body mode for
the S-F beam; these zero frequencies have not been included in Table 2.

Table 2

X2 X2 X3 Xz Xz

CF 1+cosh X cos X=0 3516 2203 61.60 1209 199.8
S-S sinX=0 0860 39.47 88.82 157.9 246.7
E:IC: 1-cosh Xcos X=0 2237 61.67 1209 199.8 298.5
cs

tan X =tanh X 1541 4996 1042 178.2 272.0
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Figure 5 Five lowest bending modes of beams with various boundary
conditions

The relations (56) together with (58) and (61) allow the determination of
the modes. Their shapes are depicted in Figure 5.

Orthoéonality relations
Starting with (18) for free vibration and again using ¢ for ¢(x), one finds

£ (8-

Equatlon (62) is true for each of the solutions pairs: @, &; w, ¢,
Hence, one has

d2¢) X

& (erE8) - psora, (63)

& (e L) =psote, (64)
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Using the same procedure as was used for longitudinal motion and integrating
twice by parts, one finds for each of the three boundary conditions F, C, S:

L d2 ‘bi d2 ¢j ) L
L EI I a2 dx = w; L pSdid; dx (65)
L d2 (bi d2 ¢i 2 L
L EI o an dx = @] L pSo.d; dx (66)
As w; # w;, subtracting (65) and (66) yields the orthogonality relation
L
I pSe:d; dx =0 67)
Q
and from (65),
L d2 ¢i d2 d’j
L EI ax? Fdx =0 (68)
In the same manner as before,
wi= (69)
mi
with
L d2¢i)2
k; _L EI< ) & (70)
L
m = [ osotex 1)

where k; and m; are the ith modal stiffness and modal mass.

4.3 Approximate Methods

This section will show how the Rayleigh-Ritz method can be used to obtain
estimates of frequencies and modes for continuous systems. First, the kinetic
and strain energies are calculated based on a reasonable hypothesis for the
system displacement. In making this hypothesis it is essential that the
assumed displacement pattern satisfy the geometric boundary conditions.
Then the equations of motion are deduced by application of Lagrange’s
equations. Finally, the frequencies and modes are obtained by using the
methods presented in Chapter 3. When a single parameter function is used
as a displacement hypothesis, as in Chapter 1, this procedure is Rayleigh’s
method.
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The expressions for the kinetic energy T and the strain energy U for
straight member of length L are given by the following:
1. Longitudinal motion of a bar

1(* (au(x, t))2
== —_—l 72
T=3 L oS\ ) & (72)
L 2
2 ax
2. Torsional motion of a rod
_1(* (aO(x, t))2
T—2L I Yoy dx (74)
1t <ao(x, t))2
U= 5 J; GJ ™ dx (75)
3. Bending motion of a beam
_1(r (av(x, z)>2
T= > L pS Py dx (76)
1t (azv(x, t))2
U—ZL EI o dx 77

4.3.1 Rayleigh’s method

Consider for example a clamped—free beam and assume that its lateral

deflection is given by
o= (Y- ()]

This expression satisfies the geometric boundary conditions v(0, f)=0 and
9v(0, t)/ax = (0, t) =0, or equivalently ¢(0)=0 and a¢(0)/ox=0. It also
satisfies the moment boundary condition M(L,t)=0, or equivalently

3’$(L) / & =0 The latter condition is useful but not essential. Substituting
(78) in (76) and (77) gives

L 2 392
=3 () ) Tom
=0.4714pSLp*? (79)
1(F 6 6xT
v=; [ ElE- B e

EI
=673 P’ (80)
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Hence the equation of motion is

EI
0.9428pSLp>+12 I3 p=0 (81)
and the frequency is
3.567 |EI
@ =77 Vs 82)

This result is 2% greater than the exact value.

4.3.2 The Rayleigh-Ritz method

Consider for example the longitudinal vibration of a bar which is clamped at
x =0 and free at x=L. It is required to estimate the first two frequencies
and their corresponding modes. A four-parameter displacement hypothesis
which satisfies the geometric boundary conditions is utilized; namely,

u(x, 1) =% p1t (‘E‘)zpz"' (%)sps + ({‘)4174 (83)

This is substituted into (72) and (73) and then Lagrange’s equations are used
to give the equations of motion:

EIE SN A | A 111 1,

1 1 1 1 ©0 ESl£.3..8_p
L4567P2 4= 3 2 5 21-0 (84)
UL 31 e "] 2 2 2||es
é%%%l’f’ 1233217@?4

The frequencies and modes are obtained from (84):

_1511 |E
L p

@y

2
with ¢, ={—+o.02782 (%)

3 4
—0.5001(—2) +0.1106 (;_’5) (85)
4724 [E 2
wp == \/; with ¢2=%-—0.6898(%)

—2.561 ({—)3 +2.056 (%)4 (86)

The frequencies are accurate to within less than 1% and the modes are good
estimates of the exact modes.

4.4 Response to excitation

In this section, the Rayleigh—Ritz method is used to determine the steady-
state response of a continuous system to an excitating force. If, in addition,
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the exact modes of free vibration of the system are known, the method can
be extended to permit a modal calculation of the response.

The kinetic energy and strain energy are calculated as before. The
generalized forces are deduced from the expression for virtual work of
external forces.

4.4.1 Rayleigh-Ritz method

Consider, as in section 4.3, the longitudinal motion of a clampled-free bar.
In the present case the bar is subjected to a longitudinal force F(t) at its
midpoint. From (83) the displacement at the midpoint is

L
u (5 J) =3p1+iDP2+3ps+16Pa 87
and the virtual work of external forces is therefore :

_ pepy (21,802, 805 a_v;)
SW—F(t)( >t g +16 (88)

The right-hand side of (88) gives the generalized force vector
3F(2), 3F (1), 3F (1), TeF ()] (89)

The system response can now be obtained by the methods described in
Chapter 3.

4.4.2 Modal method

A bar which is clamped at each end is subjected to a longitudinal force
F(t)=F'sin (t at its midpoint. The exact modes are used, then:

X
L

Substituting (90) into (72) and (73) and using the orthogonality relations
(42) and (43), gives

u(x, t)=sin p1+sinzzﬂ3p2+sin§—iﬂ3p3+... (90)

o0 L £
T=%Y J; pSsmzﬁZ—’—‘dxp,,°2=ﬂf:I: Y 0 o1
n=1 n=1
Uu=3% LEs(—"f)zooszﬁ"i‘dx . TS § np? (92)
2 -t L L Pn 4 L Koed) pn

The virtual work of external force F(t) is

i 3=
2 2
The use of (91), (92), and (93) in Lagrange’s equations gives a set of

8W = F sin Ot (sin 8p, +sin  8p, +sin — Sps+. . ) (93)
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uncoupled modal equations for the parameters p;(t); namely:

SL 472 ES
Sop g =0 ©4

2
—p'—sz—I:p3°°+27-T—~§—sp3= —F sin Qt

For i even, the generalized forces are zero, hence the steady-state solutions
for i=2,4,...are p,=0. Using the steady-state solutions to (94), for i odd,
and substituting the results into (90), gives

sin—=>FsinQt sin %—"‘ Fsin Qt
- — (95)

"0 RS LpSL 9WES_ LeSL

2L 2 2 L 2

It is evident that for Q= (w/L)V(E/p), Bw/L)(E/p), ..., the system is
resonant. These resonant frequencies correspond to the frequencies of free
vibration identified in Table 1 for a C-C bar.

The longitudinal force in the bar can be obtained by using (95) and (3).

4.5 Kinetic and Strain Energies of Plates

The formulation of the dynamic behavior of a plate in bending can be done
in an analogous manner to that used for the beam in bending. However,
since a plate is thin in only one dimension while a beam is thin in two
dimensions, the plate variables are a function of two space coordinates as
well as time. This section will present only a brief introduction to the
dynamic theory of plates and will be limited to a consideration of their
kinetic and strain energies.

Let the xy plane be the middle plane of the plate so that z is the normal
distance from the middle plane to a point in the plate. Also the plate is
assumed thin and second order effects, i.e. rotatory inertia and shear
deformation, are neglected. The classical strain-displacement relations for a
plate are

*w
L=
Fw
g, = -—z-é-y—z (96)
Fw
Yey & —
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The stress—strain relations are

Ty Ex
v
o=|o =13 [ey Dse (97)
Ty 0 0 T Yxy
where v is Poisson’s ratio. The general expression for strain energy is
U=3| e'odr (98)
where 7 is the volume. Substituting (96) and (97) into (98) gives
[ ow | o Il 2]
ax? s
: E Fw Fw
= o5 —_— — 9
U [ -5 zayz 0 Zay2 dr (99)
&w v &w
zax ay | _0 0 2 zax oy |
If the thickness of the plate, h, is constant, this becomes
w 2 3w\ (&*w 2
o-2 [ G+ G GG r20-nlargy) Jexar
(100)

with S being the surface and D being the bending stiffness of the plate:
Eh®
D=fa-» (oD

The expression for kinetic energy is

STER
which for constant thickness becomes
-2 (@ aay
T ) o dx dy (103)

For circular plates, U and T are better expressed in polar coordinates. If
the plate thickness is constant, these expressions are

D [(azw 1w 1a2) (_,,)__(122+.l22__)

U=2
2 or ror r’a@? ror r*ao?

+2(1- v)(a (1 aw» ]rdadr

(104)
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3a X
T

Figure 6 Rectangular plate simply
supported along all four edges with
a concentrated mass at (3a/4, 3b/4)

concentrated mass of magnitude. m = pabh/10 at the point x=3a/4, y =
3b/4; see Figure 6. The displacement hypothesis is

wxy, =Y ¥ sin=sin>2 p_ (112)
r=]s=] a b
which satisfies the geometric boundary conditions at the plate edges (i.e.
w=0) as well as the force boundary conditions at the edge: 8°w/ox*= 0 for
x=0, a; 8w/ay*=0 for y=0, b. The latter conditions are, ° ~ . not
essential.
Substituting (112) into (100) and (103) and taking advantage of the
orthogonality of sine functions, one finds

oD S 5 (2 19

rm] s=1

o

T-— DN (114)

rm] gm=]

Expanding (114) for r=1, 2 and s =1, 2 gives

m4abD 1\2 4 1V
U=—% [(2 b’)p“+( bz)pgl

1 4\2 4 4\
+(?+b2) p‘2+( b2) 2 ] (115)
abh [-) 0, Q.
T=‘8_p(1’11°2+ P21°>+ P12 2‘*‘Pzz ?) (116)

The kinetic energy of the concentrated mass must be added to (116). This
increment in kinetic energy is given by:

abh, V2 V2 2
m=_26£(0'5p11 ) =D’ 5 P12 +Pzz) 117)
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-2 G
2 & \ar rdédr (105)

4.6 Frequencies and Modes for Plates, Response to Excitation

The procedures are the same as used for bars and beams. They will be
illustrated by three examples: two dealing with the calculation of frequency,
one by Rayleigh’s method and the other by the Rayleigh—Ritz method, and
one dealing with the determination of steady-state response to a concen-
trated force.

4.6.1 Rayleigh’s method

The problem is to calculate the lowest frequency of a circular plate undergo-
ing axisymmetric vibration. The plate is fixed at its center point and free at
its circumference. Consider the displacement hypothesis:

sen=B (e -2

. where symmetry requires that w be a spatial function of r only. Equation -
(106) satisfies the geometric boundary conditions at the central support
point. Since the displacement is not a function of 6, equations (104) and
(105) become

_D R[(azw)2 1 (aw) 2vow d? w]
) ar? + r’ \aor +r ar ar® 2 dr (107)
oy
T= > ot 2nrdr (108)

Substituting (106) in (107) and (108) gives
=’;—13 (11.25+9v)p? (109)

T =2.412phR?*p** (110)

from which the frequency is found to be
o= /(11.25 +9v)Dr
R2 2.412ph .
_ /(1 1.25+9v)En
B R2 28.94(1-1vdp (111)
This result is 15% higher than the exact value.
4.6.2 Rayleigh-Ritz method

A rectangular plate of constant thickness is simply supported, i.e. no lateral
displacement and no bending moment, along all its edges and has a
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the above energy expressions will be simplified by considering the special
case of b = a/2. The total kinetic energy, i.e. the sum of (116) and (117), is

2

T= all61p (1.1p1,7%+ 1.2p5,°% + 1.2p1,°% + 1.4py,°2

—0.2828p;,°p2:°—0.2828p,,°p12° + 0.4p1:°p22°
+0.4p2:°p12°~0.5657p;1°p22"— 0.5657p12°p22°) (118)

and the strain energy is

4
D
U= %52"2 (25p2, +64p3,; -+ 289p%, + 400pZ,) (119)
Lagrange’s equations result in the equations of motion:
1.1 -0.1414 -0.1414 0.2 P>
-~0.1414 1.2 0.2 —0.2828|| p21™
-0.1414 0.2 1.2 -0.2828] p.™
0.2 -0.2828 —0.2828 1.4 P22~
25 zeroi P
7D 64 P21
+ = 2
az 289 P12 0 (1 0)
zero 4001Lp22

and the frequencies and modes can be determined with the aid of
program no. 5 of Chapter 7. The results are

w%h E
=4.730 — \/12(1_1]2) (121)

&y (x, y)—sm—sm 2-—--—Wy--O 0892 sin —z—ﬂzsm 2my -
a a a a

—0.0139sin -;l'“?-‘ sin f’—:—y +0.0139 sin 32—’-‘ sin %’—y (122)

ar h ’ E
wy=17. 347 120-9p (123)
byl y) =sin = sin 2 +4.002 sin 2 sin 2™
a a a a
+0.1744 sm — sm i—---0 1675 sin -2—-— sin 4:)’ - (129)

4.6.3 Steady-state response

The steady-state response of the plate just studied will be determined for
an excitation force F(t) at the point x =3a/4, y = 3a/8. In order to simplify
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the calculation, the concentrated mass will be removed. The displacement
function will then give uncoupled equations of motion.

The expressions for kinetic and strain energies can be obtained by
setting b = a/2 in (115) and (116). The generalized forces are deduced from
the expression for the external virtual work of F(f):

SW=F(t) [rg sg (sin 3—;—’ sin 2?) Sp,,] (125)

which implies that the generalized force corresponding to each coordinate p,,
is

. 3ar . 3ms
sin 1 SlnTF(t) (126)

Application of Lagrange’s equation gives the uncoupled equations of
motion:

a’hp W‘azD(rz 432> 3ur . 3ms
®4+ —_—— = QiR . i1
g P= g \qzt 57 )P==sin==sin=—F(1) (127)

from which p,; can be obtained and then w(x, y, t) can be found from (112).

4.7 Kinetic and Strain Energies of Rotor Elements

The major elements which constitute rotating machinery are disks, shafts,
and bearings. This section will present a derivation of the kinetic energy of a
rigid rotating disk and the strain energy of a flexible rotating shaft. The
kinetic energy of the shaft is not considered but its expression could be
obtained from an extension of the kinetic energy expression of the disk.
Also in the applications which are presented in the exercises, the bearings
are assumed rigid.

Figure 7 shows the frames of reference which are used in the study of
rotors. The axes XYZ are an inertial frame while the axes xyz are fixed to
the disk. The xyz system is related to the XYZ system through a set of the
three angles 0, ¥, ¢. To achieve the orientation of the disk, one first rotates
an amount ¢ around the Z axis; then an amount @ around the new x-axis,
denoted by x,; and lastly an amount ¢ around the final y-axis.

4.7.1 Kinetic energy of the disk

With the aid of Figure 7, one can write the instantaneous angular velocity
vector of the xyz frame as

@ =yY°Z+6°%, + d°y (128)
where Z, %,, § are unit vectors. The angular velocity of the disk and shaft is
®° After some algebra, the components of @ in the xyz coordinate
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Figure 7 Reference frames for a disk on a
rotating, flexible shaft

system can be written as

W, —y°cos @ sin ¢+ 0°cos ¢
[a.,][ A ] 29
@, Y° cos 0 cos ¢+ 6°sin ¢

Let u and w in Figure 7 designate the coordinates of the disk center of
mass, which is assumed to be on the axis of the shaft. Then the kinetic
energy of the disk is given by

Tp =3iMp(u°?+ w*?) +3(Ip, w2+ Ip,02+ In,w?) (130)

where Ip,, Ipy, and Ip, are the mass moments of inertia of the disk with
respect to the xyz axes, and Mp, is the mass of the disk. Equation (130) is
general but in our case ¢°=, and 6 and ¢ are small. If, in addition,
I, = In,, (129) and (130) give

Tp =iMp(u?+ w2 +3I5 (692 + ¢°®) + 315, (Q*+2Q¢°6)  (131)

This provides a set of generalized coordinates

q=(uw,6,¢) (132)
which, when used in Lagrange’s equations, give
M 0 0 OJu™ 0 0 0 u’
0O M 0 0 jjw™ 00 O 0 ||{w°
+
0 0 In, O ||6™ o 0 0 0 -—Il}e (133)
0 0 0 I el 0 I, O y°

The two matrices in (133) are the mass matrix and the so-called Coriolis
matrix.
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4.7.2 Strain energy of the shaft

We use the following notation:

E, Young’s modulus of the shaft material

E,0, the strain and stress in the shaft

u*,0*,w*, the displacements of the geometric center of the shaft with
respect of the xyz axes (see Figure 8).

Figure 8 Coordinates of geometric center (C) and
X arbitrary point (B) of the shaft

The longitudinal displacement v* is assumed to vanish. If the second-
order terms are included, the longitudinal strain of a point B can be shown
to be

Fw* Fur 1 (é)u*)2 1 (aw*)2
TS ¥y T2 ay/ 2\ay (134)
or
e=g+ey (13%5)

where ¢, contains the linear terms and &, the nonlinear terms of- (134). The
strain energy is

U, =% I godr= %E[ (e} +2eu5,+£2) dr (136)
The symmetry of the shaft cross-section with respect to x and z resuilt in
j gqgdr=0

The term §, €% dr is of the second order and neglected. The strain energy is
then

24,,% %
U‘=%E[ [-—z a;; —x%]zd'r (137)
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or
| L azw* 2 L azu*
vi=iE | 1(5x) o+ L(55) o (138)
where
L= J' z?dxdz
'S
(139)
. L= I x2dx dz
S

are the area moments of inertia of the shaft.
If the shaft is subjected to a constant axial force F,, there is a second

contribution to the strain energy of the shaft given by
F,
U,= J: (—59)[8,4- euldT (140)

Because of symmetry, the integral of g, over the shaft cross-sectional area
will vanish, and (140) becomes

U,=3F, LL [(%:)2+ (%,_;:)2] dy (141)

The combined strain energy U,+ U, is then

1 (azw )2 1 (62 ) (aw )2
= A, ' +l I A

L fau™\2
+%F0L (-5;;) dy (142)

Using
w*=w cos Qt+u sin Qt

143
u*=—wsin Qt+u cos Qt (143)

which can be deduced from Figure 8, equation (142) is written
az
—1EI [ (cos Qt——-l—sm Qt-—;—-)
&u
+1I (— i Qt—+ —) ]
|\ —sin pee cos Qt 3 dy

o [ [ 2] o

Finally, for the most cornmon case of a symmetric shaft, i.e. [, =I, =1, the
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strain energy becomes
EI (- [(azw)2 (g’u)z] F, (¢ [(aw)2 (au>2]
=— — ) +\—3} |dy+— —} +{—) |d 145
2 J; ay> y? yT3 ay Jy y (149
Equations (131) and (145) allow the derivation of equations of motion for
the system of Figure 7 via Lagrange’s equations. Previous methods can be
used to solve these equations of motion and to assist in the design of a rotating

rotor—disk system. The determination of system frequencies and critical
speeds due to unbalance is left to the exercises.

4.8 Exercises
Exercise 1: Bar in longitudinal motion. The bar is fixed at one end and has a

spring of stiffness k at the other end; see Figure 9. Calculate the first two
frequencies and their corresponding modes for k = ES/L.

¢ o ES
E,SuL T

LLLLL2LL2L

Figure 9

Since the bar is fixed at the origin, equation (26) implies

¢ (x)=sinw \/’gx

de (x)
dx

and as

P(L)=ES

——kd(L)= - = 6(0L)
L

X

o \/__e - _BS_ \/E
ESw\/;cosa; EL Lsmm EL
X=w\/'%—L

tan X =—-X
The first two lowest values of X which satisfy this transcendental equation

it follbws that

then the above becomes
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o, 22029 \/E o, 22913
1 L pa 2 L

ST

and the modes are

&,(x)=sin 2.0291JE . y(x)=5in 4.913 %

Exercise 2: Consider a bar which is fixed at one end and free at the other. At
the free end it has a concentrated mass M. Find the equation for the
frequencies.

Proceeding as in exercise 1, one finds
_Es \/3
tan @ \/; L= o VE

Exercise 3: Consider the bar shown in Figure 10 which is fixed at one end
and free at the other and undergoes longitudinal motion. Find the relation
which allows the calculation of the frequencies for this system.

E1s01.51sL1 E2502,52,L2
e ——w-ar——wn s
(1) (2)

Figure 10

X

PV ONINNI

To simplify the equation the origin for bar (1) is taken at x=0 and the
origin for bar (2) is at x = L,. The motion of each bar is defined by equation
@7:

u1(x, t) = (A1 sin @yt +B1 COs (D(l)t)(Cl sin Wqyy '\,‘.2—1' X +D1 COS wyy)y ‘\’% X)
1 1

uz(x, t) = (Az sin wixt+ B2 COs (D(z)t) (Cz sin @)\ ”g'& X +D2 COS w(y) ‘V% X)
2 2

Since bar (1) is fixed at x=0, u;(0,t)=0 and D,=0. Continuity of
displacement at the junction of the two bars is assumed for all ¢ and hence
requires

A;=A,=A; B;=B;=B; W =W =w

Dz‘-cl sin @ V L1
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Equality of the forces at the junction gives
p .
CI[EISI(D \/E COS(D\’EI 1]=C2[E2520)“’£'2;]
The force must vanish at the free end, which implies

Czcosm\/%‘iLz—-Dzsinw\/-gi-Lz=0

Putting these three equations in matrix form gives

sin ‘YlLl 0 -1 1 0
E,Siyicos v,L, —E;S;v, 0 ] C:|=|0
0 CcOos ‘Ysz ~-sin 'Ysz 2. 0

'Y =@ —p—1 . -Y = () Bg-
1 V E1 ’ 2 V Ez
The frequencies are then determined by setting the determinant of the

coefficients equal to zero. This gives
E;S;v,sin v1L, sin y,L; — E; 817, €0s v, L, cos y,L, =0

with

Exercise 4: Find the exact transfer matrix for the longitudinal motion of a
uniform bar; see Figure 11.

Ug U,
e [ommnnipe.
b I | | I e
P O Esp0,S;sL L PL
Figure 11

Referring to (26) and (3) and using u(x, t) = U(x) f(t) gives

U(x)=Csinw\/;£_x+Dcosw\/-—g—x

P(x)= Est(x)

—‘w\/—ES(Ccosw\/—x ~D sinw

=0, U(x)=U, and P(x)=P,
=L, UL)=U, and PL)=P

mﬁl

g

Since at
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Exercise 6: Find the orthogonality relationships for the system of exercise 2.

The solutions are:

Lﬁmmmm o

! 556,209, (D) + M, (1), (1) =0

Exercise 7: Plot the two functions cos X and ~1/cosh X and determine their
points of intersection. Relate these to the three lowest frequencies of a clamped
free beam.

Let X,, X, X; be the three lowest points of intersection as shown in the
Figure 13. Notice that the values of X, Xj, ..., rapidly approach the zeros

1 T T T T T T T T
=\ Cos X -
0.5 [ ]
0 » ]
. X ' -
- X o
-0.5 | ]
_ /1 N
- 0s.
s | [ | | 1 1 1 1
0 b4 27 3n 4n X
Figure 13

of the function cos X so that

and
X2=2221, X%2=61.69

Therefore only X; has to be calculated from the transcendental equation
for frequency.
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then
Uy,=D and Py=w \/—%- ESC
Let
—
E
then
U(X) = Po +cos ’YXUO
and

cosyL —ESysinyL

P ] . g]
=|sinyL
[ U, _ES—Y_ cosyL Us

Exercise 5: Consider the same system as in exercise 1. With the aid of the

resultant of exercise 4, rederive the frequency equution for the system; see
Figure 12.

E,p,S,L

LLLLLLLS

Figure 12

0ljcosyL —ESysin+yL

1
5] ' 2]
={1 sin yL
U, X 1 ESy cos yL U,

U= (°°5k7L+sgs”L) P,+ (cos +L —E—:—Y sin -yL) U,

The frequency equation is obtained from the boundary conditions U;=0
and U; =0 which result in

cos 'yL sin -yL
Tk ES’y

Since k = ES/L and setting X =yL = oVp/E L, one obtains
tan X=-X

=0
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Exercise 8: Show that the transcendental frequency formulas for C-C, F-F,
C-S, F-S beams given in Table 2 of section 4.2.2 can be simplified as in
exercise 7.

Neglecting the case of zero frequency, which is mentioned in the text, one
can show that seeking graphical solutions to the transcendental equations

1
X =
cos cosh X

and
tan X =tanh X

yields the results that:

(1) for C-C and F-F beams the values X{ can be found from cos X =0
and these values are

S

x’;’=(32“) =2221, X%—(z) =61.69,.

(2) for C-S and F-S beams, the values X7 can be found from tan X =1
with X > #r/4 and these values are

2 2
x%: (Z‘n—--{- 17) = 15_42, ﬁ= (127‘{’211') =49.96, ..

Exercise 9: Consider a beam which is simply supported at each end. Find the
expression for the modes and determine the corresponding kinetic and strain
energies, modal masses and stiffnesses.

The solution is

¢, (x) =sin ?

Using (76) and (77),

pSL "
T =— p."“(t); =
and from (70) and (71),
pSL _n*x*El
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Exercise 10: Find the exact transfer matrix for a beam in bending using the
same procedure as in exercise 4.

The solution is

[ch BL +cos BL B(sh BL —sin L)
2 2
Q. shBL+sinBL  ch BL +cos BL
M | _ 28 2
Yr | | chBL—cos BL  sh BL +sin BL
Vi 2EIB? 2EIB
sh BL —sin BL ch BL —cos BL
2EIB® 2EIB?
EIB*(ch BL —cos BL) EIB3(sh BL +sin BL)
2 2
EIB(sh BL—sin BL) EIB?*(ch BL —cos BL) |rQy
2 2 M,
ch BL +-cos BL B(sh BL —sin BL) Yo
2 2 Vo
sh BL +sin BL ch BL +cos BL
2B 2 N

where ch = cosh, sh =sinh.

Exercise 11: Using the exact transfer matrix for a beam, rederive the relation
for the frequencies of a clamped—free beam.

The boundary conditions require

- cosh BL2+ cos BL Qo+ B sinh BL2— sin BL

sinh BL +sin BL cosh BL +cos BL
BT R 2

QL Mo=0

M0=0

M,

Hence

(cosh BL +cos BL)(cosh BL +cos BL)
—(sinh BL +sin BL)(sinh BL —sin BL)=0

The expansion of this expression gives
1-+cos BL cosh BL =0

Exercise 12: Consider the bar in longitudinal motion, see Figure 14, subjected
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to a step force which is constant at F for t <0 and equal to zero for t >0. Find

u(x, 1) and P(x, t).

E,p,S,L

AR R AR Y

VIVIDIIII

Figure 14

Since the bar is fixed at both ends,

u(x, t)= Z (A, cos w,t+ B, sin w,!) sin-n—zz
n=12,...

_fz\/E
*@=TV;

The initial velocity distribution is given by

with

au(x, 1)
at t=0
Since
. nmx
u(x, t) - Z (~w,A, sin ot + o, B, cos o,t) smL
at n=12.... L
then at t=0
nTwx
@B, sin—=0_
n-?&--- L

Due to the orthogonality of the modes,

L 7
j w.B, sin? T ax = Bn_

o L 2
hence B, =0.
The value of A, is found from

u(x, t) = Z A,lcosw,‘tsinn—zz
n=12,...
which at t=0 becomes
uEwO=_ ¥ Ansin

n=12,,...
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At the initial instant t=0:

Fx L
u(x, 0)—§—E-—S- for O<x<-2—
u(x, 0)=F(L—x) for £'<x<L

2ES 2

which, taking account of orthogonality, implies

L2 L L
F [J; X sin = dx + (L—x)sin"%"dx]=Aanin2££"3‘dx

2ES L L2
_AdL
2
Since
L L2
j (L—x) sinﬂ—xdx = L x sin (m__n_vr_x> dx
L L L
then

F (w2 . nwx
A"—E-S-ZJ; x(1—cos nm) sin T dx

Completing the calculations gives

A= (D withn=13,...
= 2FL _p\-z L in 27X
u(x, t)= —ES "_éﬂu -1 2 O wnt sin—
and
ou(x, )

P(x, t)= ES———
ox

_2F Y (=1)m-vrz 1 008 W, t COS ==
n L

n=123,...
The series representing u(x, t) converges like 1/n? and that for P(x, t) like

1/n. It is necessary to use more terms in calculating P than in calculating u.
This observation has general applicability.

Exercise 13: Beam on elastic foundation. A beam rests on an elastic founda-
tion whose stiffness per unit length is given by k = K/L. Find the equation of
motion, the general expression for the frequencies, and the specific expression
for the frequencies of an S-S beam; see Figure 15.
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E,rS,1,L

L J

NEz3550)

Figure 15

The first equation of (17) becomes

v 3Q
— T e ——+ ——
at? ax Qe —kv

the others are unchanged. By elimination among these equations,

o v
+ —-—+ k =
ax2 ( ) pS 0= Qu=0
For free vibration and a constant cross-section, this becomes
a‘ v
+pS—5 37 +kv=0

Solutions are sought in the form

o(x, )= ¢(x) - f(1)

which gives

d’f(t)

TR +&*f(t)=0
and

dﬁﬁxhk “"’sda() 0
Setting
. 4 _k
B =V

one gets the same general solution as in the beam; namely:
@ (x) = Csinp*x+D cos 8*x+E sinh B*x+F cosh B*x
Using the boundary conditions, one obtains, as in section 4.2,
B.L=X,

from which




128

For the S-S case, ¢, reduces to
¢ (x)=C, sin B%x
and

BX*L=nr

w..=}_1—2 \/_%‘I \/(mr)‘+KELI-

Exercise 14: Consider the same system as in exercise 1. Use the Rayleigh—
Ritz method to calculate the first two frequencies and their corresponding
modes. Use a displacement function containing the terms (x/L), (x/L)?,
(x/L)?, (x/L)*, and program no. 5 of Chapter 7.

so that

The fixed-free bar has been previously analyzed with the same displace-
ment functions; see (84). The spring gives the following supplementary
stiffness matrix:

1111
ESf1 1 1 1
Lj1 111
1111
Use of the computer program on the modified equation of motion gives
° _2.029 /E

2 3 4
¢1(x)=%+0.06346 (%) -0.8993 (i’f) +0.2805 ({-)
o= 1932 \/g
2 L P
2 3 4
¢z(x)=%-—0.9260 ({-) -2.231 ({-) +1.978 (i_’i)

Exercise 15: Consider the same system as in exercise 1. Use the Rayleigh—
Ritz method to calculate the first two frequencies and their corresponding
modes. Use a displacement function containing the terms sin (7x/2L) and
sin (3mx/2L).

The displacement is

3me

u(x, ) =sin == p, +si
X, 2LP1 stL P2
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The kinetic energy is

L 2
T=-1-L pS(sinﬂp1°+sin 3mp2°) dx

2 2L 2L
L ., pSL |
=E§‘P12+ 2 P2

The strain energy is

U= Upeam+ Uspring

1(* (217 X 37 3mx )2 ES 2
= - — COS — Dy +—— D — —— (p,—
U=321), BS\greosgp prigpoosp p2) dx+57 (i=p)
_ES (1'1,1) 2 ES (21*3+.1_> 2_ES
L \i6 2/P*T L \16 "2/P27 L PPz
The application of Lagrange’s equations gives
1 w2
= 0 —_—+1 -1
2 ploo ES}| 8 P1 _
pSL w |+ 2 =(
' 24 8
from which the frequencies and modes are
_2.066 |E . T . 3nx
W= L P &y(x) =sin 2L+0.1003 Sln?L-'
_4.940 \/E e TX . 3mx
@==7 o &o(x) =sin 5L 9.970 sin oL

Exercise 16: Consider a fixed—free bar in_longitudinal motion which has a
concentrated tip mass of m = pSL/10; see Figure 16. Use the Rayleigh-Ritz
method and the same displacement function as in exercise 15 to calculate the

frequencies and modes.
E,e,S,L
H

LLLLLL L

The strain energy is
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and the kinetic energy is
T= Tb,am + Trnass
== (p;"2 +p;%) +--— L (514 D2~ 2p,py")
Applying Lagrange’s equations gives
o IRl N RN

from which

1.4
w1=*'ﬂ\/-f—: with the mode [ ! ]

L —0.0208
Hence
. WX . 3mx
@1(x) =sin 5L 0.0208 sin 3L
and also
_4.370 \/E . [ 1 ]
Wy = 3 > with the mode 5.354
Hence

3ux
......-__+ ————
&5(x) =sin > 5.354 sin >

Exercise 17: Use Rayleigh’s method to calculate the frequency for the beam
shown in Figure 17. Use the displacement function 3(x/L)*—(x/L)3.

J E,0,S,1
N
N
S L/2 L/2 j
N m
k
Figure 17

As suggested,

0= B -
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The kinetic and strain energy of the beam have been calculated in section
4.3. Then
T = 0.4714pSLp* +2mp®*
EI
U=-6-i—3- p2+0.1953kp?
Then the equation of motion is

(4m +0.9428pSL)p*° + (1iEI+ 0.3906k> p=0

and

o = « [IZETL*+0.3906k
4m +0.9428pSL

Exercise 18: Effect of axial force. A clamped—free beam is subjected to a
constant axial force Fo. Use Rayleigh’s method to calculate the frequency with
the same displacement function as in exercise 17.

E,0,S,I,L

2Ll LS
1

Figure 18

From (79) and (80),
T =0.4714pSLp**
6EI
v-pr

It is necessary to add the influence of axial force to the strain energy U.
From (141), the supplementary strain energy is

F, j ’-(au)2 F, J‘ L (ix 3x2)2
U = — — D e e s st 2
=2 ) &) =2 ), BT ) e
_24F, ,

The system equation then becomes

“t
L? L

0.9428pSLp™+ (leI 4.8F °) p=0
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and the frequency is

_ [I2EIIL*+4.8F,/L
- 0.9428pSL

The numerator of o vanishes for Fo=—2.5EI/L2 This gives a good
approximate value of the first Euler buckling load, since the exact value is

w® EI EI

The vibration mode becomes the buckling mode.

Exercise 19: A beam simply supported at each end has a spring of stiffness
k =40EI/L? at its quarter-point; see Figure 19. Use Rayleigh’s method to
calculate the lowest frequency.

L/4 3L/4
K = 40E]
L3

Figure 19

Since the beam is S-S, an appropriate displacement function is sin (mx/L).
From the results of exercise 9:
pSL

T = 02
«*El ,
Ubeam—j[zgp

The strain energy for the spring is

20EI(/ . =\
Uneoa= 75 (507 7= 35 p

The strain energy of the system is then
EI <7r4

hence the frequency is

_ 1 - /EI_11.72 EI
w—L2V40+7r pS— 12 S
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The exact solution obtained from the transfer matrix program no. 10 is

11.62/L*VEI/pS.

Exercise 20: Consider the same system as in exercise 19. Use the Rayleigh—
Ritz method to calculate the first frequency and its corresponding mode. Use
the displacement function v(x, t)=sin (wx/L)p; +sin (27rx/L)p,.

For the beam: see exercise 9, from which

pSL

Toeam = 4 Pl°2+"‘“ | 2)

4

7w EI
Upeam = WE (p+16p3)

For the spring:

20EI [~/§ ]2
Pi D2

g~ 73|
20EI (p?
=~ (%1“* P§+\/-2—P1P2>

Application of Lagrange’ equations gives

4
g§1_:P 0][P1w]+§1 -’é-+20 202 p1]=0
2 Lo 1llp=l"T2
P2 20V 8a*+40

from which

_11.63 /_E_I . [ 1 ]
0==73 s with the mode —0.0376

sin mx . 2mx
T ~0.0376sin I

Hence

$(x)=

Note that this result for frequency is more accurate than that of exercise
19.

Exercise 21: Consider the clamped—free beam shown in Figure 20. Use the
Rayleigh—Ritz method to calculate the first two frequencies and modes. Use
the displacement function: v(x, t) = (x/L)*p, + (x/L)*p,.
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E’OQSQI!L

LLLLLL S
LJ

Figure 20
The kinetic and strain energies are respectively
1 L x\2 x 3 2
=3[ ool pes ) o] s

pSL ., _ pSL ,
— e
10 P1 6 D1'P2 14 D2

) 6x \?
U=="2‘ Er ——2p1+Fp2> dx

2EI , 6EI 6EI
=FP1+1—3'P1P2+’F‘I?2

Application of Lagrange’s equations gives

11
56 [p,m] EI[4 6][p1]
+—_— ==
U1 1" Tle 12l
6 7
from which
_3.533 [EI . 1 ]
©1="73 5 with the mode [—0.3837
and
34.81 |EI . —0.8221
| ©2="737 E with the mode [ 1 ]
Hence

$1(x) = (%)2—0.3837 (;_"-)3
$o(x) =—0.8221 (%)2+ (%)3

Exercise 22: Consider a beam which is simply supported at its two ends and
which has a concentrated mass of m = pSL/5 at its quarter-point; see Figure
21. Use the Rayleigh—Ritz method to calculate its first two frequencies and
their corresponding modes. Use a displacement function containing the terms
sin (mx/L), sin (2@x/L), sin (3mx/L).
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E’OQSQI

m 1

Ay A
m

oSL
kS

Figure 21

The results of exercise 9 give

7*EI
Ubeam= el (p3+16p3+81p3)

p [+ Q.
Toeam ="Z‘ (P 2+ p°2+ps %)
To the kinetic energy of the beam must be added the kinetic energy of the
concentrated mass:
pSL (V2 L V2 )2
Trnass = ETY ""‘P1 +p2 +"§‘P3

Using these energy expressions in Lagrange’s equations gives

0.6 0.1414 0.1 p1 +EI 0 Ofrp:
pSL} 0.1414 0.7 0.1414][;;2 TE [0 16 0][p£|=0
0 0 8liLp

0.1 0.1414 0.6 D3
from which
8.991 |EI !
© = ——L-z— 5 with the mode 0.0159
0.0021
and
34.13 |EI 1
w2=—i7- ;9- with the mode —3.835
—0.1587
Hence

. X . 2mx .
3 .._...+ . —+ .
&,(x)=sin T 0.0159 sin T 0.0021 sin 2

. mX . 27mx .
&,(x) =sin 2 3.835sin 2 0.1587 sin 3
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Exercise 23: The system shown in Figure 22 consists of a clamped—free beam
with a spring~mass system suspended from its free end. Use the Rayleigh~
Ritz method to calculate the first three frequencies and modes of this system.
For the beam use the displacement function: v(x, t) = (x/L)?p, +(x/L)*p, and
let p; be the displacement of the mass. Also, k= EI/L® and m = pSL/7.

N
§ E,D,S,I,L
\
N\ u |
N
N ¢ = EI
L3 Ips
_ oSk
m="7
Figure 22

The kinetic energy of the mass m and the strain energy of the spring k
must be added to the energies expressions found in exercise 21. These
additions are

Uspring =2k (D1 + p2— p3)?
EI
=573 (p3+p3+ p3+2p1p2—2p,ps—2pyps)

L o2
14 Ps

— 2 .
Tmass - %mp3° -

Application of Lagrange’s equations gives

(11 ]
56 " 5 7 -1
D1 - D1
1 E
pSL - l 0 p2°° +_—£ 7 13 -1 23 =0
6 7 ] L
. D3 -1 -1 1lip
_0 0 :,'-
from which
2.143 |[EI 0.53087
w, =—P—' ;S— ; b= '-0.1871
4.346 |EI 1
w2=—;ﬁ— -—§; &b, =| —0.4077
p | —0.3486]
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-0.821
34.92 |[EI 0.8215
©s="73 V5’ bs= 1

-0.0010
The exact frequencies calculated from program no. 10 are
_2.143 [EI _4.320 [EI © _22.13 |EI
W= L"T oS 5 > —L2 oS’ 3 “"“‘Lz oS

Exercise 24: A clamped—free bar is subjected to a longitudinal sinusoidal
exciting force F sin Qt at its free end as shown in Figure 23. Find the analytic
solution for steady-state motion.

Esp,S,L F Sin ot
] ——

LLLLLLLS

Figure 23

The solution to the equation of motion is

&=

u(x,t)=(A sin Qt+B coth)(CsinQ\/gJMD cos Q) —p-x>

since u(0,t)=0, D=0 and
u(x, t) = (A*sin Qt+ B* cos Q) sin Q \/—;-x
E
At x=L,
= F sin (Ot

P(L 1= Es%‘
thus x=L

ESQ\/—g—cosﬂ\/—:%L(A* sin Qt+ B* cos Qt) = F sin Ot

which requires
F

B*=0, and A¥= > >
ESQ\/-—EicosQ\/—E_—L

u(x, )= > F = sinQ\/%xsinﬂt
ESQ\/-‘E:COSQ\/:'-E"L

Exercise 25: A beam simply supported at each end is subjected to a force
F sin Qt at its midpoint, as in Figure 24. Using the results of exercise 9, find

Finally,
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TF Sin gt

ARt A

Figure 24

the steady-state motion. Plot

.V(L/Z) 15 asafunctionof  f*=— f/E‘I

S\ =

From exercise 9: o
and

U= ,‘; 42?2 pa= 4L3 oo

The generalized forces are deduced from the virtual work of the external
force Fsin Ot

SW=FsinQt ) sin L 8p,=FsinQt Y (-1)"D2gp

n=1 2 1,3,5,...
Application of Lagrange’s equations gives a set of uncoupled equations of
motion:
pSL «“EIn*
AT — +.———.—.
2 P TToL3
forn=1,3,5,....
The equations of motion for n even do not contribute to the steady-state
solutions since the generalized forces are zero. The steady-state solution is
__2L° (=1)""VPFsinQt
P =Bl 1- Qe )

Pn = (=1)""Y2F sin Ot

Hence

vx )= Y $.(Xp= 2 sin = pn = V(x) sin Ot
n=13,... n=1,3,... L
The quantities M and Q=08M/dx correspond to the second and third
derivatives of the variable v(x,t) with respect to space, x. It is then
necessary to sum more modes to achieve accurate values of M and Q than it
is for the lateral deflection v. The results are plotted in Figure 25.
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Figure 25

Exercise 26: For the case of a rectangular plate of sides a, b which is simply
supported on all four edges, calculate w,; using the displacement function given
in equation (112). Plot the nodal lines of the first six modes for the case
b=2a/3.

Using the expressions (113), (114) in Lagrange’s equations gives

. 71-2 ._1_).. (ﬁ+_sj)
Ors Vph \a? ' b2
w2h E ( ) 9s2)
T —— tte—— +-——
T ZN121-p ' T 4

= *
_Awrs

7*h [ E % _ 2,98
= em——— B — +__....
A= N9, 4 en=r+7g

The nodal lines are plotted in Figure 26.

For b=2a/3:

where

Exercise 27: Consider the case of a circular plate of radius R and constant’
thickness h which is clamped at its center and free at its circumference. Use
Rayleigh’s method and the displacement function:

w(r, 6, 1) = p,[3(r/R)>~ (r/R)*] cos né

to calculate the frequencies f,.
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“’Tl = 3‘25 m‘:l = 6.25 wtz = 10
1
]
N I
I
I
|
vy = 11.25 wgp = 13 wep = 18
I I 1 | [
i | I | |
| ! I B e T
| | I | |
| | I i 1
i | | | [
Figure26

Substituting w(r, 6,¢) in the expressions for strain energies (104) and
kinetic energy (105) and completing all the calculations gives, for n# 0:

T, = 1.206thp:2
U, =0.326 Iz% [11n%— n2(26 + 32v) + (45 + 362)]p?

The frequencies are then

f= 0.026 h
" V1-R?
The formula for frequency is valid for n=0 but in this case the

kinetic and strain energies have their coefficients multiplied by a factor of
two.

\/-}-5—— V11n*—n?(26+32v) +(45+36v)
P

Exercise 28: The system shown in Figure 27 represents a rotor simply
supported at its ends on rigid bearings. The disk is rigid with properties
In. =0.1225kg-m* (13 slugin®), Ip,=0.2450kg-m® (26slug-in®, Mp=
7.85kg (0.538slug). The shaft has a length L=0.4m, (15.75in) and
area moment of inertia of its cross-section is: I =I,=0.49x10"°m?*
(1.177x107%in*). Young’s modulus is E =2x 10" N/m? (29 10° psi). The
mass of the shaft is neglected. Taking the exact modes of a simply supported
beam as displacement functions use the Rayleigh—Ritz method to calculate the
first two frequencies of the rotor as a function of the angular velocity of rotation
Q, =2wN where N is the shaft speed in rev/sec. ‘
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Figure 27 ]

The displacement functions are

.Y
u(y, t)=sin TP

y

w(y, t)=sin 7 P2

where

Using equations (131) the kinetic energy of the disk in SI units is
Tp = 3.888(p,°* + p,*) — 3.778Q,p,°p, +0.1225Q2
Using equation (145), the strain energy of the shaft in SI units is
U, =3.729x 10%(p? +p3)
Applying Lagrange’s equations gives
7.777p,°—3.778Q,p,° +7.458 X 10*p, = 0
7.777p°+3.778Q,p,° +7.458 X 10*p, =0

Solutions are sought in the form p, = P;e™ and p, = P,e™ which gives the
characteristic equation

r*+(1.918x 10*+ 0.236002,)r2+ 9.197x10"=0

Using r = +jw in this gives o = w((),) and the frequency f(Q,) = 0(Q,)/27
(see Figure 28) for curves A and B which are the desired solution. Points (1)
and (2) correspond to the equality between the speed of rotation of the rotor
and its frequency. They are 12.8 Hz and 21.7 Hz. The results shown in the
figure are the same in SI and English units.

Exercise 29: Critical speed due to unbalance. The data are the same as in
exercise 28. The unblance mass is m « Mp. This mass situated on z (Figure
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Figure28

8), is located on the disk at a radial distance d from its geometric center.
Calculate the kinetic energy of this mass, find the equation of motion of the
rotor system and its steady-state response.

In the fixed coordinate system, the coordinates of the unbalanced mass
are

w

3 p1+d sin Q,t = 0.8660p, +d sin Q,t

sin
sin g pa+d cos Q,t = 0.8660p,+d cos O,
The kinetic energy of the unbalance mass is

T, = % (0.75p;°%+0.75p,*2+1.732dQ, cos Q,tp;°

—1.732dQ, sin Q,1p,°+ d%Q?)

Hence

d (aT,,.) oT,, OV 2
. e v 222 (), 0 — . dﬂr Qrt
at \op,e) " op, 0.75 mp,°*°—0.8660 sin

d (aTm) aT,, _ o 2
dt \ap,° ap2—0.75mp2 0.8660dQ; cos £,t
which are to be added to the equations of the motion found in exercise 28.
However, since m<« My, the terms of 0.75mp,™ and 0.75mp,® can be
neglected. The equations of motion for the rotor system with a mass
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unbalance of m are then, in SI units:
7.777p,>° —3.778Q,p.° +7.458 x 10*p, = 0.8660md 0? sin O,
7.777p"° +3.778Q,p,°+ 7.458 X 10*p, = 0.8660mdQ? cos Q,t
If @ =0.1114mdQ?, these can be written
p:°—0.4858Q,p.°+9.590 X 10°p, = a sin Q¢
p>>°+0.4858Q,p,°+9.590 X 10%p, = a cos O,
For steady-state response,
p1=P;sin Q¢
p>=P,cos Ot
which after some algebra yields
a

—0.514207+9.590x 10°

The critical speed is the value of (2, for which the steady-state response
grows without bound. This corresponds to the value of ), which makes the
denominator of the above expression vanish, i.e. Q, =136.6rad/sec or
N= 136.6/217 =21.7rev/sec=21.7Hz. Note that the frequency 12.8 Hz
found in exercise 28 is not a critical speed.

P1=P2=

Exercise 30: Consider the system of exercise 28 with a constant axial force F,
applied to the shaft. Using the same method as in exercise 28, find the
equations of motion of the system and plot the dependence of the first two
frequencies on N for the values Fo= 10* newtons (2248 Ibf).

One has

hence from equation (145) the additional strain energy due to the axial force
is

U

_ Foﬂ'z
4L

(03+p3)
=2.4167 % (p?+p?

The equations of motion of the system are then modified to:
7.777p;*° —3.778p.°Q, + (12.34F,+7.458 X 10*)p, =0
7.777p,>+3.778p,°Q, + (12.34F,+ 7.458 X 109)p, =0

in SI units. The frequencies are found as in exercise 28 and are plotted in
Figure 29.
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Figure 29
Exercise 31: Consider a clamped—free beam whose deflection is given by
equation (78). Use program no. 12 of Chapter 7 to calculate the kinetic and
strain energies for the cases of 2, 3, and 4 Gauss points.

The results of the computation are:

n 2 3 4
L*U
mEIpz 6 6

;S—i—p-gi 0.4769 04713 0.4714

In using n Gauss points, one gets an exact value of the integral of a
polynomial of degree 2n—1. U and T correspond, respectively, to the
integration of a polynomial of degree 2 and degree 6. Therefore, it is
sufficient to take n =2 to calculate U, and n =4 to calculate T.

Exercise 32: Consider a clamped—free beam having the displacement function
v(x, 1) = (1 —cos wx/2L)p. Calculate the kinetic energy, the strain energy, and
the frequency o using program no. 12 with 4 Gauss points.

The solution is
T=0.1134pSLp°*
U=1.522 % p?

_3.664 [EI
) Iz S
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Exercise 33: Discretization. Consider the same system as in exercise 1. The
bar is modeled by 5 elements of length L/S. Each element is modeled by a
mass (pSL/10)-spring (SES/L)-mass (pSL/10) system. Write the overall
system mass and stiffness matrices. Using program no. 5 calculate the first two

frequencies and modes.
1

pSL
== 1
5

zero 2 -1 Zero
-1 2 -1
k=357 1 2 o
-1 2 -1
1 Zero -1 ¢

é: =[1, 1.836,2.371,2.518, 2.252F

&2=[1, 1.098, 0.2062, —0.8718, —1.164]
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Calculation Using Finite Elements

In most cases, the complex geometries and nonclassical boundary conditions
of real structures require that numerical methods must be used to determine
their static or dynamic behavior. For such cases, the finite element method is
widely used and some of its aspects are presented in this chapter.

The contents of the chapter are as follows:

5.1 Derivation of equations

5.2 Frequencies and modes; response to an excitation
5.3 Structural modifications

5.4 The method of substructures

5.5 Exercises

5.1 Derivation of Equations

The finite element method can be presented simply iri terms of the following
steps:

(a) the structure is divided into elements of finite size, called finite
elements, which are connected at certain points, called nodal points
or nodes, situated on the boundary of the element;

(b) after making a reasonable hypothesis for the displacement field of
element i, the kinetic energy T;, the strain energy U,, and the dissipa-
tion function R; are calculated for that element as a function of the
nodal point displacements

(c) if the structure is composed of N elements, then:

N
T=Y T,
i=1
N

U

[
S

(1)

-
Ll
-

R R;

..
i
-

i
Mz

The generalized forces are determined by writing the virtual work of the
external forces.
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The application of Lagrange’s equations then allows the differential
equations of motion of the whole structure to be obtained. In order to
simplify the presentation of the method in what follows, it will be assumed
that there is no dissipation of energy, i.e. R, =0 for all i.

5.1.1 Discretization: the division of the structure into finite elements

First, the type and distribution of finite elements must be chosen. This
choice must take into account the geometry and the behavior of the
structure. An effective and efficient discretization of a structure requires a
great deal of experience. In particular, the analyst must take into account
geometric discontinuities, material discontinuities, boundary conditions, and
the forces applied to the structure.

For the accurate calculations of frequencies and modes or the calculation
of dynamic response, the distribution of the finite elements, the so-called
mesh, can be relatively coarse and regular. The mesh must be finer to
calculate the stresses accurately and must be transformed into an even finer
mesh in regions of stress concentation.

5.1.2 Strain energy - The stiffness matrix

In order to simplify the notation, the index i which designates quantities
associated with the ith element is omitted in the following derivation.
The general expression for strain energy of an element is

U=%I eodr 2)

The displacement vector d of an arbitrary point of the element is related to
the nodal displacement vector 8 of the element by means of a matrix N. The
matrix N is generated from the hypothesis about the displacement field
inside the element. The relation between d and 8 is

d=Nb 3)

By differentiating (3), the relation between strains within the element and
the nodal displacements is obtained:

£=B8 C)]

In the case where there are no initial stresses, the stresses and strains are
related by

o=Ds )]

where D is a square symmetric matrix whose elements depend on the
mechanical characteristics of the material, usually Young’s modulus E and
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Poisson’s ratio ». Using (5) and (4), equation (2) becomes

U=% I (B8)'DBS dr ©)
= %a‘“ B'DB d‘T]5 @)
which can be written ’
U=18%s (8
with
k= J B'DB dr 9)

being the stiffness matrix of the element. Matrix k is symmetric because if D
is symmetric, the matrix product B'DB is also symmetric.

The determination of the strain energy U and stiffness matrix k will be
illustrated for the cases of a bar in longitudinal motion and a beam in
bending.

Bar in longitudinal motion

An element of the bar is shown in Figure 1. It has two nodes with one
degree of freedom at each node; namely u, the longitudinal displacement.

u; uz
L L
EaD’S’L

12

1

L
i i

!

[ ——
x b

Figure 1 A bar in longitudinal

motion
The nodal displacement vector is
5= [“‘] (10)
Uz

Since there are two nodal displacements, the displacement hypothesis is
chosen to have two constants:

u(x)=a;+a,x (11)

The constants a, and a, are obtained from the values of u(x) at the two
nodes; that is,

atx =0, U, =a,
(12)
atx=1L, u=a,+a,L
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Equations (12) allow a, and a, to be determined in terms of u, and u, and
substituted into (11) to give

wo-[1-5.2]2]

This relation corresponds to (3). The polynomials in the N matrix, in this
case 1—x/L and x/L, are called the shape functions.

Since
o=0,=Ees, =E¢ 14
with
ou
g= 5‘; (15)

the matrix D reduces to the scalar E. Using (13), (15) becomes

TEen
8_[ L’Lllu, (16)
which corresponds to (4) and identifies B as
1 1]
=] —= — 17
B [ L'L an
Substituting (17) into (7) gives
| 11
1 ul]t J‘L L? Lz [ul]
== d 8
v 2 [uz o ES 1 1 % U, (1 )
12 L7
=52 lall Tl
"2 L Lupdl-1 dlu, (19)
and the stiffness matrix of the element is then
ES [ 1 —1]
== 20
k Li{-1 1 (20)

This matrix is singular, i.e. its determinant is zero. This is due to the fact that
the displacement function (11) allows rigid-body translation.

Beam in bending

An element of the beam is shown in Figure 2. It has two nodes with two
degrees of freedom at each node; namely v, the lateral displacement, and ¢,
the slope. In what follows, only the case of a Bernoulli-Euler beam is
considered. This means that the secondary effects of transverse shear and
rotatory inertia are neglected.
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YA

1 | 2 X

/T)u’l Esp,S,I,L V2T)¢2
4

Figure 2 A beam in bending

The nodal displacement vector is

& =[vy, ¥, g, Y] (21)
with
O @2
X

Since there are four nodal displacements, the displacement hypothesis is
chosen to have four constants:

U= a;+axx +asx>+ax® (23)
Then from (22), the slope is
¥ =a,+2asx +3a,x? (24

The constants a,, a,, as, a, are obtained from the values of v and ¢ at the
two nodes; that is,

at x=0:
U1=aQy (25)
Y1 =a;
atx=L:
Uy=ay+ azL + a3L2 + a4L3 (26)

Yr=a,+ 2a3L + 3a4L2

The constants a;, a,, as, a, can be determined from (25) and (26) in terms
of vy, ¥n, vy, Y. Substituting these constants into (23) gives

7y
3x2 2x® 2x% x® 3x2 2x? x? x3] W,
= — s e e i e e ettt . s [
o(x) [1 =t Tt T L || @
23

This equation corresponds to (3). For this case, the matrix D also reduces to
a scalar equal to E. The bending stress and strain are related by (14), where
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now
v
=g = ey 2
E=&="y 3 (28)
Using (27), € becomes
L1
6 12x 4 6x 6 12x 2 6x] 1/
=yl b, 2 Z 2 S, 29
e y[ =t e L e @
L2

This equation corresponds to (4) and identifies B. Using this expression for
B in (7) and completing all the calculations gives

v, f] 12 6L -~12 6L} v,
1EI| ¢|| 6L 4L> —-6L 2L*||y, (30)
2L | p,||-12 —6L 12 -6L|| v,
|l 6L 2L%? -6L 4L*}|y»
and the stiffness matrix of the element is then

12 6L -12 6L

. ~EI[6L 4L —6L 2LZ (31)
L*]-12 -6L 12 -6L
6L 2L> —6L 4L?

This matrix is singular and of rank two; this means that only two of the
vectors which compose k are linearly independent. This is because the
displacement function (23) allows two rigid-body motions, one in translation
and one in rotation.

5.1.3 Kinetic energy - The mass matrix

The general expression for kinetic energy of an element is
T=-;- ‘[ pVZdr 32)

where V =d°. Using (3), the velocity V becomes
V =N&° (33)
Substituting this into (32) gives

T=% { p(N°)N5° dr (34)
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which can be written in the form

T=136"m&° (35)
where

m= j pN'N dr (36)

is a symmetric mass matrix. The mass matrix defined by (36) is called the
consistent mass matrix because it is calculated using the same shape func-
tions as the stiffness matrix; in this sense, the calculations of k and m are
consistent.

Instead of a consistent mass matrix, a lumped mass matrix m, is often
used. This matrix is obtained by assuming that the mass of the element is
concentrated, or lumped, at the nodes of the element. The advantage of
lumping the mass is that the mass matrix becomes easy to construct and is
diagonal. A diagonal mass matrix is convenient because it conserves compu-
ter memory and simplifies the algorithms used to compute frequencies and
modes. For several elements, such as a bar in longitudinal motion, it is
observed that the lumped mass matrix m, is as efficient as the consistent
mass matrix m.

Bar in longitudinal motion

From (13):
X x
N=[1-F 7] @7
and combining this with (34) gives
i x\2 x x
o6 262 .
T=%ps[“lo] L L/ Lh L dx[ulo] (38)
whlse-g @ ]
L\ L L
=5% Ll 2Jle]
2 6 wlll 24w’ (39)
Hence the consistent mass matrix is
_ g_S_E[Z 1] A
"T6 L1 2l “0

The lumped mass matrix m, is obtained as follows:

T=10L (24 0,) @1)

22 ,
- Lallo 2]
—2 2 u2°2 01 u2° (42)
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Hence

-

Beam in bending

Using the shape functions given by (27) in expression (34) and completing
all the calculations, results in:

olt

v, 156 22L 54 —13L|{ vs°
1pSL | ¢°|]22L 4L> 13L  -3L%*||¢° (44)
2420 | p|| 54 13 156 -22L{|v>°
o2 | F13L -3L2 -22L 4L? ||¢°
and, by inspection, the consistent mass matrix is

156 220 54 —13L
_pSL| 22 4> 13L -3r? (45)
420 s4 13L 156 -22L

~13L -3L% -22L 4L?

The lumped mass matrix is obtained from

1 pSL
T='§£'SZ—'(‘U]_°2+U2°2) (46)
Hence
1 0 0°0
__£§_I_. 0000
™=51o 01 0 “7)
0 0 0O

In bending, the consistent mass matrix is more efficient than the lumped
mass matrix because the latter does not take into account the effect of beam
element rotation.

5.1.4 Assembly

To assemble element properties into structure properties it is necessary to
write that the kinetic energy and the strain energy of the structure are the
sum of the kinetic energy and strain energy of each of the elements. The
generalized forces are obtained from virtual work. Lagrange’s equations are
then used to give the classical form of the differential equations of motion
for the whole structure; that is,

M8*°+ Kb =F(t) 48)
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Figure 3 Clamped—free bar
modeled by three finite ele-
ments

where the structure mass matrix M is symmetric, positive definite, and the
structure stiffness matrix K is symmetric, positive semi-definite. The vectors
& and F(t) contain all the nodal displacements and generalized forces. In
general, the mass and stiffness matrices have a banded form.

The process of assembly is illustrated by considering a fixed—free bar of
length L undergoing longitudinal motion and which has been discretized
into three finite elements of the type shown in Figure 1. As shown in Figure
3, the bar has a force F(t) applied to node 3. Summing the elements strain
energies (19), and accounting for the boundary condition u, =0, gives

v Lol el Rl T
2 L u,11—-1 1 Us 2 L Us -1 1 Us

e | @
Applying Lagrange’s equations gives
gl% [2 -1 o]fw
%—Z =§1E§ -1 2 =1|lus;|=Ksé (50)
—g%;]- | 0 -1 1) us

It can be observed that the structure stiffness matrix K in (50) can be
obtained by a superposition of the three element stiffness matrices k given
by (20) provided L is replaced by L/3, and the rows and columns corre-
sponding to u, =0 are deleted.

Similarly, using the consistent mass matrix formulation of (39) gives

gy P FRY o

51)
o | O
218 Lwllll 210lu’



155

and application of Lagrange’s equations gives

[a4 /oT\]

il P | I L %

L (aT) _pSL N

o Gug) | "TE|L 4 1|w[re (52)
d (aT) -

_dt PR 01 2liug

where, again, M can be obtained by a superposition of the element mass
matrices m.
Using (42) and recalculating (51) for the lumped mass matrix formulation
gives
_oSL o pSL

e U G u3°2+—12— Uy (53)
from which the structure lumped mass matrix M; can be shown to be
2 00
M= -p%L-' [0 2 0] (54)
0 01
The force F(t) acting at hode 3 results in the external force vector
[0, F(1), OF (55)

In summary, this section has presented systematic ways of deriving and
assembling the stiffness and mass matrices of simple elements. The library of
finite elements available in many structural dynamics computer programs is
much more extensive than can be presented here. It is also worth pointing
out the connection between the Rayleigh-Ritz method which was used in
Chapters 3 and 4 and the finite element method used in this chapter. The
Rayleigh—Ritz method uses a single displacement hypothesis which spans the
entire structure; the finite element method uses many similar displacements
functions, each being defined over a different element. In a broad sense, the
finite element method is a piecewise version of the Rayleigh~Ritz method.

5.2 Frequencies and Modes; Response to an Excitation

The frequencies and modes are obtained from the homogeneous equation of
motion:
M&®+Ké=0 (56)
Let
= SOej“" (57)

then (56) becomes
02 M5, = K3, (58)

~
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This is the classical algebraic eigenvalue—eigenvector problem discussed in
Chapter 3.

For a finite element formulation of (56), the matrices M and K can have
several hundreds to several thousands degrees of freedom. Extracting the
frequencies and modes from such a large system requires computer methods
which are specifically adapted to minimize the amount of execution time and
the size of the required core memory. The details of such specific eigenvalue
algorithms are too specialized for this text. However, a discussion will be
given of two aspects which are particularly useful in the numerical calcula-
tion of large systems.

Rigid-body modes

In order to avoid problems due to zero values of frequency, it is useful to
associate with equation (58) the identity

aMs, = aMs, (59)
Combining (58) and (59) gives
(w*+a)Md, = (K + aM)8§, (60)
which can be written
»**M8, = K*8§, 61)

The frequencies found from (61) are not zero, since
wil=wit+a=a

w’%z =wlt+a 62)

The modes associated with @7 are the same as those associated with w; of
the initial system. The constant a is positive and must be choosen with
equation (62) in mind: that is, w?+a must not be =w? or =a.

Diagonal mass matrix

Let k; be the elements of K, and m; the elements of M where M is
diagonal (i.e. m; =0, i#j). The standard form of (58) is

©28,= AS, (63)

where A = M'K. The matrix A is not symmetric and this complicates the
determination of the eigenvalues and eigenvectors. In addition, A cannot be
represented by its semi-bandwidth and this increases the size of core
memory which must be used. These difficulties can be avoided by adopting

the change of variable
8F=vVmy §, (64)
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which allows (56) to be rewritten as
Is*° + K*6* =0 (65)
where I is the unit matrix and
k¥= ky (66)

i

Clearly, A*=I"'"K*=K* and is symmetric.

Response to an excitation

In determining the response for a system which has been discretized by
finite elements, one proceeds as in Chapter 3; that is, one uses a modal or
pseudo-modal method or, in the case of an arbitrary excitation, a step-by-
step method which can, if necessary, be combined with the modal or
pseudo-modal method.

5.3 Structural Modifications

In practice it is useful to have a method of calculating how minor changes in
the components of a structure affect the frequencies of the whole structure
without being obliged to recalculate the new frequencies. The finite element
method can provide such a method and thereby allows economies in
manpower and computer time.

§.3.1 Influence of a small structural modification

Let w;, ¢, $iMd;, K, be the ith frequency, mode, modal mass, and modal
stiffness of the unmodified structure. Then one has

wi2¢;M¢i = ¢iKe; (67)

After modification, the mass matrix becomes M+AM and the stiffness
matrix becomes K+AK. The frequencies and modes become w; +Aw; and
&; +Ad; and, instead of (67), one has

(@ +Aw )X (s +Ad) (M +AM)(: +Ady) = (& +A¢)(K+AK)(¢; + Ad’z ) )
: 68

Expanding (68) and keeping only first-order terms gives

_®9iAKd,  w; $;AM¢;

2 ¢iKd 2 HiM;

The same expression may be found by using Rayleigh’s method rather
than starting with (67). To see this, suppose that the modes are not

A(J)i

(69)
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significantly changed when M and K are modified. Then for mode ¢;:

T; =36{(M+AM)ép,** (70)
U, =36i{(K +AK)dp? (71)
and Rayleigh’s method leads to
t .+ bt :
%2 - ¢IK¢I ¢1AK¢1 (72)

© T M, + 0:AM,

which can be written

o 2 1+ SRS/
O O T GiAMe/ M, (73)
or
oF e + L PiAKS 0 $iAM,
2 6 Ke 2 &M

and, as of —w; = Aw, equation (69) is exactly recovered.

In using (69) or (74), it is only necessary to know AK and AM and to
compute the matrix products ¢;AKd; and ¢;AMe,. These operations can be
performed for many different structural modifications without the expense
of calculating the frequencies of the modified structure.

(74)

5.3.2 How to modify a structure

It is very difficult to anticipate the influence of a particular modification on
the dynamic behavior of a complex structure. In the process of analyzing a
structure for its frequencies and modes, it is easy to determine the quantities
¢iMo; and $iKd¢, for each finite element. The kinetic and strain energy
corresponding to a mode ;, ¢; can then be written as a sum over the N
elements, i.e.

T, = 16iMép>

1 N
= 5 21 (¢§rmr¢ir)Pi°2 (75)
U= %¢§K¢‘il’?
1 N
=3 L @ikdnpt (76)

where k, and m, are the stiffness and mass matrices of element r and ¢, is
the portion of the vector ¢, associated with the motion of the rth element.

It is sufficient to examine the relative importance of these terms for a
mode to establish the influence of a particular finite element or group of
finite elements on the behavior of the whole structure. It is then possible to
choose a good location for a structural modification such as local mass or
stiffness, or even a layer of damping material. Another important part of
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finite element analysis of structures which have a large number of degrees of
freedom is the judgment as to whether the answers for frequencies and
modes are correct. With the vast quantity of computer output in such cases,
it is very difficult to use physical intuition to validate the answers. Ways have
to be found to condense the output data so that its validity can be established
by intuition or by simplified analysis. One of the most effective ways of
doing this is to calculate and display the distribution of element kinetic and
strain energy. Such displays provide concise information about motion and
stress distribution and facilitate judgments about correctness.

5.4 The Method of Substructures

This method is used to predict the dynamic behavior of a complex structure
by dividing the structure into a series of smaller structures, called substruc-
tures, and studying the dynamic characteristics of these components. Sub-
structuring allows a considerable reduction in the number of degrees of
freedom which would otherwise be required to model the entire structure.
This method can also be extended so that some substructures are studied
analytically and some experimentally; however, this refinement will not be
discussed here. In order to simplify the following presentation, it is supposed
that the structure is divided into just two substructures; see Figure 4. The
first substructure SS1 is connected to the second substructure SS2 by
common degrees of freedom denoted by 8. Each substructure has, in
addition, its own internal degrees of freedom denoted by 8" and 8{®. The
same approach as described in section 5.1 is used to obtain the equations of
motion. It is first necessary to write the kinetic energy and strain energy of
the substructures and to write the virtual work of their external forces. Let
F, F® be the external forces acting on the internal degrees of freedom
8, 8 and assume, for simplification, that there are no external forces

1
e

Figure 4 Structure decomposed into
two substructures
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associated with &.. Using the additive property of the energies:
T= T(l) + T(Z)
U=UV+U®
Adopting the finite element formulation of T and U and partitioning the

matrices to separate the internal degrees of freedom &{, 8 from the
connection degrees of freedom &, gives

(77)

1[6OT[m®P m®PI[8=®
Tm:i[ 82 ] [mg) mi?_[ 8.° ] (78)
1 851) t kfll) kf::) '651)
u®=3 [ 8 ] [kgp kg?] | sc] (79
1[6°PT[m? m@7[5°@
Tm:i [ 8L ] [mff) mﬁ)l[ 8° ] (80)
1 852) t k£!2) kfz) —8?)
U(Z)z'z'[ac][kg? k&’]bac] (81)

Different variations of the method of substructures are characterized by
the changes in variable introduced into (78), (79), (80), (81), and the virtual
work expression. Two frequently used methods are presented below.

5.4.1 Method using free modes

In this method, the vibration modes ¢ of each substructure are calculated
supposing the connection nodes are free. The kinetic and strain energies and
the virtual work of the external forces are expressed in terms of these free
modes. The corresponding variables are:

q'V SS1 generalized coordinates
q® SS2 generalized coordinates
8. the physical coordinates connecting SS1 to SS2.

Using (78) and (79), substructure 1, which is free at its boundaries and
without external forces, has a dynamic behavior defined by

m® mPIEO (kP KO8
e mella= 1l @ls)-e @

mS mQIl 8> kP k21l 8,

The solution of this system supplies a set of modes which can be assembled
into the modal matrix ¢‘® and this then gives

[aam] = [ig]‘f“’ (83)
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According to (83),

Sgl) - ¢§1)q(l) (84)
and substituting this into (78) and (79) gives
o(l) <b(l)t (1)¢(1) ‘b(l)t (1) qo(l)
T®= 2 [ 8° ] [ mQ o m ][ 82 ] ®5)
1[qO [P kPe® Pk P g™
ut=3 [ 5 ] [ kPP k® ][ 5. ] (86)

The energies T® and U® will have expressions identical to (85) and (86),
except superscript (1) is replaced by (2).
Since here F.=0, the force vector corresponding to 8{”, 8, &, is
[F®,F®, 0T (87)

In the light of (84) and of a similar expression for SS2, the generalized force
vector corresponding to q©, g, 8, is

[‘b(l)tF(l) ¢(2)tF(2)’ O]t (88)
i ’ 1
Applying Lagrange’s equations to the structure then gives
PRI 0 &Pm® 7 [
0 SP'mP @ @m®@ ||g=? |+
mPg® mg)d,(z) m®+m? || 52 |
SOED PO 0 VDT [q® SVFD
0 ¢PUPHP 6PkD | |4 [=| 6PF | (89)
ko> kPeP k@[] [ o

The system (89) is now the analytical model of the entire structure. Notice
that .all the necessary quantities to form (89) are obtained from dynamic
analysis of the two substructures. In other words, the behavior of the entire
structure has been obtained in terms of the behavior of each substructure.
The solution of (89) is obtained by the usual methods for determining
system frequencies or system response. The recovery of the physical variable
is accomplished via (84) and its analog for SS2. The number of degrees of
freedom can be reduced only in one substructure; see exercise 14.

5.4.2 Method using constrained modes

This method is only presented briefly in order to avoid a too lengthy
discussion of the substructure method. The connection degrees of freedom
8. are retained as variables and the internal displacement variables are
determined following two steps.
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1. Static displacement: Let F =0, then for SS1 under static conditions:
K Ko
[kgp kgy][ 5. ] =0 (°0)
from which one can obtain the relation
B0 = ~(kP) - kP -, o

2. Dynamic displacements: In this method the connection nodes are
constrained by clamping (i.e. .= 0); also it is assumed there are no external
forces (FV'=F@® = (). The dynamic behavior of SS1 is then found from

mPs+ kP =0 ©2)

The modes of (92) give

agl)__:cb(l)q(l) (93)
Combining equations (91) and (93) gives the matrix relation
o_[ol ~) e
[ 3. ] Lo I 3. ] e

where I is the identity matrix.
It is now possible to substitute (94) into (78) and (79) to obtain TV and
U® and one can proceed in 2 similar fashion to obtain T® and U®.
The generalized forces vector becomes

¢ s Dt F(l)
¢§2)t F(Z) (95)
L) KPTEO — () K 2TF

All the necessary terms to formulate the equations of motion in terms of
q®, g®, 8. are now available. After solution, the physical coordinates for
SS1 can be recovered from (94) and those for SS2 from (94) with superscript
(2) exchanged for (1).

5.5 Exercises

Exercise 1: A beam is simply supported at each end; see Figure 5. Using only
a single finite element, calculate its lowest frequency and the corresponding

mode.
Vi ¥ V2 V2
E.p.S,I,L

> v,

Figure 5
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The consistent mass matrix has to be used, otherwise the kinetic energy
would be zero. The equation of motion is

olor sl Bl el
420 L-3L% 4LZ%lly,>] L312L% aLZlly,
from which one finds
w_10.95 EI and [l[ll]_[ 1]
L? pS Y -1
Using equation (27):
2x? x? x x* x?
v = (=G F)+ (- rR)ev=-T
The above value of w is within 11% of the exact fundamental frequency.
Exercise 2: Repeat exercise 1 for a clamped—free cantilever beam. Use a
consistent mass matrix.
The frequency is

3.533 [ET
L? VpS

@ =

and the corresponding mode is

[5]-]22m]

L

from which
3

2
o(x) = 1.622 —2—2—0.622%3
The above frequency is within 1% of the exact value.
Exercise 3: Consider the same system as in exercise 1 of Chapter 4. Model the

beam by three finite elements; see Figure 6. Calculate T and U using the
consistent mass matrix. Also calculate the two lowest frequencies and modes.

LLLL L
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T is the same as given in this chapter in section 5.1.4. To obtain U it is
necessary to add the strain energy of the spring; namely
U, =3ku3

Completing all the calculations results in the stiffness matrix

2 -1 0

K=3_E§ -1 2 -1
L 4

0 -1 %

The frequencies and modes are

1
2.0
w1=—-2§§ \/%5‘; 1=[1.560]

1.433

1
474 |E

—0.9801

Exercise 4: A cantilever beam has a length of 3L. Model the beam with three
finite elements (see Figure 7) and write the system stiffness matrix and
consistent mass matrix. Using program no. 5 of Chapter 7, calculate the first
two frequencies, the corresponding modes, and the associated modal stiffnesses
and masses.

Vi ¥y V2 Y2 V3 yg

LLLLLL/
1

The solutions are:

[24 0 -12 6L 0 0
0 8L?* —6L 2L> 0 0
-12 -6L 24 0 -12 6L
K=-—=l6L 21> 0 8L? —6L 2L2
0 0 -12 -6L 12 -6L
L0 0 6L 2L* -6L 4L2]
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312 0 54 —13L 0 0 7
0 8L?* 13L -3L? 0 0

54 13L 312 0 54 -13L
—-13L -3L? 0 8L?* 13L -3L?
0 0 54 13L 156 —-22L
0 0 -—-13L -3L* -22L 4L?]

pSL
420

hich
from whic 3516 [ET

“1=GL7 Vos
_[ 1.821 2.636 2.772]‘
-

1,——L—,3.304, 3 ,6.041, I

with
¢ 1Mo, =27.36pSL

EI
&1Kd;=4.176 I3

22.11 |EI
“2TGLy \/Bsj

0.9966 1.672 2.704]‘
qu-—[l, 3 ,0.7179, 7 1.695, I

and

with
$5Md,=2.129pSL

¢3Kd,=12.85 LE—;

The above frequencies are slightly above the exact values and their
accuracy is very good.

Exercise 5: Consider the same system as in exercise 4. In the present case,
form the lumped mass matrix and use it to calculate the first two frequencies
and modes. Use program no. 5,

The solutions are: A
F 2 Z€ero

ZEro 0
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from which
_3.346 |EI
17 BLY Vs
1.829 2.700 2.914]‘
1—[1, 7 . 3.339, T L, 6.181, 3
and

18.89 [EI
“27 3Ly Vps

1.058 1.331 2.838]t
2—[1,T,0.9673, L 1.368, 3

These frequencies are lower than the exact value and their accuracy is not
very good.

Exercise 6: Consider the same system as in exercise 23 of Chapter 4. Model
the beam by a single finite element (see Figure 8) and calculate the three
frequencies and modes. Use the consistent mass matrix.

\ E,D,S,I,L
AN ]
N
N (= EL
L Ip
- oSL
m="7
Figure 8

In this case, the kinetic and strain energies become

1 pSL ?[v°]t[ 156 —22L][v°]+ 1pSL

= ) _ 2 o

2 420 | Y 221 4L Y 27
_1EI[v][ 12 —6L][v] 1EI _ .
U—2L3[¢][—6L 4L2][¢]+2L3(v p)

and application of Lagrange’s equations gives

156/420 —22L/420 0 fv™ EI 13 —6L -17fv
pSL[—ZZL/420 4L%/420 0 ][1[;“]+E[—6L 412 O:Il:tlt]:O

0 0 y71Lp™ -1 0 ulp
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from which the following results are obtained:

" 0.3437
2.143 |EI
w; = —LT ;5; d)l = 0.50104/1.]
4.346 |[EI 0.7624
= NER ;—S‘; b2 = /L
. —0.4488_
3492 |EI 0.1316
®03=—73 Voo és=| 1/L
p | -0.0007

Exercise 7: Use the system as in the preceding exercise. Prepare the data
required by program no. 11 of Chapter 7. Calculate the first three frequencies
and modes and determine the percentage distribution of the kinetic and strain
energies for each element in each of the three modes. Use SI units with
L=2m;S=10"2m? I=10"¢ m*; p=7800 kg/m>; E=2%10"" N/m>.

Number of elements: 2

Number of nodes:3

Number of materials: 1
Number of sections: 1

Number of constrained nodes: 3

Kind of element 1: B
Kind of element 2: MSM

Beam element no. 1-Number of 1st node: 1

. Number of 2nd node: 2
Number of material: 1
Number of section: 1

Material no. 1-Young’s modulus: 2. E+11
Mass per unit volume: 7800

Section no. 1-Area: 1.LE—2
Inertia: 1. E—6

MSM Element no. 1-Number of 1st node: 2
Mass in X: 0
Mass in Y: O
Inertia in PSI: O
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System MSM no. 1-Number of 2nd node: 3
Mass in X: 22.285714
Mass in Y: O
Inertia in PSI: 0
Stiffness in X: 2.5E+4
Stiffness in Y: 0
Stiffness in PSI: 0

Node 1 - Absissa: 0
Ordinate: 0
Node 2 - Absissa: 2
Ordinate: 0
Node 3 - Absissa: 2
Ordinate: —1 (This figure is only to establish a reference frame for
the spring—-mass system).

Number of 1st constrained node: 1
For this node condition in u=1
For this node condition in v=1
For this node condition in PSI=1

Number of 2nd constrained node: 2
For this node condition in u=1
For this node condition in v=0
For this node condition in PSI=0

Number of 3rd constrained node: 3
For this node condition in u=1
For this node condition in v =0
For this node condition in PSI=1

Results:
o, = 27.13 rad/sec; $,=[0.3437,0.2502, 1T
ws=55.02 rad/sec; &>=[1,0.6558, —0.5886]
w3 =442 .1 rad/sec; $3=[0.2631, 1, —0.00152)

Mode 1: Element 1 SE 45.2%
Element 2 SE 54.8%
Element 1 KE 16.5%
Element 2 KE 83.5%

Mode 2: Element 1 SE 55.5%
Element 2 SE 44.5%
Element 1 KE 83.5%
Element 2 KE 16.5%
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Mode 3: Element 1 SE 99.3%
Element 2 SE 0.7%
Element 1 KE 100%
Element 2 KE 0%

Exercise 8: Repeat exercise 6 with the beam modeled by two finite elements;
see Figure 9.

LLLLL LS

Figure 9

To keep the same matrix expressions, let L*=L/2. Then

e 1 gs_L_*[uf]t[ 156 —22L*][vl°]
2 420 Ly°d Ll-220* 4L* Jly°

o° 'l 156  22L* 54  --13L*][v°

1pSL*| ¢°| | 220* 4L*  13L* —3L* | jy,°

2 420 | v° 54 13L* 156 -22L*|lv.°

U2 | |-130L* —3L* -22L* 4L* ||¢°

-+

v (o]l e le]
2L* Lyl Ll-6L* 4L* 1Ly,
vl 12 6L* -12  6L* ||,
1 EI |w,||6L* 4r** —6L* 2L% |y,
2% |v, ||-12 -6L* 12 —6L*||v,
o |leL* 20% —erL* aL*? ||y,
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and applying Lagrange’s equations gives

[ 312/420 0 54/420  —13L*/420 0 7|[v,*
0 8L*2/420  13L*/420 -3L**/420 0 ||y,
pSL*| 54/420  13L*/420  156/420 —22L*/420 0 || v,
—13L*/420 —3L*/420 —22L*/420 4L**/420 0 ||y,
|0 0 0 0 2171 Lp™
24 0 -12  6L* 0 T[]
0 8L* —6L* 2L* 0 ¥
+EE;=§ -12 —-6L* 12.125 —6L* —0.125]|v,|=0
6L* 2L* —6L* 4L*? 0 ¥,
| 0 0 -0125 O 0.125 4 L p_

from which one obtains with the aid of program no. 5:

2.143 [EI i 0.3918 0.5008
wi="Fr \og 1= [0.1108, 57—, 03440, =5 1]
4323 [EI _ 1184 | 1309 ]
w=TT Vg = 0 3545, =7, 1,5 —, ~0.5991
2232 [EI 0.1872
o= Vg b= _—0.2990, T 0. 4187 -0. 0060]

Exercise 9: Consider the system of exercise 7. Calculate the first three
frequencies and their modes using computer program no. 11 and with three
elements for the beam.

w;=27.13rad/sec;  $,=[0.0531,0.1478,0.1819, 0.2279,
0.3441,0.2504, 1T
w, = 54.70 rad/sec; $,=[0.1752, 0.4719, 0.5626, 0.6475, 1,
- 0.6544, —0.6000T
w3 =281.0 rad/sec; ¢3=[—0.2466, —0.3672, —0.1749, 0.6223,
0.4213, 1, —0.0061]

Exercise 10: Consider a clamped—clamped beam. Calculate the six lowest
frequencies using first the exact theory and then a finite element model
consisting of four elements (see Figure 10). Use the consistent mass matrix.
In the latter case, use program no. 11. Use SI units with L=1m; E=
2x10' N/m?; p=7800 kg/m3; I=10"°m*; S =10"2 m?

The results for « in rad/sec are as follows:

Exact 70.81 1952 382.6 6325 9449 1320
FEM 7090 197.0 390.8 7394 1223 1970
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Vi ¥ V2 ¥z V3 U3

Yy DD ¢
N /
N\ ' ) } g
N “
L L L L
N Z
Figure 10

Exercise 11: Consider the same system as in exercise 4. Add a mass of
pSL/10 at the free end. Using program no. 5, calculate the values of the two
lowest frequencies w}, w3. Then considering the added mass to be a small
modification of the structure, calculate the values w™*, w3*.

In the mass matrix of exercise 4, it is necessary to increase m. s by pSL/10;
then:

oo 3302 [EI
17 (3Ly? VpS
2088 [ET
27 (3L Vps

and from the structural modification method of section 5.3;

e 3303 [EI
w; = 5 s
(3L)* VpS

ope 22075 [T
(3L)* VpS

Exercise 12: Consider the same system as in exercise 6. However, in this case
the thickness of the beam h is multiplied by 1.1. Using the results of exercise
7, find the influence of this structural modification on the first three frequencies.
Compare these results to the results obtained using program no. 11.

The strain energy of a beam in bending is proportional to h*® and the
kinetic energy to h. Hence for the first frequency

U; becomes 0.548+0.452x1.331=1.150
T, becomes 0.835+0.165x1.1=1.017

from which
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For the second frequency
U, becomes 0.445+0.555x%1.331=1.184
T, becomes 0.165+0.835x1.1=1.084

1.184
% ke
w3 =55.62 1084 58.13 rad/sec

For the third frequency
U; becomes 0.007 +0.993x1.331=1.329

T; becomes 0 +1.0 x1.1 =11

wi=442.1 % =485.9 rad/sec

The results obtained using program no. 11 are

wi*=2856radfsec  wi*=57.55rad/sec w%* =485.9rad/sec

The result ¥ = w%* is to be expected because in this mode the mass has
no kinetic energy and the spring has a very low strain energy.

Exercise 13: The plane frame shown in Figure 11 is clamped at A and C
and has a rigid joint at B. With the notation of Figure 12, express u,, v,, ¥, at

LLLL Ll

Figure 11 Figure 12

B as functions of u,, vy, ¥, at B and obtain the kinetic energy T and strain
energy U in terms of these latter variables. Use the consistent mass matrix and
SI units with L=1m, S=10"m? I=10"°m*, E;=2x10'" N/m?, p, =
7800 kg/m®, E,=7x10 N/m2, p,=2700 kg/m.

u2{+ ‘Uz]-:= u1f+ ‘Ulf
from which

Uy = Uyl *

oy
i
hatt B

+'U1j'
+1)1j'

'-.‘ ~y

V2= U



u] V22
[vz] =202
{19 . 0

Using a consistent mass matrix,

O

-2 0
V212 o][
0 1

Y

U
U

IS 0 0 lu;
T =3 v° [0 28.97 —4.086 l:v;’]
| ¢y°JLo —4.086 0.7429)Ly.°
=7 V212 V212 019 0 0
T(2)—§|:vl° [«/’2’/2 V212 o] [0 10.03 1.414]
v°dL o 0 11lo 1414 0.2571
V212 =212 0 u°
x|v212 212 o][u;’]
[ 0 0 1Ly
([ue o514 05143 1 u,°
=3 u,:] [0.5143 9.514 1 ][uf]
| y,° 0 1 0.2571llyye
from which
([ 3551 0.5143 1 uy
T=§[u1° [0.5143 38.49 —3.086][01:]
¥° 1 -3.086 1 ¥
Similarly,
= tr2x10° 0 0 u,
=3 vl] 0 2.4x10° —1.2x106][u1]
o JL 0 -12x10° 0.8x10° Ly,
Fu V22 V22 07 % 108 0 0
~ 1
U(2)=-2- vl] V212 V212 0][ 0 84x10° 4.2x105]
[y, dL O 0 1 0 42x10° 2.8x10°
"V2/2 V212 0wy
x|v22 V212 0][01]
[ 0 o 1Ly,
Fu, T 3.504%x 108 —3.496%x10° 2.97X 105w,
-1 v, || -3.496x108  3.504x10° 2.97x10° ['ul]
2_¢,_L 2.97x10° 2.97%x10° 2.8x10° fLy,
and
JT41T 2.35%10° —3.496X10% 2.97x10° [ u,
U=3| v ~3.496x10° 3.528 x10° —9.03><105] vl]
Lpl_ | 2.97x10° -9.03x10° 1.08x10° Ly,
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Using computer program no. 5, one finds
®, = 1030 rad/sec; ¢, =[0.0010, —0.0087, 1T
@, = 3131 rad/sec; &, =[0.0609, 0.3170, 1]
w3 = 8619 rad/sec; &3 =[—0.4794,0.1653, 1]

These results can be obtained directly using computer program no. 12.

Exercise 14: Consider the clamped—clamped beam of exercise 10. Calculate
the two lowest frequencies by using the method of substructures which employs
free modes; see Figure 13. Use only the first mode of SS1, but retain all the
degrees of freedom of SS2. Use program no. 5 to calculate frequencies and
modes.

Vi ¥y V2 ¥y V3 ¥3

S L 1)1. T)L T)L é

Y 7

Q 5151 i 5352 ;
Figure 13

It is necessary to find the first mode of SS1 with node 2 free; see

Vi ¥y V2 W

N

y. DD

NI L

N e e

N 581

N Figure 14

Figure 14. The consistent mass matrix and stiffness matrix are

57.94 0 10.03 2414
0 1.486 2.414 ~0.5571
10.03 2.414 2897 —4.086
—0.2414 -0.5571 -4.086 0.7429

M=

and
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Computer program no. 5 gives
0.3395

0.5815
1
0.6882

w; =44.53 rad/sec; ;=

and permits the change of variable
[vl ] _ [0.3395]
¥ L0.5815]%
Using the variables q,, v,, ), and completing all calculations gives
1 q° 1 7.182 4.809 ~1.144 [ g,°
Tssi ==} v2° 4.809 28.97 -4.086 || v°
"1 1-1.144 —-4.086  0.742911L 4"
10° Cq, 1t 10.94 -15.13 6.4 qa
Usggi=——] v, | | -15.13 24 -12 vz]

4, 64 —12 8 JLys,

For SS2 one obtains

v,°|'[28.97 4.086 10.03 -—241471][v°
S o] | 4086 07429 2414 -0.5571] |¢°
$27 9] vo] 1 10.03 2.414 57.94 0 v5°

¥°| |-2.414 -05571 0 1.486 | | ¢°
o 1'F 24 12 -24 12][v,

U _10° ||| 12 8 -12 4|4,

279 lus||—24 —~12 48 Of]vs

wll 12 4 o 16||es

The mass and stiffness matrices for the total structure can now be
assembled.

7.182 4.809 -1.144 0 0
4.809 57.94 0 10.03 ~2.414
M=|-1144 0 1486 2414 -0.5571

0 10.03 2414 57.94 0
| 0 -2414 -05571 0 1.486
71094 -1513 64 0 O]
-15.13 48 0 -24 12
K=10°| 6.4 0 16 -12 4
0 -24 -12 48 9
0 12 4 0 16]
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Program no. 5 gives
o, =72.16 rad/sec; é,=[1,0.6981, 0.0255, 0.3874, —0.53817
w, = 216.4 rad/sec; ¢,=[1,0.0754,—-0.9043, —0.4652, —0.1871]

In order to recover the modes in terms of the initial variables, one uses the
relation among v,, ¥,, and q,. For example, for the lowest frequency one
finds the following mode in terms of the degrees of freedom v,, ¥y, v,, ¥,

U3, Ys3:
[0.4864,0.8330, 1, 0.0365, 0.5550, —0.7708T

where the mode has been normalized so that its largest component is unity.

Exercise 15: Consider the same system as in exercise 14 but use constrained
modes for SS1.

It is necessary to find the first mode of SS1 with node 2 clamped; see

A
L L

SS1

LLLLLLLS
NANNANNANN

Figure 15

Figure 15. The consistent mass matrix and stiffness matrix are
_[57.94 0 1 _ 5[48 0 ]
M= [ 0 1.486]’ k=100 16

from which one finds

w, =287.8 rad/sec; &= [(1)]

The static displacement is found from

24 0 "'12 6 Ul
S =
2X10° 15 6 12 —6][v.|7°

From the first two lines one obtains

[1-[0as Zoaalls]
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The transformation matrix becomes

v, ] [1 05 —-025
v} |0 075 —0.25 Z‘
v,] |0 1 0 df
! o o 1 2
and this leads to
J1 05 -0.25]'
1o 075 -02s
172 :l’fo 0 1 0
2710 o 1
57.94 0 1003 -24147[1 05 -025]_ .
| o 1486 2414 -05571| [0 075 -0.25|| %
10.03 2414 2897 —408| |0 1 0 ;’fo
-2.414 -0.5571 —-4.086 07429} |0 O 1 2
[T 5794 39 -16.907rq.T
=sles}| 30 5794 -1634ff 0y
vl Ll-1690 —16.34 5.943 JLyo

Proceeding in a similar manner:

105 a. 148 0 0faq:
U551=‘_2_ V2 0 3 - Uy
1 0 -3 411y

Using the expression for Tss; and Uss, from exercise 14, the mass and
stiffness matrices for the total structure can be assembled.

" 57.94 39 -16.90 0 0
39 86.91 -—1226 10.03 -2.414
M={-16.90 —12.26 6.686  2.414 —0.5571
0 10.03 2.414 57.94 0
o -2.414 ~0.5571 0 1.486
48 0 0 0 O]
0 27 9 -24 12
K=10°l0 9 12 -12 4
0 -24 -12 48 0
0 12 4 0 16
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Computer program no. 5 gives
oy =70.91 rad/sec; ¢,=[0.0435, 1,0, 0.5435, —0.76 12T
w, = 197.0 rad/sec; ¢2=[-0.2576, 0, 1, 0.5067, —0.2729T

In order to recover the modes in terms of the initial variable, one uses the
above transformation matrix. For example, for the lowest frequency one
finds the following mode in terms of the degrees of freedom vy, ¢, v, Y,
U3, d’3:

[0.5435,0.7500, 1, 0, 0.5435, —0.7612]

where the mode has been normalized so that its largest component is unity.
Exercise 16; Consider the same system and same modeling procedure as in

exercise 14. In this case use just the first mode of both SS1 and SS2; see
Figure 16.

Vi Vo V3

D

Ssi

>

L L
| e w—
$S2

///H////

<
N

—

NANANANNANN

Figure 16

The appropriate expressions for Tgs; and Uss; are given in exercise 14.
The first frequency and mode of SS2 are
1
—-0.6882
0.3395
-0.5815

w, =44.53 rad/sec; &y =

which permits the change of variable:

[vs]__[ 0.3395] |
;)™ 1-0.58151%

Using this in the expressions for Tsg, and Uss, gives

1 v [28.97 4.086 4.8097[ v,
Tegz = 5 " || 4086 0.7429 1.144 || ¢,°
q° 4.809 1.144 7.1821lg,°
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10° v 24 12 -15.13 Uy
Ussz = -i_ lllz] [ 12 8 —-6.4 ] Q!lz
q1L-15.13 —6.4 10.94 llq,

The mass and stiffness matrices for the total structure can then be
assembled.
7.182 4.809 -1.144 0
4809 57.94 0 4.809

M=1 1142 o 1.486 1.144
0 4809 1.144 7.182
1094 —1513 64 0
~15.13 48 0 -15.13
— 3
K=10"1 ¢4 0 16 —6.4
0 -1513 —-64 10.94

w.here the variables are, in order, qy, v, ¥,, @». Computer program no. 5
gives
w, =73.58 rad/sec; &, =[1,0.6860,0, 11
w;=244.Tradfsec; . ¢,=[1,0,~-0.9378, -1}
Using the transformations between v,, ¥, and ¢, and v,, Y5, and g,, the

mode associated with the lowest frequency in terms of the degrees of
freedom vy, ¥y, U2, Y, U3, Y3 i

[0.4950,0.8477, 1, 0, 0.4950, 0.8477]

where the mode has been normalized so that its largest component is unity.






6
Experimental Methods

This chapter is addressed to readers who are not expert in the measurement
of mechanical vibrations. It is intended primarily as an introduction to
current equipment and techniques but it should also enable the reader to
perform simple tests and to understand more advanced treatments.

The experimental study of a structure is necessary for a number of
reasons: to determine its performance under actual operating conditions; to
establish the accuracy of analytical predictions; or to obtain its dynamic
characteristics when calculation is too uncertain or too expensive. This last
case can be encountered when the structure is so complex that it is not
amenable to economical calculation by the computer which is available or
when the values of damping or the boundary conditions are inadequately
known.

Among the most common measurements are the vibration response due
to a sinusoidal excitation which is swept over a wide range of frequencies,
the vibration response due to broadband noise, or the vibration response
due to impact. These last two types of measurements are becoming more
frequent because they are closely related to modern techniques of signal
analysis and to recent developments in equipment for real-time signal
display.

In what follows, common kinds of vibration transducers and exciters are
presented as well as a brief introduction to the measurement of the dynamic
characteristics of a structure subjected to a known excitation or under
operating conditions.

The contents of the chapter are as follows:
6.1 Transducers

6.2 Exciters

6.3 Measurements.

6.1 Transducers

The basic principles of the most common vibration transducers are pre-
sented without a discussion of the technical details of their construction.
Vibration transducers fall into one of two categories—contact or
noncontact — and each is discussed in turn.
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6.1.1 Transducers in contact with the structure

Piezoelectric transducers

These transducers use a property of piezoelectric quartz or ceramic
materials which have asymmetric internal charge distributions. If a force is
applied to such materials, the lattice is deformed and equal external charges
of opposite polarity appear on the opposite sides of the crystal. To permit
measurement, this charge, which is proportional to the applied force F, must
be converted into a voltage by one of the following devices:

1. A charge-sensitive preamplifier. This device converts the charge into a
voltage in such a way that the output voltage is essentially independent of
the length of cable between the transducer and the preamplifier.

2. A voltage-sensitive preamplifier. The output of this device is directly
proportional to the voltage difference across the transducer terminals.
However, the signal is affected by cable length and often a correction for
this effect must be applied.

Transducers which incorporate the sensor and the signal preamplifier
within a single unit have been available for several years. The most common
types of piezoelectric transducers are accelerometers and force gages.

Accelerometer. A slice of piezoelectric quartz crystal Q is attached to a mass
M on one face and to a rigid base B on the other. The resulting transducer is
attached to the structure by its base, as shown in Figure 1.

As a first approximation, this transducer is modeled as a mass m in series
with a spring of stiffness k; see Figure 2. Such devices are given the generic
name of seismic pickups.

The displacements x, and x, are related by the differential equation of
motion for mass m, i.e.

mX2°°+ k(x;"'xl) =0 (1)

Q

cizA B
g\\\_ NN
Figure 2 Single degree-
Figure 1 Schematic of an of-freedom model of the

accelerometer accelerometer in Figure 1
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and the force acting on the quartz crystal is

| f=k(x—x)) @
Let x, = X, sin ¢, then in the steady-state motion
Xy = X2 sin ()t (3)
and (1) becomes
"‘mQZX2+ k(Xz"‘Xl):O (4)
from which
X
Xo= 1—(Q/w)? )
where
w2=X
m
Also, (2) becomes
_ () P
f= lel_(Q/w)zstt——Fstt 6)
For 0« o, (6) becomes
Q 2
f=—k(*a—’) X, =-mQ?X, )

and thus the force f and hence the surface electric charge produced is
proportional to the acceleration of the base. The transducer therefore acts as
an accelerometer.

Most accelerometers are supplied with a calibration chart similar to that
shown in Figure 3. If s; is the transducer sensitivity at an arbitrary frequency
f and s, is the sensitivity at a low frequency, equations (6) and (7) give

S 1

so 1—(Qw)? ®
Equation (8) is plotted in Figure 3 and shows that if )/w <0.3, s;=s5, to
within 10 percent.

The measurements from an accelerometer can contain errors from several
sources. Transverse acceleration will induce a small spurious indication of
axial acceleration and stresses in the structure can be transferred to the base
and then to the piezoelectric material to give a signal unrelated to vibration.
Also, errors can arise from harsh environments such as high temperature,
strong electromagnetic fields, or intense acoustic radiation.

Force transducer. A force transducer is constructed from piezoelectric ma-
terial which is compressed between two disks of mass m; and m,; see the



183

U

1.5 L
1.4
1.3 r

1.0 I i L | 1
0 0.1 0.2 0.3 0.4 0.5 QU w

Figure 3 Calibration chart of an accelerometer

schematic representation in Figure 4. An axial force causes the production
of surface charge on the faces of the piezoelectric material. This is trans-
formed into a voltage difference via a charge-sensitive or voltage-sensitive
preamplifier.

o

/////A"‘l

L

_ "
AN
. Figure 4 Schematic of a force transducer

The signal generated is not solely proportional to the force F, transmitted
to the structure. As a first approximation, it is proportional to the force F
which is transmitted to mass m,. The difference between F and F, is equal to
the inertia force of mass m,. If the structure is small, it is necessary to
compensate the output signal for the inertia force of m, in order to obtain
an accurate measure of F. To cancel this mass effect, the corresponding
inertia force is subtracted by calculation or with the aid of an analog circuit.

Like piezoelectric accelerometers, piezoelectric force transducers are sen-
sitive to their conditions of use and to their environment. When they are
subjected to base bending moments they will give measurement errors and
can even be destroyed. These undesirable effects can be controlled by the
simple means shown in Figure 5.
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Figure 5 Mounting of a force trans-
ducer to minimize moment transfer

The mechanical link between the vibration exciter and the force trans-
ducer or between the force transducer and the structure is a beam of small
cross-sectional dimension. Such a beam can have a high ratio of axial
stiffness to bending stifiness and thereby limits the moment transferred to
the transducer.

Electric transducers

Strain gage. This device is based on the fact that mechanical strain affects
electrical properties such as the resistance R; these small changes in
resistance can be easily measured with the aid of a Wheatstone bridge. The
gage is bonded directly on the structure so that its strain is identical to the
strain of the structure.

Strain gages are of two types. The most common type is the electrical
resistance gage based on the variation of resistance of a wire with its
elongation; the other type is based on the piezoresistive effect exhibited by
certain semiconductor materials.

The relation between the percentage change in resistance and the lon-
gitudinal strain of a wire of length L is given by:

ARoaSE ©

R L
For the first type of gage, the so-called gage-factor « is in the neighborhood
of 2 for most wire materials. This type of gage can measure static as well as
dynamic strain. For the second type, the gage factor is of the order of
several hundred and the measuring equipment can therefore be less sensi-
tive; however, only dynamic strains can be measured. If either of these types
is bonded to a metal structure, the surface strain can be measured without
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Strain gage

x(t) l

Figure 6 Strain gage vibra-
tion transducer

introducing significant perturbation to the structural behavior. If they are
made part of a transducer, they can be used to measure strains which are
proportional either to acceleration —a vibration transducer —or to the force
applied to the base —a force transducer. Figure 6 shows a strain gage being
used as a vibration transducer. Note that the gage is mounted near the root
of the cantilever where the strain is high.

6.1.2 Transducers not in contact with the structure

It is obvious that proximity pickups, i.e. noncontacting transducers, do not
affect the behavior of a structure while the preceding contact transducers
add local mass and stiffness. These local effects are important if the structure
is light or flexible. On the other hand, noncontacting transducers will
generate significant harmonics of the forcing frequency if the displacement
of the structure is large.

Capacitive transducer

The structure is at a DC potential V. The transducer, the plate A, located
at rest at a distance h, from the surface of the structure, is at a DC potential
Va; see Figure 7. The potential difference V=V, —V; is maintained
constant.

The transducer is assumed fixed in space. When the structure vibrates the
capacitance of the capacitor formed by the structure and the plate varies.
The variation in charge thus produced is transformed into a voltage v(¢) by a
charge-sensitive preamplifier. Let the time-varying distance between the

Figure 7 Capacitive transducer
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structure and the transducer be

h(t)=ho+d sin Q¢ (10
The charge Q(t) and the potential difference V are related by
Qn=C@)-V 1)

where V is a constant.
Reference to the formulas for the capacitance of plate capacitors shows
that to first order
4

h(@®)

where « is a constant. The voltage output of a charge-sensitive preamplifier
is then

Q(t)= (12)

- B__ B
o= " ot dsin Ot (13)

with B =constant. If d is small compared to h,, (13) becomes

(17,5 )
f)=—|1—— t 14
v(t) I 1 hosmﬂ (14)
The alternating part of v(f) is therefore proportional to the vibration
displacement of the structure. If d is not small compared to h, and if one
supposes that v(¢) is proportional to d in accordance with (14), one
introduces a percentage error having a peak-to-peak value given by

P C. ho)®

- 1- (d/ho)z (15)

This is plotted in Figure 8.

T l 1 1 T l T 1 i

L ! 1
0.2 0.4 0.6 0.8 d/h,

Figure 8 Peak-to-peak percentage error of a capaci-
tive transducer
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Magnetic transducer

A schematic diagram of a magnetic transducer is given in Figure 9. It
shows a magnetic circuit composed of a coil wound on a permanent magnet
and a structure made of a ferromagnetic material. If the structural material
is nonmagnetic, such as aluminium or austenitic steel, a thin ferromagnetic
disk can be bonded to the structure just beneath the transducer.

! v(t)

Figare 9 Magnetic trans-
ducer

At rest, the transducer and the structure are separated by a small distance
ho. The magnetic flux across hg is ¢.

When the structure vibrates relative to the fixed transducer, the flux varies
and a voltage is induced in the coil. This voltage, v(t), is proportional to the
product of the rate of change of ¢ with t and to the velocity of the structure.
If the terminals of the electric circuit are connected to a high impedance and
if the amplitude of sinusoidal displacement d is small compared to hy, it can
be shown that a first approximation is

v(t) = adQ sin Ot (16)

The magnetic transducer is therefore a velocity pickup. Its sensitivity
depends on h, but an increase in sensitivity is accompanied by an increase in
nonlinearity.

Eddy-current transducer

This transducer consists of a coil in which flows a high-frequency
current, usually in the megahertz range. The coil produces a magnetic
field and if a structure made of a conductive material is placed in this field,
there is a dissipation of energy which is a function of the material and the
distance separating the transducer from the structure. This dissipation of
energy affects the inductance of the coil and this is reflected in the amplitude
variation of the high-frequency voltage across the coil. After demodulation,
the coil voltage is proportional, under certain conditions, to the distance
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between the transducer and the structure. The transducer therefore acts as a
displacement pickup. This transducer can be used for static as well as
dynamic measurements. Its sensitivity is function of the nature of material.

6.2 Exciters

As was the case for transducers, the basic principles of vibration exciters are
presented without a discussion of the technical details of their construction.
Also as for transducers, exciters are classified into contacting and non-
contacting types.

6.2.1 Exciters in contact with the structure

Electrodynamic shaker

This shaker generates a force by passing a current I through a coil
mounted in a magnetic field of flux density B; see Figure 10. The force is
transmitted to the structure by means of a fixture. The force generated in
the exciter coil is

F=27wRNBI 17

-where N is the number of turns in the coil and R is the coil radius. If the
current variation is sinusoidal of frequency (2, equation (17) becomes

F =2%RNBI, sin {t (18)

Since the exciter is attached to the structure, it can modify the dynamic
behavior of the structure by introducing supplementary springs and masses.
Electrodynamic exciters are capable of generating a wide variety of force
shapes; in particular, harmonic forces can be generated in a very pure form.
The useful operating range of frequency is usually from a few hertz to about

shaker B

oo

fixture |

o SN

Figure 10 Electrodynamic shaker
mounted to a structure by means
of a fixture
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10kHz. The coil displacements are usually small, the maximum being
of the order of a few centimeters, peak-to-peak.

Electrohydraulic shaker

This consists of a hydraulic cylinder and piston together with a servo-
control system. The electronic control system allows the vibration signal to
be generated easily and the hydraulic drive system can be designed to give
large displacements and high forces. The useful operating frequency range is
usually from fractions of a hertz to a few hundred hertz.

6.2.2 Exciters not in contact with the structure

These have the advantage of not affecting the dynamic behavior of the
structure.

Magnetic exciter

This is essentially a magnetic transducer used as a driver rather than as a
pickup. It is a convenient way of delivering low force levels with a device of
simple design. Usually, the coil is wound on a permanent magnet whose
magnetic field is much stronger than that due to the current from the power
amplifier; the permanent magnet is sometimes replaced by a DC electro-
magnet. If the amplitude of motion of the structure is much less than the
static separation distance, the excitation force has the form

F=F,+F, cos Ot (19)

where F, is the constant force of attraction.
In the case when the coil has a core of ferromagnetic material rather than
a magnetic core, it can be shown that

F=F,+F, cos 20t (20)

I the amplitude of motion is large, the excitation force contains non-
negligible harmonics and it is necessary to use a tracking filter.

When the structure is nonmagnetic, direct excitation can be obtained by
fixing a thin disk of ferromagnetic material to the surface of the structure.

6.3 Measurements

Under laboratory conditions, the experimenter can impose a known excita-
tion on a structure in order to determine its dynamic characteristics; that is,
its resonant frequencies, modes, and modal damping. The imposed excita-
tion can be a sinusoidal frequency sweep, a white noise, or an impact.
Under field conditions, the experimenter cannot always impose an excita-
tion of his choice. It is necessary to measure and analyze the operating
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behavior of the structure in order to detect problems and assess perfor-
mance.

6.3.1 Measurement system for sinusoidal excitation

If the exciter is in contact with the structure, one can eliminate the influence
of the fixture and exciter mass and stiffness by using transducer 1, depicted
in Figure 11, as a reference. If this transducer is a force transducer, the
measurement is the response to an imposed force; if it is a displacement
transducer, the response is due to imposed displacement.

If transducers 1 and 2 measure the same quantities, either forces or
displacements, the ratio of these like quantities is the force or displacement
transmissibility. If transducers 1 and 2 measure different quantities, the
ratios of these quantities can, be x,°/F;, acceleration mobility, x,°/F;,
velocity mobility, or x,/F,, displacement mobility. The latter quantity is
sometimes called the dynamic compliance or the receptance. If the recipro-
cals of these quantities are measured, i.e., Fy/x,”~, F1/x,°, F;/x,, one obtains,
respectively, the dynamic mass, the mechanical impedance, or the dynamic
stiffness. If points 1 and 2 coincide, these ratios are driving point quantities;
if points 1 and 2 are different, they are transfer quantities.

As shown in Figure 11, an oscilloscope is used to monitor the quality of
the electrical signals. The reasons for this are:

(a) the sinusoidal excitation may not be sufficiently pure

Signal Generator
Y

Y
Power Amplifier
Y
i Exciter [
Transducer 2 Transducer 1
‘ a ‘
[
Tracking Filter STRUCTURE Tracking Filter
Amplitude Meter Oscilloscope Amplitude Meter
Phase Meter

Figure 11 Measurement system for sinusoidal excitation
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(b) the signal level can be reduced if it is too large or increased if it is

below the noise level

(c) system nonlinearities can be detected.

The experimenter is thereby made aware when it is necessary to adjust
the excitation level or to be particularly careful in the processing of the
response. The tracking filter guarantees that the response is measured only
at the excitation frequency. The combination of a shaker which can deliver a
very pure sine wave and a tracking filter to minimize harmonics results in a
response with very little extraneous noise. This is a distinct advantage of the
measuring system. The transducer signal amplitudes and phase difference
are the most important quantities to be measured.

Determination of dynamic characteristics

The first step is to plot the modulus and phase of the response over the
full frequency range of interest. Such a frequency response plot allows
estimation of the dynamic characteristics of the structure and thereby the
amount of damping and position of resonant frequencies. If the structure is
lightly damped and the modes well separated, each peak of the modulus plot
corresponds to a resonant frequency. The corresponding mode can then be
determined by dwelling at each resonant frequency and making a spatial
survey of the structure. Lastly, a narrow sweep can be made around each
resonant frequency to establish the half-power bandwidth from which the
modal damping or Q-factor can be calculated.

If the resonant frequencies are strongly coupled, either because of large
damping or close spacing, it is difficult to extract the individual modal
characteristics of the structure accurately. In these circumstances, specialized
computer techniques must be used, an explanation of which is beyond the
scope of this text.

A polar plot of the modulus and phase of the response is known as a
Nyquist diagram. This diagram is better suited for extracting modal informa-
tion because the effects of frequency, damping, stiffness, and mass are
magnified. If the damping is of the structural type, the response variable in
the Nyquist diagram is usually displacement mobility (see exercise 16 of
Chapter 1), and if the damping is of the viscous type, the response variable
is usually velocity mobility.

As mentioned previously, the determination of the mode shape is done by
exciting the structure at one of its resonant frequencies and surveying the
resulting distribution of displacement amplitudes. Of particular interest are
the nodal points or lines associated with each mode shape. A nodal line is a
locus of points which has zero displacement amplitude. Nodal lines can be
identified by a number of methods which depend on the geometry of the
structure, the magnitude of the displacements, and the frequency of reso-
nance. For example:

Stroboscopy. This method is used when the displacements are large
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enough to be seen by the human eye and the frequency is higher than about
twenty hertz.

Powder. In this method a thin layer of dry powder is sprinked on a
structure whose geometry is a horizontal, planar surface. Under vibration,
the grains of powder migrate to the nodal lines. It is necessary that the
acceleration exceeds that of gravity. Sand is often used for this purpose.

Phase measurement. A nodal line separates two regions of opposite phase
and this can be detected by comparing the phases of two transducers. One
transducer is used as a fixed reference and the other is moved around the
structure. At each point where the phase shifts by 180° a nodal line has
been crossed.

Amplitude minima. The usual procedure is to use an accelerometer
attached to the top of a hand-held probe. The probe can then be used to
search the structure surface for zones of minimum acceleration amplitude.

Holographic interferometry. This method can either be done in a time-
averaged mode or in a real-time mode. The latter allows the complete
pattern of nodal lines to be depicted at a given instant of time.

Of course, the shape and distribution of nodal lines is only a qualitative
indication of the mode. A quantitative determination is usually done by
using an array of piezoelectric accelerometers. Alternatively, one can use
one fixed reference accelerometer and one moving accelerometer; this
requires only two accelerometers, but more test time.

6.3.2 Spectral analysis

Spectral analysis is the process of representing a general function of time in
terms of the amplitude and phase of a series of harmonic functions. In
vibration, the general function is an analog signal which can be, for example,
"a force, an acceleration, or a ratio of a force over an acceleration. This
spectral representation is a frequency-domain description of the time-
dependent general function x(2).

If x(t) is the given time function, the Fourier transform establishes the
relationship between x(t) and its frequency-domain representation X(f), i.e.

XPH= J’j x(t)e 12" dt (PA))

In (21), f is the frequency in hertz and X(f) is a complex function of f A
schematic of the relationship between x(t) and X(f) is presented in Figure
12.

In practical situations, x(t) is given in the form of an analog signal and not
as an analytical formula. Furthermore, it is known only in a finite time
interval (t,, t;); therefore, instead of using (21), it is necessary to use the
discrete form of the Fourier transform; namely:

n N-1 .
b( —--) =T Y x(kT)e 2m®mN (22)
k=0
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Figure 12 A function and its Fourier transform

where n=0,1,..., N—1, and:

N, total number samples of x in the time domain, which also equals the total
number of spectral lines of X in the frequency domain

T, the time interval between two successive samples of x

n, the numbers assigned to the spectral lines of X.

More information on the discrete Fourier transform (DFT) and on the fast
Fourier transform (FFT) can be found for example in The Fast Fourier
Transform, E. O. Brigham, Prentice-Hall, 1974. The relationship between a
time-sampled function and its discrete frequency spectrum is shown
schematically in Figure 13.

For a finite interval of time NT, it is first necessary to sample x(t) in order
to obtain N numerical values of x(¢) at the discrete times t,, t,+ T, ¢, +
2T,...,t. Then the DFT can be used to obtain the corresponding discrete
spectrum. This spectrum is the frequency-domain representation of a
periodic function of period NT which is an approximation to x(t) in the
interval (t;, ).

x(t) X(f)

« + + Real part

Samples . . . Imaginary part
+ . b
“ln...... : terigagaier f
(N-1)T rTl‘r (%il)

Figure 13 A sampled function and its discrete Fourier transform
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A source of error in this process is the fact that sampling truncates the
function at t; and ¢, and this can introduce discontinuities in the periodic
representation of the function. Such discontinuities introduce error into the
frequency spectrum. This error, which is called leakage, can be minimized
by tapering the sampled amplitudes x(nT) with a data window such as a
triangular function (Bartlett window) or a shifted cosine function (Hanning
window).

The sampling theorem due to Shannon states that a time function can be
uniquely reconstructed from its spectrum, if the frequency f, = 1/T, known
as the Nyquist rate, is such that f, =2f.. If f, <2f. the frequency spectrum is
not acceptable. This error, which is called aliasing, can be minimized by
sending x(¢t) through a lowpass filter whose cut-off frequency is set <f,
before the signal is sampled. These are called anti-aliasing filters. In prac-
tice, one usually selects a sampling rate so that f, = af,, where « is in the
range of 3 to 4.

If the signal represents a displacement or a force at a point of a structure
which is subjected to its actual operating conditions, real-time spectral
analysis allows an immediate determination of the frequencies at which the
structure has large response amplitudes. This then provides insight into
either excitation frequencies which must be avoided, or frequencies which
can be the resonant frequencies of the structure.

White noise is often used as a convenient form of broadband excitation.
White noise is a random analog signal whose spectrum is continuous and
constant over a range of frequencies; if the range of frequencies is broad,
the white noise is broadband. The response of a linear structure to a white
noise excitation is the superposition of the responses to all the frequencies in
the excitation bandwidth. Spectral analysis of this response will give the same
information as sinusoidal sweeping but in this case all the frequencies are
excited simultaneously and the data is processed in real-time. However, the
response to a single sample of broadband excitation can be corrupted with
noise; this noise can be minimized by averaging over many samples but this
tends to offset the time advantage gained by real-time spectral analysis.

Impact excitation can be imposed by hammer blows and as a first
approximation, mathematically represented by a Dirac function of force.
The Fourier transform of a Dirac function gives a continuous and constant
frequency spectrum, the same type of spectrum associated with broadband
white noise. One can then utilize a shock excitation in place of white noise
excitation. Shock excitation caused by impact with specially instrumented
hammers is now widely used by specialists in the identification of the
dynamic characteristics of structures. As for white noise, the spectral
analysis of the response from impact excitation can be carried out in
real-time. However, control over the signal bandwidth is limited and too
high initial excitation levels will tend to excite structural nonlinearities and
to overload the measurement system.
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The ability to generate frequency spectrums rapidly has not only permit-
ted real-time analysis for measurement purposes but it has facilitated the
development of the field of machinery health monitoring. A single instru-
ment can repeatedly scan a large number of transducers and compute a
spectrum analysis of the signal for each one. These spectra can then be
stored digitally and compared with their predecessors so that changes in the
vibration signal can be identified. Such changes are often the precursors to
failure or serious performance degradation.
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Computer Programs

The computer programs presented here can be used on a microcomputer.
They are useful for both beginners and experienced workers in mechanical
vibration. For the former, these programs allow experience with the
dynamic behavior of multi-degree of freedom structures without the labor of
lengthy hand calculation. For the latter, they offer reference solutions,
means of comparing various solution techniques, and the possibility of
solving real problems on a desk-top computer.

The programs are written in BASIC and can be used on a computer which
has at least 16K bytes of core memory. In addition, they use some
specialized matrix commands and have the ability to present plots on a
graphic terminal. They are easily adaptable to another language and their
size can be greatly reduced by suppressing the comments and eliminating
options, such as plotting.

When the algorithms have not been presented in the preceding chapters,
they are briefly explained during the presentation of each program.

The contents of the chapter are as follows:
7.1 Language and commentary

7.2 Presentation of programs

7.3 Listings.

7.1 Language and Commentary

7.1.1 Language

The language used is standard BASIC. In addition, there are some matrix
commands and plotting commands which are specific to the microcomputer
used to develop the programs, and they will be briefly presented in this
section.

Matrix commands

Addition, subtraction, and equality of matrices are done in the same way
as for ordinary variables. Also, all the elements of a matrix can be set to the
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Appendix: Lagrange’s Equations

Lagrange’s equations are deduced from the principle of virtual work applied
to the forces, including inertia forces, acting on a system. These equations
are easy to use and well suited for mechanical systems.

In what follows qy,...,qn are a set of N independent generalized
coordinates for a system having N degrees of freedom. The N Lagrange’s
equations which will give the N coupled differential equations of motion are
d (3T oT ,
o (aqf) T=Q i=L...N 1)

with

T, kinetic energy

Q. generalized force corresponding to the coordinate g;.

In most cases, forces induced by strains can be deduced from the potential
strain energy U and the forces due to viscous damping from a Rayleigh’s
dissipation function R. Then (1) becomes

d (aT) aT aU @8R
— —t—+
dr dq; 9dq; 9qg°
In (2), Q; is the vector of external forces. This expression is commonly used
in this book.

When the generalized coordinates are no longer independent it is neces-
sary to eliminate some of the coordinates in T, U, R before applying (1) or
(2). If this elimination cannot be performed, Lagrange multipliers have to be
used. In this book the generalized coordinates are always independent.

= i=1,...,N (2)

8g,°
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Exciter (continued)
magnetic, 189

Experimental methods, 180

External force vector, 38

Fast Fourier transform, 193
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- derivation of equations, 146
discretization, 147
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program §, 201, 222
program 9, 204, 240
program 10, 205, 243
program 11, 206, 247
rigid body, 156
rotor, 140
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General function of time, 13, 27, 43

Gravity, 20-21

Half-power bandwith, 11, 30
Harmonic excitation, 6, 42—47

Impedance, 190
Imposed displacement, 86

Influence of spring mass, 17
Initial conditions, 3, 5, 22, 40
Integration, Gauss—Legendre, 144
program 12, 208, 257
Iterative method, 71, 81
program 5, 201, 222

Kinetic energy, 38, 65
Kinetic bar/beam/rod, 106
Kinetic finite element, 151
Kinetic plate, 110

Kinetic program 11, 206, 247
Kinetic rotor element, 114

Lagrange’s equations, 38, 261
Laplace transform, 13
Logarithmic decrement, 4
Loss factor, 15

Magnetic exciter, 189
Magnetic transducer, 187
Mass modal, 42, 102-105
Measurements, 189
determination of dynamic characteris-
tics, 191
sinusoidal excitation, 190
spectral analysis, 192
Method, direct, 42, 47, 70-73
program 6, 202, 226
experimental, 180
iterative, 71-81
program 5, 201, 222
modal, 42, 73-83, 108
program 7, 203, 232
pseudo-modal, 74
Rayleigh, 17
Rayleigh—Ritz, 70, 105, 107, 108
step by step, 74, 87
program 8, 203, 237
substructure
constrained modes, 161, 176
free modes, 160, 174
Mohility, 190
Modal damping, 69 :
mass-stiffness, 42, 69, 102, 105
method, 73, 83
program 5, 201, 222
Mode, 39
normalization, 40
orthogonality, 41, 68
properties, 67
rigid-body, 53, 68
shape, 39








