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1. Introduction

These Notes are the written suport to the Lectures I gave at the school ” Quan-
tum Symmetries in Theoretical Physics and Mathematics”, held in Bariloche, Jan-
uary 2000. Both the Lectures and the Notes intend to survey the state of the art on
the classification of finite dimensional Hopf algebras over a field. In despite of many
interesting results of the last years, our knowledge of the structure of Hopf algebras
is still in a primary stage. The impact of quantum groups in the area has not been
realized yet in its full significance. I hope these Notes will convey the interest to a
range of questions related to the classification of finite dimensional Hopf algebras.

This report is aimed to results on classification or structure of finite dimen-
sional Hopf algebras. Applications to low dimensional topology and conformal field
theory, and related topics like modular categories, operator algebras, various gen-
eralizations of the notion of Hopf algebra (face algebras, weak Hopf algebras, etc.),
and many other aspects will not be touched.
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1.1. The first results on classification of Hopf algebras were obtained already
by Hopf, Leray and Borel; their work was extended by Milnor and Moore [MM,
Section 7], Cartier [Ca, Th. 2] and Kostant [Sw, Th. 8.1.5 and 13.0.1], [Ko, Th.
3.3]. The following result is known as the Cartier-Kostant-Milnor-Moore theorem.

THEOREM 1.1. A cocommutative Hopf algebra over an algebraically closed field
k of characteristic 0 is the semuidirect product of a group algebra and the enveloping
algebra of a Lie algebra. In particular, a finite dimensional cocommutative Hopf
algebra over k is a group algebra. a

It is also known that commutative Hopf algebra over k is the algebra of rational
functions on a pro-algebraic group; see also [Ga], [Se3]. This Theorem is no longer
true over algebraically closed fields of positive characteristic: restricted enveloping
algebras of p-Lie algebras are finite dimensional cocommutative Hopf algebras but
not group algebras. These finite dimensional Hopf algebras are Hopf kernels of
Frobenius homorphism on algebraic groups. Indeed, the full classification is not
known in this case; see however [Ga], [FV].

1.2. The ressemblance of the theory of Hopf algebras with group theory, al-
most a tautology at the level of cocommutative Hopf algebras, was boldly remarked
by the discovery of quantum groups. Even this name was chosen by Drinfeld to
emphasize the ideological bridge between the two theories. However, in despite of
the fact that concepts of group theory served as inspiration and guide to recent
research— an explicit example being Kaplansky’s conjectures— many elementary
facts about finite groups are hard to translate to finite dimensional Hopf algebras,
or even false at least in the first naive approach. For instance, Nichols-Zoeller free-
ness theorem is a counterpart of Lagrange’s theorem: a finite dimensional Hopf
algebra is free over any Hopf subalgebra. However the known proof is not straight-
forward and relies on the Krull-Remak-Schmidt theorem. Sylow’s theorems are
no longer true (just look at the dual of a group algebra of a simple group). The
class equation expressing the order of a finite group as the sum of the cardinals of
its conjugacy classes can be somehow recovered, but without reference to isotropy
subgroups.

On the other hand, our stock of examples of finite dimensional Hopf algebras
is not as wide as one would like. We collect the main techniques of construction of
Hopf algebras in Section 2.

1.3. The theory of Hopf algebras received a deep impact with the introduction
of quantum groups [Drl]. On one hand, a whole range of new techniques and
concepts— the double, quasitriangular Hopf algebras, braided categories, twisting,

., just to mention the most used— came into use and form now part of the standard
baggage of a Hopf algebraist. On the other hand, the fundamental examples of
quantized enveloping algebras [Dr1], [J], their duals and twisted variations thereof,
were intensively studied. In particular, a very important class of non-trivial Hopf
algebras was discovered by Lusztig: these are called Frobenius-Lusztig kernels since
they appear as Hopf kernels of a quantum Frobenius homomorphism. They can be
thought as liftings to characteristic 0 of Frobenius kernels, and as such, they play
an important role in representation theory [AJS].

1.4. The classification of finite dimensional Hopf algebras over an algebrai-
cally closed field k follows two definitely different tracks: the semisimple case and
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the non-semisimple case. Indeed, there are several equivalent characterizations of
semisimple Hopf algebras when chark = 0; when chark > 0 the correct setting is
that of semisimple and cosemisimple Hopf algebras. By a beautiful result of Etingof
and Gelaki [EG3], this reduces to the characteristic 0 case. See Section 3. A nice
survey on classification of semisimple Hopf algebras is [Mo2]; we will discuss in
Section 4 some more recent results which are not included there.

1.5. Substantial results, though not definitive, on the classification of non-
semisimple Hopf algebras are known only for the class of pointed Hopf algebras over
an algebraically closed field of characteristic 0. In this case, the lifting principle, due
to H. Schneider and the author [AS2], provides the adequate framework for this
problem and allows Lie theory to enter into the picture through quantum groups.
The goal of the series of papers [AS2, AS3, AS4, AS5] is to show that Frobelnius-
Lusztig kernels, or Lusztig’s small quantum groups, exhaust a natural class of finite
dimensional Hopf algebras. See also [AST] for the infinite dimensional case. An
account is given in Section 5; we refer to the survey paper [AS6] for a more detailed
exposition.

1.6. There are few results on classification of all Hopf algebras of a presecribed
dimension; we collect them in Section 6. Section 7 contains some remarks on
forms of Hopf algebras. Due to lack of space, some other interesting topics are not
touched; this includes work of Etingof and Gelaki on classification of triangular
Hopf algebras, see for instance [EG2, G3]. We touch Kaplansky’s conjectures only
in the course of the exposition; for a systematic overview of them, see [Sr2].

1.7. Acknowledgements. The development of the point of view on the ma-
terial presented here benefited from uncountable conversations along the years with
Hans Schneider and my students Sonia Natale and Matias Grana. I am very grate-
ful to them for sharing with me their insights. T also profited from conversations
with A. Abella, M. Beattie, S. Dascalescu, W. Ferrer Santos, S. Gelaki, Y. Kashina,
A. Masuoka, S. Montgomery, Y. Sommerhauser, P. Schauenburg, Y. Zhu.

I also thank the Directors of the School, and Editors of this volume, R. Co-
quereaux and R. Trinchero, for the splendid organization of the School, and for the
invitation to deliver the Lectures and write the Notes.

I have tried to give appropiate credit to all the papers I am aware of, but even
with the help of the contemporary electronical techniques, some results or authors
might have remained unrecognized in this paper; I only have to offer them my
sincere apologies.

1.8. Conventions and notations. We shall work over a k; suitable hypoth-
esis on theory of Hopf algebras are [Sw], [Mo1], [Sch3], [Ma3]. The notation for
Hopf algebras is standard: A, 8, £, denote respectively the comultiplication, the
antipode, the counit. We use Sweedler’s notation but dropping almost always the
summation symbol. That is, A(z) = Z(x) T(1) ® T(9) = (1) ® T(a).

Similarly, if C' is a coalgebra and V is a left comodule with structure map
6:V —=C®YV, then 5(:L‘) = Z(x) T(—1) @ Z(0) = T(-1) @ Z(0)-

If A is a Hopf algebra, the well-known adjoint representation ad of A on itself
is given by ad z(y) = x(1)y S(x(2))-

If C is a coalgebra, we denote by G(C') the set of group-like elements of C. If
g, h € G(C), then we let Py ,(C) ={x € C | A(z) = g ® ¢ + @ h} be the space
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of all (g, h)-primitive elements. If A is a Hopf algebra and T = G(A) is a finite
abelian group, then T' acts on each P, »(A) by conjugation, and if y is a character
of T, then we define P, ,(A)X = {a € Py (A) | uau™" = x(u)a, for all u € T'}.

2. Examples

In this Section, we list several known ways to obtain finite dimensional Hopf
algebras. Here k is an arbitrary field.

2.1. Duals. If H is a finite dimensional Hopf algebra, then its linear dual H*
is a again a Hopf algebra, by transposing all the maps (so that the multiplication
of H* is the transpose of the comultiplication of H and so on).

2.2. From groups. Let G be a finite group. The algebra k of functions from
G to k 1s a semisimple Hopf algebra with pointwise product and comultiplication
A($)(g,h) = d(gh), ¢ €Y, g,h € G, where we are identifying k& @ k& ~ k9*&.
The antipode is S(¢)(g) = #(9~ 1) and the counit is e(¢) = ¢(1). For g € G, let
6, € k% be the function which is 0 outside g and takes the value 1 in g. The
dual Hopf algebra is the group algebra kG| if {e,;} is the dual basis of {§,}, then
egen = €gp and

(2.1) Aleg) = €5 ® ey.

An element of a Hopf algebra whose coproduct is given by (2.1) is called a group-
like. The elements e, can be thought as Dirac measures on the discrete topological
space G. It is well-known that k¢ is always semisimple, and that the group algebra
kG 1s semisimple provided that the characteristic of k does not divide the order of
G (Maschke’s theorem).

2.3. By extension. It is natural to think on building Hopf algebras from
smaller ones, just as in group theory. This was treated by many people in different
settings: by G. I. Kac for his finite dimensional C*-Hopf algebras [Kc1]; by Singer
for connected Hopf algebras, in the so called abelian case [Si]; by Majid and Majid-
Soibelman [Mal], [MS]; by Hofstetter [Ho]; and also in [Byl], [By2], [Sch3],
[Mk1], [AD], [A1l]. See also [Mk8]. Also, it is implicit in [L3]. Briefly, the
situation is the following.

(a). A sequence of Hopf algebra maps 1 — A - C 5 B — 1, where 1 denotes
the Hopf algebra k, is ezact if

(1) ¢ is injective. Identify then A with its image.

(2) = is surjective.

(3) kerm = CA*. (AT is the augmentation ideal, i.e. the kernel of the counit).

) A={zeC : (r@id)A(z)=1®z}.
Then the equality m¢ = ¢ follows either from (3) or from (4). In such case, C is
called an extension of the Hopf algebras A and B.

An injective morphism of Hopf algebras A - C is normal if 1(AT)C = Ci(A1).

In such case, the unique possible B completing the exact sequence is the ”Hopf
cokernel” C'/C At. Now condition (5) above can be dropped if A = C' is faithfully
flat and A 1is stable by the adjoint action of C'; and B does indeed complete the
exact sequence. Examples of inclusions of Hopf algebras which are not faithfully
flat were given by Schauenburg: they are related to the lack of bijectivity of the
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antipode [Sbg2]. In the finite dimensional case, any Hopf algebra is free over its
Hopf subalgebras and this problem does not arise.

A similar analysis proceeds for a conormal, surjective, morphism of Hopf al-
gebras C' = B; but the réle of the ”faithfully flat” requirement is played now by
”faithfully coflat”, see for instance [AD, Proposition 1.2.11].

In conclusion: if C' is a finite dimensional Hopf algebra and A is a normal
Hopf subalgebra of C, then the quotient coalgebra B := C/C At is a quotient Hopf
algebra of C' and it fits in an exact sequence as above.

(b). If G is a group, A is a normal abelian subgroup and N := G/A, then N
acts on A and G can be reconstructed from N, the N-module A and a 2-cocycle
0 : N x N — A, unique up to its class in H%(N, A). Conversely, given a group N,
an N-module A and a 2-cocycle o : N x N — A we can build a group G (whose
underlying set is A x N) with A as a normal subgroup and such that N ~ G/A.

A similar, but much more involved, situation can be considered for Hopf al-
gebras. Given Hopf algebras A and B, we can build a Hopf algebra structure
on the vector space A ® B from the following additional data: a ”weak action”
—:B® A — A, a”2-cocycle” 0 : B® B — A, a weak coaction B — A® B and a
”dual 2-cocycle” A — B® B, fulfilling a list of compatibility conditions. Conversely,
given an extension as above, one can find a weak action, a weak coaction, a cocycle
an a dual cocycle which are compatible and so that C' can be reconstructed from
A, B and these data, whenever the extension is cleft. Here cleft means that there
exists an invertible comodule section of 7. This section is somehow the analogue
of the section of sets N — G at the group level, which always exists. But in some
other settings, like algebraic groups the existence of such section in the category is
not always true and similar considerations are carried out.

In any case, any extension of finite dimensional Hopf algebras is cleft [Sch1].
In conclusion: if C' is a finite dimensional Hopf algebra and A is a normal Hopf
subalgebra of C'| then C' can be reconstructed from A, the quotient Hopf algebra
B = C/CA?* and data as above.

(c). If Ais commutative and B is cocommutative, the weak action and the weak
coaction are a real action and a real coaction, respectively. Once they are fixed, the
2-cocycle and the dual 2-cocycle form have a cohomological meaning, forming a 2-
cocycle in the total complex associated to a double complex. This is usually called
the abelian case. To compute then how many extensions C' (up to isomorphisms)
can be constructed from A, B, a fixed action and a fixed coaction, amounts to
comute the order of the second cohomology group H%(A, B). A very useful devise
for this computation is the so-called Kac exact sequence, see for instance [Mk8].

(d). In several instances, properties of C' can be deduced from similar properties
of A and B, and viceversa. For example, C' 1s semisimple if and only if both A and
B are; use [BM].
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D

(e). Let us say that a finite dimensional Hopf algebra is simple if it has no
proper normal Hopf subalgebras. It is natural to ask for ”genuine” examples of
simple Hopf algebras. Clearly, if G is a simple group then both kG and k¢ are
simple Hopf algebras. For more examples, see the discussion in the next Subsection.

On the other hand, a rutinary dimension argument shows that any finite di-
mensional Hopf algebra can be obtained as an iterated extension of simple Hopf
algebras. We can then attach to any finite dimensional Hopf algebra the sequence
of its simple subfactors in some presentation as iterated extension. We do not know
the answer to the following:

QUESTION 2.1. Does the Jordan-Holder theorem hold for finite dimensional
Hopf algebras? That is, is the sequence of simple subfactors alluded above unique
up to permutation?

For some explicit computations of extensions, see [AN2, Mk6, Mk7, Mk8,
Mu2].

2.4. By twisting. Let A be a Hopf algebra and F' € A ® A be an invertible
element. Let Ap := FAF™' : A — A® A; it is again an algebra map. It is
coassociative if and only if

(2.2) (1® F)(id@A)(F) = (F @ 1)(A ®id)(F)U,

where U 1s an element of A @ A ® A that centralizes A®2(A). It 1s counital if and
only if

(2.3) ([d®e)(F) = 1 = (e ® id)(F).

If (2.2) and (2.3) hold, then Ap (the same algebra, but with comultiplication
Ap) is again a Hopf algebra. We shall say in this case that F' is a pseudo-cocycle
and that Ap is obtained from A via twisting by . When U = 1, F'is a cocycle in
a suitable sense. As the multiplication does not change, if A is semisimple then Ap
is semisimple. This construction is originally due to Drinfeld and it was applied to
group algebras in [Nk], [Mv], [EG2]. See also [EV]. In particular, examples of
non-trivial twistings of group algebras of simple groups are given:

THEOREM 2.2. [Nk]. There exisis F' € kds @kAs such that (kAs)p is a simple
non-commutative, non-cocommutative Hopf algebra. a

Here As is the alternating group of dimension 60, the smallest non-abelian
simple group. This Theorem was generalized to all non-abelian simple groups [Hof].

QUESTION 2.3. To our knowledge, the only known simple semisimple Hopf
algebras are group algebras, their twistings and duals of them. Are there more?

One could begin by the following:

QUESTION 2.4. What are all the simple semisimple Hopf algebras of dimension
607

One says that a finite dimensional Hopf algebra is triwial if it is isomorphic
group algebra or a dual group algebra. Further, one has the following natural
definition.

DEFINITION 2.5. [MoW] A finite dimensional Hopf algebra is semi-solvable if
it can be obtained by sucesive extensions from group algebras or duals of group
algebras.
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Question 2.3 is very close to the following.

QUESTION 2.6. Does there exist a semisimple Hopf algebra which is not a
twisting of a semi-solvable Hopf algebra?

2.5. Twisting the multiplication. There is a dual version of the twisting
operation, which amounts to twist the multiplication. Let A be a Hopf algebra and
let 0 : A x A — k be an invertible 2-cocycle, that 1s

o(z1), Y1))o (T ¥2), 2) = (Y1), (1)) (®, Y(2)2(2))
o(1,1) = 1,

for all z,y,z € A. Then A,— the same A but with the multiplication ., below— is
again a Hopf algebra, where

2.0y = oz, Y1) Ty (T(s), Ya)-

REMARK 2.7. There is a very convenient setting where this last construction
can be performed. Let U, H be Hopf algebras. Let 7 : U ® H — k be a bilinear
map such that for all u,v € U, a,b € H

o T(uv,a) = 7(u, ac1))7(v, az)),
o 7(u,ab) = T(u(1),b)7(u(2), a),
o 7(1,a) = ¢(a),

o 7(u, 1) =e(u).

Let A be the tensor product Hopf algebra A = U ® H and let 0 : A® A — k be
the bilinear map

oc(u®a,v®b) =ce(u)r(v,a)e(h), w,v €U, a,b€H.

Then 7 is convolution invertible with inverse given by 7=1(v,a) = ¢(Sv)(a) =
©(v)(8 1 a); o is an invertible 2-cocycle— with inverse

o N u®a,v®b) =e(u)r (v, a)e(b), u,vel, a,be H;

and consequently A, is a Hopf algebra. Note that I/ and H are naturally identified
with Hopf subalgebras of A,;; and the multiplication induces a linear isomorphism
U® H ~ A,. This means that U and H form a matched pair and that A, is the
double crossproduct of U and H. See [Ma3, Chapter 7] for a detailed exposition
and examples.

REMARK 2.8. In the notation of Remark 2.7, assume that H is finite di-
mensional and let ¢ : U — (H*)®P be a Hopf algebra homomorphism. Then
7:U®H —k, 7(v,a) = ¢(v)(a), is invertible— with inverse given by 77 !(v, a) =
©(Swv)(a) = p(v)(S™' a), and satisfies the requirements above. Reciprocally, given
such 7 there 1s a unique such .
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2.6. The double. Let H be a finite dimensional Hopf algebra. Let U =
(H*)®°P; by Remark 2.8 applied to ¢ = id, we obtain a linear map 7 which
gives rise in turn to a cocycle o, as explained in Remark 2.7. The Hopf algebra
((H*)*°P @ H) is called the Drinfeld double, or simply the double of H, and is de-
noted by D(H). Introduced by Drinfeld in the seminal paper [Dr1], it is one of the
most important constructions in Hopf algebra theory. We refer to [Mol], [Ma3],
for detailed expositions. We content ourselves by listing some of the fundamental
properties of the double:

e [Drl1]. (D(H),R) is a quasitriangular Hopf algebra, where R € H@ H* C
D(H) ® D(H) is the canonical element.

e [Dr1]. If (H, R) is quasitriangular, then R induces a Hopf algebra projec-
tion D(H) — H, with kernel (H*)®P.

e [Dr2]. If (H, R) is quasitriangular,and R = )", R; ® R?, then the element
u=7y, S(RY)R; is invertible and satisfies

S*(z) =uxu~', z€H, A(u) = (u @ u)(RaR)™'.
Here Ry = ), R' ® R;. u is called the Drinfeld element of H.

e [RS]. The double of the double D(D(H)) is isomorphic to (D(H) &
D(H)),, for a suitable cocycle o.

The following Proposition is useful in classification problems. We identify
D(H)* with H ® H* as vector spaces.

ProposiTION 2.9. [R3]. (i). The group G(D(H)), is isomorphic to G(H*) x
G(H), via multiplication.

(ii). The elements of group G(D(H)*) are of the form g x n, where n € G(H*)
and g € G(H), and 1 x g is in the center of D(H). d

2.7. By bosonization. This is a more sophisticated kind of extension. It was
discovered by Radford and interpreted in braided-categorical terms by Majid, see
[Ma2], [R2]. Tt is a distinguished feature of Hopf algebra theory with no analogue
in group theory; it 1s a very useful tool in classification problems, specially in the
pointed case.

Let A and H be Hopf algebras with bijective antipode, and assume there are
Hopf algebra maps 7 : A — H and ¢+ : H — A such that 7t = idg; so that 7 is
surjective and ¢ 1s injective. By analogy with elementary group theory, one seeks
to reconstruct A from H and the kernel of 7 as a semidirect product. The role of
the kernel of 7 is played in this situation by the algebra of coinvariants

(2.4) R:=A°"={aec A:(ide@n)A(a) =a® 1}.

In contrast with the group case, this is not a usual Hopf algebra; but it is a
braided Hopf algebra.

To explain what this means, let us first recall some definitions. Given a Hopf
algebra H, a Yetter-Drinfeld module over H is a vector space V provided with

o A structure of left H-module: H @ V — V;
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e and a structure of left H-comodule: V' — H ® V, such that

e the following compatibility condition is satisfied:
(2.5) 5(/7,.1’) = h(1)U(—1) S(h(3)) ® h(Q).U(O).

The category of all Yetter-Drinfeld modules, with morphisms the maps of mod-
ules and comodules, is denoted by gyD. (If H = kTI', we simply write FJ)D). It is
a braided category; that is, if M, N € £YD, then:

e The tensor product M ® N and the dual M*, with the natural module
and comodule structures, are again Yetter-Drinfeld modules.

e There exists a natural isomorphisme: M @ N — N ® M given explicitly
by

(2.6) c(m®@n)=m(_1).n ®mq)

which satisfies appropiate axioms, see for instance [Mol]. When H is finite di-
mensional, a Yetter-Drinfeld module over H is nothing but a left module over the
Drinfeld double D(H) of H; and the braiding is just the one defined by the universal
R-matrix of D(H).

REMARK 2.10. A natural way to introduce Yetter-Drinfeld modules is through
Hopf bimodules. A Hopf bimodule 1s simultaneously a bimodule and a bicomodule
(so it has left and right actions, and left and right coactions); all this structure is
required to satisfy natural compatibility conditions. Given a Hopf bimodule M,
the space of right coinvariants M = {m € M : §,(m) = 1 ® m} bears a natural
structure of Yetter-Drinfeld module. One gets in this way an equivalence between
the two categories. See [N, W2].

We can then consider braided Hopf algebras in the braided category HYD. We
recall that R is a braided Hopf algebra in R if:

e R is an algebra; the product and unit are morphisms in ZyD.
e R is a coalgebra; the coproduct and counit are morphisms in ZYD.

e The coproduct Ag is an algebra map; but here we consider in R ® R not
the usual product but the one defined by

mper = (mr @ mp)(id®c®id): RER®R® R— R® R.

(this multiplication differs from the usual tensor product multiplication
in the appearance of ¢ instead of the usual flip).

e The identity id : R — R has a convolution-inverse Sg in End R, the
antipode.
The archetypical example of a braided Hopf algebra in gyD is the algebra of
coinvariants R as in (2.4). Namely, R is a subalgebra and it is also stable under
the adjoint action of H; the coaction and the comultiplication are given by

§ = (7 ®@id)A, Ag(r) = rapaS(r@)) @ re).
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Conversely, let R be a braided Hopf algebra in ZYD. Then the bosonization
or biproduct of R by H is a usual Hopf algebra A = R# H, with underlying vector
space R ® H, whose multiplication and comultiplication are given by

(2.7) (r#h)(s#f) = r(h).5)Fth) f,
(2.8) A(r#th) = 7’(1)#(7’(2))(—1)h(1) ® (T(2))(0)#h(2)~

The maps # : A — H and ¢+ : H — A, w(r#h) = €e(r)h, t(h) = 14th, are Hopf
algebra homomorphisms; we have R = {a € A : (id®7)A(a) = a® 1}. So that
these constructions are inverse to each other.

We would like to have new examples of Hopf algebras constructed by bosoniza-
tion. Let R be a braided Hopf algebra in YD and let A = R#H. First, A is
semisimple if and only if both R and H are (again by [BM]). There are some non-
trivial examples of semisimple Hopf algebras which can be constructed as bosoniza-
tion [G1, AN2, Sr1]. Unfortunately, all these examples can also be described as
extensions.

DEFINITION 2.11. [AS2]. A Hopf algebra H is very simple if it is simple, and
it can not be presented as a bosonization in a non-trivial way.

QUESTION 2.12. Does there exist a semisimple Hopf algebra which is simple
but not very simple? That is, a non-trivial bosonization but not an extension.

A positive answer to this Question would also answer Question 2.3, by the
negative.

EXAMPLE 2.13. Let N > 1 be a natural number and let R = k[z]/(z"). Since
chark = 0, there is no algebra map from R to R® R (with the usual tensor product
multiplication) sending z to 2 ® 1 + 1 ® 2.

Now, let T be a group, ¢ € Z(T') and x a one-dimensional representation of
T such that x(g) =: ¢ is a root of 1 of order N. We consider R € LYD by
ha! = y(hY 2, §(z') = ¢ @ /. Then c¢(x! @ 2!) = ¢/'2' ® 2/. Using the
quantum binomial formula, one can see without effort that there is an algebra map
AR : R— R® R (with the "braided” tensor product multiplication) sending z to
z® 14+ 1® 2; and that this is indeed a braided Hopf algebra.

If g has order NV and I is generated by g, then the bosonization T, = R#kI
is called a Taft algebra; one has T, ~ k(g,z|¢" = 1,2V = 0,9z = qzg) with ¢
group-like and A(z) =2 ® 1 + ¢ ® . It is also not difficult to see that T, ~ T, as
Hopf algebras, and that the proper Hopf subalgebras of 7, are contained in k{g).
It follows at once that T, is simple (but not very simple). For a general criteria of
simplicity of pointed Hopf algebras, see [ASO].

If R is a braided Hopf algebra in g)ﬂD then there is also a braided adjoint
representation ad, of R on itself given by
ad, z(y) = p(p ® 8)(id ®c)(A @ id)(z @ y),

where p is the multiplication and ¢ € End(R ® R) is the braiding. Note that if
z € P(R) then the braided adjoint representation of z is just

(2.9) ad. 2(y) = p(id —c)(z @ y) =: [z, y..
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The element [z,y]. defined by the second equality for any z and y, regardless of
whether z 1s primitive, will be called a braided commutator.

When A = R#H, then for all b,d € R,
(2.10) ad (s (d#1) = (ad, b(d))#1.

3. General results

In this Section, we review some basic fundamental results that allow to organize
the study of classification problems of finite dimensional Hopf algebras. The field
k is general, except when explicitly stated.

3.1. Freeness results. Let H be a Hopf algebra. et R C H be a subalgebra
such that A(R) C H ® R; that is, R is la left coideal subalgebra. A (left) relative
(H, R)-module is a left R-module M provided with a left comodule structure § :
M — H ® M such that

6(r.m) = T(1)M(-1) ® T(2)-M(0),

for all m € M, r € R. The category of left relative (H, R)-modules is denoted by
B M. Here is one of the fundamental results that opened the recent theory of finite
dimensional Hopf algebras.

THEOREM 3.1. [NZ]. If B is a Hopf subalgebra of a finite dimensional Hopf
algebra A then any left relative (A, B)-module is a free left B-module. a

An example of relative (A, B)-module is A itself, with left multiplication of B
and the comultiplication of A. Clearly, a subspace C of A is a relative (A, B)-
submodule if BC' C C and A(C) C A® C'. The following applications of Theorem
3.1 illustrate better its importance.

COROLLARY 3.2. [NZ]. Let A be a finite dimensional Hopf algebra.

(1) If B is a left coideal subalgebra, in particular if it is a Hopf subalgebra,
of A, then A 1s free as B-module with left multiplication. In particular,
dim B divides dim A.

(2) If C is a subcoalgebra of A and S is a subgroup of G(A) such that gC C C
for all g € S, then |S| divides dim C.

(3) If 7 : A — H is a Hopf algebra epimorphism and B is a Hopf subalgebra
of A such that B C A°°™, then dim B divides dim A°™; ¢f. (2.4).

O
In the case of group algebras, part (i) of the Corollary amounts to Lagrange’s
theorem. For infinite dimension the preceding is false; a counterexample is given

in [0S2]. A substitute would be the following statement: ”any inclusion of Hopf
algebras is faithfully flat”; but this is also false as shown by Schauenburg [Sbg2].

For a left coideal subalgebra B of a finite dimensional Hopf algebra A, the
integer

dim A
A:B]:=
[ ) dim B
will be called the indez of B in A. If B = kG is a group algebra, we just write
[A:G]:=[A: B].
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Recently, the Nichols-Zoller theorem was generalized to the braided case.

THEOREM 3.3. [Sf, T1]. Let H be a Hopf algebra with bijective antipode and
let A be a finite dimensional braided Hopf algebra in gyD. If B is a braided Hopf
subalgebra of A, then A 1s free as B-module with left multiplication. In particular,
dim B divides dim A. d

Notice that Theorem 3.3 follows directly from Corollary 3.2 in the case when
H is also finite dimensional [AS1]. A variation of this result will be discussed later,
see Theorem 5.42.

3.2. Integrals and applications. Let A be a Hopf algebra. We say that
A € A* is a right integral on A if
AB =B, 1),
for all B € A*; or equivalently if (A, 2)1 = (A, 2(1))x(2), for all z € A. Similarly left
integrals on A are defined. Furthermore, we say that A € A is a left integral in A if
zA = (e, z)A,
for all x € A. We collect several facts about integrals:
THEOREM 3.4. Let A be a Hopf algebra.

(1) [LS]. If A is finite dimensional Hopf algebra, then the space of left integrals
m A is one-dimensional.

(2) If the space of left integrals in A is non-zero, then A is finite dimensional.
This implies:

(3) [Sw, Ex. 1-4, pp. 107]. If A is semisimple', then it is finite dimensional.

(4) [Sul]. The space of left integrals on A has dimension < 1.
O

If A is a Hopf algebra with a non-zero integral on it, then A is called co-
Frobenius. For instance, cosemisimple Hopf algebras (like compact quantum groups)

are co-Frobenius. Co-Frobenius Hopf algebras are matter of current interest. See
[DNT] and references therein.

We fix now a finite dimensional Hopf algebra A, a non-zero right integral A € A*
and a a non-zero left integral A € A. Notice that neither X is necessarily a left
integral in A*, nor A is necessarily a right integral in A. The failures are respectively
measured by the so-called modular (or distinguished) group-like elements a € A,
a € A*. They are determined by

BA = X, a), Az = (a,z)A.
We say that A is unimodular if A is a right integral in A; that is, if @ = €. It is
known that:

(1) Semisimple Hopf algebras are unimodular;

n this paper, we understand by ”semisimplering” one whose category of modules is semisim-
ple. Some authors use ”artinian semisimple”, and reserve ”semisimple” for a ring whose Jacobson
radical is zero.
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(2) quasitriangular (finite dimensional) Hopf algebras are unimodular. In par-
ticular, a Drinfeld double is unimodular, and hence any finite dimensional
Hopf algebra can be embedded in a unimodular one.

The modular elements are related to the antipode by the following important
formula discovered by Radford:

THEOREM 3.5. [R1]. 8*(z) = ad a(ad a(z)) = ad a(ad a(z)). O

See [Sch3] for an elegant conceptual proof of Radford’s formula.

If A = kG is the group algebra of a finite group G, then A = EgeGg is a
(right and left) integral. Note that this a Haar measure on the finite group G; this
justifies the name of integral given above. The well known Maschke theorem asserts
that kG is semisimple iff the characteristic of k does not divide the order |G| of G.
As |G = > eq<€69> =< €, 9 >, Maschke theorem is equivalent to the
statement ” kG is semisimple iff < €, A > 0”7. It can be generalized in this way to
finite dimensional Hopf algebras:

THEOREM 3.6. (Maschke Theorem for Hopf algebras). The following
statements are equivalent.

(1) A is semisimple.
(2) <e,A>#0.
O

The square of the antipode § is intimately related to the semisimplicity of A:

THEOREM 3.7. [OS1]. Let A € A* (resp. A € A) be inlegrals as above. We
normalize them by A(A) = 1. Then trS? = ¢(A)X(1). Therefore the following are
equivalent:

(1) tr8? # 0.
(2) A and A* are semisimple.
O

Here is a useful consequence of the preceding ideas.

LEMMA 3.8. [Z1] Let H be a Hopf algebra of odd dimension. If both H and
H* are unimodular, then H is semisimple. In particular, if both G(H) and G(H™*)
are trivial, then H 1s semisimple.

Proor. By Radford’s formula 3.5, S* = id. If H would not be semisimple,
then trS? = 0 by Theorem 3.7. Let Hy be the eigenspace of 8% of eigenvalue +1.
Then dmHy +dimH_ = dimH, dim H; — dim H_ = 0; hence dim H 1is even, a
contradiction. d

TueEoREM 3.9. [LR1, LR2]. If the characteristic of k is zero, the following
conditions on a finite dimensional Hopf algebra A are equivalent:
(1) A is semisimple.
(2) A is cosemisimple, that is, A* is semisimple.
(3) A is involutory, i.e. S? =id.
g

It follows at once from Theorem 3.9 that Hopf subalgebras and quotient Hopf
algebras of a semisimple Hopf algebra, are also semisimple.
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In positive characteristic, the preceding Theorem is false: group algebras are
involutory, but not always semisimple. Conditions i) and ii) imply that the charac-
teristic of k does not divide the dimension of A [LR2, Th. 2]; also, if we suppose
that dim A # 0, then condition iii) implies i) and ii). Tt seems that the right ana-
logue is that of semisimple and cosemisimple Hopf algebras. This is enhanced by
the following beautiful result. For the rest of this Section, k is an algebraically
closed field of characteristic p > 0.

We need some notation. The idea of the Theorem 3.10 below is that one can
lift the category of semisimple and cosemisimple Hopf algebras over k to some
analogous category but in characteristic 0. We need a field of characteristic 0; for
this, one considers the ring O of Witt vectors of k and its field of fractions K. It is
known that char K = 0, O is a discrete valuation ring, say with maximal ideal 90,

and M/M? ~ k.

THEOREM 3.10. [EG3, Section 2] Let A be a semisimple and cosemisimple Hopf

algebra over k of dimension N. Then there erists a unique, up to isomorphism,
Hopf algebra A over O, free of rank N, such that A/pA ~ A as Hopf algebras. The
Hopf algebra Ay = A ®o K satisfies the following properties:

e [t is semusimple and cosemisimple.

e The dimensions of its irreducible modules and comodules are the same as

those of A.

o If A 1s quasitriangular, then the uniwersal R-matriz also lifts to an univer-
sal R-matriz for Ay, which is then also quasitriangular. If A s triangular,
then Ag also is.

d

This Lifing Theorem allows to deduce many results in the positive characteristic
case, from the characteristic 0 case. Notably, here is an answer to another conjecture
of Kaplansky.

THEOREM 3.11. [EG3]. The following conditions on a finite dimensional Hopf
algebra A are equivalent:

(1) A is semisimple and cosemisimple.
(2) dimA # 0 and 8? = id.
d

It is worth mentioning that there exists only a finite number of isomorphism
classes of semisimple and cosemisimple Hopf algebras of fixed dimension n. This
was conjectured by Kaplansky and proved by Stefan [St2]. An alternative proof
was independiently found in [Sch4, EG3].

3.3. The exponent. In this subsection, k is any field. In analogy with ele-
mentary group theory, one could consider the following notion.

DEFINITION 3.12. [EG5, Kal] The ezponent of a Hopf algebra H is
expH =min{N € N: uyo(id®8S?®--- @8 " )Ay =¢c.1} e NU 0.

In [EGS5] several properties and alternative characterizations of the exponent
are proved. Notably, they use Vafa’s formula from Conformal field theory to show:
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TueEoOREM 3.13. [EGS5] If H is a semisimple and cosemisimple Hopf algebra
over k, then exp H divides (dim H)3. d

This gives support to the following natural conjecture.

CoONJECTURE 3.14. [Kal] If H is a semisimple and cosemisimple Hopf algebra
over k, then exp H divides dim H .

The validity of the Conjecture was verified by Kashina in most of the known
cases. A further motivation for this conjecture is given by

ProposiTioN 3.15. [Kal] If H is a semisimple and cosemisimple Hopf algebra
over k, and R is a a semisimple and cosemisimple Hopf algebra in £YD, then the
order of the square of the antipode of R divides exp H. d

More questions about the exponent can be found in [EGS5].

4. The semisimple case

In this Section we survey known results on classification of semisimple Hopf
algebras. The base field k is now algebraically closed; it has characteristic 0, except
where 1s stated otherwise.

4.1. The Class Equation. A first fundamental result is the so-called Class
Equation, found by G. I. Kac in 1972 [Kc2] and rediscovered by Y. Zhu 20 years
later [Z1]. To state it, we need some preliminaries that have interest in their own.

Let H be a finite dimensional Hopf algebra and let V be a finite dimensional
left H-module, corresponding to a representation p : H — End V. We define the
character of V as the functional xyy € H* given by

xv(h) = try(p(h)), heH.

Here are some elementary properties of the characters: if V and W are finite
dimensional H-modules, then

o xuv = xv + xw for any extension U of V by W, in particular xvew =
Xv + Xw;
® XVRW = XV -XW;
* xv+ =8(xv).
Hence, the abelian subgroup of H* generated by the characters of the finite dimen-
sional modules of H is finitely generated, and is a subring of H*. It will be denoted

by Rz(H); If T is any ring, we set Rp(H) := Rgz(H)® T.

Now assume that the Hopf algebra H is actually semisimple. It can be shown
that

e Ryz(H) is a free abelian group of finite rank; and if V;,...,V, form a
set of representatives of isomorphism classes of ireducible modules, then
XVi,- -, Xv, form a Z-basis of Rz(H).

e Ry (H)isisomorphic to the k-subalgebra of H* spanned by the characters.
In particular, xv,, ..., xv, form a k-basis of Ry(H).
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e Ry (H) is a semisimple subalgebra of H*.

More information about the character ring of a Hopf algebra can be found in
[Lo2, Wi2].

THEOREM 4.1. [Kc2, Z1] (The Class Equation for semisimple Hopf algebras).
Let H be a semisimple Hopf algebra. Let A € H* be an integral, such that < \,1 >=
1, and let A =eq1,eq,...,e,, be a complete set of orthogonal primitive idempotents

in R(H). Then

dimH =" dim(e; H*),
i=1
with dim(e; H*) = 1, and dim(e; H*) /dim H, V1 <i < n. d

The original proof of Kac and Zhu used some algebraic number theory. A
shorter proof was given in [Lo1l].

ExAMPLE 4.2. Let H = kG be a group algebra. Then the algebra of characters
R(G) C k% is the algebra of class functions, whose idempotents are the character-
istic functions of the conjugacy classes. In this case, the Class Equation expresses
the elementary fact that the cardinals of the conjugacy classes divide the order of
G. So the name of Theorem 4.1.

EXAMPLE 4.3. Let H = k be a the dual group algebra. Now the algebra
of characters R(G) is all the dual kG. The orthogonal primitive idempotents in
R(k%) are the orthogonal primitive idempotents in kGG. In this case, the Class
Equation says that the dimensions of the irreducible G-modules divide the order of
G (Frobenius theorem).

Let us now state some applications of the Class Equation. The following Theo-
rem was obtained by Masuoka, finding the right setting for previous results of Kac

and Zhu.

THEOREM 4.4. [Mk3]. Let H be a semisimple Hopf algebra such that dim H =
p™, with p a prime, and m > 1. Then H contains a central grouplike g # 1.

Proor. (Sketch). The Class Equation implies the existence of a non-trivial
orthogonal primitive idempotent e in Ri(H) such that dim(eH*) = 1. But e
correspond to a central group-like in H, as desired; see for instance [Sch3, 4.14]. O

The following result was conjectured by Kaplansky in 1975 and proved by Zhu;
similar ideas were used by G. I. Kac to obtain an analogous result in the framework
of C*-algebras [Kc2].

THEOREM 4.5. [Z1]. Let p be a prime number. Assume that the characteristic
ofk its 0. A Hopf algebra of dimension p is necessarily semistmple and 1somorphic
to the group algebra of Z./(p).

Proor. We can assume that p > 2, the case p = 2 being not difficult. By
Theorem 4.4, it is enough to show that H is semisimple. Assume that H is not
semisimple. By Lemma 3.8, then either G(H) or G(H*) has to be non-trivial. But
this would imply, by Corollary 3.2, that H itself is a group algebra, contradicting
the assumption. a
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Theorem 3.10 allows to extend Theorem 4.5 to characteristic ¢ # p.

THEOREM 4.6. Let p be a prime number and assume that char k = q. Let H
be a Hopf algebra of dimension p.

(i).][EG3, Theorem 3.4]. If H is semisimple and cosemisimple, then q¢ # p and
H is isomorphic to the group algebra of 7./(p).

(ii). [EG3, Corollary 3.4]. If ¢ > p, then H is necessarily semisimple and
cosemisimple. d

QUESTION 4.7. What are all the Hopf algebras of dimension p, say in char p?

Here i1s another application of Theorem 4.4.

COROLLARY 4.8. [Mk3]. Let p be a prime number. Semisimple Hopf algebras
of order p? are group algebras, in particular, commutative and cocommutative. [

This follows from Theorem 4.4 by an argument on extensions. A harder analysis
of extensions gives the classification also for p?, p an odd prime. (For p = 2, this
was also done by Masuoka, and the list is slightly different).

THEOREM 4.9. [Mk2]. There are p + 8 semisimple Hopf algebras of order p3:

(1) Three group algebras of abelian groups.

(2) Two group algebras of non-abelian groups, and their duals.

(3) Finally, p+ 1 Hopf algebras which are neither commutative nor cocom-
mutative. They are extensions of the group algebra k(7. /(p) X Z/(p)) by

k(Z/(p))-
O

In principle, one could go further by classifying extensions. In this direction,
Kashina classified all semisimple Hopf algebras of order 16 [Ka2]. As in the group
case, the computations become harder and harder; Kashina’s paper witness this. To
deal with other dimensions, one needs more sophisticated tools. We will see some
of them in the following Subsection. Let us state before another nice application of
the Class Equation.

THEOREM 4.10. Let K be a Hopf subalgebra of a semisimple Hopf algebra H.
Assume that there exists a prime number r such that the index [H : K] =r", n > 1,
and ™ < s, for all prime number s dividing the dimension of H, s # r. Then K
ts normal in H. d

For r = 2, n = 1, this was obtained by Masuoka, see e. ¢g. [Mk4]. A statement
very close to this is [Nal, Th. 2.2.1]; a small change in the proof of loc. cit. is
required to obtain the result as stated here. For n = 1, it appeared without proof
already in [KM] (T am grateful to Y. Kashina for communicating me this). An al-
ternative proof, using Theorem 4.12 below, was independiently found by Bakhturin,
Montgomery and Gelaki.

4.2. The Frobenius property. The validity of the following Conjecture will
have deep consequences in the classification of semisimple Hopf algebras.

CoNJECTURE 4.11. (Kaplansky). If H is a semisimple Hopf algebra, then
the sizes of the matrices occuring in any full matriz constituent of H divide the
dimension of H.
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In general, the conjecture is still open. A semisimple Hopf algebra satisfying
the conclusion of the Conjecture will be said to have the Frobenius property. A
semisimple Hopf algebra H is known to have the Frobenius property in the following
cases:

e If H is a group algebra. This is a classical result by Frobenius; here is
where the name comes from.

e If H has a form over a ring of algebraic integers. This was proved by
Larson in 1971 [L]. Another proof was offered in [AN1].

o If R(H) is central in H* [ZS, Theorem 8]. (The result is more specific).

e If H is semi-solvable [MoW], ¢f. Definition 2.5.

But the most striking instance of Hopf algebras with the Frobenius property is
given by the following result of Etingof and Gelaki.

THEOREM 4.12. [EG1]. If H is a semisimple Hopf algebra and V is an irre-
ducible module over the Drinfeld double D(H), then the dimension of V divides the
dimension of H. d

CoRrRoLLARY 4.13. [EG1]. If H is a quasitriangular semisimple Hopf algebra
then it has the Frobenius property.

ProoF. The universal R matrix provides a surjective Hopf algebra map from
D(H) to H; so that any irreducible representation of H is also an irreducible
representation of D(H). O

The original proof of Theorem 4.12 used the Verlinde formula from modular
categories. A second proof was shortly after offered in [TZ], based on [Z2] which
uses in turn the Class Equation. A third proof of Theorem 4.12 appears in [Sch5];
it also uses the Class Equation, combined with a nice generalization of a result of
Drinfeld [Dr2]. In addition, it is shown in [Schb5] that the Verlinde formula in the
case of Hopf algebras can be derived from the Class Equation. All in all, it seems
that the Class Equation and the Verlinde formula are deeply intertwined.

4.3. Semisimple Hopf algebras of low dimension. A first application of
Theorem 4.12 to classification results is the following.

THEOREM 4.14. [EG4, GW, Mk4]. Let p # q be prime numbers. A semisim-
ple Hopf algebra of dimension pq is necessarily commutative or cocommutative. O

This was proved in the case 2p in [Mk4] without Theorem 4.12; in [GW], it
was shown for Hopf algebras of Frobenius type. The general case was derived in
[EG4] from [GW] and Theorem 4.12; but the derivation is not straightforward
and needs extra arguments. Alternative proofs of Theorem 4.14 were offered in
[Srl, Nal]; both use Theorem 4.12. The proof in [Nal] is based in the following
result, inspired in turn by the proof of [EG4, Lemma 2].

THEOREM 4.15. [Nal]. Let p # q be prime numbers, n,m, non-negative in-
tegers. Let H be a semisimple Hopf algebra of dimension p"q™. Assume H is of
Frobenius type. If p > q°, where

b :=max{j : 3 an irreducible character of H of degree ¢},

then H has a non-trivial one-dimensional representation. a
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COROLLARY 4.16. [Nal]. Suppose H is any semisimple Hopf algebra of di-
mension pq. If p > q°, then G(D(H)*) is non-trivial. d

The meaning of the Corollary is clarified by Proposition 2.9; one has indeed a
short exact sequence

(4.1) 1 =kG(D(H)*) = DH) L K —1,

for any finite dimensional Hopf algebra H (not necessarily semisimple). This se-
quence was considered with profit in [Nal, Na4]. Note that K is of Frobenius
type, when H is semisimple.

The following question was raised by S. Montgomery, in a slightly different
formulation.

QUESTION 4.17. What is the analogue of Burnside’s p®¢®-Theorem for semisim-
ple Hopf algebras?

The only known results in this direction are in the case of dimension pg?, besides
those already reviewed.

THEOREM 4.18. Let p # q be prime numbers. Let H be a semisimple Hopf
algebra of dimension pq>.

(i). [Nal]. If H is not simple, then H is known. Specifically, either H 1is
trivial or belongs to one of three families of extensions: A;, 0 <1 <q¢—1,p=1
mod ¢ (constructed in [G1]); By;, 0 < j < 1%1 qg =1 mod p; or B}‘\j (constructed
in [Mk5] for p = 2). See [Nal] for details.

(ii). [Nal]. Fither H or H* has a non-trivial central group-like under the
following restrictions:

e p=23o0rp><q;or

ep>qtandp#1 modyg.
Therefore, for these p and q, H s known. Also, either H or H* has a non-
trivial central group-like under extra assumptions on H, for instance:

o p<q and A or A* of Frobenius type.

(iii). [Na2]. Suppose that both H and H* are of Frobenius type, and thatp > q.
Then either H or H* has a non-trivial central group-like in the following cases.

e p#1 mod ¢?; or

e p=1 mod ¢? and G(A) is cyclic.
g

The proof uses most of the machinery already explained; one of the main new
tools is a systematic consideration of the exact sequence (4.1).

REMARK 4.19. We would like to stress the case where pg? is open, assuming
that Conjecture 4.11 is true: If A is a semisimple Hopf algebra of dimension pq?,
and A is not an extension, then p =1 mod ¢?, G(A) ~ Z/(q) x Z/(q), and in fact
A is a bosonization A ~ R#k(Z/(q) x Z./(q)), where R is a braided Hopf algebra
of dimension p. Moreover, there is an algebra isomorphism R ~ k x M(q,k)¥, for
some M; and a coalgebra isomorphism R ~ kxC(q, k)™, where C(q,k) = M(q,k)*.
See [Na2]. Whether such an R exists is open; the lowest possible dimension is 20.



20 N. ANDRUSKIEWITSCH

The following question was raised by S. Montgomery.
QUESTION 4.20. Classify all semisimple Hopf algebras H such that dim A < 60.
The actual status of this Problem is the following;:

e It is open for dimensions 20, 24, 30, 32, 36, 40, 42, 48, 52, 54, 56, and
known for the rest of the dimensions.

e For the dimensions where the classification is known, there are non-trivial
examples in some of the dimensions; all of them are extensions.

e For the dimensions where the classification is not known, there are non-
trivial examples in all the dimensions but 30; all of them are extensions.

The proof, for the cases where the answer is known, follows from Theorems
4.5,4.9 4.14, 4.18 and the main result of [Ka2]. We should notice that some low
cases were previously known, e.g. 12 was done in [F], 18 [Mk5]; and that to apply
Theorem 4.18 one needs in some cases to check that a Hopf algebra of the desired
dimension is of Frobenius type, but this follows from a counting argument in low
dimension.

It is the personal opinion of this author, that one should concentrate efforts in
determining whether the Hopf algebras with the remaining dimensions are semi-
solvable, rather than in computing explicitly all the extensions. For, it is enough
for many applications to know that a Hopf algebra is semi-solvable, in analogy
with the similar situation for finite groups. And on the contrary, if it is discovered
that there examples of those dimensions which are not semi-solvable, then these
examples would be really new.

5. The pointed case

We have seen that the semisimple case is essentially different to the non-
semisimple case, c¢f. Theorems 3.7, 3.9. We can replace ”semisimple” by ” cosemisim-
ple” in the preceding sentence, by Theorem 3.9; this fits better in the following
framework.

Let us say that a coalgebra C' is simple if any non-zero subcoalgebra D is equal
to C. If C is simple then it is finite dimensional and indeed, it 1s dual to a matrix
algebra.

Given any coalgebra C', we can consider the sum of all its simple subcoalgebras:

CO = Z D.

DCC, D simple

Then Cy, itself a subcoalgebra of C| is a direct sum of simple subcoalgebras; it is
called the coradical of C'. Furthermore, we can define recursively a filtration of C'
by

Coj1:={zeC:A2)eC, @ C+C®C,}.

Then all the C),’s are subcoalgebras of C, so that Co C C1 C ...C,, € Cpy1...;
and the filtration is exhaustive, i. e. C = |J,,5,Cn. It is called the coradical
filtration of C'. B

When (' is finite dimensional, so that it is the dual coalgebra of an algebra A,
then C,, = (Jac A”"'I)J‘7 where Jac denotes the Jacobson radical.
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It is natural to separate the investigation of finite dimensional Hopf algebras
according to the shape of its coradical, and the relative position in the full Hopf
algebra. One extreme case is when the Hopf algebras coincide with their coradical;
this is the cosemisimple case. The opposite case is when the coradical 1s as simple
as possible, but not the full Hopf algebra.

DEFINITION 5.1. A coalgebra (not necessarily finite dimensional) C' is called
pointed if any simple subcoalgebra of C' has dimension one.
This can be phrased alternatively as ” any simple comodule has dimension one”

or as "the coradical is cocommutative” (since k is algebraically closed). If H is a
pointed Hopf algebra, then Hy is the group algebra of G(H).

A first information about the coradical filtration of a pointed coalgebra is given
by the Theorem of Taft and Wilson.

THEOREM 5.2. [TW]; see [Mol, Theorem 5.4.1]. Let C' be a pointed coalgebra.
Then:

e Ifn > 1, the n-th term of the coradical filtration can be decomposed as

C, = Z Cn(g, h), where
g,h€G(C)

Co(g,h)={zeC:A(x)=2@h+g@z+u, for someu€ Cp_1 @ Cp_1}.

o The first term of the coradical filiration can be expressed as
C1 = kG(C) + (Bg,nea(c) Pon)-
d

This Section is devoted to finite dimensional pointed Hopf algebras. For short-
ness, we shall say ”pointed” for pointed non-cosemisimple. From now on, the field
k is supposed algebraically closed and of characteristic 0.

5.1. Summary. We now give an account of results on classification of pointed
Hopf algebras. Let p be a prime number.

Assume first that p = 2. All pointed Hopf algebras with coradical Z/(2) were
classified in [N]; there is exactly one isomorphism class in each dimension 2”. By
a different method, the same result was obtained later in [CD2]. Pointed Hopf
algebras of dimension 16, resp. 32, were classified in [CDR]; respectively in [Gnl].

Assume now that p > 2. The only pointed Hopf algebras of dimension p? are
the Taft algebras. This follows at once from a Theorem of Taft and Wilson on the
coradical filtration and corollary 3.2 (i). This was known to Nichols [N] and was
rediscovered independiently by Chin, Stefan and the present author.

Pointed Hopf algebras of dimension p? were classified in [CD1], [AS2], [SvO]
by different methods. Pointed Hopf algebras of dimension p* were classified in
[AS3], using results of [AS2]. As a matter of fact, there exist infinitely many
isomorphism classes of pointed Hopf algebras of dimension p*; hence, one of the
ten conjectures of Kaplansky is not true. This was shown independiently in [AS2,
BDG, G2]. The classification of pointed Hopf algebras of dimension p® follows
from [Gn2] combined with [AS5]. The Lifting Method allows to obtain many
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other classification results; with these ideas, for instance it is also possible to classify
pointed Hopf algebras of dimension pg?, ¢ another prime [AN3].

An important classifcation result is given in [AS5], where the list of all finite
dimensional pointed Hopf algebras with coradical of dimension p is presented. See

Theorem 5.38.

There are classifications of Hopf algebras with special properties. Minimal
triangular pointed Hopf algebras were classified in [G3]. Finite dimensional pointed
Hopf algebras H such that the index [H : kG(H)] is either p, p? or p? are classified
in [Gn3] (this result has antecedents in [AS2, Th. 0.2], [AS3, Prop. 7.4], [D]).
Finite dimensional pointed Hopf algebras H with [H : kG(H)] < 32 are classified
in [Gn4]. Many other interesting results can be found in [AS2, AS3, AS4, AS6,
AS5, Gn3, Gnd]; their formulation is too technical to be included here. Some of
them will be evoked below.

5.2. Methods. We shall devote the next Subsection to the ”Lifting method”
[AS2]; here we review another methods.

The Theorem of Taft and Wilson has been a very valuable tool in the study
of pointed Hopf algebras; it is applied combined with variations of the Proposition
5.3 below; the proposition appears in [AN3] but the idea of the proof goes back to
[N], [AS1], [St1]. We need first some notation.

Let M and N be non-negative integers such that M divides N and let ¢ € k*
be a primitive M-th. root of unity. Consider the algebra K,(N,¢), generated by
elements z and ¢ with relations

M =p(1-g"), N =1, gz=c¢ay,
where p=0,if M = N, and p € {0,1}, if M # N. The formulas

Alg)=9®yg, Al@)=10r+zdy,

e(z)=0, €(g)=1,
Sg)=g7", S(x)=-zg™",

determine a Hopf algebra structure in K,(N,¢). It follows from [AS2, Theorem
5.5] that the dimension of K,(N,€&) is MN. If M = N, then K,(N,&) ~ T(¢€),
where T'(&) is the Taft algebra corresponding to &.

ProrosiTION 5.3. Let H be a finite dimensional Hopf algebra. Suppose that
k(g — h) # Py, for some g,h € G(H). Then H contains a Hopf subalgebra K
isomorphic to K,(N,§), for some root of unity & € k, and some p € {0,1}. In
particular, if dim H s free of squares, then H does not contain non-trivial skew
primitive elements. a

Note that k(g — h) # P, implies that H is not cosemisimple.

In the pioneering paper [N], the author introduces many interesting concepts,
including the ”bialgebras of type one” and the now called ”Nichols algebras” (see
Subsection 5.3 below). He approaches a general pointed Hopf algebra by a limit
procedure from bialgebras of type one. He discusses several examples; most of them
were recently interpreted in [Gn4].

In the papers [BDG, CD1, CD2, CDR, D] the authors construct pointed
Hopf algebras as iterated Ore extensions; then they determine the isomorphism



HOPF ALGEBRAS 23

classes and, in suitable situations, obtain classification results. This is a very simple
and elegant method but it does not seem to be applicable to complicated situations.

In the paper [SvO], the authors study a projection H; — Hg and interpret
it in terms of coalgebra cohomology. This idea is related to the problem of lifting
discussed below. They are able to obtain the classification of pointed Hopf algebras
of dimension p3, as said above.

5.3. The lifting method.

5.3.1. Owerview. The lifting method [AS2, AS3] seems to be the most pow-
erful method to understand pointed Hopf algebras up to now. Let us first roughly
overview the method in words. We shall then discuss the main tools of the method
and illustrate it with some examples. For more details, see [AS2, AS3, AS4, AS6,
AS5, Gn3, Gn4]. The method works in principle for more general Hopf algebras
than pointed; it is enough to assume that the coradical is a Hopf subalgebra.

Let A be a Hopf algebra whose coradical H = Ag is a Hopf subalgebra. We
attach to A several invariants; a very sensible one is an algebra R which is not a
usual Hopf algebra, but a braided Hopf algebra in the braided category ZYD. If
A is finite dimensional, then R also is; in many cases (and conjecturally, always),
one is able to classify such R in combinatorial terms. The last step is to recover A
from R and H; this is the so-called lifting step. The outcome is, loosely speaking,
that finite dimensional pointed Hopf algebras are variations of Frobenius-Lusztig
kernels, the finite quantum groups constructed by Lusztig.

Let us describe the invariants of A that we shall consider. Let
(5.1) grA = ®p>ogrA(n)

be the graded vector space associated to the coradical filtration, where gr A(n) =
An/An—1,n > 0,and gr A(0) = Ag = H. In general, gr A is a graded coalgebra [Sw,
Chapter 11]; but in this situation, it is a graded Hopf algebra because the coradical
is a Hopf subalgebra [Mol, 5.2.8]. The graded projection 7 : gr A — gr A(0) = H
is a Hopf algebra map and a retraction of the inclusion ¢ : gr A(0) — gr A. We can
then apply the general remarks of Subsection 2.7. Let

R={a€cgrA:(idem)A(e)=a® 1}

be the algebra of coinvariants of #; R is a braided Hopf algebra in the category
g)ﬂ) of Yetter-Drinfeld modules over H and gr A can be reconstructed from R and
H as a bosonization: gr A ~ R#H.

In the present case, the braided Hopf algebra has some extra properties. First,
R inherits the gradation from gr A: R = ®,>0R(n), where R(n) = gr A(n) N R,
and R is a graded braided Hopf algebra; also, R(0) = k1. Second, since we began
from the coradical filtration of A, we can conclude that the coradical filtration of
R coincides with the filtration given by the gradation:

R, = DOm<n R(n)

The important consequence of this is that R(1) = P(R), the space of primitive
elements of R. The reason will be explained in the next Subsection.
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5.3.2. Nichols algebras. One of the important tools in the Lifting Method is the
notion of Nichols algebras. Nichols algebras can be presented in several different
ways, all of them relatively technical. We choose one of these ways and then state
the main property of Nichols algebras relating them to the Lifting Method.

DEFINITION 5.4. A braided vector space (V,c¢) is a finite dimensional vector
space provided with an isomorphisme: V ® V — V ® V which is a solution of the
braid equation, that is

(e®id)(id®c)(c ®1id) = (Id ®c)(c ® id)(1d @¢).

A Yetter-Drinfeld module is always a braided vector space; however, a braided
vector space could be realized as a Yetter-Drinfeld module only when the braiding
is rigid, see for instance [T2]; and if so, it can be realized in many different ways.

Let (V,¢) be a braided vector space. The braiding ¢ : V@V — V — @V
induces representations of the braid groups B, — Aut(V®"). On the other hand,
there is a well-known set-theoretical section s from the symmetric group S, to B, .
We consider the quantum antisymmetrizer

S, = Z s(o)

oES,
as an element of the group algebra kB, , and by abuse of notation, as an endomor-
phism of V& = T"(V).
DEFINITION 5.5. The quantum symmetric algebra of braided vector space (V)
is the quotient B(V') :=T(V)/T, where J = ®p>oker &,,.

If Ve £yD, H a Hopf algebra with bijective antipode, then B(V) is actually
a braided Hopf algebra in YD called the Nichols algebra of V over H.

REMARK 5.6. Nichols algebras apeared first in [N], as the invariant part of
”bialgebras of type one”. Woronowicz rediscovered them in his approach to ” quan-
tum differential calculus” [W2]. Lusztig used them, in a different language, to
present quantum groups in an invariant way: indeed, the algebras f in [L3] (de-
fined by the non-degeneracy of certain invariant bilinear form) are Nichols alge-
bras of Yetter-Drinfeld modules arising from generalized Cartan matrices. See
also [Rol, Ro2, Sbgl, Rz, BD]. Also, the positive parts of the ”small quantum
groups” of [L1], [L2]- which we shall call Frobenius-Lusztig kernels- are also Nichols
algebras [Mul, Rol]. The presentation via non-degeneracy of the invariant bilin-
ear form always holds [AG].

THEOREM 5.7. (Nichols). Let V. € BYD. A braided graded Hopf algebra
T = ®p>oT(n) with T(0) = k1 is isomorphic to the Nichols algebra of V if and
only if V.~ T(1) in BYD and

(1) P(T)="T(1),

(2) T is generated as an algebra by T(1).

ProOF. See [AG, Prop. 3.2.12 or Th. 3.2.29]. O

Let us return to the situation of the preceding Subsection, and the correspond-
ing notation A, H, gr A, R. Tt follows from Theorem 5.7 that the subalgebra R’ of
R generated by R(1) is isomorphic to the Nichols algebra of V: R’ ~ B(V). To

summarize, we give a list of invariants of our initial Hopf algebra A:
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e The graded braided Hopf algebra R; it is called the diagram of H.

e The braided vector space (V, ¢), where V := R(1) = P(R)and ¢ : V@V —
V ® V is the braiding in gyD. It will be called the infinitesimal braiding
of H.

e The dimension of V = P(R), called the rank of H, or of R.
e The subalgebra R’ of R generated by R(1): R’ ~ B(V).

5.3.3. Description of the method. Now we can describe the lifting method to
deal with Hopf algebras whose coradical is a Hopf subalgebra. This method can be
used to solve different problems, but we shall restrict our attention to questions of
finite dimensionality. Let us fix a finite dimensional Hopf algebra H. To determine
all finite dimensional Hopf algebras A with Ay ~ H as Hopf algebras, then we have
to address the following steps.

(a). Determine when B(V) is finite dimensional, for all braided vector spaces
(V,¢) in a suitable class.

(b). For those V' as in (a), find in how many ways, if any, they can be realized
as Yetter-Drinfeld modules over H.

For instance, if R = k[z]/(zV) as in Example 2.13 with a fixed ¢ determining
the braiding, then it can be realized over H = kI whenever there exist g € Z(T)
and y a one-dimensional representation of T' such that x(g) =: ¢.

(c). For B(V) asin (a), compute all Hopf algebras A such that gr A ~ B(V)#H
("lifting”).

(d). Investigate whether any finite dimensional graded braided Hopf algebra
R = @®,50R(n) in FYD satisfying R(0) = k1 and P(R) = R(1), is generated by its

primitive elements, z. e. is a Nichols algebra.

In the next Subsections, we shall discuss the meaning and difficulty of these
steps.

5.3.4. The pointed case. We shall assume in the rest of this Section that H = kI’
is a group algebra. We shall consider suitable clases of braided vector spaces; to
justify this, let us recall the classification of all finite dimensional Yetter-Drinfeld
modules over a finite group.

Let us first treat the case of a finite abelian group I'. If V € EyD 1s finite
dimensional, then the action of ' is diagonalizable. Therefore,

(5.2) V=®,er e Vs
where VX = {v €V i gv=x(g)v}, V; ={veV :év) =g@v}and V) = VXNV,

Conversely, any vector space with a decomposition (5.2) is a Yetter-Drinfeld module
over I'. The braiding is given by c¢(v @ w) = x(9)w @ v, v € V, w € VX. In other
words, there exists a basis z1,...,25 of V and g(1), ..., g(f) € T, x(1), ...,
x(0) € T such that z; € VXi, 1 <@ < 6; and then c(z; @ z;) = xi(gi)z; @ x4,
1<1i,j<8.
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Let us now treat the case of a finite non-abelian group I'. The irreducible Hopf
bimodules over T were classified in [DPR, Ci]. By Remark 2.10, the classification
of irreducible Yetter-Drinfeld modules follows; this was also done in [Wil]. In the
notation of [AG], we have:

Let g € T and let p : TY — EndV be an irreducible representation of the
isotropy subgroup 'Y, that is, the centralizer of g in I'. Let W be the space of
the induced representation of p. If one fixes a set of elements hy, ..., h; such that
(highl-_l)lsigs is a numeration of the conjugacy class O, then as a vector space

W = ®1<i<shi @ V.
There is a Yetter-Drinfeld module structure on W given by
(5.3) §(hi @ v) = hjgh7' @ h; @ v,
(5.4) z.(h; ® v) = hj @ p(t)(v), if zh; = hjt,t € I'Y.

Indeed, :Chighi_la:_l is of the form hjghj_1 for a unique j in {1,...,s}, and then
there exists a unique ¢ € I'Y such that zh; = h;t.

This Yetter-Drinfeld module will be denoted M (g, p); it is not difficult to see
that it is irreducible.

If we fix a class (g)4ec of representants of conjugacy classes of T', and for each
of them a class of representants I'9 of irreducible representations, then the Yetter-

Drinfeld modules M(g,p) , 9 €C, p € ﬁ, are pairwise non-isomorphic; and these
are all the irreducible Yetter-Drinfeld modules over T'.

DEFINITION 5.8. We shall say that a braided vector space (V,¢) is of group
type if there exists a basis 1, ..., 24 of V such that

(5.5) clx; ® x5) = gi(x;) @ %53

necessarily g; € GL(V). Notice that V € YD, where G is the subgroup of GL(V)
generated by g1,...,9¢.

Furthermore, we shall say that (V,¢) is of finite group type (resp., of abelian
group type) if G is finite (resp. abelian).

We shall say that (V) ¢) is of diagonal type if V has a basis z1, ..., zg such that

(5.6) clr; @ x5) = qi5(x; @ %),
for some ¢;; in k.

The suitable class related to pointed Hopf algebras is that of braided vector
spaces of group type. Let us first concentrate in the case when I is a finite abelian
group; so, we focus on braided vector spaces of finite abelian group type; clearly,
they are of diagonal type. The first fundamental question in the classification
program of finite dimensional pointed Hopf algebras with abelian coradical is then
the following:

QUESTION 5.9. Given a matrix (qij)lsi,jsﬁ whose entries are roots of 1, when
B(V) is finite dimensional, where V is a vector space with basis z1,...,2¢ and
braiding (5.6)? If so, compute dimB(V'), and give a "nice” presentation by gener-
ators and relations.

The meaning of "nice” will be clarified later. We shall give several criteria
answering partially Question 5.9.
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Let us keep the notation ¢;;, V as above. We shall denote N; = ordg¢;. If
W is a vector subspace of V spanned by some subset of z1,...,z4, then W is a
braided vector space itself, and B(W) can be identified with the subalgebra of
B(V) generated by W (use Theorem 5.7). Moreover, dimB(WW) divides dim B(V)
by Theorem 3.3.

If V = kz is a one-dimensional braided vector space, say with ¢(z ® z) = qz,
then B(V) ~ k[X], the polynomial algebra in one variable, when ¢ = 1; or else
B(V) ~ k[X]/(XY) where N is the order of ¢, when N > 1. The first criteria
follows easily:

REMARK 5.10. If dimB(V) is finite, then

The analysis of the following family of examples gives already several interesting
consequences.

DEFINITION 5.11. Assume that 5.7 holds. We shall say that B(V) is a quantum
linear space if

(5.8) gijq5i =1, 1<i#j<0.

Let us see how the Lifting Method works in the case of quantum linear spaces.

LEMMA 5.12. [AS2] Let V be a braided vector space of diagonal type, with
braiding given by a matriz (¢;;)1<i j<¢ whose entries are roots of 1. Assume that
5.7 holds.

(a). dimB(V) > ], <, <o Ni; the equality holds if and only if B(V') is a quan-
tum linear space. T

(b). If B(V) is a quanium linear space, then il is isomorphic o the algebra
presented by generators xq,...,xy with relations
(5.9) zVi=0, 1<i<¥,

(2

(5.10) zixj = qijrje;, 1<i<j<0.

O

We now illustrate step (b) of the lifting Method in the setting of quantum
linear spaces. Let T' be a finite abelian group. Let #(T') be the greatest integer
 such that T' admits a quantum linear space of rank #. To compute #(T') and
the classification quantum linear spaces over I', are subtle combinatorial questions.
For instance, 6(T) = 2 if T is a cyclic p-group, where p is an odd prime; and
(T x T) = 6(T) + O(T) if the orders of T and T are relatively prime. See [AS2].
However, 6(7Z/2) = co.

We shall describe now all possible finite dimensional pointed Hopf algebras with
abelian coradical whose diagram is a quantum linear space.

We fix a decomposition T' = (y1) @ - - @ (y,) and we denote by M, the order
of yy, 1 <4 <o
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A compatible datum of quantum linear space D for I' consists of families
g1,--,98 €T, x1,...,x0 €T, pa, ..., € {01}, X5 €k, 1 < i< j<¥b
such that (5.7), (5.8) hold for ¢;; := x;(g;) and

(5.11) p; is arbitrary if g~* # 1 and x* = 1 but 0 otherwise;
(5.12) X;; is arbitrary if g;9; # 1 and x;x; = 1 but 0 otherwise.

THEOREM 5.13. [AS2, Th. 5.5]. Let A be a pointed finite dimensional Hopf
algebra with coradical H = k(T'), where T is an abelian group as above. We assume
that the diagram of A is a quantum lLinear space.

Then there exists a compatible datum of quantum linear space D such that A is
tsomorphic to as Hopf algebra to the algebra presented by generators hy, 1 < £ < o,
and a;, 1 < i <6 with defining relations

(5.13) KM =1, 1<t<o;

(5.14) hohy = hehy, 1<t <t < oy

(5.15) azhy = x7 H(ye)hea;, 1<f<0o, 1<i<b;
(5.16) a* = i (1—515“), 1<i<o;

(5.17) aja; = x:i(g5)aia; + Xij (1 — gig;), 1<i<j<0;

and where the Hopf algebra structure is determined by

(518) A(hg):hz@hz, 1§f§0';

(519) A(ai):ai®1+gi®ai, 1<i<9.

Conversely, given a compatible datum of quantum linear space D, the algebra A(D)
presented by generators hy, 1 < £ < o, and a;, 1 < ¢ < 6 with defining rela-

tions (5.13), (5.14), (5.15), (5.16) and (5.17) has a unique Hopf algebra structure
determined by (5.18) and (5.19). It is pointed; G(A(D)) ~T and

dimAD) = 1| J] M
1<i<8

O

REMARK 5.14. The meaning of this formulas is as follows: (5.13), (5.14) and
(5.18) are responsible of the group T'. The families g1,...,96 € T, x1,..., X6 € T
define a Yetter-Drinfeld module structure over T' on the braided vector space (V,¢)
with basis z1,..., 2y, by

6(;5‘1) = ¢; @ x;, h.x; = Xl(h)rz

Then (5.15) and (5.19) reflect (2.7) and (2.8). Finally, (5.16) and (5.17) are the
lifting” of the formulas (5.9) and (5.10). This illustrates what we mean by ”nice”
relations; (5.9) and (5.10) are nice because we can lift them.

REMARK 5.15. The definition of compatible datum of quantum linear space and
the preceding Theorem can be extended to non-abelian finite groups by requiring
the elements g1, ..., gg to be central.
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REMARK 5.16. Given two compatible data D and D’ for groups I' and T respec-
tively, a Hopf algebra isomorphism A(D) — A(D’) induces, first, an isomorphism of
the groups I' and T’; and second, sends skew-primitive elements to skew-primitive
elements. The presence of the relations (5.16) and (5.17) imposes further condi-
tions; this gives rise to constructions of infinite families of non-isomorphic pointed
Hopf algebras of the same dimension, in particular of dimension p* [AS2]. For
more on the isomorphism problem, see [AS3, AS4, Be].

REMARK 5.17. The basic hypothesis of Theorem 5.13 is that the diagram of A
is a quantum linear space. This hypothesis is very restricted and contains the fact
that R is generated in degree 1; with tricky but elementary arguments we can also
show that R is generated in degree one in some restricted situations, e. g. when
dim R(1) = 1. To go on, we need more powerful ideas, that will be explained in the
next Subsection.

5.3.5. Braidings of Cartan type. Let (V,c) be a braided vector space of diag-
onal type, with a basis z1,..., 2 such that (5.6) holds, where the g¢;;’s are roots
of 1. Clearly, the matrix (¢;;) determines such a braided vector space (up to a
permutation of the index set).

DEFINITION 5.18. We shall say that (V, ¢) is of Cartan typeif for all i, j, ¢;; # 1
and there exists a;; € 7Z such that

(5.20) @i 50 = i -

The integers a;; are uniquely determined when chosen in the following way:

(521) A;; = 2;
(522) —ord ¢q;; < ai; <0, l;é J.

It follows that (a;;) is a generalized Cartan matrix (GCM) in the sense of the
book [K]. We shall adapt the terminology from generalized Cartan matrices and
Dynkin diagrams to braidings of Cartan type. For instance, we shall say that (V,¢)
is of finite Cartan type if 1t is of Cartan type and the corresponding GCM is actually
of finite type, 7. e. a Cartan matrix associated to a finite dimensional semisimple
Lie algebra. We shall say that a Yetter-Drinfeld module V is of Cartan type (resp.,
connected, ...) if the matrix (¢;;) as above is of Cartan type (resp., connected, ...).

Let (aj;) be a Cartan matrix. Let X be the set of connected components of the
Dynkin diagram corresponding to it. For each I € X', we let g; be the Kac-Moody
Lie algebra corresponding to the generalized Cartan matrix (a;;);jer and nr be
the Lie subalgebra of gr spanned by all its positive roots. We omit the subindex 7
when T ={1,...,0}.

The fundamental examples of braidings of Cartan type are given as follows.
Let (aij)lsi,jsé‘ be a generalized Cartan matrix; assume that it is symmetrizable, 1.
e. that there exists positive integers dy, ..., dy such that d;a;; = d;ja;; for all 2, 5.
Let ¢ # 1 be a root of unity of order N and let ¢;; := ¢%%i 1 <4,j < 0. Let (V,c)
denote the corresponding braided vector space with a basis X1,..., Xj.
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To state the following important Theorem, we need first to discuss a delicate
notion. Recall the definition of braided commutator (2.9). Lusztig defined root vec-
tors X, € B(V), a € ®* [L2]. One can see from [L3] that, up to a non-zero scalar,
each root vector can be written as an iterated braided commutator in some se-
quence Xy, , ..., X, of simple root vectors such as [[Xy,, [Xe,, Xea]clc, [Xe,, Xeo]c]e-
See also [Ri]. We now fix for each @ € ®* such a representation of X, as an
iterated braided commutator. For a general braided vector space (V,¢) of finite
Cartan type, we define root vectors z, in the tensor algebra T(V), a € ®* as the
same formal iteration of braided commutators in the elements z1, ..., zy instead of
X1, ..., Xp but with respect to the braiding ¢ given by the general matrix (g;;).

THEOREM 5.19. [L1, L2, L3, Rol, Mul]. The algebra B(V) is finite dimen-
sional if and only if (a;;) is a finite Cartan matric.

If this happens, then B(V) can be presented by generators X;, 1 < i< 6, and
relations
(5.23) ad(X;)' % (
(5.24)

Xj) =
XN

(e

0, i F 7,
0, acdt.
Moreover, the following elements constituie a basis of B(V):

h1 yvha h ) ]

X X2 Xg7, 0<h;<N-1, 1<j<P
In particular,
dimB(V) = Ndmn,

d

The basis and dimension statements of this Theorem are due to Lusztig, in the
setting of the now called Frobenius-Lusztig kernels. Rosso and Miller showed that
Frobenius-Lusztig kernels are Nichols algebras.

REMARK 5.20. The definition of braided vector space of Cartan type is also
valid for braided vector spaces of diagonal type with general ¢;; (not necessarily
roots of 1). Also, there is a braided vector space (V,c) attached to ¢ general,
(not necessarily a root of 1); when ¢ is not a root of 1, B(V) is the +-part of the
quantized enveloping algebra of the Lie algebra g [L3, Rol, Ro2].

Theorem 5.19 motivates the following definition.

DEFINITION 5.21. Let (V,¢) be a braided vector space of Cartan type with
associated Cartan matrix (a;;) as in (5.21), (5.22). We say that (V, ¢) is of FL-type
if there exists positive integers dy, ..., ds such that for all ¢, 7,

5.25) d;a;; = d;a;;hence (a;;) 1s symmetrizable;
( j j a5 j y
(5.26) There exists ¢ € k such that ¢;; = qdi%is

Furthermore, we shall say that (V,¢) is locally of FL-type if for any subset
I'C{1,...,0} of cardinal 2, the submatrix (¢;;); jer gives a braiding of FL-type.



HOPF ALGEBRAS 31

The following result follows from Theorem 5.19 in combination with the twisting
operation, see Subsection 2.4.

THEOREM 5.22. [AS3, AS5]. Let (V,c) be a braided vector space of Cartan
type. We also assume that q;; has odd order for all i, j.

(i). Assume that (V,c) is locally of FL-type and that, for all i, the order of g;;
is relatively prime to 3 whenever a;; = —3 for some j, and s different from 3, 5,

7,11, 13, 17. If B(V) is finite dimensional, then (V,c) is of finite Cartan type.

(ii). If (V,c) is of finite Cartan type, then B(V) is finite dimensional, and if
moreover 3 does not divide the order of q;; for all i in a connected component of
the Dynkin diagram of type G, then

dim®B(V) = ] 5™,
Tex
where Ny = ord(q;;) for alli € T and I € X. The Nichols algebra B(V') is presented
by generators x;, 1 <1 <@, and relations
(5.27) ad.(z;)' "% (2;) = 0, i# 7,
(5.28) a1t =0, a€dF TeX.
Moreover, the following elements constitute a basis of B(V):

ehlagt g, 0<hj<Nr—1,ifgel, 1<j<P

O

There is a large class of finite abelian groups where the preceding result allows
to answer completely step (a).

COROLLARY 5.23. [AS3]. Let p be an odd prime number, T a finite direct sum
of copies of Z/(p) and V a finite dimensional Yetter-Drinfeld module over T. We
assume that q;; # 1 for all i. Then (V,c) is of Cartan type and

(i). If V is of finite Cartan type, then B(V) is finite dimensional, and

dimB(V) = pM,

where M =), dimny is the number of positive roots of the root system of (aij).
(ii). If B(V) is finite dimensional and p > 17, then V is of finite type. d

5.3.6. Yetter-Drinfeld modules of Cartan type over a fized abelian group. Let
us now address step (b) of the lifting method in the setting of Theorem 5.22. This
means, to determine which braidings of finite Cartan type actually appear over a
general finite abelian group I'. This reduces, for each fixed finite Cartan matrix
(ai;) € Z%*% to find all the sequences g(1), ..., g(f) € T, x(1), ..., x(0) € T such
that

(5.29) (x(i),g9(d)) #1, forall ¢;
(5.30) (x(7), 9())(x(2), 9(5)) = (x(8), g(1))*7,  for all i,j.

This can be interpreted as a problem of computational number theory: to
compute all the solutions of a system of quadratic congruences. See [AS3, Section
8] for a discussion. This author feels that a compact answer to such question is
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out of reach; however, for each fixed finite abelian group, the computation could
be performed. In this sense, it is worth mentioning the following consequence of
Theorem 5.19, due to M. Grana.

ProPoOSITION 5.24. [Gnd4] Let T be a finite group of odd order. Then there are
only finitely many isomorphisms classes of Yetter-Drinfeld modules V' such that
B(V) has finite dimension.

ProoF. Let us assume for simplicity that T' is abelian. Assume that 3 is
relatively prime to the order of I'. Let V' be a Yetter-Drinfeld module with a basis
z1,...,z¢ with z; € V)Xi for all i. Suppose that B(V) has finite dimension. We
claim the following more specific result:

There is no ¢ # j such that g; = g; and x; = x;.

For, if such ¢ and j, the Yetter-Drinfeld submodule W generated by z; and z;
has diagonal braiding with matrix
G 3)
¢ q)’

where ¢ = x;(g;). But this braiding is of Cartan type, with generalized Cartan

matrix
2 =2
-2 2/’

i. e. of type A(ll); thus B(1V) has infinite dimension. If 3 divides the order of T,
then one proves similarly that there is no ¢, j, k all different such that g; = g; = g
and x; = X; = X&. The argument for I' non-abelian uses also the same idea. d

Let T ~ Z/(p), where p is an odd prime number. Then the determination of
all Yetter-Drinfeld modules over I' with braiding of finite Cartan type is given in
[AS3, Theorem 1.3]. We shall not repeat the list here, but instead we discuss the
following case.

LEMMA 5.25. There exists a Nichols algebra with Dynkin diagram Gy if and
only if p=1 mod 3.

Proor. If V is a Yetter-Drinfeld module of dimension 2 with a braiding of

Cartan type G2, then there exists a generator u of T', ¢ € £* of order p and integers
b, d such that

g(V)=u, g(2)=u", (x(1),u)=4q, (x(2),u)=q".
So b1 = q, bag = qbd. By definition of the Cartan matrix associated to a
braiding, we have p > 3. We should have

(x(1), 9(2)) (x(2), 9(1)) = b7y = b3
This means b+ d = —1 = —3bd mod p. Thus 36> +3b+ 1 =0 mod p and
looking at the discriminant of this equation we see that it has a solution if and only
if —3 is a square mod p. By the quadratic reciprocity law, this happens exactly
when p =1 mod 3. d
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5.3.7. Liftings. We now discuss the step (c¢) of the lifting method for pointed
Hopf algebras whose diagram is a Nichols algebra of Cartan type.

Let T = (y1) ® --- @ (yo) be a finite abelian group; we denote by M, the
order of y,, 1 < £ < 0. Let A be a pointed Hopf algebra with G(A) ~ T and
whose diagram R ~ BV, with V of finite Cartan type; say as usual with a basis
z1,...,2, & € V¥ for all i, and with Cartan matrix (aij). Then Theorem 5.22
and formulas (2.7) imply that gr A can be presented by generators hy, 1 < £ < o,
and z;, 1 < i < @ with defining relations (5.13), (5.14), (5.15) (with z; instead of
a;), (5.27) and (5.28). We can then lift the generators h; to group-like elements
with the same name (by abuse of notation), and the generators z; to elements

a; € Py y; this choice guarantees that relations (5.13), (5.14) and (5.15) hold now

in A. Tt is not difficult to see that the elements hy, 1 < £ < o, and a;, 1 <7< 6 are
now generators of the algebra A. It remains to see what happens with the relations
(5.27) and (5.28). We split this in three cases:

o lifting of the ” quantum Serre relations” z;z; —xi(g;)z;z; = 0, when i # j
live in different components of the Dynkin diagram,;

o lifting of the "quantum Serre relations” ad.(z;)'~%i(z;) = 0, when i # j
live in the same component of the Dynkin diagram;

o lifting of the ”power of root vectors relations” 7 = 0, @ a root.
In the first case, a straightforward computation shows that a;a; — x;(g;)a;a; is
again a skew-primitive. It can be then shown that
aja; = xi(gj)aia; + Aij (1 — gigj),
where \;; satisfies (5.12). To deal with this, we introduce the following notion.

DEFINITION 5.26. We say that two vertices ¢ and j are linkable (or that i is
linkable to j) if

(5.31) i j,
(5.32) ¢;9; # 1 and
(533) XiXj = 1.

These are the first elementary properties related to this notion.

(5.34) If ¢ is linkable to j, then xi(g;)x;(9:) =1, x;(g;) = xi(gi)™!
(5.35) If ¢ and k, resp. j and ¢, are linkable. Then a;; = age, aj; = a.
(5.36) A vertex i can not be linkable to two different vertices j and h.

A linking datum is a collection ()\ij)1Si<jsgyi74j of elements in k such that A;;
is arbitrary if ¢ and j are linkable but 0 otherwise. Given a linking datum, we say
that two vertices ¢ and j are linked if A;; # 0.

We shall use this Definition in Theorem 5.38 below. For the second case, we
can offer the following:

THEOREM 5.27. [AS5, Theorem 6.8]. Let I € X. Assume that Ny # 3. If I is
of type By, C, or Fa, resp. Ga, assume further that N # 5, resp. Ny #7. Then
the quantum Serre relations hold for all i £ j € 1. a
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QUESTION 5.28. What happens in the low cases excluded in the hypothesis of
Theorem 5.277

The third case is the most complicated. First, if the root « is simple, say
corresponding to a vertex ¢, then an easy computation shows that afv’ is again a
skew-primitive. It can be then shown that

(5.37) ' = p; (1 - gfv’) :

where y; satisfies (5.11). Now, if the root « is not simple then afv is not necessarily
a skew-primitive, but a skew-primitive ”modulo root vectors of shorter lenght”.

i

EXAMPLE 5.29. We consider the case when the Dynkin diagram has type As.
That is, let g1,92 € T, x1, x2 € T such that

(5.38) g=x1(g1) = x2(92), x1(g2)x2(91) =q7",

where ¢ € k is a primitive p-th root of unity, p > 1 an odd integer. Let V :=
kz, + kay be a Yetter-Drinfeld module over T' with z; € VX', i = 1,2. Tn B(V),
we define a non-simple root vector by

12 = 2T1X3 — X2(g1)332161-

Then A(z12) = g192 @210+ 212014 (1 - q~1)x192 @ x5, and using the quantum
Serre relations, one can prove that

r(p—1)
ARl ) =digh@al s+ 2 ;@ 1+ (g = 1) xa(g2) 7 27gh @b

Let A be a pointed Hopf algebra such that G(A) ~ T and the diagram R of
A is isomorphic to B(V). As before, we lift 21,25 € gr A to aj,as € A such that
z; € P(A)Y;,i=1,2. As we said, there exist y1, s € {0, 1} satisfying (5.11) (with
Ni = N3 = p) such that (5.37) holds.

Let a12 = a1az — x2(g1)asar. It is possible to show that there exists A € k
such that

(5.39) af 5 — ppa(g — DP(1 = g5) + M1 — gig5),
where A can be chosen in the following way:
(5.40) A=0, if g{gh =1 or xxh #e.

THEOREM 5.30. [AS4]. Let A be a pointed Hopf algebra such that G(A) ~ T
and the diagram R of A is isomorphic to B(V) with V as above of type As. Then
A can be presented by generators hy, 1 < £ < o, and a;, 1 < i < 2 and relations
(5.13), (5.14), (5.15) (5.37) and (5.39);

An algebra presented by generators hy, 1 < £ < o, and a;, 1 < i < 2 and
relations (5.13), (5.14), (5.15) (5.37) and (5.39), where 1, ps € {0, 1} satisfy (5.11)
and X € k satisfy (5.40), is a pointed Hopf algebra of dimension ord T p>. a

That is, we have a complete answer when the type is A;. The general case
presents a delicate combinatorial question. See also [AS6].

5.3.8. Generation in degree one. Let us now discuss step (d) of the Lifting
method. More generally, let H be any Hopf algebra with bijective antipode and let
R = ®,>0R(n) be a graded braided Hopf algebra in YD such that

e R(0) =kl and
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QUESTION 5.31. When R is generated as an algebra by its primitive elements,
. e. is a Nichols algebra?

There is a dual version of this problem. Let S = @nZOS(n) be a graded braided
Hopf algebra in gyD such that

e S(0) =kl and

e S is generated as an algebra by S(1).

QUESTION 5.32. When P(S) = S(1), i. e. S is a Nichols algebra?

Both questions are equivalent in the category of graded braided Hopf algebras,
whose homogeneous components are finite dimensional. Indeed, if R = @nZOR(n)
is such a Hopf algebra and S = @,>0S5(n) is its graded dual, that is S(n) = R(n)*
for all n, then the answer to Question 5.31 for R is yes if and only if the answer to
Question 5.32 for S is yes. See e. g. [AS3, Lemma 5.5].

ExXAMPLE 5.33. Question 5.32 has a negative answer over a field F of posi-
tive characteristic p. For, let S = F[X]; this a (usual) Hopf algebra when X is
required to be primitive. But X?’ are also primitive for all j. Finite dimensional
counterexamples are the quotients F[X]/(X?"), j > 2.

More general counterexamples arise by considering the infinitesimal or Frobe-
nius kernels of powers of the Frobenius homomorphism of an algebraic group; the
preceding are just those related to the affine group of dimension one.

EXAMPLE 5.34. Question 5.32 has a negative answer over k, but the counterex-
amples are infinite dimensional. For, let ¢ be a primitive root of unity of odd order
p. Let H = k7Z; say g is a generator of Z. Let S = k[X]; this a braided Hopf
algebra in YD with §(X) = g® X, ¢.X = ¢X, and X is required to be primitive.
But using the quantum binomial formula, X7 is also primitive.

More general counterexamples arise by considering the ” positive” parts of quan-
tized enveloping algebras at roots of one [L1, L2].

We are not aware of any counterexample to Question 5.31 over k, when both
H and R are finite dimensional. In the case when H is a group algebra, a positive
answer to Question 5.31, or to Question 5.32, in this setting is equivalent to a
positive answer to the following:

CONJECTURE 5.35. [AS3]. Any pointed finite dimensional Hopf algebra over
k is generated by group-like and skew-primitive elements.

A strong indication that the conjecture is true is given by:
THEOREM 5.36. [AS5]. Let A be a finite-dimensional pointed Hopf algebra
with coradical kI, and let R be the diagram of A, that is
gr A ~ R#KkT,

and R = ®n>0R(n) is a graded braided Hopf algebra in RYD with R(0) = k1, R(1) =
P(R).
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Assume that R(1) is a Yetter-Drinfeld module of finite Cartan type with braiding
(bij)i<ij<o. For all i, let q; = by, Ny = ord(q;). Assume that ord(b;;) is odd and
N; 1s not dwvisible by 3 and > 7 for all 1 <1i,57<8.

(1) For any 1 < i< 6 contained in a connected component of type By, Cp or
Fy resp. Ga, assume that N; is not divisible by 5 resp. by 5 or 7.
(2) If i and j belong to different components, assume ¢;q; = 1 or ord(g;q;) =

N;.
Then R is generated as an algebra by R(1), that is A is generated by skew-primitive
and group-like elements. a

Let us discuss the idea of the proof of Theorem 5.36. As mentioned, one could
focus the attention on the graded dual S of R; then one has a surjection of graded
braided Hopf algebras S — B(V), where V = S(1). But we know the defining
relations of B(V'), since it is of finite Cartan type. So that we are reduced to show
that these relations also hold in S. For instance, take a quantum Serre relation
ad.(z;)!7%i(z;) = 0, i # j; and consider the Yetter-Drinfeld submodule W of S
generated by z; and ad.(z;)' %% (z;). The assumptions (1) and (2) of the Theorem
guarantee that W also is of Cartan type, but not finite. Thus ad.(z;)'~%i(z;) =0
in S.

REMARK 5.37. We see that the main point in the proof of Theorem is to have
control on Nichols algebras of rank 2. When this is granted, the proof can be
extended to other settings; see [Gnl, Gn4]. There also versions of this Theorem
in the infinite dimensional case, over C and for ”positive” braidings; see [AST].

Putting together the previous results, we get a complete answer in a significant
case. Let p be an odd prime number. Let s be a natural number and let T'(s) =
(Z/(p))*.

THEOREM 5.38. [AS5]. (a). Let p > 17. Let A be a pointed finite-dimensional
Hopf algebra such that G(A) ~T(s). Then there exist

e a finite Cartan matriz (a;;) € k%% [K];
o clements g1,...,96 € T(s), x1,-..,Xa8 € T(s) such that

P

(5.41) (xi,9:) # 1, foralll <1<,
(5.42) (X5, 9i)(xir 95) = (Xir 90)"Y, foralll <1,j <6
o and a linking datum (X;j)i1<icj<s,igj, cf- Definition 5.26;
such that A can be presented as algebra by generators ay,...,ag, y1,...,Ys and
relations
(5.43) yh =1, Ym¥Yh = YhlYm, 1<m,h<s,
(5.44) Yna; = Xj (Yn)a;jYn, 1<h<s 1<5<0,
(5.45) (ada;)'~%ia; =0, 1<i#j<0, i~j,
(5.46) a;a; — Xj(gi)aja; = Aij (1 — gig;), 1<i<ji<o, isdy;
(5.47) af, =0, a € dF;

and where the Hopf algebra structure is determined by

(5.48)  Ayn = yn @ yn, Aa;=a; @1+ ¢g; @ a;, I1<h<s, 1<i<0.
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(b). Conversely, let (a;;) € Z°*? be a finite Cartan matriz, g1,...,g¢ € ['(s),
X1,---,X8 € F/(;) such that (5.41), (5.42) hold and (X;;) a “linking datum” for
(aij), 91,...,96 and x1,...,Xs. Assume that p > 3 if the Cartan matriz (a;;)
has a connected component of type Go. Then the algebra A presented by genera-
tors ay,...,as, Y1,...,Ys and relations (5.43), (5.44), (5.45), (5.46), (5.47) has a
unique Hopf algebra structure determined by (5.48). A is pointed, G(A) ~ T(s)
and dim A = ps+|¢+|. d

REMARK 5.39. As a corollary of the Theorem and its proof, we get the complete
clasification of all finite dimensional pointed Hopf algebras with coradical of prime
dimension p, p # 5,7. The same result was obtained by Musson, using the Lifting
method [Mus].

5.3.9. Low dimension. To proceed with the lifting method out of the Cartan
case, and also because of the reason explained in Remark 5.37, we need to answer
the following particular case of Question 5.9.

QUESTION 5.40. Given a braided vector space V of diagonal type and dimension
2, decide when B(V) is finite dimensional. If so, compute dimB(V), and give a
“nice” presentation by generators and relations.

Examples of finite dimensional Nichols algebras B(V) of rank 2 over cyclic
groups of even order which are not of Cartan type were known already to Nichols
[N, pp. 1540 ff.]. All of them are encompassed by the following Proposition, which
gives a partial answer to Question 5.40.

We recall first the following computation in a Nichols algebra, see [Ro2]. If
i # J, then

ado(2:)(z;) = (N, [] (1= bkbijbji) 2fa;.
0<k<r

ProposITION 5.41. [Gnd] Let (V,¢) be a 2 dimensional BP of finite GT (and
thus of diagonal GT), with basis {x1, 22} and matriz (¢;;), end let N; = N(g;;)
for j = 1,2. |, let r + 1 be nilpotency order of ady, on 1. For 1 < i < r let
M; = N(Q11(Q12Q21)2q2222)‘ Then

dimBYV > NN, [ M
1<i<r

Furthermore, suppose that the nilpotency order of adg, on x2 s 2. We have:

(1) If r =1 then the equality holds.
(2) If r=2, and N(q11) # 2 or N(q22) # 3 then the equality holds.
(3) If r =2, N(q11) = 2 and N(qa2) = 3 then the equality holds if and only if
q12921 = —1,07 q12921 = q22, 0T q12q21 = —q22.
O

An useful tool to deal with low index problems is the next Theorem. Let T' be
an arbitrary group. We denote by Py (¢) the Hilbert polynomial of a graded vector
space V.

THEOREM 5.42. [Gn3]. Let V € RYD be finite dimensional and let W C V be
kI -subcomodule. Let T' C T be the smallest subgroup such that (W) CkI' @ W.
We make the following assumptions:

o W is stable under the action of T'. Thus c(W @ W) =W @ W, and we
can consider B(W).
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e V=WaoW, where W' is a kI'-subcomodule and a kT''-submodule.
o B(W) is finite dimensional.

Then there exists a graded subalgebra K of B(V') such that B(V) ~ K @ B(W)
as right BW -modules and left K-modules. In particular, Pgv (t) = P (t)Pew (t);
hence dimBW divides dim BV .

The proof of Theorem 5.42 uses ”quantum differential operators”; the subal-
gebra K can be presented as the algebra of invariant elements of the quantum
differential operators generated by W. An alternative proof of Theorem 5.42 is
given in [MiS], dropping the finiteness assumption on B(W).

COROLLARY 5.43. [Gn3]. Let A be a finite dimensional pointed Hopf algebra.
Let p be a prime number.

(1) If the index [A : G(A)] = p, then A is a lifting of a quantum line.

(2) If the index [A : G(A)] = p?, then A is a lifting of a quantum line or a

quantum plane.

(3) If the index [A : G(A)] = p?, then A is a lifting of a quantum line, a
quantum plane, or a Nichols algebra of type As.

In particular, A is generated by group-like and skew primitive elements. a

Parts (1) and (2) of Theorem 5.43 were proved in [AS2] under the assumption
G(A) abelian; part (1) was proved in [AS3, D] under the assumption that p is the
lowest prime dividing the order of G(A).

Combining Corollary 5.43 with ad-hoc techniques, it is possible to show:

THEOREM 5.44. [Gn4]. Let A be a finite dimensional pointed Hopf algebra. If
the indezx [A : G(A)] < 32, then A is a lifting of a quantum line, a quantum plane,
or a Nichols algebra of generalized type As or By. In particular, A is generated by
group-like and skew primitive elements. a

COROLLARY 5.45. Let A be a finite dimensional pointed Hopf algebra. If
dim A < 32, then A 1s a lifting of a quantum line, a quantum plane, or a Nichols
algebra of generalized type As or Bs. In particular, A is generated by group-like
and skew primitive elements.

ProoF. (Sketch). The only cases not covered by Theorem 5.44 are 64 = 2.32
and 96 = 3.32; but in these cases, G(A) should have order 2, resp. 3; and we know
the answer anyway by [N], resp. Theorem 5.38. O

All these Hopf algebras can be explicitly presented, and their isomorphism can
be explicitly given. The computation of the liftings can be actually done; the most
involved case should be 64 again.

5.3.10. Nichols algebras over non-abelian finite groups. To classify pointed Hopf
algebras with non-abelian group of group-likes by the Lifting Method, we need to
deal first of all with step (a). This means, given a braided vector space V of group
type, ¢f. Definition 5.8, to decide when V 1is finite dimensional and compute it
explicitly. It is convenient to consider the following definition, for general braided
vector spaces.
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DEFINITION 5.46. Let (V,¢) be a braided vector space. We say that (V,¢) is
decomposable if there exist proper vector subspaces Vi, Vo, of V such that V =
VidVrand c(V;®V;)) CV;®@V;, 1 <1i,j <2 Otherwise, we say that (V,¢) is
indecomposable or a fat point.

In the same spirit, a decomposition of a braided vector space (V,¢) is a direct
sum V = Di<i<, Vi, with 0 £ Vi ZV,and c(V; @ V;)) CV; @V, 1 <, j <r. We
shall denote ¢;; := clv,gv, : Vi®V; = V; @ Vi.

A decomposition V' = @®1<;<,V; shall be called irreducible if (V;, ¢;;) is inde-
composable, 1 <z < r.

A braided vector space (V, ¢) of diagonal type is indecomposable if and only if
dimV = 1. This justifies the name of fat point.

We propose to split our problem in two parts:

e First, deal with fat points of group type.
e Next, deal with decomposable braided vector spaces of group type.

We would be happy if the second case can be interpreted as a diagram with fat
points. Here is a first clue that this approach could be correct.

THEOREM 5.47. [Gn3]. Let V = ®1<i<,V; be a decomposition of a braided
vector space (V,¢). Assume that BV; is ﬁ_ni_te dimensional Yi. Then dimBV >
[T7., dim®BV;. Furthermore, the equality holds if and only if c;; = c]»_l-1 Vi#£gj. O

REMARK 5.48. [Gn3]. Let (V,c) be a braided vector space of group type.
Assume that B(V) is finite dimensional and let V' = @1 <;<,V; be a decomposition of
(V,e). Foreach 1 <i<r,let W; CV; be a (possibly ze_ro_) subspace of V; satisfying
the same hypothesis as in Theorem 5.42, with respect to V. Then [, Pagw,)(1)
divides Pog(v)(t) and the quotient lies in Z[t]. In particular, [T;_, dimB(W;) divides
dimB(V).

An irreducible decomposition with ¢;; = c]»_il, for all ¢ # j might be called a
”quantum linear space of fat points”. Observe the perfect analogy with Lemma5.12.
In general, one would consider first irreducible decompositions with ¢;jc;; = i3,

for all ¢ # j ... but before even daring of doing this, we should solve the problem
for fat points, which is still far from our knowledge as we explain now.

Let T be a finite group. Let V = M(g,p), forsomeg € T and p:T9 — End W
an irreducible representation of the isotropy subgroup T'Y. Then p(g) acts by a
scalar, by Schur’s lemma, say ¢q. Consider W — V viaz — 1l ®@z. If 2,y € W,
then
c(z®@y)=qy® .
A first immediate consequence is that ¢ # 1 if B(V) has finite dimension. But,
arguing as in Proposition 5.24, Theorem 5.19 implies the following restrictions.
ProPosITION 5.49. [Gnd4] If dimB(V) is finite, then
o if dimW > 3 then q = —1;
o if dimW = 2 then q = —1 or it is a third root of unity.
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When dimW > 1 and ¢ = —1 or a a third root of unity, very few is known.
For instance, if ' = T'Y, then V = M(g, p) is not a fat point but a quantum linear
space (if ¢ = —1), or has type Ay (if ¢ is a third root of unity).

Let us now consider the case when dimW = 1, 7. e. when p is a character.
We first describe, following [Gn4], a relation between braided vector spaces of
group type, whose indecomposable components can be realized as M(g, p) with p
a character, and set-theoretical solutions of the braid equation.

DEFINITION 5.50. A crossed set is a pair (X,>), where X is a finite set and
>: X x X — X is a function, such that

e for each i € X, the function e”(7) : X — X, e”(4)(j) = ip J, is a bijection,
eivi=iVie X,
e jb> ¢ =1 whenever :>j = j, and

e in(jrk)=(ivj)v(ivk)VijkeX.

The archetypical example i1s a subset X of a finite group T stable under the
conjugation, with i j = iji~'. A crossed set provides a set-theoretical solution of
the Braid Equation by

(5.49) X xX—=XxX, ci,j)= (i i)

There 1s a large class of set-theoretical solutions of the Braid Equation which are
equivalent, in a suitable sense, to solutions of this form [So, LYZ].

Let A be an abelian group, denoted multiplicatively. Let (C*(X, A), ) be the
cochain complex defined by

e C"(X)={f: X" = A}, n>0.

e $°=0

bl

o (@0, 2n) =110y F(xo, o @im, @iy, 2n) "D

_qyitt
X (o, oo T, T > Tig1,y - - ,l‘ibébn)( Vs

The cohomology groups H"(X, A) = H*(C*(X, A), ) have interesting inter-
pretations for low n. First, H'(X,k*) = k™(X) where mo(X) is the set of equiva-
lence classes of the relation generated by j ~ i1 j.

Second, let kX denote the vector space with basis X. If f € C?(X,k*), we
define a map ¢f 1 kX @ kX — kX @ kX by

di@j)=fGivjoi
We then have
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H*(X,k*) = {f € C*(X,k*) | ¢/ verifies the Braid Equation}/ ~;

where ~ amounts for a change of basis of the form i — A;7, A; € k* for all 1 € X.
We can then refer to a braiding ¢/, for f € H?(X,kX). Similarly, we consider
H?(X,Geo ), where G, is the group of all roots of 1 in k.

LEMMA 5.51. [Gnd] If f € HX(X,Gw ) then (kX,cf) is of finite group type.
Conversely, a braided vector space of finite group type arising from a Yetter-Drinfeld
module ®1<i<s M(g;, pi) with p; characters, is of the form (kX, ¢/) for some (X,1),
f € H*(X,Ge). O

In other words, the class of braided vector spaces (kX,¢f), (X,>) a crossed set,
f € H*(X, G ), is one of the ”suitable classes” we are looking for.

QUESTION 5.52. Given (kX,¢/), (X,p) a crossed set, f € H2(X, Go ) compute
the dimension of the associated B(kX). If finite, give a nice presentation of B(kX).

We are naturally led to the problems of, first, classifying all the crossed sets
(X,»), and second, computing H%(X, Gy, ) for each of them. The answer is known
only for crossed sets of cardinal 3 or 4 [Gn4]. A first reduction is to determine the
pairs (kX, ¢/) which are fat points, or indecomposable. In this sense, it is natural
to say that a crossed set (X,p) is indecomposable if for any ¥ C X such that
YoV =YV, (X =-Y)p(X—-Y)=(X-Y), then necessarily Y = X or X - Y = X.
If the braided vector space (kX ¢/) is indecomposable, then the crossed set (X, )
is indecomposable. However, the converse is not true; see [Gn4, Section 5.2].

Let us show now some explicit examples of braided vector spaces (V,¢) =
(kX,c’). We assume that dimV > 3, otherwise V is of diagonal type [AG].
Notice that we always have a map Goo — H?*(X,Goo ) by q — fy, f(i,7) = q; we
denote the corresponding cocycle by cf.

EXAMPLE 5.53. [MiS]. Let (W, S) be a finite Coxeter group and let X be the
union of the orbits of all elements of S; let > be the restriction of the conjugation.
The authors consider the braided vector space (V, ¢) = (kX ¢?). They compute the
dimension of B(V) in the following cases:

If W = S3, then dimB(V) = 12.

If W = S4, then dimB(V) = 242

If W =1y, then dim B(V) = 48.

If W = S5, then dim9B(V) < oo by [FK].

EXAMPLE 5.54. [Gn4, Section 5.2]. Let X = {1,2,3,4}. Then there exists a
structure of crossed set > on X, such that the corresponding map e” is given by

e o o o

(1) = (234), €(2) = (143), ¢ (3)=(124), ¢ (4)=(132).

Then there is a cocycle f such that B(kX) has dimension 72; a nice presentation
by generators and relations is also given in [Gn4].

These are the only examples were we know that the dimension is finite.
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In the spirit of step (b), we also may ask whether, for a fixed finite group T,
there exist ”genuine” examples of finite dimensional pointed Hopf algebras H with
G(H) ~T. The best way to state precisely what ”genuine” means, is as follows.

DEFINITION 5.55. [MiS]. A Yetter-Drinfeld module V' € LYD is link-indecom-
posable if T is generated by the elements g such that V, # 0.

QUESTION 5.56. Determine all finite groups I' having a link-indecomposable
Yetter-Drinfeld module V' such that B(V) is finite dimensional.

5.3.11. Nichols algebras over semisimple Hopf algebras. We know almost noth-
ing about finite dimensional Hopf algebras whose coradical is a Hopf subalgebra,
but are not pointed. In order to restrict our attention to ”genuine” examples, we
propose the following definition.

DEFINITION 5.57. Let H be a semisimple Hopf algebra and let V € ZYD. Let
Cyv be the subcoalgebra of H generated by the matrix coeficients of V. We say
that V' is link-indecomposable if H is generated as an algebra by Cy + Cy.

QUESTION 5.58. Determine all semisimple Hopf algebras H having a link-
indecomposable Yetter-Drinfeld module V' such that B(V) is finite dimensional.

6. The general case

We assume in this Section that k is algebraically closed.

In this Section we are concerned with the following question: what is the classi-
fication of all Hopf algebras of a fixed dimension? Of course, this is a very difficult
problem (it contains the classification of all groups of a fixed order). One should
probably be happy to answer the following partial questions:

QUESTION 6.1. Classify all Hopf algebras of dimension d, where d is small; say,
d < 100.

QUESTION 6.2. Classify all Hopf algebras of dimension d, where d factorizes in
a simple way; say, d = p%, pq, pqr, pq>, p°, p®q®, . .., where p, ¢, r are distinct prime
numbers.

The purpose of addressing these Questions is, naturally, to gain insight into the
structure of general Hopf algebras, before even daring to state general conjectures
or questions about them.

About Question 6.2, the only general known result is Theorem 4.5, classifying
Hopf algebras of prime dimension. I am aware of the following two partial results.

THEOREM 6.3. [AS1]. Assume that char k = 0. Let H be a Hopf algebra of
simension p*. Assume that S has order 2p. Then H is either semisimple (hence,
a group algebra) or pointed (hence a Taft algebra). d

Recall that by Radford’s formula 3.5 and Nichols-Zéller theorem 3.2, 8% = id;
so that the only remaining case 1s when the order of § is 4p.

THEOREM 6.4. [Nad4]. Assume that chark = 0. Let H be a Hopf algebra of
dimension p? or pq, where p and q are odd. Assume that H is quasitriangular.
Then H 1is semisimple; hence, a group algebra, or the dual of an abelian group
algebra. a

In general, Proposition 5.3 motivates the following Question:

QUESTION 6.5. Let N be a positive integer which is free of squares. Is any
Hopf algebra of dimension N semisimple?
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Here is what we know about Question 6.1.

THEOREM 6.6. Assume that char k = 0. All Hopf algebras of dimension d are
known for d <12, ord = 15,21,25,35,49. They are either semisimple, or pointed,
or dual to a pointed. d

For d < 11, this was proved in [W1] and an alternative, more conceptual, proof
was offered in [St3]; For d = 12, this was proved in [Na3]; the rest of the cases are
in [AN3].

REMARK 6.7. It is natural to ask whether there exist Hopf algebras H which
are neither semisimple, neither pointed, nor H* is pointed. Infinite families of such
examples are constructed in the very interesting paper [Mu2], as a byproduct of
his study of the ”finite quantum subgroups of GL(N)”, that is, finite dimensional
Hopf algebra quotients of k,[GL(N)].

6.1. On the coradical filtration. The purpose of this Subsection is to state
a description of the coradical filtration due to Nichols and some consequences, useful
for problems in low dimension.

Let C' be a coalgebra over k. We denote by C the set of isomorphism types
of simple left C-comodules; and by V; (resp., V) the simple left (resp. right) C-
comodule corresponding to 7 € C. We have Cy ~ @,cgCr, where C: is a simple
subcoalgebra of dimension dz, d. € Z. We also set Cy q := @re@:d,:dCT'

A Cy-bicomodule is a vector space M with left and right Cy-coactions py, :
M — Co® M and pp : M — M ® Cy such that (pr ® id)pr = (id®pr)pr.
Any Cy-bicomodule is a direct sum of simple Cp-sub-bicomodules and a simple Cp-
bicomodule is of the form V, ® V; and has dimension d.d, for some 7, € C. 1f
M is a Cg-bicomodule, we set M™# for the isotypic component of type V: @ V5.

There exists a coalgebra projection 7 of C onto Cy [Mol, 5.4.2]; let T := ker .
Then C is a Cy-bicomodule via pr = (7 ® id)A : C — Co ® C, pr := (id@7)A :
C — C®Cy; I and C,, n > 0, are sub-bicomodules of C. Let Py = 0,

Pr={zeC:A(x)=pr(z)+pr(x)} = A" (Co@ T+ 1 ® (),
P,={z€C:A(z)—pr(z)— pr(z) € Z P;®P,_;}, n>2.
1<i<n—1
In particular the P,’s are Cy-sub-bicomodules of I, n > 0; but they are not

intrinsic since they depend on the projection w. The following Lemma can be

thought as a substitute of Theorem 5.2.
LemMma 6.8. (W. Nichols) (i). P, =C,N1.
(ii). Cy = Er,ueé Cr NCYy.
(i1). Co NCr =Cr® P" and C, ANCy=Cr @ Cy @ PUF if 7 # p. O

Assume in what follows that C' = H is a finite dimensional Hopf algebra. If
7 € C and g € G(H), we denote C,a := §(C;), 9.Cr := Cyr, Cr.g := Cr4; they
are simple subcoalgebras of C'.

CoROLLARY 6.9. [AN3]. (7). For any g € G(H),

a_d
dll’l’lPlT”u = dlmpl'u T — dlmPiQ~T;g~N — dlmpl‘ﬂg,,u.g.
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(ii). If I is a direct sum of one-dimensional Ho-sub-bicomodules then H, =

Ho+ 32 heaom) Pan(H)- 0

Consider the right action —: H* ® H — H* given by &« — h = (a1, h)as,
Vhe H,a € H*. Let [ € H* be a non-zero left integral and let go € G(H) be the
distinguished group-like element, so that

af=(a,1)[ and [a={a, g0/, Ya € H*.
We shall assume in what follows that H is not cosemisimple, or equivalently,

that ([, 1) :0;inparticularf2 =0andif g € G(H), also ([ — g)* :f2 —g=0.
Observe that if C' # k1 is a simple subcoalgebra of H, and if ¢ € C, then

(Jie)l =([,ea)er € CNKkl,

whence [|c =0, i.e., [ belongs to the anihilator of Hy, HE = JacH*. Let g €
G(H). Since the left (and right) multiplication by g is a coalgebra automorphism
of H, it preserves Hy. This implies that also [ — g belongs to Jac H*. Also, for
all « € H*, we have

alf —g)=(a,g7")[—g, and ([ —g)a=(a,g 'g) [ —g.

Hence k([ — g) is a two-sided ideal of H* and k(f — g) C Jac H*. Moreover,
since distinct group-like elements are linearly independent and the map H — H*,
h— [ — h, is injective, the ideals k([ — g) and k([ — g¢') are distinct if g # ¢'.

LEMMA 6.10. [AN3] Let H be a non-cosemisimple finite dimensional Hopf
algebra. Let L = ([ — kG(H))*, s = |G(H)|. Then L C H is a subcoalgebra of H

containing Hy and there is an Hg-bicomodule decomposition

H=LoPI,
j=1
where I; are one-dimensional Ho-sub-bicomodules of I, Vj =1,...,s. g

ProposITION 6.11. [AN3] Let H be a non-cosemisimple finite dimensional
Hopf algebra.

(i). If dim H — dim Hg = |G(H)|, then Py # k(g — h), for some g,h € G(H).

(i1). Suppose that Py n = k(g — h), for all g,h € G(H). Then [ —kG(H) C
(Jac H*)2. In particular, |G(H)| < dim H — dim H;.

(iit). If Hy = H then H has a non-trivial skew primitive element. In particular,
if char k = 0, then G(H) is non-trivial. d

6.2. Relation with quantum sf(2). We briefly discuss a very interesting
result from [St3] and some consequences.

THEOREM 6.12. [St3, Th. 1.5] Let A be a Hopf algebra containing a simple
subcoalgebra C' of dimension 4 stable by S. Assume that 1 < ord(S2 lc) =n < oco.
Then there exists a root of unity w, such that the order of w? is n, and a surjective
homomorphism of Hopf algebras (’)\/x(SLz(k)) — B :=kC. d

Here, kC' denotes the subalgebra of A generated by C, which is a Hopf subal-

gebra of A. Notice that the hypothesis on the order of the antipode always holds
whenever A 1s finite dimensional and non-semisimple.
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Let ¢ := /—w. Let N be the order of q. There is a central inclusion of Hopf
algebras O(SLy(k)) — O4(SL2(k)), Xi5 — :t:f}f, where X;; are the usual coordinates
in O(SL2(k)).

COROLLARY 6.13. [Nad4] Let A be a finite dimensional non-semisimple Hopf
algebra. Suppose that A 1s generated by a simple subcoalgebra C' of dimension 4
which is stable by the antipode. Then A fits into an extension | — k% — A — H —
1, where G 1s a finite group and H* is a pointed non-semisimple Hopf algebra. O

It would be really interesting to generalize this result, and to understant the
reasons behind it.

7. Forms

7.1. Forms of Hopf algebras. The passage from the algebraically closed
case to the general case follows in principle the general guidelines of Galois descent
[Se2]. Let k be a field with algebraic closure k and suppose we have classified all
Hopf algebras of certain type over k, say all the Hopf algebras of a fixed dimension
d. For each Hopf algebra H over k in the obtained list, one seeks to describe all
Hopf algebras Hy over k such that Hy ®x k~ H; briefly, the k-forms of H. This
problem splits into two parts: first one needs to show the existence of at least
one form, second the set of all forms is described as a non-abelian H'. The first
part, which is trivial in the case of group algebras, is not all evident for general
Hopf algebras. The literature on these Questions is not very abundant: [TO] is
concerned with commutative Hopf algebras of prime dimension, [HaP], [P] treat
the case of finite group algebras; recently, forms of Frobenius-Lusztig kernels were
discussed in [CDB] (over fields where the existence of a form is granted).

QUESTION 7.1. Do there exist forms of the Frobenius-Lusztig kernels over Q7

7.2. Finite compact quantum groups. There is another version of the
notion of ”form”, with a more ”quantum” flavor since 1t has origins in the theory
of operator algebras. We shall work over C, regarding R-forms; the first general
definitions and notions can be adapted mutatis mutandis to quadratic extensions.
I do not know a formulation for more general field extensions, if any.

DEFINITION 7.2. A *Hopf algebra is a pair (H, %), where H is a Hopf algebra

and % : H — H is a conjugate-linear map (that is, (Az)* = Az* for A € C, = € H)
such that:

e (zy)* =y z*, i. e. * is an anti-algebra map;

o A(z*) = E(z) ()" @ x5y, t. e. * is a coalgebra map.

It follows easily that (S*)? = id. Also, one could consider ”o-Hopf algebra”,
where o : H — H 1s a conjugate-linear, algebra and anti-coalgebra, map. However,
the two notions are equivalent by the equality z° = (S(z))*.

For simplicity, assume now that (H,*) is a finite dimensional *-Hopf algebra.
The transpose of the *-operation is a o-operation in the dual Hopf algebra H*; by
the preceding H* is a x-Hopf algebra in a natural way.
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Let [ : H — C be a right integral and let (|): H x H — C be the sesquilinear
form given by
(zly) == ([,y"=).

It is easy to see that

(zylz) = (ylz"2),  (p—zly) =(zlp" —y), @y z€HpeH".
Here — is the action of H* on H transpose to right multiplication. Assume further
that H is semisimple; then we normalize [ by (f,1) = 1. The corresponding (|) is
hermitian, since [ is also a left integral.

DEFINITION 7.3. A finite compact quanium group is a *-Hopf algebra (H,x*)
with H semisimple and [ normalized by (f, 1) = 1, such that (| ) is positive definite.
We say that * is a compact involution.

This definition is equivalent to the original definition of Woronowicz [W1], as
shown in [A2, 2.4]. Finite compact quantum group are also called Kac algebras in
honor of G. I. Kac [Kcl, Ke2, KP].

THEOREM 7.4. [A2, 2.4]. Let (H,*) be a finite compact quantum group and
let # : H — H be another structure of x-Hopf algebra. Then there exists a Hopf
algebra automorphism T : H — H such that # and T« T~1 commute.

If # 1s another compact involution, then there exists a Hopf algebra automor-
phism T : H — H such that # =T« T~ 1. a

The proof of Theorem 7.4 is inspired in an analogous proof for semisimple
Hopf algebras due to Mostow; it actually applies also in the infinite dimensional
case [A2]. In presence of this Theorem, the classification of finite compact quantum
groups is equivalent to the following problem:

QUESTION 7.5. Given a semisimple Hopf algebra H, does it admit a compact
involution?

8. Appendix. Questions

For convenience of the reader, we collect here the Questions discussed in the
text.

QUESTION 2.1. Jordan-Holder theorem for finite dimensional Hopf algebras.

QUESTION 2.3. Simple semisimple Hopf algebras are twistings of group alge-
bras of simple groups, or their duals?

QUESTION 2.4. Classify simple semisimple Hopf algebras of dimension 60.

QUESTION 2.6. Does there exist a semisimple Hopf algebra which is not a
twisting of a semi-solvable Hopf algebra?

QUESTION 2.12. Find a semisimple Hopf algebra which is a bosonization but
not an extension.

CoNJECTURE 4.11. (Kaplansky). If H is a (semisimple) Hopf algebra over
the algebraically closed field k, then the sizes of the matrices occuring in any full
matrix constituent of H divide the dimension of H.

QuEsTION 4.7. (Kaplansky). Classify all Hopf algebras of dimension p, in char
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QUESTION 4.17. (S. Montgomery). What is the analogue of Burnside’s p2q®-
Theorem for semisimple Hopf algebras?

QUEsTION 4.20. (S. Montgomery). Classify all semisimple Hopf algebras H
such that dim H < 60; that is, those of dimension 20, 24, 30, 32, 36, 40, 42, 48, 52,
54, 56.

QUESTION 5.9. Given a matrix whose entries are roots of 1, compute the
dimension of the associated B(V). If finite, give a nice presentation of B(V).

QUESTION 5.28. Compute liftings of the quantum Serre relations for vertices
in the same connected component, in the low order cases.

QuesTioN 5.31. If R = ®,>oR(n) is a graded braided Hopf algebra with
R(0) =kl and P(R) = R(1), when R is generated in degree one, i. e. is a Nichols
algebra?

QuEsTION 5.32. If S = ®,>05(n) is a graded braided Hopf algebra with
S(0) = k1 which is generated in degree one, when P(R) = R(1), i. e. when S is a
Nichols algebra?

CONJECTURE 5.35. [AS3]. Any pointed finite dimensional Hopf algebra over
k is generated by group-like and skew-primitive elements.

QUESTION 5.40. Same as 5.9 but in the particular case of rank 2.

QUESTION 5.52. Given (kX,¢f), (X,) a crossed set, f € H%(X, Gy, ) compute
the dimension of the associated B(kX). If finite, give a nice presentation of B(V).

QUESTION 5.56. Determine all finite groups I' having a link-indecomposable
Yetter-Drinfeld module V' such that B(V) is finite dimensional.

QUESTION 5.58. Same for semisimple Hopf algebras.
QUuUEsTION 6.1. Classify all Hopf algebras of dimension d < 100.

QUESTION 6.2. Classify all Hopf algebras of dimension d, where d factorizes
in a simple way.

QUESTION 6.5. Let N be a free of squares positive integer. Is any Hopf algebra
whose dimension is free of squares, necessarily semisimple?

QUESTION 7.1. Do there exist forms of the Frobenius-Lusztig kernels over Q7

QUESTION 7.5. Given a semisimple Hopf algebra H, does it admit a compact
involution?
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