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COMPUTING IN COMMUTATIVE ALGEBRA

GERHARD PFISTER

1. STANDARD BASES AND SINGULAR

SINGULAR is available, free of charge, as a binary programme for most common hard-
ware and software platforms. Release versions of SINGULAR can be downloaded through
ftp from our FTP site

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/,
or, using your favourite WWW browser, from
http://www.singular.uni-kl.de/download.html

The basis of SINGULAR is multivariate polynomial factorization and standard bases
computations.

We explain first of all the notion of a Grobner basis (with respect to any ordering)
as the basis for computations in localizations of factorrings of polynomial rings. The
presentation of a polynomial as a linear combination of monomials is unique only up to an
order of the summands, due to the commutativity of the addition. We can make this order
unique by choosing a total ordering on the set of monomials. For further applications
it is necessary, however, that the ordering is compatible with the semigroup structure on
Mon;,,.

We give here only the important definitions, theorems and examples. Proofs can be
found in [7]. The SINGULAR examples can be found on the CD in [7].

Definition 1.1. A monomial ordering or semigroup ordering is a total (or linear) ordering
> on the set of monomials Mon, = {x* | @ € N"} in n variables satisfying

x> P = % > P
forall oo, B,y € N". We say also > is a monomial ordering on A[xy,...,x,], A any ring,

meaning that > is a monomial ordering on Mon,,.

Definition 1.2. Let > be a fixed monomial ordering. Write f € K[x|, f # 0, in a unique
way as a sum of non—zero terms

f:aax“—l—aﬁxﬁ—i—'-«—i—ayx", PR LS
and ag,ag,...,ay € K. We define:
(1) LM(f) := leadmonom(f):= x%, the leading monomial of f,
(2) LE(f) := leadezp (f):= a, the leading exponent of f,

(3) LT(f) := lead (f):= aqx%, the leading term or head of f,
(4) LC(f) := leadcoef (f):= aq, the leading coefficient of f
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(5) tail (f):=f— lead(f)= aﬁxﬁ + -4 ayx?, the tail.
(6) ecart(f) := deg(f) — deg(LM(f)).

SINGULAR Example 1.
ring A = 0,(x,y,2),1p;

poly f = y4z3+2x2y2z2+3x5+4z4+5y2;

f; //display f in a lex-ordered way
//=> 3x5+2x2y2z2+y4z3+5y2+4z4

leadmonom(f) ; //leading monomial
//-> x5

leadexp(f); //leading exponent
//-> 5,0,0

lead(f); //leading term

//-> 3x5

leadcoef (f); //leading coefficient
//=> 3

f - lead(f); //tail

//=> 2x2y2z2+y4z3+by2+4z4

Definition 1.3. Let > be a monomial ordering on {x* | o € N"}.
(1) > is called a global ordering if x* > 1 for all o # (0,...,0),
(2) > is called alocal ordering if x* < 1 for all a # (0, ...,0),
(3) > is called a mixed ordering if it is neither global nor local.
Lemma 1.4. Let > be a monomial ordering, then the following conditions are equivalent:

(1) > is a well-ordering.
2)xi>1fori=1,...,n.
(3) x* > 1 forall a # (0,...,0), that is, > is global.

In the following examples we fix an enumeration xp,...,Xx, of the variables, any other
enumeration leads to a different ordering.
%beginenumerate GLOBAL ORDERINGS

(1) Lexicographical ordering >, (also denoted by lex):
x“ >lpxﬁ: = J1<i<n:oq=P,....,0,_1=PBi_1,06 > Bi.
(i1) Degree reverse lexicographical ordering >4, (denoted by degrevlex):
x> P = degx® > degxP
or : (degx® =degx? and 31 <i<n:
Qp = By, Qi1 = Piv1, & <ﬁi),

where degx® = o + - - - + a,.
P%le 1

LocAL ORDERINGS



(1) Negative lexicographical ordering > :
X0 >xP = F1<i<noy=P,...,0_1 = Bi_1, 0 < B;.
(11) Negative degree reverse lexicographical ordering:
x%>gxP = degx® < degxP, where degx® = a; +--- + ay,
or : (degx® =degx? and 31 <i<n:
Oy = Py, Qi1 = Piy1, 04 < ﬁi).

Let > be a monomial ordering on the set of monomials Mon(xy,...,x,) = {x* | a €
N"}, and K[x] = K|[x1,...,x,] the polynomial ring in n variables over a field K. Then the
leading monomial function LM has the following properties for polynomials f,g € K[x]\ {0}:

(1) LM(gf) = LM(g)LM(f).
(2) LM(g+ f) < max{LM(g),LM(f)} with equality if and only if the leading terms
of f and g do not cancel.

In particular, it follows that
Ss :={uecK[x]\{0} | LM(u) =1}
is a multiplicatively closed set.

Definition 1.5. For any monomial ordering > on Mon(xy,...,x,), we define
KO =5k = { L | rare ki, vt =1}

the localization of K |x] with respect to S~ and call K|x]~ the ring associated to K|[x] and
>.

Note that S~ = K* if and only if > is global and S~ = K|[x|\ (x1,...,x,) if and only if >
is local.

Definition 1.6. Let > be any monomial ordering:

(1) For f € K[x|> choose u € K|x] such that LT(u) = 1 and uf € K|[x|. We define

LM(f) := LM(uf),
LC(f) :=LC(uf),
LT(f) := LT(uf),
LE(f) := LE(uf),

and tail(f) = f — LT(f).
(2) For any subset G C K|x]~ define the ideal

L>(G) :=L(G) := (LM(g) | ¢ € G\ {0} )k
L(G) C K[x] is called the leading ideal of G.

Definition 1.7. Let I C R = K|[x]~ be an ideal.
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(1) A finite set G C R is called a standard basis of I if
G CI, and L(I) = L(G).

That is, G is a standard basis, if the leading monomials of the elements of G
generate the leading ideal of I, or, in other words, if for any f €1\ {0} there
exists a g € G satisfying LM(g) | LM(f).

(2) If > is global, a standard basis is also called a Grobner basis.

(3) Ifwe just say that G is a standard basis, we mean that G is a standard basis of the
ideal (G)g generated by G.

Standard bases can be characterized using the notion of the normal form. We need the
following definitions:

Definition 1.8. Ler f,g € R\ {0} with LM(f) = x* and LM(g) = xP, respectively. Set
y:=lem(a,B) := (max(ocl,ﬁl),...,max(an,ﬁn))

and let lem(x*,xB) := x¥ be the least common multiple of x* and xP. We define the s—
polynomial (spoly, for short) of f and g to be
LC(f) xVBg.

spoly(f,g) :==x""%f— LC(g)

If LM(g) divides LM(f), say LM(g) = xB, LM(f) = x®, then the s—polynomial is partic-
ularly simple,
LC( ) La—P

SPOZ)’(fag):f—Tg) X8,
and LM (spoly(f,8)) < LM(f).

Definition 1.9. Let & denote the set of all finite lists G C R = K|[x]~.
NF:Rx9 —R, (f,G) — NF(f|G),
is called a normal form on R if, for all G € ¢4,
(0) NF(0|G) =0,
and, forall f e Rand G € 9,
(1) NF(f|G) #0 = LM(NF(f | G)) ¢ L(G).

(2) IfG={g1,--.,8s}, then f has a standard representation with respect to NF(— | G),
that is, there exists a unit u € R* such that

5
uf —NF(f|G) = Zaigi, ai€R, s>0,

i=1

satisfying LM(X}_,a;8;) > LM(a;g;) for all i such that a;g; # 0.
The existence of a normal form is given by the following algorithm:

Algorithm 1.10. NF(f | G)

Let > be any monomial ordering.

Input:  f € K[x], G a finite list in K|[x]

Output: h € K|[x] a polynomial normal form of f with respect to G.
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hile(h#0and T, := {g € T | LM(g)
choose g € Ty, with ecart(g) minimal;
if (ecart(g) > ecart(h))

T :=TU{h};
h:= spoly(h, g);
e return h;

LM(h)} #0)

Theorem 1.11. Let I C R be an ideal and G = {gy,...,gs} C 1. Then the following are
equivalent:

(1) G is a standard basis of I.
(2) NF(f|G)=0ifandonly if f € L.

We will explain now how to use standard bases to solve problems in algebra.

Ideal membership

Problem: Given f, fi,..., fr € K|x|, and let I = (fi,..., fr)r. We wish to decide whether
f €1, ornot.

Solution: We choose any monomial ordering > such that K[x]~ = R and compute a stan-
dard basis G = {gi,...,gs} of I with respect to >. f €[ if and only if NF(f | G) =0.

SINGULAR Example 2.
ring A = 0,(x,y),dp;

ideal I = x10+x9y2,y8-x2y7;

ideal J = std(I);

poly £ = x2y7+yl4;

reduce(f,J,1); //3rd parameter 1 avoids tail reduction
//=> —xyl12+x2y7 //f is not in I

f = xyl3+yl2;
reduce(f,J,1);
//=> 0 //f is in I

Intersection with Subrings (Elimination of variables)

Problem: Given fi,...,fy € Klx| = K[x1,...,xn], I = (f1,-., fi)k[x> We should like to
find generators of the ideal

I'=INK[xsi1,...,%,], s<n.

Elements of the ideal I’ are said to be obtained from fi,..., fi by eliminating xi,. .., Xx;.
The following lemma is the basis for solving the elimination problem.

5



Lemma 1.12. Let > be an elimination ordering for xi,...,xs on the set of monomials
Mon(x1,...,x,), and let I C K[x1,...,x,|> be an ideal. If S ={g1,...,gx} is a standard
basis of I, then

§'= {g €S | LM(g) € K[xs—i-la--wxn]}

is a standard basis of I' :== INK|[Xs11, .. .,%n). In particular, S’ generates the ideal I'.
SINGULAR Example 3.

ring A =0, (t,x,y,2),dp;
ideal I=t2+x2+y2+z2,t2+2x2-xy-z2,t+y3-23;

eliminate(I,t);
//=> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+z6+2x2-xy-22

Alternatively choose a product ordering:

ring A1=0, (t,x,y,z), (dp(1),dp(3));

ideal I=imap(A,I);

ideal J=std(I);

J;

//=> J[1]=x2-xy-y2-2z2 J[2]=y6-2y323+26+2x2-xy-2z2
//=> J[3]=t+y3-23

Radical Membership

Problem: Let fi,..., fr € K[x]~, > a monomial ordering on Mon(xy,...,x,) and
I={f1,...,fi)k|x.- Given some f € K[x]> we want to decide whether f € V1. The
following lemma, which is sometimes called Rabinowich’s trick, is the basis for solving
this problem. !

Lemma 1.13. Let A be a ring, | C A an ideal and f € A. Then
feVvl: —=:lel:= (L1=tf)ap

where t is an additional new variable.

SINGULAR Example 4.

ring A =0, (x,y,2),dp;
ideal I=xb,xy3,y7,z3+xyz;
poly f =x+y+z;

ring B =0, (t,x,y,2z),dp; //need t for radical test
ideal I=imap(A,I);

poly f =imap(A,f);

I=1,1-tx*f;

std(I);

//-> _[1]1=1 //f is in the radical

IWe can even compute the full radical /1, but this is a much harder computation.
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LIB"primdec.1lib"; //just to see, we compute the radical
setring A;

radical(I);

//-> _[11=z  _[2]=y _[3]1=x

Intersection of Ideals

Problem: Given fi,..., fr, hi,...,h, € K[x] and > a monomial ordering. Let I} =
(fi,--- fi)K[x]> and I, = (hy, ..., h,)K[x]~. We wish to find generators for I; N 1.

Consider the ideal J := (¢ f1,...,tfi, (1 —1)hy, ..., (1 —1)h) (K[x]>)]t].
Lemma 1.14. With the above notations, Iy NI, = J N K|x]~.

SINGULAR Example 5.

ring A=0, (x,y,z),dp;

ideal Il=x,y;

ideal I2=y2,z;

intersect(I1,I2); //the built-in SINGULAR command
//-> _[1]=y2 _[2]=yz _[3]1=xz

ring B=0, (t,x,y,2),dp; //the way described above
ideal Il=imap(A,I1);

ideal I2=imap(A,I2);

ideal J=t*I1+(1-t)*I2;

eliminate(J,t);

//=> _[1l=yz _[2]=xz  _[3]=y2

Quotient of Ideals
Problem: Let I} and I C K|[x]~. We want to compute

I : L = {gEK[x]> ‘glz CI]}.
Since, obviously, I : (hy,...,h,) =(\—;(I; : (hi)), we can compute [; : (h;) for each i.

The next lemma shows a way to compute 7} : (h;).

Lemma 1.15. Let I C K|[x]~ be an ideal, and let h € K[x|~, h # 0. Moreover, let IN (h) =
(g1-hy...,8s+h). ThenI: (h) =(g1,---,8s)Kx-

SINGULAR Example 6.

ring A=0,(x,y,z),dp;

ideal Il1=x,y;

ideal I2=y2,z;

quotient(I1,I2); //the built-in SINGULAR command
//-> _[1]l=y _[2]=x



Kernel of a Ring Map
Let ¢ : Ry := (K[x]>,)/I — (K[y]>,)/J =: Ry be aring map defined by polynomials ¢(x;) =
fi € Ky =K]y1,...,ym] fori=1,...,n (and assume that the monomial orderings satisfy
1 >, LM(f;) if 1 > x;.
Define Jy := JNK]|y], and Ip := INK[x]. Then ¢ is induced by

(pZK[X]/]QHK[y]/Jo, )Cil—>fl-7

and we have a commutative diagram

K[x)/Ip —2= K[y]/Jo

1 V

Ry R>.

Problem: Let I,J and ¢ be as above. Compute generators for Ker(¢).

Solution: Assume that Jo = (g1,...,8s)k[y] and Io = (h1, ..., ) gy
SetH := (hy,...,h,81,---,85,X1— f1,--s%n— fn) C K[x,y], and compute H' := H N K x]
by eliminating yi,...,y, from H. Then H' generates Ker(¢) by the following lemma.

Lemma 1.16. With the above notations, Ker(¢) = Ker(Q)R, and
Ker((p) = (10 + <g17 - 85y X1 _f17 <o Xn — fn>K[x7y] ﬂK[x]) mOdIO .

In particular, if > is global, then Ker(¢) = Ker(Q).

SINGULAR Example 7.

ring A=0, (x,y,z),dp;
ring B=0, (a,b),dp;
map phi=A,a2,ab,b2;

ideal zero; //compute the preimage of 0
setring A;
preimage (B,phi,zero); //the built-in SINGULAR command

//=> _[1]=y2-xz

ring C=0,(x,y,z,a,b), dp; //the method described above
ideal H=x-a2, y-ab, z-b2;

eliminate(H,ab);

//-> _[1]=y2-xz



2. LECTURE: POLYNOMIAL SOLVING AND PRIMARY DECOMPOSITION

Solvability of Polynomial Equations

Problem: Given fi,..., fr € K[xj,...,x,], we want to assure whether the system of
polynomial equations

filx) == filx) =0
has a solution in K, where K is the algebraic closure of K.
Let I = (f1,..., fi)k[x> then the question is whether the algebraic set V(I) C K" is
empty or not.

Solution: By Hilbert’s Nullstellensatz, V() = 0 if and only if 1 € 1. We compute a
Grobner basis G of I with respect to any global ordering on Mon(x,. . .,x,) and normalize
it (that is, divide every g € G by LC(g)). Since 1 €1 if and only if 1 € L(I), we have
V(I) = 0 if and only if 1 is an element of a normalized Grobner basis of 1. Of course, we
can avoid normalizing, which is expensive in rings with parameters. Since 1 € [ if and
only if G contains a non—zero constant polynomial, we have only to look for an element
of degree 0 in G.

SINGULAR Example 8.

ring A=0,(x,y,2),1lp;
ideal I=x2+y+z-1,

x+y2+z-1,
x+y+z2-1;
ideal J=groebner(I); //the lexicographical Groebner basis
J;
//=> J[1]=26-4z4+423-22 J[2]=2yz2+z4-z2
//=> J[3]=y2-y-z2+z J[4]=x+y+z2-1

We use the multivariate solver based on triangular sets.

LIB"solve.lib";
list sl=solve(I,6);
//=> // name of new current ring: AC

sl;

//-> [1]: [2]: [3]: [4]: [5]:
//=> [1]: [1]: [1]: [1]: [1]:
//=> 0.414214 0 -2.414214 1 0
//=> [2]: [2]: [2]: [2]: [2]:
//=> 0.414214 0 -2.414214 0 1
//=> [3]: [3]: [3]: [3]: [3]:
//=> 0.414214 1 -2.414214 0 0
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If we want to compute the zeros with multiplicities then we use 1 as a third parameter for
the command:

setring A;
list s2=solve(I,6,1);
s2;
//=> [1]: [2]:
//=> [1]: [1]:
//=> (1]: [1]:
//=> [1]: (1]:
//=> -2.414214 0
//=> [2]: [2]:
//=-> -2.414214 1
//=> [3]: [3]:
//=> -2.414214 0
//=> [2]: [2]:
//=> [1]: [1]:
//=> 0.414214 1
//=> [2]: [2]:
//=-> 0.414214 0
//=> [3]: [3]:
//=> 0.414214 0
//=> [2]: [3]:
//=> 1 [1]:
//=> 0
//=> [2]:
//=> 0
//=> [3]:
//=> 1
//=> [2]:
//=> 2

The output has to be interpreted as follows: there are two zeros of multiplicity 1 and
three zeros ((0,1,0), (1,0,0), (0,0, 1)) of multiplicity 2.

Definition 2.1.

(1) A maximal ideal M C K|xy,...,x,| is called in general position with respect to the
lexicographical ordering with x| > --- > xp, if there exist gi,...,8, € K|[x,| with
M= <X] +81 (xn)7 sy Xn—1+8n—1 (xn)’ gn<xn)>-

(2) A zero—dimensional ideal I C K|xy,...,x,] is called in general position with re-
spect to the lexicographical ordering with x| > --- > x,,, if all associated primes
Py, ..., P are in general position and if PN\ K[x,] # Pj N\ K|x,] for i # j.

Proposition 2.2. Let K be a field of characteristic 0, and let I C K[x], x = (x1,...,X,), be

a zero—dimensional ideal. Then there exists a non—empty, Zariski open subset U C K"!
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such that for all a = (ay,...,a,_1) € U, the coordinate change @, : K|[x| — K|x| defined
by @u(xi) = x; if i <n, and
n—1

i=1

has the property that @,(I) is in general position with respect to the lexicographical or-
dering defined by x; > --- > x,.

Proposition 2.3. Let I C K[xy,...,x,] be a zero—dimensional ideal. Let (g) = INK]|x,),
g= g}" ... 85", gi monic and prime and g; # g for i # j. Then
(D I=Nizi{8;"):

If I is in general position with respect to the lexicographical ordering with x; > --- > Xy,
then

(2) (I1,gY") is a primary ideal for all i.
SINGULAR Example 9 (zero—dim primary decomposition).
We give an example for a zero-dimensional primary decomposition.
option(redSB);

ring R=0, (x,y),1p;
ideal I=(y2-1)"2,x2-(y+1)"3;

The ideal 7 is not in general position with respect to 1p, since the minimal associated
prime (x> — 8,y — 1) is not.

map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map

I=std(phi(I));

I;

//=> I[1]1=yT7-y6-19y5-13y4+99y3+221y2+175y+49

//-> 1[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> 1[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);

//-> [1]:

//=> _[11=1

//-> _[2]=y2-2y-7

//=> _[3]=y+1

//-> [2]:

//=> 1,2,3

ideal Q1=std(I,(y2-2y-7)"2); //the candidates for the
//primary ideals

ideal Q2=std(I, (y+1)73); //in general position

Q1; Q2;

//-> Q1[1]=y4-4y3-10y2+28y+49  Q2[1]=y3+3y2+3y+1
11



//=-> Q1[2]=56x+y3-9y2+63y-7 Q2 [2] =2xy+2x+y2+2y+1
Q2[3]=x2

factorize(Q1[1]); //primary and general position test
//for Q1

//=> [1]:

//=> _[1]=1

//-> _[2]=y2-2y-7

//=> [2]:

//=> 1,2

factorize(Q2[1]); //primary and general position test
//for Q2

//=> [1]:

//=> _[1]1=1

//=> _[2]=y+1

//=> [2]:

//=> 1,3

Both ideals are primary and in general position.

Ql=std(psi(Q1)); //the inverse coordinate change
Q2=std(psi(Q2)); //the result
Q1; Q2;

//-> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1
//-> Q1[2]=x2-12y+4  Q2[2]=x2

We obtain that / is the intersection of the primary ideals Q| and O with associated prime

ideals (y —1,x2—8) and (y+1,x).

The following proposition reduces the higher dimensional case to the zero-dimensional

case:

Proposition 2.4. Let I C K[x] be an ideal and u C x = {x1,...,x,} be a maximal inde-

pendent set of variables® with respect to I.

(1) IK(u)[x ~ u] C K(u)[x\ u] is a zero—dimensional ideal.

(2) Let S={g1,...,8s} C 1 C K[x] be a Gribner basis of IK (u)[x \ u], and let h :=

lem(LC(g1),-..,LC(gs)) € Ku), then
IK(u)[x~u|NKx]=1:(h7),

and this ideal is equidimensional of dimension dim(I).

%It is maximal such that 7 N K[u] = (0).



(3) Let IK(u)[x~u] = Q1 N---NQs be an irredundant primary decomposition, then
also IK (u)[x~u|NK[x] = (Q1NK[x])N---N(QsNK[x]) is an irredundant pri-
mary decomposition.

Finally we explain how to compute the radical.

Proposition 2.5. Let I C K[xy,...,x,| be a zero—dimensional ideal and INK|[x;] = (f;)
fori=1,...,n. Moreover, let g; be the squarefree part of fi, then /I =1+ (81,---+8n)-

The higher dimensional case can be reduced similarly to the primary decomposition to
the zero-dimensional case.

3. LECTURE: INVARIANTS

The computation of the Hilbert function will be discussed and explained. Let K be a field.

Definition 3.1. Let A = > Ay be a Noetherian graded K—algebra, and let M = @,y My
be a finitely generated graded A—module. The Hilbert function Hy; : Z — 7 of M is de-
fined by

HM(VL) = dlmK(M,,) s
and the Hilbert—Poincaré series HPy; of M is defined by

HPy(t):= Y Hy(v)-t" € Z[[)][r"'].
VEZ

Theorem 3.2. Let A = D, >oAv be a graded K—algebra, and assume that A is generated,
as K—algebra, by x1,...,x, € A1. Then, for any finitely generated (positively) graded A—
module M = @~ My,

o)
(1=2)"

Note that SINGULAR has a command which computes the numerator Q(¢) for the
Hilbert—Poincaré€ series:

HPM(Z) =

for some Q(t) € Z|t].

SINGULAR Example 10.

ring A=0, (t,x,y,2z),dp;
ideal I=x5y2,x3,y3,xy4,xy7;
intvec v = hilb(std(I),1);
v;

//->1,0,0,-2,0,0,1,0

We obtain Q(t) =1 — 213 4 1.

The latter output has to be interpreted as follows: if v = (vg,...,v4,0) then Q(r) =

d .
zlzovltl
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Theorem 3.3. Let > be any monomial ordering on K [x] := K[xy,...,x,], and let I C K|[x]
be a homogeneous ideal. Then

HPy(/1(t) = HP g /) (1)
where L(I) is the leading ideal of I with respect to >.

Examples how to compute the Hilbert polynomial, the Hilbert—Samuel function, the de-
gree respectively and the multiplicity and the dimension of an ideal can be found in [7].
As above all computations are reduced to compute the corresponding invariants for the
leading ideal.

4. LECTURE: HOMOLOGICAL ALGEBRA

Here we will show different approaches how to test Cohen—Macaulayness using SIN-
GULAR. More details about the underlying theory can be found in [7].

SINGULAR Example 11 (first test for Cohen—Macaulayness).

Let (A,m) be a local ring, m = (x1,...,x,). Let M be an A—module given by a presentation
Al — AS — M — 0. To check whether M is Cohen—Macaulay we use that the equality

dim(A/Ann(M)) = dim(M) = depth(M)
=n—sup{i| Hi(x1,...,x,,M) # 0} .

is necessary and sufficient for M to be Cohen—Macaulay. The following procedure com-
putes depth(m, M), where m = (x1,...,x,) CA=K]x1,...,x,]> and M is a finitely gen-
erated A—-module with mM # M.

The following procedures use the procedures Koszul Homology from homolog.1ib and
Ann from primdec.1ib to compute the Koszul Homology H;(xy,...,x,,M) and the an-
nihilator Ann(M). They have to be loaded first.

LIB "homolog.lib";
proc depth(module M)
{
ideal m=maxideal(l);
int n=size(m);
int i;
while(i<n)
{
i++;
if (size (KoszulHomology(m,M,i))==0){return(n-i+1);}
+

return(0);

}

Now the test for Cohen—Macaulayness is easy.
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LIB "primdec.lib";

proc CohenMacaulayTest(module M)

{
return(depth(M)==dim(std(Ann(M))));

}

The procedure returns 1 if M is Cohen—Macaulay and O if not.

As an application, we check that a complete intersection is Cohen—Macaulay and that
K[, %,2) (xyz)/ (xz,yz,7%) is not Cohen-Macaulay.

ring R=0, (x,y,z),ds;
ideal I=xz,yz,z2;
module M=Ixfreemodule(1l);

CohenMacaulayTest (M) ;

//=>0

I=x2+y2,z7;

M=Ix*freemodule(1);

CohenMacaulayTest (M) ;

//->1

SINGULAR Example 12 (second test for Cohen—Macaulayness).

Let A=KI[x1,...,Xu](x, .. x,)/I. Using Noether normalization, we may assume that
ADK%waMMMWMf:BUﬁmw We choose a monomial basis my,...,m, €
Klxp,...,x ofA}xM:“:xn:O.

Then my,...,m, is a minimal system of generators of A as B—module. A is Cohen—
Macaulay if and only if A is a free B-module, that is, there are no B—relations between
my,...,my, in other words, syz4(my,...,m,) NB" = (0). This test can be implemented in

SINGULAR as follows:

proc isCohenMacaulay(ideal I)

{
def A = basering;
list L = noetherNormal(I);
map phi = A,L[1];
I = phi(I);
int s = nvars(basering)-size(L[2]);

execute("ring B=("+charstr(A)+"),x(1..s),ds;");

ideal m = maxideal(l);
map psi = A,m;

ideal J = std(psi(I));
ideal K = kbase(J);
setring A;

execute ("

ring C=("+charstr(A)+"), ("+varstr(A)+"), (dp(s),ds);");
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ideal I = imap(A,I);

gring D = std(I);

ideal K = fetch(B,K);

module N = std(syz(K));

intvec v = leadexp(N[size(N)]);
int i=1,;
while((i<s)&&(v[i]==0)){i++;}
setring A;
if('v[i]){return(0);}
return(l);

}

As the above procedure uses noetherNormal from algebra.lib, we first have to load
this library.

LIB"algebra.lib";
ring r=0,(x,y,z),ds;
ideal I=xz,yz;
isCohenMacaulay(I);
//-> 0

I=x2-y3;
isCohenMacaulay(I);
//->1

SINGULAR Example 13 (3rd test for Cohen—Macaulayness).

We use the Auslander—Buchsbaum formula to compute the depth of M and then check if
depth(M) = dim(M) = dim(A/ Ann(M)).

We assume that A= K[x1,...,Xn](x, . x,/I and compute a minimal free resolution.
Then depth(A) =n _de[X17~-~7xn]<x1 " (A). If M is a finitely generated A—module of fi-
nite projective dimension, then we compute a minimal free resolution of M and obtain
depth(M) = depth(A) — pd, (M).

proc projdim(module M)

eeny

{
list l=mres(M,0); //compute the resolution
int i;
while(i<size(1))
{
it++;
if(size(1[i])==0){return(i-1);%}
}
}

Now it is easy to give another test for Cohen—Macaulayness.

proc isCohenMacaulayl(ideal I)
16



{
int de=nvars(basering)-projdim(I*freemodule(1));
int di=dim(std(I));
return(de==di);

}

ring R=0, (x,y,2),ds;
ideal I=xz,yz;
isCohenMacaulay1(I);
//-> 0

I=x2-y3;
isCohenMacaulay1(I);
//-> 1

I=xz,yz,xy;
isCohenMacaulay1(I);
//->1

kill R;

The following procedure checks whether the depth of M is equal to d. It uses the proce-
dure Ann from primdec.1ib.

proc CohenMacaulayTestl(module M, int d)
{

return((d-projdim(M))==dim(std (Ann(M))));
}

LIB"primdec.1lib";

ring R=0, (x,y,2),ds;
ideal I=xz,yz;

module M=Ix*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 0

I=x2+y2,z7;
M=I*freemodule(l);
CohenMacaulayTest1(M,3);
//-> 1
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