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2 O. OGIEVETSKY

1. Introduction

Quite often, a group appears as a set of symmetries of some object - a set
equipped with geometrical, algebraic or combinatorial data. The theory of quan-
tum groups enlarges the notion of symmetry; a quantum group (often) describes
“generalized symmetries” of an object. In the case of a linear (orthogonal, sym-
plectic) quantum group, this object is a linear (orthogonal, symplectic) quantum
space - an algebra with certain quadratic relations. A study of these underlying
objects, the quantum spaces, helps to understand the structure of the quantum
groups. In these lectures I will illustrate the role of the quantum spaces on two
examples: non-perturbative effects in the theory of Yang-Baxter operators and real
forms of quantum groups.

To talk about non-perturbative effects, one should explain first, what means
“perturbative” or “deformational”. This is the subject of the subsection 2.1. The
initial data for a quantum deformation of a Lie algebra £ is conveniently encoded
in terms of another Lie algebra D(L), the Drinfeld double of £. The Lie algebra
D(L) has an invariant scalar product and I have included a subsection 2.2 on the
structure of Lie algebras with an invariant scalar product.

For a semi-simple Lie algebra £, the most important deformations are those
which are called quasitriangular. They are classified by Belavin-Drinfeld triples.
The subsection 2.3 contains some information about the combinatorics of the Belavin-
Drinfeld triples.

In section 3, after a geometrical interpretation of the quantum deformations of
Lie groups, we introduce an algebra of functions on a quantum group; a definition
of GL-type quantum groups and quantum spaces is given in subsection 3.1. In
subsection 3.2 we explain how to use a differential calculus on a GL-type quantum
space for calculating the Poincaré series.

Subsection 3.3 is devoted to 3-dimensional quantum spaces. We exhibit an
unexpected appearance of Yang-Baxter operators and give an example of a non-
perturbative Yang-Baxter operator. We prove the Poincaré-Birkhoff-Witt theorem
for the quantum space defined by this Yang-Baxter operator.

Subsection 3.4 deals with effects specific to quantum groups at roots of unity.
We introduce a terminology of formatted matrix algebras over local graded rings,
which is useful in the study of non semi-simple algebras. We describe the matrix
structure of the reduced quantum enveloping algebra and the reduced function
algebra for sl (2).

Subsection 4.1 contains a summary of the theory of quasi-triangular Hopf alge-
bras. In subsection 4.2 we classify Yang-Baxter matrices, which can have non-zero
entries only at places where the pair of lower indices is a permutation of the pair
of the upper ones. Subsection 4.3 gives a construction of the Yang-Baxter matrices
for orthogonal and symplectic groups from the Yang-Baxter matrices for GL.

In section 5 we describe a method of classification of real forms of quantum
groups. The method is based on the study of the corresponding quantum spaces.

Throughout the text, a sum over repeated indices is assumed. If X = {X}}
and Y = {Y;'} are two operators, the indices are summed as (XY); = XY} in
their product.
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2. Lie bialgebras

A Hopf algebra H is a collection of data {H,m,A,S, e}, where H is a vector
space over a ground field k; m : H ® H — H a multiplication; A : H - H® H
a comultiplication; ¢ : H — k is a counit and S : H — H an antipode. For a
precise formulation of various relations between these maps see e.g. [1]. Let me
just remind that for a Hopf algebra H one knows how to build tensor products of
representations and it is given universally by A; the counit gives rise to a trivial
representation; the antipode is needed to build contragredient representations.

The classical examples of Hopf algebras are group algebras k[G] of finite groups
G and universal enveloping algebras U(L) of Lie algebras L.

2.1. Deformation of the coproduct. Let £ be a Lie algebra over C and U its
universal enveloping algebra. Denote by {X;} a basis of £. The classical coproduct
Ag : U — U®U is given on generators X; by ApgX; = X;®14+1® X,;. The map Ag
is a coassociative homomorphism (coassociativity means (Ao ® I)Ag = ( I®Ap)Ag
for the maps U — U QU @U; here Tis the identity map). In this subsection we shall
study deformations of the coproduct Ag. A deformation of Ay is, by definition, a
coassociative homomorphism A : U - U @ U,

(2.1.1) Ala) = Ao(a) + agy(a) + ada(a) + ... .

The right hand side is a formal power series in the parameter «, which is called a
deformation parameter. The coefficients ¢y (a) are elements of U @ U.

Our task is to understand which deformations are “essential”, in the sense that
they cannot be removed by some redefinition of generators. Here is the answer
modulo a?.

Theorem 1. Any deformation of Ay, after a change of generators, takes a form
(in the first order in «)

(2.1.2) AX; = Ao X + aplt X; @ X

The antisymmetric tensor ,u{k (u{k = —ufj ) is a 1-cocycle with values in A2L,
w e ZHL,A%L); explicitly:
(2.1.3) NI =15 et

lig
where Ni‘?b = F‘i‘yu;b and [ab] means antisymmetrization in indices a and b, t1**] =
tab —tba for a tensor t**. Here I‘fj are the structure constants of the Lie algebra L,

[Xi, X;] = Fijk.

Proof. Assume that A is a deformation of the classical coproduct Ap. On the
generators X; we have

(2.1.4) A(Xl) = Ao(Xi)+a¢i+...

with some ¢; € U ® U, where dots denote higher powers in a.

The coassociativity, in order o', is equivalent to a following equation on ¢; in
U3

(2.1.5) P01+ (Ao Ngi =1@6¢; + (1@ Ao)gi ,

I is the identity operator. The algebra U3 is the enveloping algebra of L& L ® L.
Let X;, Y; and Z; be the generators of the first, second and third copies of L,



4 O. OGIEVETSKY

respectively. Then the equation (2.1.5) can be rewritten as

(2.1.6) i(X,Y) + (X +Y,2) =¢i(Y, Z2) + (X, Y + Z) .
The statement that A is a homomorphism reads, in terms of ¢;, as
(21.7) [Xi + Y5, 6] = [X; + Y, 6] = Tijon

(the algebra U @ U is the enveloping algebra of £® £; X; and Y; are the generators
of the first and second copies of L).

Let 0 : U @U — U @ U be the flip, o(z ® y) = y ® z. Decompose ¢; into
symmetric and antisymmetric parts with respect to o,

(2.1.8) o =s;+a;
with o(s;) = s; and o(a;) = —a;.

Proposition 2. If ¢; satisfies (2.1.5) and (2.1.7) then both s; and a; satisfy (2.1.5)
and (2.1.7).

Proof. We have A'(X;) = Ao(X;) + ad) + ..., where ¢ = o(¢;) = s; — a;.
If A is a coproduct then A" = 0o A is a coproduct as well, so ¢} satisfies (2.1.7),

(2.1.9) [Xi + Y3, 6] + [X; + Y5, 0[] = 76,

and (2.1.5),

(2.1.10) P01+ (Ag® D)l =126, + (1@ Ag)g! .

Take the sum and difference of (2.1.5) and (2.1.10) (respectively, (2.1.7) and (2.1.9))
to finish the proof. O

In particular, each part (symmetric or antisymmetric) of ¢; alone defines a
coproduct in order o'.

Clearly, a redefinition of generators can change only the symmetric part of ¢;.
We start by analyzing this case (the case of symmetric ¢;).

Proposition 3. Assume that A is symmetric in order al, ¢} = ¢;. Then the o'
terms can be removed by a redefinition of generators.

Proof. U is the algebra of polynomials in the generators X;. It is filtered by the
degree of polynomials, Fj{ are polynomials of degree < k. The associated graded
term FyU/Fy_1U is isomorphic to S¥L£, the symmetric power of £. Any element
u € U has a well-defined “highest symbol”: if u € FRld\ Fj,_1U (\ is the set-theoretic
complement) then its highest symbol is the image of u in S*£. Denote by w; the
basis of commuting variables corresponding to generators X;. The highest symbol
is a homogeneous polynomial in a set of commuting variables x;.

The algebra U @ U is the enveloping algebra of £ @ L, the highest symbols are
homogeneous polynomials in two sets of variables, x; and y;.

Let f; be the symbol of ¢;. Then f; is a polynomial in two sets of variables,
fi = fi(x,y). The symmetry condition implies that f;(x,y) = fi(y, ).

The coassociativity implies, in order a', an equation

(2.1.11) fl@+y,2)+ flz,y) = fla,y +2) + fy, 2)
for each f;.
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Lemma 4. Let f(z,y) be a homogeneous polynomial, symmetric with respect to
the flip x <+ y. The polynomial f satisfies (2.1.11) if and only if there exists a
homogeneous polynomial g(x) (a polynomial in only one set of variables z;) such
that

(2.1.12) flx,y)=g(x+y)—gx) —gy) -

Proof. Tt is straightforward to see that f(z,y) = g(x + y) — g(x) — g(y) satisfies
(2.1.11).
Assume now that f satisfies (2.1.11). Let M be a total degree of f. If M =0
then f = ¢ is a constant and it is enough to take g = —c. Assume that M > 0.
Applying % to (2.1.11) and evaluating at = 0, we obtain an equation (after
replacing y — x and z — y)

(2.1.13) 01 flew = 05 flooty — O Flow

where 9} are the partial derivatives in the first set of variables.
Applying a% to (2.1.11) and evaluating at z = 0, we obtain an equation

(2.1.14) 0 fley = O flotyo— Oaflyo s

where 0% are the partial derivatives in the second set of variables.
Since f is homogeneous of degree M, we have (z;0; + v;0%)f = M f, which,
together with (2.1.13) and (2.1.14), gives

(2.1.15) Mf = ;9 floety + Yi05 floty,0 — 20} floe = ¥id5 fly,0

The symmetry of f, f(z,y) = f(y,z) implies that 9} f|., = 8?fl,.. Therefore we
can rewrite (2.1.15) in the form (2.1.11) with g(z) = ++2'0} fo,.. The proof of the
Lemma 4 is finished. d

We proved that for each i there exists g;(z) such that

(2.1.16) filw,y) = gi(z +y) — gi(x) = 9i(y) -

Let g (X) be an element whose highest symbol is g;(z). The combination ¢/ (X +
Y)—gY(X)—g/(Y) satisfies the equation (2.1.6). Therefore, an element ¢;(X,Y) —
9/ (X+Y)+gY(X)+gY(Y), which has the filtration degree smaller than the degree
of ¢;(X,Y), satisfies (2.1.6) as well, and we can apply the Lemma 4 again.

Repeating this process a needed number of times, we shall finally build a set of
elements v; € U such that

(2.1.17) i(X,Y) =%(X +Y) —%(X) —%(Y) .

Let X = X; — a7;(X). It is straightforward to see that in the order o' the
coproduct for the generators X' is classical, A(X]) =X ®1+1® X.

It is left to show that one can choose v; in such a way that the generators X
satisfy the same Lie algebraic relations as the original generator X;. It will be so if
and only if [X;, ;] — [X;,7] — ;7. = 0 for all ¢ and ;.

Since A is a homomorphism, it follows immediately that elements v;; = [X;,v;]—

[X, 7] — [F;yx satisfy relations
(21.18) Vi (X +Y) = 7i5(X) + 7i5(Y)

Equation (2.1.18) implies that the functions v;; are linear, v;;(X) = ~/; Xx.
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We shall need a short digression into the general theory of universal enveloping
algebras (see, e.g. [2]).
An element u € U can be uniquely decomposed into a sum

(2.1.19) w= symb®(u) + symb'(u)+---+ symb®(u) ,

where d is the filtration degree of v and symb”(u) = ¢4 X; ...X;, for some
completely symmetric tensor ¢'**+*4. Elements of the form c'*+4 X ... X;, with a
completely symmetric ¢4 form a subspace U4 C U and the above decomposition
of u implies that U is a direct sum of U4, U = &5_,U”. Each U* is a L-module
(that is, commutators of generators X; with symb”(u) are again in ¢*); in other
words,

(2.1.20) symb” ([X;,u]) = [X;, symb”(u)] .
The module /4 is isomorphic to the symmetric power SAL.

Let v, = 3 symb”(7;) be a decomposition of the form (2.1.19) of the element
7v;. We have seen that v;; is in U! for each 7 and j. It follows then from (2.1.20)
that v;; = [X, symb! (v)1-1X;, symb* (fyi)]—Ffj symb' (7). Therefore, [Xi, %] —
[X;, %] — Ff’j’yk = 0 for all i and j, where %; = v; — symb'(v;). Therefore, the
elements X = X' — a#%;(X) satisfy the same Lie algebraic relations as the original
generators X, [Xi,fcj] = Fijk.

Moreover, since for an element g* € U, the combination ¢! (X +Y) — g'(X) —
g'(Y') vanishes, the elements 5; = v; — symb' (;) still verify (2.1.16). Therefore,
as before, the coproduct for the elements X; is classical.

Thus, the elements X; provide the needed redefinition of the generators X;.
The proof of the Proposition 3 is finished. O

Using, if necessary, the redefinition of the Proposition 3, we get rid of the
symmetric part of ¢;. Assume therefore that ¢; is antisymmetric. Again, let f; be
the highest symbol of ¢;. The symmetry condition is now f;(z,y) = —fi(y,x). As
before, the coassociativity implies, in order a!, the equation (2.1.11) for each i.

Proposition 5. Let f(x,y) be a homogeneous polynomial, antisymmetric with
respect to the flip <+ y. Assume that the polynomial f satisfies (2.1.11). Then
(2.1.21) Fe,y) = vy,

for some antisymmetric tensor v, 7% = —p*7,

Proof. The derivatives of f satisfy equations (2.1.13) and (2.1.14). There is one
more equation which we didn’t need for the Lemma 4. It is obtained by applying
% to (2.1.11) and evaluating at y = 0 (we change variables, z — y)

(2'1'22) ai.ﬂz,y + a;.ﬂz,o = aé.ﬂa:,y + a{f|0,y

The antisymmetry of f, f(z,y) = —f(y,2), implies O fley = —02f|yx. Substi-
tuting 0; fl.,, and 9% f|., from (2.1.13) and (2.1.14) into (2.1.22) and using the
antisymmetry, we find

(2.1.23) 9; flo,et+y = 01 floe + 01 floy -
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Thus, i flo,» is a linear function. Substituting (2.1.23) into (2.1.13), we find
0% flo,e+y = i flo,y- Thus, 9} fls,y is a linear function which depends on the second
set, of variables only. In other words, 9 f|..., = viy;.

Similarly, 9% f|,,y is a linear function which depends on the first set of variables
only, i fle., = viz;.

The antisymmetry, 9} f|,., = —02f|,.», implies that v{’ = —v. Let v = v}’.
Then
(2.1.24) 0 floy =vVy; and Bfl,, = -1z, .

Since the derivatives of f are homogeneous of degree 1, the function f itself
is homogeneous of degree 2. So 2f = (x;0} + y;0%)f. Substituting expressions
(2.1.24), we find

(2.1.25) 2f = xiyijyj — yil/ij:c]- = I/[ij]xiy]— ,
where the square brackets mean antisymmetrization, v[/] = v — 7% and the
assertion of the Proposition 5 follows. a

After the Propositions 2, 3 and 5 it is only left to check a condition that A is
a homomorphism in the first order in a. A straightforward calculation gives the
cocycle condition (2.1.3). The proof of the Theorem 1 is finished. O

Remark. It is not necessary to assume that the ground field is C. The Theorem 1
holds for an arbitrary field of characteristic 0 (and it is not true if the characteristic
is different from 0).

Repeating the proof of the Proposition 3 consecutively in powers of «, one
obtains a version of the Milnor-Moore theorem (for its general formulation see, e.

9. [3]):

Corollary 6. A formal (i.e. given by a formal power series in ) cocommutative
deformation of the coproduct on a universal enveloping algebra is always trivial,
that is, it can be removed by a formal redefinition of generators.

In the rest of this subsection we explain what happens in the next order in «,
in the a®-terms.
It turns out that the consistency in the a? terms imposes new conditions on
ik
Hi -
Assume that we can extend the deformation (2.1.2) to a?-terms,

(2.1.26) AX; = AoXi + ap?* X; @ Xy + 24
and A is coassociative up to a3. Coassociativity implies

i @1+ (Ao @ id)eh; + pi* X, © Xy © X,
(2.1.27)
=109+ (id @ Qo) + ™ X © Xp @ X,
i
To cancel the pu2*-terms, one has (in order to get trilinear in X expressions)
to choose v; in the form

(2.1.28) Vi = AP X, X, @ X, + B X, 9 X, X, .

with a notation: p%*® = u?°ue® for a tensor 1"
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with tensors A%%¢ and B#*° symmetric in indices {a,b}. In the next formulas, the
lower index is omitted.
Coassociativity (2.1.27) gives

(2129) 2(Bbca _ Aabc) — Mabc +Mbca )

Exchange b and ¢ in (2.1.29) and subtract from (2.1.29), taking into account the
symmetry of B*¢ in {a,b}:

(2.1.30) 2(Aacb _ AabC) — 'ubca 4 Jobe :
where
(2131) Jabc — uELbc +NbCEL + Mcab .

The tensor J° is totally antisymmetric. Under the exchange a ¢ b, eqn. (2.1.30)
becomes

(2132) 2(Abca _ Abac) — MaCb + Jbac .
Under the exchange a ¢ ¢, eqn. (2.1.30) becomes
(2133) 2(Acab _ Acba) — ubac + JCbEL )

The combination (2.1.30) - (2.1.32) - (2.1.33) gives (due to the symmetry of A**¢
in {a,b})
(2.1.34) 0 =4Jbe

This is the Jacobi identity (2.1.40) for p.
Now from 6 permutations of {a, b, c} one gets only two equations

(2.1.35) 2(AP — A%) = e

(2.1.36) 2(Abea — Abacy = yocb

The tensor A®*°, being already symmetric in the first two indices, can have two

types of symmetry, corresponding to Young diagrams | and \:I:D .

The totally symmetric part (the diagram \:|:|:| ) of A cannot be defined

by (2.1.35)-(2.1.36), it is arbitrary. The part, corresponding to the diagram |

satisfies
(2137) AﬂbC+AbCEL +Acab — 0 )

Together, eqs. (2.1.35), (2.1.36) and (2.1.37) can be easily solved and we conclude
(taking into account the totally symmetric part) that the general solution for A is

abc 1 coa ca aoc
(2.1.38) Acb :g(ub + )+ yb

with totally symmetric y*b°.
From (2.1.29) it follows then that

1
(2139) Bbca — E(uabc + uacb) + Xabc )
In particular, A% = Bobe,
The totally symmetric part x®*¢ can be removed by a redefinition (solve for g
the equation (2.1.12) with f(z,y) = x®*(Tambye + Teyals))-

abc
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We conclude that the coassociative extension of A to the a®-terms is possible
only if the Jacobi identity for pu is satisfied,

(2.1.40) 1% + cycle in (a,b,c) =0 .

This extension has the form

(2.1.41)

; (0]
AX; = Ao X; + apd*X; @ Xy, + F(ufl’“ + SN (XX @ X+ X © X X3)

In general, A does not preserve the original commutation relations [X;, X;] =
Fij &, the multiplication structure of ¢ has also to be deformed in the order a?.

Ezercise. The map A preserves the following relations [4]

2
o sa c
(2.1.42) [Xi, X;] =T5 X5 + FIR pTE X (o Xp X

with round brackets in X, X, X,) denoting the symmetrization, X, X;, X;;) =
> Xi, oy Xiy 0, Xi, (5, the sum is over all permutations o € Ss.

Given the multiplication (2.1.42) and the comultiplication (2.1.41), one needs
to know the counit and the antipode to complete the Hopf algebra structure.

Ezercise. The counit € stays undeformed,
(2.1.43) €(X;) =0 mod o® ;

for the antipode mod o® one has

1 1
(2.1.44) S(Xi) = =X + 5aM{ X, + Za%;’lM;ngch :
where MY = —pb°Tk, — uﬁjI‘}’u = p'TY,. (Note that S stays linear in generators.)

It is known today that in higher orders in o no further restriction on p appears;
in other words, if ,ufk satisfies the Jacobi and cocycle conditions, there exist, as
formal power series in «a, the multiplication, which begins as (2.1.42), and the
comultiplication, which begins as (2.1.41) (and the counit and antipode). Moreover,
there exists such deformation that each term in the formal power series (for the
multiplication, comultiplication and the antipode) is expressible in terms of the
tensors ,u{k and I‘fj only.

2.1.1. Discrete groups. The situation with discrete groups is different. It is
an easy exercise to analyze the formal deformations of the coproduct for the group
algebras of discrete groups. In contrast to the case of universal enveloping algebras,
the result is trivial.

Let G be a discrete group, U = C[G] its group algebra over complex numbers.

Theorem 7. U does not admit a nontrivial deformation of the standard coproduct.

Proof. Assume that there is a first order deformation of a coproduct,

(2.1.45) Ag=gog+a) CHrol,
k,l

where o? = 0.
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(7) The coassociativity condition in the first order in «a gives

(2.1.46) Y cHkolog+kokol-gokol-kalal)=0.
k,l
Collecting terms a ® b ® ¢ with fixed a and ¢, a # ¢ and ¢ # ¢, one finds
(2.1.47) Cgfa=Cpec.
This holds for all a and ¢ different from g. Therefore, only C?9, C;“g, C’g’k and

Cg’k might differ from 0.
Now the condition (2.1.46) becomes

Y {CsFgokog-gokok) +Ci(kokog-gokoyg)
k#g

(2148) 4+ CiFkokog—gokok)}=0.

This implies that there is a set of constants Bg for k # g, s. t.

Kk _ kg _ pk ko _ k
(2.1.49) Cy"=C;9=B;,Cy"==B;, k#g.
This solves the coassociativity condition. Thus, we have
(2.1.50) Ag=(l+ac)g@g+ad Bigok+kog—kok).
k#g

(¢i) The condition that A is a homomorphism implies (in the first order in «):

—1 —_1
(2.1.51) By " +BMT =B and cg=c4+cn .
Let
(2.1.52) g =0+ac)g+ad Bik.

k#g

A direct calculation shows that (2.1.51) is exactly the condition saying that g — ¢’
is an algebra homomorphism, ¢'h’ = (gh)’.
Again a straightforward calculation shows that

(2.1.53) Agd =g @4g .

Therefore, given a deformation of the standard coproduct, we can explicitly con-
struct an isomorphism with the original bialgebra. The proof is finished. O

In the same way as the Corollary 6 followed from the Proposition 3, we obtain
the information about the formal deformations in this case.

Corollary 8. At formal level, all deformations of the coproduct for the group
algebras of discrete groups are trivial.

2.2. Lie algebras with an invariant scalar product. We have seen in
the previous subsection that the essential role in the theory of deformations of
the coproduct on universal enveloping algebras is played by a tensor ufk. All the
conditions on the tensor u are expressed in terms of the Lie algebra itself, without
any reference to the deformation theory. The relevant classical notion is a “Lie
bialgebra”.
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Definition. A Lie bialgebra is a Lie algebra £ equipped with a map 4 : £ — A%L,
0X; = ukaj ® X}, where the tensor p (antisymmetric in the upper indices) satisfies
the Jacobi identity and belongs to Z*(£,A%L).

Both ' and p satisfy the Jacobi identity. The condition p € Z', written
explicitly as (2.1.3), is symmetric in g <> . So the notion of the Lie bialgebra
is self-dual (like the notion of the Hopf algebra). In other words, if £ is a Lie
bialgebra then there is a Lie bialgebra structure on the dual space L£*, the roles
of I" and p being interchanged. There is an object which explicitly realizes this
symmetry between p and I'. It turns out (Ezercise: verify it) that all the data for
a Lie bialgebra can be conveniently expressed as the Jacobi identity for a larger Lie
algebra with generators X; and X?, satisfying

(2.2.1) (X, X;] = Fijk , for generators of L,
(2.2.2) [X°, X9] = pu? X* | for generators of L,
(2.2.3) (X, X7] = D7, X% 4+ X,

This Lie algebra is called a Drinfeld double of the Lie bialgebra £ and denoted DL.
As a vector space, DL is isomorphic to £ ® L*.

Definition. A scalar product (z,y) on a Lie algebra £ (i.e. a nondegenerate
symmetric pairing £ ® £ — k) is called invariant if ([z,y],z) = (z,[y, z]) for all
x,y,z € L.

Example: The Killing form on a semi-simple Lie algebra is invariant.

The natural pairing between £ and L£*, given by
(2.2.4) <Xi7Xj> =0, <Xi7Xj> =0, <Xi7Xj> = 55

is an invariant scalar product on DL. Moreover, the commutation relations between
X; and X7 can be reconstructed (with relations (2.2.1) and (2.2.2) being given) from
the demand of invariance of the natural pairing. Indeed, let [X;, X7] = A{kX by
B*X},. Then

—Al, = (X7, X)), Xa) = (X7, [X;, X)) = (X7, T8, X) =T,
and similarly for Bg k.

Definition. A set of data {g, L, L2} where g is a Lie algebra with an invariant
scalar product, £; and £, are isotropic Lie subalgebras of dimension = QIQM and

g =Ly P Ly is called a Manin triple.

A Lie bialgebra £ defines a Manin triple {DL, £, £*}. Conversely, a Manin
triple {g, L1, L2} defines a Lie bialgebra £,. From this perspective, the study of
Lie bialgebras splits into two parts: Lie algebras with an invariant scalar product;
their maximal isotropic subalgebras. I will shortly comment on the first part.

Denote by {g, ¢} a Lie algebra g with an invariant scalar product ¢ (¢(z,y) =
(x,y)). The pair {g, ¢} is called indecomposable if it cannot be represented as a

direct sum {g, o1} @ {g2, #2}.
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Example of {g,¢}. Let M be a Lie algebra with generators X;. Let g =
M x M* (the semi-direct product with respect to the coadjoint action). Then the
scalar product

(2.2.5) (XLX)y =0, (X;, X)) =&; , (X;,X7) =47,

where £(X;, X;) = &; is an arbitrary bilinear symmetric form, is an invariant scalar
product.

Generalization of this example. Let {W, ¢} be a Lie algebra with an invariant
scalar product. Suppose that a Lie algebra g acts on W by derivations, T,[z,y] =
[Tox,y] + [z, Toy], where T is the action, T : g@ W — W, a ® w — T,(w); suppose
that the operators T, a € g, are antisymmetric with respect to the scalar product
on W, ¢(T,z,y) = —d(z, T,y) for all z,y € W and a € g.

Ezercise. Show that the map 3 : A2W — g* defined by (a,8(z,y)) = ¢(T.z,vy),
where (-,-) is the natural pairing between g and g*, is a 2-cocycle, 3 € Z2(W, g*)
(g* is considered here as a trivial W-module).

As a 2-cocycle, 3 defines a central extension of W by g*. In other words, the
bracket

(2.2.6) [z,y] = [z,y]lw + B(z,y)

where [z,y]w is the commutator of  and y in the Lie algebra W, defines a Lie
algebra structure on W & g*. Denote this Lie algebra by W.

Ezercise. Fora € gx € W and f € g* let
(2.2.7) To(x+ f)=Tex + ad’f,

where ad” is the coadjoint action. Show that the formula (2.2.7) defines an action
of gon W.

We have therefore a Lie algebra structure on the space A = gd W & g*: a
semi-direct product g x W with respect to the action (2.2.7).

Define a scalar product ¢4 on A: the pairings between the generators of g and
g* are given by (2.2.5); the restriction of ¢4 on W is ¢; all the other pairings are 0.

Ezercise. The scalar product ¢4 is invariant.

The Lie algebra A with the scalar product ¢4 is called the double extension of
{W, ¢} by S (and the action of S on W).

Theorem ([5]). If a Lie algebra with an invariant scalar product is not simple or
1-dimensional then it is either decomposable or a double extension. Moreover, one
can always choose g to be simple or 1-dimensional.

This theorem gives a way to construct higher-dimensional Lie algebras with
an invariant scalar product from lower-dimensional ones. However, this is not a
classification.

Example of a nontrivial double extension: g = so(n), W is the n-dimensional
fundamental representation of g; consider W as an abelian Lie algebra. The cocycle,
giving a bracket on W & g* is given by the natural map 5 : W AW — g* and
A=gx (Va@g").
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FExercises.

In dimension 2 there is only one non abelian Lie algebra; choose a basis {z,y}
in such a way that the commutation relation is [z,y] = y. Denote this Lie algebra
by L2.

1. Show that any bialgebra structure on Lo can be written (after possible
redefinitions) in one of two forms:

(2.2.8) dx=0,d0y=aANy
or
(2.2.9) dx=xAy, oy=0.

2. Show that for the bialgebra structure (2.2.8) the double is gl,; for (2.2.9)
the double is a semi-direct product C x A/ of a one-dimensional Lie algebra (with
a generator W) and the three-dimensional Heisenberg algebra A/ (with generators
X,Y, Z and relations [X,Y] = Z, [Z,X] = [Z,Y] = 0); the action of W on N is
given by [W, X] =2X, [W,Y] = —2Y and [W, Z] = 0.

3. Show that operations

(2.2.10) Ar=2z1+1Qz, Ay=y1+e" Ry
and
(2.2.11) Ar=20(1-2ay) ' +10z, Ay=y21+ (1 -2ay) Dy

provide Hopf algebra structures on corresponding completions of /L.

4. Show that the Hopf algebra structure, defined by (2.2.10) (respectively,
(2.2.11)) is a quantization of the Lie bialgebra structure (2.2.8) (respectively, (2.2.9)).
Note that the terms of order 1 in the deformation parameter « are not antisym-
metric, but, as you remember, the symmetric part can be removed by redefinitions.

5. Let L = sly @ sly. Show that any invariant scalar product on L has a form
v & cv, where v is the Killing form on sl; and c is a constant.

6. Let ¢ = —1. Show that the diagonal g; = sl- is isotropic. A subalgebra
g with a basis {(e+,0),(0,e_),(h,—h)} is a complementary isotropic subalgebra
({h,e4,e_} is a standard basis in sls, [h,es] = £2ey, [e4,e_] = h). Thus, this
Manin triple provides a Lie bialgebra structure on sl.

7. Classify all Manin triples on L.

8. Classify 3-, 4- and 5-dimensional Lie algebras with an invariant scalar prod-
uct.

2.3. Belavin-Drinfeld triples. Let £ be a simple Lie algebra over C. In this
case, every 2-cocycle is a coboundary (see any textbook on Lie algebras, e.g., [6])
so one can solve the cocycle condition for u: u = dp or, explicitly, ,u{ka @ Xk =
[AoX;, p], with p = p®®X, ® X, an element of the wedge square of £ (that is,
pab — _pba)'

Now the Jacobi identity for © can be rewritten as a non-linear equation for the
element p.

Notation: for an element A € UQU, A=) 2o @yalet Ajo =3 24 DYa @1,
Az =) ,2a @1 @y and Ays =) 1@ x4 @Yo the elements Ayz, A1z and Ass
are from U @ U @ U:
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Ezercise. Show that the Jacobi identity for u can be rewritten in terms of p as

(2.3.1)
[[p12, p13] + [p12, p23] + [P13,p23], Xi @1 @ 1+10X;@1+1@10X;]=0

for all 1.

The element [p12, p13] + [p12, p23] + [P13, p23] belongs to the third wedge power
of £, i.e., it has a form AY*X; ® X; ® X} with totally antisymmetric A*. The
space of invariant elements in AL, for the simple £, is known (see, e.g., [6]) to
be one-dimensional; it is generated by an element v = I''*X; ® X; ® X}, where
Itk = Tk B¥BY  B;; = (X;, X;) for the Killing form (-,-) and B¥ is inverse to
Bi;, B Bj, = 6} (0 is the Kronecker delta). We conclude that the Jacobi identity
for u = Op is satisfied iff [p12, p13] + [p12, p23] + [p13, p23] is proportional to .

Let C' = BUX, ® X;.

Ezercise. Show that [C}2, Ci3] + [Ci2, Cas] + [C13, Cas] is proportional to 7.

Therefore we can find a combination r = p + const - C' for which
(2.3.2) [r12,713] + [r12,723] + [r13,723] = 0 .

Note that we still have ugkX ; ® Xy = [AX;,r] since B commutes with AgX; for
all . The equation (2.3.2) is called the classical Yang-Baxter equation (cYBe). We
explained that for a simple Lie algebra £ the problem of finding the Lie bialgebra
structures on £ reduces to cYBe for r which satisfies: r + r’ is proportional to C,
r+r' =zC with z € C (+' is the flip of r, v/ = r7 X; @ X for r' =r X, ® X;). If
x # 0 one can set x = 1 by rescaling r.

The Yang-Baxter equation (which reduces to the cYBe in the classical limit) is

(2.3.3) R12R13R23 = R23Ri3Ra2 -

Solutions of the cYBe for which x # 0 are the most interesting - their quantizations
find lots of applications in statistical models, knot theory, representation theory
etc.

Ezercise. In the situation of the exercise 6 from the previous subsection, show that
the corresponding coproduct on sly arises from an r-matrix, r = ih Qh+e_ Dey.
Verify the cYBe for this r.

We shall now explain how the solutions of cYBe with r + 1’ = C are classified
in terms of so called Belavin-Drinfeld triples. A procedure of quantizing these
solutions is known today [7, 8]. It is however interesting to enumerate the Belavin-
Drinfeld triples, which is a combinatorial question; in the end of this subsection we
shall discuss and partly answer it.

Classification of solutions.

Fix a Cartan subalgebra h). Let R be the set of roots, R = Ry UR_, and I the
set of simple positive roots.

Definition. A Belavin-Drinfeld triple (I'y, T2, 7) consists of the following data: I’y
and I’y are subsets in I and 7 : I’y — I's is a one-to-one mapping which satisfies
properties:
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(1) 7 preserves the scalar product, that is, (7(a), 7(8)) = (a, ) for all a and
from I';.

(13) 7 is “nilpotent”. It means the following. Assume that 7(«), which is an
element from Ty is still in T'y. Then 72(«) is defined. If again 72(a) € 'y then
there is 73(a). Nilpotency means that the sequence must terminate, that is, for
some k € N, an element 7% (a) is not any more in I'; for any a € T';.

Given a Belavin-Drinfeld triple, consider a system of equations for a tensor
o € h @ hv

ro + 7"(’) = to y
(2.3.4)
() @ id+ id®a)(rg) =0 for all a €Ty .

Here to is the “Cartan part” of ¢: for a basis H, of h let By, = (H.,H,); then
to = B°*H, H, where B°*" is the inverse to By, B°*'B,, = (5‘;.

The system (2.3.4) is compatible [9].

Recall that g = b ® @,y 9o, Where [h, 2] = a(h)z for x € g,, dimg, = 1.

Let A; be a Lie subalgebra generated by e, with a € [';, ¢ = 1,2. Then A is
the direct sum of those g, for which the expansion of a in terms of simple roots
contains simple roots from I'; only.

The map 7 : I'; — Iy extends to an isomorphism 7 : A; — Ay (denoted also by
7), by the formula e, = €;(o). It is an isomorphism because the only relations in
A; are Serre relations which depend on the scalar product (.,.) only and 7 respects
the scalar product.

For each a € R choose e, in such a way that

(1) {e—a,€a) =1,

(ii) er(a) = T(€a) Whenever 7(e,) is defined (e € Ay).

Define a partial order: a < § for a, 8 € R means that there exists a natural &
such that 7% (a) = .

Theorem [9]. Let

(2.3.5) r=ro+ » e a®eat Y  (eca®eg—ezDe_a),
aERy o,BER;a<3

where rg is a solution of (2.3.4).
Then
(1) the tensor r satisfies ¢cYBE(r) =0 and r +7r' =#;
(¢i) any solution of equations cYBE(r) =0 and r + 7' = ¢, after a suitable change
of the basis, is of the form (2.3.5).

The r corresponding to the trivial Belavin-Drinfeld triple (I'y and 'y are empty
sets), with ro = 3o, is called the “standard” r.

2.3.1. Maximal triples. 1 shall say several words about the combinatorics of
Belavin-Drinfeld triples. The whole information about scalar products is contained
in the Dynkin diagram for the algebra g. We shall consider the most interesting
case of the Lie algebras of the type A (that is, Lie algebras sl(n)), for which the
Dynkin diagram is

Fig. 1
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Given a Belavin-Drinfeld triple, it is useful to draw a diagram, corresponding

N~

Fig. 2

The upper and lower rows are two copies of the Dynkin diagram As, the lines
between the rows carry an information about the triple; the lines should be thought
as going from the upper low to the lower one; the roots from I'; are the roots at the
upper row from which the lines start; the roots from the lower row are those at which
the lines end; they are from I';. The angles between the roots are determined by the
number of edges connecting the corresponding vertices of the Dynkin diagram; it is
therefore easy to understand, looking at the picture, whether the map 7 preserves
scalar products. To check the nilpotency one needs to draw more than two rows -
depicting the powers of 7. For example, for the diagram on Fig. 2 one draws:

Fig. 3

The meaning of Fig. 3 is clear: the lines going from the first row to the third one
represent 72, from the first row to the fourth one represent 73, etc.

There are two types of natural equivalences for triples:

(1) Ty + (P1,Ta,7) = (2,0, 771); this corresponds to a reflection of the
picture of the triple in the horizontal mirror, Tf = id;

(ii) if a Dynkin diagram has a symmetry x then (k(G1),x(Ga),kT™!) is a
triple and the equivalence is T : (G1,G2,7) = (k(G1), k(G2), kTE™L).

For A, -diagram there is a symmetry: a reflection of Fig. 1 in the vertical
mirror; let T, be the corresponding equivalence; we have T2 = id.

If Ty is any subset of I'; then (fl,T(fl),T|fl) is clearly a triple. So it is
interesting to look only for “maximal” triples, i. e. those to which one cannot add
any more vertices.
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For example, the only nontrivial triple for A, is

Fig. 4

Exercises. 1. Show that for Az there are, up to equivalences, two maximal

triples:

Fig. 5 Fig. 6

2. Show that for A4 there are, up to equivalences, four maximal triples:

AN

Fig. 7 Fig. 8

Fig. 9 Fig. 10

With the growth of rank it becomes more and more difficult to decide if a given
triple is maximal. For example, the triple on Fig. 11

Fig. 11

is maximal, but one has to draw several rows (like on Fig. 3) to see that loops
appear when one adds one more vertex.
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If '\ I'y consists of only one vertex (or #I'y = #I' — 1) then the triple is
certainly maximal. We shall enumerate triples with #I'y = #I' — 1.

Proposition 9. For the Dynkin diagram A;, the number of triples with #I'y =1—1
is 1®(I + 1), @ is the Euler function, ®(n) = #{j € {1,...,n}|j is coprime to n}.

Proof.
(1) ®(l + 1) is the number of primitive roots of unity of order (I + 1).

We shall first associate a Belavin-Drinfeld triple to any primitive root of unity
of order (I +1). Let ¢ = exp(#f}). Label the vertices of the Dynkin diagram A; as
shown on Fig. 12:

¢ ¢ ¢ ¢!
Fig. 12

If a and b are labels of two vertices then a is connected by an edge to b if and
only if a = ¢*b.

Fix a primitive root ¢. Let I'y = {q,¢%,...,¢'"'} and Ty = {¢,¢%,...,¢'}
(more precisely, I';, i = 1, 2, are the sets of vertices of A; labeled by the correspond-
ing roots of unity). Since ¢ is primitive, each of the sets 'y and I's contain (I — 1)
distinct elements.

Let 7 : ['; — T'y be the multiplication by ¢. Multiplying a label ¢ by ¢, we
obtain a sequence ¢* — ¢*t! = --- = ¢!, and the sequence terminates since ¢’ =1
is not a label of any vertex. Thus, the map 7 is nilpotent.

The condition of being neighbors, ¢° = (*¢’ is stable under the multiplication
by ¢, therefore T preserves scalar products.

Thus, (I'1, I, 7) is a Belavin-Drinfeld triple. Call it 7.

Consider an arbitrary Belavin-Drinfeld triple 7 = (I'y, Ty, 7) with #I'y =1 —1.
We shall prove that it coincides with one of 7;’s.

(i1) Denote the vertex omitted from I'y by ¢ 1. It divides the row of the diagram
A; (as on Fig. 1) into two segments I; and Io:

1 -1 I
— —o—5S—e—0—  —06—0—0
Fig. 13
We have ¢~' = (¢ for some a. Making, if necessary, a vertical reflection, we

can, without loss of generality, assume that #I; < #1.

Let ¢’ be a label of a vertex omitted from I's. The lower row of the picture
corresponding to 7 is also divided by ¢’ into two segments J; and Jo (J; to the
left of ¢', Ja to the right of it). The map 7 preserves neighbors and it follows that
either 7: Iy = Ji, Is —» Jyor 7:1; — Jy, Iy — J;. The former case is excluded
since otherwise Iy = Jy, Is = J> and restrictions of 7 on the sets I;, ¢ = 1,2, are
permutation of these sets and therefore 7 cannot be nilpotent.

Thus, 7: 11 = Jo, I = Jy and ¢ = q.
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We cannot have #I; = #I, — then restrictions of 72 on I;, 4 = 1,2, would be
permutations of these sets. Therefore, #1; < #1s.

(1i1) Consider the restriction of 7 on the set Iy, 7 : Iy — Ji. There are two
possibilities: 7 preserves the order or reverses it. We shall prove that 7 cannot
reverse the order. Indeed, if T reverses the order then 7 maps ¢ to ¢—! (it is useful
to draw a picture here). Then 7 induces a permutation on the set I'\ (¢Uq ') and
cannot be nilpotent.

Let us collect obtained information about the triple 7 in a picture:

Fig. 14

(1v) For the restriction of 7 on the set I} we have again two possibilities, the
order is reversed or preserved. We shall prove that it is preserved. If the cardinality
of I; is 0 or 1, there is nothing to prove, so, without a loss of generality we assume
that #I; > 1, in other words, a > 3. Thus we have [ > 6 since #1> > #I1;.

Extend 7 to amap 7: I = T by 7: ¢! — ¢ (and ¥ = 7 on I';). The map 7
is a permutation of I'. Decompose 7 into a product of cycles. Since ¢~ maps to
q, the decomposition contains a cycle ¢ = (...q71q...). If there are other cycles,
T=c-c-cy... then the product ¢; - ¢co ... is a permutation of some set S. This
permutation is the restriction of 7 on S, thus 7 cannot be nilpotent. We conclude
that 7 is a cycle.

Explicitly, the action of 7 is

(st i=1,...,n—a,
(2.3.6) o
=t i=1,...,a.

We shall follow a sequence 77(g~!). First, ¢* = (* maps to ¢~! = ¢*t1-a,
Then it goes back, ¢(!T17¢ s IH1720 s .oy (1R where [ + 1 — ka < a but
I+1—(k—1)a>aorl+1<(k+1)abutl+1> ka This requires k steps (i.e.
this is the result of the action of 7% on ¢~!). At the next step, ('*'7%% maps to
¢** and then again goes back, (*® s (*=1a oy ...+ (. This takes k more steps.
Thus, 72F(¢~!) = ¢7'.

But 3k < ak <[+ 1. Therefore, 2k < QZT“ < [ because [ is at least 6.

Therefore, the permutation 72* has a fixed point and 2k < [. Thus 7 cannot
be a cycle.

We are left with only one possibility: the restriction of 7 on I; preserves the
order.

(v) The map 7 preserves the order on I by (iii) and on I; by (iv). Written
explicitly, it means that the map 7 is the multiplication by ¢. It will not be nilpotent
if ¢ is not primitive, therefore, the triple 7 coincides with one of 7,’s.
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(vi) The group, generated by flips T and T, is Zy X Z,. But on triples 7, the
operations T} and T, coincide: each of them is 7, + T;-1 (in general, it is not so,
even for maximal triples: consider the triple corresponding to Fig. 11). Therefore,
only Z acts on the space of triples 7,. This action does not have fixed points and
we conclude that the number of triples, under equivalences, is %@(l + 1) as stated.
The proof of the Theorem 9 is finished. O

3. Quantum spaces

We shall briefly, without going into details, give geometrical motivations which
lead to the notion of quantum spaces.

Let G be a Lie group, g its Lie algebra. In the section 2, Lie bialgebras appeared
in the study of deformations of the coproduct on the universal enveloping algebra
Ug. Geometrically, Lie algebra g is the Lie algebra of left-invariant vector fields
on G. The universal enveloping algebra of the Lie algebra g can therefore be
realized as the algebra of left invariant differential operators on G. Up to topological
and functional analytic considerations (convergence, etc.), a function on R* can
be reconstructed, as a Taylor series, from the knowledge of its derivatives at the
origin. For a Lie group G, the knowledge of derivatives of a function f at the
origin is replaced by the knowledge of values on f of all left invariant differential
operators at the unity of G. The elements of /g are linear functionals on the
space FG of functions on G, so, up to topological considerations, the spaces Ug
and FG are dual to each other, the pairing between X € Ug and f € FG is
given by (X, f) = X(f)|., where e € G is the unity element. It follows then
that the coproduct on Ug corresponds to the product on FG - the usual product of
functions. Thus, deformations of the coproduct on i/g correspond to deformations of
the commutative algebra FG of functions. Infinitesimal deformations from Section
1 correspond to particular Poisson brackets on G — Poisson brackets which are
compatible with the group structure. One says that Poisson brackets are compatible
with the group structure if the multiplication m : G x G — G is a Poisson map.
In other words: define, for a given function f on G, a function f"on G x G by
the rule f7(x,y) = f(z - y); the compatibility of the Poisson brackets {.,.} means
{fyg9}" ={f", 9"}, where the Poisson brackets on G x G are Poisson brackets of the
direct product of two Poisson manifolds. Groups with compatible Poisson brackets
are called Poisson-Lie groups.

In the other direction, it is not difficult to check that if G carries compatible
Poisson brackets then its Lie algebra g gets a Lie bialgebra structure.

Compatible Poisson brackets are of a very special form. We shall illustrate it
on an example of a matrix group G (a subgroup of the group of invertible matrices).
Let @} be matrix elements. Assume that {a},al"} = ®(a) are compatible Poisson
brackets. Then {a}b},a'b?} = ®;”(ab) (this is the equality {f7,¢7} = {f,g}"
for f = af, and g = al'). On the other hand, {a}b],anb2} = {a},a]}bib" +
{bi,b?}ajvanm = " (a)bi b + @i’;(b)a;a? because G X G is equipped with the
Poisson structure of the direct product. Therefore & must be homogeneous of
degree 2 (this reflects the fact that p; in the deformation of the coproduct on
Ug belongs to g @ g). Thus, the Poisson brackets are quadratic. To quantize
constant or linear Poisson brackets, one simply replaces the Poisson brackets by
the commutator. However, it is not obvious how to quantize quadratic Poisson
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brackets - we cannot replace Poisson brackets by the commutator because we don’t
know how to order consistently the quadratic right hand side.

Ezercises. 1. Show that formulas

{a,b} =ab, {a,c} =ac, {b,d} =bd,
(3.0.1)

{c,d} =cd, {b,c} =0, {a,d} = 2bc

are Poisson brackets for four variables a, b, ¢ and d.

2. Show that if a, b, ¢ and d are matrix elements of a matrix A = ( Z Z )

then the Poisson brackets (3.0.1) provide GL(2) with a Poisson-Lie structure.

3. Show that the Poisson brackets (3.0.1) of the determinant of A, det A with
all matrix elements vanish.

The main interest about the most commonly appearing groups, like GL, SO,
Sp, ... - is that they arise as groups of symmetry (of a vector space, of a vector
space with a bilinear form, ... ). The Poisson-Lie groups one can interpret in this
way too. One says that a Poisson-Lie group G acts on a Poisson manifold M in a
Poisson way if

(1) G acts on M;

(77) the action G x M — M is a Poisson map, where G x M is equipped with
a Poisson structure of the direct product.

Again, for a matrix group G acting on a vector space V2, z' — a‘z?, a sim-
ilar calculation shows that the Poisson brackets of coordinates, {z%, 27} must be
quadratic in 2.

FEzercise. For a two dimensional vector space with coordinates #! and z2 let
(3.0.2) {2' 2%} =22 .

Show that GL(2) with the Poisson structure given by (3.0.1) acts in a Poisson way
on this Poisson vector space.

It turns out that from the point of view of the theory of quantum groups,
the appropriate way to quantize the Poisson brackets (3.0.2) is provided by the
following commutation relations:

(3.0.3) vla? = qriat .

This is the first example of a quantum vector space. Denote this quantum vector
space (that is, the algebra of polynomials in #! and x? subjected to the relation
(3.0.3)) by qu.

The linear group of transformations preserving the relation (3.0.3) is poor, it
consists only of rescalings 2 + c;z' with some constants ¢;. It is the quantum
group which is the right analogue of the symmetry group of the quantum vector
space.

General picture.
Let U be a quasitriangular Hopf algebra with a universal R-matrix R. Let U*

be a dual Hopf algebra. The pairing between U and U* satisfies (Aa, z®y) = {a, xy)
and (o ® b, Az) = (ab, x).
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We shall think of U as of analogue of the universal enveloping algebra of a
semi-simple Lie algebra. Ideologically (in the spirit of the Peter-Weyl theorem) the
dual Hopf algebra is generated by matrix elements of representations of .

Let p be a representation of / on a vector space V', p maps an element z € U
to a matrix T (x).

The coproduct A on matrix elements Tj looks especially simple:

(3040 (AT}, z @y) = (T}, wy) = Tj(ay) = T;(2)T} (y)
3.0.
= (T}, a)(T},y) = (T o T}, x @ y)
and therefore
i_ i k
(3.0.5) AT, =T, 0T} .

The commutation relations between the matrix elements Tj are expressed in terms
of a numerical R-matrix R, the image of the universal R-matrix R = ), a; ® b; in
the representation, R =), p(a;) @ p(b;). Let Ax =3 tq @ vq.

(3.0.6) (T1 T2, 2) =Ty © T2, > e @va) = Ti(a)T2(va) -
By the definition of R we have Y uy ©® vo = R vy @ ugR. Therefore
<T1 @ Ty, Eua ® ’Ua> = <T1 ® TQ,R_l E’Ua ® UQR>

=TI ® Tg(Ril Z'Ua ® ’U/aR)
(3.0.7)
= T1 X TQ(R_l) . T1 029 TQ(E Vo ® Ua) . T1 X TQ(R)

=R Y T1(va)Ta(ua)R = R Y To(ua) T (va)R -

The “” means matrix multiplication.

Arguments u, and v, are now in the same order as in (3.0.6). Therefore,
T\Ty = R_lTQTlR or

(3.0.8) RT\T, = TLT\R .

Because of the form of this relation, this algebra is often called the “RTT”-algebra.
The algebra U* was first written in the form (3.0.8) and (3.0.5) in [10].
We shall write the relations (3.0.8) in a different way. Let P be a permutation
of factors in VoV, P(z®y) =y @z. Let R = PR. Then (3.0.8) is equivalent to

(3.0.9) RI\Ty, =T\ TR .

A motivation to use R instead of R: the eigenvalues of R have a representation-
theoretic meaning. A theorem, due to Drinfeld [11], says that there exists an
element F such that R = Fp1¢*F 1, where ¢ = exp(a) (a is the deformation
parameter), ¢ is the invariant tensor BYX; @ X;. Let C = BYX,;X;. Now let
VeV = > W, be a decomposition of the tensor square of the space V into
irreducible representations. We have AgC' = C ® 1+ 1 ® C + 2t, where Ag is the
classical coproduct. Therefore, ¢|, = %C’|W1 — Cly. Denote this quantity by ¢..
We have R = PFP¢r®P() F~1 therefore, R = FPgr@rM F~1,

First of all, V ® V decomposes into the symmetric and antisymmetric parts,
V@V = S?V & A?V. The operator P takes the value (+1) on S?V and (—1) on
A?V. Every W, is either is either in S?V or in A%V so the “sign” of W,,, depending
on whether W, is S*V or A?V, sign (W) := Py, is well defined.
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Since ¢?®7" |y = ¢ we have
(3.0.10) R|pw, = FPg*®*W |y, =g sign(W,) .

Thus, the projector decomposition of R reflects the decomposition of the tensor
product of representations.

Polynomials in the matrix elements Tji are “quantized” functions on the group.
We also had the Poisson brackets on the coordinates ' and 2 zjj was a
Poisson map. On the quantum level we have the RTT relations for TJZ Which
relations can we impose on ’s in such a way that the map x* — zjj is an algebra
homomorphism? These relations should also quantize the Poisson brackets for z’s.
Since the quantization of the Poisson brackets for T]? produced quadratic relations,
we expect to have quadratic relations for the algebra of x’s as well. Impose a set
of quadratic relations for z’s, Ef‘jxixj = 0, « labels relations. Then for Tz we have
E%T(ix“Tbj b= E%Tijjx“xb, so we have to understand which tensors we can move
through T;Tbj .

The defining relation (3.0.9) shows that we can move R and therefore any
function of R. As we have seen, R = " v, I, where v, = ¢ sign (W,) and II,
is the projector on the space FW,. So essentially, all functions of R are linear
combinations of projectors.

Conclusion: covariant algebras are given by relations (H,Y)fixkxl = 0 for some
v (one or several). Denote by Al7 (I for “left”) the quadratic algebra defined by one
projector I1,. Equally well, there is a covariant “right” algebra A’ (the algebra of
covectors ;), defined by zz;(IL,)¥, = 0, the covariance is z; — 2,7

An important fact is that the RTT-relations can be reconstructed from the
requirement that all the algebras Al7 (or all the algebras A7) are covariant. Indeed,
Al is covariant means

(3.0.11) (L) TET 22 = 0,

therefore, (H,Y)Z];TfTbl must be proportional to II, whose lower indices are a, b:
(3.0.12) () TaTy = S, (T,

Multiplying (3.0.12) by (IL,)% with 7 # 7, we find

(3.0.13) IL, T, ToI01, =0

for all pairs {7,v|7 # ~v}.

Lemma 10. The system (3.0.13) of relations for the matrix elements Tj is equiv-
alent to the RTT-relations RTsz = TlTZR.

Proof.
() (3.0.9) implies (3.0.13).
We have R = Y v,IL,; moreover, > II, = 1 is a decomposition of unity.

Multiplying RTsz = TlTZR by II, from the left and II; from the right, we find
v IL T T511; = v II, T o110, . If v # 7 then v, # v, and it follows that the relation
I1,T1T511, = 0 is satisfied.

(74) (3.0.13) implies (3.0.9).



24 O. OGIEVETSKY

We have RT1T2 = RTsz -1 = Z%T vy I, TV T511,. The last expression, due to
the relations (3.0.13), can be rewritten as

(3.0.14) > v IL T TLIL,

~

Similarly, TiTyR = 1- TI'ToR = Y v, 1L, T\ T5I1,. Again, due to (3.0.13), this
equals 3 v, 11, T1 T>IL,, which coincides with (3.0.14). Thus, (3.0.9) holds. O

If R appears in the process of a deformation then there is a candidate for an
especially nice quantum space. Again, V@V = @ W, classically; denote the set
of {y} by J, J = JL U J_ where Jx = {v| signW, = £1}. Then projectors
Iy = 3 ¢, T, have ranks rkIly = W Therefore, a set (II_)Yzkz! = 0

N(N-1)
2

contains relations - exactly the number of relations which we have classically

for commuting variables. The quantum space defined by relations (II_ )% z*z! = 0 is
the only reasonable candidate for the quantization of CV on which a group G acted
in a Poisson way. Similarly, the quantum space defined by relations (IL}.)}z"z! =0
is the quantization of the algebra of odd (grassmanian) variables.

For GL(N), in the decomposition V @ V = S?V & A?V, the summands S?V
and A2V are irreducible. It is natural therefore to call an R which contains only
two projectors, an R-matrix of GL type. One usually rescales R to have R =
qIly — ¢~ 'TI_, where II, and II_ are projectors, which are called, due to their
origin, the g-symmetrizer and the g-antisymmetrizer respectively (and we shall
often denote II; by S and II_ by A).

To conclude:

e Geometrically and physically meaningful R-matrices decompose into projec-
tors

(3.0.15) alﬂf + ...akHZ—%ﬁle + ﬁlH;

S A

and we know which projectors constitute the g-symmetrizer S and the g¢-
antisymmetrizer A, respectively (as shown by underbracing in (3.0.15)).
The ranks of the projectors S = I, = I} + HZ and A =11_ =

Iy +---+1I, are classical, rkII; = W

o Covariant algebras are quadratic algebras of the form (IL,)z*z' = 0 or
z;x;(ILy)}, = 0 where II, is one of the projectors in the decomposition

(3.0.15).

e The algebra of functions on a quantum group is given by the relations (3.0.9)
and these relations are equivalent to the condition that all the algebras Aﬂy
are covariant; in other words, the RTT-algebra can be reconstructed from
the Al7 algebras. The same holds if one replaces left algebras by the right
ones.

3.1. GL type. For GL-type algebras we have only two projectors', R = ¢S —
¢~ ' A In this case, to reconstruct the RT'T-algebra, it is enough to require covariance
of two algebras, Al+ and A’ defined by relations S ]lxkx’ =0and A Jlxkx’ =0
respectively [12].

1When R has two eigenvalues, one says that R is of Hecke type. We require additionally that

the ranks of the projectors are fixed rkS = %-H), rk A= %_1)
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As we have seen, covariance of the algebra Al7 implies the condition IT, T} T>I1, =
0 for all 7 different from . Thus, in the GL case, the covariance of the algebra Aﬁr
implies
(3.1.1) STY\T,A=0
while the covariance of A" implies

(3.1.2) AT\ TS =0 .

On the other hand, the covariance of the algebra A’} implies the same relation
(3.1.2). Together, relations (3.1.1) and (3.1.2), are equivalent to the RTT-relations.
This shows that in the GL case, one can interpret the RTT-relations in two ways:
either as the condition of the covariance of the algebras A’;‘_ and A" or as the
condition of the covariance of the algebras Al+ and A’ . We shall use the latter
interpretation in the sequel.

The algebras Alf are the left and right quantum spaces. If they are good
deformations then the dimension d(N, k) of the space of polynomials of degree k
coincides with the dimension of the space of polynomials in N commuting variables,

N+Ek-1
k
So, quantum spaces are quadratic algebras with correct Poincaré series.

As we shall see below, the behavior of Poincaré series is intimately related to
the theory of quantum groups.

(3.1.3) d(N, k) = <

Definition. Given a set of tensors & = {E% = EZ}, i,j = 1,...,n, define an
algebra A¢ with generators ' and relations
(3.1.4) E?jxixj =0 foral a.

Let d(N, k) be the dimension of the space of polynomials of degree k in z*. We say
that A¢ has a Poincaré-Birkhoff-Witt property (or that Ag is a PBW-algebra) if

(3.1.3) is satisfied. In particular the range of the index a is {1,..., W}

Relation Hzxkxl = 0 (with II a projector) is an example of (3.1.4) but in
general the tensors £ are not organized in a projector.

Requirement that z° are covariant, that is, that the relations (3.1.4) are satisfied
by Tja’ implies some relations between T7’s.

Assume that we are given two quantum spaces, Alg with generators 2* and
relations E?jxixj = 0 and A’ with generators z; and relations xiijg,j =0.

Definition. We say that the quantum spaces AL and A% are compatible if the
covariance algebra of T has the PBW property (that is, its Poincaré series coincide
with the Poincaré series for N? variables).

Next subsection is a digression on the Poincaré series; then we shall continue
with a discussion of compatible quantum spaces in dimension 3.

3.2. Technics of checking the Poincaré series. Consider an algebra with
generators o and relations (3.1.4). Sometimes it is useful to try to apply the
diamond lemma [13, 14]. In its easiest form it says: assume that there is a basis
{x!,..., 2N} in which relations look: for j > i, 272° is a sum of monomials z%z"
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with a < b and all the monomials in the sum are lexicographically smaller or equal
2/z'. Take these relations as instructions: replace z7x' by the right hand side.
Apply these instructions to 2*z72’, where k > j > i, in two ways, starting from
x*27 or from 27x*. If both ways will eventually produce the same result, to which
no more instructions can be applied then the ordered monomials " ... 24" form
a linear basis in the algebra, which implies that the algebra has the PBW property.

Note that whether one can apply this procedure depends on a choice of a basis
in the algebra. Such a basis might not exist.

We shall now describe another way of checking the Poincaré series which one can
apply in the GL case. It uses a differential calculus on quantum planes, developed
in [15].

3.2.1. Differential calculus and Poincaré series. Assume that the quadratic re-
lations are given by

(3.2.1) Adaral =0,

where A is the g-antisymmetrizer in the Hecke R-matrix, R = ¢S — ¢ ' A.
Let & be generators of the odd quantum space for R, that is, the relations for
£ are

(3.2.2) Speket =0 .
One can unify generators ' and £ into one quadratic algebra by requiring that

(3.2.3) ri¢l = R ekt

Ezercise. Verify that relations (3.2.3) are compatible with (3.2.1) and (3.2.2). The
compatibility here means the following. Let ¢ be a combination of quadratic ex-
pressions S,7¢"¢!. Then ¢ = 0 in the algebra with generators ¢'. Take an element
x'¢ with some 7 and use (3.2.3) to move z to the right. We obtain an element of the
form E]- Y;x?, with some quadratic (in £’s) elements ;. Since ¢ was 0, we must
have ¢; = 0. In other words, for each j, the element ¢; must be a combination of
expressions S;;&F¢!. In the same manner, there is a compatibility check when one
moves &' to the left through relations (3.2.1) for z’s.

At the next step, one adds “g-derivatives” 9; in the generators z*. An algebra
of the derivatives 0; is the algebra with generators 9; and relations

(3.2.4) 00,4 = 0

(note the order of 4, 7).
To add 9;, one needs cross-commutation relations with the already existing
generators x* and &'. These relations are:

(3.2.5) da? =1+ qRI 240, |
(3.2.6) 867 = (R™Y)75¢to, .

Ezercise. Verify that relations (3.2.5) and (3.2.6) are compatible with (3.2.1),
(3.2.2) and (3.2.3) (in the above sense of compatibility).
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Finally, one adds derivatives d; in &°. An algebra of the derivatives §; is the
algebra with generators §; and relations

(3.2.7) 5:0;81 =0

The cross-commutation relations between §; and the generators ?, £ and 9; are:
(3.2.8) o) = RISz,

(3.2.9) 6.8 =1—qRE's,

(3.2.10) 5;9; = (R™HX a0y, .

FEzercise. Verify that relations (3.2.8), (3.2.9) and (3.2.10) are compatible with
(3.2.1)- (3.2.7).

We shall need the following singlets, the Euler operators E. and E, and the
differentials d and §:
Ee = xiai7 Eo = 5161 )
(3.2.11) _ _
d:flai y 6::#& .
Their relations with the generators of the algebra are (Ewzercise: verify the
relations):

Bt =o' (1+¢E.) , 0B, = (1 +¢*E.)d

(3.2.12) -
Eegl = glEe b 61'E0 = Eo(si )
oni = xiEo N 81-Eo = Eaai )
(3.2.13) o
E & =¢&(1+ q2Eo) , 0B, = (1+ quO)éi )
de' =& +qa'd , 0;d = qdo; ,
(3.2.14) | |
d¢t = —q€id , §;d= (1+ (¢*> —1)E,)0; — qdd; ,
5xi = qx16 R 816 = (]. + (q2 - ]-)Ee)(si + qéal )
(3.2.15)

06 = ot — q€'6 , 6;6 = —q~106; .
Using operators N, = 1 + (¢*> — 1)E, and N, = 1 + (¢°> — 1)E,, appearing in the
right hand sides of (3.2.14) and (3.2.15), one can rewrite (3.2.12) and (3.2.13) in a
form
Nex) = ¢*xqNe , Nedpy =q 20y Ne ,
(3.2.16)
Ne&u) = & Ne s Nedjny =0y Ne

Noz1) =21 No , NoOj1y =91y N,
(3.2.17)
No&a| = *6q 1 No » Nodj1y = ¢ 201y N, -

Exzercise. Verify:
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1. The Euler operators commute,
(3.2.18) E.E, =E,E, .

2. Commutation relations between the Euler operators and the differentials are
dE. = (1+¢*E.)d or N.d=q %dN.d,
E,d=d(1+¢*E,) or N,d=¢?dN, ,
(3.2.19) E.5=6(1+¢2E) or N.§=¢N,

0E, = (1+¢?E,) or N,0 =q 26N, .

3. The differentials square to zero,

(3.2.20) =0, =0 .
4. For the anticommutator of d and § we have
1
(3.2.21) A:=db+0d=Ec.+ E, + (¢° — 1)E,E. = — T (N,N. —1) .
¢ —

The last exercise implies that
(3.2.22) Azt = 2" (®A+ 1), A& =E(PA+1) .

Let M, be a space of polynomials in = and &, of degree a in x and of degree b in
§. For ¢ € M, one finds, by induction,

(3.2.23) Ap = d((a+ D) + > TON)

where the g-number (n), is defined by (n), = 11__—(1(1 =14qg+¢+ - +q¢" 1

Let M,, = ®aqp=nMqp and M = $;2 (M,,. The space M is a Zy-graded vector
space, the grading is given by the degree of a monomial in £’s.

One can consider 9; and ¢; as operators acting on the space M. To this end,
one introduces a vacuum Vac, which satisfies 9; Vac = 0 and §; Vac = 0. Let X
be an expression in z?, £, 9; and ;. To evaluate it on an element ¢ € M, take an
element X ¢. Using the commutation relations, we move all 9; and J; to the right
and evaluate on the vacuum. This gives an element of M which we denote X (¢).
The consistency requires only that the vacuum is a representation of the algebra of
0; and d0; which is clearly true.

For instance, we have A(¢) = (a +b),2¢ for ¢ € M, .

For each n, the space M, = @qyp=nMyp is finite dimensional. We have
dim M, = de(a)dy(b), where dc(a) and d,(b) are dimensions of the spaces of
polynomials in 2 of degree a and in £ of degree b, respectively. The grading of M, ;
is (—1)°.

The space M, is closed under the action of d and §. Therefore, the supertrace
of their anticommutator (of the operator A) vanishes, Str A = 0, which implies

(3.2.24) > de(a)do(b)(~1)*(a+ D)2 =0
at+b=n
for each n.

One can write the set (labeled by n) of identities (3.2.24) in a compact form.
Let ¢ be an indeterminate. Denote by P. and P, the Poincaré series for even and
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odd variables, respectively; that is, P, and P, are the generating functions for the
dimensions d. and d,, P.(t) =), de(a)t® and Py(t) =), do(a)t*. We have

(3.2.25) P(t)Po(—t) = > de(a)do(b)(~1)" .
n a+b=n

Introduce a g-derivative in ¢. It satisfies, by definition, a relation 9;t = 1+¢>t0;.
By induction,

(3.2.26) Ot™ = (n)2t" "' + ¢ t"0, .
As above, 9; becomes an operator after we define a vacuum - a one dimensional
representation of the algebra of polynomials in d;, Vac;, by 9; Vac, = 0. In

particular, 0;(t") = (n)2t" L

The formula (3.2.26) shows that the action of 9; on the formal power series in
t is well defined.

Now, (3.2.24) implies

(3.2.27) 8 (P.(t)Py(—1)) = 0 .

Note that the series P. and P, start with 1, P.(¢t) = 1+ O(t), P,(t) = 1+ O(t).
Therefore,

(3.2.28) P.(t)P,(—t) =1+ O(t)
as well. Classically (¢ = 1), equations (3.2.27) and (3.2.28) imply that
(3.2.29) P.(t)P,(—t)=1.

For a generic ¢ the same conclusion (3.2.29) holds. Here “generic” means that ¢
is not a root of unity. However, if ¢? is a primitive root of unity of order [ one
can conclude only that P,.(t)P,(—t) = 1 + t'F(t) for some power series F. By a
different method, without using the differential operators, the formula (3.2.29) for
generic ¢ was obtained in [16].

The advantage of having a formula like (3.2.29) is that in the GL case the
relations for the odd generators £ are strong enough to force the space of polynomials
in £ to be finite-dimensional. Then P,(t) is a polynomial and instead of checking
the infinite number of coefficients in P, (t) one has only finite number of checks for
P,(t).

3.3. Geometry of 3-dimensional quantum spaces. In dimension 2, a
quantum vector space is a quadratic algebra with two generators and one relation.
This situation can be quickly analyzed [17] and we shall not stop at it here.

For a 3-dimensional quantum space we need 3 generators and 3 relations. Let

(3.3.1) Efa's) =0,a=1,2,3,
be the three relations. The number of independent monomials of degree k in di-
mension 3 is < K Z 2 ), so we need to have ( 3 _5 2 > = 10 cubics.

In the free associative algebra with three generators there are 27 cubics. Thus
we need 17 relations for cubics. How many relations can we deduce from (3.3.1)?
We have 9 relations of the form (EZz'z7)z* = 0 and 9 relations of the form
a*(Ega'a’l) = 0, altogether 18 relations. Therefore they cannot be independent,
there should 18-17=1 linear combination of them which vanishes. Therefore,

(3.3.2) eiaES% = EL far
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for some tensors e;o and fz;. We shall assume that the tensors e;, and fg are
nondegenerate.

Let E;j, = emEj‘k (all the indices of E;j; are now of the same nature; before,
a, B labeled relations, while 4,7, k labeled variables). The equation (3.3.2) now
becomes

(3.3.3) Eijr = QLEy;
where Q! = fo;(e 1) (e7! is inverse to e,

(3.3.4) eaile™h) = (55 and eqi(e” )P =67,

(e

65 and 07 are Kronecker delta’s; the fact that two relations (3.3.4) hold is because
in dimension 3, both indices 7 and a run from 1 to 3).

A direct inspection shows that classically (for commuting variables) E;j, is the
e-tensor. The e-tensor has a good behavior under all permutations of indices. The
moral is that for the PBW-algebras, it is enough that the E-tensor behaves well
only under cyclic permutations of indices - the effect of a cyclic permutation is a
rotation in one index by an operator Q).

This simple behavior under cyclic permutations makes possible a classification
of PBW-algebras in dimension 3: go to a basis in which @ has a normal form
then solve the cyclicity equation (3.3.3) for the E-tensor and select nondegenerate
solutions (which give exactly three relations for quadrics). The article [18] contains
the result of the classification. The list of PBW-algebras is quite large; for us it is
the beginning of the work: one has to classify compatible pairs of quantum spaces.

We have now two tensors, E;;x and F*/*. The analysis is quite lengthy - because
one has to work with the Poincaré series of nine variables T; But the final result
[19] is surprisingly simple.

It turns our that Ej,, ™" = 6} where x is a number (in fact, this relation
describes a little more narrow SL(3)-case, when the quantum group has a central
determinant and one can define a corresponding special linear quantum group; for
the general situation, see [19]).

Define A}, = Bk, F™9. Then the resulting equations say that A is a projec-
tor, A2 = A and

(335) (1 + K,) tI‘3(A13A23Q;1) = CC_1P12Q;I +1,

where Pjs is a permutation of spaces 1 and 2 and kK = = trQ.

Surprise: the equations for A imply that R=1+ (1 — q)A satisfies the Yang-
Baxter equation, where ¢ is a solution of ¢*> + (1 — k)¢ + 1 = 0 (the other root
defines R™'). Classically, k =3, ¢ =1 and R = P.

This R-matrix is of GL(3)-type and the relations for T} ensuring that the com-
patible left and right spaces are covariant are nothing else but the RTT-relations.

In the beginning there was no demand to have a solution of the Yang-Baxter
equations. The demands were to have PBW-algebras and the compatibility between
them. So, unexpectedly, the study of the correct Poincaré series is a machine to
produce R-matrices and quantum groups.
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In the list of R-matrices found in this way in [19] there is an example which
stands out for several reasons. The left quantum space is defined by relations

Czx+ Oy’ +22=0,
(3.3.6) Gy +Clay =0,

2y +CTyz + 82?2 =0.
Here ( is a primitive 9-th root of unity; the operator @ has the form

¢
(3.3.7) Q= ¢t
C7
The left quantum space (3.3.6) is compatible with an (isomorphic as an algebra)
right quantum space; one can take x = 1. Thus we have a quantum group and an
R-matrix.
The R-matrix is given by

(3.3.8) R=¢+D3,
where
1 <4 CZ
(8 1 ¢
C4 CS 1
1 ¢ ¢
(3.3.9) 5= ¢° 1 ¢ )
¢7 ¢ 1
1 C4 CS
¢ 1 ¢
C? CS 1
and
(3.3.10) D = diag(03,02,01,02,03,03,01,03,01)
with
300 = ((*+¢H -+,
(3.3.11) 30, = (C"+¢H (MY,
3o = (CP+H-(C+ChH.
We have ¢ = (3.

For the standard Drinfeld-Jimbo deformation, the left quantum space is given
by ziz? = qaiax? for i < j. When ¢ is a primitive root of unity of order [, then the
left quantum space has a center generated by elements (x?)!. If one requires that
the covariance algebra of Tj preserves relations (z')! = ¢;, one obtains additional
relations for T. The quotient algebra of the algebra of T by these relations is
called a “small quantum group” [20].

The center of the algebra (3.3.6) is a polynomial ring generated by three ele-
ments of degrees 3,6 and 9. The algebra (3.3.6) is finite-dimensional over its center,
the dimension equals 162 ([18]). Therefore, the quantum group defined by the
R-matrix (3.3.8) has finite-dimensional quotients as well.
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The algebra (3.3.6) does not admit ordering. In other words, in any basis, the
defining relations are not ordering relations, ordering of 232%2! will always produce
loops. The algebra (3.3.6) is the first example of a PBW-algebra with this property.
Therefore, the R-matrix (3.3.8) is a very particular point in the moduli space of
solutions of the Yang-Baxter equation in dimension 3. Another peculiarity is that
the R-matrix (3.3.8) is an isolated point in the space of solutions of the Yang-Baxter
equation; it cannot be obtained as a deformation of any other solution; in particular,
one cannot reach it starting from the classical solution (the permutation). In this
sense, this R-matrix is non-perturbative.

Call € the algebra (3.3.6). In the next subsection we prove some of its properties
mentioned above, in particular, the PBW property.

3.3.1. Grébner base for £. For a homogeneous element f of a free associative
algebra A with generators {a',..., 2"}, let f be a “highest symbol” of f, the
lexicographically highest word in f.

Let B be a quotient algebra of the algebra 4 by some homogeneous relations
So = {r1,...,ra}. Every relation r we write in the form # = terms, smaller than
7; we understand it as an instruction to replace 7 by the right hand side. Taking, if
necessary, linear combinations of relations, we always assume that all 7 are different.

Let So = {f1,...,7um}-

A word can contain several entries of the form 7, for some a. Comparing
different ways of applying instructions to this word, we may obtain new instructions
- relations, whose highest symbols do not belong to Sy. We add these relations to
Sp and obtain a new set S;. Let again S‘l be the set of highest symbols.

Continuing the process, we shall build an (eventually infinite) set S = U2,S;,
which is called a Grobner base for the algebra A (it depends on a choice of generators
{z',..., 2V} and on a choice of an order). Let S be the corresponding set of highest
symbols.

Now the basis of A, as a vector space, consists of “normal” words - words, which
do not have subwords belonging to S. This gives sometimes a way to estimate the
Poincaré series of the algebra. See, e.g., [21] for further information about Grébner
bases.

For the algebra &£, written in generators {z,y, z}, as in (3.3.6), the Groébner
base seems to be infinite ant non analyzable.

There are several other nice sets of generators and one of them leads to a finite
Grobner base. Let

z=7CA+FB+(°0),
(3.3.12) y=-—me(A+B+C),

z=7*(A+B+0),

142

1+¢
In terms of new generators A, B and C the relations are

(A2 +(PAB+B?>=0,

where v satisfies 72 = ¢

(3.3.13) (C? +(PCA+ A% =0,

(B2 +(°BC+C2=0.
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Choose the order A > B > C. Then the set (3.3.13) of relations gives the following
set of instructions

A%~ —(C? - (°CA,
(3.3.14) B? ~ —(*BC — (3C?
AB ~ —C? +(CA+ (®BC .

Possible overlaps are A2B, AB?, A% and B3. This leads to new instructions

ACA ~ BC? + (?CAC + (5CBC + (8C*A + (3C?B — ¢C?
(3.3.15) BCB ~ —(*C?B - (3C?

AC? ~ —(*BC? — (CAC — (CBC - (3C*A - ("C*B .
One has new overlaps and they, in turn, lead to new instructions with highest
symbols BC? and ACBC'. We shall not give more details, but it turns out that now

overlaps are all compatible, so the construction of the Grébner base is completed
and we have

(3.3.16) S = {A%,B?, AB, ACA, BCB, AC? ,BC? ACBC} .

For such & it is possible to explicitly describe the normal form.

For a word w = z1x2 ... xk, let 3;(w) be the beginning, of the length j (that
is, first j symbols), of a word www ...w (the word w repeated sufficiently many
times). For example, 84(ACB) = ACBA, 35(ACB) = ACBAC.

Lemma. For S, as in (3.3.16), the normal words have a form

(3.3.17) C'B;(BCC)Bx(ACB) .

Corollary. The algebra £ has the PBW property.

Proof. Normal words (3.3.17_) are characterized by ordered triples of numbers
{i, j, k}, as for monomials xiz)zk. -

3.4. sl,(2) at roots of unity. The simplest example of a quantum space is
the algebra V> with two generators 2' and #? subjected to the relation (3.0.3). If

one chooses for a left quantum space (V )3 an algebra with two generators x; and
To and the same relation

(3.4.1) T1Xy = XXy ,

then the quantum group (rather, bialgebra, for the moment we will not talk about
invertibility of quantum matrices) which preserves the relations (3.0.3) and (3.4.1)

a

is the standard Mat,(2), the matrix elements of T' = ( c satisfy relations

b
d
ab = qba , ac = qca , bd = qdb , cd = qdc

(3.4.2)
be=cb, ad =da+ (¢ —q *)bc

(this is a correct quantization of the Poisson brackets (3.0.1)).
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If ¢ is a primitive [-th root of unity, the bialgebra Mat,(2) has a finite dimen-
sional quotient Maty(2), one adds

(3.4.3) d=d=10=d=0

to the relations (3.4.2).

The bialgebra Mat,(2) has a symmetry interpretation as well. The elements |
and x4 lie in the center of V2. Let V2, be a quotient of V;? by relations (¢')" = 11
and (22)! = po for some constants p; and us. If one requires that all the algebras
me u» are preserved by the coaction, one finds the extra relations (3.4.3); the same
relations (3.4.3) one finds from a demand that all the left algebras (V*)2, ,, are
preserved.

In this subsection we shall illustrate, on this simple 2-dimensional example,
some phenomena, pertinent to a situation when a non-commutative quantum space
has a large center: loss of quasi-triangularity, loss of semi-simplicity, appearance of
finite-dimensional Hopf quotients etc.

We shall give a description of the reduced universal enveloping algebra and of
the reduced function algebra in terms of matrix algebras over local rings. This
language seems to be quite appropriate to talk about such algebraic concepts as
Ext-groups, a scheme of an algebra, its Cartan matrix etc. The material on the
matrix structure is partly taken from [22].

" —q

S . ) _ 4" —q” Vo . )
Notation: n, is a g-number, n, = — and ng! = 1424...n4 1s a ¢

n

q
factorial. Let ¢ be a [-th primitive root of unity, [ > 2 (so ¢ # 1). Denote

. I, I=1(mod?2)
(3.4.4) b= { /2, 1=0 (mod 2)

Thus, ¢>* =1 < 2n =0 (modl) <= n =0 (modl); n, =0 <= n =
0 (mod 1). Denote v = l/l~ and ¢ = ¢¥; (ji =1, § is a primitive [-th root of unity.
3.4.1. Preliminaries. The Hopf algebra which gives rise (as in the section 3) to
the quantum space qu is an algebra U = U, (slz), generated by elements K, K1,
E and F' and relations
KK'=K'K=1, KE =¢EK ,
3.4.5 .
(343 KF=q2FK , [E,F] = % :
q—4q
the coproduct is defined on the generators by
(3.4.6) AK=K®K,AE=E0K+1®E, AF=F21+K'oF;

the counit € and the antipode S are defined on the generators by

(3.4.7) S(K)=1,¢eE)=0, e(F)=0,
(3.4.8) S(KY=K*',S(E)=-EK™', S(F)=-KF .

The algebra U, (sl2) has a central element, a g-deformed Casimir operator:
(3.4.9) C=qK+q¢ 'K+ (q-q¢"’FE.

If ¢ = exp(a) and K = exp(aH), the combination ([1_0[1;_21)2 —1 tends to the standard

Casimir operator HTz + % + F'E in the classical limit o — 0.



USES OF QUANTUM SPACES 35

Consider a vector space V(o,37), j € Z/2, j =0, %, cey 1171 and o = +1 with
a basis {e]* , m = j,j —1,...,—j}. Denote by K(o,j), E(c,j) and F(o,j) the
operators
2m ,m

K(o,j)e" = oq""e]"

(3.4.10) E(o,j)e) = et

F(o,f)er = o (j+m)g(j —m+1)gem L.

In these formulas, the right hand side should be replaced by 0 if m £ 1 runs out of
the allowed range.

The operators (3.4.10) realize standard representations of U,. When ¢ is not
a root of unity, the representations V' (o, 7) exhaust the list of all irreducible repre-
sentations.

The expression

—1\m
(3.4.11) R=e"3" % (q_#qg(E ® F)™
mg!

m>0 g
being understood informally, intertwines the coproduct with the opposite coprod-
uct. However, because of the denominators, the expression (3.4.11) does not make
sense when ¢ is a root of unity. One may ask whether it is possible to redefine
R at these values of q. The answer is negative. A standard argument goes as
follows. If R existed, we would have an isomorphism V@ W ~ W @ V for any
two representations of U, for which R is defined (R would intertwine the tensor
products).

Elements = E!, y = F! and z = K' are central; we have

(3.4.12) Az=z20z,Av=20z2+10z, Ay=y21+2'oy.

There is a family of representations W, of dimension [ (the index j runs from
0tol—1):

—2j
K :vj—= pg“v;

F:v;j vy forj<i—1,
(3.4.13)

E: v (qu_;:#]q +ab)v]-_1 s fOI‘j >0,

q
F:vi \=bv, E:vg—=avp_, .
The values of the parameters u, a and b are not restricted (one only needs p # 0).

In the representation W, the value of the element y is b, the value of the

element z is p'.
Assume that V @ W ~ W @ V. Then, applying the formula (3.4.12) for the
coproduct of the element y, we find

(3.4.14) yv + 2w = yw + 2ty

where yy and zy are the operators, corresponding to the elements y and z in the
representation V' (the same for W).

Take V' = W and W = W,q. Then (3.4.14) implies a relation between u,
v, b and d, a contradiction.
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1. Hopf ideals

Here we collect some information about Hopf ideals of a finite codimension in
U.

The Hopf subalgebra of Laurent polynomials in K coincides with the group
algebra C[Z] of the additive group Z of integers.

Lemma. Let I be a proper Hopf ideal in C[Z]. Then I is generated by (K7 — 1)
for some j.

Proof. Any ideal I in C[Z] is a principal ideal, I = (f), where f(t) =t/ +a; 1t/ 1+
-+ + ap is a polynomial with ag # 0.
The element

(3.4.15) Af(K)=K! @ K? +a;_1 K37 @ K971 4+ 4 ag
equals
(ajo1 K77 4+ ag) @ (ajo1 K77+ -+ +ag) +ajo KT @ K970+ 4 ag

in the algebra C[Z]/I ® C[Z]/I. If I is a Hopf ideal then the element (3.4.15)
must be zero. In particular, in the expression above, the coefficient in 1 @ K* for
1 <4 < j—1 must vanish, which gives aga; = 0. Therefore a; = 0. Vanishing of the
coefficient in 1 ® 1 gives ag(ap + 1) = 0, therefore ag = —1. Thus, f(K) = K/ — 1,
and it is straightforward to check that (f) is a Hopf ideal for such f. O

Consider a Hopf ideal I of a finite codimension. If E € I then K2 — 1 =
(¢ — ¢~ Y)K[E, F] € I, therefore

(K*-1)F =F(g*K*-1)=F(¢ "= 1)(med ) € T ,

so F' € I. Thus the factor-algebra is C[Z,].
Assume now that E ¢I. Let U be the factor-algebra of U by I.
According to the Lemma, (K7 — 1) € I for some j. Therefore,

(K?—1)E=E(¥K’ -1)=E(¢* —1)(mod I) € T ,
which implies 7 = mlN, so z™ =1 in the factor-algebra U (% is the image in U of the

central element z = K! € U).

Lemma. The central elements z = E' and y = Ft belong to I.

Proof. Let Z be the image of x in U. Let f(t) = t' +b;_1t" > +--- + by be a
characteristic polynomial of Z in Z/. We have

Af(z) = (z122 + z2)t + bi—1(z122 + ) by,
where 11 =2 ® 1, 25 =1 ® 2 and 23 = 1 © z. Thus, in /4 ® U one has
0=AFf(E) = —(bi_1 (F1%) L+ 4 bo) — (b1 T + -+ + by)
(3.4.16) o | |
+ 22;1 ( s ) (Z122)°25 " + bi—1(T122 + @Ta) L4+ b .

where 71 =2 ® 1,72 = 1®@7 and z» = 1 ® 2. The coefficient in, for example,
(175 ") is Z9i. Thus, i = 0, therefore, Z =0 or « € I. Similarly, y € I. O
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Denote by I, the ideal
(3.4.17) I, ={E F K™ —1} .

We shall call it a congruence ideal, and the number m - level.

We have shown that each Hopf ideal of a finite codimension contains a congru-
ence ideal I,, for some m. The minimal m for which it happens, we shall call the
level of the ideal.

Denote Uy, /I, by Uy, and the images of the elements E, F' and K by E, F
and K.

We shall give a complete description of U, (and of U, ») as an algebra?.

2. Equation for C

We shall find a polynomial y(x) such that y(C) = 0 (C is the image of the
Casimir operator C (3.4.9)). Later we shall prove that y is a minimal polynomial
for C.

One has

(3.4.19) (—q )?FE=C—(¢K+q¢'K1").

Lemma. The following relation holds in U,:
i—1

(3.4.20) (¢ — ¢ H'F'E = H(c — (MK 4 g K )
a=0

Proof. For ¢ =1 this is (3.4.19). Induction in i:

(3.4.21)

(q _ q71)2i+2Fi+1Ei+1 — (q _ q’1)2F HZ_:l()(C _ (q1+2aK + q7172a1{71))E
= (@ = ¢ VFET[(C — (¢" 2K +¢ 122K ).
Use (3.4.19) to finish the proof. O

Corollary. In U, , one has

-1

(3.4.22) 1€ - (K +q K1) =0.
a=0
Proof. For i = I, the lhs of (3.4.20) belongs to the ideal I,,,. O

Denote by p(x) a polynomial p(z) =1+ x + .. .21 and let
1 _ .
(3.4.23) Do = 7p((jaK) ,a=0,...,0—1.

2We shall not use it, but it is known (see, e.g. [23]) that Uy,1 and Uy 2 are quasitriangular,
say, for Z/_(q,l the universal R-matrix is

l —1ys

(3.4.18) R==3Y" —Qini®Kji~(‘I*q b 5(5;1)E5®FS
4. = = q 2 o] q .

L5520
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Then

(3.4.24) Kpy =G “pa .

The elements p, are the usual idempotents, decomposing 1:
(3.4.25) PaPb = OabPs , 1 =po+ - +pj_; -

Define a polynomial x(z),
-1
(3.4.26) y(z) = H(w _ gt gy

a=0

More precisely,
-1 a —a
[looo(z—q¢"—q¢*), v=1

(3.4.27) x(x) = }
- ~a —1~—a
[Ty —ai® —q'G), v=2

Lemma. In Z;{(Ll, one has

(3.4.28) X(C)=0.

Proof. We have (using (3.4.24), the Corollary above and the fact that C' and K
commute)

0= Hf—l (C _ (q1+2aRr + q—l—QaR'—l))p_b

a=0
(3.4.29) )
= [1.26(C = (@2 + ¢ 72 ")p— = Xx(C)ps
for all b. Summing over b and using (3.4.25) we conclude that y(C) = 0. O

Remarks. 1. For odd [ the eigenvalue in (3.4.27) corresponding to a = 0 is simple,
the others have the multiplicity 2 - pairs (a,l —a). For [ even, [ odd: the eigenvalue
corresponding to a = (I — 1)/2 is simple, the others have the multiplicity 2 - pairs
(a,l —1 —a). For I even, [ even: all eigenvalues have the multiplicity 2 - pairs
(a,l —1—a).

2. If we knew that y is a minimal polynomial, we could immediately state
that there are indecomposable but not irreducible representations: the center of a
semisimple algebra is semisimple.

3.4.2. Formatted matriz algebras over graded rings. Let I' be a finite abelian
group, [ its dual.

Let A be a I'-graded ring over C, that is, A=® pAy andifa € Ay, b€ Ay
then ab € A,,.

Let Z be a set. A couple ¢, consisting of the set Z and a map 7 — I' we shall
call a “format”.

Definition. A set of matrices X = {X}} with indices belonging to the set Z and

with entries in A will be called a matrix algebra of format ¢ over A (and denoted
by M¢(A)) if X]l € A¢(i)¢(j)*1~

Clearly, M;(A) is an algebra.

In our examples the ring A will satisfy two conditions:
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Cl A is local, that is, A/ rad A is isomorphic to C.
C2 The part of A which corresponds to the trivial representation of I is C itself;

in other words, rad A = & Ay
nontrivial x

The simplest example is the algebra M,,(C) of matrices of size n x n. Here the
group I is trivial. The algebra M,,(C) has only one representation - a column of
the matrix.

Similarly, for any algebra M,(A), the columns provide representation spaces.
Now there might be several types of columns, corresponding to the chosen format
0.

An advantage of the introduced terminology is summarized in the following
lemma, which generalizes the properties of M,,(C).

Lemma. Assume that A satisfies conditions C1 and C2. Then the columns realize
principal projective modules of My(A). The set of principal projective modules is
in 1-1 correspondence with types of columns (that is, with the image of ¢). The
classes of isomorphism of the quotients of the principal projective modules of each
type are in 1-1 correspondence with the graded quotients of A.

Therefore, a knowledge that some algebra is isomorphic to M4(A) gives a com-
plete information about the representation theory for this algebra; there is no need
to study first irreducible representations, then their extensions etc.

Let As be the Grassmann algebra in two variables & and 7. It is graded by the
parity; the group I' is Z». Essentially, the format is specified by two numbers, m
and n; we shall write ¢ = m|n. The algebra M,,|,(A2) is the algebra of matrices

(3.4.30) <%> ,

the entries of the matrices X and W are even, the entries of the matrices Y and Z
are odd elements of As.

Remark. Let B be an algebra. Suppose that we know that it belongs to the class
of formatted algebras over graded rings, 7. e. it can be represented as My(A) for
some choice of I'; A, 7 and ¢. One may ask, how intrinsic the ring A is, whether
it is defined by the algebra B. It turns out that for different rings A and A’, the
formatted matrix algebras over them can be isomorphic. In this case we shall say
that A and A" are GM-equivalent (GM stands for “Graded Matrices”).

Example. Let A’ be a ring over C generated by two elements 6; and 65,
satisfying #? = 2 = 0 and 6,603 = 6,6,. The ring A’ is graded by Z», the grading
is given by a degree in the variables 6;, deg#; = 1, i = 1,2. The format is again
specified by two numbers, ¢ = m|n. The algebras Myj;(A2) and M1 (A’) are
isomorphic, the isomorphism is given by

a; + a2§17 | b1§ + b217 ) < a; + a20102 | b101 — b202 >
3.4.31
( ) ( il +con | di + daén — c10y + 202 | di — d26:62 ) 7

where a;, b;,c;,d; € C, 1 =1,2.

Thus, the rings A and A’ are GM-equivalent.

3.4.3. Matriz structure. In [24], after a description of irreducible and some
indecomposable representations of U, o, a regular representation of U, » was de-
composed into a direct sum of indecomposable representations. As a consequence,
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the algebra U, » decomposes into a direct sum of ideals. It was noticed in [24]
that each of these ideals is isomorphic to a subalgebra in the matrix algebra whose
matrix elements belong to a Grassmann algebra in two variables.

We shall adopt an opposite point of view and start by establishing homomor-
phisms into the matrix algebras with Grassmanian entries. Then we shall prove
that the reduced enveloping algebras are direct sums of formatted matrix algebras
over the local ring A;. As explained above, this immediately provides an entire
information about all modules, in particular, the principal projective modules.

Some homomorphisms into matrix algebras, odd [

Here we shall consider the case when the number [ is odd.

Let 1 = 2j + 1. Let K(i), E(i) and F(i) be operators corresponding to o = 1
in formulas (3.4.10) (pay attention to the order of the basis vectors: m = 7,5 —
1,...,—7; say, the matrix of the operator E(i) is upper-triangular).

We shall also use a matrix M (i), defined by

(3.4.32) M(i)e = et

on the same basis as in (3.4.10).
Let & and 1 be two Grassmann variables, £2 = n? = &n +né = 0.
Let

K(i) ‘
(3.4.33) K(i)= ‘ - ui
(5 —1—1
o |
(3.4.34) E(i)=| — £ ,
é * |E(f-i-1)
-1
F(i) ‘ . M (i) ‘ *
(3.47%3) = — +&n
| FE-i-1) . ‘—M(%—z—l)

Dots mean that the corresponding entries are zero.
The diagonal entries of the operator (i) form a sequence {a,}, n € Z/IZ,

G —2i 2(L—i- ol i
{an}:{qquz(l 1),...,(] 27(]2(2 1)7._.7(] 2(3 1)}

Since ¢! = 1, we have pt1 = ¢ %a, for all n € Z/lZ. The non-zero entries of the
operators £(¢) and F (i) are exactly on those places which are allowed by relations
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KE = ¢?EK and KF = ¢ 2FK. Next, one finds

E@)F(i) ‘
(3.4.36) EW)F@) = ‘ -y = ) +&nP
s—t—1)F(5—-i—-1
and
F(i)E(i) ‘
(3.4.37) F@)E®G) = +&nP,

where

(3.4.38) P =

K(k) — K(k)!

q—q7!
o K() = K@)
[E(), F(i)] = ErEr=

Therefore, the operators £(i), F(i) and K(i) provide a representation of the algebra
U.

It is easy to verify that £(i)! = F(i)! = 0 due to nilpotency of the Grassmann
variables. The relation IC(l)f = 1 is evident. Thus, the matrices £(i), F (i) and &C(7)
realize a representation of U, ;.

We have [E(k), F(k)] = for all &, so

Matrix structure of U, 1, odd [

Formulas (3.4.33)-(3.4.35) provide homomorphisms (j = 2i + 1)

(3.4.39) pj:Ugr = Mj_;(Az)
fory=1,...,1—1 and a homomorphism

(3.4.40) po iUy — M;(C)
corresponding to j = L.

All the eigenvalues of the operator K (i) are different, so the diagonal matrices
diag(0,...,0,1,0,...,0) are polynomials in (i) (projectors on the eigenspaces
of K(i)) and belong to the image of p;. Now, looking at the matrices for the
operators £(i) and F (i), one concludes immediately that p; is an epimorphism for
allj=1,...,1.

For the Casimir element C' one computes

(3.4.41) pi(C) = (¢ +a I+ (q—q )P,

(I is the identity operator) for j =1,...,l —1 and po(C) = 2.
Because of the {n-term in (3.4.41), x(t) = Hl_l

r w0l —q® —q™®) is indeed the
minimal polynomial for C' in Uy ;.
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Let P; € Uy 1,5 =0,...,[£] ([2] is the integer part of z) be central idempotents
corresponding to the eigenvalues ¢7 4+ ¢~/ of the semi-simple part of C; Py + --- +
Py1j = 1is the central decomposition of unity. We have Uy,1 = &;P;lq,1.

Let Y; = PjUy1, j =0,...,[L] and let B; be the matrix algebras, By = M;(C)
and B, = Myj;_o(A2),a=1,..., [%] Then p; : U, 1 — B; vanishes on Y}, for k # j
because of the value of C'. Thus, we have a collection of epimorphisms Y; — B;, so
their direct sum is an epimorphism

_ L
(3.4.42) p:lly = 2B .

Let B = &2\ B;. We have dim(Bo) = I2 and dim(B,) = 22, a = 1,...,[4].
Therefore, dim(B) =12+ 51212 =3

On the other hand, relations (3.4.5) clearly allow an ordering: we can rewrite
any expression as, say, a linear combination of monomials K®F?E°¢. Therefore,
dim(U, 1) < [3. But (3.4.42) is the epimorphism, so dim(i, ;) = [* and (3.4.42)
is an isomorphism. We proved:

Proposition. For odd [, the algebra 2/, ; is isomorphic to a direct sum of formatted
matrix algebras,

[4]
(3.4.43) Upy ~ M(C) & P Map—o(A2) -

)

As a byproduct, we saw that the monomials K*F*E° are linearly independent.
This is a version of the Poincaré-Birkhoff-Witt theorem for i/, : the monomials
K°FPE°, with a,b,c =1,...,1 form a basis.

Ezercise. Describe the matrix structure of U, » (that is, K?' = 1): replace the
operators K (i), E(i) and F(i) in formulas (3.4.33)-(3.4.35) by the operators corre-
sponding to ¢ = —1 in (3.4.10), verify the defining relations for i, » and show

-1
(3.4.44) Uy ~ M(C) & M(C) & P Mapj—a(A2) -

Remark. The algebra U, 1 (or U, ) is unimodular, that is, the left and the right
integrals coincide, [ = [, = [, (they are defined by z [, = e(z) [, and [, z =
e(z) [;). The location of the integral inside the matrix blocks is very natural. In
the direct sum, describing the matrix structure of the algebra, there is exactly one
block MHZ_I(AQ), for which the 1 x 1 sub-block realizes the trivial representation
(the same holds for even [). The integral is

J-(2h)

(so the evaluation on the integral might remind to someone a true integration over
Grassmann variables).

Example: [ =3
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For ¢* = 1 we have (g—¢!)? = —3 and 2, = —1. The Casimir element satisfies
(3.4.46) C?-3C-2=(C+1)*(C-2)=0.
For the block M; (the value of the Casimir element is 2) we have:
) e ..
(3.4.47) pE)=[ . 1 . ,
—2
q
R
(3.4.48) po(E)=1| . . 1],
(3.4.49) poF) =] -1 .
-1

Irreducible representations of dimensions 1 and 2 have the same value (—1) of
the Casimir element, they can be glued indecomposably into a block M;5(As):

(3.4.50) p(K) = ,
_ R
(3.4.51) mEY=["T."1],
3
— . _17
(3.4.52) p(BY="n| .
1—-¢&n

The algebra U, 1 has two blocks, U, 1 ~ M(3) & My2(Asz).
Case when [ is even, [ is odd

Now [ = 2] and [ = 2s + 1. We have ¢251 = —1, so ¢’ = —¢ is a primitive [-th
root of unity. A substitution

(3.4.53) E=-E,K'=K,F=F,¢=—q

establishes an isomorphism of the algebra i/, ; and the algebra U, ; whose matrix
structure we know already.

Matrix structure for even [

We have | = 4s, [ = 2s and ¢2° = —1.

We shall describe simultaneously the matrix structures of U, 1 (K?° = 1) and
Z/_{q72 (I&y4s = ].)

Let K (0,7, E(0,7) and F(o,j) be the operators as in (3.4.10), j = 0, %, ce, 8 —
1,s — 1. Note that (3.4.10) gives a representation of i, 1 only when j (the “spin”)
is integer.
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Let j=s—1—jforj=0, %, ...,8—1. Let C(o,j) be the value of the Casimir
element in the representation V (o, j). We have C(0,5) = o(¢* 7% +¢~1=%). Thus,
C(_lvjl) = 0(17])
On the representation V (o, s — %), the Casimir element takes a value (—20).
Now the assignment

ey

(3.4.54) K~ ‘ ( ) ,

. K(-1,j'
(3.4.55) E : ,

- E(-L))

3

oy
] F(1,5) ‘ . M (25 +1) ‘ *
(3.4.56)> p +&n
. F(-1,7") . ‘ -M(2)"+1)

(dots mean that the corresponding entries are zero) establishes homomorphisms of

Uy, into graded matrix algebras over As.
There are also two homomorphisms

(3457) uq,? — MQS(C) 5

corresponding to the representations V' (o, s — %)

We have a collection C of homomorphisms (3.4.54)-(3.4.56) and (3.4.57). Par-
allelly to the case of odd [, one shows that these are epimorphisms and then, by
counting dimensions, that the direct sum of the homomorphisms from C is an iso-

morphism. This proves:
Proposition. For even | = 2s, the algebra U, » is isomorphic to a direct sum of
formatted matrix algebras,

2s—1

(3.4.58) Uy ~ Mz (C) & Mo (C) & D Mapze—a(A) -

The algebra U, 1 is a direct sum of those terms in (3.4.58) for which a is odd,

S

(3.4.59) Uy =~ @ Moy _1j25—2p41(A2) -

b=1

As for odd [, the matrix description implies the Poincaré-Birkhoft-Witt theo-
rem: The monomials K*F*E°, a,b,c=1,...,l for U1 (a=1,...,2l for U, ), are
linearly independent and hence form a basis.
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Remark. The appearance of the sign o in the formulas (3.4.10) is related to the
existence of the following involution ¢ in the case when [ = 2s is even:
(3.4.60) ¢p:K—w-K,E—-E,F— -F.
The subalgebra U, » , of fixed points of the involution ¢ consists of polynomials in
K2, FK and E. )

To describe the matrix structure of the algebra U, » 4, let Q.(A2) be an algebra
of matrices

(3.4.61) <%’%) ,

A and B are s x s matrices, the entries of A are even, the entries of B are odd
elements of the ring As.

Then
s—1
(3.4.62) Up2,p = Mys(C) & P Mapps—al(Aa) @ Qu(Az)

As for the algebra U, 1,4, one keeps those terms in the direct sum (3.4.62)
which correspond to an integer spin. Now the answer depends on the parity of s
(the appearance of the algebra @), that is, on the residue of I modulo 8.

Example: [ =4

The algebra U, 1:

(3.4.63) KE=-EK, KF=-FK , [E,F]=0,
and
(3.4.64) K*=1,F*=F*=0.

The Casimir operator is C' = —4F E; it satisfies C? = 0.
The realization:

o (og) £ () o ().

This realization is faithful, the algebra 1 has only one block, g1 ~ My (Az).
We have EF' + F'E = 0, where F' = FK, so the algebra U, 1 4 is isomorphic
to the ring Ao itself.
3.4.4. Reduced function algebra. A reduced function algebra F, on SL,(2) at
roots of unity is the algebra with generators a, b, ¢ and d, subjected to relations
(3.4.2), (3.4.3) and

(3.4.66) ad —gbc=1.
This last relation, together with d' =1, allows to express a in terms of d, b and c;
the algebra ¥, is generated by d, b and c only.

The algebra F, also has a formatted matrix structure. Let & and & be two
variables which satisfy

(3.4.67) §=6=0, & =66 .

The algebra C[¢1, €] is graded by the degree in the variables &;, degé = degés =
1. The group T is the cyclic group Z/IZ. The format ¢ is specified by a set of
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I numbers, ¢ = ng|...|n;_1, the number n; corresponds to the character z
exp(%Hj), where z is a given generator of I'.
A map
1 1
.1 .1
b— 51 . , CH—r 52 . R
1 1
1 . 1
1
q
dw—
¢!

establishes an isomorphism
(3.4.68) Fq = My, 1 (Clé, &)

(all the numbers in the format equal 1). As for reduced enveloping algebras, this
isomorphism implies the Poincaré-Birkhoff-Witt theorem.

3.4.5. Centre. We conclude the subsection by several remarks concerning the
centers of the algebras Uy ..

1. The center of the formatted matrix algebra M,,|,,(Az) consists of matrices

at+pén| . )
(3.4.69) < o)

with some constants «, # and 7. It is 3-dimensional.

There is a conjecture by Kaplansky: “A Hopf algebra of characteristic zero has
no non-zero central idempotents” (the citation is according to [25]).

This conjecture is false, the algebras U, ,, provide a counter-example.

2. We have seen (eq. (3.4.41)) that the image of the Casimir element is of the
form

a+pBn| . )
(3.4.70) ( o

Therefore, the Casimir element does not generate the whole center.

For the algebra U, when ¢ is a primitive [-th root of unity, a theorem (see [26])
states that the center of U/ is generated by the elements EZ7 FZ7 K and C (and
that there is a polynomial relation between these elements, which is eq. (3.4.20) at
i =1[; for i =1, the r.h.s. of (3.4.20) depends only on C' and Kz). The image (in
U,.1) of the algebra, generated by EZ, FZ, K and C, is the algebra of polynomials

in C. As we saw above, it is a strict subalgebra in the center.

3. Let C'(K) be a centralizer of K in Y. One has C(K) = 695:0 A; where A; is

spanned by elements F*K®E’. The subspace Ao = @'_, 4; is an ideal in C(K)
and Ag is a complementary subalgebra, A = Ay & Asp.
We have a well-defined projection 7 : C(K) — Ap.
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Let Z be the center of U, it is a subalgebra in C(K). The restriction ¢ = 7z
of the projection ¢ to the center Z is called a Harish-Chandra homomorphism. It
is known to be injective when ¢ is not a root of unity.

For the reduced algebras U, 1 (or U, ») the Harish-Chandra homomorphism is
defined in the same way. However, the injectivity is lost, because the center Z is
not semi-simple while the algebra Ay is. One verifies that the kernel of the Harish-
Chandra homomorphism coincides with the RadZ. It is natural to conjecture that
this holds for quantum deformations for all semi-simple Lie algebras.

4. R-matrices

The first subsection is a summary of some essential facts from the theory of
quasi-triangular Hopf algebras and their representations.
The R matrix for the standard quantum group GL,(N) is [27, 28],

(4.0.1) Ry =q" 618, + (¢ — ¢ )01 — k)o.07

where ©(i) =1 for ¢ > 0 and ©(i) = 0 otherwise. The indices run from 1 to N.
The R-matrix (4.0.1) belongs to a class of “ice” R-matrices; the precise defini-
tion of the ice condition is in the second subsection. There we give a classification
of ice R-matrices. The main result is that they are all of GL type.
The final subsection establishes a way to build, starting from an arbitrary R-
matrix of G L-type, R-matrices for orthogonal and symplectic quantum groups.

4.1. Skew-invertibility. The first part of this chapter is a short reminder on
the general theory of quasi-triangular Hopf algebras, originating mostly from [29].

Then we discuss an important notion of “skew-invertibility” and explain how
it arises in the context of the quasi-triangular Hopf algebras.

In the second part we derive, on a representation level, matrix analogues of
some identities in Hopf algebras. These matrix identities will be needed for the
discussion of the R-matrices for orthogonal and symplectic quantum groups.

4.1.1. Generalities on Hopf algebras. Let A be a Hopf algebra.

We recall that

(4.1.1) m(S @id)A(a) = €(a)l,
(4.1.2) m(id @ S)A(a) = €(a)l,
(4.1.3) (e@id)A = (d®e)A=id,

where S is the antipode and € is a counit.
We use a standard notation omitting a summation index, for example, instead
of writing A(z) = }_, 7] ® x5 we shall simply write A(z) = z(1) @ 2(2).

1. The Hopf algebra A is called almost cocommutative if there exists an invertible
element R € A ® A such that
(4.1.4) A'(x)R = RA(x)

for any element x € A. Here A" is the flipped coproduct, A'(z) = x5y @ x(y) for
A(x) =) ® T(2)
We symbolically write R = a @ b instead of R = >, a; @ b;.
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Let A2(x) = z(1) ® T(2) @ x(3) (A? = (A ®@id)A = (id ® A)A). By (4.1.4), we
have

(4.1.5) T(2)a @ x(l)b @xzy = arm ® bx(g) @ (3 ,

(4.1.6) (1) @r3)a@ T2 = (1) @ axm) @by -

Let u = S(b)a. Applying id® S @ S? to (4.1.5) and multiplying terms in the
inverse order, one obtains

(4.1.7) S%(x)u = ux .
Applying id ® S @ S? to (4.1.6) and multiplying terms, one obtains
(4.1.8) S (u) = S(u)S*(z) .

Eqs. (4.1.7) and (4.1.8) hold for an arbitrary € A so the element S(u)u is
central.

FExercises.

1. Take a flip of (4.1.4): A(z)R21 = R21A'(z), and derive, parallelly to (4.1.7) and
(4.1.8), identities

(4.1.9) w = vS%(x),

(4.1.10) S%(x)S(v) = S(v)x,
where v = aS(b).

2. This exercise is taken from [30].
Let A be a Hopf algebra (not necessarily almost cocommutative). Let T be an
operator on A ® A defined by

(4.1.11) T(a®b) = aS(bu))biy @b -

Show that 7" satisfies the Yang-Baxter equation, T12713753 = T53113712. Show that
for a cocommutative A, the operator T reduces to the identity operator.

2. The Hopf algebra A is called quasi-triangular if

(4.1.12) (A®@id)yR = Ri3Ras,

(4.1.13) ([do AR = RisRis .

Ezercise. Show that any of these formulas, together with (4.1.4), implies the Yang-
Baxter equation

(4.1.14) R12R13R23 = Ra3RizRa2

Applying € ® id ® id to the formula (4.1.12) gives R = (¢ ® id)(R)R or, upon
canceling by R,

(4.1.15) (e@id)R=1.
Similarly, an application of id ® id ® € to (4.1.13) gives
(4.1.16) (idoe)(R)=1.
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Applying S to the first tensor argument of (4.1.12), multiplying the first two
arguments and using (4.1.15), one obtains

(4.1.17) (S® idR=R".
Similarly,

(4.1.18) (ideS)yR™*'=R.
Together, eqs. (4.1.17) and (4.1.18) imply

(4.1.19) (S©S)R=R.

3. Some properties of the element u

An immediate consequence of (4.1.19) is
(4.1.20) v=>5(u) .
Let R"! =c®d. Wehavel = (id®S)(RR 1) = (id® S)(ac@bd) = ac® S(d)S(b).
Using (4.1.18), one can rewrite it in the form
(4.1.21) ada@bS') =1,

where the prime means another copy, the full version of a’'a ® bS(b') is 3, ; a;a; @
b;S(b;). Multiplying the tensor terms of (4.1.21) in the inverse order, we get bua =
1, or, by (4.1.7), bS?*(a)u = 1. On the other hand, ubS?(a) = S?(b)uS?(a), which,
by (4.1.19), equals bua = 1. Thus, the element u is invertible,

(4.1.22) ut =0b5%a) .

Exercise. Prove that the element u is invertible in the general almost cocommuta-
tive setting (i.e., without assuming the quasi-triangularity).

Using the invertibility of u, one can rewrite (4.1.7) in the form
(4.1.23) S%(x) = uaut .
In particular, the antipode S is invertible (since S? is invertible). Note that in
the quasitriangular situation, eqs. (4.1.8), (4.1.9) and (4.1.10) follow from (4.1.7)

because of (4.1.20) and the invertibility of S.
For x = u, eq. (4.1.23) gives

(4.1.24) S%(u) =u .
For x = S(u), eq. (4.1.7) gives S®(u)u = uS(u), which, in view of (4.1.24), implies
(4.1.25) uS(u) = S(u)u .

4. Coproduct of u

From quasi-triangularity properties (4.1.12) and (4.1.13) it follows that

(4.1.26) (A @A)(R) =Ri14R2aR13R23 ,
or
(4.1.27) a) @ ag) @ b(l) ® b(z) =ad”" @dd" @bV b,

where, as usual, primes denote different copies.
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Rewriting the Yang-Baxter equation (4.1.14) in the form
R2_31R12R13 = R13R12R2_31
and using (4.1.17), we obtain
(4.1.28) a'd" @ S(a)b @bb" =d"a @b'S(a) @b .
Now

Au) = S(b)an) @ Sba)ae =" SOY) @ aa” © SO d"

— S(bl)uall ® S(bl!bl!l)alaﬂl (4é7) S(bI)SZ(aH)u ® S(blibl”)alalﬂ

(4.1.28)

— S(S(all)bl)u ® S(bliblii)alalﬂ S(bls(all))u ® S(blllbll)alllal

(4.1.29)

= $2(a")S (B )u @ SO ua’ “E (@SB @ bua

(4.1.17)

RS @ ud “ED RSO S2(d)u

( (

4L17) RIRG - uou.

A number over refers to an equation which is used in the corresponding equality.
Denote the element Ro1R € A ® A by ¢, ¢ = Ra1R. We obtained

(4.1.30) Aw)=¢ ' uou.

Obviously, pA(x) = A(x)¢ for any x € A. The element ¢ plays in important
role in the theory of quasi-triangular Hopf algebras; a map from A* (a dual Hopf
algebra) to A, f — (¢, f)2 (the pairing with the second argument of ¢) is called a
factorization map. The algebra A is called factorizable if the factorization map is
not degenerate (and A is called triangular if ¢ = 1).

For x = u, eq. (4.1.4) gives (using (4.1.30))

(4.1.31) R uu=u®@u-R

(note that this equality follows from eqs. (4.1.23) and (4.1.19) as well).
Using now that A(S(x)) = (S ® S)A'(z) for any x, one obtains

(4.1.32) A(S(u)) = ¢~ S(u) @ S(u) .

Therefore, the element g = uS(u)~! is group-like, A(g) = g ® g; the fourth power
of the antipode is given by the conjugation by g, S*(x) = gwzg™'.

For the central element uS(u) we have A(uS(u)) = ¢~ 2 - uS(u) ® uS(u). If
there exists a central element p € A such that p? = uS(u) and A(p) = ¢~ p@ p,
one says that A is a ribbon Hopf algebra; the element p is then called the ribbon

element.

P R e S(a")u

w_"

Ezercise. Show that e(p) =1, S(p) =pand R-p@p=p@p-R.

4.1.2. Matriz picture. Let t be a representation of A in a vector space V. The
numerical R-matrix is
(4.1.33) R=(t®t)(R)

or, in some basis of V, R}CJ, = t(a)};t(b){. As usual, P will denote the permutation
matrix.
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Eq. (4.1.21) produces the following matrix equation
(4.1.34) Ry wel = 5307
where ¥ = (t @ t)(a @ S(b)), ¥Y, = t(a)it(S(D))].

Thus for R = PR, R% = R¢4, and ¥ = P¥, ¥%% = ¥, we have
(4.1.35) RYGWIS = 656
One can rewrite it without indices as
(4.1.36) tra(RiaWa3) = Py3 .

We could have used instead of (4.1.21) an equivalent relation

(4.1.18)

1=({d® S)(R™'R) = (id ® S)(ca @ db) = ca @ S(b)S(d) =" d'a® S(b)b’
to obtain in the matrix form
(4.1.37) tra(U1aRoz) = Prs

Definition. Given an operator R, a solution of eq, (4.1.36) (respectively, eq.
(4.1.37)) is called a right (respectively, left) skew inverse of R. The operator R is
called skew-invertible if it has left and right skew inverses.

We are concerned only with a finite-dimensional case, in which the relations
(4.1.36) and (4.1.37) are equivalent: (A@B)il} = Af,tsBé? is an associative product
on the space of tensors with two upper and two lower indices, the permutation
P =6;67 is a unit element for the operation ® and eq. (4.1.36) Ecorrespondingly,
(4.1.37)) defines W as the right (correspondingly, left) inverse of R with respect to
®. In a finite-dimensional algebra left and right inverses (when one of them exists)
coincide.

This product reflects a product® («® ) ® (y®0§) = ya® 36 defined for elements
of the tensor square of an arbitrary algebra: for z,y € A® A and z = z © y let
X = (tot)(x), Y = (t@t)(y) and Z = (t®t)(z) be their images for the representation
t. Then Z;, = XVt or Z = XOY.

Let Q = t(u) be the image of the element u, Q5 = t(S(b))}t(a); = ¥, or

A

(4.1.38) Q1 = tra(Pys) .

Similarly, for Q = t(S(u)) we have

(4.1.39) Qs = tr(F¥3) .

Thus,

(4.1.40) tro(R12Q2) =11 and  tri(Q1Ryp) =1, ,

where [ stands for the identity operator in a corresponding space.

If the representation ¢ is irreducible, the central element w.S(u) takes a constant
value, the square of the value of the ribbon element. Thus, for an irreducible
representation, the product QQ is proportional to unity.

3More generally, for an element pt = 1 ®. .. ptn, € A®™ and an element £ = a®f € AR A one
defines p®&p == P1®. . . Qaur®... QU fR...Qup and & O = P11 Q. . .QUELAR. . . QLU K. . . Qlin;
then there are rules like (z12y13) ® 223 = (y13223) ® T12, T12C13T23 = T13 O (T12223) etc.
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Ezercise. Show that the standard R-matrix (4.0.1) is skew-invertible with

(4.1.41) WG = 0300 — (¢ — a7 1)O(d — o)g* 5ty
Show that
(4.1.42) Qp = ¢ Ny and Q= ¢,

so the value of the square of the ribbon element is ¢~ 2.

We now adopt another point of view and forget that there was a quasi-triangular
Hopf algebra behind. We shall leave, as a trace of quasi-triangularity, only the
assumption that the numerical matrix Ris skew-invertible, and derive, purely in
the matrix language, some consequences (for W) of the Yang-Baxter equation.

Below we constantly use the following simple fact:

(4143) tI‘l (Plg) = [2 -

Multiplying the Yang-Baxter equation R12R23R12 = R23R12R23 from the left
by \i/al, from the right by \ilgb (a and b should be understood as numbers of some
copies of the space V'), taking traces in the spaces 1 and 3 and using (4.1.36) and
(4.1.37), we obtain (after relabeling spaces - we do it in order to avoid a redundancy
of unnecessary symbols; the result is formulated for the spaces with numbers 1, 2
and 3)

(4144) tro(@10R02R03)P23 = P12 tro(RloRQO\i/og) .

FEzercise. The Yang Baxter equation implies that R12R23R12 = R23R12R23 and
R12R23R12 = R23R12R23 for an arbitrary integer n. Show that

(4.1.45) tro(W10Ro2 R Pas = Py tro(R}y Ry Wos)
and

(4.1.46) tro(U10 R, Ros) Pas = Pra tro(Rig Ry, Wos)
Deduce from (4.1.45) and (4.1.46) that

(4.1.47) tro(U1oRIFY) = Puy tro(RIyRa0Qo)
(4.1.48) tro(T1oRy") = Pia tro(RioRY,Qo)
and then

(4.1.49) tro(QoRy™) = tro(RYS™ Qo)

Since the permutation matrix P squares to the identity, we can rewrite (4.1.44)
as

(4150) P12 tro(‘i’10R02R03) = tI‘o(RloRzo‘i’03)P23 .

Multiplying (4.1.50) from the left by B, from the right by Py, taking traces in
the spaces 1 and 3 and using (4.1.36) and (4.1.37), we obtain

(4.1.51) troq (‘i’a1P12‘i’10R02P0b) = tr03(Pa0R20‘i]03P23\i/3b) .

This equation can be simplified. The expression under the trace in the l.h.s. can
be rewritten as \I/a1P12\I’10R02P0b = \I/alplgpob\plebQ. Now the trace in the sSpace
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0 can be taken (by (4.1.43)), so the Lh.s. of (4.1.51) is try(¥ay Pia®¥1,Rps). We
have

tr (Woy PraW 1y Ryn) = try(Pa1 PraWis) Ryo
= trl(Pu‘i’az‘i’lb) Ry = tr (Plz‘i’lb‘i’az) Ry

(4.1.52) . o . L
tr1(ProWip) Yoo Rpo = tr1 (Vo Pro) Yao Ry

= U Uun Ry .

In a similar way one simplifies the r.h.s. of (4.1.51) and obtains (after relabeling
spaces)

(4.1.53) UosWipRay = Ry W30y .

Assume that an operator B has a left skew inverse A, tro(Aj2B23) = P13 (or
A®B = P). Then for any operator X;, which acts as the identity in the space 2,
we have

tro(A19X1Bo1) = troa(Ai12X1PioB21)
(4.1.54) = troz(A12X1B20P1o) = troz(A12B20X1 Pro)

= tro(Plolelo) = tI‘(X)[l ,

where I; is the identity operator in the second space.
Therefore, taking trs of (4.1.53), one obtains

(4.1.55) Ry1Qx012 = Qi1 ;
similarly, taking try; of (4.1.53), one obtains
(4.1.56) U15Q1 R = 1Q- .

Here Q and Q are the operators defined in (4.1.38) and (4.1.39).
On the other hand, one can rewrite eq. (4.1.44) as Ps3 tro(¥10Ro3R02) =
tro(RooR10Wo3) P12 or

(4157) tro(\ill()R():gR()g)Plg = P23 tro(Rg()RlO\ifog) .

FExercises.

1. Multiply (4.1.57) from the left by W,y, from the right by Ws,;, take traces in the
spaces 1 and 3 and obtain

(4.1.58) U1oWa3Roy = RaoWinWog .

2. Assume that an operator B has a left skew inverse A, tro(Aj2Bas) = Pi3. Show,
similarly to (4.1.54) that

(4159) tI‘g(AnglBlg) = tI‘(X)Il .

3. Apply try or trs to eq. (4.1.58) and deduce that
(4.1.60) U15Q2Ro1 = Q112
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and

(4.1.61) Ro1Q1¥1> = QoI .

4. Letp=a® S(b) € A® A (R =a®b is the universal R-matrix). Show that
(4.1.62) Raostpi2t13 = t¢i3P12Ros

(4.1.63) Rizthesthris = P1323Ri2 .

Show that these equalities induce, on the level of a representation, equalities (4.1.53)
and (4.1.58) respectively.

5. What are Hopf-algebraic counterparts of eqs. (4.1.55), (4.1.56), (4.1.60) and
(4.1.61)?

Write equations (4.1.55), (4.1.56), (4.1.60) and (4.1.61) in the form

A A~

(4.1.64) Q01 = Ry'Qu,
(4.1.65) V@i = QuRy!,
(4.1.66) U,Q: = QuRy',
(4.1.67) il = Ry'Q>.

A compatibility of these equations provides new relations?.
Comparing tr; of eqs. (4.1.64) and (4.1.66):

(4.1.68) Q2Q2 = try(Ry' Q1) and  Q2Qy = tri(QiRy)
and using the cyclic property of trace to move @1, we conclude that
(4.1.69) QQ=0Q .

This is a matrix counterpart of eq. (4.1.25).
Using (4.1.64)-(4.1.67), we can express in two different ways combinations

Q2915Q1, Q2%15Q2, Q2Q1F 19, U15Q1Q2, Q1712Q, and Q,¥5Q,. This results in

(4.1.70) Rp'Q1Q1 = Q:Q:2Ry,
(4.1.71) Ry'Q1Q: = QiQaRy)!',
(4.1.72) QR Q1 = QuRy' Qs
(4.1.73) Q2R5'Q2 = QRy'Qy
(4.1.74) Ryl 1Q2 = Q1QaRy),
(4.1.75) Ry'Q2Q: = QiQiRy,

4Egs. (4.1.53) and (4.1.58) also have a nontrivial compatibility relation: R2; commutes with
Wpg Wi, Was.
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Egs. (4.1.71) and (4.1.74) reflect the fact that for a quasi-triangular Hopf algebra
A, elements © ® u and S(u) ® S(u) commute with R (see eq. (4.1.31)).

It is interesting to compare eqs. (4.1.70) and (4.1.75) in the Hecke case, when
the R-matrix satisfies a quadratic equation R2 = AR + 1 with A # 0. Rewriting
eq. (4.1.75) as R21Q1Q~1 = Q2Q2R21 (we used that @ commutes with Q) and
subtracting from (4.1.70) we obtain

(4.1.76) QQ = const .

So, even if a representation ¢ is not irreducible but the R-matrix is of Hecke type,
the value of the square of the ribbon element on all subrepresentations of ¢ is the
same.

If A\ =0 (i.e. Ristriangular, R2 = 1), eq. (4.1.68) implies immediately that
QQ=1.

Ezercise. Suppose that operators Q and Q are invertible. Show, without taking
skew inverses, that eqs. (4.1.72) and (4.1.73) follow from eqs. (4.1.70), (4.1.71),
(4.1.74) and (4.1.75).

Use (4.1.48) (or multiply (4.1.37) from the left by @3 and use (4.1.64) ) to
obtain

(4.1.77) trz(R12R3_21Q2) =Q3P3 .

Therefore, if @ is invertible then R~! has a skew inverse é, élg = Q1R21Q2_1.

On the other hand, assume that R~ has a skew inverse =. Multiply (4.1.77)
by Zo3 and take trs to obtain tro(ém)Ql =1.

Therefore, @ is invertible iff R~ has a skew inverse. Similarly, Q is invertible
iff B! has a skew inverse.

It follows then that Q is invertible iff Q is invertible.

There is also an implication: @ is invertible = ¥ is invertible (it follows im-
mediately from, for example, (4.1.64).

Assuming that the operator ¥ is invertible, one can rewrite the Yang-Baxter
equation entirely in terms of ¥. To this end, rewrite eq. (4.1.53) in the form

(4178) @12]%32\1/1_21 = @531]%21‘1’23 .

Multiplying (4.1.78) from the left by B3, from the right by Py, taking traces in
the spaces 1 and 3 and using (4.1.36) and (4.1.37), we obtain

(4179) P12 tro(\i/()l\i’o_;\ifog) = tro(\ifl()\i/;ol\i/go)ng .

Note that on the way from the Yang-Baxter to eq. (4.1.79) we were making
only reversible transformations, so eq. (4.1.79) is equivalent (assuming the skew-
invertibility of \i/) to the original Yang-Baxter equation.

We conclude by a remark that from the Hopf-algebraic point of view the in-
vertibility of ¥ is natural. The element 1) = a ® S(b) € A® A has an inverse,

(4.1.80) P l=a®S*0b) .

Also, the element R~! has a (left and right) skew-inverse ¢ (that is, the inverse
with respect to the multiplication ®),

(4.1.81) £E=8*a)@b.
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From the Hopf-algebraic perspective the matrix identities which we derived are
quite transparent. However, for the construction of orthogonal and symplectic R-
matrices one needs the matrix form of the identities, so it is important to understand
how much one can derive using only matrices.

FEzxercises.

1. Verify (4.1.80) and (4.1.81); show that

(4.1.82) Ri2&138es = &23&13Raz
(4.1.83) Rasz&is&iz = &12&13Ras
(4.1.84) Ras&iztas = v23&i2Ras,
(4.1.85) Riz€astprz = Y1263 Ras -

2. What are Hopf-algebraic counterparts of eqs. (4.1.44) and (4.1.79)?

4.2. Ice R-matrices. The standard R-matrix (4.0.1) has two properties: it
is of Hecke type (that is, it has two eigenvalues) and it satisfies the so-called “ice”
condition which means that R} can be different from zero only if the pair of the
upper indices {i,j} is a permutation of the pair of the lower ones, {i,7} = {k,[} or
{i,7} = {l, k}. Here we shall explain that these two properties (Hecke and ice) are
not independent; we shall introduce the notion of indecomposable ice R-matrix and
demonstrate that such R-matrices satisfy the Hecke condition®. Ideologically, this
shows that the search of ice solutions of equations similar to the Yang-Baxter equa-
tion is justified only in the Hecke case (and then one imposes the Hecke condition
first, as it is done in [31] for the dynamical Yang-Baxter equation).

Let RY) = a;;0/0) + ;0507 be an ice matrix. We fix b;; = 0 for uniqueness. Let
also A; = Qg4

We suppose that the matrix R is invertible and skew-invertible. It follows then
(an easy exercise) that a; # 0 and a;; # 0 for all ¢ and j.

Assume that R satisfies the Yang-Baxter equation, Y7 = 0, where Y%/ =
(R12R23R12 - R23R12R23)f£€c- o

When two indices among {i, j, k} are different, the equation Y;fj = 0 gives
(here i # j):

(4.2.1) ai;bijbji =0,
(4.2.2) bij(af — aibij — aja;;) =0,
(4.2.3) bij(aF — a;bi; — aijaz:) =0 .

5The opposite is not true: there are many Hecke R-matrices which cannot be brought to an
ice form by a change of a basis.
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For all three indices {3, j, k} different, i # j # k # 4, equations are

(4.2.4) (aijaj,- — ajkakj)bik + bijbjk(bij — bjk) =0,
(4.2.5) ajk (bijbik — bijbjrx — birbi;) =0,
(4.2.6) a;j (bjkbik — bijbjk — bjibik) =0.

Let T" be a graph with vertices . We draw an oriented edge z-j from the vertex ¢ to
the vertex j if the number b;; is not zero.

Since a;; # 0, eq. (4.2.1) shows that two vertices can be joined by not more
that one edge.

When the graph I is not connected, equations, corresponding to different con-
nected components, do not notice each other. So, one has to study only the situation
when the graph I is connected.

Definition. We say that the ice R-matrix is indecomposable if its graph [ is
connected.

Proposition. Let R be an invertible and skew-invertible solution of the Yang-
Baxter equation. Assume that R satisfies the ice condition and is indecomposable.
Then R is of Hecke type (that is, it satisfies a quadratic equation).

Proof. Since a;; # 0 for all ¢ and j, eqs. (4.2.5) and (4.2.6) imply

(4.2.7) bijbik — bijbjk — bikbk]' =0,

(4.2.8) bjkbik — bijb]‘k — bjibik =0.

(i) Suppose that the graph I’ has edges ij and jk. Then I has an edge ik, as on

the Figure:

o

This is an immediate consequence of eq. (4.2.7): by; = 0 because, by assump-
tion, bj, # 0; therefore, b;;(bi, — bjr) = 0 but, by assumption, b;; # 0.

(¢i) Suppose that the graph I" has edges z} and k—f] Then I' has either an edge ik
or an edge k_%, as on the Figures:

i.—\—f.—j.k . .i<_\?.)_/_.k

J
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To prove this, interchange j and k, j < k, in eq. (4.2.8):
(4.2.9) bkjbij — bikbk]' — bkibij =0

and note that either b;; or by; is 0.
(i41) Situations when I’ has edges ji and kj or edges ji and jk are considered
similarly.

We conclude:

(a) If T contains two sides of a triangle, it contains the third side. This immediately
implies (since I" is connected) that T is a full graph, that is, every two vertices are
joined. In other words, for each pair (i,7) at least one number, b;; or b;;, is not

Zero, {bij, bji} 75 {0, 0}

(b) An oriented triangle of T" is never a cycle (see Figures above). By (a), I is the
full graph; an easy exercise shows then that I" has no cycles. Therefore, orientations
of edges induce an order on the set of vertices and we can relabel vertices in such
a way that I" has an edge z-j € I if and only if ¢ < 5. In other words, b;; # 0 if and
only if ¢ < 7.

Consider a triangle with vertices ¢, j and k, ¢ < j < k. Then the oriented edges
are z'_j', ik and j7c. We have b;; = by; = 0; eq. (4.2.7) shows that by, = bjx; eq.
(4.2.8) shows that b;, = b;;. Therefore, for all ¢ and j with ¢ < j the parameters
b;; take the same value, say b, b;; = b.

At this stage, eqs. (4.2.1), (4.2.5) and (4.2.6) are solved and the R-matrix has
the form

(4.2.10) R}, = a;;06] + bO(l — k)8;.07 .

(tv) Eq. (4.2.4) simplifies now; it implies that all the products a;;a;; take the same
value. Denote this value by a, a;;a;; = a for all ¢ and j with ¢ # j.

(v) The remaining two equations, (4.2.2) and (4.2.3) imply that for all ¢ the pa-
rameters a; satisfy a quadratic equation

(4.2.11) a? —ba;—a=0.

Now it is immediate to verify that the matrix R satisfies the same quadratic equation
(4.2.12) R*=a+bR .

The proof of the Proposition is finished. O

When 4a + b = 0, the matrix R has a nontrivial jordanian structure.

Assume that eq. t>—bt—a = 0 has two different roots y; and po. In this case the
matrix R is diagonalizable and has two projectors. Let m (correspondingly n) be
the number of those a; which are equal to u; (correspondingly p2). Then the ranks

1 -1 -1 1
m(m + )+n(n )+mn and m(m )+n(n2+ )—l—mn.

of the projectors are

These are exactly the ranks of the symmetrizer and the antisymmetrizer for the
superspace of dimension m|n. The R—matrices, constructed in the Proposition
above, are called the multiparametric R-matrices for the quantum supergroups
GL,(m|n); we have shown that with the ice condition there are essentially no more
solutions.
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4.3. Construction of orthogonal and symplectic R-matrices. Let V be
a vector space and V* its dual. The natural pairing between V' and V* can be used
to define either a symmetric or antisymmetric scalar product on the space V @& V™.
This scalar product is invariant under the natural action of the group GL(V) of
general linear transformations of the space V. Therefore, GL(V) gets imbedded
into a corresponding orthogonal or symplectic group.

Such logic goes very well for quantum spaces also. We shall model in this way
quantum spaces for orthogonal and symplectic quantum groups.

1. Yang-Baxter equation and ordering

A quantum space, being defined by only a part of projectors of an R-matrix,
does not carry the whole information about the R-matrix itself. It is not difficult to
find a quantum space which can be defined by several different R-matrices (Ezercise:
give an example).

However, there is a convenient way to encode an R-matrix in a framework
of quantum spaces. It requires several copies of a quantum space. Let x’ be
coordinates of some quantum space. We shall not be interested in commutation
relations between the elements x?; rather, we introduce copies, say z(1), z(2)* ete,
and define commutation relations between different copies to be

(4.3.1) a(M)'z(N) = Ry, o(N)*z(M)'

for M < N. The relations (4.3.1) allow to reorder any multilinear combination
(M) x(M)™ ... x(M,)" with pairwise distinct labels My, Ms, ..., M, in the de-
scending (with respect to the labels My, Mo, ..., M,) order.

There are two ways to reorder a monomial z(My )"z (Ms)"2x(Ms)®*, with M; <
My < M3, in a descending way, starting from x(M;)"x(Ms)™ or z(Ms)™2x(Msz)'.
The equality of two resulting ordered expressions is a compatibility condition. As-
sume that monomials x(M;)"x(My)™2 ... x(M,), where My > My > --+ > M,,
are linearly independent. Then the compatibility condition is precisely equivalent
to the Yang-Baxter equation for the matrix R. This interpretation of the Yang-
Baxter equation is very useful especially in cases when the index ¢ of coordinates
2" is composite (like, for instance, a pair of indices {«, 8} if one wants to view the
elements 773" of the quantum matrix as coordinates of a quantum space).

In the sequel, to avoid the cumbersome notation x(M)¢, we shall write iy’ =
]A%le y*2! instead of (4.3.1).

2. Assumptions

Our starting point is a solution R of the Yang-Baxter equation. We impose
several conditions:

A1l. R is invertible.

A2. R is skew-invertible with a skew inverse W.

A3. an operator Q defined by (4.1.38) is invertible (thus, Q defined by (4.1.39)
is invertible as well).

As any solution of the Yang-Baxter equation, R defines a quantum group; in
this subsection it will be enough to understand it as an algebra generated by T
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and (T~1')! with relations

(4.3.2) RixTW Ty = Ty T Rys
and
(4.3.3) T '=T1'T=1,

or THT Y, = (T-1)iT] = 6.

We need one more assumption. The relations ]:212T1T2 = T1T2]:212 imply that
Wi T Ty = T1To,Wio for any polynomial W in R, W =3, caRO‘. We shall say
that R is rigid if every W for which W1,T1To = T1ToWi5 is a polynomial in R.
And this is our assumption:

Ad. Ris rigid.
3. Auxiliary formulas

Here are some immediate consequences from (4.3.2) and (4.3.3). First,

(4.3.4) T R, Ty = ToRppTyt,

(4.3.5) R = TRy, .

Multiplying (4.3.4) by W,; from the left, by Ws, from the right and taking traces
in the spaces 1 and 2, we obtain (as usual, after relabeling spaces)

(436) tro(‘ifloTO_IP02To) = tI‘o(ToPloTo_l‘ifoz) .

Attention: one cannot move Ty cyclically under the trp in (4.3.6) because the
matrix elements of Ty do not commute with matrix elements of other operators in
the expression.

Tracing (4.3.6) in the spaces 1 or 2 gives

(4.3.7) tro(ToProTy ' Qo)

Ql )

Q1 .

Sometimes it is more transparent to write eq. (4.3.6), as well as eqs. (4.3.7) and
(4.3.8), in indices:

(4.3.8) tro(QoTy ' PorTo)

(4.3.9) Tu (T T = T3(T ey
and
(4.3.10) THTT'QL=Q)  and  (QTT)TI =QI.

Operators Q and Q are invertible, so we can rewrite (4.3.10) in terms of an as-
sociative operation (X oY) := X¢Y (or X oY = (X'Y")", where t means the
transposition) as

(4.3.11) To(@Q'T7'Q)=I and (QT'Q Yol =1,

where I is the identity (with respect to the usual multiplication as well as to the
multiplication o). Left and right inverses coincide, so

(4.3.12) TQQ = QQT .
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It follows from (4.3.11) that 7! also has an inverse with respect to o:
(4.3.13) (QTQ™ M oT ' =1.

Note that (4.3.6) can be rewritten as (U575 1) o Ty = T} o (T7 *¥5) or
(4.3.14) TyloWoly=TioWoT !,

since, if the matrix elements of an operator X commute with the matrix elements
of an operator Y then X oY =Y X.

4. Covariance

As explained in the part 1 of this subsection, the operator R provides a consis-
tent set of relations

(4.3.15) rly! = ]A%gykxl

The relations (4.3.15) are covariant under the following (co)action of the quan-
tum group (generators T]? commute with z?):

(4.3.16) xt = Tial

and the same for y°.

We are going to build a quantum analog of the direct sum V & V*, so we need,
in addition to z?, another set of generators, x;. To mimic that the generators x;
describe a dual space, we require their transformation law to be

(4.3.17) z; — x;(T71)]

(the same for y;).

A little later we will restrict ourselves to the case when R has only two eigen-
values. But already now we can partly analyze possible ordering relations. We have
two “multiplets”, #* = {2'} and z, = {;}. For the moment, let S € End(V @ V)
be an arbitrary operator. Let us say that a matrix element Ss‘f is “ice” if either
a=vand =46 or « =6 and B = ~. If all non-vanishing matrix elements of S are
ice then we have an ice matrix in the sense of the subsection 4.2. We shall apply
the same terminology to the whole multiplets * and x,: if  belongs to a multiplet
A (A can be ® or o) and y belongs to a multiplet B then the parts in the ordered
expression for xy, which contain the same multiplets will be called “ice”. We shall
see that the ice part of ordering relations is strongly governed by the covariance.

We fix the ordering relations for z'y’ to be as in (4.3.15).

In the ordered expression for z;y; the ice terms are ypz,

(4318) Ty = Efjlyk,xl +...,

where dots stand for terms with other structures of indices. Then the covariance un-
der the transformations (4.3.17) requires Ty ' Ty ' By = Ex Ty Tyt so, by rigidity,
E15 is a polynomial in Rm, By = e(Rm).

In the ordered expression for z'y; we may have terms like y,z! and y*z;,

(4.3.19) Tly; = A;’Z’ykxl + B;Ikyk’:cl +...,
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dots stand for terms with other structures of indices. Then the covariance under
the transformations (4.3.16) and (4.3.17) requires

(4.3.20) Ty AT = T, AT,

(4321) T1B12T171 = tro(BloT()POQTOil) -
Similarly, if, in the ordered expression for z;y’, we have terms like y*z; and yia!,
(4.3.22) ziy) = Cféykxl + D{lkyk:cl +...,

where dots stand for terms with other structures of indices, then the covariance
under the transformations (4.3.16) and (4.3.17) requires

(4323) tI‘o(TO_IP()lTQCoz) = tI'o(CloTQPQQTO_l) y

(4324) tro(Toilp()lToDog) - T271D12T2 .

Due to rigidity of R, it follows from eq. (4.3.20) that A;5 is a polynomial in
Ry, Arp = G(Rzl)- .

Multiply (4.3.21) by R, from the right and take trp. The Lh.s. becomes
TlBlanl, where Bla = tI‘Q(BlgRELQ). The r.h.s. becomes

trog (B10T0P02T0_1Ra2) = troz (B10T0P02Ra2T0_1)

tro> (Poz BioTo Ruo Ty ') 2 troa (BiaTaRaa Ty Poy)

(4.3.25) .
= t1”02(Bl2T2Ra2PozT271) o trZ(Bl2T2Ra2T271)

(4-3:.4) tI‘Q(BlgTLL_IRaQTE) = Ta_lélaTa .

We used: the cyclic property of the trace to move Ppa, it is indicated by (¢) over
“=": we took trq (it is indicated over “="); and we used eq. (4.3.4).

Therefore, By, is, by rigidity of R, a polynomial in Ral, tr2(312Ra2) = b(f%al)
with some polynomial b. Multiplying by @y, from the left and taking tr,, we find

(4.3.26) Bis = tro(Waob(Ro1)) .

Similarly, multiplying (4.3.24) by R, from the left and taking tr;, we find
(4.3.27) Ty 'DysTy = T, DTt
where Dy2 = trg (RlaDlz). Therefore, D,» is a polynomial in Roy. Thus,
(4.3.28) D1y = tro(d(Ry0)¥or)

for some polynomial d. R R
Finally, multiply eq. (4.3.23) from the left by Ri,, from the right by R, and
take tris to obtain

(4.3.29) T.CuT,t =T, 'CauTy
where C,, = tI‘12(R1a012Rb2). Therefore, C,y, is a polynomial in Ry.. Thus,
(4.3.30) Ciz = trog(Wasc(Rso)¥or)

for some polynomial c.



USES OF QUANTUM SPACES 63
5. Ansatz
We keep in mind that the multiplets x® and x4 are associated to the group GLy.

For general IV, the only invariant tensors with four indices are the permutation and
the identity in V ® V. This motivates the following Ansatz:

(4.3.31) 2yl = Rpyta',

(4.3.32) ay; = Ayl + Byt
(4.3.33) vy’ = ChyFa;+ Difypal
(4.3.34) ziy; = By .

Here

Ay = a(Ra1) , Cia = troz(Vaze(Rs0)¥o1) , Bia = tro(Paob(Ror))

(4335) D12 = tI‘o(d(RQO)‘i’()l) y E12 = Q(Rzl)

with some polynomials a, b, ¢, d and e.

The original matrix R is a matrix of the size N2 x N2, where N is the dimension
of the space V, the range of indices of multiplets z* and z;. A solution R}/, of
the consistency conditions for the ordering relations (4.3.31)-(4.3.34) is a matrix of
a bigger size (2N2) x (2N)2, each of four indices of R runs from 1 to 2N. The
new index is the union of upper and lower indices of the original multiplets. To
remember it, we shall write, for the new index I, [ = (E) for a value of the original
index from the multiplet z* or I = (E) for a value of the original index from the
multiplet ;. In this notation, the nonzero matrix elements of R are
i

a@6) _ R R(i) G) _ g gWGE) _ Bit |

(8) ()
R(?) (6) _ il R(E) (6) _ ik f{(
OIORERN ) (
We are looking for a skew-invertible R. In the notation, as in (4.3.36), it is easy
to see that if A is zero then the matrix R/, has a zero eigenvector with respect
to the skew multiplication, that is, a quantity vk which satisfies U%REL =0:

(%)

one may take any v whose non-zero elements are only v () ; so, such R cannot

(4.3.36)

Ead

be skew invertible. In fact, this argument shows that the skew invertibility of R
requires that the operator A is invertible (with respect to the usual multiplication).

Similarly, C' must be invertible. The conditions

(4.3.37) A and C are invertible

we will use in the process of solving the Yang-Baxter equation for R.

~

6. Yang-Baxter equation for R
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As explained in the beginning of this subsection, the Yang-Baxter equation
for R we obtain by ordering in two different ways expressions z4y®2¢, where the
indices A, B and C can belong now to any of multiplets, ® or ,.

Ordering z°y®z,:

(4338) R23A21A32 == A21A32R12 9
(4.3.39)  Ry1BagA1s = Pag tro(AoaBioftso) + Pas tro(A10Do2PosBos)

(4340) R12B23R13 = tI‘()(BQ()Rl()B():g) + tI'()(P()lBOlAQ()Cog) .
Ordering °ye2z*:

Py tro(Alof?ozC'oa‘) + P12 tro(B1oBos Po2 Do2)
(4.3.41) = tro(CroRa0A03) Pas + tro(D10Do3 Poa Boz) Pas
(4.3.42)  As3DinRsy = Pia tro(RoaDosA1g) + Pia tro(Bio Aoz Po2 Doz),

(4343) 023312R23 = P> t'JI'O(]A%20B03OIO) + Py t31‘0(1)100031302‘302) :
Ordering z,y°®z°®:

(4344) 023012R23 = R12C23012 5
(4.3.45) Ri2D3C15 = Pog tro(Co2D1oRo3) + Pa3 tro(C10Bo2 Poz Dos)
(4.3.46)  Ry3DyyRos = tro(DigRo3Dos) + tro(CioAosPosDos) -

Ezercise. Verify eqs. (4.3.38)-(4.3.46).

Equations, arising from ordering 2°yeze, Toy*ze and z4yez®, can be quickly
obtained by noticing that the system (4.3.31)-(4.3.34) is invariant under a substi-
tution ® & Te, Y* < Yo, R <+ E', A & C' and B + D!, where t stands for the
transposition. We have:
for °yeze:

(4347) A12A23E12 == E23A12A23 9
(4.3.48)  Ai12Ba3Ei2 = tro(Ep3BioAo2)Pes + tro(PosBsoDo2A10) Pos

(4.3.49)  E23Bi12E13 = tro(Bo2Eo3Bio) + tro(PosBsoCo2Aio) ;
for z4y®ze:

tro(Aoz Eo2Cro) Pi2 + tro(Po2B2oDosDio)Pra
(4350) = P23 tI‘o(C()3E20A10) + P23 trO (P02D20B03B10) 5
(4351) E23D12A23 = tro(A10D03E20)P12 + tI'O(PO21)201403B10)F)12 ’

(4.3.52)  E33B12C23 = tro(CroBozEoz) Pi2 + tro(FPo2BaoCoszDio) Pe3 ;
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for T4yez*:

(4353) E12C32C21 == 032021E23 )
(4354) Ci9Ds3FEy = trO(E30DIOCO2)P23 + tro (P03D30B02010)P23 )

(4.3.55)  E13D33E13 = tro(Do2E10D30) + tro(ProD10Ao2C30) -
Finally, ordering x4yeze implies the Yang-Baxter equation for E:

(4.3.56) Er2Ea3Ers = Ess Er2Ens

7. Specifying to the Hecke case

We shall solve the system (4.3.38)-4.3.56) in the Hecke case - when the matrix
R satisfies a quadratic equation R? = AR + 1. Note that R cannot be proportional
to a constant, it would contradict the skew invertibility.

As we have seen in the subsection 4.1.2 (see eq. (4.1.76)), in the Hecke case
the product QQ is proportional to a unity, QQ = r2I (r corresponds to the ribbon
element in the quasi-triangular case). Due to the assumption A3, r # 0. Therefore,
by (4.1.68) (and (4.1.49))

(4.3.57) 1-Ate(Q) =1\ tr(Q) £0 .

Because of Hecke condition, the polynomials in (4.3.35) contain only constant
and linear terms.

8. Block triangularity

The standard R-matrix (4.0.1) has a following property:
(4.3.58) RY = it ji<kl,

where < is the lexicographic ordering (i.e., ji < kl when j < kor j =k and i <1).
This means that the matrix PR is lower triangular. N

The standard R-matrix (4.0.1) has also another triangularity property: le], =0
if 47 > [k; this means that the matrix RP is upper triangular.

For the ordering relations z'y’ = ]A%}jl, the property (4.3.58) says that the
ordered expression for 'y’ can contain only monomials which are lexicographically
not bigger than y’z?.

As a first step towards a solution of the system (4.3.38)-4.3.56) in the Hecke
case, we shall prove that the relations (4.3.31)-(4.3.34) are “block triangular”: say,
block upper triangularity means that we define an order on the set S = {*, 4} of
multiplets ® and z,, * > 7, and then the ordered expression for 27y7, I, J € S,
contains only monomials which are not bigger than y7 .

In the simple situation of eqs. (4.3.31)-(4.3.34), the block triangularity means
that either B=0o0or D =0.

To prove the block triangularity, it is enough to consider two equations, (4.3.38)
and (4.3.39). Eqn. (4.3.38) implies that A, is proportional to either Ro1 or R;ll.
We shall write it as Ajs ]:312 — €A1 I3, where € = 0 or 1. The coefficient of
proportionality is different from 0 due to (4.3.37).
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The expressions (4.3.35) for B and D reduce in the Hecke case to
(4.3.59) Bio = uhi Q2 +vhs

(4.3.60) D1y = aQ1ly + 3Py,

with some constants u, v, a and 3.
Substituting the expressions for A, B and D into (4.3.39), we obtain, after
using identities from the subsection 4.1.2, an equality

(AL —€) + av(l — el tr(Q)) — eAfr — e ap) Pasy
(4361) —|—(ﬂp, — p,(]_ — 6))\)R21Q3 + Oé,U/I"2P23R31
+BvPs3Roy — eNBul1 1Q3 =0 .

The tensors P23[17 R21Q3, P23R31, P23R21 and [1[2623, entering eqn. (4361) are
linearly independent: to see it, multiply them from the right by ¥4 and take try;
the tensors become Ps3 Q4, P5,Q3, Po3P3y, Po3Psy and I Q3Q4, which are obviously
independent. Thus, the coefficients must vanish,

Al —€) + av(l — e tr(Q)) — eABr —edau =0,
(4.3.62)
BM—M(I_G))\ZOa ap=20, ﬂ’/:()v CAﬂMZO

For € = 0, it follows from eqs. (4.3.62) that au =0, v =0 and Su+ av =0,
which implies that either B or D is zero.

For € = 1, it follows from eqs. (4.3.62) that Bu =0, av(1—X tr(Q) =0, au =0
and fr = 0; in view of (4.3.57) we conclude again that either B or D is zero.

It is enough to consider the case B = 0; another case can be reduced to it by
considering the opposite ordering (if we read (4.3.31)-(4.3.34) from the right to the
left, as instructions to order yx to the form zy).

9. Solution

With B = 0 the system (4.3.38)-4.3.56) simplifies drastically, can be fully an-
alyzed and one can write down all solutions. It is lengthy and we shall not do it
here.

It turns out that solutions which give rise to the orthogonal and symplectic
quantum groups are those for which the coefficient « in (4.3.60) is different from 0.

Proposition. Let R be a solution of the Yang-Baxter equation with R2=)\R+1.
If R satisfies assumptions A1-A4 then the ordering relations

(4.3.63) dy = RIyF!
(4.3.64) Ty; = ]%ffyzxk7
(4.3.65) gy, = k(R )yl

(4.3.66) iy = /fl\ilzzjyvxu + \yiz? + V/\Q{ykxk
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where k is an arbitrary non-zero number, provide an invertible and skew invertible
solution R of the Yang-Baxter equation when v? + \v — 1 = 0.
If R is of GLy-type then R is of SOspn type for v = —g and of Span type for
-1
v=gq ".

10. SO(2N +1)

Without going into details we shall describe the situation with the odd-dimen-
sional orthogonal groups.

One has to add a new generator z° to the multiplets * and z,. The matrix
R again turns out to be block-triangular; we will write the answer for the order
2* > 2° > z,. Relations (4.3.63), (4.3.64) and (4.3.65) are the same. Relation
(4.3.66) has to be replaced by

(4.3.67) ziy) = @Z{yvxu + \ysa? — )\QNgykxk — q_l/QAQ{yOxO .
Finally, when one of generators has an index 0, the ordering relations are
iy® = 0,
29° = %20 — "2 Ayat
(4.3.68) vy’ = i+ Ayaa®
Oy = yia® + MO,
Cboyi = yixo .

Proposition. Under the same conditions as in the Proposition above, the order-
ing relations (4.3.63)-(4.3.65), (4.3.67) and (4.3.68) provide an invertible and skew
invertible solution R of the Yang-Baxter equation.

If R is of GLy-type then R is of SOan 41 type.

Remarks. 1. For a standard R for GL, it was noted in [32], that the commuta-
tion relations between coordinates and derivatives (even or odd) can be given by
projectors of R for Sp and SO. Our propositions in this subsection generalize it to
the construction of the whole R-matrix for SO and Sp from the R-matrix for GL,
which works in all cases, not only for the standard deformation.

2. If one starts with R corresponding to a supergroup GL(M|N), the construc-
tions of the propositions from this subsection produce Yang-Baxter matrices for the
quantum supergroups of OSp type.

5. Real forms

In this subsection we explain how to classify real forms of RTT-algebras using
quantum spaces [33, 34]°.

6The description of real forms of the dual algebra for a generic ¢ is given in [35]. Our
description is more precise, it requires only that g% # 1 in SL case and ¢® # 1 in the SO and Sp
cases
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5.1. G(?neral linear quantum groups. We shall start with a standard Drin-
feld-Jimbo R matrix (4.0.1) for the quantum group GL,(N). We shall assume that
4
¢ #1

Ezercise. Show that the R-matrix (4.0.1) satisfies the Yang-Baxter equation. Show
that the spectral decomposition of R is R = ¢S — ¢ 1A (S and A are projectors,
§2 =8, A% = A) with rk§ = YT and 1k = YD,

Let x be an involution on the RTT-algebra, that is, an antilinear operation,
satisfying *(ab) = *(b) * (a) and (* @ x) o A = A o *. Then *z* form a comodule
for the SL,(N). There are two comodules of dimension N: one is generated by a?,
another one is generated by z;. So we may have two different types of conjugations,
% can map A’;‘_ to itself or to A7 .

We shall consider in some details the first possibility. So, we assume
(5.1.1) xx' = J;xj .

Since the matrix T' coacts on the vector x, we have x(Tx) = JTz; on the other
hand, *(Tx)" = =(Tj2?) = xa? * T} = «T} x a7 = «T} J]a* (we used that T}
commutes with 2*). It follows then that

(5.1.2) «T =JTJ .
Conjugate now the relation RI'Ts = TV THR:
E Ty T = T *Tlﬁ
(here is the complex conjugate), or
Ry Ty #Ty = Ty + Ty Ry .
Substituting =7 from (5.1.2) we find
(5.1.3) T, =119 ,

where & = J7 L5 Ryt Jy Jo.

Proposition. Let R be the standard SLy(N) R-matrix (4.0.1). If an operator
® = &y, satisfies an equality

(5.1.4) [, T1T>] =0,
then @ is a polynomial in R.

Sketch of the proof. Take a 1-dimensional representation for T, Tji — ,ujéj with
some commuting variables p;. Then it follows from (5.1.4) that ® is of “ice” type,
that is, <I>}€], can be different from zero only if i =k, j=lort =1, j =k.

Take now another representation, (7}); = R;Lg Writing (5.1.4) in this repre-
sentation with an ice ®, one arrives at the statement of the proposition. a

R satisfies the Yang-Baxter equation (YBe) = Ry satisfies YBe = Egl satisfies

YBe = & = J; ' J; ' Ry Jy J satisfies YBe.
The following proposition is easy:
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Proposition. A non-constant polynomial in R which satisfies YBe is either aR or
aR™! for some constant a.

The operator Ry = PRP (P is the permutation) has the same spectrum as R.

Therefore, the spectrum of ® = J1—1J2—1R21 J1J> contains an eigenvalue g with the

N(NTJFU and the eigenvalue (—g~!) with the multiplicity w

According to the Proposition, we have to consider two possibilities, ® = aR or
®=aR!

Comparing spectra, we find that if ® = aR then g=aqgand —g ' = —agq™".
Therefore, a? =1 and § = +q.

Similarly, if & = aR™! then § = aq™
and § = +q~ .

We have four cases. Let us see which equations we have to solve. For example,

multiplicity

1 1

and —¢ ! = —aq. Therefore, a® = 1

for § = ¢ we have ® = R; for ¢ real, R = R and we have therefore equations
Ro1JiJs = JiJoR. This is a system of quadratic equations and it turns out that
for the R-matrix (4.0.1) one can completely solve the system. One can solve the
corresponding system in the other three cases as well.

For the other type of conjugation (when * of a quantum vector is a quantum
covector), the operator J has two lower indices, xz; = J;;z7. Again at the end one
arrives at a system of quadratic equations for 7 which admits a complete solution.

The last step is to impose the condition that the square of the conjugation is
the identity, *x = Id; this produces a further restriction on the operator J.

The final result is presented below. We use a notation Q(cy,...,cy) for an

C1
C2
antidiagonal matrix
CN-1
CN

In the formulation of the theorem below, a letter “a” appears sometimes in the
name of a real form. The letter “a” stands for “alternative”; it signifies that there
are several real forms having the same classical limit.

Theorem. (i) There are no real forms in the nonquasiclassical cases g = —¢*'; all
real forms admit the classical limit.

(it) For § = ¢q~! the real forms are:
SL,(N,R); here J = 1.
SUZ(N = [N/2],[N/2]); i = 65"
(1i1) For § = ¢ the real forms are:
a .71 sN+1
SLG(N,R); J; = 6,17
SU;(2n), N =2n; J = antidiag(1,...,1,-1,...,-1).
—_——— ———
n times =« times
SUG(p1y -y in); Jij = pidy, pi = £1.
In the last case the sequences {u;} and {—p;} produce equivalent real forms.

What is more interesting is that the sequences {u;} and {u}} where p) = p;r, where
i' = N + 1 — i produce equivalent real forms as well. An explanation: classically,
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there is an outer automorphism 7' — (T !)! of the algebra, corresponding to the
symmetry T, of the Dynkin diagram A;. For the quantum 7', we have (Tfl)};T;C =
85 = TE(T=")% but (T~")FT} # 6. The correct version is” (T~")F(QTQ™")], = ¢
where the numerical matrix @ is defined by (4.1.38) (we remind that the standard
R-matrix (4.0.1) is skew-invertible, see (4.1.41)). It is, up to a factor, the same Q
which cyclically rotated the E-tensor.

Set 7(T}) = (T™)7.
Proposition. The map 7 preserves the RTT-relations.

The proof follows from the fact that ]%Ql Q2= Q Qg]% and ]:21,;,],’, = ]:2{,; for the
standard R. Moreover, 7((T~')]) = (Q_l)ﬁrquQ}%. The effect of 7 on the sequence
{ni} is exactly {pi} = {p;}.

5.2. Orthogonal and symplectic quantum groups. I shall very shortly
list the real forms for orthogonal and symplectic quantum groups.

The answer below is written in the basis, in which the ordering relations for
the quantum planes have the form as in (4.3.63)-(4.3.66), with « = 1, for SO,(2N)
and Sp,(2N), or (4.3.63)-(4.3.65) and (4.3.67)-(4.3.68) for SO,(2N + 1).

1

Let B = : (the nondiagonal 2 by 2 block is in

1
the middle); in the formulation of the theorem below, a letter “b” in the name of
a real form signifies that the matrix J involves the matrix B.

Theorem. (i) Again, all real forms admit the classical limit.

(i1) For § = ¢! the real forms are:
SO([N/2], N = [N/2]); J =1
SOg(n+1,n— 1), N =2n; J=B.
Spy(N,R); J = 1.

(1i7) For § = ¢ the real forms are (u; = £1):
SO, (p1y. - spn); J =Qu1,. .., py) with J* = J.
SOy (u1s s un); J = BQUpas - i) With i = pi;.
SO; (1, un); J = Qpa, .., un) with Jt=—J.
USpy(prs .- ypun); J =, ..., pn) with JE = J.
Spqg(pr, . mun;R); J = Qpa, ..., py) with JE = —J.

I shall end the lectures by a comparison with the classical (Cartan) way of
classifying the real forms (see, eg. [36]).

Tsee eqs. (4.3.7), (4.3.8) and (4.3.12).
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1. One proves that there exists a unique compact real form u; denote the
corresponding *x by 7.

2. For an arbitrary real form ¢ one proves that there exists an equivalent to
it real form & such that the automorphism # = &7 is involutive, §2 = 1. For
a description of involutive automorphisms one should analyze each Cartan data
concretely.

3. The automorphism 6 acts on u; under this action, u decomposes according to
the eigenvalues of 8, u = u; Du_;. The real form corresponding to & is u; &v/—1u_;.

In the classification of real forms of quantum groups given above, these steps
become hidden because quantum spaces are more “rigid” (they admit less auto-
morphisms).
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