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�� Introduction

Quite often� a group appears as a set of symmetries of some object � a set
equipped with geometrical� algebraic or combinatorial data� The theory of quan�
tum groups enlarges the notion of symmetry� a quantum group �often� describes
�generalized symmetries� of an object� In the case of a linear �orthogonal� sym�
plectic� quantum group� this object is a linear �orthogonal� symplectic� quantum
space � an algebra with certain quadratic relations� A study of these underlying
objects� the quantum spaces� helps to understand the structure of the quantum
groups� In these lectures I will illustrate the role of the quantum spaces on two
examples� non�perturbative e�ects in the theory of Yang�Baxter operators and real
forms of quantum groups�

To talk about non�perturbative e�ects� one should explain �rst� what means
�perturbative� or �deformational�� This is the subject of the subsection ���� The
initial data for a quantum deformation of a Lie algebra L is conveniently encoded
in terms of another Lie algebra D�L�� the Drinfeld double of L� The Lie algebra
D�L� has an invariant scalar product and I have included a subsection ��� on the
structure of Lie algebras with an invariant scalar product�

For a semi�simple Lie algebra L� the most important deformations are those
which are called quasitriangular� They are classi�ed by Belavin�Drinfeld triples�
The subsection ��� contains some information about the combinatorics of the Belavin�
Drinfeld triples�

In section �� after a geometrical interpretation of the quantum deformations of
Lie groups� we introduce an algebra of functions on a quantum group� a de�nition
of GL�type quantum groups and quantum spaces is given in subsection ���� In
subsection ��� we explain how to use a di�erential calculus on a GL�type quantum
space for calculating the Poincar
e series�

Subsection ��� is devoted to ��dimensional quantum spaces� We exhibit an
unexpected appearance of Yang�Baxter operators and give an example of a non�
perturbative Yang�Baxter operator� We prove the Poincar
e�Birkho��Witt theorem
for the quantum space de�ned by this Yang�Baxter operator�

Subsection ��	 deals with e�ects speci�c to quantum groups at roots of unity�
We introduce a terminology of formatted matrix algebras over local graded rings�
which is useful in the study of non semi�simple algebras� We describe the matrix
structure of the reduced quantum enveloping algebra and the reduced function
algebra for slq����

Subsection 	�� contains a summary of the theory of quasi�triangular Hopf alge�
bras� In subsection 	�� we classify Yang�Baxter matrices� which can have non�zero
entries only at places where the pair of lower indices is a permutation of the pair
of the upper ones� Subsection 	�� gives a construction of the Yang�Baxter matrices
for orthogonal and symplectic groups from the Yang�Baxter matrices for GL�

In section � we describe a method of classi�cation of real forms of quantum
groups� The method is based on the study of the corresponding quantum spaces�

Throughout the text� a sum over repeated indices is assumed� If X � fX i
jg

and Y � fY i
j g are two operators� the indices are summed as �XY �ij � X i

kY
k
j in

their product�
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�� Lie bialgebras

A Hopf algebra H is a collection of data fH�m��� S� �g� where H is a vector
space over a ground �eld k� m � H � H � H a multiplication� � � H � H � H
a comultiplication� � � H � k is a counit and S � H � H an antipode� For a
precise formulation of various relations between these maps see e�g� ���� Let me
just remind that for a Hopf algebra H one knows how to build tensor products of
representations and it is given universally by �� the counit gives rise to a trivial
representation� the antipode is needed to build contragredient representations�

The classical examples of Hopf algebras are group algebras k�G� of �nite groups
G and universal enveloping algebras U�L� of Lie algebras L�

���� Deformation of the coproduct� Let L be a Lie algebra over C and U its
universal enveloping algebra� Denote by fXig a basis of L� The classical coproduct
�� � U � U�U is given on generators Xi by ��Xi � Xi�����Xi� The map ��

is a coassociative homomorphism �coassociativity means ���� I��� � � I������

for the maps U � U�U�U � here I is the identity map�� In this subsection we shall
study deformations of the coproduct ��� A deformation of �� is� by de�nition� a
coassociative homomorphism � � U � U � U �

��a� � ���a� � ����a� � �����a� � � � � ��������

The right hand side is a formal power series in the parameter �� which is called a
deformation parameter� The coe�cients �k�a� are elements of U � U �

Our task is to understand which deformations are �essential�� in the sense that
they cannot be removed by some rede�nition of generators� Here is the answer
modulo ���

Theorem �� Any deformation of ��� after a change of generators� takes a form
�in the �rst order in ��

�Xi � ��Xi � ��jki Xj �Xk��������

The antisymmetric tensor �jki ��jki � ��kji � is a ��cocycle with values in ��L�
� � Z��L���L�� explicitly�

N
�ab�
�ij� �  sij�

ab
s ��������

where Nab
ij �  ai��

�b
j and �ab� means antisymmetrization in indices a and b� t�ab� �

tab� tba for a tensor tab� Here  kij are the structure constants of the Lie algebra L�
�Xi� Xj � �  kijXk�

Proof� Assume that � is a deformation of the classical coproduct ��� On the
generators Xi we have

��Xi� � ���Xi� � ��i � � � ������	�

with some �i � U � U � where dots denote higher powers in ��
The coassociativity� in order ��� is equivalent to a following equation on �i in

U��
�i � � � ��� � I��i � �� �i � � I�����i ��������

I is the identity operator� The algebra U�� is the enveloping algebra of L�L�L�
Let Xi� Yi and Zi be the generators of the �rst� second and third copies of L�
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respectively� Then the equation ������� can be rewritten as

�i�X�Y � � �i�X � Y� Z� � �i�Y� Z� � �i�X�Y � Z� ��������

The statement that � is a homomorphism reads� in terms of �i� as

�Xi � Yi� �j �� �Xj � Yj � �i� �  kij�k�������

�the algebra U �U is the enveloping algebra of L�L� Xi and Yi are the generators
of the �rst and second copies of L��

Let � � U � U � U � U be the !ip� ��x � y� � y � x� Decompose �i into
symmetric and antisymmetric parts with respect to ��

�i � si � ai�������

with ��si� � si and ��ai� � �ai�
Proposition �� If �i satis�es ������� and ������� then both si and ai satisfy �������
and ��������

Proof� We have ���Xi� � ���Xi� � ���i � � � � � where ��i � ���i� � si � ai�
If � is a coproduct then �� � ��� is a coproduct as well� so ��i satis�es ��������

�Xi � Yi� �
�
j � � �Xj � Yj � �

�
i� �  kij�

�
k ��������

and ��������

��i � � � ��� � I���i � �� ��i � � I�����
�
i ���������

Take the sum and di�erence of ������� and �������� �respectively� ������� and ��������
to �nish the proof� �

In particular� each part �symmetric or antisymmetric� of �i alone de�nes a
coproduct in order ���

Clearly� a rede�nition of generators can change only the symmetric part of �i�
We start by analyzing this case �the case of symmetric �i��

Proposition �� Assume that � is symmetric in order ��� ��i � �i� Then the �
�

terms can be removed by a rede�nition of generators�

Proof� U is the algebra of polynomials in the generators Xi� It is �ltered by the
degree of polynomials� FkU are polynomials of degree � k� The associated graded
term FkU	Fk��U is isomorphic to SkL� the symmetric power of L� Any element
u � U has a well�de�ned �highest symbol�� if u � FkUnFk��U �n is the set�theoretic
complement� then its highest symbol is the image of u in SkL� Denote by xi the
basis of commuting variables corresponding to generators Xi� The highest symbol
is a homogeneous polynomial in a set of commuting variables xi�

The algebra U �U is the enveloping algebra of L�L� the highest symbols are
homogeneous polynomials in two sets of variables� xi and yi�

Let fi be the symbol of �i� Then fi is a polynomial in two sets of variables�
fi � fi�x� y�� The symmetry condition implies that fi�x� y� � fi�y� x��

The coassociativity implies� in order ��� an equation

f�x� y� z� � f�x� y� � f�x� y � z� � f�y� z���������

for each fi�
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Lemma �� Let f�x� y� be a homogeneous polynomial� symmetric with respect to
the !ip x 	 y� The polynomial f satis�es �������� if and only if there exists a
homogeneous polynomial g�x� �a polynomial in only one set of variables xi� such
that

f�x� y� � g�x� y�� g�x�� g�y� ���������

Proof� It is straightforward to see that f�x� y� � g�x � y� � g�x� � g�y� satis�es
���������

Assume now that f satis�es ��������� Let M be a total degree of f � If M � �
then f � c is a constant and it is enough to take g � �c� Assume that M 
 ��

Applying �
�xi

to �������� and evaluating at x � �� we obtain an equation �after

replacing y � x and z � y�

�i�f jx�y � �i�f j��x
y � �i�f j��x ���������

where �i� are the partial derivatives in the �rst set of variables�
Applying �

�zi
to �������� and evaluating at z � �� we obtain an equation

�i�f jx�y � �i�f jx
y�� � �i�f jy�� �������	�

where �i� are the partial derivatives in the second set of variables�
Since f is homogeneous of degree M � we have �xi�

i
� � yi�

i
��f � Mf � which�

together with �������� and ������	�� gives

Mf � xi�
i
�f j��x
y � yi�

i
�f jx
y�� � xi�

i
�f j��x � yi�

i
�f jy�� ���������

The symmetry of f � f�x� y� � f�y� x� implies that ��i f jx�y � ��i f jy�x� Therefore we
can rewrite �������� in the form �������� with g�x� � �

M xi��i f j��x� The proof of the
Lemma 	 is �nished� �

We proved that for each i there exists gi�x� such that

fi�x� y� � gi�x� y�� gi�x� � gi�y� ���������

Let g�i �X� be an element whose highest symbol is gi�x�� The combination g
�
i �X �

Y ��g�i �X��g�i �Y � satis�es the equation �������� Therefore� an element �i�X�Y ��
g�i �X�Y ��g�i �X��g

�
i �Y �� which has the �ltration degree smaller than the degree

of �i�X�Y �� satis�es ������� as well� and we can apply the Lemma 	 again�
Repeating this process a needed number of times� we shall �nally build a set of

elements �i � U such that

�i�X�Y � � �i�X � Y �� �i�X�� �i�Y � ���������

Let X�
i � Xi � ��i�X�� It is straightforward to see that in the order �� the

coproduct for the generators X�
i is classical� ��X�

i � � X�
i � � � ��X�

i �
It is left to show that one can choose �i in such a way that the generators X

�
i

satisfy the same Lie algebraic relations as the original generator Xi� It will be so if
and only if �Xi� �j �� �Xj � �i��  kij�k � � for all i and j�

Since � is a homomorphism� it follows immediately that elements �ij � �Xi� �j ��
�Xj � �i��  kij�k satisfy relations

�ij�X � Y � � �ij�X� � �ij�Y � ���������

Equation �������� implies that the functions �ij are linear� �ij�X� � �kijXk�
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We shall need a short digression into the general theory of universal enveloping
algebras �see� e�g� �����

An element u � U can be uniquely decomposed into a sum

u � symb��u� � symb��u� � 
 
 
� symbd�u� ���������

where d is the �ltration degree of u and symbA�u� � ci����iAXi� � � � XiA for some
completely symmetric tensor ci����iA � Elements of the form ci����iAXi� � � � XiA with a
completely symmetric ci����iA form a subspace UA � U and the above decomposition
of u implies that U is a direct sum of UA� U � ��A��UA� Each UA is a L�module
�that is� commutators of generators Xi with symbA�u� are again in UA�� in other
words�

symbA��Xi� u�� � �Xi� symb
A�u�� ���������

The module UA is isomorphic to the symmetric power SAL�
Let �j �

P
symbA��j� be a decomposition of the form �������� of the element

�j � We have seen that �ij is in U� for each i and j� It follows then from ��������

that �ij � �Xi� symb
���j��� �Xj � symb

���i��� kij symb���k�� Therefore� �Xi� "�j ��
�Xj � "�i� �  kij"�k � � for all i and j� where "�i � �i � symb���i�� Therefore� the

elements "X�
i � X�

i ��"�i�X� satisfy the same Lie algebraic relations as the original

generators Xi� � "Xi� "Xj � �  kij
"Xk�

Moreover� since for an element g� � U�� the combination g��X �Y �� g��X��
g��Y � vanishes� the elements "�i � �i � symb���i� still verify ��������� Therefore�

as before� the coproduct for the elements "Xi is classical�
Thus� the elements "Xi provide the needed rede�nition of the generators Xi�

The proof of the Proposition � is �nished� �

Using� if necessary� the rede�nition of the Proposition �� we get rid of the
symmetric part of �i� Assume therefore that �i is antisymmetric� Again� let fi be
the highest symbol of �i� The symmetry condition is now fi�x� y� � �fi�y� x�� As
before� the coassociativity implies� in order ��� the equation �������� for each i�

Proposition �� Let f�x� y� be a homogeneous polynomial� antisymmetric with
respect to the !ip x	 y� Assume that the polynomial f satis�es ��������� Then

f�x� y� � 
jkxjyk��������

for some antisymmetric tensor 
� 
jk � �
kj �
Proof� The derivatives of f satisfy equations �������� and ������	�� There is one
more equation which we didn#t need for the Lemma 	� It is obtained by applying
�
�yi

to �������� and evaluating at y � � �we change variables� z � y�

�i�f jx�y � �i�f jx�� � �i�f jx�y � �i�f j��y ���������

The antisymmetry of f � f�x� y� � �f�y� x�� implies ��i f jx�y � ���i f jy�x� Substi�
tuting �i�f jx�y and �i�f jx�y from �������� and ������	� into �������� and using the
antisymmetry� we �nd

�i�f j��x
y � �i�f j��x � �i�f j��y ���������
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Thus� �i�f j��x is a linear function� Substituting �������� into ��������� we �nd
�i�f j��x
y � �i�f j��y� Thus� �i�f jx�y is a linear function which depends on the second
set of variables only� In other words� �i�f jx�y � 
ij� yj �

Similarly� �i�f jx�y is a linear function which depends on the �rst set of variables
only� �i�f jx�y � 
ij� xj �

The antisymmetry� ��i f jx�y � ���i f jy�x� implies that 
ij� � �
ij� � Let 
ij � 
ij� �
Then

�i�f jx�y � 
ijyj and �i�f jx�y � �
ijxj �������	�

Since the derivatives of f are homogeneous of degree �� the function f itself
is homogeneous of degree �� So �f � �xi�

i
� � yi�

i
��f � Substituting expressions

������	�� we �nd

�f � xi

ijyj � yi


ijxj � 
�ij�xiyj ���������

where the square brackets mean antisymmetrization� 
�ij� � 
ij � 
ji and the
assertion of the Proposition � follows� �

After the Propositions �� � and � it is only left to check a condition that � is
a homomorphism in the �rst order in �� A straightforward calculation gives the
cocycle condition �������� The proof of the Theorem � is �nished� �

Remark� It is not necessary to assume that the ground �eld is C � The Theorem �
holds for an arbitrary �eld of characteristic � �and it is not true if the characteristic
is di�erent from ���

Repeating the proof of the Proposition � consecutively in powers of �� one
obtains a version of the Milnor�Moore theorem �for its general formulation see� e�
g� �����

Corollary �� A formal �i�e� given by a formal power series in �� cocommutative
deformation of the coproduct on a universal enveloping algebra is always trivial�
that is� it can be removed by a formal rede�nition of generators�

In the rest of this subsection we explain what happens in the next order in ��
in the ���terms�

It turns out that the consistency in the �� terms imposes new conditions on

�jki �
Assume that we can extend the deformation ������� to ���terms�

�Xi � ��Xi � ��jki Xj �Xk � ���i ���������

and � is coassociative up to ��� Coassociativity implies

�i � � � ��� � id��i � �abci Xa �Xb �Xc

� �� �i � � id�����i � �cbai Xa �Xb �Xc �
��������

with a notation� �abci � �jci �
ab
j for a tensor �jki �

To cancel the �abci �terms� one has �in order to get trilinear in X expressions�
to choose �i in the form

�i � Aabc
i XaXb �Xc �Babc

i Xc �XaXb ���������
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with tensors Aabc
i and Babc

i symmetric in indices fa� bg� In the next formulas� the
lower index is omitted�

Coassociativity �������� gives

��Bbca �Aabc� � �abc � �bca ���������

Exchange b and c in �������� and subtract from ��������� taking into account the
symmetry of Babc in fa� bg�

��Aacb �Aabc� � �bca � Jabc ���������

where

Jabc � �abc � �bca � �cab ���������

The tensor Jabc is totally antisymmetric� Under the exchange a	 b� eqn� ��������
becomes

��Abca �Abac� � �acb � Jbac ���������

Under the exchange a	 c� eqn� �������� becomes

��Acab �Acba� � �bac � Jcba ���������

The combination �������� � �������� � �������� gives �due to the symmetry of Aabc

in fa� bg�
� � 	Jabc �������	�

This is the Jacobi identity �����	�� for ��
Now from � permutations of fa� b� cg one gets only two equations

��Aacb �Aabc� � �bca ���������

��Abca �Abac� � �acb ���������

The tensor Aabc� being already symmetric in the �rst two indices� can have two

types of symmetry� corresponding to Young diagrams and �

The totally symmetric part �the diagram � of A cannot be de�ned

by ������������������ it is arbitrary� The part� corresponding to the diagram

satis�es

Aabc �Abca �Acab � � ���������

Together� eqs� ��������� �������� and �������� can be easily solved and we conclude
�taking into account the totally symmetric part� that the general solution for A is

Aabc �
�

�
��cba � �cab� � �abc��������

with totally symmetric �abc�
From �������� it follows then that

Bbca �
�

�
��abc � �acb� � �abc ���������

In particular� Aabc � Babc�
The totally symmetric part �abc can be removed by a rede�nition �solve for g

the equation �������� with f�x� y� � �abc�xaxbyc � xcyayb���
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We conclude that the coassociative extension of � to the ���terms is possible
only if the Jacobi identity for � is satis�ed�

�abci � cycle in �a� b� c� � � ������	��

This extension has the form

�Xi � ��Xi � ��jki Xj �Xk �
��

�
��cbai � �cabi ��XaXb �Xc �Xc �XaXb� �

�����	��

In general� � does not preserve the original commutation relations �Xi� Xj � �
 kijXk� the multiplication structure of U has also to be deformed in the order ���

Exercise� The map � preserves the following relations ���

�Xi� Xj � �  kijXk �
��

��
�sai �tbj  

c
stX�aXbXc� ������	��

with round brackets in X�aXbXc� denoting the symmetrization� X�i�Xi�Xi�� �P
Xi����Xi����Xi���� � the sum is over all permutations � � S��

Given the multiplication �����	�� and the comultiplication �����	��� one needs
to know the counit and the antipode to complete the Hopf algebra structure�

Exercise� The counit � stays undeformed�

��Xi� � � mod �� ������	��

for the antipode mod �� one has

S�Xi� � �Xi �
�

�
�Ma

i Xa �
�

	
���bli M

a
l  

c
abXc ������		�

where Mv
a � ��vca  kck � �kjk  

v
ja � �sta  

v
st� �Note that S stays linear in generators��

It is known today that in higher orders in � no further restriction on � appears�

in other words� if �jki satis�es the Jacobi and cocycle conditions� there exist� as
formal power series in �� the multiplication� which begins as �����	��� and the
comultiplication� which begins as �����	�� �and the counit and antipode�� Moreover�
there exists such deformation that each term in the formal power series �for the
multiplication� comultiplication and the antipode� is expressible in terms of the

tensors �jki and  kij only�
������ Discrete groups� The situation with discrete groups is di�erent� It is

an easy exercise to analyze the formal deformations of the coproduct for the group
algebras of discrete groups� In contrast to the case of universal enveloping algebras�
the result is trivial�

Let G be a discrete group� U � C �G� its group algebra over complex numbers�

Theorem �� U does not admit a nontrivial deformation of the standard coproduct�

Proof� Assume that there is a �rst order deformation of a coproduct�

�g � g � g � �
X
k�l

Ck�l
g k � l ������	��

where �� � ��
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�i� The coassociativity condition in the �rst order in � givesX
k�l

Ck�l
g �k � l � g � k � k � l � g � k � l � k � l � l� � � ������	��

Collecting terms a� b� c with �xed a and c� a 
� g and c 
� g� one �nds

Ca�c
g a � Ca�c

g c ������	��

This holds for all a and c di�erent from g� Therefore� only Cg�g
g � Ck�g

g � Cg�k
g and

Ck�k
g might di�er from ��
Now the condition �����	�� becomesX

k ��g

fCg�k
g �g � k � g � g � k � k� � Ck�g

g �k � k � g � g � k � g�

� Ck�k
g �k � k � g � g � k � k�g � � ������	��

This implies that there is a set of constants Bk
g for k 
� g� s� t�

Cg�k
g � Ck�g

g � Bk
g � Ck�k

g � �Bk
g � k 
� g ������	��

This solves the coassociativity condition� Thus� we have

�g � �� � �cg�g � g � �
X
k ��g

Bk
g �g � k � k � g � k � k� ���������

�ii� The condition that � is a homomorphism implies �in the �rst order in ���

Bg��k
h �Bkh��

g � Bk
gh and cgh � cg � ch ���������

Let

g� � �� � �cg�g � �
X
k ��g

Bk
g k ���������

A direct calculation shows that �������� is exactly the condition saying that g � g�

is an algebra homomorphism� g�h� � �gh���
Again a straightforward calculation shows that

�g� � g� � g� ���������

Therefore� given a deformation of the standard coproduct� we can explicitly con�
struct an isomorphism with the original bialgebra� The proof is �nished� �

In the same way as the Corollary � followed from the Proposition �� we obtain
the information about the formal deformations in this case�

Corollary 	� At formal level� all deformations of the coproduct for the group
algebras of discrete groups are trivial�

���� Lie algebras with an invariant scalar product� We have seen in
the previous subsection that the essential role in the theory of deformations of

the coproduct on universal enveloping algebras is played by a tensor �jki � All the
conditions on the tensor � are expressed in terms of the Lie algebra itself� without
any reference to the deformation theory� The relevant classical notion is a �Lie
bialgebra��
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De
nition� A Lie bialgebra is a Lie algebra L equipped with a map � � L � ��L�
�Xi � �jki Xj�Xk� where the tensor � �antisymmetric in the upper indices� satis�es
the Jacobi identity and belongs to Z��L���L��

Both  and � satisfy the Jacobi identity� The condition � � Z�� written
explicitly as �������� is symmetric in � 	  � So the notion of the Lie bialgebra
is self�dual �like the notion of the Hopf algebra�� In other words� if L is a Lie
bialgebra then there is a Lie bialgebra structure on the dual space L�� the roles
of  and � being interchanged� There is an object which explicitly realizes this
symmetry between � and  � It turns out �Exercise� verify it� that all the data for
a Lie bialgebra can be conveniently expressed as the Jacobi identity for a larger Lie
algebra with generators Xi and X

i� satisfying

�Xi� Xj � �  kijXk � for generators of L ��������

�X i� Xj � � �ijk X
k � for generators of L� ��������

�Xi� X
j � � � jikXk � �jki Xk ��������

This Lie algebra is called a Drinfeld double of the Lie bialgebra L and denoted DL�
As a vector space� DL is isomorphic to L � L��
De
nition� A scalar product hx� yi on a Lie algebra L �i�e� a nondegenerate
symmetric pairing L � L � k� is called invariant if h�x� y�� zi � hx� �y� z�i for all
x� y� z � L�

Example� The Killing form on a semi�simple Lie algebra is invariant�

The natural pairing between L and L�� given by
hX i� Xji � � � hXi� Xji � � � hXi� X

ji � �ji�����	�

is an invariant scalar product onDL� Moreover� the commutation relations between
Xi andX

j can be reconstructed �with relations ������� and ������� being given� from

the demand of invariance of the natural pairing� Indeed� let �Xi� X
j � � Aj

ikX
k �

Bjk
i Xk� Then

�Aj
ia � h�Xj � Xi�� Xai � hXj � �Xi� Xa�i � hXj � biaXbi �  jia

and similarly for Bjk
i �

De
nition� A set of data fg�L��L�g where g is a Lie algebra with an invariant

scalar product� L� and L� are isotropic Lie subalgebras of dimension � dim L
� and

g � L� �L� is called a Manin triple�
A Lie bialgebra L de�nes a Manin triple fDL�L�L�g� Conversely� a Manin

triple fg�L��L�g de�nes a Lie bialgebra L�� From this perspective� the study of
Lie bialgebras splits into two parts� Lie algebras with an invariant scalar product�
their maximal isotropic subalgebras� I will shortly comment on the �rst part�

Denote by fg� �g a Lie algebra g with an invariant scalar product � ���x� y� �
hx� yi�� The pair fg� �g is called indecomposable if it cannot be represented as a
direct sum fg�� ��g � fg�� ��g�
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Example of fg� �g� Let M be a Lie algebra with generators Xi� Let g �
MnM� �the semi�direct product with respect to the coadjoint action�� Then the
scalar product

hX i� Xji � � � hXi� Xji � �ij � hXi� X
ji � �ji ��������

where ��Xi� Xj� � �ij is an arbitrary bilinear symmetric form� is an invariant scalar
product�

Generalization of this example� Let fW��g be a Lie algebra with an invariant
scalar product� Suppose that a Lie algebra g acts on W by derivations� Ta�x� y� �
�Tax� y� � �x� Tay�� where T is the action� T � g�W �W � a�w �� Ta�w�� suppose
that the operators Ta� a � g� are antisymmetric with respect to the scalar product
on W � ��Tax� y� � ���x� Tay� for all x� y �W and a � g�

Exercise� Show that the map � � ��W � g� de�ned by ha� ��x� y�i � ��Tax� y��
where h
� 
i is the natural pairing between g and g�� is a ��cocycle� � � Z��W� g��
�g� is considered here as a trivial W �module��

As a ��cocycle� � de�nes a central extension of W by g�� In other words� the
bracket

�x� y� � �x� y�W � ��x� y��������

where �x� y�W is the commutator of x and y in the Lie algebra W � de�nes a Lie

algebra structure on W � g�� Denote this Lie algebra by "W �

Exercise� For a � g x �W and f � g� let

"Ta�x� f� � Tax� ad�af ��������

where ad� is the coadjoint action� Show that the formula ������� de�nes an action

of g on "W �

We have therefore a Lie algebra structure on the space A � g �W � g�� a
semi�direct product gn "W with respect to the action ��������

De�ne a scalar product �A on A� the pairings between the generators of g and
g� are given by �������� the restriction of �A on W is �� all the other pairings are ��

Exercise� The scalar product �A is invariant�

The Lie algebra A with the scalar product �A is called the double extension of
fW��g by S �and the action of S on W ��

Theorem ������ If a Lie algebra with an invariant scalar product is not simple or
��dimensional then it is either decomposable or a double extension� Moreover� one
can always choose g to be simple or ��dimensional�

This theorem gives a way to construct higher�dimensional Lie algebras with
an invariant scalar product from lower�dimensional ones� However� this is not a
classi�cation�

Example of a nontrivial double extension� g � so�n�� W is the n�dimensional
fundamental representation of g� considerW as an abelian Lie algebra� The cocycle�
giving a bracket on W � g� is given by the natural map � � W �W � g�� and
A � gn �V � g���
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Exercises�

In dimension � there is only one non abelian Lie algebra� choose a basis fx� yg
in such a way that the commutation relation is �x� y� � y� Denote this Lie algebra
by L��

�� Show that any bialgebra structure on L� can be written �after possible
rede�nitions� in one of two forms�

�x � � � �y � x � y�������

or

�x � x � y � �y � � ��������

�� Show that for the bialgebra structure ������� the double is gl�� for �������
the double is a semi�direct product C nN of a one�dimensional Lie algebra �with
a generator W � and the three�dimensional Heisenberg algebra N �with generators
X�Y� Z and relations �X�Y � � Z� �Z�X � � �Z� Y � � ��� the action of W on N is
given by �W�X � � �X � �W�Y � � ��Y and �W�Z� � ��

�� Show that operations

�x � x� � � �� x � �y � y � � � e�x � y��������

and

�x � x� ��� ��y��� � �� x � �y � y � � � ��� ��y�� y��������

provide Hopf algebra structures on corresponding completions of UL��
	� Show that the Hopf algebra structure� de�ned by �������� �respectively�

��������� is a quantization of the Lie bialgebra structure ������� �respectively� ���������
Note that the terms of order � in the deformation parameter � are not antisym�
metric� but� as you remember� the symmetric part can be removed by rede�nitions�

�� Let L � sl� � sl�� Show that any invariant scalar product on L has a form

 � c
� where 
 is the Killing form on sl� and c is a constant�

�� Let c � ��� Show that the diagonal g� � sl� is isotropic� A subalgebra
g� with a basis f�e
� ��� ��� e��� �h��h�g is a complementary isotropic subalgebra
�fh� e
� e�g is a standard basis in sl�� �h� e�� � ��e�� �e
� e�� � h�� Thus� this
Manin triple provides a Lie bialgebra structure on sl��

�� Classify all Manin triples on L�

�� Classify ��� 	� and ��dimensional Lie algebras with an invariant scalar prod�
uct�

���� Belavin
Drinfeld triples� Let L be a simple Lie algebra over C � In this
case� every ��cocycle is a coboundary �see any textbook on Lie algebras� e�g�� ����

so one can solve the cocycle condition for �� � � �� or� explicitly� �jki Xj �Xk �
���Xi� ��� with � � �abXa � Xb an element of the wedge square of L �that is�
�ab � ��ba��

Now the Jacobi identity for � can be rewritten as a non�linear equation for the
element ��

Notation� for an element A � U�U � A �
P

� x��y� let A�� �
P

� x��y����
A�� �

P
� x� � �� y� and A�� �

P
� �� x� � y�� the elements A��� A�� and A��

are from U � U � U �
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Exercise� Show that the Jacobi identity for � can be rewritten in terms of � as

������ ���� � ����� ���� � ����� ����� Xi � �� � � ��Xi � � � �� ��Xi� � �

�������

for all i�

The element ����� ���� � ����� ���� � ����� ���� belongs to the third wedge power
of L� i�e�� it has a form AijkXi � Xj � Xk with totally antisymmetric Aijk � The
space of invariant elements in ��L� for the simple L� is known �see� e�g�� ���� to
be one�dimensional� it is generated by an element � �  ijkXi � Xj � Xk� where
 ijk �  kabB

aiBbj � Bij � hXi� Xji for the Killing form h
� 
i and Bij is inverse to
Bij � B

ijBjk � �ik ��
i
k is the Kronecker delta�� We conclude that the Jacobi identity

for � � �� is satis�ed i� ����� ���� � ����� ���� � ����� ���� is proportional to ��
Let C � BijXi �Xj �

Exercise� Show that �C��� C��� � �C��� C��� � �C��� C��� is proportional to ��

Therefore we can �nd a combination r � �� const 
 C for which

�r��� r��� � �r��� r��� � �r��� r��� � � ��������

Note that we still have �jki Xj � Xk � ��Xi� r� since B commutes with ��Xi for
all i� The equation ������� is called the classical Yang�Baxter equation �cYBe�� We
explained that for a simple Lie algebra L the problem of �nding the Lie bialgebra
structures on L reduces to cYBe for r which satis�es� r � r� is proportional to C�
r� r� � xC with x � C �r� is the !ip of r� r� � rijXj �Xi for r

� � rijXi �Xj�� If
x 
� � one can set x � � by rescaling r�

The Yang�Baxter equation �which reduces to the cYBe in the classical limit� is

R��R��R�� � R��R��R�� ��������

Solutions of the cYBe for which x 
� � are the most interesting � their quantizations
�nd lots of applications in statistical models� knot theory� representation theory
etc�

Exercise� In the situation of the exercise � from the previous subsection� show that
the corresponding coproduct on sl� arises from an r�matrix� r � �

�h� h� e�� e
�
Verify the cYBe for this r�

We shall now explain how the solutions of cYBe with r � r� � C are classi�ed
in terms of so called Belavin�Drinfeld triples� A procedure of quantizing these
solutions is known today ��� 	�� It is however interesting to enumerate the Belavin�
Drinfeld triples� which is a combinatorial question� in the end of this subsection we
shall discuss and partly answer it�

Classi
cation of solutions�

Fix a Cartan subalgebra h� Let R be the set of roots� R � R
 �R�� and  the
set of simple positive roots�

De
nition� A Belavin�Drinfeld triple � �� �� �� consists of the following data�  �
and  � are subsets in  and � �  � �  � is a one�to�one mapping which satis�es
properties�



USES OF QUANTUM SPACES �	

�i� � preserves the scalar product� that is� h����� ����i � h�� �i for all � and �
from  ��

�ii� � is �nilpotent�� It means the following� Assume that ����� which is an
element from  � is still in  �� Then ����� is de�ned� If again ����� �  � then
there is ������ Nilpotency means that the sequence must terminate� that is� for
some k � N� an element �k��� is not any more in  � for any � �  ��

Given a Belavin�Drinfeld triple� consider a system of equations for a tensor
r� � h� h�

r� � r�� � t� �

����� � id � id� ���r�� � � for all � �  � �
�����	�

Here t� is the �Cartan part� of t� for a basis H� of h let Bo
�� � hH�� H�i� then

t� � Bo ��H�H� where B
o �� is the inverse to B�� � B

o ��B�	 � ��	 �
The system �����	� is compatible ����
Recall that g � h�L�	R g�� where �h� x� � ��h�x for x � g�� dimg� � ��
Let Ai be a Lie subalgebra generated by e� with � �  i� i � �� �� Then A is

the direct sum of those g� for which the expansion of � in terms of simple roots
contains simple roots from  i only�

The map � �  � �  � extends to an isomorphism � � A� � A� �denoted also by
��� by the formula e� �� e
���� It is an isomorphism because the only relations in
Ai are Serre relations which depend on the scalar product h�� �i only and � respects
the scalar product�

For each � � R choose e� in such a way that
�i� he��� e�i � ��
�ii� e
��� � ��e�� whenever ��e�� is de�ned �e� � A���
De�ne a partial order� � � � for �� � � R means that there exists a natural k

such that �k��� � ��

Theorem ���� Let

r � r� �
X
�	R�

e�� � e� �
X

���	R����

�e�� � e� � e� � e��� ��������

where r� is a solution of �����	��
Then

�i� the tensor r satis�es cYBE�r� � � and r � r� � t�
�ii� any solution of equations cYBE�r� � � and r � r� � t� after a suitable change
of the basis� is of the form ��������

The r corresponding to the trivial Belavin�Drinfeld triple � � and  � are empty
sets�� with r� �

�
� t�� is called the �standard� r�

������ Maximal triples� I shall say several words about the combinatorics of
Belavin�Drinfeld triples� The whole information about scalar products is contained
in the Dynkin diagram for the algebra g� We shall consider the most interesting
case of the Lie algebras of the type A �that is� Lie algebras sl�n��� for which the
Dynkin diagram is

x x x x� � �

Fig� �
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Given a Belavin�Drinfeld triple� it is useful to draw a diagram� corresponding
to it� like�

x x xx x

x x x x x

�
�
��

�
�
��

�
�
��

�
�
��

Fig� �

The upper and lower rows are two copies of the Dynkin diagram A	� the lines
between the rows carry an information about the triple� the lines should be thought
as going from the upper low to the lower one� the roots from  � are the roots at the
upper row from which the lines start� the roots from the lower row are those at which
the lines end� they are from  �� The angles between the roots are determined by the
number of edges connecting the corresponding vertices of the Dynkin diagram� it is
therefore easy to understand� looking at the picture� whether the map � preserves
scalar products� To check the nilpotency one needs to draw more than two rows �
depicting the powers of � � For example� for the diagram on Fig� � one draws�

x x xx x

x x x x x

x x x x x

xxxxx

x x x x x

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�
�

�
�
��

�
�
��

�
�
��

Fig� �

The meaning of Fig� � is clear� the lines going from the �rst row to the third one
represent ��� from the �rst row to the fourth one represent ��� etc�

There are two types of natural equivalences for triples�
�i� Tl � � �� �� �� �� � �� �� �

���� this corresponds to a re!ection of the

picture of the triple in the horizontal mirror� T �
l � id�

�ii� if a Dynkin diagram has a symmetry � then ���G��� ��G��� ���
��� is a

triple and the equivalence is T
 � �G�� G�� �� �� ���G��� ��G��� ���
����

For An�diagram there is a symmetry� a re!ection of Fig� � in the vertical
mirror� let T
 be the corresponding equivalence� we have T �


 � id�

If " � is any subset of  � then �" �� ��" ��� � j���� is clearly a triple� So it is
interesting to look only for �maximal� triples� i� e� those to which one cannot add
any more vertices�
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For example� the only nontrivial triple for A� is

x x

x x

�
�
��

Fig� �

Exercises� �� Show that for A� there are� up to equivalences� two maximal
triples�

x x

x x

x

x

x x x

x x x

�
�
��

�
�
��

HHHHHHH

Fig� � Fig� �

�� Show that for A� there are� up to equivalences� four maximal triples�

x x

x x

x

x

x x

x x

x

x

x x

x x

x x x x

x x x x

x x x x

x x x x

�
�
��

�
�
��

�
�
��

HHHHHHH

HHHHHHH

�����������

PPPPPPPPPPP

�
�
��

PPPPPPPPPPP

�
�

��

Fig� 	 Fig� 


Fig� � Fig� ��

With the growth of rank it becomes more and more di�cult to decide if a given
triple is maximal� For example� the triple on Fig� ��

x x

x x

x

x

x

x

x

x

XXXXXXXXXXXXXX

HHHHHHH

�����������

Fig� ��

is maximal� but one has to draw several rows �like on Fig� �� to see that loops
appear when one adds one more vertex�
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If  n  � consists of only one vertex �or $ � � $ � �� then the triple is
certainly maximal� We shall enumerate triples with $ � � $ � ��

Proposition �� For the Dynkin diagram Al� the number of triples with $ � � l��
is �

�%�l� ��� % is the Euler function� %�n� � $fj � f�� � � � � ngjj is coprime to ng�
Proof�

�i� %�l � �� is the number of primitive roots of unity of order �l � ���
We shall �rst associate a Belavin�Drinfeld triple to any primitive root of unity

of order �l� ��� Let � � exp� ��il
� �� Label the vertices of the Dynkin diagram Al as
shown on Fig� ���

x x x x

Fig� ��

� � �

� �
 �� � l

If a and b are labels of two vertices then a is connected by an edge to b if and
only if a � ��b�

Fix a primitive root q� Let  � � fq� q�� � � � � ql��g and  � � fq�� q�� � � � � qlg
�more precisely�  i� i � �� �� are the sets of vertices of Al labeled by the correspond�
ing roots of unity�� Since q is primitive� each of the sets  � and  � contain �l � ��
distinct elements�

Let � �  � �  � be the multiplication by q� Multiplying a label qi by q� we
obtain a sequence qi � qi
� � 
 
 
 � ql� and the sequence terminates since ql
� � �
is not a label of any vertex� Thus� the map � is nilpotent�

The condition of being neighbors� qi � ��qj is stable under the multiplication
by q� therefore � preserves scalar products�

Thus� � �� �� �� is a Belavin�Drinfeld triple� Call it Tq �
Consider an arbitrary Belavin�Drinfeld triple T � � �� �� �� with $ � � l���

We shall prove that it coincides with one of Tq #s�
�ii� Denote the vertex omitted from  � by q

��� It divides the row of the diagram
Al �as on Fig� �� into two segments I� and I��

w w w w w w wk

Fig� ��

� � � � � �

I�
z �� �

I

z �� �q��

We have q�� � �a for some a� Making� if necessary� a vertical re!ection� we
can� without loss of generality� assume that $I� � $I��

Let q� be a label of a vertex omitted from  �� The lower row of the picture
corresponding to T is also divided by q� into two segments J� and J� �J� to the
left of q�� J� to the right of it�� The map � preserves neighbors and it follows that
either � � I� � J�� I� � J� or � � I� � J�� I� � J�� The former case is excluded
since otherwise I� � J�� I� � J� and restrictions of � on the sets Ii� i � �� �� are
permutation of these sets and therefore � cannot be nilpotent�

Thus� � � I� � J�� I� � J� and q
� � q�



USES OF QUANTUM SPACES ��

We cannot have $I� � $I� & then restrictions of �
� on Ii� i � �� �� would be

permutations of these sets� Therefore� $I� � $I��
�iii� Consider the restriction of � on the set I�� � � I� � J�� There are two

possibilities� � preserves the order or reverses it� We shall prove that � cannot
reverse the order� Indeed� if � reverses the order then � maps q to q�� �it is useful
to draw a picture here�� Then � induces a permutation on the set  n �q� q��� and
cannot be nilpotent�

Let us collect obtained information about the triple T in a picture�

x x x x x x xk

x x x x x k x x

���������������

��������������

��������������

��������������

��������������

� � � � � �

� � � � � �

Fig� ��

�iv� For the restriction of � on the set I� we have again two possibilities� the
order is reversed or preserved� We shall prove that it is preserved� If the cardinality
of I� is � or �� there is nothing to prove� so� without a loss of generality we assume
that $I� 
 �� in other words� a � �� Thus we have l � � since $I� 
 $I��

Extend � to a map "� �  �  by "� � q�� �� q �and "� � � on  ��� The map "�
is a permutation of  � Decompose "� into a product of cycles� Since q�� maps to
q� the decomposition contains a cycle c � �� � � q��q � � � �� If there are other cycles�
"� � c 
 c� 
 c� � � � then the product c� 
 c� � � � is a permutation of some set S� This
permutation is the restriction of � on S� thus � cannot be nilpotent� We conclude
that "� is a cycle�

Explicitly� the action of � is

��
�

�a
i �� �i � i � �� � � � � n� a �

�i �� ��i � i � �� � � � � a �
�������

We shall follow a sequence "�n�q���� First� q�� � �a maps to q�� � �l
��a�
Then it goes back� �l
��a �� �l
���a �� 
 
 
 �� �l
��ka� where l � � � ka � a but
l � �� �k � ��a 
 a or l � � � �k � ��a but l � � 
 ka� This requires k steps �i�e�
this is the result of the action of "�k on q���� At the next step� �l
��ka maps to
�ka and then again goes back� �ka �� ��k���a �� 
 
 
 �� �a� This takes k more steps�
Thus� "��k�q��� � q���

But �k � ak � l � �� Therefore� �k � �l
�
� � l because l is at least ��

Therefore� the permutation "��k has a �xed point and �k � l� Thus "� cannot
be a cycle�

We are left with only one possibility� the restriction of � on I� preserves the
order�

�v� The map � preserves the order on I� by �iii� and on I� by �iv�� Written
explicitly� it means that the map � is the multiplication by q� It will not be nilpotent
if q is not primitive� therefore� the triple T coincides with one of Tq #s�
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�vi� The group� generated by !ips Tl and T
� is Z��Z�� But on triples Tq the
operations Tl and T
 coincide� each of them is Tq �� Tq�� �in general� it is not so�
even for maximal triples� consider the triple corresponding to Fig� ���� Therefore�
only Z� acts on the space of triples Tq � This action does not have �xed points and
we conclude that the number of triples� under equivalences� is �

�%�l � �� as stated�
The proof of the Theorem � is �nished� �

�� Quantum spaces

We shall brie!y� without going into details� give geometrical motivations which
lead to the notion of quantum spaces�

Let G be a Lie group� g its Lie algebra� In the section �� Lie bialgebras appeared
in the study of deformations of the coproduct on the universal enveloping algebra
Ug� Geometrically� Lie algebra g is the Lie algebra of left�invariant vector �elds
on G� The universal enveloping algebra of the Lie algebra g can therefore be
realized as the algebra of left invariant di�erential operators onG� Up to topological
and functional analytic considerations �convergence� etc��� a function on Rn can
be reconstructed� as a Taylor series� from the knowledge of its derivatives at the
origin� For a Lie group G� the knowledge of derivatives of a function f at the
origin is replaced by the knowledge of values on f of all left invariant di�erential
operators at the unity of G� The elements of Ug are linear functionals on the
space FG of functions on G� so� up to topological considerations� the spaces Ug
and FG are dual to each other� the pairing between X � Ug and f � FG is
given by hX� fi � X�f�je� where e � G is the unity element� It follows then
that the coproduct on Ug corresponds to the product on FG � the usual product of
functions� Thus� deformations of the coproduct on Ug correspond to deformations of
the commutative algebra FG of functions� In�nitesimal deformations from Section
� correspond to particular Poisson brackets on G & Poisson brackets which are
compatible with the group structure� One says that Poisson brackets are compatible
with the group structure if the multiplication m � G � G � G is a Poisson map�
In other words� de�ne� for a given function f on G� a function f" on G � G by
the rule f"�x� y� � f�x 
 y�� the compatibility of the Poisson brackets f�� �g means
ff� gg"� ff"� g"g� where the Poisson brackets on G�G are Poisson brackets of the
direct product of two Poisson manifolds� Groups with compatible Poisson brackets
are called Poisson�Lie groups�

In the other direction� it is not di�cult to check that if G carries compatible
Poisson brackets then its Lie algebra g gets a Lie bialgebra structure�

Compatible Poisson brackets are of a very special form� We shall illustrate it
on an example of a matrix group G �a subgroup of the group of invertible matrices��
Let aij be matrix elements� Assume that faik� ams g � %imks �a� are compatible Poisson

brackets� Then faijbjk� amn bns g � %imks �ab� �this is the equality ff"� g"g � ff� gg"
for f � aik and g � ams �� On the other hand� faijbjk� amn bns g � faij � amn gbjkbns �
fbjk� bns gaijamn � %imjn �a�b

i
kb

n
s � %jnks�b�a

i
ja

m
n because G � G is equipped with the

Poisson structure of the direct product� Therefore % must be homogeneous of
degree � �this re!ects the fact that �i in the deformation of the coproduct on
Ug belongs to g � g�� Thus� the Poisson brackets are quadratic� To quantize
constant or linear Poisson brackets� one simply replaces the Poisson brackets by
the commutator� However� it is not obvious how to quantize quadratic Poisson
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brackets � we cannot replace Poisson brackets by the commutator because we don#t
know how to order consistently the quadratic right hand side�

Exercises� �� Show that formulas

fa� bg � ab � fa� cg � ac � fb� dg � bd �

fc� dg � cd � fb� cg � � � fa� dg � �bc
�������

are Poisson brackets for four variables a� b� c and d�

�� Show that if a� b� c and d are matrix elements of a matrix A �

�
a b
c d

�
then the Poisson brackets ������� provide GL��� with a Poisson�Lie structure�

�� Show that the Poisson brackets ������� of the determinant of A� detA with
all matrix elements vanish�

The main interest about the most commonly appearing groups� like GL� SO�
Sp� ��� � is that they arise as groups of symmetry �of a vector space� of a vector
space with a bilinear form� ��� �� The Poisson�Lie groups one can interpret in this
way too� One says that a Poisson�Lie group G acts on a Poisson manifold M in a
Poisson way if

�i� G acts on M �
�ii� the action G�M�M is a Poisson map� where G�M is equipped with

a Poisson structure of the direct product�
Again� for a matrix group G acting on a vector space V �� xi �� aijx

j � a sim�

ilar calculation shows that the Poisson brackets of coordinates� fxi� xjg must be
quadratic in xi�

Exercise� For a two dimensional vector space with coordinates x� and x� let

fx�� x�g � x�x� ��������

Show that GL��� with the Poisson structure given by ������� acts in a Poisson way
on this Poisson vector space�

It turns out that from the point of view of the theory of quantum groups�
the appropriate way to quantize the Poisson brackets ������� is provided by the
following commutation relations�

x�x� � qx�x� ��������

This is the �rst example of a quantum vector space� Denote this quantum vector
space �that is� the algebra of polynomials in x� and x� subjected to the relation
�������� by V �

q �
The linear group of transformations preserving the relation ������� is poor� it

consists only of rescalings xi �� cix
i with some constants ci� It is the quantum

group which is the right analogue of the symmetry group of the quantum vector
space�

General picture�

Let U be a quasitriangular Hopf algebra with a universal R�matrix R� Let U�
be a dual Hopf algebra� The pairing between U and U� satis�es h�a� x�yi � ha� xyi
and h�� b��xi � hab� xi�
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We shall think of U as of analogue of the universal enveloping algebra of a
semi�simple Lie algebra� Ideologically �in the spirit of the Peter�Weyl theorem� the
dual Hopf algebra is generated by matrix elements of representations of U �

Let � be a representation of U on a vector space V � � maps an element x � U
to a matrix T i

j �x��

The coproduct � on matrix elements T i
j looks especially simple�

h�T i
j � x� yi � hT i

j � xyi � T i
j �xy� � T i

k�x�T
k
j �y�

� hT i
k� xihT k

j � yi � hT i
k � T k

j � x� yi
�����	�

and therefore

�T i
j � T i

k � T k
j ��������

The commutation relations between the matrix elements T i
j are expressed in terms

of a numerical R�matrix R� the image of the universal R�matrix R �
P

i ai � bi in
the representation� R �

P
i ��ai�� ��bi�� Let �x �

P
� u� � v��

hT�T�� xi � hT� � T��
X

u� � v�i �
X

T��u��T��v�� ��������

By the de�nition of R we have
P

u� � v� � R��
P

v� � u�R� Therefore
hT� � T��

P
u� � v�i � hT� � T��R��

P
v� � u�Ri

� T� � T��R��
P

v� � u�R�

� T� � T��R��� 
 T� � T��
P

v� � u�� 
 T� � T��R�

� R��
P

T��v��T��u��R � R��
P

T��u��T��v��R �

�������

The �
� means matrix multiplication�
Arguments u� and v� are now in the same order as in �������� Therefore�

T�T� � R��T�T�R or

RT�T� � T�T�R ��������

Because of the form of this relation� this algebra is often called the �RTT��algebra�
The algebra U� was �rst written in the form ������� and ������� in �����
We shall write the relations ������� in a di�erent way� Let P be a permutation

of factors in V � V � P �x � y� � y � x� Let �R � PR� Then ������� is equivalent to

�RT�T� � T�T� �R ��������

A motivation to use �R instead of R� the eigenvalues of �R have a representation�
theoretic meaning� A theorem� due to Drinfeld ����� says that there exists an
element F such that R � F��qtF��� where q � exp��� �� is the deformation
parameter�� t is the invariant tensor BijXi � Xj � Let C � BijXiXj � Now let
V � V �

P
W� be a decomposition of the tensor square of the space V into

irreducible representations� We have ��C � C � � � � � C � �t� where �� is the
classical coproduct� Therefore� tjW� �

�
�CjW�

� CjV � Denote this quantity by t� �
We have R � PFPq	�	�t�F��� therefore� �R � FPq	�	�t�F���

First of all� V � V decomposes into the symmetric and antisymmetric parts�
V � V � S�V � ��V � The operator P takes the value ���� on S�V and ���� on
��V � EveryW� is either is either in S

�V or in ��V so the �sign� of W� � depending
on whether W� is S

�V or ��V � sign �W�� �� P jW�
is well de�ned�
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Since q	�	�t�jW�
� qt� we have

�RjFW�
� FPq	�	�t�jW�

� qt� sign�W�� ���������

Thus� the projector decomposition of �R re!ects the decomposition of the tensor
product of representations�

Polynomials in the matrix elements T i
j are �quantized� functions on the group�

We also had the Poisson brackets on the coordinates xi and xi �� T i
jx

j was a

Poisson map� On the quantum level we have the �RTT relations for T i
j � Which

relations can we impose on x#s in such a way that the map xi �� T i
jx

j is an algebra
homomorphism' These relations should also quantize the Poisson brackets for x#s�
Since the quantization of the Poisson brackets for T i

j produced quadratic relations�
we expect to have quadratic relations for the algebra of x#s as well� Impose a set
of quadratic relations for x#s� E�

ijx
ixj � �� � labels relations� Then for Tx we have

E�
ijT

i
ax

aT j
b x

b � E�
ijT

i
aT

j
b x

axb� so we have to understand which tensors we can move

through T i
aT

j
b �

The de�ning relation ������� shows that we can move �R and therefore any

function of �R� As we have seen� �R �
P


�(� � where 
� � qt� sign �W�� and (�

is the projector on the space FW� � So essentially� all functions of �R are linear
combinations of projectors�

Conclusion� covariant algebras are given by relations �(��
ij
klx

kxl � � for some

� �one or several�� Denote by Al
� �l for �left�� the quadratic algebra de�ned by one

projector (� � Equally well� there is a covariant �right� algebra A
r
� �the algebra of

covectors xi�� de�ned by xixj�(��
ij
kl � �� the covariance is xi �� xaT

a
i �

An important fact is that the RTT�relations can be reconstructed from the
requirement that all the algebras Al

� �or all the algebras A
r
�� are covariant� Indeed�

Al
� is covariant means

�(��
ij
klT

k
a T

l
b x

axb � � ���������

therefore� �(��
ij
klT

k
a T

l
b must be proportional to (� whose lower indices are a� b�

�(��
ij
klT

k
a T

l
b � )ijuv�(��

uv
ab ���������

Multiplying �������� by �(
 �
ab
cd with � 
� �� we �nd

(�T�T�(
 � ���������

for all pairs f�� � j � 
� �g�
Lemma ��� The system �������� of relations for the matrix elements T i

j is equiv�

alent to the RTT�relations �RT�T� � T�T� �R�

Proof�

�i� ������� implies ���������

We have �R �
P


�(� � moreover�
P
(g � � is a decomposition of unity�

Multiplying �RT�T� � T�T� �R by (� from the left and (
 from the right� we �nd

�(�T�T�(
 � 

(�T�T�(
 � If � 
� � then 
� 
� 

 and it follows that the relation
(�T�T�(
 � � is satis�ed�

�ii� �������� implies ��������
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We have �RT�T� � �RT�T� 
 � �
P

��
 
�(�T�T�(
 � The last expression� due to

the relations ��������� can be rewritten asX
�


�(�T�T�(� �������	�

Similarly� T�T� �R � � 
 T�T� �R �
P

��
 

(�T�T�(
 � Again� due to ��������� this

equals
P

� 
�(�T�T�(� � which coincides with ������	�� Thus� ������� holds� �

If �R appears in the process of a deformation then there is a candidate for an
especially nice quantum space� Again� V � V �

L
W� classically� denote the set

of f�g by J � J � J
 � J� where J� � f� j signW� � ��g� Then projectors

(� �
P

�	J�
(� have ranks rk(� � N�N���

� � Therefore� a set �(��
ij
klx

kxl � �

contains N�N���
� relations � exactly the number of relations which we have classically

for commuting variables� The quantum space de�ned by relations �(��
ij
klx

kxl � � is

the only reasonable candidate for the quantization of CN on which a group G acted
in a Poisson way� Similarly� the quantum space de�ned by relations �(
�

ij
klx

kxl � �
is the quantization of the algebra of odd �grassmanian� variables�

For GL�N�� in the decomposition V � V � S�V � ��V � the summands S�V

and ��V are irreducible� It is natural therefore to call an �R� which contains only
two projectors� an �R�matrix of GL type� One usually rescales �R to have �R �
q(
 � q��(�� where (
 and (� are projectors� which are called� due to their
origin� the q�symmetrizer and the q�antisymmetrizer respectively �and we shall
often denote (
 by S and (� by A��

To conclude�

� Geometrically and physically meaningful �R�matrices decompose into projec�
tors

��(


� � � � � �k(



k� �z 	

S

���(
�
� � � � � �l(

�
l� �z 	

A

��������

and we know which projectors constitute the q�symmetrizer S and the q�
antisymmetrizer A� respectively �as shown by underbracing in ����������

The ranks of the projectors S � (
 � (

� � � � �(


k and A � (� �

(�� � 
 
 
�(�l are classical� rk(� � N�N���
� �

� Covariant algebras are quadratic algebras of the form �(��
ij
klx

kxl � � or

xixj�(��
ij
kl � � where (� is one of the projectors in the decomposition

���������
� The algebra of functions on a quantum group is given by the relations �������
and these relations are equivalent to the condition that all the algebras Al

�

are covariant� in other words� the RTT�algebra can be reconstructed from
the Al

� algebras� The same holds if one replaces left algebras by the right
ones�

���� GL type� For GL�type algebras we have only two projectors�� �R � qS�
q��A In this case� to reconstruct the RTT�algebra� it is enough to require covariance
of two algebras� Al


 and Al
� de�ned by relations Sijklx

kxl � � and Aij
klx

kxl � �
respectively �����

�When 
R has two eigenvalues� one says that 
R is of Hecke type� We require additionally that

the ranks of the projectors are �xed rkS �
N�N���

�
� rkA �

N�N���
�

�
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As we have seen� covariance of the algebraAl
� implies the condition (�T�T�(
 �

� for all � di�erent from �� Thus� in the GL case� the covariance of the algebra Al



implies

ST�T�A � ��������

while the covariance of Al
� implies

AT�T�S � � ��������

On the other hand� the covariance of the algebra Ar

 implies the same relation

�������� Together� relations ������� and �������� are equivalent to the RTT�relations�
This shows that in the GL case� one can interpret the RTT�relations in two ways�
either as the condition of the covariance of the algebras Al


 and Al
� or as the

condition of the covariance of the algebras Al

 and Ar


� We shall use the latter
interpretation in the sequel�

The algebras Al�r

 are the left and right quantum spaces� If they are good

deformations then the dimension d�N� k� of the space of polynomials of degree k
coincides with the dimension of the space of polynomials in N commuting variables�

d�N� k� �

�
N � k � �

k

�
��������

So� quantum spaces are quadratic algebras with correct Poincar
e series�
As we shall see below� the behavior of Poincar
e series is intimately related to

the theory of quantum groups�

De
nition� Given a set of tensors E � fE� � E�
ijg� i� j � �� � � � � n� de�ne an

algebra AE with generators x
i and relations

E�
ijx

ixj � � for all � ������	�

Let d�N� k� be the dimension of the space of polynomials of degree k in xi� We say
that AE has a Poincar
e�Birkho��Witt property �or that AE is a PBW�algebra� if

������� is satis�ed� In particular the range of the index � is f�� � � � � N�N���
� g�

Relation (ij
klx

kxl � � �with ( a projector� is an example of �����	� but in
general the tensors E� are not organized in a projector�

Requirement that xi are covariant� that is� that the relations �����	� are satis�ed
by T i

jx
j implies some relations between T i

j #s�

Assume that we are given two quantum spaces� Al
E with generators xi and

relations E�
ijx

ixj � � and Ar
F with generators xi and relations xixjF

ij
� � ��

De
nition� We say that the quantum spaces Al
E and Ar

F are compatible if the
covariance algebra of T i

j has the PBW property �that is� its Poincar
e series coincide

with the Poincar
e series for N� variables��

Next subsection is a digression on the Poincar
e series� then we shall continue
with a discussion of compatible quantum spaces in dimension ��

���� Technics of checking the Poincar�e series� Consider an algebra with
generators xi and relations �����	�� Sometimes it is useful to try to apply the
diamond lemma ���� ���� In its easiest form it says� assume that there is a basis
fx�� � � � � xNg in which relations look� for j 
 i� xjxi is a sum of monomials xaxb
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with a � b and all the monomials in the sum are lexicographically smaller or equal
xjxi� Take these relations as instructions� replace xjxi by the right hand side�
Apply these instructions to xkxjxi� where k 
 j 
 i� in two ways� starting from
xkxj or from xjxi� If both ways will eventually produce the same result� to which
no more instructions can be applied then the ordered monomials x��� � � � x�NN form
a linear basis in the algebra� which implies that the algebra has the PBW property�

Note that whether one can apply this procedure depends on a choice of a basis
in the algebra� Such a basis might not exist�

We shall now describe another way of checking the Poincar
e series which one can
apply in the GL case� It uses a di�erential calculus on quantum planes� developed
in �����

������ Di�erential calculus and Poincar�e series� Assume that the quadratic re�
lations are given by

Aij
klx

kxl � � ��������

where A is the q�antisymmetrizer in the Hecke �R�matrix� �R � qS � q��A�
Let �i be generators of the odd quantum space for �R� that is� the relations for

�i are

Sijkl�
k�l � � ��������

One can unify generators xi and �i into one quadratic algebra by requiring that

xi�j � �Rij
kl�

kxl ��������

Exercise� Verify that relations ������� are compatible with ������� and �������� The
compatibility here means the following� Let � be a combination of quadratic ex�
pressions Sijkl�

k�l� Then � � � in the algebra with generators �i� Take an element
xi� with some i and use ������� to move x to the right� We obtain an element of the
form

P
j �jx

j � with some quadratic �in �#s� elements �j � Since � was �� we must
have �j � �� In other words� for each j� the element �j must be a combination of

expressions Sijkl�
k�l� In the same manner� there is a compatibility check when one

moves �i to the left through relations ������� for x#s�

At the next step� one adds �q�derivatives� �i in the generators x
i� An algebra

of the derivatives �i is the algebra with generators �i and relations

�i�jA
ji
kl � ������	�

�note the order of i� j��
To add �i� one needs cross�commutation relations with the already existing

generators xi and �i� These relations are�

�ix
j � �� q �Rjs

it x
t�s ��������

�i�
j � � �R���jsit �

t�s ��������

Exercise� Verify that relations ������� and ������� are compatible with ��������
������� and ������� �in the above sense of compatibility��
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Finally� one adds derivatives �i in �i� An algebra of the derivatives �i is the
algebra with generators �i and relations

�i�jS
ji
kl � � ��������

The cross�commutation relations between �i and the generators x
i� �i and �i are�

�ix
j � �Rjs

it x
t�s ��������

�i�
j � �� q �Rjs

it �
t�s ��������

�i�j � � �R���klji�l�k ���������

�

Exercise� Verify that relations �������� ������� and �������� are compatible with
�������� ��������

We shall need the following singlets� the Euler operators Ee and Eo and the
di�erentials d and ��

Ee � xi�i� Eo � �i�i �

d � �i�i � � � xi�i �
��������

Their relations with the generators of the algebra are �Exercise� verify the
relations��

Eex
i � xi�� � q�Ee� � �iEe � �� � q�Ee��i �

Ee�
i � �iEe � �iEo � Eo�i �

��������

E�x
i � xiEo � �iEo � Eo�i �

Eo�
i � �i�� � q�Eo� � �iEo � �� � q�Eo��i �

��������

dxi � �i � qxid � �id � qd�i �

d�i � �q�id � �id � �� � �q� � ��Eo��i � qd�i �
������	�

�xi � qxi� � �i� � �� � �q� � ��Ee��i � q��i �

��i � xi � q�i� � �i� � �q����i �
��������

Using operators Ne � � � �q� � ��Ee and No � � � �q� � ��Eo� appearing in the
right hand sides of ������	� and ��������� one can rewrite �������� and �������� in a
form

Nexh�j � q�xh�jNe � Ne�j�i � q���j�iNe �

Ne�h�j � �h�jNe � Ne�j�i � �j�iNe �
��������

Noxh�j � xh�jNo � No�j�i � �j�iNo �

N��h�j � q��h�jNo � No�j�i � q���j�iNo �
��������

Exercise� Verify�
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�� The Euler operators commute�

EeEo � EoEe ���������

�� Commutation relations between the Euler operators and the di�erentials are

dEe � �� � q�Ee�d or Ned � q��dNed �

Eod � d�� � q�Eo� or Nod � q�dNo �

Ee� � ��� � q�Ee� or Ne� � q��Ne �

�Eo � �� � q�Eo�� or No� � q���No �

��������

�� The di�erentials square to zero�

d� � � � �� � � ���������

	� For the anticommutator of d and � we have

� �� d� � �d � Ee �Eo � �q� � ��EoEe �
�

q� � �
�NoNe � �� ���������

The last exercise implies that

�xi � xi�q��� �� � ��i � �i�q��� �� ���������

Let Ma�b be a space of polynomials in x and �� of degree a in x and of degree b in
�� For � �Ma�b one �nds� by induction�

�� � ���a� b�q� � q��a
b��� ���������

where the q�number �n�q is de�ned by �n�q �
�� qn

�� q � � � q � q� � 
 
 
� qn���

LetMn � �a
b�nMa�b andM � ��n��Mn� The spaceM is a Z��graded vector
space� the grading is given by the degree of a monomial in �#s�

One can consider �i and �i as operators acting on the space M � To this end�
one introduces a vacuum Vac� which satis�es �i Vac � � and �i Vac � �� Let X
be an expression in xi� �i� �i and �i� To evaluate it on an element � �M � take an
element X�� Using the commutation relations� we move all �i and �i to the right
and evaluate on the vacuum� This gives an element of M which we denote X����
The consistency requires only that the vacuum is a representation of the algebra of
�i and �i which is clearly true�

For instance� we have ���� � �a� b�q�� for � �Ma�b�
For each n� the space Mn � �a
b�nMa�b is �nite dimensional� We have

dimMa�b � de�a�do�b�� where de�a� and do�b� are dimensions of the spaces of
polynomials in x of degree a and in � of degree b� respectively� The grading of Ma�b

is ����b�
The space Mn is closed under the action of d and �� Therefore� the supertrace

of their anticommutator �of the operator �� vanishes� Str � � �� which impliesX
a
b�n

de�a�do�b�����b�a� b�q� � �������	�

for each n�
One can write the set �labeled by n� of identities ������	� in a compact form�

Let t be an indeterminate� Denote by Pe and Po the Poincar
e series for even and
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odd variables� respectively� that is� Pe and Po are the generating functions for the
dimensions de and do� Pe�t� �

P
a de�a�t

a and Po�t� �
P

a do�a�t
a� We have

Pe�t�Po��t� �
X
n

X
a
b�n

de�a�do�b�����b ���������

Introduce a q�derivative in t� It satis�es� by de�nition� a relation �tt � ��q�t�t�
By induction�

�tt
n � �n�q� t

n�� � q�ntn�t ���������

As above� �t becomes an operator after we de�ne a vacuum � a one dimensional
representation of the algebra of polynomials in �t� Vact� by �t Vact � �� In
particular� �t�t

n� � �n�q�t
n���

The formula �������� shows that the action of �t on the formal power series in
t is well de�ned�

Now� ������	� implies

�t�Pe�t�Po��t�� � � ���������

Note that the series Pe and Po start with �� Pe�t� � ��O�t�� Po�t� � ��O�t��
Therefore�

Pe�t�Po��t� � � �O�t���������

as well� Classically �q � ��� equations �������� and �������� imply that

Pe�t�Po��t� � � ���������

For a generic q the same conclusion �������� holds� Here �generic� means that q
is not a root of unity� However� if q� is a primitive root of unity of order l one
can conclude only that Pe�t�Po��t� � � � tlF �tl� for some power series F � By a
di�erent method� without using the di�erential operators� the formula �������� for
generic q was obtained in �����

The advantage of having a formula like �������� is that in the GL case the
relations for the odd generators � are strong enough to force the space of polynomials
in � to be �nite�dimensional� Then Po�t� is a polynomial and instead of checking
the in�nite number of coe�cients in Pe�t� one has only �nite number of checks for
Po�t��

���� Geometry of �
dimensional quantum spaces� In dimension �� a
quantum vector space is a quadratic algebra with two generators and one relation�
This situation can be quickly analyzed ���� and we shall not stop at it here�

For a ��dimensional quantum space we need � generators and � relations� Let

E�
ijx

ixj � � � � � �� �� � ��������

be the three relations� The number of independent monomials of degree k in di�

mension � is

�
k � �
k

�
� so we need to have

�
� � �
�

�
� �� cubics�

In the free associative algebra with three generators there are �� cubics� Thus
we need �� relations for cubics� How many relations can we deduce from �������'
We have � relations of the form �E�

ijx
ixj�xk � � and � relations of the form

xk�E�
ijx

ixj� � �� altogether �� relations� Therefore they cannot be independent�
there should ������� linear combination of them which vanishes� Therefore�

ei�E
�
jk � E�

ijf�k�������
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for some tensors ei� and f�k� We shall assume that the tensors ei� and f�k are
nondegenerate�

Let Eijk � ei�E
�
jk �all the indices of Eijk are now of the same nature� before�

�� � labeled relations� while i� j� k labeled variables�� The equation ������� now
becomes

Eijk � Ql
kElij ��������

where Qi
j � f�j�e

����i �e�� is inverse to e�

e�i�e
����j � �ji and e�i�e

����i � ��� ������	�

�ji and ��� are Kronecker delta#s� the fact that two relations �����	� hold is because
in dimension �� both indices i and � run from � to ���

A direct inspection shows that classically �for commuting variables� Eijk is the
��tensor� The ��tensor has a good behavior under all permutations of indices� The
moral is that for the PBW�algebras� it is enough that the E�tensor behaves well
only under cyclic permutations of indices � the e�ect of a cyclic permutation is a
rotation in one index by an operator Q�

This simple behavior under cyclic permutations makes possible a classi�cation
of PBW�algebras in dimension �� go to a basis in which Q has a normal form
then solve the cyclicity equation ������� for the E�tensor and select nondegenerate
solutions �which give exactly three relations for quadrics�� The article ��	� contains
the result of the classi�cation� The list of PBW�algebras is quite large� for us it is
the beginning of the work� one has to classify compatible pairs of quantum spaces�

We have now two tensors� Eijk and F
ijk � The analysis is quite lengthy � because

one has to work with the Poincar
e series of nine variables T i
j � But the �nal result

���� is surprisingly simple�
It turns our that EjmnF

mni � x�ij where x is a number �in fact� this relation
describes a little more narrow SL����case� when the quantum group has a central
determinant and one can de�ne a corresponding special linear quantum group� for
the general situation� see ������

De�ne Aij
kl � xEklmF

mij � Then the resulting equations say that A is a projec�
tor� A� � A and

�� � �� tr��A��A��Q
��
� � � x��P��Q

��
� � � ��������

where P�� is a permutation of spaces � and � and � � x trQ�
Surprise� the equations for A imply that �R � � � ��� q�A satis�es the Yang�

Baxter equation� where q is a solution of q� � �� � ��q � � � � �the other root

de�nes �R���� Classically� � � �� q � � and �R � P �

This �R�matrix is of GL����type and the relations for T i
j ensuring that the com�

patible left and right spaces are covariant are nothing else but the RTT�relations�
In the beginning there was no demand to have a solution of the Yang�Baxter

equations� The demands were to have PBW�algebras and the compatibility between
them� So� unexpectedly� the study of the correct Poincar
e series is a machine to

produce �R�matrices and quantum groups�
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In the list of �R�matrices found in this way in ���� there is an example which
stands out for several reasons� The left quantum space is de�ned by relations

�zx� �	y� � xz � � �

��z� � yx� ��xy � � �

zy � �
yz � ��x� � � �

�������

Here � is a primitive ��th root of unity� the operator Q has the form

Q �



� �

��

�


�
A ��������

The left quantum space ������� is compatible with an �isomorphic as an algebra�
right quantum space� one can take x � �� Thus we have a quantum group and an
�R�matrix�

The �R�matrix is given by

�R � �� �D�) ��������

where

�) �



BBBBBBBBBBBB�

� �� ��

�� � �
�� �� �

� � ��

�	 � �
�
 �� �

� �� �	

�	 � �


�
 �� �

�
CCCCCCCCCCCCA

��������

and

D � diag���� ��� ��� ��� ��� ��� ��� ��� �����������

with

��� � ��� � ����� ��� � ���� �

��� � ��� � ����� ��� � ���� ���������

��� � ��� � ����� ��� � ���� �

We have q � ���
For the standard Drinfeld�Jimbo deformation� the left quantum space is given

by xixj � qxjxi for i � j� When q is a primitive root of unity of order l� then the
left quantum space has a center generated by elements �xi�l� If one requires that
the covariance algebra of T i

j preserves relations �x
i�l � ci� one obtains additional

relations for T i
j � The quotient algebra of the algebra of T i

j by these relations is
called a �small quantum group� �����

The center of the algebra ������� is a polynomial ring generated by three ele�
ments of degrees ��� and �� The algebra ������� is �nite�dimensional over its center�
the dimension equals ��� ���	��� Therefore� the quantum group de�ned by the
�R�matrix ������� has �nite�dimensional quotients as well�
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The algebra ������� does not admit ordering� In other words� in any basis� the
de�ning relations are not ordering relations� ordering of x�x�x� will always produce
loops� The algebra ������� is the �rst example of a PBW�algebra with this property�

Therefore� the �R�matrix ������� is a very particular point in the moduli space of
solutions of the Yang�Baxter equation in dimension �� Another peculiarity is that
the �R�matrix ������� is an isolated point in the space of solutions of the Yang�Baxter
equation� it cannot be obtained as a deformation of any other solution� in particular�
one cannot reach it starting from the classical solution �the permutation�� In this

sense� this �R�matrix is non�perturbative�
Call E the algebra �������� In the next subsection we prove some of its properties

mentioned above� in particular� the PBW property�
������ Gr�obner base for E� For a homogeneous element f of a free associative

algebra A with generators fx�� � � � � xNg� let �f be a �highest symbol� of f � the
lexicographically highest word in f �

Let B be a quotient algebra of the algebra A by some homogeneous relations
S� � fr�� � � � � rMg� Every relation r we write in the form �r � terms� smaller than
�r� we understand it as an instruction to replace �r by the right hand side� Taking� if
necessary� linear combinations of relations� we always assume that all �r are di�erent�

Let �S� � f�r�� � � � � �rMg�
A word can contain several entries of the form �r� for some �� Comparing

di�erent ways of applying instructions to this word� we may obtain new instructions
� relations� whose highest symbols do not belong to �S�� We add these relations to
S� and obtain a new set S�� Let again �S� be the set of highest symbols�

Continuing the process� we shall build an �eventually in�nite� set S � ��i��Si�
which is called a Gr
obner base for the algebraA �it depends on a choice of generators

fx�� � � � � xNg and on a choice of an order�� Let �S be the corresponding set of highest
symbols�

Now the basis of A� as a vector space� consists of �normal� words � words� which
do not have subwords belonging to �S � This gives sometimes a way to estimate the
Poincar
e series of the algebra� See� e�g�� ���� for further information about Gr
obner
bases�

For the algebra E � written in generators fx� y� zg� as in �������� the Gr
obner
base seems to be in�nite ant non analyzable�

There are several other nice sets of generators and one of them leads to a �nite
Gr
obner base� Let

x � ����A� ��B � ��C� �

y � � �
�
� �A�B � C� �

z � ���A� ��B � ��C� �

��������

where � satis�es �� � �
� � ��

� � �
�

In terms of new generators A� B and C the relations are

�A� � �	AB �B� � � �

�C� � �	CA�A� � � �

�B� � �	BC � C� � � �

��������
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Choose the order A 
 B 
 C� Then the set �������� of relations gives the following
set of instructions

A�
� ��C� � �	CA �

B�
� ���BC � ��C� �

AB � �C� � �CA � ��BC �

������	�

Possible overlaps are A�B� AB�� A� and B�� This leads to new instructions

ACA� BC� � ��CAC � ��CBC � ��C�A� ��C�B � �C� �

BCB � ���C�B � ��C� �

AC�
� ���BC� � ��CAC � �CBC � ��C�A� �
C�B �

��������

One has new overlaps and they� in turn� lead to new instructions with highest
symbols BC� and ACBC� We shall not give more details� but it turns out that now
overlaps are all compatible� so the construction of the Gr
obner base is completed
and we have

�S � fA�� B�� AB�ACA�BCB�AC�� BC�� ACBCg ���������

For such �S it is possible to explicitly describe the normal form�
For a word w � x�x� � � � xk� let �j�w� be the beginning� of the length j �that

is� �rst j symbols�� of a word www � � � w �the word w repeated su�ciently many
times�� For example� ���ACB� � ACBA� �	�ACB� � ACBAC�

Lemma� For �S� as in ��������� the normal words have a form
Ci�j�BCC��k�ACB� ���������

Corollary� The algebra E has the PBW property�

Proof� Normal words �������� are characterized by ordered triples of numbers

fi� j� kg� as for monomials xi�xj�xk� � ��

���� slq��� at roots of unity� The simplest example of a quantum space is
the algebra V �

q with two generators x� and x� subjected to the relation �������� If

one chooses for a left quantum space �V ���q an algebra with two generators x� and
x� and the same relation

x�x� � qx�x� ����	���

then the quantum group �rather� bialgebra� for the moment we will not talk about
invertibility of quantum matrices� which preserves the relations ������� and ���	���

is the standard Matq���� the matrix elements of T �

�
a b
c d

�
satisfy relations

ab � qba � ac � qca � bd � qdb � cd � qdc �

bc � cb � ad � da� �q � q���bc
���	���

�this is a correct quantization of the Poisson brackets ���������
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If q is a primitive l�th root of unity� the bialgebra Matq��� has a �nite dimen�

sional quotient Matq���� one adds

al � dl � � � bl � cl � ����	���

to the relations ���	����
The bialgebraMatq��� has a symmetry interpretation as well� The elements x

l
�

and xl� lie in the center of V
�
q � Let V

�
q���� be a quotient of V

�
q by relations �x��l � ��

and �x��l � �� for some constants �� and ��� If one requires that all the algebras
V �
q���� are preserved by the coaction� one �nds the extra relations ���	���� the same

relations ���	��� one �nds from a demand that all the left algebras �V ���q���� are
preserved�

In this subsection we shall illustrate� on this simple ��dimensional example�
some phenomena� pertinent to a situation when a non�commutative quantum space
has a large center� loss of quasi�triangularity� loss of semi�simplicity� appearance of
�nite�dimensional Hopf quotients etc�

We shall give a description of the reduced universal enveloping algebra and of
the reduced function algebra in terms of matrix algebras over local rings� This
language seems to be quite appropriate to talk about such algebraic concepts as
Ext�groups� a scheme of an algebra� its Cartan matrix etc� The material on the
matrix structure is partly taken from �����

Notation� nq is a q�number� nq �
qn � q�n

q � q��
and nq * � �q�q � � � nq is a q�

factorial� Let q be a l�th primitive root of unity� l 
 � �so q� 
� ��� Denote

"l �



l � l � � �mod ��
l	� � l � � �mod ��

���	�	�

Thus� q�n � � �� �n � � �mod l� �� n � � �mod "l�� nq � � �� n �
� �mod "l�� Denote 
 � l	"l and "q � q� � "q

�l � �� "q is a primitive "l�th root of unity�
��	��� Preliminaries� The Hopf algebra which gives rise �as in the section �� to

the quantum space V �
q is an algebra U � Uq�sl��� generated by elements K� K���

E and F and relations

KK�� � K��K � � � KE � q�EK �

KF � q��FK � �E�F � �
K �K��

q � q��
�

���	���

the coproduct is de�ned on the generators by

�K � K �K � �E � E �K � ��E � �F � F � � �K�� � F ����	���

the counit � and the antipode S are de�ned on the generators by

��K� � � � ��E� � � � ��F � � � ����	���

S�K� � K�� � S�E� � �EK�� � S�F � � �KF ����	���

The algebra Uq�sl�� has a central element� a q�deformed Casimir operator�
C � qK � q��K�� � �q � q����FE ����	���

If q � exp��� andK � exp��H�� the combination C��
�q�q����� �

� tends to the standard

Casimir operator H�

� � H
� � FE in the classical limit �� ��
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Consider a vector space V ��� j�� j � Z	�� j � �� �� � � � � �
�l��
� and � � �� with

a basis femj � m � j� j � �� � � � ��jg� Denote by K��� j�� E��� j� and F ��� j� the
operators

K��� j�emj � �q�memj �

E��� j�emj � em
�
j �

F ��� j�emj � � �j �m�q�j �m� ��qe
m��
j �

���	����

In these formulas� the right hand side should be replaced by � if m� � runs out of
the allowed range�

The operators ���	���� realize standard representations of Uq� When q is not
a root of unity� the representations V ��� j� exhaust the list of all irreducible repre�
sentations�

The expression

R � e�
H�H
�

X
m��

�q � q���m

mq *
q
m�m���

� �E � F �m ����	����

being understood informally� intertwines the coproduct with the opposite coprod�
uct� However� because of the denominators� the expression ���	���� does not make
sense when q is a root of unity� One may ask whether it is possible to rede�ne
R at these values of q� The answer is negative� A standard argument goes as
follows� If R existed� we would have an isomorphism V �W � W � V for any
two representations of U � for which R is de�ned �R would intertwine the tensor
products��

Elements x � E
�l� y � F

�l and z � K
�l are central� we have

�z � z � z ��x � x� z � �� x � �y � y � � � z�� � y ����	����

There is a family of representationsW�ab of dimension "l �the index j runs from

� to "l � ���

K � vj �� �q��jvj �

F � vj �� vj
� for j � "l � � �

E � vj �� ��q
��j����qj��

q�q�� jq � ab�vj�� � for j 
 � �

F � v�l�� �� bv� � E � v� �� av�l�� �

���	����

The values of the parameters �� a and b are not restricted �one only needs � 
� ���
In the representation W�ab� the value of the element y is b� the value of the

element z is �
�l�

Assume that V �W � W � V � Then� applying the formula ���	���� for the
coproduct of the element y� we �nd

yV � z��V yW � yW � z��W yV ����	��	�

where yV and zV are the operators� corresponding to the elements y and z in the
representation V �the same for W ��

Take V � W�ab and W � W�cd� Then ���	��	� implies a relation between ��

� b and d� a contradiction�
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�� Hopf ideals

Here we collect some information about Hopf ideals of a �nite codimension in
U �

The Hopf subalgebra of Laurent polynomials in K coincides with the group
algebra C�Z� of the additive group Z of integers�

Lemma� Let I be a proper Hopf ideal in C�Z�� Then I is generated by �Kj � ��
for some j�

Proof� Any ideal I in C�Z� is a principal ideal� I � �f�� where f�t� � tj�aj��t
j���


 
 
� a� is a polynomial with a� 
� ��
The element

�f�K� � Kj �Kj � aj��K
j�� �Kj�� � 
 
 
� a����	����

equals

�aj��K
j�� � 
 
 
� a��� �aj��K

j�� � 
 
 
� a�� � aj��K
j�� �Kj�� � 
 
 
� a�

in the algebra C�Z�	I � C�Z�	I � If I is a Hopf ideal then the element ���	����
must be zero� In particular� in the expression above� the coe�cient in � �Ki for
� � i � j�� must vanish� which gives a�ai � �� Therefore ai � �� Vanishing of the
coe�cient in �� � gives a��a� � �� � �� therefore a� � ��� Thus� f�K� � Kj � ��
and it is straightforward to check that �f� is a Hopf ideal for such f � �

Consider a Hopf ideal I of a �nite codimension� If E � I then K� � � �
�q � q���K�E�F � � I � therefore

�K� � ��F � F �q��K� � �� � F �q�� � ���mod I� � I �

so F � I � Thus the factor�algebra is C�Z���
Assume now that E �	I � Let +U be the factor�algebra of U by I �
According to the Lemma� �Kj � �� � I for some j� Therefore�

�Kj � ��E � E�q�jKj � �� � E�q�j � ���mod I� � I �

which implies j � m"l� so +zm � � in the factor�algebra +U �+z is the image in +U of the

central element z � K
�l � U��

Lemma� The central elements x � E
�l and y � F

�l belong to I �

Proof� Let +x be the image of x in +U � Let f�t� � ti � bi��t
i�� � 
 
 
 � b� be a

characteristic polynomial of +x in +U � We have
�f�x� � �x�z� � x��

i � bi���x�z� � x��
i�� � 
 
 
� b� �

where x� � x� �� x� � �� x and z� � �� z� Thus� in +U � +U one has

� � �f�+x� � ��bi���+x�+z��i�� � 
 
 
� b��� �bi��+x
i��
� � 
 
 
� b��

�
Pi��

s��

�
i
s

�
�+x�+z��

s+xi�s� � bi���+x�+z� � +x��
i�� � 
 
 
� b� �

���	����

where +x� � +x � �� +x� � � � +x and +z� � � � +z� The coe�cient in� for example�
�+x�+x

i��
� � is +z�i� Thus� i � �� therefore� +x � � or x � I � Similarly� y � I � �
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Denote by Im the ideal

Im � fE�l� F
�l�Km�l � �g ����	����

We shall call it a congruence ideal� and the number m � level�
We have shown that each Hopf ideal of a �nite codimension contains a congru�

ence ideal Im for some m� The minimal m for which it happens� we shall call the
level of the ideal�

Denote Uq	Im by +Uq�m and the images of the elements E� F and K by +E� +F
and +K�

We shall give a complete description of +Uq�� �and of +Uq��� as an algebra��

�� Equation for C

We shall �nd a polynomial ��x� such that �� +C� � � � +C is the image of the
Casimir operator C ���	����� Later we shall prove that � is a minimal polynomial
for +C�

One has

�q � q����FE � C � �qK � q��K��� ����	����

Lemma� The following relation holds in Uq�

�q � q����iF iEi �

i��Y
a��

�C � �q�
�aK � q����aK���� ����	����

Proof� For i � � this is ���	����� Induction in i�

�q � q����i
�F i
�Ei
� � �q � q����F
Qi��

a���C � �q�
�aK � q����aK����E

� �q � q����FE
Qi��

a���C � �q�
�a
�K � q����a��K���� �

���	����

Use ���	���� to �nish the proof� �

Corollary� In +Uq�m one has

�l��Y
a��

� +C � �q�
�a +K � q����a +K���� � � ����	����

Proof� For i � "l� the lhs of ���	���� belongs to the ideal Im� �

Denote by p�x� a polynomial p�x� � � � x� � � � x
�l�� and let

pa �
�
"l
p�"qa +K� � a � �� � � � � "l � � ����	����

�We shall not use it� but it is known �see� e�g� ����� that �Uq�� and �Uq�� are quasitriangular�
say� for �Uq�� the universal R�matrix is

R �
�

�l

�lX

i�j	�

q��ijKi �Kj

�lX

s	�

�q � q���s

sq �
q
s�s���

� �Es � �F s ���������
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Then

+Kpa � "q�apa ����	��	�

The elements pa are the usual idempotents� decomposing ��

papb � �abpb � � � p� � 
 
 
� p�l�� ����	����

De�ne a polynomial ��x��

��x� �

�l��Y
a��

�x� q�
�a � q����a� ����	����

More precisely�

��x� �

��
�
Ql��

a���x� qa � q�a� � 
 � �

Q�l��
a���x� q"qa � q��"q�a� � 
 � �

���	����

Lemma� In +Uq��� one has
�� +C� � � ����	����

Proof� We have �using ���	��	�� the Corollary above and the fact that +C and +K
commute�

� �
Q�l��

a���
+C � �q�
�a +K � q����a +K����p�b

�
Q�l��

a���
+C � �q�
�a"qb � q����a"q�b��p�b � �� +C�p�b

���	����

for all b� Summing over b and using ���	���� we conclude that �� +C� � �� �

Remarks� �� For odd l the eigenvalue in ���	���� corresponding to a � � is simple�

the others have the multiplicity � � pairs �a� l�a�� For l even� "l odd� the eigenvalue

corresponding to a � �"l � ��	� is simple� the others have the multiplicity � � pairs

�a� "l � � � a�� For l even� "l even� all eigenvalues have the multiplicity � � pairs

�a� "l � �� a��

�� If we knew that � is a minimal polynomial� we could immediately state
that there are indecomposable but not irreducible representations� the center of a
semisimple algebra is semisimple�

��	��� Formatted matrix algebras over graded rings� Let  be a �nite abelian
group� � its dual�

Let A be a  �graded ring over C� that is� A � ��	��A� and if a � A�� b � A��

then ab � A��� �

Let I be a set� A couple �� consisting of the set I and a map I � � we shall
call a �format��

De
nition� A set of matrices X � fX i
jg with indices belonging to the set I and

with entries in A will be called a matrix algebra of format � over A �and denoted
by M��A�� if X

i
j � A��i���j��� �

Clearly� M��A� is an algebra�

In our examples the ring A will satisfy two conditions�



USES OF QUANTUM SPACES ��

C� A is local� that is� A	 radA is isomorphic to C�
C� The part of A which corresponds to the trivial representation of  is C itself�

in other words� radA � �
nontrivial �

A��

The simplest example is the algebraMn�C� of matrices of size n�n� Here the
group  is trivial� The algebra Mn�C� has only one representation � a column of
the matrix�

Similarly� for any algebra M��A�� the columns provide representation spaces�
Now there might be several types of columns� corresponding to the chosen format
��

An advantage of the introduced terminology is summarized in the following
lemma� which generalizes the properties of Mn�C��

Lemma� Assume that A satis�es conditions C� and C�� Then the columns realize
principal projective modules of M��A�� The set of principal projective modules is
in ��� correspondence with types of columns �that is� with the image of ��� The
classes of isomorphism of the quotients of the principal projective modules of each
type are in ��� correspondence with the graded quotients of A�

Therefore� a knowledge that some algebra is isomorphic toM��A� gives a com�
plete information about the representation theory for this algebra� there is no need
to study �rst irreducible representations� then their extensions etc�

Let �� be the Grassmann algebra in two variables � and �� It is graded by the
parity� the group  is Z�� Essentially� the format is speci�ed by two numbers� m
and n� we shall write � � mjn� The algebra Mmjn���� is the algebra of matrices�

X Y
Z W

�
����	����

the entries of the matrices X and W are even� the entries of the matrices Y and Z
are odd elements of ���

Remark� Let B be an algebra� Suppose that we know that it belongs to the class
of formatted algebras over graded rings� i� e� it can be represented as M��A� for
some choice of  � A� I and �� One may ask� how intrinsic the ring A is� whether
it is de�ned by the algebra B� It turns out that for di�erent rings A and A�� the
formatted matrix algebras over them can be isomorphic� In this case we shall say
that A and A� are GM�equivalent �GM stands for �Graded Matrices���

Example� Let A� be a ring over C generated by two elements �� and ���
satisfying ��� � ��� � � and ���� � ����� The ring A

� is graded by Z�� the grading
is given by a degree in the variables �i� deg �i � �� i � �� �� The format is again
speci�ed by two numbers� � � mjn� The algebras M�j����� and M�j��A

�� are
isomorphic� the isomorphism is given by�

a� � a��� b�� � b��
c�� � c�� d� � d���

�
��
�

a� � a����� b��� � b���
c��� � c��� d� � d�����

�
����	����

where ai� bi� ci� di � C� i � �� ��
Thus� the rings �� and A

� are GM�equivalent�
��	��� Matrix structure� In ����� after a description of irreducible and some

indecomposable representations of +Uq��� a regular representation of +Uq�� was de�
composed into a direct sum of indecomposable representations� As a consequence�
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the algebra +Uq�� decomposes into a direct sum of ideals� It was noticed in ����
that each of these ideals is isomorphic to a subalgebra in the matrix algebra whose
matrix elements belong to a Grassmann algebra in two variables�

We shall adopt an opposite point of view and start by establishing homomor�
phisms into the matrix algebras with Grassmanian entries� Then we shall prove
that the reduced enveloping algebras are direct sums of formatted matrix algebras
over the local ring ��� As explained above� this immediately provides an entire
information about all modules� in particular� the principal projective modules�

Some homomorphisms into matrix algebras� odd l

Here we shall consider the case when the number l is odd�
Let i � �j � �� Let K�i�� E�i� and F �i� be operators corresponding to � � �

in formulas ���	���� �pay attention to the order of the basis vectors� m � j� j �
�� � � � ��j� say� the matrix of the operator E�i� is upper�triangular��

We shall also use a matrix M�i�� de�ned by

M�i�emj � em��j���	����

on the same basis as in ���	�����
Let � and � be two Grassmann variables� �� � �� � �� � �� � ��
Let

K�i��



BB�

K�i�
�

� K� l� � i� ��

�
CCA ����	����

E�i��



BBBB�

E�i�
��� �
� 
 
 


��� �
� 
 
 


E� l� � i� ��

�
CCCCA ����	��	�

F�i��



BBBB�

F �i�

 
 
 ��
� ���


 
 
 �

� ���
F � l� � i� ��

�
CCCCA���



BB�

M�i�
�

� �M� l� � i� ��

�
CCA ����	����

Dots mean that the corresponding entries are zero�
The diagonal entries of the operator K�i� form a sequence fang� n � Z	lZ�

fang � fq�i� q��i���� � � � � q��i� q�� l��i���� � � � � q��� l��i���g �

Since ql � �� we have an
� � q��an for all n � Z	lZ� The non�zero entries of the
operators E�i� and F�i� are exactly on those places which are allowed by relations
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KE � q�EK and KF � q��FK� Next� one �nds

E�i�F�i� �



BB�

E�i�F �i�

E� l� � i� ��F � l� � i� ��

�
CCA� ��P���	����

and

F�i�E�i� �



BB�

F �i�E�i�

�F l
� � i� ��E� l� � i� ��

�
CCA� ��P ����	����

where

P �



BB�

�

��

�
CCA ����	����

We have �E�k�� F �k�� �
K�k��K�k���

q � q��
for all k� so

�E�i��F�i�� � K�i��K�i���
q � q��

�

Therefore� the operators E�i�� F�i� and K�i� provide a representation of the algebra
U �

It is easy to verify that E�i�l � F�i�l � � due to nilpotency of the Grassmann
variables� The relation K�i�l � � is evident� Thus� the matrices E�i�� F�i� and K�i�
realize a representation of +Uq���

Matrix structure of +Uq��� odd l

Formulas ���	��������	���� provide homomorphisms �j � �i� ��

�j � +Uq�� �Mjjl�j�������	����

for j � �� � � � � l � � and a homomorphism

�� � +Uq�� �Ml�C� ����	�	��

corresponding to j � l��
� �

All the eigenvalues of the operator K�i� are di�erent� so the diagonal matrices
diag��� � � � � �� �� �� � � � � �� are polynomials in K�i� �projectors on the eigenspaces
of K�i�� and belong to the image of �i� Now� looking at the matrices for the
operators E�i� and F�i�� one concludes immediately that �j is an epimorphism for
all j � �� � � � � l�

For the Casimir element +C one computes

�j� +C� � �qj � q�j�I � �q � q������P ����	�	��

�I is the identity operator� for j � �� � � � � l� � and ��� +C� � ��

Because of the ���term in ���	�	��� ��t� �
Ql��

a���x � qa � q�a� is indeed the
minimal polynomial for +C in +Uq���
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Let Pj � +Uq��� j � �� � � � � � l� � ��z� is the integer part of z� be central idempotents

corresponding to the eigenvalues qj � q�j of the semi�simple part of +C� P� � 
 
 
�
P� l� �

� � is the central decomposition of unity� We have +Uq�� � �jPj +Uq���
Let Yj � Pj +Uq��� j � �� � � � � � l� � and let Bj be the matrix algebras� B� �Ml�C�

and Ba �Majl�a����� a � �� � � � � � l� �� Then �j �
+Uq�� � Bj vanishes on Yk for k 
� j

because of the value of +C� Thus� we have a collection of epimorphisms Yj � Bj � so
their direct sum is an epimorphism

� � +Uq�� � �� l� �
j��Bj ����	�	��

Let B � �� l� �
j��Bj � We have dim�B�� � l� and dim�Ba� � �l�� a � �� � � � � � l� ��

Therefore� dim�B� � l� � l��
� 
 �l� � l��

On the other hand� relations ���	��� clearly allow an ordering� we can rewrite
any expression as� say� a linear combination of monomials +Ka +F b +Ec� Therefore�
dim� +Uq��� � l�� But ���	�	�� is the epimorphism� so dim� +Uq��� � l� and ���	�	��
is an isomorphism� We proved�

Proposition� For odd l� the algebra +Uq�� is isomorphic to a direct sum of formatted
matrix algebras�

+Uq�� �Ml�C��
� l� �M
a��

Majl�a���� ����	�	��

As a byproduct� we saw that the monomials +Ka +F b +Ec are linearly independent�
This is a version of the Poincar
e�Birkho��Witt theorem for +Uq��� the monomials
+Ka +F b +Ec� with a� b� c � �� � � � � l form a basis�

Exercise� Describe the matrix structure of +Uq�� �that is� K�l � ��� replace the
operators K�i�� E�i� and F �i� in formulas ���	��������	���� by the operators corre�
sponding to � � �� in ���	����� verify the de�ning relations for +Uq�� and show

+Uq�� �Ml�C��Ml�C��
l��M
a��

Majl�a���� ����	�		�

Remark� The algebra +Uq�� �or +Uq��� is unimodular� that is� the left and the right
integrals coincide�

R
�
R
L
�
R
R
�they are de�ned by x

R
R
� ��x�

R
R
and

R
L
x �

��x�
R
L�� The location of the integral inside the matrix blocks is very natural� In

the direct sum� describing the matrix structure of the algebra� there is exactly one
block M�j�l������� for which the �� � sub�block realizes the trivial representation

�the same holds for even l�� The integral isZ
�

�
�� �
� �

�
���	�	��

�so the evaluation on the integral might remind to someone a true integration over
Grassmann variables��

Example� l � �
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For q� � � we have �q�q���� � �� and �q � ��� The Casimir element satis�es
+C� � � +C � � � � +C � ���� +C � �� � � ����	�	��

For the block M� �the value of the Casimir element is �� we have�

��� +K� �



� q� � �

� � �
� � q��

�
A ����	�	��

��� +E� �



� � � �

� � �
� � �

�
A ����	�	��

��� +F � �



� � � �
�� � �
� �� �

�
A ����	�	��

Irreducible representations of dimensions � and � have the same value ���� of
the Casimir element� they can be glued indecomposably into a block M�j������

��� +K� �



� � � �

� q �
� � q��

�
A ����	����

��� +E� �



� � � �

� � �
� � �

�
A ����	����

��� +F � �



� � � ��

� � �
� �� �� �

�
A ����	����

The algebra +Uq�� has two blocks� +Uq�� �M����M�j������

Case when l is even� "l is odd

Now l � �"l and "l � �s� �� We have q�s
� � ��� so q� � �q is a primitive "l�th
root of unity� A substitution

+E� � � +E � +K � � +K � +F � � +F � q� � �q���	����

establishes an isomorphism of the algebra +Uq�� and the algebra +Uq��� whose matrix
structure we know already�

Matrix structure for even "l

We have l � 	s� "l � �s and q�s � ���
We shall describe simultaneously the matrix structures of +Uq�� �K�s � �� and

+Uq�� �K�s � ���
Let K��� j� E��� j� and F ��� j� be the operators as in ���	����� j � �� �� � � � � � s�

�� s� �
� � Note that ���	���� gives a representation of

+Uq�� only when j �the �spin��
is integer�
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Let j� � s��� j for j � �� �� � � � � � s��� Let C��� j� be the value of the Casimir
element in the representation V ��� j�� We have C��� j� � ��q�
�j � q����j�� Thus�
C���� j�� � C��� j��

On the representation V ��� s � �
� �� the Casimir element takes a value ������

Now the assignment

+K ��



BB�

K��� j�
�

� K���� j��

�
CCA ����	��	�

+E ��



BBBB�

E��� j�
��� �
� 
 
 


��� �
� 
 
 


E���� j��

�
CCCCA ����	����

+F ��



BBBB�

F ��� j�

 
 
 ��
� ���


 
 
 �

� ���
F ���� j��

�
CCCCA���



BB�

M��j � ��
�

� �M��j� � ��

�
CCA���	����

�dots mean that the corresponding entries are zero� establishes homomorphisms of
+Uq�� into graded matrix algebras over ���

There are also two homomorphisms

+Uq�� �M�s�C� ����	����

corresponding to the representations V ��� s � �
� ��

We have a collection C of homomorphisms ���	��	�����	���� and ���	����� Par�
allelly to the case of odd l� one shows that these are epimorphisms and then� by
counting dimensions� that the direct sum of the homomorphisms from C is an iso�
morphism� This proves�

Proposition� For even "l � �s� the algebra +Uq�� is isomorphic to a direct sum of
formatted matrix algebras�

+Uq�� �M�s�C��M�s�C��
�s��M
a��

Maj�s�a���� ����	����

The algebra +Uq�� is a direct sum of those terms in ���	���� for which a is odd�

+Uq�� �
sM

b��

M�b��j�s��b
����� ����	����

As for odd l� the matrix description implies the Poincar
e�Birkho��Witt theo�
rem� The monomials +Ka +F b +Ec� a� b� c � �� � � � � l for +Uq�� �a � �� � � � � �l for +Uq���� are
linearly independent and hence form a basis�
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Remark� The appearance of the sign � in the formulas ���	���� is related to the

existence of the following involution � in the case when "l � �s is even�

� � +K �� � +K � +E �� +E � +F �� � +F ����	����

The subalgebra +Uq���� of �xed points of the involution � consists of polynomials in
+K�� +F +K and +E�

To describe the matrix structure of the algebra +Uq����� let Qs���� be an algebra
of matrices �

A B
B A

�
����	����

A and B are s � s matrices� the entries of A are even� the entries of B are odd
elements of the ring ���

Then

+Uq���� �M�s�C��
s��M
a��

Maj�s�a���� �Qs�������	����

As for the algebra +Uq����� one keeps those terms in the direct sum ���	����
which correspond to an integer spin� Now the answer depends on the parity of s
�the appearance of the algebra Q�� that is� on the residue of l modulo ��

Example� l � 	

The algebra +Uq���
+K +E � � +E +K � +K +F � �FK � � +E� +F � � � ����	����

and

+K� � � � +E� � +F � � � ����	��	�

The Casimir operator is +C � �	 +F +E� it satis�es +C� � ��
The realization�

+K ��
�
�

��
�

� +E ��
�

�
�

�
� +F ��

� ��
�

�
����	����

This realization is faithful� the algebra +Uq�� has only one block� +Uq�� �M�j������

We have +E +F � � +F � +E � �� where +F � � +F +K� so the algebra +Uq���� is isomorphic
to the ring �� itself�

��	�	� Reduced function algebra� A reduced function algebra +Fq on SLq��� at
roots of unity is the algebra with generators a� b� c and d� subjected to relations
���	���� ���	��� and

ad� qbc � � ����	����

This last relation� together with dl � �� allows to express a in terms of d� b and c�
the algebra +Fq is generated by d� b and c only�

The algebra +Fq also has a formatted matrix structure� Let �� and �� be two
variables which satisfy

�l� � �l� � � � ���� � ���� ����	����

The algebra C���� ��� is graded by the degree in the variables �i� deg �� � deg �� �
�� The group  is the cyclic group Z	lZ� The format � is speci�ed by a set of
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l numbers� � � n�j � � � jnl��� the number nj corresponds to the character z ��
exp� ��il j�� where z is a given generator of  �

A map

b �� ��



BBBB�

� �
� �

� �
� �

� �

�
CCCCA � c �� ��



BBBB�

� �
� �

� �
� �

� �

�
CCCCA �

d ��



BBBB�

�
q

�
�

ql��

�
CCCCA

establishes an isomorphism

+Fq ��M�j����j��C���� �������	����

�all the numbers in the format equal ��� As for reduced enveloping algebras� this
isomorphism implies the Poincar
e�Birkho��Witt theorem�

��	��� Centre� We conclude the subsection by several remarks concerning the
centers of the algebras +Uq�m�

�� The center of the formatted matrix algebra Mmjn���� consists of matrices�
�� ��� �

� �� ���

�
����	����

with some constants �� � and �� It is ��dimensional�
There is a conjecture by Kaplansky� �A Hopf algebra of characteristic zero has

no non�zero central idempotents� �the citation is according to ������
This conjecture is false� the algebras +Uq�m provide a counter�example�

�� We have seen �eq� ���	�	��� that the image of the Casimir element is of the
form �

�� ��� �
� �� ���

�
����	����

Therefore� the Casimir element does not generate the whole center�
For the algebra U � when q is a primitive l�th root of unity� a theorem �see �����

states that the center of U is generated by the elements E
�l� F

�l� K
�l and C �and

that there is a polynomial relation between these elements� which is eq� ���	���� at

i � "l� for i � "l� the r�h�s� of ���	���� depends only on C and K
�l�� The image �in

+Uq��� of the algebra� generated by E�l� F
�l� K

�l and C� is the algebra of polynomials
in +C � As we saw above� it is a strict subalgebra in the center�

�� Let C�K� be a centralizer of K in U � One has C�K� �L�l
i��Ai where Ai is

spanned by elements F iKaEi� The subspace A�� �
L�l

i�� Ai is an ideal in C�K�
and A� is a complementary subalgebra� A � A� �A���

We have a well�de�ned projection � � C�K�� A��
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Let Z be the center of U � it is a subalgebra in C�K�� The restriction � � �Z
of the projection � to the center Z is called a Harish�Chandra homomorphism� It
is known to be injective when q is not a root of unity�

For the reduced algebras +Uq�� �or +Uq��� the Harish�Chandra homomorphism is
de�ned in the same way� However� the injectivity is lost� because the center +Z is
not semi�simple while the algebra +A� is� One veri�es that the kernel of the Harish�
Chandra homomorphism coincides with the RadZ � It is natural to conjecture that
this holds for quantum deformations for all semi�simple Lie algebras�

�� �R
matrices

The �rst subsection is a summary of some essential facts from the theory of
quasi�triangular Hopf algebras and their representations�

The �R matrix for the standard quantum group GLq�N� is ���� �	��

�Rij
kl � q�ij �il�

j
k � �q � q���,�l � k��ik�

j
l ��	�����

where ,�i� � � for i 
 � and ,�i� � � otherwise� The indices run from � to N �

The �R�matrix �	����� belongs to a class of �ice� �R�matrices� the precise de�ni�
tion of the ice condition is in the second subsection� There we give a classi�cation
of ice �R�matrices� The main result is that they are all of GL type�

The �nal subsection establishes a way to build� starting from an arbitrary �R�
matrix of GL�type� �R�matrices for orthogonal and symplectic quantum groups�

���� Skew
invertibility� The �rst part of this chapter is a short reminder on
the general theory of quasi�triangular Hopf algebras� originating mostly from �����

Then we discuss an important notion of �skew�invertibility� and explain how
it arises in the context of the quasi�triangular Hopf algebras�

In the second part we derive� on a representation level� matrix analogues of
some identities in Hopf algebras� These matrix identities will be needed for the
discussion of the �R�matrices for orthogonal and symplectic quantum groups�

	����� Generalities on Hopf algebras� Let A be a Hopf algebra�
We recall that

m�S � id���a� � ��a� � ��	�����

m�id� S���a� � ��a� � ��	�����

��� id�� � �id� ��� � id ��	�����

where S is the antipode and � is a counit�
We use a standard notation omitting a summation index� for example� instead

of writing ��x� �
P

i x
i
� � xi� we shall simply write ��x� � x��� � x����

�� The Hopf algebra A is called almost cocommutative if there exists an invertible
element R � A�A such that

���x�R � R��x��	���	�

for any element x � A� Here �� is the !ipped coproduct� ���x� � x��� � x��� for
��x� � x��� � x����

We symbolically write R � a� b instead of R �
P

i ai � bi�
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Let ���x� � x��� � x��� � x��� ��
� � ��� id�� � �id������ By �	���	�� we

have

x���a� x���b� x��� � ax��� � bx��� � x��� ��	�����

x��� � x���a� x���b � x��� � ax��� � bx��� ��	�����

Let u � S�b�a� Applying id� S � S� to �	����� and multiplying terms in the
inverse order� one obtains

S��x�u � ux ��	�����

Applying id� S � S� to �	����� and multiplying terms� one obtains

xS�u� � S�u�S��x� ��	�����

Eqs� �	����� and �	����� hold for an arbitrary x � A so the element S�u�u is
central�

Exercises�

�� Take a !ip of �	���	�� ��x�R�� � R���
��x�� and derive� parallelly to �	����� and

�	������ identities

xv � vS��x� ��	�����

S��x�S�v� � S�v�x ��	������

where v � aS�b��

�� This exercise is taken from �����
Let A be a Hopf algebra �not necessarily almost cocommutative�� Let T be an

operator on A� A de�ned by

T �a� b� � aS�b����b��� � b��� ��	������

Show that T satis�es the Yang�Baxter equation� T��T��T�� � T��T��T��� Show that
for a cocommutative A� the operator T reduces to the identity operator�

�� The Hopf algebra A is called quasi�triangular if

��� id�R � R��R�� ��	������

�id���R � R��R�� ��	������

Exercise� Show that any of these formulas� together with �	���	�� implies the Yang�
Baxter equation

R��R��R�� � R��R��R�� ��	����	�

Applying �� id � id to the formula �	������ gives R � �� � id��R�R or� upon
canceling by R�

��� id�R � � ��	������

Similarly� an application of id� id� � to �	������ gives

�id� ���R� � � ��	������
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Applying S to the �rst tensor argument of �	������� multiplying the �rst two
arguments and using �	������� one obtains

�S � id�R � R�� ��	������

Similarly�

� id� S�R�� � R ��	������

Together� eqs� �	������ and �	������ imply

�S � S�R � R ��	������

�� Some properties of the element u

An immediate consequence of �	������ is

v � S�u� ��	������

Let R�� � c�d� We have � � �id�S��RR��� � �id�S��ac�bd� � ac�S�d�S�b��
Using �	������� one can rewrite it in the form

a�a� bS�b�� � � ��	������

where the prime means another copy� the full version of a�a� bS�b�� is
P

i�j aiaj �
bjS�bi�� Multiplying the tensor terms of �	������ in the inverse order� we get bua �
�� or� by �	������ bS��a�u � �� On the other hand� ubS��a� � S��b�uS��a�� which�
by �	������� equals bua � �� Thus� the element u is invertible�

u�� � bS��a� ��	������

Exercise� Prove that the element u is invertible in the general almost cocommuta�
tive setting �i�e�� without assuming the quasi�triangularity��

Using the invertibility of u� one can rewrite �	����� in the form

S��x� � uxu�� ��	������

In particular� the antipode S is invertible �since S� is invertible�� Note that in
the quasitriangular situation� eqs� �	������ �	����� and �	������ follow from �	�����
because of �	������ and the invertibility of S�

For x � u� eq� �	������ gives

S��u� � u ��	����	�

For x � S�u�� eq� �	����� gives S��u�u � uS�u�� which� in view of �	����	�� implies

uS�u� � S�u�u ��	������

�� Coproduct of u

From quasi�triangularity properties �	������ and �	������ it follows that

������R� � R��R��R��R�� ��	������

or

a��� � a��� � b��� � b��� � aa�� � a�a��� � b��b��� � bb� ��	������

where� as usual� primes denote di�erent copies�
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Rewriting the Yang�Baxter equation �	����	� in the form

R��
�� R��R�� � R��R��R��

��

and using �	������� we obtain

a�a�� � S�a�b� � bb�� � a��a� � b�S�a�� b��b ��	������

Now

��u� � S�b����a��� � S�b����a���
������
�
� S�bb��� aa�� � S�b��b����a�a���

� S�b��ua�� � S�b��b����a�a���
�����
�
� S�b��S��a���u� S�b��b����a�a���

� S�S�a���b��u� S�b��b����a�a���
��������
� S�b�S�a����u� S�b���b���a���a�

� S��a���S�b��u� S�b���ua�
��������
� S�a���S�b��u� b��ua�

������
�
� R�� 
 S�b��u� ua�

�����
�
� R�� 
 S�b��u� S��a��u

��������
� R�� 
 b�u� S�a��u

������
�
� R��R��

�� 
 u� u �

�	������

A number over ��� refers to an equation which is used in the corresponding equality�
Denote the element R��R � A�A by �� � � R��R� We obtained

��u� � ��� 
 u� u ��	������

Obviously� ���x� � ��x�� for any x � A� The element � plays in important
role in the theory of quasi�triangular Hopf algebras� a map from A� �a dual Hopf
algebra� to A� f �� h�� fi� �the pairing with the second argument of �� is called a
factorization map� The algebra A is called factorizable if the factorization map is
not degenerate �and A is called triangular if � � ���

For x � u� eq� �	���	� gives �using �	�������

R 
 u� u � u� u 
 R�	������

�note that this equality follows from eqs� �	������ and �	������ as well��
Using now that ��S�x�� � �S � S����x� for any x� one obtains

��S�u�� � ��� 
 S�u�� S�u� ��	������

Therefore� the element g � uS�u��� is group�like� ��g� � g � g� the fourth power
of the antipode is given by the conjugation by g� S��x� � gxg���

For the central element uS�u� we have ��uS�u�� � ��� 
 uS�u� � uS�u�� If
there exists a central element � � A such that �� � uS�u� and ���� � ��� 
 �� ��
one says that A is a ribbon Hopf algebra� the element � is then called the ribbon
element�

Exercise� Show that ���� � �� S��� � � and R 
 �� � � �� � 
 R�
	����� Matrix picture� Let t be a representation of A in a vector space V � The

numerical R�matrix is

R � �t� t��R��	������

or� in some basis of V � Rij
kl � t�a�ikt�b�

j
l � As usual� P will denote the permutation

matrix�
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Eq� �	������ produces the following matrix equation

Rij
kl-

sl
it � �sk�

j
t ��	����	�

where - � �t� t��a� S�b��� -ij
kl � t�a�ikt�S�b��

j
l �

Thus for �R � PR� �Rde
af � Red

af � and
�- � P-� �-ba

cd � -ab
cd� we have

�Rba
cd
�-de
af � �ec�

b
f ��	������

One can rewrite it without indices as

tr�� �R��
�-��� � P�� ��	������

We could have used instead of �	������ an equivalent relation

� � �id� S��R��R� � �id� S��ca� db� � ca� S�b�S�d�
��������
� a�a� S�b�b�

to obtain in the matrix form

tr�� �-��
�R��� � P�� ��	������

De
nition� Given an operator �R� a solution of eq� �	������ �respectively� eq�

�	������� is called a right �respectively� left� skew inverse of �R� The operator �R is
called skew�invertible if it has left and right skew inverses�

We are concerned only with a �nite�dimensional case� in which the relations
�	������ and �	������ are equivalent� �A��B�ebcf � Aes

ctB
tb
sf is an associative product

on the space of tensors with two upper and two lower indices� the permutation
P ij
kl � �il�

j
k is a unit element for the operation �� and eq� �	������ �correspondingly�

�	������� de�nes �- as the right �correspondingly� left� inverse of �R with respect to
��� In a �nite�dimensional algebra left and right inverses �when one of them exists�
coincide�

This product re!ects a product� ����������� � ����� de�ned for elements
of the tensor square of an arbitrary algebra� for x� y � A � A and z � x � y let
X � �t�t��x�� Y � �t�t��y� and Z � �t�t��z� be their images for the representation
t� Then Zij

kl � Xaj
kbY

ib
al or

�Z � �X ���Y �
Let Q � t�u� be the image of the element u� Qi

j � t�S�b��ikt�a�
k
j � -ki

jk� or

Q� � tr�� �-��� ��	������

Similarly� for "Q � t�S�u�� we have

"Q� � tr�� �-��� ��	������

Thus�

tr�� �R��Q�� � I� and tr�� "Q�
�R��� � I� ��	���	��

where I stands for the identity operator in a corresponding space�
If the representation t is irreducible� the central element uS�u� takes a constant

value� the square of the value of the ribbon element� Thus� for an irreducible
representation� the product Q "Q is proportional to unity�


More generally� for an element � � ��� � � � �n � A�n and an element � � ��� � A�A one
de�nes ���kl �� ���� � ����k�� � ���l��� � ���n and �kl�� �� ���� � ���k��� � ����l�� � ���n�
then there are rules like �x��y�
�� z�
 � �y�
z�
�� x��� x��x�
x�
 � x�
 � �x��x�
� etc�
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Exercise� Show that the standard �R�matrix �	����� is skew�invertible with

�-ab
cd � q��ab�ad�

b
c � �q � q���,�d� c�q�c��d�ac �

b
d ��	���	��

Show that

Qa
b � q��N
�a���ab and "Qa

b � q���a�ab ��	���	��

so the value of the square of the ribbon element is q��N �

We now adopt another point of view and forget that there was a quasi�triangular
Hopf algebra behind� We shall leave� as a trace of quasi�triangularity� only the
assumption that the numerical matrix �R is skew�invertible� and derive� purely in
the matrix language� some consequences �for �-� of the Yang�Baxter equation�

Below we constantly use the following simple fact�

tr��P��� � I� ��	���	��

Multiplying the Yang�Baxter equation �R��
�R��

�R�� � �R��
�R��

�R�� from the left
by �-a�� from the right by �-�b �a and b should be understood as numbers of some
copies of the space V �� taking traces in the spaces � and � and using �	������ and
�	������� we obtain �after relabeling spaces � we do it in order to avoid a redundancy
of unnecessary symbols� the result is formulated for the spaces with numbers �� �
and ��

tr�� �-��
�R��

�R���P�� � P�� tr�� �R��
�R��

�-��� ��	���		�

Exercise� The Yang�Baxter equation implies that �R��
�R��

�Rn
�� � �Rn

��
�R��

�R�� and
�Rn
��
�R��

�R�� � �R��
�R��

�Rn
�� for an arbitrary integer n� Show that

tr�� �-��
�R��

�Rn
���P�� � P�� tr�� �R

n
��
�R��

�-����	���	��

and

tr�� �-��
�Rn
��
�R���P�� � P�� tr�� �R��

�Rn
��
�-��� ��	���	��

Deduce from �	���	�� and �	���	�� that

tr�� �-��
�Rn
�
�� � � P�� tr�� �R

n
��
�R��Q�� ��	���	��

tr�� �-��
�Rn
�
�� � � P�� tr�� �R��

�Rn
��Q���	���	��

and then

tr�� "Q�
�Rn
�
�� � � tr�� �R

n
�
�� Q�� ��	���	��

Since the permutation matrix P squares to the identity� we can rewrite �	���		�
as

P�� tr�� �-��
�R��

�R��� � tr�� �R��
�R��

�-���P�� ��	������

Multiplying �	������ from the left by �-a�� from the right by �-�b� taking traces in
the spaces � and � and using �	������ and �	������� we obtain

tr��� �-a�P�� �-��
�R��P�b� � tr���Pa� �R��

�-��P�� �-�b� ��	������

This equation can be simpli�ed� The expression under the trace in the l�h�s� can

be rewritten as �-a�P�� �-��
�R��P�b � �-a�P��P�b �-�b

�Rb�� Now the trace in the space
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� can be taken �by �	���	���� so the l�h�s� of �	������ is tr�� �-a�P�� �-�b
�Rb��� We

have

tr�� �-a�P�� �-�b
�Rb�� � tr�� �-a�P�� �-�b� �Rb�

� tr��P�� �-a�
�-�b� �Rb� � tr��P�� �-�b

�-a�� �Rb�

� tr��P�� �-�b� �-a�
�Rb� � tr�� �-�bP��� �-a�

�Rb�

� �-�b
�-a�

�Rb� �

�	������

In a similar way one simpli�es the r�h�s� of �	������ and obtains �after relabeling
spaces�

�-��
�-��

�R�� � �R��
�-��

�-�� ��	������

Assume that an operator B has a left skew inverse A� tr��A��B��� � P�� �or
A��B � P �� Then for any operator X�� which acts as the identity in the space ��
we have

tr��A��X�B��� � tr���A��X�P��B���

� tr���A��X�B��P��� � tr���A��B��X�P���

� tr��P��X�P��� � tr�X�I� �

�	����	�

where I� is the identity operator in the second space�
Therefore� taking tr� of �	������� one obtains

�R��Q�
�-�� � Q�I� ��	������

similarly� taking tr� of �	������� one obtains

�-��
"Q�
�R�� � I� "Q� ��	������

Here Q and "Q are the operators de�ned in �	������ and �	�������

On the other hand� one can rewrite eq� �	���		� as P�� tr�� �-��
�R��

�R��� �

tr�� �R��
�R��

�-���P�� or

tr�� �-��
�R��

�R���P�� � P�� tr�� �R��
�R��

�-��� ��	������

Exercises�

�� Multiply �	������ from the left by �-a�� from the right by �-�b� take traces in the
spaces � and � and obtain

�-��
�-��

�R�� � �R��
�-��

�-�� ��	������

�� Assume that an operator B has a left skew inverse A� tr��A��B��� � P��� Show�
similarly to �	����	� that

tr��A��X�B��� � tr�X�I� ��	������

�� Apply tr� or tr� to eq� �	������ and deduce that

�-��Q�
�R�� � Q�I��	������
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and

�R��
"Q�
�-�� � "Q�I� ��	������

	� Let � � a� S�b� � A�A �R � a� b is the universal R�matrix�� Show that

R�������� � ������R�� ��	������

R�������� � ������R�� ��	������

Show that these equalities induce� on the level of a representation� equalities �	������
and �	������ respectively�

�� What are Hopf�algebraic counterparts of eqs� �	������� �	������� �	������ and
�	������'

Write equations �	������� �	������� �	������ and �	������ in the form

Q�
�-�� � �R���� Q� ��	����	�

�-��
"Q� � "Q�

�R���� ��	������

�-��Q� � Q�
�R���� ��	������

"Q�
�-�� � �R����

"Q� ��	������

A compatibility of these equations provides new relations��
Comparing tr� of eqs� �	����	� and �	�������

Q�
"Q� � tr�� �R

��
�� Q�� and "Q�Q� � tr��Q�

�R���� ��	������

and using the cyclic property of trace to move Q�� we conclude that

Q "Q � "QQ ��	������

This is a matrix counterpart of eq� �	�������
Using �	����	���	������� we can express in two di�erent ways combinations

Q�
�-��

"Q�� Q�
�-��Q�� Q�

"Q�
�-��� �-��

"Q�Q�� "Q�
�-��

"Q� and "Q�
�-��Q�� This results in

�R���� Q�
"Q� � Q�

"Q�
�R���� ��	������

�R���� Q�Q� � Q�Q�
�R���� ��	������

"Q�
�R���� Q� � Q�

�R����
"Q� ��	������

"Q�
�R���� Q� � Q�

�R����
"Q� ��	������

�R����
"Q�
"Q� � "Q�

"Q�
�R���� ��	����	�

�R����
"Q�Q� � "Q�Q�

�R���� ��	������

�Eqs� �������� and �������� also have a nontrivial compatibility relation� 
R�� commutes with

��



��
��

��
�
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Eqs� �	������ and �	����	� re!ect the fact that for a quasi�triangular Hopf algebra
A� elements u� u and S�u�� S�u� commute with R �see eq� �	��������

It is interesting to compare eqs� �	������ and �	������ in the Hecke case� when

the �R�matrix satis�es a quadratic equation �R� � � �R � � with � 
� �� Rewriting
eq� �	������ as �R��Q�

"Q� � Q�
"Q�
�R�� �we used that Q commutes with "Q� and

subtracting from �	������ we obtain

Q "Q � const ��	������

So� even if a representation t is not irreducible but the �R�matrix is of Hecke type�
the value of the square of the ribbon element on all subrepresentations of t is the
same�

If � � � �i�e� �R is triangular� �R� � ��� eq� �	������ implies immediately that

Q "Q � I �

Exercise� Suppose that operators Q and "Q are invertible� Show� without taking
skew inverses� that eqs� �	������ and �	������ follow from eqs� �	������� �	�������
�	����	� and �	�������

Use �	���	�� �or multiply �	������ from the left by Q� and use �	����	� � to
obtain

tr�� �R��
�R���� Q�� � Q�P�� ��	������

Therefore� if Q is invertible then �R�� has a skew inverse �.� �.�� � Q�
�R��Q

��
� �

On the other hand� assume that �R�� has a skew inverse �.� Multiply �	������

by �.�� and take tr� to obtain tr���.���Q� � I��

Therefore� Q is invertible i� �R�� has a skew inverse� Similarly� "Q is invertible
i� �R�� has a skew inverse�

It follows then that Q is invertible i� "Q is invertible�
There is also an implication� Q is invertible � �- is invertible �it follows im�

mediately from� for example� �	����	��

Assuming that the operator �- is invertible� one can rewrite the Yang�Baxter
equation entirely in terms of �-� To this end� rewrite eq� �	������ in the form

�-��
�R��

�-���� � �-����
�R��

�-�� ��	������

Multiplying �	������ from the left by �-a�� from the right by �-�b� taking traces in
the spaces � and � and using �	������ and �	������� we obtain

P�� tr�� �-��
�-����

�-��� � tr�� �-��
�-����

�-���P�� ��	������

Note that on the way from the Yang�Baxter to eq� �	������ we were making
only reversible transformations� so eq� �	������ is equivalent �assuming the skew�

invertibility of �-� to the original Yang�Baxter equation�
We conclude by a remark that from the Hopf�algebraic point of view the in�

vertibility of �- is natural� The element � � a� S�b� � A�A has an inverse�

��� � a� S��b� ��	������

Also� the element R�� has a �left and right� skew�inverse � �that is� the inverse
with respect to the multiplication ���

� � S��a�� b ��	������
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From the Hopf�algebraic perspective the matrix identities which we derived are
quite transparent� However� for the construction of orthogonal and symplectic �R�
matrices one needs the matrix form of the identities� so it is important to understand
how much one can derive using only matrices�

Exercises�

�� Verify �	������ and �	������� show that

R�������� � ������R�� ��	������

R�������� � ������R�� ��	������

R�������� � ������R�� ��	����	�

R�������� � ������R�� ��	������

�� What are Hopf�algebraic counterparts of eqs� �	���		� and �	������'

���� Ice �R
matrices� The standard �R�matrix �	����� has two properties� it
is of Hecke type �that is� it has two eigenvalues� and it satis�es the so�called �ice�

condition which means that �Rij
kl can be di�erent from zero only if the pair of the

upper indices fi� jg is a permutation of the pair of the lower ones� fi� jg � fk� lg or
fi� jg � fl� kg� Here we shall explain that these two properties �Hecke and ice� are
not independent� we shall introduce the notion of indecomposable ice �R�matrix and
demonstrate that such �R�matrices satisfy the Hecke condition	� Ideologically� this
shows that the search of ice solutions of equations similar to the Yang�Baxter equa�
tion is justi�ed only in the Hecke case �and then one imposes the Hecke condition
�rst� as it is done in ���� for the dynamical Yang�Baxter equation��

Let �Rij
kl � aij�

i
l�
j
k� bij�

i
k�

j
l be an ice matrix� We �x bii � � for uniqueness� Let

also ai � aii�
We suppose that the matrix �R is invertible and skew�invertible� It follows then

�an easy exercise� that ai 
� � and aij 
� � for all i and j�

Assume that �R satis�es the Yang�Baxter equation� Y ikj
abc � �� where Y ikj

abc �

� �R��
�R��

�R�� � �R��
�R��

�R���
ijk
abc�

When two indices among fi� j� kg are di�erent� the equation Y ikj
abc � � gives

�here i 
� j��

aijbijbji � � ��	�����

bij�a
�
i � aibij � aijaji� � � ��	�����

bij�a
�
j � ajbij � aijaji� � � ��	�����

�The opposite is not true� there are many Hecke 
R�matrices which cannot be brought to an
ice form by a change of a basis�
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For all three indices fi� j� kg di�erent� i 
� j 
� k 
� i� equations are

�aijaji � ajkakj�bik � bijbjk�bij � bjk� � � ��	���	�

ajk�bijbik � bijbjk � bikbkj� � � ��	�����

aij�bjkbik � bijbjk � bjibik� � � ��	�����

Let  be a graph with vertices i� We draw an oriented edge �ij from the vertex i to
the vertex j if the number bij is not zero�

Since aij 
� �� eq� �	����� shows that two vertices can be joined by not more
that one edge�

When the graph  is not connected� equations� corresponding to di�erent con�
nected components� do not notice each other� So� one has to study only the situation
when the graph  is connected�

De
nition� We say that the ice �R�matrix is indecomposable if its graph  is
connected�

Proposition� Let �R be an invertible and skew�invertible solution of the Yang�
Baxter equation� Assume that �R satis�es the ice condition and is indecomposable�
Then �R is of Hecke type �that is� it satis�es a quadratic equation��

Proof� Since aij 
� � for all i and j� eqs� �	����� and �	����� imply

bijbik � bijbjk � bikbkj � � ��	�����

bjkbik � bijbjk � bjibik � � ��	�����

�i� Suppose that the graph  has edges �ij and �jk� Then  has an edge �ik� as on
the Figure�

x

x

x
Z
Z
ZZ� �

�
���
�

i

j

k

This is an immediate consequence of eq� �	������ bkj � � because� by assump�
tion� bjk 
� �� therefore� bij�bik � bjk� � � but� by assumption� bij 
� ��

�ii� Suppose that the graph  has edges �ij and �kj� Then  has either an edge �ik

or an edge �ki� as on the Figures�

x

x

x x

x

x
Z
Z
ZZ�

�
�

�
��	

Z
Z
ZZ�



�

�
��	

i

j

k i
or

j

k
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To prove this� interchange j and k� j 	 k� in eq� �	������

bkjbij � bikbkj � bkibij � ��	�����

and note that either bik or bki is ��
�iii� Situations when  has edges �ji and �kj or edges �ji and �jk are considered
similarly�

We conclude�

�a� If  contains two sides of a triangle� it contains the third side� This immediately
implies �since  is connected� that  is a full graph� that is� every two vertices are
joined� In other words� for each pair �i� j� at least one number� bij or bji� is not
zero� fbij � bjig 
� f�� �g�
�b� An oriented triangle of  is never a cycle �see Figures above�� By �a��  is the
full graph� an easy exercise shows then that  has no cycles� Therefore� orientations
of edges induce an order on the set of vertices and we can relabel vertices in such
a way that  has an edge �ij �  if and only if i � j� In other words� bij 
� � if and
only if i � j�

Consider a triangle with vertices i� j and k� i � j � k� Then the oriented edges

are �ij� �ik and �jk� We have bji � bkj � �� eq� �	����� shows that bik � bjk� eq�
�	����� shows that bik � bij � Therefore� for all i and j with i � j the parameters
bij take the same value� say b� bij � b�

At this stage� eqs� �	������ �	����� and �	����� are solved and the �R�matrix has
the form

�Rij
kl � aij�

i
l�
j
k � b,�l� k��ik�

j
l ��	������

�iv� Eq� �	���	� simpli�es now� it implies that all the products aijaji take the same
value� Denote this value by a� aijaji � a for all i and j with i 
� j�
�v� The remaining two equations� �	����� and �	����� imply that for all i the pa�
rameters ai satisfy a quadratic equation

a�i � bai � a � � ��	������

Now it is immediate to verify that the matrix �R satis�es the same quadratic equation

�R� � a� b �R ��	������

The proof of the Proposition is �nished� �

When 	a� b� � �� the matrix �R has a nontrivial jordanian structure�
Assume that eq� t��bt�a � � has two di�erent roots �� and ��� In this case the

matrix �R is diagonalizable and has two projectors� Let m �correspondingly n� be
the number of those ai which are equal to �� �correspondingly ���� Then the ranks

of the projectors are
m�m� ��

�
�
n�n� ��

�
�mn and

m�m� ��

�
�
n�n� ��

�
�mn�

These are exactly the ranks of the symmetrizer and the antisymmetrizer for the
superspace of dimension mjn� The �R�matrices� constructed in the Proposition

above� are called the multiparametric �R�matrices for the quantum supergroups
GLq�mjn�� we have shown that with the ice condition there are essentially no more
solutions�
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���� Construction of orthogonal and symplectic �R
matrices� Let V be
a vector space and V � its dual� The natural pairing between V and V � can be used
to de�ne either a symmetric or antisymmetric scalar product on the space V �V ��
This scalar product is invariant under the natural action of the group GL�V � of
general linear transformations of the space V � Therefore� GL�V � gets imbedded
into a corresponding orthogonal or symplectic group�

Such logic goes very well for quantum spaces also� We shall model in this way
quantum spaces for orthogonal and symplectic quantum groups�

�� Yang�Baxter equation and ordering

A quantum space� being de�ned by only a part of projectors of an �R�matrix�
does not carry the whole information about the �R�matrix itself� It is not di�cult to
�nd a quantum space which can be de�ned by several di�erent �R�matrices �Exercise�
give an example��

However� there is a convenient way to encode an �R�matrix in a framework
of quantum spaces� It requires several copies of a quantum space� Let xi be
coordinates of some quantum space� We shall not be interested in commutation
relations between the elements xi� rather� we introduce copies� say x���i� x���i etc�
and de�ne commutation relations between di�erent copies to be

x�M�ix�N�j � �Rij
kl x�N�

kx�M�l�	�����

for M � N � The relations �	����� allow to reorder any multilinear combination
x�M��

i�x�M��
i� � � � x�Mp�

ip with pairwise distinct labelsM��M�� � � � �Mp in the de�
scending �with respect to the labels M��M�� � � � �Mp� order�

There are two ways to reorder a monomial x�M��
i�x�M��

i�x�M��
i� � withM� �

M� � M�� in a descending way� starting from x�M��
i�x�M��

i� or x�M��
i�x�M��

i� �
The equality of two resulting ordered expressions is a compatibility condition� As�
sume that monomials x�M��

i�x�M��
i� � � � x�Mp�

ip � where M� 
 M� 
 
 
 
 
 Mp�
are linearly independent� Then the compatibility condition is precisely equivalent
to the Yang�Baxter equation for the matrix �R� This interpretation of the Yang�
Baxter equation is very useful especially in cases when the index i of coordinates
xi is composite �like� for instance� a pair of indices f�� �g if one wants to view the
elements T�

� of the quantum matrix as coordinates of a quantum space��

In the sequel� to avoid the cumbersome notation x�M�i� we shall write xiyj �
�Rij
kl y

kxl instead of �	������

�� Assumptions

Our starting point is a solution �R of the Yang�Baxter equation� We impose
several conditions�

A�� �R is invertible�
A�� �R is skew�invertible with a skew inverse �-�
A�� an operator Q de�ned by �	������ is invertible �thus� "Q de�ned by �	������

is invertible as well��

As any solution of the Yang�Baxter equation� �R de�nes a quantum group� in
this subsection it will be enough to understand it as an algebra generated by T i

j
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and �T���ij with relations

�R��T�T� � T�T� �R���	�����

and

TT�� � T��T � I ��	�����

or T i
j �T

���jk � �T���ijT
j
k � �ik�

We need one more assumption� The relations �R��T�T� � T�T� �R�� imply that
W��T�T� � T�T�W�� for any polynomial W in �R� W �

P
� c�

�R�� We shall say

that �R is rigid if every W for which W��T�T� � T�T�W�� is a polynomial in �R�
And this is our assumption�

A�� �R is rigid�

�� Auxiliary formulas

Here are some immediate consequences from �	����� and �	������ First�

T���
�R��T� � T� �R��T

��
� ��	���	�

�R��T
��
� T��� � T��� T���

�R�� ��	�����

Multiplying �	���	� by �-a� from the left� by �-�b from the right and taking traces
in the spaces � and �� we obtain �as usual� after relabeling spaces�

tr�� �-��T
��
� P��T�� � tr��T�P��T

��
�

�-��� ��	�����

Attention� one cannot move T� cyclically under the tr� in �	����� because the
matrix elements of T� do not commute with matrix elements of other operators in
the expression�

Tracing �	����� in the spaces � or � gives

tr��T�P��T
��
� Q�� � Q� ��	�����

tr�� "Q�T
��
� P��T�� � "Q� ��	�����

Sometimes it is more transparent to write eq� �	������ as well as eqs� �	����� and
�	������ in indices�

�-ua
vb �T

���biT
j
a � T s

v �T
���ut

�-tj
si�	�����

and

T a
i �T

��Q�ba � Qj
i and � "QT���ai T

j
a � "Qj

i ��	������

Operators Q and "Q are invertible� so we can rewrite �	������ in terms of an as�
sociative operation �X � Y �ij �� Xa

j Y
i
a �or X � Y � �XtY t�t� where t means the

transposition� as

T � �Q��T��Q� � I and � "QT�� "Q��� � T � I ��	������

where I is the identity �with respect to the usual multiplication as well as to the
multiplication ��� Left and right inverses coincide� so

TQ "Q � Q "QT ��	������



USES OF QUANTUM SPACES ��

It follows from �	������ that T�� also has an inverse with respect to ��
�QTQ��� � T�� � I ��	������

Note that �	����� can be rewritten as � �-��T
��
� � � T� � T� � �T���

�-��� or

T��� � �-�� � T� � T� � �-�� � T��� ��	����	�

since� if the matrix elements of an operator X commute with the matrix elements
of an operator Y then X � Y � Y X �

�� Covariance

As explained in the part � of this subsection� the operator �R provides a consis�
tent set of relations

xiyj � �Rij
kly

kxl ��	������

The relations �	������ are covariant under the following �co�action of the quan�
tum group �generators T i

j commute with xi��

xi � T i
jx

j ��	������

and the same for yi�
We are going to build a quantum analog of the direct sum V �V �� so we need�

in addition to xi� another set of generators� xi� To mimic that the generators xi
describe a dual space� we require their transformation law to be

xi � xj�T
���ji�	������

�the same for yi��

A little later we will restrict ourselves to the case when �R has only two eigen�
values� But already now we can partly analyze possible ordering relations� We have
two �multiplets�� x
 � fxig and x
 � fxig� For the moment� let S � End�V � V �

be an arbitrary operator� Let us say that a matrix element S���� is �ice� if either
� � � and � � � or � � � and � � �� If all non�vanishing matrix elements of S are
ice then we have an ice matrix in the sense of the subsection 	��� We shall apply
the same terminology to the whole multiplets x
 and x
� if x belongs to a multiplet
A �A can be 
 or 
� and y belongs to a multiplet B then the parts in the ordered
expression for xy� which contain the same multiplets will be called �ice�� We shall
see that the ice part of ordering relations is strongly governed by the covariance�

We �x the ordering relations for xiyj to be as in �	�������
In the ordered expression for xiyj the ice terms are ykxl�

xiyj � Ekl
ij ykxl � � � � ��	������

where dots stand for terms with other structures of indices� Then the covariance un�
der the transformations �	������ requires T��� T��� E�� � E��T

��
� T��� so� by rigidity�

E�� is a polynomial in �R��� E�� � e� �R����
In the ordered expression for xiyj we may have terms like ykx

l and ykxl�

xiyj � Aik
jl ykx

l �Bil
jky

kxl � � � � ��	������
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dots stand for terms with other structures of indices� Then the covariance under
the transformations �	������ and �	������ requires

T�A��T
��
� � T��� A��T� ��	������

T�B��T
��
� � tr��B��T�P��T

��
� � ��	������

Similarly� if� in the ordered expression for xiy
j � we have terms like ykxl and ykx

l�

xiy
j � Cjl

iky
kxl �Djk

il ykx
l � � � � ��	������

where dots stand for terms with other structures of indices� then the covariance
under the transformations �	������ and �	������ requires

tr��T
��
� P��T�C��� � tr��C��T�P��T

��
� � ��	������

tr��T
��
� P��T�D��� � T��� D��T� ��	����	�

Due to rigidity of �R� it follows from eq� �	������ that A�� is a polynomial in
�R��� A�� � a� �R����

Multiply �	������ by �Ra� from the right and take tr�� The l�h�s� becomes

T� "B�aT
��
� � where "B�a � tr��B��

�Ra��� The r�h�s� becomes

tr���B��T�P��T
��
�

�Ra�� � tr���B��T�P�� �Ra�T
��
� �

� tr���P��B��T� �Ra�T
��
� �

�c�
� tr���B��T� �Ra�T

��
� P���

� tr���B��T� �Ra�P��T
��
� �

tr�� tr��B��T� �Ra�T
��
� �

�������
� tr��B��T

��
a

�Ra�Ta� � T��a
"B�aTa �

�	������

We used� the cyclic property of the trace to move P��� it is indicated by �c� over
���� we took tr� �it is indicated over ����� and we used eq� �	���	��

Therefore� "B�a is� by rigidity of �R� a polynomial in �Ra�� tr��B��
�Ra�� � b� �Ra��

with some polynomial b� Multiplying by �-ba from the left and taking tra� we �nd

B�� � tr�� �-��b� �R���� ��	������

Similarly� multiplying �	����	� by �R�a from the left and taking tr�� we �nd

T���
"Da�T� � Ta "Da�T

��
a ��	������

where "Da� � tr�� �R�aD���� Therefore� "Da� is a polynomial in �R�a� Thus�

D�� � tr��d� �R��� �-����	������

for some polynomial d�
Finally� multiply eq� �	������ from the left by �R�a� from the right by �Rb� and

take tr�� to obtain

Ta "CabT
��
a � T��b

"CabTb ��	������

where "Cab � tr��� �R�aC�� �Rb��� Therefore� "Cab is a polynomial in �Rba� Thus�

C�� � tr��� �-��c� �R��� �-����	������

for some polynomial c�
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�� Ansatz

We keep in mind that the multiplets x
 and x
 are associated to the groupGLN �
For general N � the only invariant tensors with four indices are the permutation and
the identity in V � V � This motivates the following Ansatz�

xiyj � �Rij
kly

kxl ��	������

xiyj � Aik
jl ykx

l �Bil
jky

kxl ��	������

xiy
j � Cjl

iky
kxl �Djk

il ykx
l ��	������

xiyj � Elk
ij ylxk ��	����	�

Here

A�� � a� �R��� � C�� � tr��� �-��c� �R��� �-��� � B�� � tr�� �-��b� �R���� �

D�� � tr��d� �R��� �-��� � E�� � e� �R����	������

with some polynomials a� b� c� d and e�
The original matrix �R is a matrix of the size N��N�� whereN is the dimension

of the space V � the range of indices of multiplets xi and xi� A solution �RIJ
KL of

the consistency conditions for the ordering relations �	��������	����	� is a matrix of

a bigger size ��N�� � ��N��� each of four indices of �R runs from � to �N � The
new index is the union of upper and lower indices of the original multiplets� To
remember it� we shall write� for the new index I � I �

�
k
�
for a value of the original

index from the multiplet xk or I �
�
k
�
for a value of the original index from the

multiplet xk� In this notation� the nonzero matrix elements of �R are

�R

�
i
��

j
�

�
k
��

l
� � �Rij

kl �
�R

�
i
��

j
�

�
k
��

l
� � Aik

jl �
�R

�
i
��

j
�

�
k
��

l
� � Bil

jk �

�R

�
i
��

j
�

�
k
��

l
� � Cjl

ik �
�R

�
i
��

j
�

�
k
��

l
� � Djk

il � �R

�
i
��

j
�

�
l
��

k
� � Elk

ij �

�	������

We are looking for a skew�invertible �R� In the notation� as in �	������� it is easy

to see that if A is zero then the matrix �RIJ
KL has a zero eigenvector with respect

to the skew multiplication� that is� a quantity vIK which satis�es vIK
�RIJ
KL � ��

one may take any v whose non�zero elements are only v

�
k
�

�
i
� � so� such �R cannot

be skew invertible� In fact� this argument shows that the skew invertibility of �R
requires that the operator A is invertible �with respect to the usual multiplication��
Similarly� C must be invertible� The conditions

A and C are invertible�	������

we will use in the process of solving the Yang�Baxter equation for �R�

�� Yang�Baxter equation for �R
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As explained in the beginning of this subsection� the Yang�Baxter equation
for �R we obtain by ordering in two di�erent ways expressions xAyBzC � where the
indices A� B and C can belong now to any of multiplets� 
 or 
�

Ordering x
y
z
�

�R��A��A�� � A��A��
�R�� ��	������

�R��B��A�� � P�� tr��A��B��
�R��� � P�� tr��A��D��P��B��� ��	������

�R��B��
�R�� � tr��B��

�R��B��� � tr��P��B��A��C��� ��	���	��

Ordering x
y
z

�

P�� tr��A��
�R��C��� � P�� tr��B��B��P��D���

� tr��C�� �R��A���P�� � tr��D��D��P��B���P�� ��	���	��

A��D��
�R�� � P�� tr�� �R��D��A��� � P�� tr��B��A��P��D�����	���	��

C��B��
�R�� � P�� tr�� �R��B��C��� � P�� tr��D��C��P��B��� ��	���	��

Ordering x
y

z
�

C��C�� �R�� � �R��C��C�� ��	���		�

�R��D��C�� � P�� tr��C��D��
�R��� � P�� tr��C��B��P��D��� ��	���	��

�R��D��
�R�� � tr��D��

�R��D��� � tr��C��A��P��D��� ��	���	��

Exercise� Verify eqs� �	��������	���	���

Equations� arising from ordering x
y
z
� x
y

z
 and x
y
z


� can be quickly
obtained by noticing that the system �	��������	����	� is invariant under a substi�

tution x
 	 x
� y

 	 y
� �R 	 Et� A 	 Ct and B 	 Dt� where t stands for the

transposition� We have�
for x
y
z
�

A��A��E�� � E��A��A�� ��	���	��

A��B��E�� � tr��E��B��A���P�� � tr��P��B��D��A���P�� ��	���	��

E��B��E�� � tr��B��E��B��� � tr��P��B��C��A��� ��	���	��

for x
y

z
�

tr��A��E��C���P�� � tr��P��B��D��D���P��

� P�� tr��C��E��A��� � P�� tr��P��D��B��B��� ��	������

E��D��A�� � tr��A��D��E���P�� � tr��P��D��A��B���P�� ��	������

E��B��C�� � tr��C��B��E���P�� � tr��P��B��C��D���P�� ��	������
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for x
y
z

�

E��C��C�� � C��C��E�� ��	������

C��D��E�� � tr��E��D��C���P�� � tr��P��D��B��C���P�� ��	����	�

E��D��E�� � tr��D��E��D��� � tr��P��D��A��C��� ��	������

Finally� ordering x
y
z
 implies the Yang�Baxter equation for E�

E��E��E�� � E��E��E�� ��	������

�� Specifying to the Hecke case

We shall solve the system �	�������	������ in the Hecke case � when the matrix
�R satis�es a quadratic equation �R� � � �R��� Note that �R cannot be proportional
to a constant� it would contradict the skew invertibility�

As we have seen in the subsection 	���� �see eq� �	�������� in the Hecke case

the product Q "Q is proportional to a unity� Q "Q � r�I �r corresponds to the ribbon
element in the quasi�triangular case�� Due to the assumptionA�� r 
� �� Therefore�
by �	������ �and �	���	���

�� � tr�Q� � �� � tr� "Q� 
� � ��	������

Because of Hecke condition� the polynomials in �	������ contain only constant
and linear terms�

	� Block triangularity

The standard �R�matrix �	����� has a following property�

�Rij
kl � � if ji � kl ��	������

where � is the lexicographic ordering �i�e�� ji � kl when j � k or j � k and i � l��

This means that the matrix P �R is lower triangular�

The standard �R�matrix �	����� has also another triangularity property� �Rij
kl � �

if ij 
 lk� this means that the matrix �RP is upper triangular�
For the ordering relations xiyj � �Rij

kl� the property �	������ says that the
ordered expression for xiyj can contain only monomials which are lexicographically
not bigger than yjxi�

As a �rst step towards a solution of the system �	�������	������ in the Hecke
case� we shall prove that the relations �	��������	����	� are �block triangular�� say�
block upper triangularity means that we de�ne an order on the set S � f
� 
g of
multiplets x
 and x
� x


 
 x
 and then the ordered expression for x
IyJ � I�J � S�

contains only monomials which are not bigger than yJ xI �
In the simple situation of eqs� �	��������	����	�� the block triangularity means

that either B � � or D � ��
To prove the block triangularity� it is enough to consider two equations� �	������

and �	������� Eqn� �	������ implies that A�� is proportional to either �R�� or �R���� �

We shall write it as A�� � �R�� � ��I�I�� where � � � or �� The coe�cient of
proportionality is di�erent from � due to �	�������
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The expressions �	������ for B and D reduce in the Hecke case to

B�� � �I�Q� � 
P�� ��	������

D�� � � "Q�I� � �P���	������

with some constants �� 
� � and ��
Substituting the expressions for A� B and D into �	������� we obtain� after

using identities from the subsection 	����� an equality

������ �� � �
��� �� tr� "Q��� ���
 � �����P��I�

����� ���� ���� �R��Q� � ��r�P�� �R��

��
P�� �R�� � ����I�I�Q� � � �

�	������

The tensors P��I�� �R��Q�� P�� �R��� P�� �R�� and I�I�Q�� entering eqn� �	������ are

linearly independent� to see it� multiply them from the right by �-�� and take tr��
the tensors become P�� "Q�� P��Q�� P��P��� P��P�� and I�Q�

"Q�� which are obviously
independent� Thus� the coe�cients must vanish�

����� �� � �
��� �� tr� "Q��� ���
 � ���� � � �

��� ���� ��� � � � �� � � � �
 � � � ���� � � �
�	������

For � � �� it follows from eqs� �	������ that �� � �� �
 � � and ��� �
 � ��
which implies that either B or D is zero�

For � � �� it follows from eqs� �	������ that �� � �� �
���� tr� "Q� � �� �� � �
and �
 � �� in view of �	������ we conclude again that either B or D is zero�

It is enough to consider the case B � �� another case can be reduced to it by
considering the opposite ordering �if we read �	��������	����	� from the right to the
left� as instructions to order yx to the form xy��


� Solution

With B � � the system �	�������	������ simpli�es drastically� can be fully an�
alyzed and one can write down all solutions� It is lengthy and we shall not do it
here�

It turns out that solutions which give rise to the orthogonal and symplectic
quantum groups are those for which the coe�cient � in �	������ is di�erent from ��

Proposition� Let �R be a solution of the Yang�Baxter equation with �R� � � �R���
If �R satis�es assumptions A��A� then the ordering relations

xiyj � �Rij
kly

kxl ��	������

xiyj � �Rkl
jiylxk ��	����	�

xiyj � �� �R���kilj ykx
l ��	������

xiy
j � ��� �-uj

vi y
vxu � �yix

j � 
� "Qj
i ykx

k ��	������
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where � is an arbitrary non�zero number� provide an invertible and skew invertible
solution �R of the Yang�Baxter equation when 
� � �
 � � � ��

If �R is of GLN �type then �R is of SO�N type for 
 � �q and of Sp�N type for

 � q���

��� SO��N � ��

Without going into details we shall describe the situation with the odd�dimen�
sional orthogonal groups�

One has to add a new generator x� to the multiplets x
 and x
� The matrix
�R again turns out to be block�triangular� we will write the answer for the order
x
 
 x� 
 x
� Relations �	������� �	����	� and �	������ are the same� Relation
�	������ has to be replaced by

xiy
j � �-uj

vi y
vxu � �yix

j � � "Qj
iykx

k � q����� "Qj
iy

�x� ��	������

Finally� when one of generators has an index �� the ordering relations are

xiy� � y�xi �

x�y� � y�x� � q����ylx
l �

xiy
� � y�xi � �yix

� ��	������

x�yi � yix� � �y�xi �

x�yi � yix
� �

Proposition� Under the same conditions as in the Proposition above� the order�
ing relations �	��������	������� �	������ and �	������ provide an invertible and skew

invertible solution �R of the Yang�Baxter equation�
If �R is of GLN �type then �R is of SO�N
� type�

Remarks� �� For a standard �R for GL� it was noted in ����� that the commuta�
tion relations between coordinates and derivatives �even or odd� can be given by

projectors of �R for Sp and SO� Our propositions in this subsection generalize it to
the construction of the whole �R�matrix for SO and Sp from the �R�matrix for GL�
which works in all cases� not only for the standard deformation�

�� If one starts with �R corresponding to a supergroup GL�M jN�� the construc�
tions of the propositions from this subsection produce Yang�Baxter matrices for the
quantum supergroups of OSp type�

�� Real forms

In this subsection we explain how to classify real forms of RTT�algebras using
quantum spaces ���� �����


The description of real forms of the dual algebra for a generic q is given in ����� Our
description is more precise� it requires only that q� �� � in SL case and q� �� � in the SO and Sp

cases
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���� General linear quantum groups� We shall start with a standard Drin�
feld�Jimbo �R matrix �	����� for the quantum group GLq�N�� We shall assume that
q� 
� ��

Exercise� Show that the �R�matrix �	����� satis�es the Yang�Baxter equation� Show

that the spectral decomposition of �R is �R � qS � q��A �S and A are projectors�

S� � S� A� � A� with rkS � N�N
��
� and rkA � N�N���

� �

Let � be an involution on the RTT�algebra� that is� an antilinear operation�
satisfying ��ab� � ��b� � �a� and �� � �� �� � � � �� Then �xi form a comodule
for the SLq�N�� There are two comodules of dimension N � one is generated by x

i�
another one is generated by xi� So we may have two di�erent types of conjugations�
� can map Al


 to itself or to Ar

�

We shall consider in some details the �rst possibility� So� we assume

�xi � J ijx
j ��������

Since the matrix T coacts on the vector x� we have ��Tx� � JTx� on the other

hand� ��Tx�i � ��T i
jx

j� � �xj � T i
j � �T i

j � xj � �T i
j J

j
kx

k �we used that T i
j

commutes with xk�� It follows then that

�T � JTJ�� ��������

Conjugate now the relation �RT�T� � T�T� �R�

�R � T� � T� � �T� � T� �R
�here is the complex conjugate�� or

�R�� � T� � T� � �T� � T� �R�� �

Substituting �T from ������� we �nd

%T�T� � T�T�% ��������

where % � J��� J���
�R��J�J��

Proposition� Let �R be the standard SLq�N� �R�matrix �	������ If an operator
% � %�� satis�es an equality

�%� T�T�� � � ������	�

then % is a polynomial in �R�

Sketch of the proof� Take a ��dimensional representation for T � T i
j �� �j�

i
j with

some commuting variables �i� Then it follows from �����	� that % is of �ice� type�

that is� %ijkl can be di�erent from zero only if i � k� j � l or i � l� j � k�

Take now another representation� �T i
j �
a
b �

�Rai
jb� Writing �����	� in this repre�

sentation with an ice %� one arrives at the statement of the proposition� �

�R satis�es the Yang�Baxter equation �YBe�� �R�� satis�es YBe� �R�� satis�es

YBe � % � J��� J���
�R��J�J� satis�es YBe�

The following proposition is easy�
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Proposition� A non�constant polynomial in �R which satis�es YBe is either � �R or
� �R�� for some constant ��

The operator �R�� � P �RP �P is the permutation� has the same spectrum as �R�

Therefore� the spectrum of % � J��� J���
�R��J�J� contains an eigenvalue q with the

multiplicity N�N
��
� and the eigenvalue ��q��� with the multiplicity N�N���

� �

According to the Proposition� we have to consider two possibilities� % � � �R or
% � � �R���

Comparing spectra� we �nd that if % � � �R then q � �q and �q�� � ��q���
Therefore� �� � � and q � �q�

Similarly� if % � � �R�� then q � �q�� and �q�� � ��q� Therefore� �� � �
and q � �q���

We have four cases� Let us see which equations we have to solve� For example�

for q � q we have % � �R� for q real� �R � �R and we have therefore equations
�R��J�J� � J�J� �R� This is a system of quadratic equations and it turns out that
for the �R�matrix �	����� one can completely solve the system� One can solve the
corresponding system in the other three cases as well�

For the other type of conjugation �when � of a quantum vector is a quantum
covector�� the operator J has two lower indices� �xi � Jijx

j � Again at the end one
arrives at a system of quadratic equations for j which admits a complete solution�

The last step is to impose the condition that the square of the conjugation is
the identity� �� � Id� this produces a further restriction on the operator J �

The �nal result is presented below� We use a notation /�c�� � � � � cN � for an

antidiagonal matrix



BBBB�

c�
c�

���
cN��

cN

�
CCCCA�

In the formulation of the theorem below� a letter �a� appears sometimes in the
name of a real form� The letter �a� stands for �alternative�� it signi�es that there
are several real forms having the same classical limit�

Theorem� �i� There are no real forms in the nonquasiclassical cases q � �q��� all
real forms admit the classical limit�

�ii� For q � q�� the real forms are�

SLq�N�R�� here J � ��

SUa
q �N � �N	��� �N	���� Jij � �N
�

i
j �

�iii� For q � q the real forms are�

SLaq�N�R�� J
i
j � �N
�

i
j �

SU�
q ��n�� N � �n� J � antidiag� �� � � � � �� �z 	

n times

���� � � � ���� �z 	
n times

��

SUq���� � � � � �N �� Jij � �i�
j
i � �i � ���

In the last case the sequences f�ig and f��ig produce equivalent real forms�
What is more interesting is that the sequences f�ig and f��ig where ��i � �i� � where
i� � N � � � i produce equivalent real forms as well� An explanation� classically�
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there is an outer automorphism T �� �T���t of the algebra� corresponding to the
symmetry T
 of the Dynkin diagram Al� For the quantum T � we have �T���ikT

k
j �

�ij � T i
k�T

���kj but �T
���ki T

j
k 
� �ji � The correct version is


 �T���ki �QTQ
���jk � �ji

where the numerical matrix Q is de�ned by �	������ �we remind that the standard
�R�matrix �	����� is skew�invertible� see �	���	���� It is� up to a factor� the same Q
which cyclically rotated the E�tensor�

Set ��T i
j � � �T���j

�

i� �

Proposition� The map � preserves the RTT�relations�

The proof follows from the fact that �RQ�Q� � Q�Q�
�R and �Ri�j�

k�l� �
�Rji
lk for the

standard �R� Moreover� ���T���jk� � �Q���k
�

v T
v
uQ

u
j� � The e�ect of � on the sequence

f�ig is exactly f�ig �� f��ig�
���� Orthogonal and symplectic quantum groups� I shall very shortly

list the real forms for orthogonal and symplectic quantum groups�
The answer below is written in the basis� in which the ordering relations for

the quantum planes have the form as in �	��������	������� with � � �� for SOq��N�
and Spq��N�� or �	��������	������ and �	��������	������ for SOq��N � ���

Let B �
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�
���

�
� �
� �

�
���

�

�
CCCCCCCCCCA
�the nondiagonal � by � block is in

the middle�� in the formulation of the theorem below� a letter �b� in the name of
a real form signi�es that the matrix J involves the matrix B�

Theorem� �i� Again� all real forms admit the classical limit�

�ii� For q � q�� the real forms are�

SOq��N	��� N � �N	���� J � ��

SOb
q�n� �� n� ��� N � �n� J � B�

Spq�N�R�� J � ��

�iii� For q � q the real forms are ��i � ����
SOq���� � � � � �N�� J � /���� � � � � �N � with J t � J �

SOb
q���� � � � � �N�� J � B/���� � � � � �N � with �i� � �i�

SO�q ���� � � � � �N �� J � /���� � � � � �N � with J t � �J �
USpq���� � � � � �N �� J � /���� � � � � �N � with J t � J �

Spq���� � � � � �N �R�� J � /���� � � � � �N � with J t � �J �
I shall end the lectures by a comparison with the classical �Cartan� way of

classifying the real forms �see� eg� ������

�see eqs� �����	�� ������� and ������
��
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�� One proves that there exists a unique compact real form u� denote the
corresponding � by � �

�� For an arbitrary real form � one proves that there exists an equivalent to
it real form "� such that the automorphism � � "�� is involutive� �� � �� For
a description of involutive automorphisms one should analyze each Cartan data
concretely�

�� The automorphism � acts on u� under this action� u decomposes according to
the eigenvalues of �� u � u��u��� The real form corresponding to "� is u��

p��u���
In the classi�cation of real forms of quantum groups given above� these steps

become hidden because quantum spaces are more �rigid� �they admit less auto�
morphisms��
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