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Contemporary Mathematics

The classification of subgroups of quantum SU(N)

Adrian Ocneanu

1. The classification and structure of subgroups of quantum groups

1.1. The classification and structure of subgroups of quantum SU(2).
Drinfeld and Jimbo have shown that the simple Lie groups have quantum deforma-
tions. At roots of unity, the semisimple quotient of the quantum groups has only
finitely many irreducibles, in a phenomenon called the Wess-Zumino-Witten cutoff.
The irreducible representations of SU(2) are labeled by the half-line {0,1,2,3,...},
and the quantum cutoff SU(2); at the [ + 2-nd root of unity (here [ is the level and
[ + 2 the Coxeter number) has irreducible representations labeled by the graph
Aj4q with vertices {0,1,2,...,1}; the level [ is the highest degree of a representa-
tion which survives the cutoff. The graph Dy, is obtained by folding in 2 the graph
Ao 1 by a Zs action which splits the irreducible in the middle into + compo-
nents. Thus the D,, series consists of orbifolds of the A,, series. There are also 3
exceptional graphs associated to SU(2) namely Eg, E7, Eg at levels 10,16 and 28
respectively. Each of these graphs has eigenvalues among the eigenvalues of the
graph A, on the same level; these eigenvalues are labeled by the exponents of the
graph.

In [1], we showed a new phenomenon: that in a way similar to the subgroups
of the classical SU(2) described by Felix Klein in his book “Das Ikosahedron”, the
quantum cutoff SU(2); has subgroups as well. The irreducible representations
of the Kleinian subgroups live, as observed by J. McKay, on the vertices of the
affine ADE graphs. We have described subgroups of the quantum cutoffs SU(2),
for which the irreducibles live on the graphs A,, Dy,, Fg and Eg respectively.
The subfactors of Jones index < 4, which we had described earlier, correspond to
these subgroups. In addition to subgroups there are also modules, for which the
irreducibles can be tensored with irreducibles of SU(2);, but not tensored among
themselves. The modules which are not subgroups correspond to the graphs Dy, 1
and E7. Each module is canonically obtained from a subgroup with an antiauto-
morphism, which we called the ambichiral twist; thus Dsy41 comes from A4,—1 and
E; comes from an exceptional twist of the ambichiral part D{y" of Dig. We also
connected these subgroups and modules to the modular invariants for SU(2) clas-
sified by Capelli, Itzykson and Zuber, and we showed that the modular invariants
appeared in several different roles in the theory. A modular invariant for SU(k),
is a matrix M with entries M;; € {0,1,2,...} labeled by pairs (i,j) of Young
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2 ADRIAN OCNEANU

diagrams with < k — 1 rows and < [ columns. The modular invariance requirement
is that the matrix M be a self-intertwiner of a representation of the modular group
SL(2,Z) associated to SU(k);.

We have shown that the entries M;; of the modular invariant corresponding to
a graph G describe the following mathematical objects.

(i) the number of essential paths on a pair of chiral graphs with common ver-
tices, corresponding to the common components of the irreducibles ¢ and j
of SU(k); restricted to the subgroup. In an equivalent form, for SU(2) this
description is the following. There are 2 Hecke algebra connections for an
ADE graph introduced by V. Jones, differing by a choice of v/—1. Iterate
the first one ¢ times and the second one j times and decompose each into
irreducible components. The number of common irreducible pairs is Mj;;.

(i) M;; is the number of Kleinian invariants of degree (i,j). The original
Kleinian invariants were polynomials left invariant by the action of a sub-
group of SU(2). Here there are 2 copies of the subgroup, complex conjugate
to each other, and each invariant has a bidegree (i, 7).

(iii) The fusion algebra of the connections between two copies of G' can be block
diagonalized and the numbers M;; are the dimensions of the blocks.

1.2. Zuber’s higher Coxeter graphs problem. The theoretical physicists
at the Centre d’Energie Atomique, Saclay, Paris, most notably Zuber and di Francesco
have discovered what they called higher Coxeter graphs about 15 years ago.

The irreducible representations of SU(3) (very important in physics, since they
appear in the standard model) are labeled by a planar triangular lattice inside a
Weyl chamber, and the level [ cutoff SU(3); has irreducibles labeled by the lattice
points in an equilateral triangle, corresponding to Young diagrams with < 2 rows
and < I columuns; the edges correspond to tensoring with the generator of Irr SU(3);.
The triangular graph with these vertices will be called the A; graph for SU(3); it
is the analog of the usual A; graph for SU(2).

One can obtain an orbifold series A4;/3, analogous to the D, series for SU(2).
There are 2 more conjugate orbifold series, due to the fact that the graph A,
from which SU(3) itself is built has a symmetry called conjugation. Finally there
are several exceptional graphs, among the list found by Zuber and collaborators
empirically, with what they called computer aided flair. Zuber imposed spectral
conditions analogous to the properties of the ADE graphs for SU(2), such as the
fact that their eigenvalues be among the eigenvalues of the A; graph as described
above. He also asked that the adjacency matrix of the graph be normal, due to
the fact that with the Drinfeld-Jimbo braiding, the fusion algebra of Irr SU(3); is
commutative.

A parallel list classifying SU(3) modular invariants was due to T. Gannon, but
the precise correspondence between it and the list of Zuber’s graphs was unclear.
Zuber stated about 10 years ago the problem of classifying the higher analogs of
the ADE graphs and in an effort toward private support of research offered 1,2 and
respectively 3 bottles of champagne for the classifications corresponding to SU(3),
SU(4) and SU(5) respectively.

1.3. The classification and structure of quantum subgroups of SU(3).
The natural reformulation of Zuber’s higher Coxeter graphs problem is the follow-
ing. The quantum group SU(k); has subgroups and modules. Each subgroup and
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module G gives raise to a family of graphs, having as common vertices Irr G and
edges corresponding to tensoring with the k—1 generators of Irr SU (k);. The proper
way to look at the usual ADFE graphs is to view them as the graphs of subgroups
and modules of SU(2),.

As a result the higher Coxeter graphs problem is to be reformulated as the
problem of classifying the subgroups and modules of SU (k); (and more generally of
any semisimple quantum Lie group at roots of unity), a version adopted by Zuber.

For the classification, we had to develop conditions which were possible to check
on any given graph, and which insured that the graph corresponded to a subgroup
of SU(k);. The problem here is that any computation which involves explicitly
intertwiners of SU (k) is completely out of reach.

The graph of a subgroup of SU(3) or SU(3); is made of triangles, corresponding
to the fact that the generator o = o1 € Irr SU(3) satisfies 0®3 5 1. We have shown
that in each triangle there is a complex number, which we call a cell, coming from
the explicit composition of morphisms corresponding to the edges of the triangle.
Together, the cells on a graph form what we call an internal connection, defined
up to a gauge which comes from the choice of morphisms for edges. These cells
satisfy quadratic and quartic equations of a cohomological nature, which are local,
i.e. involve only cells in a small neighborhood of the cell. This is done in the same
spirit in which checking that weights on the vertices of a graph form a Perron-
Frobenius eigenvector for a given eigenvalue involves checking only neighboring
vertices. One of the exceptional graphs in the empirical list proposed by Zuber fails
this test and has to be eliminated, since according to our theory it is not related at
a deep level with SU(3). Later, Zuber and collaborators started to notice that its
behavior is indeed aberrant from other points of view, which further justifies our
reformulation of Zuber’s problem.

The connection has been adopted rapidly by the physics community, where sev-
eral papers on what are now called as ”Ocneanu cells” have already appeared. The
cells solve immediately and explicitly one of the major goals of the initial program
of Zuber, the construction of new solutions of the QYB equation corresponding to
each graph.

We then developed methods for an exhaustive description of all possible sub-
groups and modules of SU(3); at all levels I. The starting point is the classification
of modular invariants of SU(3) by Gannon. We showed that given a modular
invariant matrix M it is possible to construct a matrix

1 1
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Mgy = D NEy N Mo o
s.\\ .N.\\

"

where st; are fusion numbers for i,i’,i" € Irr SU(3);. The matrix M ; ;1 ;)

decomposes as a product
Mgy = D MM
x

of matrices @\a(mbaoxma by a label x of a vertex of the graph of the subgroup.
The matrices M* = QSS&Y which we called the torus spectrum of the vertex =z,
generalize the modular matrix M and have natural numbers as entries; they describe
for SU(2), the dual asymptotic graph for the inclusion described by Goodman,
Jones, and de la Harpe of the subalgebra generated by Jones projections into the
algebra constructed from an ADFE graph.
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J

For z =1 € Irr G we have M! = M. Let us now regard each \(mq . as a vector
and construct a matrix M = A\(ma.\vﬁ,éqa with nonnegative integer entries. We

have to solve thus the equation M = MM?*. A further reduction comes from the
fact that the vertices = of the chiral left graph that we are looking for are obtained
by solving the above equations with 7,5, 7" =0, i.e.

€T

M i’ _ _ M Arr
2&1\ &E.S.I,O == EA&QOVMAQMOV - .Ng&,o i’,0
i’ x

We called the above decomposition, in which the matrix M; o) (i,0) is constructed
from the first line M;/ o of the modular invariant A, and is then split into a
product, the chiral modular splitting. This phenomenon has been, subsequent
to our work, interpreted in conformal field theory by Petkova and Zuber.

If there is an upper triangular solution M with 1 on the diagonal, then the
solution is unique; since M is easily computed from a given graph it becomes easy
to check that a given graph is the unique solution corresponding to a given modular
invariant M. This allows in the case of SU(3) to check that there is precisely one
graph of a subgroup (what the physicists call type I graph) for each first line of the
modular invariants in Gannon’s classification. There follows the classification of
all ambichiral twists, and checking that there are, in the list of graphs that passed
the necessary and sufficient cell test, enough graphs to account for each ambichiral
twist. This completes the classification of the subgroups of SU(3);, which does not
require machine help.

There are 4 series of orbifolds A;, 4;/3, (4;)¢ and (A4;/3)¢ = 3(4;)¢, where c is
the conjugation coming from the symmetry of the Coxeter graph As on which the
Lie group SU(3) is built; the subscript I denotes the level. Among these the graphs
Az, are flat, or type I, i.e. correspond to subgroups and the rest are modules, or
type II. There are also 3 exceptional subgroups Es, Fg and E2; which come from
conformal inclusions; Es and Fy have a module-orbifold each, denoted by Es5/3
and Ey/3. There is also an exceptional twist (4g/3)! of Ag/3 and its conjugate
(Ag/3)t¢; these are analogous to the graph E; = (Do)t for SU(2).

A remarkable fact is that, while the correspondence between the classical,
Kleinian, subgroups of SU(2) labeled by the affine ADE graphs and the quan-
tum subgroups of SU(2); indexed by the non-affine ADFE graphs was bijective, the
classical and quantum subgroups are quite far away from each other for SU(3);
about half of the quantum series and exceptionals have no classical correspondent,
and several classical subgroups have no quantum correspondent. In fact going from
SU(3) to SU(4) and SU(5) increases the number of subgroups dramatically; in
the quantum case, where subgroups of SU(k) are not, in general, subgroups of
SU(k + 1), the number of exceptional subgroups appears to decrease from SU(3)
to SU(5).

1.4. The quantum subgroups of SU(4): the non-conformal excep-
tional. We have almost completed the classification of quantum subgroups of
SU(4), at all levels . We have found 6 orbifold series, 3 exceptional subgroups and
3 exceptional modules. The nature of the problem was very different from SU(3):
no classification of modular invariants existed and no candidates for the subgroups
existed either. The classification required new theoretical methods and very inten-
sive machine computation. Among the surprises was the subgroup labeled Eg (=
the exceptional on level 8) of SU(4)s. This is the first exceptional subgroup which
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does not come from a conformal inclusion, thus contradicting the running conjec-
ture among physicists that the conformal inclusion method is exhaustive. The cell
method was extended to SU(4); the construction method is described in the next
paragraph. We do not have effective general methods to construct the modules, or
type II graphs, which correspond to a type I graph although the methods that we
do have were sufficient for SU(4).

1.5. Rigidity, effective bounds and construction algorithms for sub-
groups of quantum groups. We have described in a previous work (NSF pro-
posal) our main rigidity results concerning subfactors and systems of bimodules.

For any fusion algebra there are finitely many 6j-symbols up to equivalence.
This has as a consequence the fact that there are countably many finite depth
subfactors of the hyperfinite I1; factor up to conjugacy.

For any finite system of bimodules there are finitely many possibilities for a
braiding.

The maximal atlas of any finite system of bimodules is finite. This latter result
has as consequence that SU(k); at any given rank k and level [ has finitely many
subgroups.

We can now show that for any given rank %k the subgroups of SU(k); at all
levels [ fit into a finite number of series which are orbifolds, and a finite number
of exceptionals. We show that above a certain level there are no more exceptional
subgroups. The maximal level of exceptionals is 28 for SU(2) (the level of the Fg
subgroup), 21 for SU(3), 8 for SU(4) and probably 7 for SU(5) (note the unex-
pected decrease in the maximal exceptional level with the rank in this range). The
algorithms of T. Gannon allow the exhaustive computations of modular invariants
up to very high levels (e.g. 10000 for SU(4) in a few seconds on a current PC).
However he found no exceptionals above very small levels. What his methods are
lacking, except in the SU(3) case, is a stopping point, and this is precisely what
our methods provide.

We start from the modular splitting identity, which is nonlinear, and show that
in the first row of the modular invariant the gap up to the first nonzero entry in the
modular invariant is bounded by a universal bound. The only exception is for the
case in which all nonzero entries in the first row of the modular invariant correspond
to bimodules of index 1, or corners, of SU(k);; the latter case corresponds to the
orbifold series analogous to D,,.

For the subgroup Es of SU(2), the first of the modular invariants is xo + x10 +
X18 + X28, the gap to the first nontrivial entry is thus 10 and this gap manifests
itself by the fact that the graph FEjg is identical to an A,, graph for the first 5=gap/2
vertices. Afterwards the 6th vertex of A, splits into 2 vertices of Eg. We can show
that the modular splitting identity gives a sharp bound on the gap, via the following
fundamental inequality.

For a Young diagram A denote by |\| its quantum dimension and by X its
conjugate. Then if the first row of the modular invariant has a nonzero coefficient
for A and if we denote by I the set of all the Young diagrams of level less than half
the gap, we have

D IHINY S <IN

nel
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Note that >_, _t_ZMM = |\]?>. Thus for a large gap, the left member is pro-

portional to |A|?, and the only possibility is |A| = 1, which produces the orbifold
series.

On the other hand the first entry in the diagonal T' matrix equal to 1 after the
Oth entry arises on a level proportional to the level [ of the cutoff, since the cutoff
level appears in the denominator of the exponent. Thus the gap must be large if
the level is large. Together with the previous absolute bound on the gap, this gives
a bound on the maximal level [ of exceptionals for SU(k);.

1.6. The internal mechanism of subfactors and QFT: the coefficients
of the quantum symmetrizers. The theory of the irreducible representations of
SU(2) and its quantum cutoffs SU(2); at the [ + 2-nd root of unity appears to be
well understood; the 6j-symbols allow in principle the computation of the invariants
of knots links and 3-manifolds. The irreducible representations o, of each degree n
arise on symmetric tensors in this case homogeneous polynomials of degree n in 2
variables. The projection p, from the space of all tensors of degree n corresponding
to (01)®™ to the symmetric tensors corresponding to the highest weight irreducible
op is the symmetrizer, which sums over all permutations of the n variables and
then divides all by n!; in the quantum case there is an analogous formula, with
braiding instead of permutations and with each term multiplied by a root of 1.

The trace 7, of the symmetrizers p, =1 —e; V---Ve,—; for SU(2);, where ¢;
are the Jones projections satisfying e;e;11e; = [2]7%e; and e;e; = eje; if |i — j| > 1,
has been shown by V.Jones to satisfy a recurrence relation 7, = 7,—1 — [2]727p—2
and thus 7,, = [n + 1]/[2]", where [k] is the quantum number k given by [k] =
(¢4/2 = q=4/2)/(q'/2 — g=1/2) = sin(kr/(I + 2))/ sin(m/(L +2)) with g = e27i/(+2),
This relation allowed him to prove that [ must be an integer, i.e. the remarkable
rigidity of the index [2]? =4 cos?(7/(l + 2)), | integer, when the index is < 4.

Hans Wenzl has proved the recurrence relation

Pn = Pn-1 — [2][n = 1]/[n]pp—1€n—1Pp—1.
From this
m=1, p2=1-e1,
and
ps = 1— [2/[3Jex — [21%/[3)es + [21/[3Jeres + [212/[3leser -
In general a repeated application of the Wenzl inductive formula allows one to
express the symmetrizer p, in terms of the linear basis consisting of monomials
Amﬁmﬁnz - WEXQSWS.TH R mwmv R Ams.q:ms,i.fu R mmiv where i1 > @2 > -+ > iy
and j; > jo > .-+ > jp. These monomials correspond, up to a normalization,
to all planar diagrams without closed loops in a rectangle with n entrances and
n exits. The complexity of the computation and the number of such monomials
grows exponentially with n, however.

The problem, asked by Vaughan Jones, was to find a closed formula for the
coefficient of each monomial term in the expression of the symmetrizer.
The general opinion among mathematicians and physicists, who had been searching
for such a formula for applications in quantum field theory, appeared to be that
such a closed formula might not exist in general.

We have obtained the following closed formula for the coefficient pp of a planar
diagram without closed loops in a rectangle with n entrances and n exits. The
formula is unexpected in the sense that it has no analog in the representation
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theory of SU(2); among 6j-symbols, knot and 3-manifold invariants. It points out
that there is a “micro level” structure, inside the symmetrizers, different from the
“macro level” structure of intertwiners. It lead further to an unexpected discrete
1-dimensional QFT model with long distance interactions.

Let B be a planar box corresponding to a monomial in the e;, with n entrances
labeled from left to right 1,...,n on the upper row and n exits labeled similarly
on the lower row. The wires in B are divided into through wires connecting an
entrance with an exit, cups connecting two entrances and caps connecting two
exits. Through wires are grouped into maximal contiguous blocks as follows, from
left to right. For k = 1,...,m there are sets of r} through wires called the k-
th wall followed by the k-th room with pj cups and gj caps, where 7, > 0 for
1 < k < m and max(p},q;,) > 0 for 1 < k < m. Cumulatively from the left we
define rp =7y +---+rp, Pe=pr+- -+ P =0+ + @

For a cap or cup with end points at positions k,! with k& < [ we define the jump
as (I —k—1)/2 and we let J denote the set of strictly positive jumps of all cups and
caps. Let S = {(s1,..-,8m) E N™ : 0 =81 < s < sp1 < min(pg,qg) for all &k =
1,...,m — 1}. Define the monomials

1
[r]!

[p

fo(r) =

s|[p+r + s]!?

2p + ]!
[p—slllg—sllp+r+slfg+r+s!

[p—silllg —s1lfp + 1+ s1]l[g + 71 + ]!

[ri—r+s1—s—=1][r1 — 1+ s+ s1]![r1 + 2s1]

[r1 —r — 1)[r + s + s1]![s1 — s]!

filp,rys) =

.\.Qyﬁvﬁﬁi%“.wwv =

Let

ep = AIC@S+MUM_=M|H£§|§X§+H|QV+MMQ J

and tp = [[;c;[j +1]7". We have the following expression for the weight of the
planar box B:

m—1

pB = et fo(ri) MU : FPrs iy Ths Th 15 585 Sk41) | fr(Pms T Sm) -
(51,-8m)€ES \ k=1

The formula, which is a sum of quotients of factorials, is a discrete analog
of a partition function in quantum field theory (QFT) and can be given the fol-
lowing physical interpretation. Consider n identical particles, say bosons,in a 1-
dimensional model. Their partition function is symmetric and the symmetrizer
acts by interchanging the particles and averaging over all such interchanges. How-
ever the process of interchanging particles is not physical. Instead, what is physical
is the process of creation and annihilation. A pair of particles annihilate with the
release of a photon followed by the creation of a new pair from that photon. Such
a contiguous cup-cap pair corresponds to a Jones projection e;. The problem then
is to find in the symmetrizer the amplitude corresponding to each possible creation
— annihilation mechanism (labeled by a planar diagram B or by a monomial in the

ms,v.
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The formula given above for the coefficient pp is additive, in the sense that all
terms have the same sign. As a consequence, all basis elements have nonzero coef-
ficients. The global sign is precisely the parity of the number of Jones projections
in the monomial.

The above formula is directional, i.e. it gives a different expression when com-
puted from right to left and when computed from left to right. The equality be-
tween the two expressions could lead to interesting and natural identities for basic
(or g—)hypergeometric functions of higher type.

From the above formula we have developed a discrete analog of QFT, with -bra
and -ket states which are half boxes and operators which are the middle part of
a box, modulo symmetrizer relations, and we have found natural bases for each
of these. The inner product is in this theory precisely the coefficient of the box
computed above. It is remarkable, and unexpected, that the discrete operator
product expansion of a product of two base elements has coefficients which are
monomials. We have also extended the formula from the symmetrizer boxes as
above, which are 2-gons, to general polygons.

We propose to develop the above theory in several natural directions. It should
be possible to find global manifestations of this formula, i.e. to understand surface
spaces, knot and 3-manifold invariants, as well as the 6j-symbols of SU(2);, in
terms of the monomial coefficient expressions and the corresponding discrete form
of QFT. In a different direction, there is a similar canonical basis for the projections
corresponding to the projection onto the highest weight irreducible in a tensor
product of generators of Irr SU(k);, with planar diagrams consisting of hexagonal
cells. The analogous coefficients of the highest weight projection of SU(k); in the
hexnet base are likely to have a very interesting mathematical structure.

1.7. The geometrization of quantum subgroups: a construction of
weight lattices and roots from quantum subgroups. Subfactors have been
linked to many different branches of mathematics; however no geometrical structure
of subfactors has been previously found. In particular links between subfactors
connected to Coxeter ADE graphs on one side and the Lie algebras, Lie groups and
quantum Lie groups built from the same Coxeter ADFE graphs were missing. The
ADE subfactors had their structure centered around the real valued Jones index,
tensoring bimodules, composition of homomorphisms, and knot and 3-manifold
invariants. The main structure of the ADE, i.e. simple unimodular, Lie groups is
very geometrical with a weight lattice, roots, reflections and the Weyl group, and
the deformation quantization.

We have found the natural link between the subgroups of quantum SU(2) and
the classical and quantum Lie groups, showing that the information for building a
simple Lie group from copies of SU(2) put together in a combinatorial way using
the root lattice comes naturally from the fusion structure on representations of a
quantum subgroup of SU(2). The bridge between these two areas of research is
a hitherto unobserved crystallographic property of homology theory: commuting
squares and 6 term exact sequences are squares and hexagons in a lattice, i.e A; X A;
and A, root systems, and the 12 terms in the snake lemma form precisely an A3
root system.

As a consequence, we have obtained a very elementary and natural construction
of a canonical basis in the sense of Lusztig from an ADFE graph. This elementary
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construction does not use in an over way quantum subgroups, although the mech-
anism behind it is based on the ADFE subfactor and quantum subgroup.

The fact which shows that this link is indeed of a very general nature which
transcends the quiver methods of Ringel and Lusztig is that the process works
for our newly discovered quantum subgroups of SU(3). More generally for any
subgroup of a quantum semisimple Lie group at a root of unity we can associate
in a natural way a finite dimensional weight lattice and a finite set of unimodular
roots in it. The problem of associating roots and weights to the generalized Coxeter
graphs had been set 15 years ago by Zuber and collaborators, although none of the
attempts to make the vertices of such a graph into analogs of simple roots worked.

In our approach, even for the classical Lie groups, we obtain from the ADE
graph all the roots at once, with no simple roots distinguished. It is precisely this
fact that makes the process work in a very general framework.

For an ADE graph G with Coxeter number N consider the Cartesian product
graded over Z, of G (on the horizontal) with Zsx (on the vertical), i.e. divide the
vertices of G into even and odd vertices and retain from VertG X Zsn only the pairs
with the same parity. Equivalently, construct a Bratelli diagram on the whole ADE
graph G and identify the bottom to the top after 2N levels, making the product
graph G lie on the surface of a cylindrical band.

The graph G has now |G| N vertices, exactly the number of roots (according
to a theorem of Kostant) in the root system associated to the ADE graph G.
We shall in fact define the roots as the vertices of G. We now define the

inner product between roots as follows. Denote by w@er%a (.) G the (downward

moving) paths between the vertices (z,17), (y,j) € VertG C VertG x Zsy, of length

nef{0,....2N —1},n=j—i Bowvwz. Let HPath(", . G denote the Hilbert
n

space with orthonormal basis wmgﬁiieé G. Let u denote the Perron Frobenius
eigenvector of G, extended by p((z,i)) = u(z) to G and let f = 2cos(w/N) = [2]
be its eigenvalue. For k < n denote by ¢ : HPath™ ¢ — HPath™ 2 G the
contraction operator, defined for a path £ = (£(1),...,&(n)) by

—_—

Ck AMV = coef %QS%QI.C\H AMAHY - quﬂvq mQa + qu - umﬁﬁvvu

in which coef = u(s(£(k)) 2 u(r(€(k))'/2, ie. ¢ cancels the edges &(k), &(k + 1)
if they are inverse to each other, and is 0 otherwise. Then ~'/2¢} is a coisometry
and er = B! c}cy is a Jones projection. Define the essential path subspace

EssPath™ G = {p € HPath™ G : ¢4 (p) = 0 for any k =1,...,n — 1}

consisting of the “non-repetitive” linear combinations of paths.

If we view the vertices of G as irreducibles of a subgroup or module S of
Irr SU(2) y_2 then paths of length n correspond to repeated tensor products n
times with the generator oy of Irr SU(2)n_» while essential paths correspond to
ﬁo:mngo&cgmé;rgomﬁoacﬁc_oﬁsﬁﬁ@:.‘HrmEmﬁEm__o:mﬁr%mmmobﬁm_

paths is thus the level [ = N — 2, since ony—1 = 0 € Irr SU(2) ny—o.

52%%@n&smm%mﬁ%w@y@sm.?Sz%msH&Bmoiq:@ﬁsa
the fusion number corresponding to the module structure of the vertices of G over
Irr SU(2) y—2. Recall that ony_1 € Irr SU(2) y—2 is killed by the cutoff. We shall
continue counting the irreducibles of SU(2)y—» by reflection around the killed level

N —1,ie. wetake on_1 = 0,08 = —0ON—2,0N+1 = —ON-3, etc. Accordingly we
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let 2@&???5 = — m\ﬁv\iaé and we further extend the fusion number ZM@AMVSV

to arbitrary n € Z by replacing n with n mod 2N. We have then 2@?@» (2,0) =

(y,9)
IZ\@Hwiab.

We define the inner product between roots (z,1), (y,j) € Vertg by
AAH.VN.Y AELVV — 2@5 | +.2.@L.v _ n(.d) _ .2.@,3

J—iy(z,i i—j,(x,8) T j—iy(w,d) J—i=2,(x,i)

The above inner product extends by linearity to an inner product on the linear
span of the roots; the nondegenerate quotient is positive definite and has dimension
|G|. Although the fusion numbers Zuﬁms:ﬁ ) can be as big as 6 for the graph Eg,
the inner product ((z,1i), (y,j)) always takes values in {—2,—-1,0,1, 2}.

We have defined this way all the roots at once, entirely in terms of fusion on
the subgroup or module S of SU(2)x—_2 (or elementarily in terms of essential paths
on the graph.) In this setting the vertical shift by 2 is a Coxeter element of the
Weyl group acting on roots.

A similarly simple construction gives the weight lattice as follows. For scalar
valued functions on the vertices of the graph G define the Laplacian Ag as the sum
of neighbors, i.e. the matrix of A is the adjacency matrix of G. Similarly Az,
is the Laplacian on Zsn. Call a Z-valued function f on VertG C VertG x Zon
harmonic if Ag(f) = Az, (f), i.e. if the sum of neighbors taken vertically equals
the sum of neighbors taken horizontally. For instance for any fixed (z,i) € VertG

go?boﬁOb@L.vTv Zuﬁms:?:v mmrmiboao.Hrmimmmrnmmﬂmnrmmznmmmﬂa\m—cma
harmonic functions on VertgG.

The remarkable fact about the above formulae is that they extend naturally
to any subgroup or module S of any quantum Lie group G; at a root of unity,
such as the ones we have classified fro SU(3); and SU(4);. Instead of having
G C G xz, Z = G Xz, Psy(z) where Psy () is the weight lattice of SU(2) we let
G C G xz Pg where the Cartesian product is graded over the center Z of G.

The formula for the inner product between roots becomes, in the spirit of the

Weyl character formula,

: A\ (9,4)
AAH;Y A@va = MMA\mASVZQ.IN..TSnIPQ;.V
we

where W is the Weyl group and p the Weyl vector of the Lie group G. All roots
have square length |/, i.e. the square length 2 for the classical unimodular lattice
vectors comes from the fact that the Weyl group of SU(2) has 2 elements.

This inner product is periodic, i.e. the points of G xz Pg are naturally quo-
tiented by a sublattice into a finite set of roots lying on a torus.

Thus for example from the first exceptional subgroup of SU(3); one obtains
256 roots of square length 6 in a weight lattice of dimension 24.

The first nontrivial new root lattice corresponds to SU(3);, a graph with 3
points analogous to the graph Ay = SU(2); for SU(2). The construction above
yields from SU(3); 16 roots of square length 6 in a lattice of dimension 6. A number
theoretical formula for the theta function of this lattice has helped us identify it,
using the online database of Conway, Sloane and Nebe as the lattice b% , the union
between Dg and a translated copy of Dg. This lattice had not appeared before
in representation theory (as opposed to Dy which is the lattice Fg). The lattice
Umw exhibits in its new role a hexagonal symmetry not noticed before. This is
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a coincidence of small numbers (or rather small lattices); all the other lattices
produced by our method from subgroups appear to be new.

For dimensions < 8 the best sphere packing is provided by the classical root lat-
tices, which from our point of view correspond to exceptional subgroups of quantum
SU(2). In higher dimensions, where good candidates are missing, the exceptional
subgroups of quantum SU(k), k > 3 could be candidates for optimal packing, a
direction which we intend to investigate.

1.8. Homology and crystallography. In the previous paragraph we have
described the way in which the roots and weight lattices of a simple Lie group arise
out of fusion numbers for the irreducibles of a subgroup. It is in fact possible to go
beyond counting and construct a natural basis of the universal enveloping algebra
of a quantum simple Lie group.

Essential paths have a natural product, obtained by projecting onto the es-
sential paths the concatenation of two paths. One extends this product to V ®

mmmwmﬂﬂmws,@é GaoW = mmmw@ermwsq@& G ® Hom[V, W] where V,W are finite

dimensional multiplicity vector spaces attached respectively to (z,1), (y,j). We can
now take kernels of maps; due to the presence of the essential path factor kernels
have kernels again, and in 6 steps any exact sequence moves around the cylinder
2N levels and returns to the starting point.

Unimodular root systems are characterized by the fact that any 2 dimensional
section is a square or a hexagon, and for us the squares correspond to commuting
squares and the hexagons correspond to 6 term exact sequences. This points to
the fact that in general homology theory appears to have a crystallographic aspect,
manifested by the ubiquitous presence of 6-term exact sequences, but not of 5 or
7 terms exact sequences. The snake lemma, which connects 12 terms by means of
4 exact sequences with 6 terms each, is precisely the root system of type As, i.e.
if we join the top to the bottom of the snake, the 4 exact sequences become the
4 hexagons joining the mid-edges of a cube. These observations appear to be new
and deserve further investigation. This crystallographic aspect is essential for us
as a bridge between an ADE subgroup of SU(2); and the corresponding ADE Lie
group.

An element of the canonical basis of the off diagonal universal enveloping al-
gebra Ut U U™ is a formal exponential ef where f is a function f : VertG — N.
The product ef o e9 is defined as follows. Define vector spaces F(z,i) of dimension
f((z,1)) at every vertex (z,i) of G, define similarly spaces G(z,%) from g. Define

Hom[F,G] = A m_w .v F(z,i) ® BssPath", 0@ G(y,]) -
T,2),(Y,]

Construct now extensions H of G by F, i.e. find spaces H(x,7) of dimension
h((z,7)) at every vertex (z,i) of G, and maps a € Hom[F, H]| and 8 € Hom[H, (]
which form an exact sequence. Count the number of such extensions when the
vector spaces are taken over a field with ¢ elements and obtain (after a suitable
normalization) a number owq ,(¢) which is a polynomial in g. Then the product is

efoe? =3 cf,a)
h
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This way we obtain directly the quantum deformation of the simple Lie groups.
The snake lemma then shows that this product is associative. Another similar term
takes care of the diagonal part UP°.

2. New directions of research

We have described in a very simple and natural way the construction of the
simple Lie groups and of their quantum deformations from the quantum subgroups
of SU(2), and have developed a general theory of subgroups of quantum groups to
a level which allowed the first classification results for SU(3) and SU(4), as well as
general bounds on the level of exceptionals.

A first direction that should be investigated in this context is the construction
of the irreducible representations of quantum groups.

The main question which follows is the existence of higher analogs of the
simple Lie groups, constructed from the above lattices. The classical and quan-
tum simple Lie groups, constructed by the above procedure from SU(2); have a
binary composition law related to the fact that the main building block of the clas-
sical root lattices, the hexagon SU(2);, is 2 dimensional. The higher analogs of
the simple Lie groups obtained this way would likely model SU(k); and the corre-
sponding composition laws would be natural many-to-one laws. We have recently
obtained experimental evidence for this mechanism.

The importance of such multi-nary laws is the following. Spaces of homomor-
phisms provide natural and universal models for quantum field theoretic Hilbert
spaces, such as the ones which appear in conformal field theory. The main prop-
erty is the tensoriality. The sections of ordinary vector bundles over a disjoint
union of base sets are the direct sum of the sections over each set. In Quantum
Field Theory, the direct sums must be replaced by tensor products. Tensoring over
a common algebra is the gluing mechanism for overlapping base sets.

The model of a tensorial functor is Hom[a ® §,v] for a, 8,7 € Irr G e.g. with
G a group or quantum group, naturally associated to a triangle with edges labeled
«, #,7. This yields naturally 2-dimensional models, e.g. 2-dimensional conformal
field theory (CFT). String theory then maps such 2-surfaces into higher dimensional
spaces.

In order to make such models of QFT physical, which is a crucial problem in
theoretical physics, a stronger approach would be to construct natural mathemat-
ical objects with tensorial behavior, which are attached, as functors, to the 3 or
preferably 4 dimensional manifolds in general relativity. This problem is the di-
mension barrier in QFT. In our view, the impact of the last century’s quantum
mechanics has been strong enough to draw attention upon noncommutative math-
ematics, such as operator algebra, but the study of the higher dimensional tensorial
objects required by quantum field theory is only beginning.

To break the dimension barrier, one must find for instance natural examples
of Hom[a ®  ® 7, d], where now a, 3,7, live on the faces of a tetrahedron and
exhibit a tetrahedron symmetry and behavior.

This is in our view part of the potential of the higher analogs of the simple
Lie groups for which we have now roots and weight lattices, built as described in
these notes. The next step after the understanding of their structure would be the
construction of higher dimensional QFT models, invariants for higher dimensional
PL manifolds, etc.
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3. Conclusions

It is our opinion that the study of the group-like invariants of finite
depth subfactors and of quantum subgroups is now in a situation similar
to the study of simple Lie algebras a century ago. While general rigidity
results are now known, the discrete structure behind their classification is only be-
ginning to appear in a few concrete cases. The further study of these structures,
with strong motivation coming from the physics of quantum field theory (via topo-
logical quantum field theory), quantum gravity (from the spin models originated
by Regge and Penrose to current spin foam models) and quantum chromodynamics
(with the apparition of quantum SU(3) in Connes’s model based on noncommu-
tative geometry) is likely to be an important direction of research in the coming
century.

The inner structure of quantum symmetrizers, i.e. the closed form for coeffi-
cients of the Wenzl projectors, shows that unexpected new forms of discrete QFT
appear inside mathematical objects which were considered well understood, and
deserves further study.

A topic of particular interest would be the discovery of the higher analogs of the
classical and quantum Lie groups, since these structures could impact constructive
quantum field theory in a physical number of dimensions. This is also the most
difficult of the topics to study, since the structures we are looking for, although
very natural, are very different from any existing mathematical objects, but we
have begun to obtain encouraging experimental data on it.

4. Figures

The following figures describe our classification of the modules and subgroups
of quantum SU(N), N = 2,3, 4 at the k-th roots of 1, for which the Young diagrams
of the irreducible representations are constrained to less than N (=rank) rows and
k (=level) columns. The graphs show the fusion with the generators of SU(N)y, in
a picture analogous to the McKay fusion graphs for the finite subgroups of SU(2).
They answer problems of Zuber concerning the classification of higher analogs of
the Coxeter ADE graphs. In general we have shown that any WZW theory has a
finite number of exceptionals.

Subgroups and modules. The modules of SU(N)x4 have a natural fusion
with the irreducibles of SU(N)j. Among modules, the subgroups have a naturally
defined self-fusion; subgroups are titled bold. Each subgroup has a unit, which is
starred. The subscript in a graph name denotes the level, except for SU(2)y, for
which the level notation is given in parentheses under the traditional name. Small
level duplicates in the series are bracketed. Modules are interpreted in topological
quantum field theories (TQFT) as new types of vertices, and also as boundary ex-
tensions of the theory. In the operator algebras bimodule picture they are new types
of algebras and in 2-dimensional conformal field theory (CFT) they are boundary
extensions.

Vertices. The vertices of the graphs are irreducible representations. The
shades of gray from white to black indicate the grading. In CFT, vertices are
primary operators, while in operator algebras the vertices are irreducible bimodules;
in TQFT they label 1-dimensional edges.



14 ADRIAN OCNEANU

Graphs. The red graph is the graph of tensoring with the standard irreducible
o1 of SU(N)i. The blue graph for SU(4), is the graph of tensoring with oy =
o1Ao1. Where necessary the edges of the graphs are oriented explicitly.

Self-connections. A necessary and sufficient condition for the existence of a
module is given by a self-connection, which consists of a system of complex numbers
called cells, satisfying certain local equations of cohomological nature. Cells reside
in the triangles of the graphs and describe the composition of the intertwiners
represented by edges. Cells are chosen up to a unitary gauge coming from the
choice of intertwiners for the edges. The graphs and the self-connection determine
a module completely. For SU(2); the cells reside in the 2-gons of the graphs and
the existence of the self-connection excludes the tadpoles. In the classical case, the
existence of the self-connection on an SU(N) graph is necessary and sufficient for
the existence of a subgroup of SU(N) with the corresponding irreducibles. The cells
provide the data for a Hecke algebra representation yielding a solvable statistical
mechanical plaques model for each graph.

Chirality. To each module M corresponds a subgroup G called the chiral
positive (or geometrically flat) part of M, a closed subystem S of G called the
ambichiral set, and an automorphism 6 called the ambichiral twist on S. The
quantum automorphisms of the module M are a product of the flat part Gt of M
with the conjugate G~ of G, fibered over the ambichirals S = Gt N G~ with the
twist 8. Among the ambichiral automorphisms of SU(N)g, N > 2, the conjugation
¢ replaces the generators o; of SU(N); by their conjugates on_;.

Exceptional twists. For each N there is an exceptional ambichiral twist,
denoted by ¢, on an orbifold of SU(N): on SU(2)16 it gives (SU(2)16)! = Er; on
SU(3)y it gives (SU(3)g)?, and on SU (4)g it gives (SU(4)s)*.

Orbifold series and exceptionals. SU(N)j is denoted by Aj. Its series
subgroups are, for SU(2)x: Ax/2 for k = 0 mod 4; for SU(3);: Ax/3 for k =0
mod 3 and for SU(4)y: Ai/2 for k = 0 mod 2, A;/4 for £k = 0 mod 8. The
exceptional subgroups are denoted by Ej.

For SU(2)y the series Ay/2 = Dj/545 modules exist only for & = 0 mod 2,
and for SU(4)y, the series Ay /4 modules and their conjugates (Ag/4)¢ = 2(A°/2);
exist only for £ =0,2,6 mod 8.

The modules of SU(N) arise from (i.e., have the chiral part G* equal to) the
following subgroups: for SU(3); and £k = 0 mod 3, 3A°; from Ay/3; for SU(4);
and £ = 0 mod 8, 2(A°/2); from Aj/4; for K = 0 mod 2, 2A°;, from Aj/2; all
other series modules from A;. The notation of exceptional modules indicates the
chiral part.

Conformal inclusions. All exceptional subgroups of SU(2); and SU(3)y as
well as some small orbifolds arise from conformal inclusions. It was conjectured
that all exceptional subgroups and modular invariants come from conformal inclu-
sions. For SU(4);, the exceptional E8 is not a conformal inclusion. The following
subgroups arise from conformal inclusions: for SU(2), D4 from SU(2)4 in SU(3)1,
Es from SU(2)19 in SO(5)1, and Eg from SU(2)ss in (G2)1; for SU(3)y, A3/3 from
mqﬁwvw in MQAWVHu Mwm from mqﬁwvm in mqﬁmvf mww from mqﬁwvw in Amwmvuu and Mwwu
from SU(3)2; in (E7)1; for SU(4)k, 2A% = As/2 from SU(4) in SU(6)1, E4 from
SU(4)4 in SO(15);, and Eg from SU(4)¢ in SU(10);.

Modular invariants. Each module produces a modular invariant, which is
a positive integer valued matrix, intertwiner of the modular group representation
on the affine characters of SU(N)g. The modular invariant is a manifestation of
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the fact that the corresponding TQFT and CFT are defined on the torus. The
modular invariants for SU(2), were classified by Capelli, Itzykson, and Zuber.
The graphs for SU(2);, arose in our classification of small index subfactors. The
SU(3)r modular invariants were classified by Gannon. The graphs for SU(3); are
a subset of the list proposed empirically by di Francesco and Zuber; the precise
connection between graphs and modular invariants was an open problem. The
natural interpretation of the graphs is part of our maximal atlas theory, which is
a 3-dimensional TQFT analog of the Morita equivalence theory for 2-dimensional
TQFT. The SU(3);, classification showed that different graphs can share the same
modular invariant, and the exceptional Eg of the SU(4); classification showed that
not all exceptional graphs come from conformal inclusions.

References

[1] A. Ocneanu, "Paths on Cozeter Diagrams: From Platonic Solids and Singularities to Min-
imal Models and Subfactors”, AMS Fields Institute Monographs no. 13, (1999), eds. B. V.
Rajarama Bhat, George A. Elliott, Peter A. Fillmore, vol. ”Lectures on Operator Theory”.

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY, MATHEMATICS DEPARTMENT, UNI-
VERSITY PARK, STATE COLLEGE, PA 16802, U.S.A.
E-mail address: adrian@math.psu.edu



SU(2)k

Orbifold series

Ar Aj Ay Asg Dy Ds \. Ds ) D7
(A)(A2) (A3)  (Az) - (Aa2) (ms2) (Agl2) (A10/2)
Exceptionals
A A : [ ..
Ee E7 Es
(E1o0) ((A1672)") (E2s)

FiGgure 1. Classification of modules and subgroups of quantum SU(2).

91

ANVHNDO NVIHAV



SU(3)k

Orbifold series

* © * ©
.‘O .‘O .‘O
o

AVAYA'

A1 A2 Asj
8 8 *A

A3 Aof3 Azl3 A4f3

Conjugate orbifold series

0 0 ES 0 fs
g 1 g 1 1

Y 'S jki:::; :){:j; jé{:j;
v

Y ') Ko
T

A3 A3 v
(Al [AA AS AT A A§

I NU7A \NU/A N4 \N/A NN/ANN

KA B A KX
X

A1 A2

[3A5][385] 35 3AG 3A% 3A§ ..

Exceptionals

Es Es/3=(E5)° Eg

Eg/3=(E9)°

(Ad3)  (A3)°

FIGURE 2. Classification of modules and subgroups of quantum SU(3).

(N)AS WALNVNAD A0 SdNOYDHLINS A0 NOILVOIAISSVTID HHL

LT



18

SU(4)k

Conjugate orbifold series

Orbifold series

ADRIAN OCNEANU

Az/2

A1/2  Aol2

FiGURE 3



Es  Ee/5=(Es)° Es ° Es/2=(Es)® (Ae/d)' (Ae/d)"

F1GURE 4. Classification of modules and subgroups of quantum SU (4).
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