
HAL Id: cel-00365584
https://cel.hal.science/cel-00365584

Submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction to Conics and Quadrics
Paul Zsombor-Murray

To cite this version:
Paul Zsombor-Murray. Introduction to Conics and Quadrics. Engineering school. McGill University,
2008. �cel-00365584�

https://cel.hal.science/cel-00365584
https://hal.archives-ouvertes.fr


MECH 576

Computer Graphics &
Geometric Modeling

June 24, 2008

Introduction to Conics and Quadrics

1 Conics and Quadrics by Other Means

Second order planar curves and spatial surfaces can be defined on five and nine points, respectively.
Now some other, possibly more efficient ways, will be discussed.

2 Conic on Two Line Pairs and a Point

A given line pair p and r intersects another given pair q and s on four points.

p ∩ q, q ∩ r, r ∩ s, s ∩ p

A fifth point T on the conic is also supplied. This is shown in Fig. 1
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Figure 1: Conic on Line Pairs and Fifth Point

An efficient way to compute the six coefficients of the conic equation is available as the sum
of the products of the first and second line pairs, individually scaled by constants λ and µ so as
to accommodate the fifth point, thus.

λpr + µqs = 0 (1)
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The coplanar lines and the fifth point are specified by their homogeneous coordinates.

p{P0 : P1 : P2}, q{Q0 : Q1 : Q2}, r{R0 : R1 : R2}, s{S0 : S1 : S2}

T{t0 : t1 : t2}
Then Eq. 1 becomes

λ(P0t0 + P1t1 + P2t2)(R0t0 + R1t1 + R2t2)

+µ(Q0t0 + Q1t1 + Q2t2)(S0t0 + S1t1 + S2t2) = 0 (2)

which defines λ and µ as
Mλ + Lµ = 0

and the conic equation can be written by expanding the following relation.

L(P0x0 + P1x1 + P2x2)(R0x0 + R1x1 + R2x2)

−M(Q0x0 + Q1x1 + Q2x2)(S0x0 + S1x1 + S2x2) = 0 (3)

The familiar form of the desired conic, Eq. 4, is written below.

(LP1R1 − MQ1S1)x
2

1 + (LP2R2 − MQ2S2)x
2

2

+[L(P1R2 + P2R1) − M(Q1S2 + Q2S1)]x1x2

+[L(P0R1 + P1R0) − M(Q0S1 + Q1S0)]x0x1

+[L(P0R2 + P2R0) − M(Q0S2 + Q2S0)]x0x2

+(LP0R0 − MQ0S0)x
2

0 = 0 (4)

It is most satisfying to note that to get L and M from Eq 2 requires 22 FLOPS while the six
coefficients of Eq. 4 needs only 42 more. This assumes that the four lines are given in homogeneous
coordinate form. With the four points on the conic which define these line pairs or degenerate

conics, the twelve line equation coefficients would incur 12 × 3 = 36 additional FLOPS.

3 Quadric on Nine Points via Three Sums of Four Plane

Pair Products

3.1 Problem

Nine given points A, B, C,D,E, F, G, H, J define a quadric. One may obtain the ten coefficients
of the homogeneous equation

a00x
2

0 + 2a01x0x1 + 2a02x0x2 + 2a03x0x3 + a11x
2

1

+2a12x1x2 + 2a13x1x3 + a22x
2

2 + 2a23x2x3 + a33x
2

3 = 0 (5)

where X{x0 : x1 : x2 : x3} represents any point on this second order surface by evaluating ten
9 × 9 determinants by expanding on the top row minors of the following singular matrix whose
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determinant vanishes.
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x2
0 x0x1 x0x2 x0x3 x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

a2
0 a0a1 a0a2 a0a3 a2

1 a1a2 a1a3 a2
2 a2a3 a2

3

b2
0 b0b1 b0b2 b0b3 b2

1 b1b2 b1b3 b2
2 b2b3 b2

3

c2
0 c0c1 c0c2 c0c3 c2

1 c1c2 c1c3 c2
2 c2c3 c2

3

d2
0 d0d1 d0d2 d0d3 d2

1 d1d2 d1d3 d2
2 d2d3 d2

3

e2
0 e0e1 e0e2 e0e3 e2

1 e1e2 e1e3 e2
2 e2e3 e2

3

f 2
0 f0f1 f0f2 f0f3 f 2

1 f1f2 f1f3 f 2
2 f2f3 f 2

3

g2
0 g0g1 g0g2 g0g3 g2

1 g1g2 g1g3 g2
2 g2g3 g2

3

h2
0 h0h1 h0h2 h0h3 h2

1 h1h2 h1h3 h2
2 h2h3 h2
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j2
0 j0j1 j0j2 j0j3 j2

1 j1j2 j1j3 j2
2 j2j3 j2
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∣

∣

∣

∣
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= 0 (6)

On the other hand a more computationally efficient way may be formulated by using an octahe-
dron with vertices on six of the points, say, A, B, C,D,E, F and forming the sum of four binary
products of four pairs of plane equations of plane pairs, none of which intersect on one of the twelve
octahedral edges because each plane pair must span all six points. The four constant coefficients,
each multiplying one of the products, are evaluated with three homogeneous linear equations pro-
vided by the three remaining points G, H, J . This involves evaluating only four 3×3 determinants
after the homogeneous coordinates of the eight planes are obtained with 32 such determinants.

A

B

CD

E

F G

H
J

Nine Point Quadric on Quadruple Sum

of Binary Products of Plane Equations

(6)DQOCT47m

Figure 2: Quadric on Plane Pairs and Three Other Points
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3.2 Formulation

Given six points there are ten distinct plane pairs that span all six because there are 6C3 = 20
distinct planes in all. Any four planes and their partners, together with the three remaining points,
may be used to generate the ten coefficients of the quadric equations. Referring to Fig. 2 let us
use the following associations of points into plane pairs.

ABC ↔ DEF, p ↔ q
BCD ↔ AEF, r ↔ s
CDA ↔ BEF, t ↔ u
DAB ↔ CEF, v ↔ w

A typical point or plane is specified by its four homogeneous coordinates, thus.

A{a0 : a1 : a2 : a3}, ABC ≡ p{P0 : P1 : P2 : P3}
The equation sought is

αp′q′ + βr′s′ + γt′u′ + δv′w′ = 0 (7)

where p′, for example, is the plane equation

P0x0 + P1x1 + P2x2 + P3x3 = 0

3.2.1 Sum of Binary Plane Products

Now Eq. 7 must be satisfied by the remaining three points G, H, J . This provides three linear
equations in α, β, γ, δ. These equations can be solved homogeneously to obtain the four coefficients.
The constraint equations are written below.







P · gQ · g R · gS · g T · gU · g V · gW · g
P · hQ · h R · hS · h T · hU · h V · hW · h
P · jQ · j R · jS · j T · jU · j V · jW · j

















α
β
γ
δ











=











0
0
0
0











(8)

Note that the boldface symbols in the matrix represent elements formed by products of two inner
vector products of plane and point coordinate vectors, thus.

P · gQ · g =











[P0 P1 P2 P3]











g0

g1

g2

g3































[Q0 Q1 Q2 Q3]











g0

g1

g2

g3





















(9)

3.3 Solution

Consider the elements of the symmetric 4× 4 quadric coefficient matrix which expresses a general
second order surface as

[x0 x1 x2 x3]











a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33





















x0

x1

x2

x3











= 0

These are computed, once α, β, γ, δ are known, with a rearrangement of Eq. 7.
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a00 = P0Q0α + R0S0β + T0U0γ + V0W0δ

a01 = [(P0Q1 + P1Q0)α + (R0S1 + R1S0)β + (T0U1 + T1U0)γ + (V0W1 + V1W0)δ]/2

a02 = [(P0Q2 + P2Q0)α + (R0S2 + R2S0)β + (T0U2 + T2U0)γ + (V0W2 + V2W0)δ]/2

a03 = [(P0Q3 + P3Q0)α + (R0S3 + R3S0)β + (T0U3 + T3U0)γ + (V0W3 + V3W0)δ]/2

a11 = P1Q1α + R1S1β + T1U1γ + V1W1δ

a12 = [(P1Q2 + P2Q1)α + (R1S2 + R2S1)β + (T1U2 + T2U1)γ + (V1W2 + V2W1)δ]/2

a13 = [(P1Q3 + P3Q1)α + (R1S3 + R3S1)β + (T1U3 + T3U1)γ + (V1W3 + V3W1)δ]/2

a22 = P2Q2α + R2S2β + T2U2γ + V2W2δ

a23 = [(P2Q3 + P3Q2)α + (R2S3 + R3S2)β + (T2U3 + T3U2)γ + (V2W3 + V3W2)δ]/2

a33 = P3Q3α + R3S3β + T3U3γ + V3W3δ (10)

4 Hyperboloid of One Sheet

Consider the formulation of the implicit point equation f(s1, s2, s3) = 0 of a hyperboloid of one
sheet which is defined as a ruled surface swept by a radial line

Sr{s01 : s01 : s01 : s01 : s01 : s01}

moving so as to remain in intersection on three, given by their axial coordinates, as expressed
below.

P01s01 + P02s02 + P03s03 + P23s23 + P31s31 + P12s12 = 0

Q01s01 + Q02s02 + Q03s03 + Q23s23 + Q31s31 + Q12s12 = 0

R01s01 + R02s02 + R03s03 + R23s23 + R31s31 + R12s12 = 0 (11)

These three lines and a typical line in the other regulus of a hyperboloid of one sheet is shown
in Fig. 3. A one parameter quadric line equation can be written immediately by eliminating
s23, s31, s12 from the three equations Eq. 11 and the Plücker condition. After simplification, this is

[(R31Q12 − R12Q31)s01 + (R12Q23 − R23Q12)s02

+ (R23Q31 − R31Q23)s03] (P01s01 + P02s02 + P03s03)

[(P31R12 − P12R31)s01 + (P12R23 − P23R12)s02

+ (P23R31 − P31R23)s03] (Q01s01 + Q02s02 + Q03s03)

[(Q31P12 − Q12P31)s01 + (Q12P23 − Q23P12)s02

+ (Q23P31 − Q31P23)s03] (R01s01 + R02s02 + R03s03) = 0 (12)

Eq. 12 can be used to generate one regulus of a general hyperboloid of one sheet, a hyperboloid of
revolution or a hyperbolic paraboloid by choosing the given lines appropriately. Eq. 12 may not
seem to be bivariate but recall the Plücker coordinates are homogeneous so one may parameterize
on a ratio, say s01 : s02, and the resulting third direction number, s03, will completely specify
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Figure 3: A Line Intersecting Three Given Ones

the direction of the ruling line selected by the ratio variable parameter. Furthermore, since one
generally seeks line rulings in Euclidean space, the elimination of s23, s31, s12 is reasonable because
s2
01 + s2

02 + s2
03 6= 0.

To get the point equation one uses S ∈ Sr like in the cone of revolution formulation. The two
middle equations and the Plücker condition are used to yield the following three substitution
relations.

s0s23 = s2s03 − s3s02, s3s31 = s3s01 − s1s03

s0s3s12 = −(s2s03 − s3s02)s01 − (s3s01 − s1s03)s02

These are substituted into Eq. 11 which reduce, after simplification, to

s0(P01s01 + P02s02 + P03s03)s03 + P23(s2s03 − s3s02)s03

+P31(s3s01 − s1s03)s03 + P12(s1s02 − s2s01)s03 = 0

s0(Q01s01 + Q02s02 + Q03s03)s03 + Q23(s2s03 − s3s02)s03

+Q31(s3s01 − s1s03)s03 + Q12(s1s02 − s2s01)s03 = 0

s0(R01s01 + R02s02 + R03s03)s03 + R23(s2s03 − s3s02)s03

+R31(s3s01 − s1s03)s03 + R12(s1s02 − s2s01)s03 = 0

which further simplifies to

(P01s0 − P12s2 + P31s3)s01 + (P02s0 − P23s3 + P12s1)s02

+(P03s0 − P31s1 + P23s2)s03 = 0 (13)

(Q01s0 − Q12s2 + Q31s3)s01 + (Q02s0 − Q23s3 + Q12s1)s02

+(Q03s0 − Q31s1 + Q23s2)s03 = 0 (14)

(R01s0 − R12s2 + R31s3)s01 + (R02s0 − R23s3 + R12s1)s02

+(R03s0 − R31s1 + R23s2)s03 = 0 (15)
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Solving Eqs. 13 and 14 above for s02 and s03

D =

∣

∣

∣

∣

∣

(P02s0 − P23s3 + P12s1) (P03s0 − P31s1 + P23s2)
(Q02s0 − Q23s3 + Q12s1) (Q03s0 − Q31s1 + Q23s2)

∣

∣

∣

∣

∣

N02 =

∣

∣

∣

∣

∣

−(P01s0 − P12s2 + P31s3)s01 (P03s0 − P31s1 + P23s2)
−(Q01s0 − Q12s2 + Q31s3)s01 (Q03s0 − Q31s1 + Q23s2)

∣

∣

∣

∣

∣

N03 =

∣

∣

∣

∣

∣

(P02s0 − P23s3 + P12s1) −(P01s0 − P12s2 + P31s3)s01

(Q02s0 − Q23s3 + Q12s1) −(Q01s0 − Q12s2 + Q31s3)s01

∣

∣

∣

∣

∣

and substituting the sum-of-products from the three Cramer determinants above into Eq. 15
produces a point equation from which the last remaining line coordinate s01 can be factored out.

(R01s0 − R12s + R31s3) [(P02s0 − P23s3 + P12s1)(Q03s0 − Q31s1 + Q23s2)

−(Q02s0 − Q23s3 + Q12s1)(P03s0 − P31s1 + P23s2)] s01

+(R02s0 − R23s3 + R12s1) [(P03s0 − P31s1 + P23s2)(Q01s0 − Q12s2 + Q31s3)

−(Q03s0 − Q31s1 + Q23s2)(P01s0 − P12s2 + P31s3)] s01

+(R03s0 − R31s1 + R23s2) [(P01s0 − P12s2 + P31s3)(Q02s0 − Q23s3 + Q12s1)

−(Q01s0 − Q12s2 + Q31s3)(P02s0 − P23s3 + P12s1)] s01 = 0

The final step, collecting on coefficients of the triple point coordinate variable product

sl
is

m
j sn

k , i + j + k = l + m + n = 3

yields

{[P01(Q31R12 − Q12R31) + Q01(R31P12 − R12P31)

+R01(P31Q12 − P12Q31)] s
2

1

+ [P02(Q12R23 − Q23R12) + Q02(R12P23 − R23P12)

+R02(P12Q23 − P23Q12)] s
2

2

+ [P03(Q23R31 − Q31R23) + Q03(R23P31 − R31P23)

+R03(P23Q31 − P31Q23)] s
2

3

+ [P23(Q31R02 − Q02R31 + R12Q03 − R03Q12)

+Q23(R31P02 − R02P31 + P12R03 − P03R12)

+R23(P31Q02 − P02Q31 + Q12P03 − Q03P12)] s2s3

+ [P31(Q12R03 − Q03R12 + R23Q01 − R01Q23)

+Q31(R12P03 − R03P12 + P23R01 − P01R23)

+R31(P12Q03 − P03Q12 + Q23P01 − Q01P23)] s3s1

+ [P12(Q23R01 − Q01R23 + R31Q02 − R02Q31)

+Q12(R23P01 − R01P23 + P31R02 − P02R31)

+R12(P23Q01 − P01Q23 + Q31P02 − Q02P31)] s1s2} s0

+ {[P01(Q31R02 − Q02R31 − R12Q03 + R03Q12)
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+Q01(R31P02 − R02P31 − P12R03 + P03R12)

+R01(P31Q02 − P02Q31 − Q12P03 + Q03P12)] s1

+ [P02(Q12R03 − Q03R12 − R23Q01 + R01Q23)

+Q02(R12P03 − R03P12 − P23R01 + P01R23)

+R02(P12Q03 − P03Q12 − Q23P01 + Q01P23)] s2

+ [P03(Q23R01 − Q01R23 − R31Q02 + R02Q31)

+Q03(R23P01 − R01P23 − P31R02 + P02R31)

+R03(P23Q01 − P01Q23 − Q31P02 + Q02P31)] s3} s2

0

+ [P01(Q02R03 − Q03R02) + P02(Q03R01 − Q01R03)

+P03(Q01R02 − Q02R01)] s
3

0 = 0 (16)

Producing the ten numerical coefficients of Eq. 16 to derive the implicit equation of a desired
surface requires the specification of the three given lines Q,R,S. This can be done quite easily if
one thinks “geometrically”. Imagine the following six points.

1. The first point locates the desired centre of symmetry of the desired ruled surface.

2. The second specifies another point on the axis.

3. The third is on the surface, on a principal axis of the minimal elliptical section, on the first
point, perpendicular to the axis.

4. The fourth is another on a generator, on the third. Now the first line in the regulus to be
ruled by moving S is defined by the third and fourth points.

5. The fifth is on the surface, on the other principal axis of the minimal elliptical section, on
the first point, perpendicular to the axis.

6. The sixth is another on a generator, on the fifth. Now the second line in the regulus to be
ruled by moving S is defined by the fifth and sixth points.

The third line is produced by perpendicular reflection, on the axis, of the first. A hyperbolic
paraboloid is specified differently. One chooses two lines to be ruled and a third line which is in
the opposite regulus, connecting the first two. Let us assume this line is

R′
r{r′01 : r′02 : r′03 : r′23 : r′31 : r′12}

Then the third specification line R becomes a special line at infinity whose moment is the direction
of the connecting line.

Rr{r01 : r02 : r03 : r23 : r31 : r12} ≡ {0 : 0 : 0 : r′01 : r′02 : r′03}

In all events, do not forget that the three given lines must be specified as axial.
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5 Conic on Four or Three Given Points and One or Two

Given Tangent Lines

Consider the ellipse shown in Fig. 4. Although it is in standard form to simplify any computation
one may wish to undertake in order to verify any concepts introduced below note that there is no
loss of generality on this account. The ellipse is shown with five points on it and each supports a
tangent line, p, q, r, s, t, respectively.

x=2

a=3

b=1

O
I x

I y

P

Q

R

S

T

p q

r

st

(MECH576)MxSpC69r

Figure 4: Conics on Five Linear Constraints

5.1 Conic Coefficients

The task is to evaluate the six coefficients aij.

[x0 x1 x2]







a00 a01 a02

a01 a11 a12

a02 a12 a22













x0

x1

x2





 = 0

With five given points P, Q, R, S, T

















p2
0 2p0p1 2p0p2 p2

1 2p1p2 p2
2

q2
0 2q0q1 2q0q2 q2

1 2q1q2 q2
2

r2
0 2r0r1 2r0r2 r2

1 2r1r2 r2
2

s2
0 2s0s1 2s0s2 s2

1 2s1s2 s2
2

t20 2t0t1 2t0t2 t21 2t1t2 t22





































a00

a01

a02

a11

a12

a22





















=

















0
0
0
0
0

















coefficients aij are evaluated with six 5 × 5 determinants of alternating sign formed by deleting
columns in sequence from the left.
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5.2 Autopolar Tangent Lines

5.2.1 Four Points and a Tangent Line on One

With four given points P, Q,R, S and tangent line s on S





















p2
0 2p0p1 2p0p2 p2

1 2p1p2 p2
2 0

q2
0 2q0q1 2q0q2 q2

1 2q1q2 q2
2 0

r2
0 2r0r1 2r0r2 r2

1 2r1r2 r2
2 0

s2
0 2s0s1 2s0s2 s2

1 2s1s2 s2
2 0

0 s0 0 s1 s2 0 −S1

0 0 s0 0 s1 s2 −S2















































a00

a01

a02

a11

a12

a22

λ



























=





















0
0
0
0
0
0





















coefficients aij are evaluated with the first six 6 × 6 determinants of alternating sign formed by
deleting columns in sequence from the left. Notice that a row containing S0 cannot be used because
it is the normal direction information pertaining to line s that is required its position is already
established as S ∈ s.

5.3 Three Points and Tangent Lines on Two

With three given points P, Q, R and tangent lines q and r on Q and R, respectively,



























p2
0 2p0p1 2p0p2 p2

1 2p1p2 p2
2 0 0

q2
0 2q0q1 2q0q2 q2

1 2q1q2 q2
2 0 0

r2
0 2r0r1 2r0r2 r2

1 2r1r2 r2
2 0 0

0 q0 0 q1 q2 0 −Q1 0
0 0 q0 0 q1 q2 −Q2 0
0 r0 0 r1 r2 0 0 −R1

0 0 r0 0 r1 r2 0 −R2

























































a00

a01

a02

a11

a12

a22

λ
µ































=



























0
0
0
0
0
0
0



























coefficients are evaluated with the first six 7×7 determinants of alternating sign formed by deleting
columns in sequence from the left.

5.3.1 Autopolar Examples and the Polar Triangle

The following exercise will begin with finding the conic, an ellipse in this case, on five given points.

P (1, 1), Q(2, 4), R(5, 5), S(7, 3), T (6, 2)

Below is the detached coefficient form of the five linear homogeneous equations in six variables.

















1 2 2 1 2 1
1 4 8 4 16 16
1 10 10 25 50 25
1 14 6 49 43 9
1 12 4 36 24 4





































a00

a01

a02

a11

a12

a22





















=





















0
0
0
0
0
0




















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With coefficients aij the conic scalar equation is written as

−120 + 38x1 + 106x2 − 11x2

1 + 16x1x2 − 29x2

2 = 0

These coefficients and the equation could equally well have been produced with the following two
systems. In the first, the point S is dropped and the tangent line t, T ∈ t is added. In this example
the line equation

100 − 31x1 + 43x2 = 0

and its coefficients were obtained with the conic, above, using the autopolar relation.





















1 2 2 1 2 1 0
1 4 8 4 16 16 0
1 10 10 25 50 25 0
1 12 4 36 43 24 0
0 1 0 6 2 0 31
0 0 1 0 6 2 −43















































a00

a01

a02

a11

a12

a22

λ



























=



























0
0
0
0
0
0
0



























In the second, the point Q is dropped and the tangent line p, P ∈ p is added. The line equation
of p is

−3 + x1 + 2x2 = 0

Equations for the second system appear below.



























1 2 2 1 2 1 0 0
1 10 10 25 50 25 0 0
1 12 4 36 24 4 0 0
0 1 0 6 2 0 31 0
0 0 1 0 6 2 −43 0
0 1 0 1 1 0 0 −1
0 0 1 0 1 1 0 −2

























































a00

a01

a02

a11

a12

a22

λ
µ































=































0
0
0
0
0
0
0
0































Essentials are illustrated in Fig. 5.

x 1

x 2

X

P

Q

R

S

T

M

R’

P’

T’

c

a

b

Figure 5: Conic, Tangent Lines and Polar Triangle
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However there is more than meets the eye at a glance. Note the tangent line r, R ∈ r. Its
coefficients, too, were calculated with the conic coefficient matrix premultiplying the homogeneous
column vector of point R{1 : 5 : 5}.

60 + x1 − 13x2 = 0

The triangle P ′R′T ′ is called a polar triangle with respect to the conic. P ′ is polar to the line RT .
Similarly, lines p and r intersect on T ′ and subtend line PR, polar to T ′. Finally R′ is polar to
line PT . Joining lines a = PP ′, b = RR′ and c = TT ′ produce a common point of intersection
X. This is the fundamental property of polar triangles that circumscribe a conic with respect to
the inscribed triangle on the three tangent points. Looking at this more closely, the three tangent
lines p, r, t are produced by a linear transformation, i.e., the symmetric conic coefficient matrix
operating successively on points P, R, T that are on the conic.

[A][P ], [R], [T ] = [p], [r], [t]






−120 19 53
19 −11 4
53 4 −29













1
1
1





 ,







1
5
5





 ,







1
6
2





 = λ







−3
1
2





 , µ







60
1

−13





 , ν







100
−31

43







Then these three lines p, r, t intersect as r∩ p = T ′, r∩ t = P ′, p∩ t = R′, the vertices of the polar
triangle. In terms of the given numerical data






X0 X1 X2

60 1 −13

100 −31 43






→ −1







9

97

49






,







X0 X1 X2

−3 1 1

100 −31 43






→ 7







15

47

−1






,







X0 X1 X2

60 1 −13

−3 1 2






→ 3







5

−27

21







Now the line equation coefficients of a = P ∩ P ′, b = R ∩ R′, c = T ∩ T ′ are similarly produced.
Note that common multipliers of the resulting vector elements have been omitted. Finally theses
lines are shown to be linearly dependent, i.e., share the common intersection point X.







x0 x1 x2

1 1 1
9 97 49





 →







6
5

−11





 ,







x0 x1 x2

1 5 5
15 47 −1





 →







−60
19
−7













x0 x1 x2

1 6 2
5 −27 21





 →







180
−11
−57





 ,

∣

∣

∣

∣

∣

∣

∣

6 5 −11
−60 19 −7
180 −11 −57

∣

∣

∣

∣

∣

∣

∣

= 0

Any pair of lines in the determinant yield X.






X0 X1 X2

6 5 −11
180 −11 −57





 →







29
117
69







A polar triangle need not be composed of three tangents to a conic. In Fig. 6 one sees an arbitrary
triangle with vertices A, B, C whose sides a, b, c provide chords of the conic, a circle in this case,
that are polar lines whose tangents subtend the vertices A′, B′, C ′ of the polar triangle with sides
a′, b′, c′. These sides are certainly not on the tangents, shown in red. Similarly none of A, B, C is
on the circle circumference. Nevertheless lines a′′ = A ∩A′, b′′ = B ∩B′, c′′ = C ∩C ′ intersect on
a common point X.
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C

A

B

a

c

b

C’

A’

B’

c’

b’

a’

M

X

c"

a"

b"

Figure 6: Polar Triangle Need Not Contain Tangents

5.4 Points and Discrete Tangent Lines

Given four points P, Q,R, S and a tangent line t one obtains a linear equation for each point, e.g.,
point P produces

p2

0a00 + 2p0p1a01 + 2p0p2a02 + p2

1a11 + 2p1p2a12 + p2

2a22 = 0

Then making use of the property, that the adjoint of the conic point coefficient matrix plays the
same rôle with respect to the dual conic defined on tangent lines, one may write

[T0 T1 T0]







a11a22 − a2
12 a02a12 − a01a22 a01a12 − a02a11

a02a12 − a01a22 a00a22 − a2
02 a01a02 − a00a12

a01a12 − a02a11 a01a02 − a00a12 a00a11 − a2
01













T0

T1

T2





 = 0

to yield a second order equation in aij.

T 2

2 a00a11 − 2T1T2a00a12 + T 2

1 a00a22 − T 2

2 a2

01 + 2T1T2a01a02 + 2T0T2a01a12

−2T0T1a01a22 − T 2

1 a2

02 − 2T0T2a02a11 + 2T0T1a02a12 + T 2

0 a11a22 − T 2

0 a2

12 = 0

With three given points P, Q, R there are only three linear equations and the two given tangent
lines s, t give us two equations of second order in Si, Ti, aij. Two conics satisfy the specification
with one tangent line while four different conics will satisfy cases where two tangent lines are
given.

6 Rectification of a Quadric on Three Lines

It will be shown how to find the principal axis of a quadric, a hyperboloid of one sheet specified
by three given lines, by finding the centre of its absolute conic using the procedure outlined in

13



subsection 5.3, above. If the lines P ,Q,R are given as radial Plücker coordinates then it is easy
to see that these pierce the absolute plane on points P, Q,R and map to absolute lines p, q, r.

P{p01 : p02 : p03 : p23 : p31 : p12} → P{p01 : p02 : p03}, p{p23 : p31 : p12}
Q{q01 : q02 : q03 : q23 : q31 : q12} → Q{q01 : q02 : q03}, q{q23 : q31 : q12}
R{r01 : r02 : r03 : r23 : r31 : r12} → R{r01 : r02 : r03}, r{r23 : r31 : r12}

The detached coefficient form of the seven constraint equations necessary to compute the six
coefficients aij of the absolute conic is written below.



























p2
01 2p01p02 2p01p03 p2

02 2p02p03 p2
03 0 0

q2
01 2q01q02 2q01q03 q2

02 2q02q03 q2
03 0 0

r2
01 2r01r02 2r01r03 r2

02 2r02r03 r2
03 0 0

q01 q02 q03 0 0 0 −q23 0
0 q01 0 q02 q03 0 0 −q31

r01 r02 r03 0 0 0 −r23 0
0 r01 0 r02 r03 0 0 −r31

























































a11

a12

a13

a22

a23

a33

λ
µ































=































0
0
0
0
0
0
0
0































In the case of the numerical example introduced below

[0 0 q01 0 0 q02 q03 − q12 0]

replaces the fifth row to avoid rank deficiency. The three lines chosen represent three skew sides
of an origin centred rectangular “box” with bottom front, upper right horizontal and rear right
vertical edges of respective lengths of 8, 4 and 2 units; the lines are P ,Q,R.

P{1 : 0 : 0 : 0 : −1 : 1}, Q{0 : 1 : 0 : −1 : 0 : 4}, R{0 : 0 : 1 : 2 : 4 : 0}
They produce the following matrix.



























1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 0 0 1 0 −4 0
0 0 1 0 0 0 0 −2
0 0 0 0 1 0 0 −4

























































a11

a12

a13

a22

a23

a33

λ
µ































=



























0
0
0
0
0
0
0



























Solving homogeneously for aij and dividing out a common factor 4 yields the absolute conic
coefficient matrix.







a11 a12 a13

a12 a22 a23

a13 a23 a33





 =







0 1 −2
1 0 −4

−2 −4 0







Its eigenvalues, obtained by numerical solution of the characteristic equation, are

4.924343992 − 0.3 × 10−9i, −4.139409960 + 0.2 × 10−9i, −0.784934032 + 0.2 × 10−9i

A cubic can have one or three real roots because complex roots must be accompanied by their
conjugate. Since there are no such pairs and the three imaginary residues are small, the real parts
are taken as three real eigenvalues; a negative pair and one positive one.
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6.0.1 Eigenvectors

The opportunity is taken here to recall the geometric implication of eigenvalues and eigenvectors. The latter are
homogeneous vectors or sets of direction numbers that are not transformed, i.e., are mapped to themselves,
when multiplied by a matrix operator, in this case the coefficient matrix of an absolute conic. This may be
stated as







a11 a12 a13

a12 a22 a23

a13 a23 a33













e1

e2

e3






=







λ 0 0

0 λ 0

0 0 λ













e1

e2

e3






= λ







e1

e2

e3






or

1

λ







e1

e2

e3






=







E1

E2

E3







The multiplier λ serves the same purpose here as it and µ did in the vector of variables used in formulating

the simultaneous equations to find aij the coefficients of the absolute conic coefficient matrix; to serve as

multipliers that convert expressions involving proportionality between equivalent sets of ratios into equalities,

i.e., equations. Note how the transformed vector e{E1 : E2 : E3} is “planar line-like” while E{e1 : e2 : e3} is

“point-like”. This may be illustrated by the polarity relation between absolute points that close the principal

axes of a conic in the affine, not absolute, plane and the respective axes (lines) themselves as shown in Fig. 7.

8

F

8

tangent lines on F

tangent lines on E

absolute point

polar line e

polar line f

O

absolute point E

(MECH576)AbPol

Figure 7: Eigenvectors, Absolute Points and Polar Lines

Returning to the numerical problem, the following eigenvectors are obtained.






−13.84868798
−21.69737597
23.24916375





 ,







4.278819920
14.55763984
16.13471482





 ,







−2.430131936
1.139736128
−.3838785654






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These line-like elements can be intersected pairwise to produce the points that close the principal
axis of the quadric. The first and second eigenvectors above intersect on a absolute point X in the
direction opposite to the direction of the third, labeled 3 in Fig. 8. Similarly the second and third
intersect on Y in a direction opposite to the line labeled 1. First the Grassmanian determinants
are presented below, then the absolute points X, Y, Z. These are on the shorter axis triad.







x1 x2 x3

−13.84868798 −21.69737597 23.24916375
4.278819920 14.55763984 16.13471482













y1 y2 y3

4.278819920 14.55763984 16.13471482
−2.430131936 1.139736128 −0.3838785654













z1 z2 z3

−2.430131936 1.139736128 −0.3838785654
−13.84868798 −21.69737597 23.24916375







X{0 : −688.5339261 : 322.9236162 : −108.7650474}
Y {0 : −23.9776833 : −37.56693851 : 40.25371114}
Z{0 : 18.16875431 : 61.81474978 : 68.51133629}

+

+

FA

E CD

B

EF D

CBA

<

<

E

D

C

A

B

F

+

<

B

E

F

D

C

<

A

+

(MECH576)S3LN82q

Figure 8: Three Orthogonal Lines and the Principal Axes of the Quadric They Define

One may note that the three given lines on a rectangular box are symmetrically distributed about
the quadric centre but there is no discernable relation between the directions of the quadric axes
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to those of the box edges or diagonals. However if the box were a cube the quadric would be a
one sheet hyperboloid of revolution with its ruling circle axis on a space diagonal of the cube.
Substituting the given lines into Eq. 16 produces the following equation of the quadric which is
then plotted, in Fig. 9 in a box only slightly larger than that defined by the given lines. Compare
the second auxiliary projection to the pictorial of the quadric. The axis marked (+) is associated
with the single positive eigenvalue while the axis marked (<) is associated with the negative
eigenvalue of lesser absolute magnitude.

16s2

0 + 2s1s2 − 4s1s3 − 8s2s3 = 0
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2
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1
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0

1

x3

Figure 9: The Region Near the Hyperboloid Throat and the Given Lines

7 Rectification of a Conic

A much simpler exercise is to take an arbitrary conic, expressed by its implicit equation, say,

−120 + 38x1 + 106x2 − 11x2

1 + 16x1x2 − 29x2

2 = 0
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and reduce it to standard form
x2

1

a2
+

x2
2

b2
− 1 = 0

This is done via a two step process. First the conic is translated so as to be origin centred. Then
the origin centred conic is rotated to orient the principal axes of the conic along the axes of the
Cartesian frame. The equation of the conic is the following vector-matrix product.

[

1 x1 x2

]







a00 a01 a02

a01 a11 a12

a02 a12 a22













1
x1

x2





 = a00 + 2a01x1 + 2a02x2 + a11x
2

1 + 2a12x1x2 + a22x
2

2 = 0

In the example above the matrix is







−120 19 53
19 −11 8
53 8 −29







Translation is effected by premultiplying this matrix by the transpose of the cofactor matrix of
that matrix which will translate a point (x1, x2) to (t1 + x1, t2 + x2), i.e.,







1 0 0
t1 1 0
t2 0 1













1
x1

x2





 =







1
t1 + x1

t2 + x2







and postmultiplying the same conic coefficient matrix by the cofactor matrix, thus.







1 0 0
−t1 1 0
−t2 0 1













a00 a01 a02

a01 a11 a12

a02 a12 a22













1 −t1 −t2
0 1 0
0 0 1





 =







1793

17
0 0

0 −11 8
0 8 −29







The top row off-diagonal elements of this triple product matrix provide the necessary pair of linear
equations in t1 and t2 to zero these elements and their first column off diagonal partners.

a01 = 19 → 19 + 11t1 − 8t2 = 0, a02 = 53 → 53 − 8t1 + 29t2 = 0, t1 = −65

17
, t2 = −49

17

For reference, the origin centred conic equation is written below.

−1793

17
+ 11x2

1 − 16x1x2 + 29x2 = 0

Rotation is similarly effected by premultiplicaation of the coefficient matrix, now with a01 = a02 =
0, by the transpose of the cofactor of an appropriate rotation matrix and postmultiplying by the
cofactor matrix itself. Note that the cofactor of a homogeneous orthogonal matrix is itself. That
is why the transpose of a rotation matrix is its inverse.

Rather than using the triple matrix product approach to obtain the slope of the principal axes one
may invoke eigenvalues and eigenvectors of the 2×2 minor of a00. This elegant method makes use
of the conic property that the pencil of lines parallel to a principal axis are in polar correspondence
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Figure 10: Normal and Skew Polar Point Pencils and Their Corresponding Parallel Polar Lines

to a linear pencil of points that lie on a line normal to the axis. This property is illustrated in
Fig. 10. This is expressed by the following transformation.

[

−11 8
8 −29

] [

e1

e2

]

=

[

E1

E2

]

= λ

[

e1

e2

]

=

[

λ 0
0 λ

] [

e1

e2

]

Rearranging produces two linear homogeneous equations in the ratio e2/e1 and redundant or
linearly dependent in λ.

[

−(11 + λ) 8
8 −(29 + λ)

] [

e1

e2

]

=

[

0
0

]

→ e2

e1

=
11 + λ

8
or

e2

e1

=
8

29 + λ

Equating the two fractions in λ yields the same characteristic equation as one obtains by taking
the determinant of the rearranged matrix above.

λ2 + 40λ + 255 = 0 → λ = −20 ±
√

145

Since one is dealing with a homogeneous system the e2/e1 ratio will provide the ratio of sin θ/ cos θ
necessary to construct the appropriate rotation matrix to form, together with the origin centred
conic coefficient matrix, the diagonalized triple product, e.g., taking the first expression for the
ratio and +

√
145 gives

sin θ ∝ −9 +
√

145, cos θ ∝ 8

Normalization yields the rotation matrix that operates on a point so as to rotate it about the
origin through the positive angle measured from the x1-axis to the direction vector in the first
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quadrant.







1 0 0
0 cos θ − sin θ
0 sin θ cos θ





 =















1 0 0

0 8
√

82+(
√

145−9)
2

−
√

145−9
√

82+(
√

145−9)
2

0
√

145−9
√

82+(
√

145−9)
2

8
√

82+(
√

145−9)
2















The triple matrix product is formed by the sequence of the transpose of the above matrix, the
origin centred coefficient matrix and the rotation matrix itself since it is its own cofactor. This
effects the desired backwards rotation on the origin centred coefficient matrix in the same way that
a similar triple product, using the forward translation of a point, brought the conic back to an
origin centred position. The result is the diagonal matrix below.







−a2b2 0 0
0 b2 0
0 0 a2





 =









1792

17
0 0

0 −5
(

65
√

145−841

9
√

145−145

)

0

0 0 −5
(

7
√

145−319

9
√

145−145

)









→ −1 +
x2

1

a2
+

x2
2

b2
= 0

The principal semi-major and -minor axis lengths can now be determined as

a ≃ 3.639414426, b ≃ 1.813791998

The eigenvector that produced these results is shown in Fig. 11 in the first quadrant.
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Figure 11: Three Positions of the Ellipse
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