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COMPUTING IN COMMUTATIVE ALGEBRA

GERHARD PFISTER

1. STANDARD BASES AND SINGULAR

SINGULAR is available, free of charge, as a binary programme for most common hard-

ware and software platforms. Release versions of SINGULAR can be downloaded through

ftp from our FTP site

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/,

or, using your favourite WWW browser, from

http://www.singular.uni-kl.de/download.html

The basis of SINGULAR is multivariate polynomial factorization and standard bases

computations.

We explain first of all the notion of a Gröbner basis (with respect to any ordering)

as the basis for computations in localizations of factorrings of polynomial rings. The

presentation of a polynomial as a linear combination of monomials is unique only up to an

order of the summands, due to the commutativity of the addition. We can make this order

unique by choosing a total ordering on the set of monomials. For further applications

it is necessary, however, that the ordering is compatible with the semigroup structure on

Monn.

We give here only the important definitions, theorems and examples. Proofs can be

found in [7]. The SINGULAR examples can be found on the CD in [7].

Definition 1.1. A monomial ordering or semigroup ordering is a total (or linear) ordering

> on the set of monomials Monn = {xα | α ∈ Nn} in n variables satisfying

xα > xβ : =⇒ : xγxα > xγxβ

for all α,β ,γ ∈ Nn. We say also > is a monomial ordering on A[x1, . . . ,xn], A any ring,

meaning that > is a monomial ordering on Monn.

Definition 1.2. Let > be a fixed monomial ordering. Write f ∈ K[x], f 6= 0, in a unique

way as a sum of non–zero terms

f = aαxα +aβ xβ + · · ·+aγxγ , xα > xβ > · · · > xγ ,

and aα ,aβ , . . . ,aγ ∈ K. We define:

(1) LM( f ) := leadmonom(f):= xα , the leading monomial of f ,

(2) LE( f ) := leadexp(f):= α , the leading exponent of f ,

(3) LT( f ) := lead(f):= aαxα , the leading term or head of f ,

(4) LC( f ) := leadcoef(f):= aα , the leading coefficient of f
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(5) tail ( f ) := f− lead(f)= aβ xβ + · · ·+aγxγ , the tail.

(6) ecart( f ) := deg( f )−deg(LM( f )).

SINGULAR Example 1.

ring A = 0,(x,y,z),lp;

poly f = y4z3+2x2y2z2+3x5+4z4+5y2;

f; //display f in a lex-ordered way

//-> 3x5+2x2y2z2+y4z3+5y2+4z4

leadmonom(f); //leading monomial

//-> x5

leadexp(f); //leading exponent

//-> 5,0,0

lead(f); //leading term

//-> 3x5

leadcoef(f); //leading coefficient

//-> 3

f - lead(f); //tail

//-> 2x2y2z2+y4z3+5y2+4z4

Definition 1.3. Let > be a monomial ordering on {xα | α ∈ Nn}.

(1) > is called a global ordering if xα > 1 for all α 6= (0, . . . ,0),
(2) > is called a local ordering if xα < 1 for all α 6= (0, . . . ,0),
(3) > is called a mixed ordering if it is neither global nor local.

Lemma 1.4. Let > be a monomial ordering, then the following conditions are equivalent:

(1) > is a well–ordering.

(2) xi > 1 for i = 1, . . . ,n.

(3) xα > 1 for all α 6= (0, . . . ,0), that is, > is global.

In the following examples we fix an enumeration x1, . . . ,xn of the variables, any other

enumeration leads to a different ordering.

%beginenumerate GLOBAL ORDERINGS

(i) Lexicographical ordering >l p (also denoted by lex):

xα >l p xβ : :⇐⇒ ∃ 1 ≤ i ≤ n : α1 = β1, . . . ,αi−1 = βi−1,αi > βi .

(ii) Degree reverse lexicographical ordering >d p (denoted by degrevlex):

xα >d p xβ :⇐⇒ : degxα > degxβ

or :
(

degxα = degxβ and ∃ 1 ≤ i ≤ n :

αn = βn, . . . ,αi+1 = βi+1, αi < βi

)

,

where degxα = α1 + · · ·+αn.

%le i

LOCAL ORDERINGS
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(i) Negative lexicographical ordering >ls:

xα >ls xβ : :⇐⇒ ∃ 1 ≤ i ≤ n,α1 = β1, . . . ,αi−1 = βi−1,αi < βi .

(ii) Negative degree reverse lexicographical ordering:

xα >ds xβ :⇐⇒ : degxα < degxβ , where degxα = α1 + · · ·+αn,

or :
(

degxα = degxβ and ∃ 1 ≤ i ≤ n :

αn = βn, . . . ,αi+1 = βi+1, αi < βi

)

.

Let > be a monomial ordering on the set of monomials Mon(x1, . . . ,xn) = {xα | α ∈
Nn}, and K[x] = K[x1, . . . ,xn] the polynomial ring in n variables over a field K. Then the

leading monomial function LM has the following properties for polynomials f ,g ∈ K[x]\{0}:

(1) LM(g f ) = LM(g)LM( f ).
(2) LM(g+ f ) ≤ max{LM(g),LM( f )} with equality if and only if the leading terms

of f and g do not cancel.

In particular, it follows that

S> := {u ∈ K[x]\{0} | LM(u) = 1}
is a multiplicatively closed set.

Definition 1.5. For any monomial ordering > on Mon(x1, . . . ,xn), we define

K[x]> := S−1
> K[x] =

{

f

u

∣

∣

∣

∣

f ,u ∈ K[x], LM(u) = 1

}

,

the localization of K[x] with respect to S> and call K[x]> the ring associated to K[x] and

>.

Note that S> = K∗ if and only if > is global and S> = K[x]\ 〈x1, . . . ,xn〉 if and only if >
is local.

Definition 1.6. Let > be any monomial ordering:

(1) For f ∈ K[x]> choose u ∈ K[x] such that LT(u) = 1 and u f ∈ K[x]. We define

LM( f ) := LM(u f ),

LC( f ) := LC(u f ),

LT( f ) := LT(u f ),

LE( f ) := LE(u f ),

and tail( f ) = f −LT( f ).
(2) For any subset G ⊂ K[x]> define the ideal

L>(G) := L(G) := 〈LM(g) | g ∈ G\{0}〉K[x] .

L(G) ⊂ K[x] is called the leading ideal of G.

Definition 1.7. Let I ⊂ R = K[x]> be an ideal.
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(1) A finite set G ⊂ R is called a standard basis of I if

G ⊂ I, and L(I) = L(G) .

That is, G is a standard basis, if the leading monomials of the elements of G

generate the leading ideal of I, or, in other words, if for any f ∈ I \{0} there

exists a g ∈ G satisfying LM(g) | LM( f ).
(2) If > is global, a standard basis is also called a Gröbner basis.

(3) If we just say that G is a standard basis, we mean that G is a standard basis of the

ideal 〈G〉R generated by G.

Standard bases can be characterized using the notion of the normal form. We need the

following definitions:

Definition 1.8. Let f ,g ∈ R\{0} with LM( f ) = xα and LM(g) = xβ , respectively. Set

γ := lcm(α ,β ) :=
(

max(α1,β1), . . . ,max(αn,βn)
)

and let lcm(xα ,xβ ) := xγ be the least common multiple of xα and xβ . We define the s–

polynomial (spoly, for short) of f and g to be

spoly( f ,g) := xγ−α f − LC( f )

LC(g)
· xγ−β g .

If LM(g) divides LM( f ), say LM(g) = xβ , LM( f ) = xα , then the s–polynomial is partic-

ularly simple,

spoly( f ,g) = f − LC( f )

LC(g)
· xα−β g ,

and LM
(

spoly( f ,g)
)

< LM( f ).

Definition 1.9. Let G denote the set of all finite lists G ⊂ R = K[x]>.

NF : R×G → R, ( f ,G) 7→ NF( f | G) ,

is called a normal form on R if, for all G ∈ G ,

(0) NF(0 | G) = 0 ,

and, for all f ∈ R and G ∈ G ,

(1) NF( f | G) 6= 0 =⇒ LM
(

NF( f | G)
)

6∈ L(G).
(2) If G = {g1, . . . ,gs}, then f has a standard representation with respect to NF(− | G),

that is, there exists a unit u ∈ R∗ such that

u f −NF( f | G) =
s

∑
i=1

aigi, ai ∈ R , s ≥ 0 ,

satisfying LM(Σs
i=1aigi) ≥ LM(aigi) for all i such that aigi 6= 0.

The existence of a normal form is given by the following algorithm:

Algorithm 1.10. NF( f | G)

Let > be any monomial ordering.

Input: f ∈ K[x], G a finite list in K[x]
Output: h ∈ K[x] a polynomial normal form of f with respect to G.
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• h := f ;

• T := G;

• while(h 6= 0 and Th := {g ∈ T | LM(g) | LM(h)} 6= /0)
choose g ∈ Th with ecart(g) minimal;

if (ecart(g) > ecart(h))
T := T ∪{h};

h := spoly(h,g);
• return h;

Theorem 1.11. Let I ⊂ R be an ideal and G = {g1, . . . ,gs} ⊂ I. Then the following are

equivalent:

(1) G is a standard basis of I.

(2) NF( f | G) = 0 if and only if f ∈ I.

We will explain now how to use standard bases to solve problems in algebra.

Ideal membership

Problem: Given f , f1, . . . , fk ∈ K[x], and let I = 〈 f1, . . . , fk〉R. We wish to decide whether

f ∈ I, or not.

Solution: We choose any monomial ordering > such that K[x]> = R and compute a stan-

dard basis G = {g1, . . . ,gs} of I with respect to >. f ∈ I if and only if NF( f | G) = 0.

SINGULAR Example 2.

ring A = 0,(x,y),dp;

ideal I = x10+x9y2,y8-x2y7;

ideal J = std(I);

poly f = x2y7+y14;

reduce(f,J,1); //3rd parameter 1 avoids tail reduction

//-> -xy12+x2y7 //f is not in I

f = xy13+y12;

reduce(f,J,1);

//-> 0 //f is in I

Intersection with Subrings (Elimination of variables)

Problem: Given f1, . . . , fk ∈ K[x] = K[x1, . . . ,xn], I = 〈 f1, . . . , fk〉K[x], we should like to

find generators of the ideal

I′ = I ∩K[xs+1, . . . ,xn], s < n .

Elements of the ideal I′ are said to be obtained from f1, . . . , fk by eliminating x1, . . . ,xs.

The following lemma is the basis for solving the elimination problem.
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Lemma 1.12. Let > be an elimination ordering for x1, . . . ,xs on the set of monomials

Mon(x1, . . . ,xn), and let I ⊂ K[x1, . . . ,xn]> be an ideal. If S = {g1, . . . ,gk} is a standard

basis of I, then

S′ := {g ∈ S | LM(g) ∈ K[xs+1, . . . ,xn]}
is a standard basis of I′ := I ∩K[xs+1, . . . ,xn]>′ . In particular, S′ generates the ideal I′.

SINGULAR Example 3.

ring A =0,(t,x,y,z),dp;

ideal I=t2+x2+y2+z2,t2+2x2-xy-z2,t+y3-z3;

eliminate(I,t);

//-> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+z6+2x2-xy-z2

Alternatively choose a product ordering:

ring A1=0,(t,x,y,z),(dp(1),dp(3));

ideal I=imap(A,I);

ideal J=std(I);

J;

//-> J[1]=x2-xy-y2-2z2 J[2]=y6-2y3z3+z6+2x2-xy-z2

//-> J[3]=t+y3-z3

Radical Membership

Problem: Let f1, . . . , fk ∈ K[x]>, > a monomial ordering on Mon(x1, . . . ,xn) and

I = 〈 f1, . . . , fk〉K[x]> . Given some f ∈ K[x]> we want to decide whether f ∈
√

I. The

following lemma, which is sometimes called Rabinowich’s trick, is the basis for solving

this problem. 1

Lemma 1.13. Let A be a ring, I ⊂ A an ideal and f ∈ A. Then

f ∈
√

I : ⇐⇒ : 1 ∈ Ĩ := 〈I,1− t f 〉A[t]

where t is an additional new variable.

SINGULAR Example 4.

ring A =0,(x,y,z),dp;

ideal I=x5,xy3,y7,z3+xyz;

poly f =x+y+z;

ring B =0,(t,x,y,z),dp; //need t for radical test

ideal I=imap(A,I);

poly f =imap(A,f);

I=I,1-t*f;

std(I);

//-> _[1]=1 //f is in the radical

1We can even compute the full radical
√

I, but this is a much harder computation.
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LIB"primdec.lib"; //just to see, we compute the radical

setring A;

radical(I);

//-> _[1]=z _[2]=y _[3]=x

Intersection of Ideals

Problem: Given f1, . . . , fk, h1, . . . ,hr ∈ K[x] and > a monomial ordering. Let I1 =
〈 f1, . . . , fk〉K[x]> and I2 = 〈h1, . . . ,hr〉K[x]>. We wish to find generators for I1 ∩ I2.

Consider the ideal J := 〈t f1, . . . , t fk,(1− t)h1, . . . ,(1− t)hr〉(K[x]>)[t].

Lemma 1.14. With the above notations, I1 ∩ I2 = J∩K[x]>.

SINGULAR Example 5.

ring A=0,(x,y,z),dp;

ideal I1=x,y;

ideal I2=y2,z;

intersect(I1,I2); //the built-in SINGULAR command

//-> _[1]=y2 _[2]=yz _[3]=xz

ring B=0,(t,x,y,z),dp; //the way described above

ideal I1=imap(A,I1);

ideal I2=imap(A,I2);

ideal J=t*I1+(1-t)*I2;

eliminate(J,t);

//-> _[1]=yz _[2]=xz _[3]=y2

Quotient of Ideals

Problem: Let I1 and I2 ⊂ K[x]>. We want to compute

I1 : I2 = {g ∈ K[x]> | gI2 ⊂ I1} .

Since, obviously, I1 : 〈h1, . . . ,hr〉 =
⋂r

i=1(I1 : 〈hi〉), we can compute I1 : 〈hi〉 for each i.

The next lemma shows a way to compute I1 : 〈hi〉.
Lemma 1.15. Let I ⊂ K[x]> be an ideal, and let h ∈ K[x]>, h 6= 0. Moreover, let I∩〈h〉=
〈g1 ·h, . . . ,gs ·h〉. Then I : 〈h〉 = 〈g1, . . . ,gs〉K[x]> .

SINGULAR Example 6.

ring A=0,(x,y,z),dp;

ideal I1=x,y;

ideal I2=y2,z;

quotient(I1,I2); //the built-in SINGULAR command

//-> _[1]=y _[2]=x
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Kernel of a Ring Map

Let ϕ : R1 := (K[x]>1
)/I → (K[y]>2

)/J =: R2 be a ring map defined by polynomials ϕ(xi)=
fi ∈ K[y] = K[y1, . . . ,ym] for i = 1, . . . ,n (and assume that the monomial orderings satisfy

1 >2 LM( fi) if 1 >1 xi.

Define J0 := J∩K[y], and I0 := I ∩K[x]. Then ϕ is induced by

ϕ̃ : K[x]/I0 → K[y]/J0 , xi 7→ fi ,

and we have a commutative diagram

K[x]/I0

ϕ̃
//

Ä _

²²

K[y]/J0
Ä _

²²

R1

ϕ
// R2 .

Problem: Let I,J and ϕ be as above. Compute generators for Ker(ϕ).

Solution: Assume that J0 = 〈g1, . . . ,gs〉K[y] and I0 = 〈h1, . . . ,ht〉K[x].

Set H := 〈h1, . . . ,ht ,g1, . . . ,gs,x1− f1, . . . ,xn− fn〉 ⊂ K[x,y], and compute H ′ := H ∩K[x]
by eliminating y1, . . . ,ym from H. Then H ′ generates Ker(ϕ) by the following lemma.

Lemma 1.16. With the above notations, Ker(ϕ) = Ker(ϕ̃)R1 and

Ker(ϕ̃) =
(

I0 + 〈g1, . . . ,gs,x1 − f1, . . . ,xn − fn〉K[x,y]∩K[x]
)

mod I0 .

In particular, if >1 is global, then Ker(ϕ) = Ker(ϕ̃).

SINGULAR Example 7.

ring A=0,(x,y,z),dp;

ring B=0,(a,b),dp;

map phi=A,a2,ab,b2;

ideal zero; //compute the preimage of 0

setring A;

preimage(B,phi,zero); //the built-in SINGULAR command

//-> _[1]=y2-xz

ring C=0,(x,y,z,a,b), dp; //the method described above

ideal H=x-a2, y-ab, z-b2;

eliminate(H,ab);

//-> _[1]=y2-xz
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2. LECTURE: POLYNOMIAL SOLVING AND PRIMARY DECOMPOSITION

Solvability of Polynomial Equations

Problem: Given f1, . . . , fk ∈ K[x1, . . . ,xn], we want to assure whether the system of

polynomial equations

f1(x) = · · · = fk(x) = 0

has a solution in K
n
, where K is the algebraic closure of K.

Let I = 〈 f1, . . . , fk〉K[x], then the question is whether the algebraic set V (I) ⊂ K
n

is

empty or not.

Solution: By Hilbert’s Nullstellensatz, V (I) = /0 if and only if 1 ∈ I. We compute a

Gröbner basis G of I with respect to any global ordering on Mon(x1, . . . ,xn) and normalize

it (that is, divide every g ∈ G by LC(g)). Since 1 ∈ I if and only if 1 ∈ L(I), we have

V (I) = /0 if and only if 1 is an element of a normalized Gröbner basis of I. Of course, we

can avoid normalizing, which is expensive in rings with parameters. Since 1 ∈ I if and

only if G contains a non–zero constant polynomial, we have only to look for an element

of degree 0 in G.

SINGULAR Example 8.

ring A=0,(x,y,z),lp;

ideal I=x2+y+z-1,

x+y2+z-1,

x+y+z2-1;

ideal J=groebner(I); //the lexicographical Groebner basis

J;

//-> J[1]=z6-4z4+4z3-z2 J[2]=2yz2+z4-z2

//-> J[3]=y2-y-z2+z J[4]=x+y+z2-1

We use the multivariate solver based on triangular sets.

LIB"solve.lib";

list s1=solve(I,6);

//-> // name of new current ring: AC

s1;

//-> [1]: [2]: [3]: [4]: [5]:

//-> [1]: [1]: [1]: [1]: [1]:

//-> 0.414214 0 -2.414214 1 0

//-> [2]: [2]: [2]: [2]: [2]:

//-> 0.414214 0 -2.414214 0 1

//-> [3]: [3]: [3]: [3]: [3]:

//-> 0.414214 1 -2.414214 0 0
9



If we want to compute the zeros with multiplicities then we use 1 as a third parameter for

the command:

setring A;

list s2=solve(I,6,1);

s2;

//-> [1]: [2]:

//-> [1]: [1]:

//-> [1]: [1]:

//-> [1]: [1]:

//-> -2.414214 0

//-> [2]: [2]:

//-> -2.414214 1

//-> [3]: [3]:

//-> -2.414214 0

//-> [2]: [2]:

//-> [1]: [1]:

//-> 0.414214 1

//-> [2]: [2]:

//-> 0.414214 0

//-> [3]: [3]:

//-> 0.414214 0

//-> [2]: [3]:

//-> 1 [1]:

//-> 0

//-> [2]:

//-> 0

//-> [3]:

//-> 1

//-> [2]:

//-> 2

The output has to be interpreted as follows: there are two zeros of multiplicity 1 and

three zeros ((0,1,0), (1,0,0), (0,0,1)) of multiplicity 2.

Definition 2.1.

(1) A maximal ideal M ⊂ K[x1, . . . ,xn] is called in general position with respect to the

lexicographical ordering with x1 > · · · > xn, if there exist g1, . . . ,gn ∈ K[xn] with

M = 〈x1 +g1(xn), . . . ,xn−1 +gn−1(xn), gn(xn)〉.
(2) A zero–dimensional ideal I ⊂ K[x1, . . . ,xn] is called in general position with re-

spect to the lexicographical ordering with x1 > · · · > xn, if all associated primes

P1, . . . ,Pk are in general position and if Pi ∩K[xn] 6= Pj ∩K[xn] for i 6= j.

Proposition 2.2. Let K be a field of characteristic 0, and let I ⊂ K[x], x = (x1, . . . ,xn), be

a zero–dimensional ideal. Then there exists a non–empty, Zariski open subset U ⊂ Kn−1
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such that for all a = (a1, . . . ,an−1) ∈U, the coordinate change ϕa : K[x] → K[x] defined

by ϕa(xi) = xi if i < n, and

ϕa(xn) = xn +
n−1

∑
i=1

aixi

has the property that ϕa(I) is in general position with respect to the lexicographical or-

dering defined by x1 > · · · > xn.

Proposition 2.3. Let I ⊂ K[x1, . . . ,xn] be a zero–dimensional ideal. Let 〈g〉 = I ∩K[xn],
g = g

ν1

1 . . .gνs
s , gi monic and prime and gi 6= g j for i 6= j. Then

(1) I =
⋂s

i=1〈I,gνi

i 〉.
If I is in general position with respect to the lexicographical ordering with x1 > · · · > xn,

then

(2) 〈I,gνi

i 〉 is a primary ideal for all i.

SINGULAR Example 9 (zero–dim primary decomposition).

We give an example for a zero-dimensional primary decomposition.

option(redSB);

ring R=0,(x,y),lp;

ideal I=(y2-1)^2,x2-(y+1)^3;

The ideal I is not in general position with respect to lp, since the minimal associated

prime 〈x2 −8,y−1〉 is not.

map phi=R,x,x+y; //we choose a generic coordinate change

map psi=R,x,-x+y; //and the inverse map

I=std(phi(I));

I;

//-> I[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49

//-> I[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847

//-> I[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100

factorize(I[1]);

//-> [1]:

//-> _[1]=1

//-> _[2]=y2-2y-7

//-> _[3]=y+1

//-> [2]:

//-> 1,2,3

ideal Q1=std(I,(y2-2y-7)^2); //the candidates for the

//primary ideals

ideal Q2=std(I,(y+1)^3); //in general position

Q1; Q2;

//-> Q1[1]=y4-4y3-10y2+28y+49 Q2[1]=y3+3y2+3y+1
11



//-> Q1[2]=56x+y3-9y2+63y-7 Q2[2]=2xy+2x+y2+2y+1

Q2[3]=x2

factorize(Q1[1]); //primary and general position test

//for Q1

//-> [1]:

//-> _[1]=1

//-> _[2]=y2-2y-7

//-> [2]:

//-> 1,2

factorize(Q2[1]); //primary and general position test

//for Q2

//-> [1]:

//-> _[1]=1

//-> _[2]=y+1

//-> [2]:

//-> 1,3

Both ideals are primary and in general position.

Q1=std(psi(Q1)); //the inverse coordinate change

Q2=std(psi(Q2)); //the result

Q1; Q2;

//-> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1

//-> Q1[2]=x2-12y+4 Q2[2]=x2

We obtain that I is the intersection of the primary ideals Q1 and Q2 with associated prime

ideals 〈y−1,x2−8〉 and 〈y+1,x〉.

The following proposition reduces the higher dimensional case to the zero-dimensional

case:

Proposition 2.4. Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . ,xn} be a maximal inde-

pendent set of variables2 with respect to I.

(1) IK(u)[x r u] ⊂ K(u)[x r u] is a zero–dimensional ideal.

(2) Let S = {g1, . . . ,gs} ⊂ I ⊂ K[x] be a Gröbner basis of IK(u)[x r u], and let h :=
lcm

(

LC(g1), . . . ,LC(gs)
)

∈ K[u], then

IK(u)[x r u]∩K[x] = I : 〈h∞〉 ,

and this ideal is equidimensional of dimension dim(I).

2It is maximal such that I ∩K[u] = 〈0〉.
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(3) Let IK(u)[x r u] = Q1 ∩·· ·∩Qs be an irredundant primary decomposition, then

also IK(u)[x r u]∩K[x] = (Q1 ∩K[x])∩·· ·∩ (Qs ∩K[x]) is an irredundant pri-

mary decomposition.

Finally we explain how to compute the radical.

Proposition 2.5. Let I ⊂ K[x1, . . . ,xn] be a zero–dimensional ideal and I ∩K[xi] = 〈 fi〉
for i = 1, . . . ,n. Moreover, let gi be the squarefree part of fi, then

√
I = I + 〈g1, . . . ,gn〉.

The higher dimensional case can be reduced similarly to the primary decomposition to

the zero-dimensional case.

3. LECTURE: INVARIANTS

The computation of the Hilbert function will be discussed and explained. Let K be a field.

Definition 3.1. Let A =
⊕

ν≥0 Aν be a Noetherian graded K–algebra, and let M =
⊕

ν∈Z Mν

be a finitely generated graded A–module. The Hilbert function HM : Z → Z of M is de-

fined by

HM(n) := dimK(Mn) ,

and the Hilbert–Poincaré series HPM of M is defined by

HPM(t) := ∑
ν∈Z

HM(ν) · tν ∈ Z[[t]][t−1] .

Theorem 3.2. Let A =
⊕

ν≥0 Aν be a graded K–algebra, and assume that A is generated,

as K–algebra, by x1, . . . ,xr ∈ A1. Then, for any finitely generated (positively) graded A–

module M =
⊕

ν≥0 Mν ,

HPM(t) =
Q(t)

(1− t)r
for some Q(t) ∈ Z[t] .

Note that SINGULAR has a command which computes the numerator Q(t) for the

Hilbert–Poincaré series:

SINGULAR Example 10.

ring A=0,(t,x,y,z),dp;

ideal I=x5y2,x3,y3,xy4,xy7;

intvec v = hilb(std(I),1);

v;

//-> 1,0,0,-2,0,0,1,0

We obtain Q(t) = t6 −2t3 +1.

The latter output has to be interpreted as follows: if v = (v0, . . . ,vd,0) then Q(t) =

∑d
i=0 vit

i.
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Theorem 3.3. Let > be any monomial ordering on K[x] := K[x1, . . . ,xr], and let I ⊂ K[x]
be a homogeneous ideal. Then

HPK[x]/I(t) = HPK[x]/L(I)(t) ,

where L(I) is the leading ideal of I with respect to >.

Examples how to compute the Hilbert polynomial, the Hilbert–Samuel function, the de-

gree respectively and the multiplicity and the dimension of an ideal can be found in [7].

As above all computations are reduced to compute the corresponding invariants for the

leading ideal.

4. LECTURE: HOMOLOGICAL ALGEBRA

Here we will show different approaches how to test Cohen–Macaulayness using SIN-

GULAR. More details about the underlying theory can be found in [7].

SINGULAR Example 11 (first test for Cohen–Macaulayness).

Let (A,m) be a local ring, m = 〈x1, . . . ,xn〉. Let M be an A–module given by a presentation

Aℓ → As → M → 0. To check whether M is Cohen–Macaulay we use that the equality

dim
(

A/Ann(M)
)

= dim(M) = depth(M)

= n− sup{i | Hi(x1, . . . ,xn,M) 6= 0} .

is necessary and sufficient for M to be Cohen–Macaulay. The following procedure com-

putes depth(m,M), where m = 〈x1, . . . ,xn〉 ⊂ A = K[x1, . . . ,xn]> and M is a finitely gen-

erated A–module with mM 6= M.

The following procedures use the procedures Koszul Homology from homolog.lib and

Ann from primdec.lib to compute the Koszul Homology Hi(x1, . . . ,xn,M) and the an-

nihilator Ann(M). They have to be loaded first.

LIB "homolog.lib";

proc depth(module M)

{

ideal m=maxideal(1);

int n=size(m);

int i;

while(i<n)

{

i++;

if(size(KoszulHomology(m,M,i))==0){return(n-i+1);}

}

return(0);

}

Now the test for Cohen–Macaulayness is easy.

14



LIB "primdec.lib";

proc CohenMacaulayTest(module M)

{

return(depth(M)==dim(std(Ann(M))));

}

The procedure returns 1 if M is Cohen–Macaulay and 0 if not.

As an application, we check that a complete intersection is Cohen–Macaulay and that

K[x,y,z]〈x,y,z〉/〈xz,yz,z2〉 is not Cohen–Macaulay.

ring R=0,(x,y,z),ds;

ideal I=xz,yz,z2;

module M=I*freemodule(1);

CohenMacaulayTest(M);

//-> 0

I=x2+y2,z7;

M=I*freemodule(1);

CohenMacaulayTest(M);

//-> 1

SINGULAR Example 12 (second test for Cohen–Macaulayness).

Let A = K[x1, . . . ,xn]〈x1,...,xn〉/I. Using Noether normalization, we may assume that

A ⊃ K[xs+1, . . . ,xn]〈xs+1,...,xn〉 =: B is finite. We choose a monomial basis m1, . . . ,mr ∈
K[x1, . . . ,xs] of A

∣

∣

xs+1=···=xn=0
.

Then m1, . . . ,mr is a minimal system of generators of A as B–module. A is Cohen–

Macaulay if and only if A is a free B–module, that is, there are no B–relations between

m1, . . . ,mr, in other words, syzA(m1, . . . ,mr)∩Br = 〈0〉. This test can be implemented in

SINGULAR as follows:

proc isCohenMacaulay(ideal I)

{

def A = basering;

list L = noetherNormal(I);

map phi = A,L[1];

I = phi(I);

int s = nvars(basering)-size(L[2]);

execute("ring B=("+charstr(A)+"),x(1..s),ds;");

ideal m = maxideal(1);

map psi = A,m;

ideal J = std(psi(I));

ideal K = kbase(J);

setring A;

execute("

ring C=("+charstr(A)+"),("+varstr(A)+"),(dp(s),ds);");
15



ideal I = imap(A,I);

qring D = std(I);

ideal K = fetch(B,K);

module N = std(syz(K));

intvec v = leadexp(N[size(N)]);

int i=1;

while((i<s)&&(v[i]==0)){i++;}

setring A;

if(!v[i]){return(0);}

return(1);

}

As the above procedure uses noetherNormal from algebra.lib, we first have to load

this library.

LIB"algebra.lib";

ring r=0,(x,y,z),ds;

ideal I=xz,yz;

isCohenMacaulay(I);

//-> 0

I=x2-y3;

isCohenMacaulay(I);

//-> 1

SINGULAR Example 13 (3rd test for Cohen–Macaulayness).

We use the Auslander–Buchsbaum formula to compute the depth of M and then check if

depth(M) = dim(M) = dim
(

A/Ann(M)
)

.

We assume that A = K[x1, . . . ,xn]〈x1,...,xn〉/I and compute a minimal free resolution.

Then depth(A) = n−pdK[x1,...,xn]〈x1,...,xn〉
(A). If M is a finitely generated A–module of fi-

nite projective dimension, then we compute a minimal free resolution of M and obtain

depth(M) = depth(A)−pdA(M).

proc projdim(module M)

{

list l=mres(M,0); //compute the resolution

int i;

while(i<size(l))

{

i++;

if(size(l[i])==0){return(i-1);}

}

}

Now it is easy to give another test for Cohen–Macaulayness.

proc isCohenMacaulay1(ideal I)
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{

int de=nvars(basering)-projdim(I*freemodule(1));

int di=dim(std(I));

return(de==di);

}

ring R=0,(x,y,z),ds;

ideal I=xz,yz;

isCohenMacaulay1(I);

//-> 0

I=x2-y3;

isCohenMacaulay1(I);

//-> 1

I=xz,yz,xy;

isCohenMacaulay1(I);

//-> 1

kill R;

The following procedure checks whether the depth of M is equal to d. It uses the proce-

dure Ann from primdec.lib.

proc CohenMacaulayTest1(module M, int d)

{

return((d-projdim(M))==dim(std(Ann(M))));

}

LIB"primdec.lib";

ring R=0,(x,y,z),ds;

ideal I=xz,yz;

module M=I*freemodule(1);

CohenMacaulayTest1(M,3);

//-> 0

I=x2+y2,z7;

M=I*freemodule(1);

CohenMacaulayTest1(M,3);

//-> 1
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