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Amenability and exactness for groups, group ac-

tions and operator algebras

Abstract. These expository notes aim to introduce some weakenings of the notion of
amenability for groups, and to develop their connections with the theory of operator
algebras as well as with recent remarkable applications.

Introduction

The class of amenable groups was isolated in 1929 by J. von Neumann [66] in
the course of study of the Banach-Tarski paradox. This notion turned out to be
very important for many areas of mathematics and is still a very active subject of
research. Let us mention for instance the many new examples of amenable groups
arising from automata groups.

Much later, motivated by the study of Poisson boundaries of random walks, R.
Zimmer introduced in the late 1970s [71] the notion of measured amenable group
action. Very soon after, J. Renault [58] began the study of this notion in the
settings of measured and topological groupoids. This was further developed in [3]
and finally a comprehensive exposition was published in [5].

One of the striking applications of this notion of amenable action come from
the C∗-algebraic approach to the Novikov Conjecture. We shall not describe here
this geometric conjecture, but refer to [10, 70] for introductions to this subject.
M. Gromov had suggested in 1993 [31] that finitely generated groups which are
uniformly embeddable into Hilbert spaces1 should satisfy the Novikov Conjecture.
This was proved at the end of the 1990s by G. Yu [69]. In the same paper,
Yu introduced a Følner type condition on finitely generated groups, weaker than
amenability, he called property (A), which guaranties the existence of such uniform
embeddings. N. Higson and J. Roe discovered in [39] that Yu’s property (A) for a
finitely generated group Γ is equivalent to the fact that Γ has an amenable action
on a compact Hausdorff space2. The hope that every finitely generated group has
this property was soon negated by Gromov [32, 33].

It turns out that the class of finitely generated groups with property (A), had
been already investigated, in another guise, for reasons pertaining to amenability
properties of operator algebras. This subject dates back to the major break-
through, due to M. Takesaki in 1964 [61], giving the first example of two C∗-
algebras whose tensor product could be completed in more than one way to give
a C∗-algebra. The well-behaved C∗-algebras A, such that for any C∗-algebra B

1Unexplained terms will be defined in the main part of the text.
2For that reason, property (A) is also called boundary amenability.
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there is only one possible C∗-algebra completion of the algebraic tensor product
A ⊙ B, are called nuclear. They were first investigated by Lance [48] in 1973
and completely understood around the mid-1970s, mainly thanks to Choi, Ef-
fros, Kirchberg and Lance. In particular it was proved in [48] that the reduced
C∗-algebra of a discrete group is nuclear if and only if the group is amenable.

In 1977, E. Kirchberg introduced the notion of exact C∗-algebra, related to
nuclearity but strictly weaker : the reduced C∗-algebra of free groups with n ≥ 2
generators are exact, whereas they are not nuclear. Kirchberg’s important contri-
butions to the subject began to be published only after 1990 [42, 43, 45]. For the
reduced C∗-algebra of a discrete group Γ, the remarkable link between exactness
and amenability was discovered around 2000 [34, 52, 4] : the reduced C∗-algebra
of Γ is exact if and only if Γ has property (A).

After this brief and far from exhaustive history of the subject, let us describe
now more precisely the contents of these lectures. We give in Section 1 some very
short preliminaries on amenability and we introduce in a more detailed way some
basic notions on C∗-algebras, intended to an audience not specialized in the theory
of operator algebras. In Section 2 we discuss the relations between amenability and
nuclearity and introduce also another important weak amenability property, the
Haagerup approximation property. Section 3 is devoted to the study of exactness,
boundary amenability and property (A), which are three equivalent properties of a
finitely generated group. An important observation is that they can be expressed
in a way which only involves the metric defined by any word length function. More
generally, property (A) makes sense for any discrete metric space. In Section 4, we
show that any exact metric space is uniformly embeddable into some Hilbert space.
Whether the converse is true or not for metric spaces underlying finitely generated
groups is an important open problem. We end these notes by a short study of the
Hilbert space compression of groups, an invariant (currently the subject of active
research) introduced by Guentner and Kaminker in order to tackle this problem.

In these notes we shall only only consider countable groups (for simplicity) and
Hausdorff topological spaces. This will often be implicit in our statements.

Acknowledgements. This text is a revised version of notes written for the series
of lectures I gave during the special semester “Amenability beyond groups” at
the Erwin Schrödinger Institute, Vienna, in March 2007. I took benefit of several
improvements due to Piotr Soltan who provided excellent notes of my course. All
my thanks to Piotr and to the whole audience for their interest in the subject. I
am also grateful to the organizers and the Institute for their warm hospitality.

1 Preliminaries

1.1 Amenability for groups. Let Γ be a discrete group. We shall denote by
ℓ1(Γ)+1 the space of probability measures on Γ and by ℓ2(Γ)1 the unit sphere of
ℓ2(Γ). For f : Γ → C and t ∈ Γ the function tf is defined by (tf)(s) = f(t−1s).

Recall first that a complex valued function ϕ on Γ is said to be positive definite
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(or of positive type) if for every n ≥ 1 and every t1, . . . , tn in Γ, the matrix [ϕ(t−1
i tj)]

is positive, that is

∀n ∈ N,∀t1, . . . , tn ∈ Γ,∀λ1, . . . , λn ∈ C,
n

∑

i,j=1

λiλjϕ(t−1
i tj) ≥ 0.

Given (σ,H, ξ) where ξ is a non-zero vector in the Hilbert space H of the unitary
representation σ of Γ, the coefficient t 7→ 〈ξ, σ(t)ξ〉 of σ is positive definite. The
Gelfand-Naimark-Segal (GNS) construction asserts that every positive definite
function is of this form.

Definition 1.1 (-Proposition). Γ is amenable if and only if one of the four
following equivalent conditions holds :

(i) There exists a net (fi) in ℓ1(Γ)+1 such that for every t ∈ Γ :

lim
i

‖tfi − fi‖1 = 0.

(ii) There exists a net (ξi) in ℓ2(Γ)1 such that for every t ∈ Γ :

lim
i

‖tξi − ξi‖2 = 0.

(iii) There exists a net (ϕi) of positive definite functions on Γ, with finite support,
such that for every t ∈ Γ :

lim
i

|1 − ϕi(t)| = 0.

(iv) There exists an invariant state M on ℓ∞(Γ), that is such that M(tf) = M(f)
for t ∈ Γ and f ∈ ℓ∞(Γ).

Note that condition (ii) is Reiter’s property saying that the (left) regular rep-
resentation λ of Γ almost has invariant vectors or, in other terms, that the trivial
representation of Γ is weakly contained in its regular one.
Reference : [30]

1.2 Amenability for actions. Let X be a locally compact space and assume
that Γ acts on X from the left by homeomorphisms. We denote this action by
(t, x) 7→ tx and we shall use the symbol Γ y X in this situation. The amenability
of the action is defined by the equivalent conditions below, which are the versions
“with parameter” of the conditions (i) to (iii) in 1.1.

The space ℓ1(Γ)+1 of probability measures on Γ is equipped with the topology
of pointwise convergence, which is the same here that the norm topology.

Definition 1.2 (-Proposition). The action Γ y X is amenable if and only if
one of the three following equivalent conditions holds :
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(i) There exists a net (fi) of continuous functions fi : x 7→ fx
i from X into

ℓ1(Γ)+1 , such that for every t ∈ Γ :

lim
i

‖tfx
i − f tx

i ‖1 = 0,

uniformly on compact subsets of X.

(ii) There exists a a net (ξi) of continuous functions ξi : x 7→ ξx
i from X into

ℓ2(Γ)1, such that for every t ∈ Γ

lim
i

‖tξx
i − ξtx

i ‖2 = 0,

uniformly on compact subsets of X.

(iii) There exists a net (hi) of continuous positive definite function hi on X × Γ,
with compact support, such that limi|1−hi(x, t)| = 0, uniformly on compact
subsets of X × Γ.

A net (fi) as in (i) is called an approximate invariant continuous mean (a.i.c.m.
for short).

A complex valued function h on X × Γ is said to be positive definite (or of
positive type) if for every x ∈ X, every n ≥ 1 and every t1, . . . , tn in Γ, the n× n
matrix [h(t−1

i x, t−1
i tj)] is positive. To better understand this definition it is useful

to see G = X × Γ as a groupoid :

• the range and source are respectively given by

r(x, t) = x and s(x, t) = t−1x;

• the inverse is given by (x, t)−1 = (t−1x, t−1)

• the product is defined by (x, t)(t−1x, t′) = (x, tt′).

Then the above definition of positiveness reads as : for every x ∈ X = G(0) (the
space of units of the groupoid) and every g1 = (x, t1), . . . , gn = (x, tn) in r−1(x),
the matrix [h(g−1

i gj)] is positive. When X is reduced to a point, we recover the
usual definition of a positive definite function on Γ.

Observe that a positive definite fonction h on the trivial groupoid X × X is
just a positive definite kernel in the usual sense, that is, for every y1, . . . yn in X
the matrix [h(yi, yj)] is positive.

Remark 1.3. The equivalence between (i) and (ii) in 1.2 follows the inequalities

•
∥

∥|ξ1|2 − |ξ2|2
∥

∥

1
≤ 2‖ξ1 − ξ2‖2 for ξ1, ξ2 ∈ ℓ2(Γ)1;

•
∥

∥

√
f1 −

√
f2

∥

∥

2

2
≤ ‖f1 − f2‖1 for f1, f2 ∈ ℓ1(Γ)+.
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The implication (ii) ⇒ (iii) follows an approximation argument and from the fact
that, given ξ : x 7→ ξx from X to ℓ2(Γ), then

(x, t) 7→ h(x, t) =
〈

ξx, tξt−1x
〉

is positive definite. For more details on the proof of proposition 1.2 we refer for
example to [4] or [6].

Examples 1.4. (1) If Γ is an amenable group, every action Γ y X is amenable.
Indeed, given (fi)i∈I as in definition 1.1 (i), we define f̃i to be the constant map
on X whose value is fi. Then (f̃i)i∈I is an a.i.c.m.

Note that if Γ y X is amenable and if there is a Γ-invariant probability measure
µ on X, then Γ is an amenable group. Indeed, let us consider an a.i.c.m. (fi)i∈I

and set ki(t) =
∫

fx
i (t)dµ(x). Then (ki)i∈I has the properties stated in definition

1.1 (i) and therefore Γ is amenable.
(2) For every group Γ, its left action on itself is amenable. Indeed, x ∈ Γ 7→

fx = δx is invariant3 : tfx = f tx for every t, x ∈ Γ. Such an action, having
a continuous invariant system of probability measures, is called proper. This is
equivalent to the usual properness of the map (t, x) 7→ (tx, x) from Γ × X into
X ×X (see [5, Cor. 2.1.17]).

(3) Let F2 be the free group with two generators a and b. The boundary
∂F2 is the set of all infinite reduced words ω = a1a2 . . . an . . . in the alphabet
S = {a, a−1, b, b−1}. It is equipped with the topology induced by the product
topology on SN

∗

. The group F2 acts continuously to the left by concatenation on
the Cantor discontinuum ∂F2. This action is amenable. Indeed, for n ≥ 1 and
ω = a1a2 . . . an . . . , define

fω
n (t) =

1

n
if t = a1 . . . ak, k ≤ 1

n
,

= 0 otherwise.

Then (fn)n≥1 is an a.i.c.m. This observation holds for any free group.
(4) Another convenient way to show that group actions are amenable is to use

the invariance of this notion by Morita equivalence [5, Th. 2.2.17]. Let us consider
for instance a locally compact group G, an amenable closed subgroup H and a
discrete subgroup Γ. Then the left Γ-action on G/H is amenable.

1.3 Group C∗-algebras. We first recall some basic facts about C∗-algebras.

1.3.1 C∗-algebras. A C∗-algebra A is a closed involutive subalgebra of the invo-
lutive Banach algebra B(H) of all bounded operators on some (complex) Hilbert
space H.

Hence, for any element a of a C∗-algebra, we have ‖a‖2 = ‖a∗a‖.
3δx is the Dirac function at x.
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Theorem 1.5 (Gelfand-Naimark). Let A be a Banach ∗-algebra (over C) such
that ‖a‖2 = ‖a∗a‖ for every a ∈ A. Then there is an isometric ∗-isomorphism
from A onto a closed involutive subalgebra of B(H) for some Hilbert space H.

First examples:

• B(H) is a C∗-algebra. When H = C
n, we get the algebra Mn(C) of n × n

matrices with complex entries. Every finite dimensional C∗-algebra is a finite
product of full matrix algebras.

• (Commutative case.) Given a localement compact space X, the Banach ∗-
algebra C0(X) of continuous functions from X to C, vanishing at infinity,
is a commutative C∗-algebra. A celebrated theorem of Gelfand states that
every commutative C∗-algebra is of this form.

We shall see below that groups and group actions provide a wealth of examples.
Before, we make some important observations on C∗-algebras.

Basic facts:

• If A is a C∗-algebra and a = a∗ ∈ A, then
∥

∥a2
∥

∥ = ‖a‖2
. It follows that ‖a‖

is equal to the spectral radius of a. Hence the norm on a C∗-algebra only
depends on algebraic properties.

• Let B be another C∗-algebra and π : A → B a homomorphism4. Then
‖π(a)‖ ≤ ‖a‖ for every a ∈ A and π(A) is closed in B. Moreover, if π is
injective then it is isometric. It follows that on a C∗-algebra there is only
one C∗-norm5.

• A C∗-algebra A has a natural closed positive cone, namely the cone A+ of
elements of the form a∗a with a ∈ A. When A is concretely represented as
a subalgebra of some B(H), this is the cone of positive operators belonging
to A.

References : [49], [57], [25].

1.3.2 Group C∗-algebras. Let Γ be a discrete group and let C[Γ] be the cor-
responding group algebra, that is the ∗-algebra of formal sums

∑

t∈Γ ctt where
t 7→ ct is a finitely supported function from Γ to C. Recall that the product in
C[Γ] is the obvious extension of the product of Γ and that the involution is given
by (ct)∗ = ct−1 for c ∈ C and t ∈ Γ. Traditionally, two norms are defined on
C[Γ], reflecting which unitary representations of Γ one wishes to consider, and this
gives rise to two completions of C[Γ], the full C∗-algebra C∗(Γ) and the reduced
C∗-algebra C∗

r (Γ), that we describe now.

4In the sequel, a homomorphism between C∗-algebras is a map preserving the algebraic op-
erations and the involution.

5A C∗-norm on a ∗-algebra A is a norm such that ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗x‖ = ‖x‖2 for every
x, y ∈ A.
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Let σ be a unitary representation on some Hilbert space H. We can extend σ
to a ∗-homomorphism from C[Γ] into B(H) by

σ(
∑

t∈Γ

ctt) =
∑

ctσ(t).

Observe that ‖σ(
∑

ctt)‖ ≤ ∑ |ct|.
The most important representation of Γ is the left regular representation, that

is the representation λ in ℓ2(Γ) by left translations : λ(s)δt = δst (where δt is the
Dirac function at t). One may equivalently consider the right regular representation
ρ. Observe that λ defines an injective ∗-homomorphism from C[Γ] into B(ℓ2(Γ)).
Thus we may view any element

∑

ctt of C[Γ] as the convolution operator on ℓ2(Γ)
by the function t 7→ ct. Then c =

∑

ctt ∈ C[Γ] will also be written c =
∑

ctλ(t) ∈
C∗

r (Γ).

Definition 1.6. The reduced C∗-algebra C∗
r (Γ) is the completion of C[Γ] in the

norm given, for c ∈ C[Γ], by ‖c‖r = ‖λ(c)‖. Equivalently, it is the closure of
C[Γ] in B(ℓ2(Γ)), when C[Γ] is identified with its image under the left regular
representation.

Definition 1.7. The full C∗-algebra C∗(Γ) is the completion of C[Γ] in the norm
given, for c ∈ C[Γ], by

‖c‖ = sup
σ

‖
∑

t∈Γ

ctσ(t)‖,

where σ ranges over all the unitary representations of Γ.

Obviously, there is a canonical bijective correspondence between unitary rep-
resentations of Γ and non degenerate representations of C∗(Γ) 6.

Thanks to the universal property of the full C∗-algebra with respect to unitary
representations of Γ, the left regular representation induces a surjective homomor-
phism, still denoted by λ, from C∗(Γ) onto C∗

r (Γ).

Theorem 1.8 (Hulanicki). Γ is amenable if and only if λ : C∗(Γ) → C∗
r (Γ) is an

isomorphism.

Proof. This boils down to showing that λ : C∗(Γ) → C∗
λ(Γ) is injective if and only

if the trivial representation of Γ is weakly contained in λ. We refer to [25, §18] or
[57, Th. 7.3.9] for the proof.

1.4 Crossed products. Let α : Γ y A be an action of Γ on a C∗-algebra
A. That is, α is a homomorphism from the group Γ into the group Aut(A) of
automorphisms of A. We denote by A[Γ] the ∗-algebra of formal sums a =

∑

att

6A representation of a C∗-algebra A in a Hilbert space H is a homomorphism σ from A into
B(H). It is non degenerated if σ(A)H is total in H.
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where t 7→ at is a map from Γ into A with finite support and where the operations
are given by the following rules:

(at)(bs) = aαt(b) ts, (at)∗ = αt−1(a) t−1,

for a, b ∈ A and s, t ∈ Γ.
For such a dynamical system α : Γ y A, the notion of unitary representation

is replaced by that of covariant representation.

Definition 1.9. A covariant representation of α : Γ y A is a pair (π, σ) where π
and σ are respectively a representation of A and a unitary representation of Γ in
the same Hilbert space H, satisfying the covariance rule

∀a ∈ A,∀t ∈ Γ, σ(t)π(a)σ(t)∗ = π(αt(a)).

A covariant representation gives rise to a ∗-homomorphism π × σ from A[Γ]
into B(H) by

(π × σ)(
∑

at t) =
∑

π(at)σ(t).

Clearly we have
∥

∥

∥
(π × σ)(

∑

at t)
∥

∥

∥
≤

∑

t∈Γ

‖σ(at)‖.

Definition 1.10. The full crossed product A⋊Γ associated with α : Γ y A is the
C∗-algebra obtained as the completion of A[Γ] in the norm

‖a‖ = sup ‖(π × σ)(a)‖

where (π, σ) runs over all covariant representations of α : Γ y A.

By definition, every covariant representation (π, σ) extends to a representation
of A ⋊ Γ, denoted by π × σ. Conversely, it is not difficult to see that every non
degenerate representation of A ⋊ Γ comes in this way from a covariant represen-
tation. In other terms, A⋊ Γ is the universal C∗-algebra describing the covariant
representations of α : Γ y A.

We now describe the analogues of the regular representation, the induced co-
variant representations. Let π be a representation of A on a Hilbert space H0 and
set H = ℓ2(Γ,H0) = ℓ2(Γ) ⊗ H0. We define a covariant representation (π̃, λ̃) of
α : Γ y A, acting on H by

π̃(a)ξ(t) = π
(

αt−1(a)
)

ξ(t)

λ̃(s)ξ(t) = ξ(s−1t),

for all a ∈ A, all s, t ∈ Γ and all ξ ∈ ℓ2(Γ,H0). The covariant representation (π̃, λ̃)
is said to be induced by π.



Amenability and exactness 9

Definition 1.11. The reduced crossed product A⋊r Γ is the C∗-algebra obtained
as the completion of A[Γ] in the norm

‖a‖r = sup ‖(π̃ × λ̃)(a)‖

for a ∈ A[Γ], where π runs over all representations of A.

When (π,H0) is a faithful representation of A one has ‖a‖r = ‖(π̃× λ̃)(a)‖ for
all a ∈ A[Γ] and therefore A⋊r Γ is faithfully represented into ℓ2(Γ) ⊗H0.

As is subsection 1.3.2, there is a canonical surjective homomorphism from A⋊Γ
onto A⋊r Γ. Note that when A = C, we have A⋊Γ = C∗(Γ) and A⋊r Γ = C∗

r (Γ).
In the sequel we shall only consider the case where A is a commutative C∗-

algebra. Any action Γ y X on a locally compact space X lifts to an action on
A = C0(X) as

αt(a)(x) = a(t−1x)

for all a ∈ C0(X) and t ∈ Γ.

Theorem 1.12. If Γ y X is an amenable action, the canonical surjection from
C0(X) ⋊ Γ onto C0(X) ⋊r Γ is an isomorphism.

For the proof, see [4, Th. 3.4] or [6, Th. 5.3].

Problem: Is the converse true ?

References : [21, Chaper VIII], [57, Chapter 7].

1.5 Tensor products of C∗-algebras. It is interesting to compare the theory
of tensor products for Banach spaces and for C∗-algebras. Therefore we begin by
recalling some facts concerning Banach spaces tensor products.

1.5.1 Tensor products of Banach spaces.

Definition 1.13. Let E and F be two Banach spaces. A cross-norm is a norm
β on the algebraic tensor product E ⊙ F such that β(x ⊗ y) = ‖x‖‖y‖ for every
x ∈ E and y ∈ F .

Let us introduce the two most important cross-norms that are considered on
E ⊙ F . The projective cross-norm γ is defined by

‖z‖γ = inf
n

∑

i=1

‖x1,i‖‖x2,i‖

where the infimum runs over all decompositions z =
∑n

i=1 x1,i⊗x2,i. The injective
cross-norm λ is defined by

‖z‖λ = sup |(f ⊗ g)(z)|,
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where f and g run over the unit balls of the duals E′ and F ′ respectively. The
Banach space completions of E ⊙ F with respect to these two norms are denoted
by E ⊗γ F and E ⊗λ F .

Clearly, γ is the greatest cross-norm on E ⊙ F . Moreover, a cross-norm β is
such that the dual norm on E′⊙F ′ is a cross-norm if and only if one has λ ≤ β ≤ γ.

1.5.2 Tensor products of C∗-algebras. Let us now go back to C∗-algebras.
Let A and B be two C∗-algebras, and denote by A ⊙ B their algebraic tensor
product. It is an ∗-algebra in an obvious way. A C∗-norm on A ⊙ B is a norm
of involutive algebra such that ‖x∗x‖ = ‖x‖2

for all x ∈ A ⊙ B. The situation is
similar to the situation met before for crossed products : there are two natural
ways to define C∗-norms on the ∗-algebra A⊙B. These norms are defined thanks
to representations into Hilbert spaces.

Definition 1.14. The minimal C∗-norm of x ∈ A⊙B is defined by

‖x‖min = sup ‖(π1 ⊗ π2)(x)‖

where π1, π2 run over all representations of A and B respectively. The minimal
tensor product is the completion A⊗min B of A⊙B for this C∗-norm.

Takesaki has shown that when π1 and π2 are faithful, we have

‖x‖min = ‖(π1 ⊗ π2)(x)‖.

Therefore, if A and B are concretely represented as C∗-subalgebras of B(H1) and
B(H2) respectively, then A ⊗min B is (up to isomorphism) the closure of A ⊙ B,
viewed as a subalgebra of B(H1 ⊗H2). It is why ‖ · ‖min is also called the spatial
tensor product.

Definition 1.15. The maximal C∗-norm of x ∈ A⊙B is defined by

‖x‖max = sup ‖π(x)‖

where π runs over all ∗-homomorphisms from A ⊙ B into some B(H) 7. The
maximal tensor product is the completion A⊗max B of A⊙B for this C∗-norm.

Theorem 1.16 ([62], Th.4.19). Let A and B be two C∗-algebras. Then ‖·‖max and
‖ · ‖min are respectively the largest and the smallest C∗-norm on A⊙B. Moreover,
they are both cross-norms.

The following results are easily proved :
• If Γ1,Γ2 are two discrete groups. Then

C∗(Γ1) ⊗max C
∗(Γ2) = C∗(Γ1 × Γ2),

C∗
r (Γ1) ⊗min C

∗
r (Γ2) = C∗

r (Γ1 × Γ2).

7It is easily shown that this supremum is actually finite.
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• If Γ acts trivially on a C∗-algebra A, then

A⋊ Γ = A⊗max C
∗(Γ),

A⋊r Γ = A⊗min C
∗
r (Γ).

Remark 1.17. Clearly, A⊗minB is a quotient of A⊗maxB. Whether the canonical
surjection is injective is related to an amenability property for C∗-algebras, called
nuclearity. It will be studied in Section 2.

Takesaki considered the case where A = B is the reduced C∗-algebra C∗
r (F2) of

the free group F2 and proved in [61] that the norms ‖·‖max and ‖·‖min are different
on the algebraic tensor product C∗

r (F2) ⊙ C∗
r (F2).

Example 1.18. Given a C∗-algebra A ⊂ B(H), the ∗-algebraMn(A) = Mn(C)⊙A
of n× n matrices with entries in A is closed in B(Cn ⊗H). It follows that there is
only one C∗-norm on Mn(A). In other terms we have

Mn(A) = Mn(C) ⊙A = Mn(C) ⊗min A = Mn(C) ⊗max A.

Remark 1.19. If T1 : A1 → B1 and T2 : A2 → B2 are bounded linear maps
between C∗-algebras, it is not true in general that T1 ⊙ T2 : A1 ⊙ A2 → B1 ⊙ B2

extends to a bounded linear map T1 ⊗ T2 between the completions with respect
to the minimal (or maximal) C∗-norms, such that ‖T1 ⊗ T2‖ ≤ ‖T1‖‖T2‖8. For
instance, given a bounded linear map T : A → B between C∗-algebras, let us
denote by T(n) : Mn(A) →Mn(B) the map Idn ⊗ T , that is T(n)([ai,j ]) = [T (ai,j)]
for [ai,j ] ∈ Mn(A). It may happen (see [56]) that supn ‖T(n)‖ = +∞9. In the
next section, we shall introduce a class of morphisms between C∗-algebras, well
behaved, in particular, with respect to tensor products.

Reference : [62, Chapter IV].

1.6 Completely positive maps.. Let A and B be C∗-algebras. A linear map
T : A → B is said to be positive if T (A+) ⊂ B+. It is not true that T(n) is then
positive for all n. A good reference for this subject is the book [56]. In particular,
it is observed at the end of the first chapter that the transposition T on M2(C) is
positive but T(2) is not positive.

Definition 1.20. A linear map T : A→ B is said to be completely positive (c.p.)
if T(n) is positive for all n ≥ 1.

Proposition 1.21. A linear map T : A → B is c.p. if and only if, for every
n ≥ 1, every a1, . . . , an ∈ A and every b1, . . . , bn ∈ B, we have

n
∑

i,j=1

b∗i T (a∗i aj)bj ∈ B+.

8This contrasts with the behaviour of the usual tensor norms λ and γ in the theory of Banach
spaces tensor products.

9We set ‖T‖
cb

= supn≥1

‚

‚T(n)

‚

‚. If ‖T‖
cb

< +∞, one says that T is completely bounded.
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This is an easy consequence, left as an exercise, of the following lemma.

Lemma 1.22. Given a1, . . . , an in a C∗-algebra A the matrix [a∗i aj ] is positive
in Mn(A). Moreover every element of Mn(A)+ is a finite sum of matrices of this
form.

Proof. Obviously the matrix

[a∗i aj ] =







a∗1
...
a∗n







[

a1 a2 · · · an

]

is positive. Let now [ai,j ] ∈ Mn(A)+. Then there exists a matrix [ci,j ] ∈ Mn(A)
such that

[ai,j ] = [ci,j ]
∗[ci,j ].

It follows that

[ai,j ] =
n

∑

k=1

[c∗k,ick,j ].

Example 1.23. Every homomorphism from A into B is completely positive. Also,
for a ∈ A, the map x 7→ a∗xa is completely positive from A into itself.

As it is shown now, completely positive maps have a very simple structure. We
only consider the case where A has a unit, for simplicity. We shall write u.c.p. for
unital completely positive.

Proposition 1.24 (Stinespring theorem, [56], Th. 4.1). Let T be a u.c.p. map
from a unital C∗-algebra A into B(H). There exist a Hilbert space K, a represen-
tation π : A → B(K) and an isometry V : H → K such that T (a) = V ∗π(a)V for
all a ∈ A. In particular, one has ‖T‖ = ‖T (1)‖ = ‖T‖cb.

Sketch of proof. We define on A⊙H the inner product

〈a1 ⊗ v1, a2 ⊗ v2〉 = 〈v1, T (a∗1a2)v2〉.

Let K be the Hilbert space obtained from A ⊙ H by separation and completion.
We denote by [x] the class of x ∈ A ⊙ H in K. Then V : v 7→ [IA ⊗ v] is an
isometry from H into K. Let π be the representation from A into K defined by
π(a)[a1 ⊗ v] = [aa1 ⊗ v] for a, a1 ∈ A and v ∈ H. Then π and V fulfill the required
properties.

Theorem 1.25 (Arveson’s extension theorem, [56], Th. 7.5). Let A be a
C∗-subalgebra of B(H) and T : A→ B(K) a completely positive map. There exists
a completely positive map T : B(H) → B(K) which extends T .
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Proposition 1.26 ([62], Prop. IV.4.23). Let Ti : Ai → Bi, i = 1, 2, be completely
positive maps between C∗-algebras.

(1) T1 ⊙ T2 extends to a c.p. map T1 ⊗min T2 : A1 ⊗min A2 → B1 ⊗min B2 and
‖T1 ⊗min T2‖ ≤ ‖T1‖‖T2‖.

(2) The same result holds for the maximal tensor norm. More generally, if T1

and T2 are two c.p. maps from A1 and A2 into a C∗-algebra B such that
T1(A1) and T2(A2) commute, then the map from A1 ⊙ A2 into B sending
a1 ⊗ a2 to T1(a1)T2(a2) extends to a c.p. map from A1 ⊗max A2 into B.

The relations between positive definite functions on a discrete group Γ and
completely positive maps on C∗

λ(Γ) are described in the following lemma.

Lemma 1.27. Let Γ be a discrete group.

(i) Let ϕ be a positive definite function on Γ. Then

mϕ :
∑

ctλ(t) 7→
∑

ϕ(t)ctλ(t)

extends to a completely positive map φ from C∗
λ(Γ) into itself.

(ii) Let φ : C∗
λ(Γ) → C∗

λ(Γ) be a completely positive map. For t ∈ Γ we set
ϕ(t) =

〈

δe, φ
(

λ(t)
)

λ(t)∗δe
〉

. Then ϕ is a positive definite function on Γ.

Proof. (i) Let (πϕ,Hϕ, ξϕ) be given by the GNS construction, so that for t ∈ Γ
one has ϕ(t) = 〈ξϕ, πϕ(t)ξϕ〉. Let S from ℓ2(Γ) into ℓ2(Γ,Hϕ) defined by

(Sf)(t) = f(t)πϕ(t)∗ξϕ.

It is a bounded linear map and its adjoint S∗ satisfies S∗(F )(t) = 〈ξϕ, πϕ(t)F (t)〉
for F ∈ ℓ2(Γ,Hϕ). A straightforward computation shows that

∀c ∈ C[Γ], mϕ(c) = S∗(c⊗ IdHϕ
)S.

It follows that mϕ extends to the completely positive map a 7→ S∗(a ⊗ IdHϕ
)S

from C∗
λ(Γ) into itself.

(ii) Using the fact that λ(s)δe = ρ(s−1)δe for s ∈ Γ, and since the right regular
representation ρ commutes with the image of φ, we get

ϕ(t−1
i tj) =

〈

δe, φ
(

λ(ti)
∗λ(tj)

)

ρ(t−1
i )ρ(tj)δe

〉

=
〈

ρti
δe, φ

(

λ(ti)
∗λ(tj)

)

ρ(tj)δe
〉

.

From the positivity of the matrix [φ
(

λ(ti)
∗λ(tj)

)

] we deduce that ϕ is positive
definite.

Observe that when ϕ has a finite support, the associated c.p. map φ has a finite
rank. Moreover, if Γ is amenable and if (ϕi) is a net of normalized (i.e. ϕi(e) = 1)
positive definite functions, with finite support, converging pointwise to one, then
the corresponding net (φi) of u.c.p. maps goes to the identity map of C∗

r (Γ) in the
topology of pointwise convergence in norm. We shall study this property more in
details in the next section.

References : [56], [62].
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2 Nuclearity and amenability

2.1 Nuclear C∗-algebras and amenable groups.

Definition 2.1. A completely positive contraction T : A → B is said to be
nuclear if there exist a net (ni) of positive integers and nets of completely positive
contractions10 φi : A→Mni

(C), τi : Mni
(C) → B, such that for every a ∈ A,

lim
i

‖τi ◦ φi(a) − T (a)‖ = 0.

Theorem 2.2. Let A be a C∗-algebra. The following conditions are equivalent :

(i) The identity map of A is nuclear.

(ii) For every C∗-algebra B, there is only one C∗-norm on A⊙B.

(iii) There exists a net (φi) of finite rank completely positive maps φi : A → A
converging to the identity map of A in the topology of pointwise convergence
in norm.

This is the Choi-Effros theorem 3.1 in [18]. The implication (ii) ⇒ (iii) is due
to Choi-Effros [18] and Kirchberg [41] independently. For a short proof of the
equivalence between (i) and (ii) we refer to [59, Prop. 1.2]. Let us just show the
easy direction.

Proof of (i) ⇒ (ii). Let T : A → A be a completely positive contraction of the
form T = τ ◦ φ where φ : A → Mn(C) and τ : Mn(C) → A are completely
positive contractions. Then the map T ⊗ IdB : A⊗max B → A⊗max B admits the
factorization

A⊗max B
θ→ A⊗min B

φ⊗IdB−→ Mn(C) ⊗min B = Mn(C) ⊗max B
τ⊗IdB−→ A⊗max B,

where θ is the canonical homomorphism fromA⊗maxB ontoA⊗minB. In particular
the kernel of T ⊗ IdB : A ⊗max B → A ⊗max B contains the kernel of θ. Let now
(Ti = τi ◦ φi) be a net of completely positive contractions factorizable through
matrix algebras and converging to IdA. Then IdA⊗maxB is the norm pointwise
limit of Ti ⊗ IdB : A ⊗max B → A ⊗max B, and therefore its kernel contains the
kernel of θ. It follows that ker θ = {0}.

Definition 2.3. A C∗-algebra A satisfying any of these equivalent properties is
said to be nuclear.

The simplest examples of nuclear C∗-algebras are the commutative ones, matrix
algebras and more generally the C∗-algebra of compact operators on some Hilbert
space. There are also many important examples coming from group and group
actions, as we shall see now.

10When A and B have a unit and T is unital, one may chose φi and τi to be unital.
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Proposition 2.4 (Lance, [48]). The reduced C∗-algebra C∗
r (Γ) of a discrete group

Γ is nuclear if and only if Γ is amenable.

Proof. We have already shown the “if” part at the end of Section 1. To prove the
converse, assume the existence of a net (φi) of finite rank u.c.p. maps from C∗

r (Γ)
into itself such that limi ‖φi(a) − a‖ = 0 for every a ∈ C∗

r (Γ). Then the net (ϕi) of
positive definite functions associated to these u.c.p. maps as in lemma 1.27 goes
to one, in the topology of pointwise convergence. The main point is that we need
finitely supported functions. We shall see that if φ : C∗

r (Γ) → C∗
r (Γ) is a finite

rank c.p.u. map then ϕ : t 7→
〈

δe, φ
(

λ(t)
)

λ(t)∗δe
〉

is uniformly approximated by
positive definite functions that are finitely supported. This will conclude the proof.
There exists bounded linear forms f1, . . . , fn on C∗

r (Γ) and elements b1, . . . , bn in
C∗

r (Γ) such that for every a ∈ C∗
r (Γ),

φ(a) =
n

∑

i=1

fi(a)bi.

Therefore, we have

ϕ(t) =
n

∑

i=1

fi(λ(t))〈δe, biλ(t)∗δe〉.

Since each function t 7→ 〈δe, biλ(t)∗δe〉 = 〈δt, b∗i δe〉 is in ℓ2(Γ), it follows that
ϕ ∈ ℓ2(Γ). By Godement’s theorem [25, Th.13.8.6], there exists ξ ∈ ℓ2(Γ) such
that ϕ(t) = 〈ξ, λ(t)ξ〉 for all t ∈ Γ. It suffices now to approximate ξ in ℓ2-nom by
finitely supported functions.

More generally, we have :

Theorem 2.5. Let Γ y X be an action of a discrete group on a locally compact
space X. The two following conditions are equivalent :

(i) The action is amenable.

(ii) The reduced cross product C0(X) ⋊r Γ is a nuclear C∗algebra.

Proof. For (i) ⇒ (ii), one may proceed in two different ways. It is possible to
construct explicitely a net of finite rank completely positive contractions from
C0(X) ⋊r Γ into itself, approximating the identity map. It is also not too difficult
to show directly the characterization (ii) of nuclearity in theorem 2.2 (see [6, Th.
5.8 and §8]). The converse is more easily shown with the help of Hilbert C∗-
modules over C0(X). They are versions of Hilbert spaces, with parameters in X.
We refer the reader to [4, Th. 3.4] or [6, Th. 5.8] for the proof.

References : [68].

2.2 Other approximation properties.
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2.2.1 Metric and completely bounded approximation property.

Definition 2.6. A Banach space E is said to have the approximation property if
there is a net (Ti) of finite rank bounded operators Ti ∈ B(E) converging to IdE

uniformly on compact subsets of E. It is said to have the bounded approximation
property if the Ti’s may be chosen such that supi ‖Ti‖ < +∞11. When there exist
such Ti’s with supi ‖Ti‖ = 1, the space E is said to have the metric approximation
property.

The first example of a Banach space not having the approximation property
was found by Enflo in 1972. Later on, around 1980, Szankowsky proved that the
Banach space B(ℓ2) fails the approximation property.

Let us recall the following important result of Grothendieck, saying that E has
the approximation property if and only if for every Banach space F the canonical
map from E ⊗γ F into E ⊗λ F is one-to-one. Theorem 2.2 is an analogue of this
result for C∗-algebras.

Obviously, a nuclear C∗-algebra has the metric approximation property. On
the other hand, Haagerup proved in [37] that the reduced C∗-algebra C∗

r (Fn) has
the metric approximation property, a very remarkable result since C∗

r (Fn), n ≥ 2,
is not nuclear, Fn not being amenable. Later, de Cannière and Haagerup proved
a stronger property for C∗

r (F2), the metric completely bounded approximation
property.

Definition 2.7. We say that a C∗-algebra A has the completely bounded approxi-
mation property (CBAP ) is there is a net of finite rank bounded maps (φi) from A
to A, such that supi ‖φi‖cb < +∞, converging pointwise to the identity. If there is
such a net with supi ‖φi‖cb = 1, we say that A has the metric completely bounded
approximation property.

2.2.2 Haagerup approximation property, or a-T -menability. In his proof
[37] that C∗

r (Fn) has the metric approximation property, Haagerup established
that the word length function ℓ defined by the free generators of Fn is conditionally
negative definite. Let us recall some basic facts on this notion.

Definition 2.8. A conditionally negative definite kernel on a space X is a function
k : X ×X → R with the following properties:

(a) k(x, x) = 0 for all x ∈ X;

(b) k(x, y) = k(y, x) for all x, y ∈ X;

(c) for any n ≥ 1, any elements x1, . . . , xn in X, and any real numbers c1, . . . , cn
with

∑n
i=1 ci = 0, then

∑n
i=1 cicik(xi, xj) ≤ 0.

11then the convergence to IdE may be equivalently required to be the norm pointwise conver-
gence.
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We summarize in the following theorem several useful results. For proofs we
refer for example to [12, Appendix C].

Theorem 2.9. Let h, k : X ×X → R be two kernels on a space X.

(i) h is a positive definite (or positive type) kernel if and only if there exist a
real Hilbert space H and a function ξ : X → H such that h(x, y) = 〈ξx, ξy〉
for every x, y ∈ H.

(ii) k is a conditionally negative definite kernel if and only if there exist a real

Hilbert space H and a function f : X → H such that k(x, y) = ‖f(x) − f(y)‖2

for all x, y ∈ X.

(iii) Let us assume that k satisfies conditions (a) and (b) of the previous defi-
nition. Then k is a conditionally negative definite kernel if and only if for
every α > 0, the kernel exp(−αk) is positive definite.

Assertion (i) above also holds when replacing real numbers by complex num-
bers. Assertion (iii) is known as Schöenberg theorem.

A function ψ : Γ → R is said to be conditionally negative definite if (s, t) 7→
ℓ(s−1t) is a conditionally negative definite kernel.

The fact that the length function ℓ on Fn is conditionally negative definite is
briefly explained at the beginning of Section 4. By considering the positive definite
functions ϕk : t 7→ exp(−ℓ(t)/k), which vanishes to 0 at infinity, we see that Fn

satisfies the following property :

Definition 2.10. We say that a discrete group Γ has the Haagerup approximation
property or is a-T -menable if there exists a net (ϕi) of positive definite functions
on Γ, vanishing to 0 at infinity and converging pointwise to 1.

For details on this property and examples we refer to [16].

3 Exactness and boundary amenabililiy

Nuclearity has several nice stability properties. In particular, given an exact se-
quence 0 → J → A→ A/J → 0 of C∗-algebras, then A is nuclear if and only if J
and A/J are nuclear ([19, Cor.4]. On the other hand, a C∗-subalgebra of a nuclear
C∗-algebra need no be nuclear. The first example is due to Choi who constructed
in [17] an explicit embedding of the non nuclear C∗-algebra C∗

r (Z2 ∗ Z3) into a
nuclear C∗-algebra.

Another simple example comes from the action of Fn on its boundary. Since
the action Fn y ∂Fn is amenable, the crossed product C(Fn)⋊r F2 is nuclear. On
the other hand, its C∗-subalgebra C∗

r (Fn) is not nuclear for n ≥ 2.
However, C∗-subalgebras of nuclear ones still have nice properties. They form

the class of exact C∗-algebras. They will be studied in this section as well as the
corresponding notion for discrete groups. In this setting this notion is also named
boundary amenability (or amenability at infinity) or propery (A) for reasons which
will become clear in the sequel.
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3.1 Equivalent characterizations of exactness for C∗-algebras.

Definition 3.1. A C∗-algebra A is said to be exact (or nuclearly embeddable) if
there exists a nuclear embedding A →֒ D into some C∗-algebra D.

Using Arveson extension theorem 1.25, we see that whenever A is exact, any
embbeding into some B(H) is nuclear. To compare with nuclearity, recall that
A is nuclear if IdA : A → A is nuclear. The reduced C∗-algebras of most of the
usual discrete groups are known to be exact (see a non exhaustive list below) while
we have seen that they are nuclear only when the group is amenable. Obviously,
every C∗-subalgebra of an exact C∗-algebra (and in particular of a nuclear C∗-
algebra) is exact. A celebrated (and deep) result of Kirchberg-Phillips [45] says
that conversely, every separable exact C∗-algebra is a C∗-subalgebra of a nuclear
one.

The terminology comes from the following important result, saying that A is
exact if and only if the functor B 7→ B ⊗min A preserves short exact sequences.
Indeed this was the original definition of exactness by Kirchberg.

More precisely, let 0 → I → B → B/I → 0 be a short exact sequence of
C∗-algebras. It can happen that

0 → I ⊗min A→ B ⊗min A→ (B/I) ⊗min A→ 0

is not exact in the middle. An explicit example was given in [68] by S. Wassermann.
He proved that if I is the kernel of the canonical surjection C∗(F2) → C∗

r (F2), then
the sequence

0 → I ⊗min C
∗(F2) → C∗

r (F2) ⊗min C
∗(F2) → C∗(F2) ⊗min C

∗(F2) → 0

is not exact.

Theorem 3.2 ( Kirchberg). Let A be a C∗-algebra. The following conditions are
equivalent:

(i) A is exact (or nuclearly embeddable).

(ii) For every short exact sequence 0 → I → B → C → 0 of C∗-algebras, the
sequence

0 → I ⊗min A→ B ⊗min A→ C ⊗min A→ 0

is exact.

Proof. (i) ⇒ (ii). Denote by q the canonical homomorphism from B onto C. The
only point is to show that I⊗minA is the kernel of q⊗ IdA : B⊗minA→ C⊗minA.
Let A →֒ D be a nuclear embedding and let (φi) be net of finite rank completely
positive contractions φi : A → D such that limi ‖φi(a) − a‖ = 0 for every a ∈ A.
It is enough to prove that for x ∈ Ker (q⊗ IdA), we have (IdB ⊗φi)(x) ∈ I⊗minD.
Indeed, considering B ⊗min A as a C∗-subalgebra of B ⊗min D, we shall obtain

x ∈ (B ⊗min A) ∩ (I ⊗min D) = I ⊗min A,
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since limi ‖x− (IdB ⊗ φi)(x)‖ = 0.
Hence, what is left to prove is that for any finite rank completely positive map

φ : A → D we have (IdB ⊗ T )(x) ∈ I ⊗min D whenever x ∈ Ker (q ⊗ IdA). Since
φ has a finite rank, there exist elements d1, . . . , dn ∈ D and bounded linear forms
f1, . . . , fn on A such that φ(a) =

∑n
k=1 fk(a)dk for a ∈ A. For k = 1, . . . , n, denote

by Rk the bounded linear map from B ⊗min A to B such that Rk(b⊗ a) = fk(a)b
if b ⊗ a ∈ B ⊙ A. The corresponding map from C ⊗min A to C is also denoted
by Rk. It is easily checked that Rk ◦ (q ⊗ IdA) = q ◦ Rk and therefore we have
Rk(Ker (q⊗ IdA)) ⊂ I. It follows that (IdB ⊗φ)(x) =

∑n
k=1Rk(x)⊗dk ∈ I⊗minD

and this ends the proof.
(ii) ⇒ (i) is a hard result due to Kirchberg (see [43, Th. 4.1] or [68, Theorem

7.3]).

Remark 3.3. A close inspection of the above proof shows that it only uses the
fact that (φi) is a net of finite rank bounded maps with

lim
i

‖x− IdB ⊗ φi(x)‖ = 0

for every x ∈ B ⊗min A. This holds in particular when A has the completely
bounded approximation property.

Note that Wassermann’s example shows that C∗(F2) is not exact. On the other
hand we have already observed that the reduced C∗-algebra C∗

r (F2) is exact.

Problem : Let Γ be a discrete group such that C∗(Γ) is exact. Is Γ amenable ?

This problem has been solved positively for many groups (e.g. maximally
almost periodic groups) but the general statement remains open [42]. We shall
see now that the situation is quite different for reduced group C∗-algebras : the
discrete groups Γ such C∗

r (Γ) is exact form a huge class.

Reference : [68].

3.2 Equivalence of exactness and boundary amenability for groups.

Definition 3.4. We say that a discrete group is exact if its reduced C∗-algebra
is exact. We say that Γ is boundary amenable or amenable at infinity if it has an
amenable action on a compact space.

The following result links the exactness of a discrete group with boundary
amenability and the amenability of its action on its Stone-Čech compactification12.

Theorem 3.5 ([34, 52, 4, 6]). Let Γ be a discrete group. The following conditions
are equivalent:

(i) There exists an amenable action Γ y X on a compact space X.

12We endow the universal compactification βΓ of the discrete space Γ with the continuous
extension of the left action of Γ on itself.
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(ii) The natural left action of Γ on the Stone-Čech compactification βΓ of Γ is
amenable13.

(iii) The C∗-algebra C(βΓ) ⋊r Γ is nuclear.

(iv) Γ is exact.

Proof. (i) ⇒ (ii). Let X be a compact space on which Γ acts amenably. We
choose x0 ∈ X. The map s 7→ sx0 from Γ to X extends to a continuous map
p : βΓ → X, by the universal property of the Stone-Čech compactification. Since

p is Γ-equivariant, given an a.i.c.m (fi) for Γ y X, the net of maps y 7→ f
p(y)
i

defines an a.i.c.m. for Γ y βΓ. The converse (i) ⇒ (ii) is obvious.
The equivalence between (ii) and (iii) follows from theorem 2.5. Now, assuming

the nuclearity of C(βΓ) ⋊r Γ, we immediately get that C∗
r (Γ) is exact since it is

contained into C(βΓ) ⋊r Γ. It remains to show that (iv) ⇒ (ii). Our proof follows
the same pattern as the proof of proposition 2.4. If C∗

r (Γ) is exact, there is a net
(Φk = τk ◦ φk) where φk : C∗

r (Γ) → Mnk
(C) and τk : Mnk

(C) → B(ℓ2(Γ)) are
u.c.p., such that limk ‖Φk(a) − a‖ = 0 for every a ∈ C∗

r (Γ). For s, t ∈ Γ we set

hk(s, t) =
〈

δs,Φk

(

λ(t)
)

λ(t)∗δs
〉

.

For every t, we have sups∈Γ |hk(s, t)| ≤ 1. It follows that hk extends continuously
to a function on βΓ × Γ, that we still denote by hk. Obviously, (hk) goes to 1
uniformly on compact subsets of βΓ × Γ. To check that hk is positive definite on
βΓ × Γ, it is enough to show, by continuity, that for any x ∈ Γ, any n ≥ 1 and
any t1, . . . , tn ∈ Γ, the matrix [hk(t−1

i x, t−1
i tj)] is positive. It is a straightforward

computation, using the complete positivity of Φk. As in the proof of proposition
2.4, the supports of the hk’s might not be compact. This technical point can be
overcome by appropriate approximation (see [4, 6]).

Examples 3.6. Boundary amenability has now been established for a long list of
groups (see [55] for more details). Among them we mention

◮ amenable groups ;

◮ hyperbolic groups [1, 29], hyperbolic groups relative to a family of exact
subgroups ([54, 23]) ;

◮ Coxeter groups [26] ;

◮ linear groups [36] ;

◮ countable subgroups of almost connected Lie groups [36] ;

◮ discrete subgroups of almost connected groups (use (4) in Examples 1.4).

13We endow the universal compactification βΓ of the discrete space Γ with the continuous
extension of the left action Γ y Γ. Recall that βΓ is the spectrum of the C∗-algebra ℓ∞(Γ), so
that ℓ∞(Γ) = C(β(Γ)
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This class of boundary amenable groups is stable by extension [44], amalga-
mated free products and HNN -extensions [27, 64]. More generally, a group acting
on a countable simplicial tree is exact provided all isotropy subgroups are exact
(see [53]).

The existence of finitely generated groups which are not boundary amenable
has been established by Gromov [32, 33]14.

Open problems:

- It is not known whether exactness is a consequence of the Haagerup ap-
proximation property. In particular the Thompson group F has Haagerup’s
property [28], but it is not known whether it is exact.

- Are the following groups exact : Out(Fn), automatic groups, three manifold
groups ?

3.3 Exactness as a metric property of a discrete group. When dealing
with continuous actions and continuous functions on βΓ it is enough to consider
their restrictions to Γ. We use now this observation to get a simpler description
of C(βΓ) ⋊r Γ and of the notion of exactness.

Let Γ be a discrete group. We shall view elements of B(ℓ2(Γ)) as kernels on
Γ × Γ. The kernel k : (s, t) 7→ k(s, t) associated with T ∈ B(ℓ2(Γ)) is defined by
k(s, t) = 〈δs, T δt〉. For ξ ∈ ℓ2(Γ) we have Tξ(s) =

∑

t k(s, t)ξ(t). There is no
known characterization of the set of kernels associated with bounded operators.
However, we are going to consider a class of kernels which obviously define bounded
operators.

For every finite subset E of Γ, we set ∆E the strip
{

(s, t) ∈ Γ × Γ, s−1t ∈ E
}

.
We say that a kernel k on Γ × Γ has finite propagation if there is a finite subset
E ⊂ Γ such that k is supported in the strip ∆E . If moreover k is bounded, it
clearly defines an element of B(ℓ2(Γ)), denoted Op(k).

Definition 3.7. Let Γ be a discrete group. The uniform Roe algebra C∗
u(|Γ|) is

the norm closure in B(ℓ2(Γ)) of the ∗-subalgebra formed by the operators Op(k),
where k ranges over the bounded kernels with finite propagation.

We shall now describe a natural identification of C(βΓ)⋊rΓ with C∗
u(|Γ|). First,

let us observe that every element f =
∑

ftt of C(βΓ)[Γ] may by identified with
the continuous function with compact support Θ(f) : (x, t) 7→ ft(x) on βΓ × Γ.
This defines an isomorphism between the ∗-algebra C(βΓ)[Γ] and the ∗-algebra
Cc(βΓ × Γ) of continous functions with compact support on βΓ × Γ.15 In the
following we make no distinction between the elements of Cc(βΓ × Γ) and their
restrictions to Γ × Γ.

14They are not even uniformly embeddable into a Hilbert space (see Subsection 4.1).
15The operations of the latter algebra are derived from the groupoid structure of βΓ×Γ, that

is F ∗(x, s) = F (s−1x, s−1) and (F ∗ G)(x, s) =
P

t
F (x, t)G(t−1x, t−1s).
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Next, we need to introduce the involution J : (s, t) 7→ (s−1, s−1t) of Γ×Γ. It is
easily checked that F 7→ F ◦J is an isomorphism between the ∗-algebra Cc(βΓ×Γ)
and the ∗-algebra of bounded kernels with finite propagation on Γ × Γ.

Proposition 3.8. The map Π : f 7→ Op(Θ(f) ◦ J) extends to an isomorphism
between the C∗-algebras C(βΓ) ⋊r Γ and C∗

u(|Γ|).

Proof. To define C(βΓ)⋊r Γ we use the faithful representation π of C(βΓ) in ℓ2(Γ)
given by π(f)ξ(t) = f(t)ξ(t) for f ∈ C(βΓ) and ξ ∈ ℓ2(Γ). Therefore C(βΓ) ⋊r Γ
is concretely represented into B(ℓ2(Γ×Γ)). More precisely, f =

∑

fss ∈ C(βΓ)[Γ]
acts on ℓ2(Γ × Γ) by

(f.ξ)(x, t) =
∑

s∈Γ

fs(tx)ξ(x, s
−1t).

Let W be the unitary operator on ℓ2(Γ×Γ) defined by Wξ(x, t) = ξ(x, t−1x−1). A
straightforward verification shows that WfW ∗ = Idℓ2(Γ) ⊗Op(Θ(f) ◦ J) for every
f ∈ C(βΓ)[Γ] ⊂ C(βΓ) ⋊r Γ. This shows that Π is isometric and concludes the
proof by a density argument.

We now observe that the amenability of Γ y βΓ can be expressed in terms of
positive definite kernels on Γ × Γ. Recall that a kernel k : Γ × Γ → C is positive
definite (in the usual sense) if for every n and t1, . . . , tn ∈ Γ the matrix [k(ti, tj)]
is positive.

Proposition 3.9. Let Γ be a discrete group. The following conditions are equiv-
alent:

(i) Γ y βΓ is amenable (i.e. Γ is exact).

(ii) For every ε > 0 and every finite subset E ⊂ Γ, there exists a function
f : s 7→ fs from Γ to ℓ1(Γ)+1 and a finite subset E′ of Γ such that

(a) ‖fs − ft‖1 ≤ ε whenever s−1t ∈ E;

(b) supp(fs) ⊂ sE′ for all s ∈ Γ.

(iii) For every ε > 0 and every finite subset E ⊂ Γ, there exists a function
ξ : s→ ξs from Γ to ℓ2(Γ)1 and a finite subset E′ of Γ such that

(a) ‖ξs − ξt‖2 ≤ ε whenever s−1t ∈ E;

(b) supp(ξs) ⊂ sE′ for all s ∈ Γ.

(iv) For every ε > 0 and every finite subset E ⊂ Γ, there exists a bounded positive
definite kernel k on Γ × Γ and a finite subset E′ of Γ such that

(a) |1 − k(s, t)| ≤ ε whenever s−1t ∈ E;

(b) supp(k) ⊂ {(s, t), s−1t ∈ E′} = ∆E′ .
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Proof. We pass from the three equivalent conditions characterizing the amenability
of Γ y βΓ recalled in Definition 1.2 to the above conditions by a change of
variables. For example let F : x 7→ F x be a continuous function from βΓ → ℓ1(Γ)+1
and set fs(u) = F s−1

(s−1u) for s, u ∈ Γ. Then fs ∈ ℓ1(Γ)+1 and for s, t ∈ Γ, setting
g = s−1t, one has

‖fs − ft‖1 =
∥

∥

∥
F gt−1 − gF t−1

∥

∥

∥

1
.

Therefore, given E ⊂ Γ, we get

sup
(s,t)∈∆E

‖fs − ft‖1 = sup
g∈E,t∈Γ

∥

∥gF t − F gt
∥

∥

1
. (1)

Starting from an a.i.c.m (Fi) as in Definition 1.2 (i), where by approximation
we may assume that each function Fi has a finite support, independent of x, we
deduce from equation (1) that property (ii) of proposition 3.9 holds. The converse
is proved by reversing this construction.

The same observation holds for the equivalence between 1.2 (ii) and 3.9 (iii).
As for (iv), we pass from (iii) in Definition 1.2 to (iv) above by replacing hi by
ki : (s, t) 7→ hi(s

−1, s−1t).

Remark 3.10. A kernel k : X×X → C is positive definite if and only if there exist
a Hilbert space H and a map ξ : X ∋ x → ξx ∈ H such that k(x, y) = 〈ξx, ξy〉 for
all x, y ∈ X (see Theorem 2.9). It follows that in (iii) of the previous proposition,
it suffices to have the existence of ξ with values in some Hilbert space H, instead
of ℓ2(Γ), satifying (a) and condition (b’) :

〈ξs, ξt〉 = 0 when (s, t) /∈ ∆E′ for a finite set E′ ⊂ Γ.

It is also easily seen that in Proposition 3.9 we may limit the study to real
valued functions and real Hilbert spaces.

Definition 3.11. A length function ℓ on a discrete group Γ is a function ℓ : Γ → N

such that ℓ(s) = 0 if and only if s = e, ℓ(st) ≤ ℓ(s) + ℓ(t) and ℓ(s) = ℓ(s−1) for all
s, t ∈ Γ. We say that the length function ℓ is proper if, in addition, lims→∞ ℓ(s) =
+∞.

On every discrete group Γ there is a proper length function ℓ (see [64, Lemma
2.1] for instance). When Γ is finitely generated, we may choose word length func-
tions. This provides a left invariant metric dℓ on Γ by dℓ(s, t) = ℓ(s−1t). From
Proposition 3.9 we deduce that the exactness of Γ only depends on the metric
dℓ and not on the group structure, since the equivalent properties (ii), (iii), (iv)
may obviously be expressed in terms of dℓ

16. Similarly, the Roe algebra also only
depends on dℓ and this explains why we use the notation C∗

u(|Γ|) instead of C∗
u(Γ).

In fact, most of the results of this section may be transposed to the case of
metric spaces.

16This also shows that the exactness of Γ does not depend on the choice of the proper length
function.
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3.4 Property (A) for metric spaces. Let (X, d) be a discrete metric space.
For r > 0 we denote by ∆r the strip {(x, y) ∈ X ×X, d(x, y) ≤ r}. The C∗-
algebra C∗

u(X) is the completion of the ∗-algebra of operators in B(ℓ2(X)) with
bounded kernels supported in some strip ∆r. One also defines in an obvious way
the analogues of conditions (ii), (iii) and (iv) of Proposition 3.9.

We spell out below the generalization of (ii) to any discrete metric space and
call it exactness.

Definition 3.12. We say that a discrete metric space (X, d) is exact if for every
R > 0 and ε > 0, there exist a map f : X → ℓ1(X)+1 and a number S > 0 such
that

(a) ‖fx − fy‖1 ≤ ε whenever d(x, y) ≤ R;

(b) supp(fx) ⊂ B(x, S)17 for every x ∈ X.

A slightly stronger notion (expressed by a Følner type condition) was intro-
duced by Yu [69] under the name of property (A). For discrete metric spaces with
bounded geometry18, Yu’s property (A) was proved by Higson and Roe [39] to
be equivalent to exactness just defined above. This is why exact groups are also
named groups with property (A).

Proposition 3.13. Let (X, d) be a discrete metric space with bounded geometry.
The following conditions are equivalent :

(i) (X, d) is exact.

(ii) For every ε > 0 and R > 0 , there exist a function f : X → ℓ2(X)1 (or from
X into the unit sphere H1 of some complex (or real) Hilbert space H) and a
number S > 0 such that

(a) ‖fx − fy‖1 ≤ ε whenever d(x, y) ≤ R;

(b) supp(fx) ⊂ B(x, S) for every x ∈ X.

(iii) For every ε > 0 and R > 0, there exist a Hilbert space H, a function ξ :
X → H1 and S > 0 such that

(a) ‖ξx − ξy‖ ≤ ε whenever d(x, y) ≤ R;

(b) 〈ξx, ξy〉 = 0 whenever d(x, y) ≥ S.

(iv) For every ε > 0 and R > 0, there exist a positive definite function h on
X ×X and S > 0 such that

(a) |1 − h(x, y)| ≤ ε whenever d(x, y) ≤ R;

17B(x, S) is the ball of centre x and radius S.
18This means that for every r > 0 there exists N such that every ball of radius r has at most

N elements.This condition is fulfilled for the metric associated with any proper length function
on a discrete group.
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(b) h(x, y) = 0 whenever d(x, y) ≥ S.

(v) The C∗-algebra C∗
u(X) is nuclear.

Proof. See [64] for the equivalence between (i), (ii), (iii) and (iv). The equivalence
of (i) with (v) is proved in [60].

4 Exactness and uniform embeddability

Let Γ = Fr be the free group with r ≥ 2 generators, A its set of free generators
and ℓ the corresponding word length function. Recall that the Cayley graph is the
graph (Γ, E) where the set of edges is defined by

E = {(s, sa), s ∈ Γ, a ∈ A ∪A−1}.

If w = a1a2 · · · an, we set w0 = e (the unit of Fr), wk = a1a2 · · · ak, and we denote
by ek(w) = (wk−1, wk) the k-th edge of w, k = 1, . . . n.

Let ξ be the map from Γ into ℓ2(E) defined by ξe = 0 and, if w is a word of
length n,

ξw =
n

∑

k=1

δek(w).

Given two elements w,w′ of Γ, an easy computation shows that

dℓ(w,w
′) = ℓ(w−1w′) = ‖ξw − ξw′‖2

.

This means that free groups can be drawn in a Hilbert space without too much
distorsion. This is a particular case of the notion uniform embedding we shall
study now.

4.1 Uniform embeddability.

Definition 4.1 (Gromov, [31], §7.E). Let (X, dX), (Y, dY ) be two metric spaces.
A map f : X → Y is said to be a uniform embedding19 if there exist two non-
decreasing functions ρ1, ρ2 from R

+ into R such that

(1) for all x, y ∈ X,

ρ1(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ2(dX(x, y)); (2)

(2) limr→+∞ ρi(r) = +∞, i = 1, 2.

Definition 4.2. We say that the metric space (X, d) is uniformly embeddable20

if there exists an uniform embedding in the metric space underlying some Hilbert
space.

19The term coarse embedding is also widely used.
20implicitely, in a Hilbert space
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We shall give characterizations of uniform embeddability similar to those of
exactness stated in Proposition 3.13.

Theorem 4.3 ([22]). Let (X, d) be a metric space. The following conditions are
equivalent :

(i) (X, d) is uniformly embeddable.

(ii) For every ε > 0 and R > 0, there exist a Hilbert space H and a function
ξ : X → H1 such that

(a) ‖ξx − ξy‖ ≤ ε whenever d(x, y) ≤ R;

(b) limr→+∞ sup{|〈ξx, ξy〉|, d(x, y) ≥ r} = 0.

(iii) For every ε > 0 and R > 0, there exist a positive definite function h on
X ×X such that h(x, x) = 1 for every x ∈ X and

(a) |1 − h(x, y)| ≤ ε whenever d(x, y) ≤ R;

(b) limr→+∞ sup{|h(x, y|, d(x, y) ≥ r} = 0.

Proof. Obviously, we may assume that the Hilbert spaces we work with are real
Hilbert spaces and that h in (iii) is a real valued function, as well. Since h may be
written h(x, y) = 〈ξx, ξy〉 where ξ is a map from X into the unit sphere of a real
Hilbert space H, the equivalence between (ii) and (iii) follows from the equality

‖ξx − ξy‖2
= 2(1 − h(x, y)).

Let us assume that (i) holds. Let f : X → H be a uniform embedding
and let ρ1, ρ2 be two non-decreasing real valued functions on [0,+∞[ such that
limr→+∞ ρi(r) = +∞, i = 1, 2, and

ρ1(dX(x, y)) ≤ ‖f(x) − f(y)‖ ≤ ρ2(dX(x, y))

for all x, y ∈ X. Given t > 0 we set ht(x, y) = exp(−t‖f(x) − f(y)‖2
). This gives

a positive definite kernel with ht(x, x) = 1 for all x ∈ X. Morever for d(x, y) ≤ R
we have

|1 − ht(x, y)| ≤ |1 − exp(−tρ2
2(R))| ≤ ε

for t small enough. Let us choose such a t. If d(x, y) ≥ r, we have

ht(x, y) ≤ exp(−tρ2
1(r)),

and since limr→+∞ ρ1(r) = +∞, we see that ht satisfies condition (b) of (iii).
Finally, let us prove that (ii) implies (i). Assuming that (ii) holds, there exists

a sequence (ξn)n≥1 of maps ξn from X into the unit sphere of a Hilbert space Hn

and a sequence (rn)n≥1 of positive real numbers such that, for n ≥ 1,

(a) ‖ξn(x) − ξn(y)‖ ≤ 1/2n whenever d(x, y) ≤ √
n ;

(b) ‖ξn(x) − ξn(y)‖2
= 2(1 − 〈ξn(x), ξn(y)〉 ≥ 1 whenever d(x, y) ≥ rn.
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We set r0 = 0. We may assume thet the sequence (rn) is strictly increasing with
limn→∞ rn = +∞.

We chose a base point x0 ∈ X and define f : X → ⊕∞
n=1 Hn (hilbertian direct

sum) by

f(x) =
∞

⊕

n=1

(

ξn(x) − ξn(x0)
)

.

Obviously this map is well defined. Moreover for x, y ∈ X, if n is such that√
n− 1 ≤ d(x, y) <

√
n, we have

‖f(x) − f(y)‖2
=

∑

k≤n−1

‖ξk(x) − ξk(y)‖2
+

∑

k≥n

‖ξk(x) − ξk(y)‖2

≤ 4(n− 1) +
∑

k≥n

1

22n
≤ 4d(x, y)2 + 1.

Therefore we have

∀x, y ∈ X, ‖f(x) − f(y)‖ ≤ 2d(x, y) + 1.

On the other hand, if rn ≤ d(x, y), we have

‖f(x) − f(y)‖2 ≥
∑

k≤n

‖ξk(x) − ξk(y)‖2 ≥ n.

We define ρ1 on [0,+∞[ by ρ1(t) =
√
n when t ∈ [rn, rn+1[. Then we get

‖f(x) − f(y)‖ ≥ ρ1(d(x, y)) for every x, y ∈ X, and therefore

∀x, y ∈ X, ρ1(d(x, y)) ≤ ‖f(x) − f(y)‖ ≤ 2d(x, y) + 1. (3)

Corollary 4.4 (Yu, [69]). Every exact discrete metric space is uniformly embed-
dable.

Proof. This follows immediately from Proposition 3.13 and Theorem 4.3 .Indeed,
bounded geometry is not needed for the proof of (i) ⇒ (iii), in Proposition 3.13.

Remark 4.5. Using sequences of expanding graphs, Gromov has obtained [32, 33]
explicit examples of metric spaces with bounded geometry which are not uniformly
embeddable into Hilbert spaces. P. Nowak [51] has constructed a locally finite
metric space (i.e. every ball is finite) which is uniformly embeddable into a Hilbert
space without being exact.

Let us come back to the case of a discrete countable group Γ.

Definition 4.6. We say that Γ is uniformly embeddable (in a Hilbert space) if the
metric space |Γ| associated with any of its proper length functions is uniformly
embeddable.
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Remark 4.7. The definition does not depend on the choice of the proper length
function, because (for instance) it can be expressed as follows : Γ is uniformly
embeddable if and only if for every ε > 0 and any finite subset E ⊂ Γ there is a
positive definite kernel h on Γ such that h(s, s) = 1 for all s ∈ Γ and

(a) |1 − h(s, t)| ≤ ε whenever s−1t ∈ E;

(b) given η > 0 there exists a finite subset E′ ⊂ Γ with |h(s, t)| ≤ η when
s−1t /∈ E′.

Proposition 4.8. Exact groups and groups with the Haagerup property are uni-
formly embedable.

This follows immediately from the definitions and Theorem 4.3.
As already said, Gromov has shown in [32, 33] the existence of finitely generated

groups that are not uniformly embeddable. They are random groups whose Cayley
graphs “quasi” contain some infinite family of expanders.

The class of uniformly embeddable countable groups is closed under subgroups,
products, free products with amalgams, and extensions by exact groups [?, 22].

Open problems:

- Is any extension of uniformly embeddable groups still uniformly embed-
dable ?

- Are there uniformly embeddable groups which are not exact ? The Thomp-
son group is known to be uniformly embeddable, but it is still open whether
it is exact or not.

4.2 Compression functions; compression constants. To get a better under-
standing of uniform embeddability, we shall look more closely to the functions ρ1

and ρ2 occuring in definition 4.1.
We are only interested in the asymptotic properties of these functions and we

shall use the following notation : given two non-decreasing functions f and g on
R

+ we set f � g if there exist c > 0 such that f(t) ≤ cg(t) + c for all t > 0.
We have seen in the proof of theorem 4.3 that a uniform embeddable metric

space always has a uniform embedding with ρ2(t) � t. Morever when (X, dX) is
a quasi-geodesic metric space21, then for any uniform embedding f : X → Y in a
metric space (Y, dY ), there exists a constant c > 0 such that for all x, y ∈ X,

dY (f(x), f(y)) ≤ cdX(x, y) + c

(see [35, Prop. 2.9] for a proof of this observation due to Gromov). For instance,
let us consider the case of a finitely generated group Γ equipped with a word length

21that is, there exist δ > 0 and λ ≥ 1 such that for any x, y ∈ X, there exist x0 =
x, x1, . . . , xn = y with

P

n−1
i=0 d(xi, xi+1.) ≤ λd(x, y) and d(xi, xi+1) ≤ δ for i = 0, . . . , n − 1.
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function ℓ. Let f : X = Γ → (Y, dY ) be a uniform embedding with ρ2 as above. Let
s, t ∈ Γ be such that ℓ(s−1t) = n and choose a geodesic path x0 = s, x1, . . . , xn = t.
We have

dY (f(s), f(t)) ≤
n−1
∑

i=0

dY (f(xi), f(xi+1)) ≤
n−1
∑

i=0

ρ2

(

ℓ(x−1
i xi+1)

)

= ρ2(1)ℓ(s−1t).

A non-decreasing function f : R
+ → R is said to be large-scale Lipschitz if

f(t) � t. Since in definition 4.1, we may choose ρ2 to be large-scale Lipschitz
when (X, dX) is quasi-geodesic, the main subject of interest is the behaviour of
possible choices for ρ1.

In the following, we shall always assume that the metric spaces we consider are
unbounded, to avoid uninteresting considerations.

Definition 4.9 ([31, 35]). Let f : (X, dX) → (Y, dY ) be a large-scale Lipschitz
embedding.

(a) The compression function ρf of f is defined by

ρf (r) = inf
dX(x,y)≥r

dY (f(x), f(y)).

(b) The asymptotic compression constant Rf of f is defined by

Rf = sup{α ≥ 0, tα � ρf (t)}.

Remarks 4.10. (a) Note that ρf is a non-decreasing function on R
+ satisfying

the first inequality of (2). Moreover if ρ1 is another such function, then ρ1 ≤ ρf .
It follows that the embedding f is uniform if and only if limr→+∞ ρf (r) = +∞.

(b) Observe that 0 ≤ Rf ≤ 1, and that the embedding is uniform whenever
Rf > 0.

(c) Let f : (X, dX) → (Y, dY ) be a large-scale Lipschitz embedding. We say that
f is a quasi-isometry if there exists c > 0 such that c−1dX(x, y)−c ≤ dY (f(x), f(y))
for all x, y ∈ X (that is ρ1 may be chosen to be affine). In this case Rf = 1.

(d) The embedding of Fr, r ≥ 2, into a Hilbert space considered at the begin-
ning of this section has compression constant 1/2.

Definition 4.11. Let (X, dX) be a metric space. The Hilbert space compression
constant of (X, d) is

R(X) = supf Rf

where f runs over all large-scale Lipschitz embeddings f into Hilbert spaces.

This number R(X) ∈ [0, 1] is a quasi-isometry invariant of X.

Definition 4.12. Let Γ be a finitely generated group. Its Hilbert space compres-
sion constant R(|Γ|) is the Hilbert space compression constant defined by any word
length metric.



30

Example 4.13. For any ε > 0, a uniform embedding f of Fr, r ≥ 2, into a
Hilbert space, such that Rf ≥ 1 − ε, can be constructed by a modification of the
embedding described at the beginning of this section (see [13] and also [35, Prop.
4.2]). It follows that R(Fr) = 1. However, this supremum is not attained, because
if it were the free group Fr would embed quasi-isometrically into a Hilbert space.
This is not possible, due to a result of Bourgain [13] showing that the 3-regular
tree does not embed quasi-isometrically into a Hilbert space.

Theorem 4.14 (Guentner-Kaminker [35]). Let Γ be a finitely generated group
equipped with the word length function defined by a symmetric set S of generators.
Assume that there exists a large-scale Lipschitz uniform embedding f : Γ → H such
that limn ρf (n)/

√
n = +∞ (for instance assume that the Hilbert space compression

constant R(|Γ|) is > 1/2). Then Γ is exact.

For the proof ot theorem 4.14, we shall need the following lemma.

Lemma 4.15. Let k : Γ × Γ → R
+ be a positive definite kernel such that

sup
s∈Γ

∑

t∈Γ

k(s, t) < +∞

lim
n→∞

sup
s∈Γ

(

∑

{t,d(s,t)≥n}

k(s, t)
)

= 0. (4)

Then for every ε > 0, there exists a positive definite kernel h on Γ × Γ with finite
propagation such that

sup
(s,t)∈Γ×Γ

|k(s, t) − h(s, t)| ≤ ε.

Proof. For n ∈ N, we define the kernel cut-off kn by kn(s, t) = k(s, t) if d(s, t) < n,
and kn(s, t) = 0 otherwise. Of course, for n large enough, kn uniformly approxi-
mate k up to ε, but there is no reason why kn should be positive definite.

We set Cn = sups∈Γ

∑

{t,d(s,t)≥n} k(s, t). We leave it as an easy exercise (only

using the Cauchy-Schwarz inequality) to show that for every ξ ∈ ℓ2(Γ),

∑

s∈Γ

∣

∣

∣

∑

{t,d(s,t)≥n}

k(s, t)ξ(t)
∣

∣

∣

2

≤ C2
n

∑

s∈Γ

|ξ(s)|2.

Therefore the operator Op(k − kn), corresponding to the matrix [(k − kn)(s, t)] is
well-defined and bounded, with ‖Op(k − kn)‖ ≤ Cn. This holds in particular for
n = 0 where k0 = 0. It follows that Op(k) belongs to the Roe algebra C∗

u(|Γ|)
since the operators Op(kn) belong to C∗

u(|Γ|) and limn→∞ ‖Op(k) − Op(kn)‖ = 0.
Since k is a positive definite kernel, the operator Op(k) is positive. Let T be its

square root. Given η > 0 we choose a bounded kernel k′ with finite propagation
such that ‖T − Op(k′)‖ ≤ η. We set V = Op(k′) and

h(s, t) = 〈V δs, V δt〉.
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Then h is a positive definite kernel with finite propagation and for s, t ∈ Γ,

|k(s, t) − h(s, t) = |〈(Op(k) − V ∗V )δs, δt〉|
≤ ‖T ∗T − V ∗V ‖ ≤ (‖T‖ + ‖V ‖)η.

The conclusion follows by choosing η small enough.

Proof of theorem 4.14. For p ∈ N
∗, we set hp(s, t) = exp(−(1/p)‖f(s) − f(t)‖2

).
Then (hp) is a sequence of positive definite bounded kernels on Γ × Γ, going to
1 uniformly on the strips {(s, t), d(s, t) ≤ R} since f is a large-scale Lipschitz
function. The main point is that these kernels hp are not supported by strips. We
shall use the previous lemma to show that they can be uniformly approximated by
finite propagation positive definite kernels. Let us prove that condition (4) holds
for hp. For s ∈ Γ and n ≥ 0, we have

∑

{t,d(s,t)≥n}

hp(s, t) =
∑

m≥n

∑

d(s,t)=m

hp(s, t)

≤
∑

m≥n

(#S)m exp
(

− (1/p)ρf (m)2
)

.

If we set ρf (m) =
√
mg(m) we get

(#S)m exp(−(1/p)ρf (m)2) =
(

(#S) exp
(

(−(1/p)g(m)2
)m
,

which is the general term of a converging series, since limm g(m) = +∞. It follows
that limn→∞ sups∈Γ

(
∑

{t,d(s,t)≥n} hp(s, t)
)

= 0.

Remark 4.16. Free groups [13, 35], more generally, hyperbolic groups [14], lat-
tices in semi-simple Lie groups and co-compact lattices in all Lie groups [63] have
compression constant 1. The compression constant of the wreath product Z ≀ Z

was proved to be between 1/2 and 3/4 in [8], to be ≥ 2/3 in [63, 50], and finally
the exact value 2/3 was recently obtained in [9]. The compression constant of
the Thompson group F is 1/2 (see [8]). Unfortunately Theorem 4.14 gives no
information about the exactness of F .

Very recently, it has been proved in [7] that for every α ∈ [0, 1], there exists
an exact finitely generated discrete group with Hilbert space compression constant
R(|Γ|) = α. This remarkable result shows that the sufficient condition for exactness
given in Theorem 4.14 is far from being necessary.

4.3 Equivariant case. In this section we consider a finitely generated group with
a word length metric. We shall give a short survey of the equivariant analogues of
exactness and uniform embeddability.

Definition 4.17. A kernel h on Γ × Γ is said to be equivariant if h(st1, st2) =
h(t1, t2) for all s, t1, t2 ∈ Γ.



32

Then h is completely determined by ϕ(s) = h(e, s). Note that h is a positive
definite kernel if and only if ϕ is a positive definite function and that h has finite
propagation if and only if ϕ has finite support.

The equivariant analogue of exactness for Γ is amenability since

• Γ is amenable if and only if there exists a sequence (ϕn) of positive definite
functions on Γ, with finite support, going to 1 uniformly on finite subsets
(i.e. pointwise).

• Γ is exact if and only if there exists a sequence (hn) of bounded positive
definite kernels on Γ × Γ, with finite propagation, going to 1 uniformly on
strips {(s, t) ∈ Γ × Γ, s−1t ∈ E}, E finite.

The equivariant analogue of uniform embeddability for Γ is the Haagerup ap-
proximation property since

• Γ has the Haagerup approximation property if and only if there exists a se-
quence (ϕn) of positive definite functions on Γ, vanishing to infinity and
going to 1 uniformly on finite subsets.

• Γ is uniformly embeddable if and only if there exists a sequence (hn) of
bounded positive definite kernels on Γ×Γ, vanishing to zero at infinity outside
strips, going to 1 uniformly on strips.

Let us make this latter observation more precise.

Definition 4.18. An equivariant uniform embedding in a Hilbert space is a triple
(σ, f,H) where σ is a representation of Γ by affine isometries in the Hilbert space
H and f is a uniform embedding such that f(st) = σ(s)f(t) for all s, t ∈ Γ.

Recall that if σ is a representation of Γ by affine isometries, there exist a
representation π of Γ by linear isometries and a 1-cocycle b : Γ → H such that
σ(s)(·) = π(s)(·) + b(s) for all s ∈ Γ (see [65] in these Proceedings). The cocycle
property is :

∀s, t ∈ Γ, b(st) = b(s) + π(s)(b(t)).

Note that if we set v = f(e) then f(s) = π(s)v + b(s) for all s ∈ Γ. Since
‖f(s) − b(s)‖ = ‖v‖, we may replace the study of the asymptotic behaviour of f
by that of b. Moreover, using the cocycle property of b, we have

‖b(s) − b(t)‖ =
∥

∥b(s−1t
∥

∥, ‖b(s)‖ ≤ Cℓ(s)

for all s, t ∈ Γ, where C = maxt∈S ‖b(t)‖ and S is a generating set defining the
metric. Hence, the embedding b is Lipschitz. It is uniform if and only if the cocycle
is proper, that is limt→∞ ‖b(t)‖ = +∞. In this case, we say that the action σ on
H is proper. This is equivalent to the property that for all bounded subset B of
H, the set {t ∈ Γ, tB ∩B 6= ∅} is finite.
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Proposition 4.19 ([2]). A discrete group Γ has the Haagerup approximation prop-
erty if and only if there exists an equivariant uniform embedding of Γ into a Hilbert
space.

This follows from the fact that conditionally negative definite functions on Γ
are those of the form t 7→ ‖b(t)‖2

where b is a 1-cocycle as above. For more details
see [16, Th. 2.1.1].

Definition 4.20. The equivariant Hilbert space compression constant of Γ is

RΓ(|Γ|) = supRb(|Γ|)

where b runs over all cocycles associated with representations by affine isometries
on Hilbert spaces.

We observe that 0 ≤ RΓ(|Γ|) ≤ R(|Γ|) ≤ 1 and that Γ has the Haagerup
property when RΓ(|Γ|) > 0.

Theorem 4.21 (Guentner-Kaminker, [35]). If the equivariant Hilbert space com-
pression constant is > 1/2, then Γ is amenable.

The compression constant RΓ(|Γ|) of the amenable group Z ≀ (Z ≀ Z) is ≤ 1/2
(see [8]). So far, there is no example of a finitely generated amenable group with
Hilbert space compression strictly less than 1/2.

An observation due to Gromov (see [20, Prop. 4.4]) shows that for a finitely
generated amenable group, the equivariant compression constant is the same as
the non-equivariant one. The equivariant compression constant of the Thompson
group is 1/2 (see [8]). It is still an open problem whether this group is amenable.

Further developments. Uniform embeddability of metric spaces (and in partic-
ular of finitely generated groups) into Hilbert spaces or more generally into Banach
spaces is a very active domain of research. It has been proved in [15] that every
metric space with bounded geometry is uniformly embeddable into a strictly con-
vex reflexive Banach space B. Moreover, for a discrete group Γ, such a uniform
embedding may be defined through a metrically proper affine isometric action.

On the other hand, recent results of V. Lafforgue [47] yield a family of expanders
that is not uniformly embeddable into any uniformly convex Banach space. How-
ever, Gromov’s argument allowing to pass from families of expanders to random
groups do not apply in order to construct, from Lafforgues expanders, groups not
uniformly embeddable into uniformly convex Banach spaces. Whether such groups
exist is a crucial open problem in view of the recent result of Kasparov and Yu
showing that the Novikov Conjecture holds for finitely generated discrete groups
which are uniformly embeddable into some uniformly convex Banach space [46].
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