STANLEY DEPTH

Dorin Popescu

To cite this version:

Dorin Popescu. STANLEY DEPTH. 3rd cycle. Lahore (Pakistan), 2009. cel-00374629

HAL Id: cel-00374629
https://cel.hal.science/cel-00374629
Submitted on 9 Apr 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STANLEY DEPTH

DORIN POPESCU

Lahore, February 21-28, 2009

1. Lecture: Stanley decompositions and filtrations

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in n variables over a field K and M a finitely generated multigraded (i.e. \mathbb{Z}^{n}-graded) S-module. Given $m \in M$ a homogeneous element in M and $Z \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, let $m K[Z] \subset M$ be the linear K-subspace of all elements of the form $m f, f \in K[Z]$. This subspace is called Stanley space of dimension $|Z|$, if $m K[Z]$ is a free $K[Z]$-module. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces $\mathscr{D}: M=\bigoplus_{i=1}^{r} m_{i} K\left[Z_{i}\right]$. Set sdepth $\mathscr{D}=$ $\min \left\{\left|Z_{i}\right|: i=1, \ldots, r\right\}$. The number

$$
\operatorname{sdepth}(M):=\max \{\operatorname{sdepth}(\mathscr{D}): \mathscr{D} \text { is a Stanley decomposition of } M\}
$$

is called Stanley depth of M. Some properties of Stanley depth appeared in [8], [6], [3], [2]. R. Stanley [9, Conjecture 5.1] gave the following conjecture.

Stanley's Conjecture sdepth $(M) \geq \operatorname{depth}(M)$ for all finitely generated \mathbb{Z}^{n}-graded S modules M.

This lecture is completely based on [4]. We show here that the above conjecture holds when $\operatorname{dim}_{S} M \leq 2$ and $M=J / I$ for some monomial ideals $I \subset J$ of S with I square free. The result is true even when I is not square free (see [4]), but the proof is harder. If $n \leq 5$ Stanley's Conjecture holds for all cyclic S-modules by [1] and [4, Theorem 4.3]. We rely on the talks from this school of M. Vladoiu, where some preparations were made.

Let M be a finite multigraded S-module. A chain of multigraded submodules

$$
\mathscr{F}: 0=M_{0} \subset M_{1} \subset \ldots \subset M_{r}=M
$$

is called a prime filtration of M if $M_{i} / M_{i-1} \cong S / P_{i}\left(-a_{i}\right)$, where $a_{i} \in \mathbb{Z}^{n}$ and each P_{i} is a monomial prime ideal. We call the set $\left\{P_{1}, \ldots, P_{r}\right\}$ the support of \mathscr{F} and denote it supp \mathscr{F}. Prime filtrations always exist and define Stanley decompositions as follows bellow. Suppose that the multigraded isomorphism $S / P_{i}\left(-a_{i}\right) \rightarrow M_{i} / M_{i-1}$ is given by $1 \rightarrow u_{i}+M_{i-1}$, where u_{i} is a \mathbb{Z}^{n}-homogeneous element of M_{i} of degree a_{i}. Set $Z_{i}=\left\{x_{j}\right.$: $\left.x_{j} \notin P_{i}\right\}$. Then

$$
\mathscr{D}(\mathscr{F}): M=\oplus_{i=1}^{r} u_{i} K\left[Z_{i}\right]
$$

is the Stanley decomposition of M induced by \mathscr{F}.

The above Stanley decomposition corresponds to the decomposition

$$
M=\oplus_{i=1}^{r} M_{i} / M_{i-1}
$$

as linear spaces. The Stanley decompositions induced by filtrations are too few and in general are not enough for computation of Stanley depth of M. However, given a filtration \mathscr{F} we can define fdepth $\mathscr{F}=\min _{i \in[r]} \operatorname{dim} S / P_{i}$ and

$$
\begin{aligned}
& \text { fdepth }(M):=\max \{\operatorname{fdepth}(\mathscr{F}): \\
& \mathscr{F} \text { is a prime filtration of } M\} .
\end{aligned}
$$

Clearly,

$$
\text { fdepth } \mathscr{F}=\min _{i \in[r]}\left|Z_{i}\right|=\text { sdepth } \mathscr{D}(\mathscr{F})
$$

and it follows that fdepth $M \leq$ sdepth M. Also note that

$$
\begin{gathered}
\text { depth } M \geq \min _{i \in[r]} \operatorname{depth} M_{i} / M_{i-1}= \\
\min _{i \in[r]} \operatorname{depth} S / P_{i}=\min _{i \in[r]} \operatorname{dim} S / P_{i}=\text { fdepth } \mathscr{F} .
\end{gathered}
$$

The following three lemmas appeared in Vladoiu talks, and here we just remind them.
Lemma 1.1. fdepth $M \leq \operatorname{depth} M \leq$

$$
\min \{\operatorname{dim} S / P: P \in \operatorname{Ass} M\},
$$

and fdepth $M \leq$ sdepth M. If $\operatorname{dim}_{K} M_{a} \leq 1$ for all $a \in \mathbb{Z}^{n}$ then

$$
\text { sdepth } M \leq \min \{\operatorname{dim} S / P: P \in \operatorname{Ass} M\} \text {. }
$$

Lemma 1.2. Suppose that M admits a prime filtration \mathscr{F} with supp $\mathscr{F}=$ Ass M then fdepth $M=$ depth $M=$

$$
\min \{\operatorname{dim} S / P: P \in \operatorname{Ass} M\} \leq \text { sdepth } M .
$$

Moreover if $\operatorname{dim}_{K} M_{a} \leq 1$ for all $a \in \mathbb{Z}^{n}$ then fdepth $M=\operatorname{depth} M=$

$$
\min \{\operatorname{dim} S / P: P \in \operatorname{Ass} M\}=\text { sdepth } M .
$$

M is clean if there exists a filtration \mathscr{F} of M with supp $\mathscr{F}=\operatorname{Min} M$.
Lemma 1.3. If M is a clean module then fdepth $M=\operatorname{depth} M \leq \operatorname{sdepth} M$.
Next lemma is known for all finitely generated multigraded S-modules, but here we present only the case when M is reduced.
Lemma 1.4. Let M be a finitely generated multigraded S-module with Ass $M=\left\{P_{1}, \ldots, P_{r}\right\}$, $\operatorname{dim} S / P_{i}=1$ for $i \in[r]$. Let $0=\cap_{i=1}^{r} N_{i}$ be an irredundant primary decomposition of (0) in M and suppose that $P_{i}=\operatorname{Ann}\left(M / N_{i}\right)$ for all i. Then M is clean.

Proof. Apply induction on r. If $r=1$ then M is torsion-free over S / P_{1} and we get M free over S / P_{1} since $\operatorname{dim}\left(S / P_{1}\right)=1$. Thus M is clean over S.

Suppose that $r>1$. Then $0=\cap_{i=1}^{r-1}\left(N_{i} \cap N_{r}\right)$ is an irredundant primary decomposition of (0) in N_{r} and by induction hypothesis we get N_{r} clean. Also M / N_{r} is clean because Ass $\left(M / N_{r}\right)=\left\{P_{r}\right\}($ case $r=1)$. Hence the filtration $0 \subset N_{r} \subset M$ can be refined to a clean filtration of M.

Next we will extend the above lemma for some reduced Cohen-Macaulay multigraded modules of dimension 2 (from now on we suppose that $n>2$). But first we need some preparations.
Lemma 1.5. Let $I \subset U$ be two monomial ideals of S such that Ass S / I contains only prime ideals of dimension 2, and Ass S / U contains only prime ideals of dimension 1. Suppose that I is reduced. Then there exists $p \in$ Ass S / I such that $U /(p \cap U)$ is a Cohen-Macaulay module of dimension 2 .
Proof. Let $U=\cap_{j=1}^{t} Q_{j}$ be a reduced primary decomposition of U and $P_{j}=\sqrt{Q_{j}}$. Since $P_{1} \supset I$ there exists a minimal prime ideal p_{1} containing I such that $P_{1} \supset p_{1}$. Thus $P_{1}=\left(p_{1}, x_{k}\right)$ for some $k \in[n]$. We may suppose that $p_{1}=\left(x_{2}, \ldots, x_{n-1}\right)$ and $k=n$ after renumbering the variables. Using the description of monomial primary ideals we note that $Q_{1}+p_{1}=\left(p_{1}, x_{n}^{s_{1}}\right)$ for some positive integer s_{1}. Let

$$
\mathscr{I}=\left\{i \in[t]: P_{i}=\left(p_{i}, x_{n}\right)\right.
$$

for some $\left.p_{i} \in \operatorname{Min} S / I\right\}$.
Clearly, $1 \in \mathscr{I}$. If $i \in \mathscr{I}$, that is $P_{i}=\left(p_{i}, x_{n}\right)$, then as above $Q_{i}+p_{i}=\left(p_{i}, x_{n}^{s_{i}}\right)$ for some positive integers s_{i}. We may suppose that $s_{1}=\max _{i \in \mathscr{I}} s_{i}$. Then we claim that depth $S /\left(p_{1}+U\right)=1$.

Let $r \in[t]$ be such that $p_{1}+Q_{r}$ is m-primary. Since

$$
U=U+I=\cap_{j \in[t], q \in \operatorname{Ass} S / I}\left(q+Q_{j}\right)
$$

and depth $S / U=1$ we see that $p_{1}+Q_{r}$ contains an intersection $\cap_{j=1}^{e}\left(q_{j}+Q_{c_{j}}\right)$ with $q_{j} \in$ Ass $S / I, c_{j} \in[t]$ and $\operatorname{dim}\left(q_{j}+Q_{c_{j}}\right)=1$, that is $q_{j} \subset P_{c_{j}}$. Note that $p_{1}+Q_{r}=$

$$
p_{1}+\left(x_{1}^{a_{1}}, x_{n}^{a_{n}}, \text { some } x^{e} \text { with supp } e=\{1, n\}\right) .
$$

Suppose that $x_{n} \in P_{c_{j}}$ for all $j \in[e]$. Then we show that $p_{1}+Q_{1} \subset p_{1}+Q_{r}$. Indeed, by hypothesis a power of x_{n} belongs to the minimal system of generators of $q_{j}+Q_{c_{j}}$, let us say $x_{n}^{b_{c_{j}}} \in G\left(q_{j}+Q_{c_{j}}\right)$. Set $b=\max _{j} b_{c_{j}}$. Then $x_{n}^{b} \in \cap_{j=1}^{e}\left(q_{j}+Q_{c_{j}}\right) \subset p_{1}+Q_{r}$ and so $b \geq a_{n}$. Let $b=b_{c_{j}}$ for some j. If $x_{n} \in q_{j}$ then $b=1$ and so $a_{n}=1$ and clearly $p_{1}+Q_{1} \subset P_{1} \subset p_{1}+Q_{r}$. If $x_{n} \notin q_{j}$ then $c_{j} \in \mathscr{I}$ and so $b=s_{c_{j}} \leq s_{1}$. Thus $p_{1}+Q_{1}=$ $\left(p_{1}, x_{n}^{s_{1}}\right) \subset\left(p_{1}, x_{n}^{b}\right) \subset p_{1}+Q_{r}$.
Now suppose that there exists $j \in[e]$ such that $x_{n} \notin P_{c_{j}}$, let us say $j=1$. Then $P_{c_{1}}=$ $\left(x_{1}, \ldots, x_{n-1}\right)$ and $x_{n} \in P_{c_{j}}$ for all $j>1$. As above, let $x_{n}^{b_{c_{j}}} \in G\left(q_{j}+Q_{c_{j}}\right)$ for $j>1$ and $b=\max _{j>1}^{e} b_{c_{j}}$. If $b \geq a_{n}$ then as above $p_{1}+Q_{1} \subset p_{1}+Q_{r}$. Assume $b<a_{n}$. Let x_{1}^{d} be the power of x_{1} contained in $G\left(q_{1}+Q_{c_{1}}\right)$. If $d \geq a_{1}$ then we get $p_{1}+Q_{c_{1}}=\left(p_{1}, x_{1}^{d}\right) \subset p_{1}+Q_{r}$ and $\operatorname{dim}\left(p_{1}+Q_{c_{1}}\right)=1$. Suppose that $d<a_{1}$. Then note that $x_{1}^{d} x_{n}^{b} \in G\left(\cap_{j=1}^{e}\left(q_{j}+Q_{c_{j}}\right)\right)$ and so $x_{1}^{d} x_{n}^{b} \in p_{1}+Q_{r}$. Thus

$$
\left(p_{1}+Q_{1}\right) \cap\left(p_{1}+Q_{c_{1}}\right) \subset\left(p_{1}, x_{1}^{d} x_{n}^{b}\right) \subset p_{1}+Q_{r} .
$$

Hence $p_{1}+U$ is the intersection of primary ideals of dimension 1 , that is depth $S /\left(p_{1}+\right.$ $U)=1$. From the exact sequence

$$
0 \rightarrow U /\left(p_{1} \cap U\right) \rightarrow \underset{3}{S} p_{1} \rightarrow S /\left(p_{1}+U\right) \rightarrow 0
$$

we get depth $U /\left(p_{1} \cap U\right)=2$.
Lemma 1.6. Let $I \subset U$ be two monomial ideals such that U / I is a Cohen-Macaulay S module of dimension 2 and Ass S / I contains only prime ideals of dimension 2. Suppose that I is reduced. Then there exists $p \in$ Ass S / I such that $U /(p \cap U)$ is a Cohen-Macaulay module of dimension 2 .
Proof. Let $U=\cap_{j=1}^{t} Q_{j}$ be a reduced primary decomposition of U and $P_{j}=\sqrt{Q_{j}}$. From the exact sequence

$$
0 \rightarrow U / I \rightarrow S / I \rightarrow S / U \rightarrow 0
$$

we get depth $S / U \geq$

$$
\min \{\operatorname{depth} U / I-1, \operatorname{depth} S / I\} \geq 1
$$

Thus $1 \leq \operatorname{dim} S / P_{j} \leq 2$ for all j. Suppose that $\operatorname{dim} S / P_{j}=2$. Then we have $\Pi_{q \in \operatorname{Ass} S / I} q \subset$ $I \subset U \subset Q_{j} \subset P_{j}$. Thus $P_{j} \supset p$ for some $p \in \operatorname{Ass} S / I$ and we get $P_{j}=p$ because $\operatorname{dim} S / P_{j}=$ $\operatorname{dim} S / p$. It follows that $\Pi_{q \in \mathrm{Ass} S / I, q \neq p} q \not \subset P_{j}$ and so $p \subset Q_{j} \subset P_{j}=p$. Hence $p=Q_{j}$. Set $U^{\prime}=\cap_{i=1, i \neq j}^{t} Q_{i}, I^{\prime}=\cap_{q \in \mathrm{Ass} S / I, q \neq p} q$. Then

$$
\begin{gathered}
\left(U+I^{\prime}\right) / I^{\prime} \cong U /\left(U \cap I^{\prime}\right)=U /\left(U^{\prime} \cap p \cap I^{\prime}\right)= \\
U /\left(U^{\prime} \cap I\right)=U / I .
\end{gathered}
$$

Changing I by I^{\prime} and U by $U+I^{\prime}$ we may reduce to a smaller $|\operatorname{Ass} S / I|$. By recurrence we may reduce in this way to the case when $\operatorname{dim} S / Q_{j}=1$ for all $j \in[t]$ since $I \neq U$. Now is enough to apply the above lemma.

The above lemma cannot be extended to show that $U /(p \cap U)$ is Cohen-Macaulay for all $p \in \operatorname{Ass} S / I$, as shows the following:
Example 1.7. Let

$$
I=\left(x_{1} x_{2}\right) \subset U=\left(x_{1}, x_{3}^{2}\right) \cap\left(x_{2}, x_{3}\right)
$$

be monomial ideals of $S=K\left[x_{1}, x_{2}, x_{3}\right]$. We have depth $S / U=1$ and depth $S / I=2$. Thus U / I is Cohen-Macaulay but $U /\left(U \cap\left(x_{2}\right)\right)$ is not since $U+\left(x_{2}\right)=\left(x_{1}, x_{2}, x_{3}^{2}\right) \cap\left(x_{2}, x_{3}\right)$, that is depth $S /\left(U+\left(x_{2}\right)\right)=0$. However, $U /\left(U \cap\left(x_{1}\right)\right)$ is Cohen-Macaulay because $U+\left(x_{1}\right)=$ $\left(x_{1}, x_{3}^{2}\right)$.
Theorem 1.8. Let $I \subset U$ be two monomial ideals such that U / I is a Cohen-Macaulay S-module of dimension 2. Suppose that I is reduced. Then U / I is clean. In particular fdepth $U / I=$ sdepth $U / I=2$.
Proof. We follow the second part of the proof of Lemma 1.3. Let $I=\cap_{i=1}^{r} p_{i}$ be a reduced primary decomposition of I (so p_{i} are prime ideals). Apply induction on r. If $r=1$ then U / I is a maximal Cohen-Macaulay (so free) over S / p_{1}. Thus U / I is clean. Suppose that $r>1$. Then there exists $j \in[r]$ such that $U /\left(p_{j} \cap U\right)$ is a Cohen-Macaulay module of dimension 2 using Lemma 1.6. From the exact sequence

$$
0 \rightarrow\left(p_{j} \cap U\right) / I \rightarrow U / I \rightarrow U /\left(p_{j} \cap U\right) \rightarrow 0
$$

we see that $\left(p_{j} \cap U\right) / I$ is a Cohen-Macaulay module of dimension 2 . Set $I^{\prime}=\cap_{i=1, i \neq j}^{r} p_{i}$. We have $\left(p_{j} \cap U\right) / I \cong\left(\left(p_{j} \cap U\right)+I^{\prime}\right) / I^{\prime}$ because $\left(p_{j} \cap U\right) \cap I^{\prime}=U \cap I=I$. Applying induction hypothesis we get the modules $\left(\left(p_{j} \cap U\right)+I^{\prime}\right) / I^{\prime}$ and $\left(U+p_{j}\right) / p_{j} \cong U /\left(p_{j} \cap U\right)$ clean and so the filtration $0 \subset\left(p_{j} \cap U\right) / I \subset U / I$ can be refined to a clean one.

Theorem 1.9. Let U, I be some monomial ideals of S such that $I \subset U, U \neq I$. If $\operatorname{dim}_{S} U / I \leq$ 2 then $\operatorname{sdepth}_{S} U / I \geq \operatorname{depth}_{S} U / I$.

Proof. If U / I is a Cohen-Macaulay S-module of dimension 2 then it is enough to apply the above theorem. If $\operatorname{depth}_{S} U / I=1$ then the result follows from [4, Theorem 3.11].

2. Lecture: Weak Conjecture

In this lecture we study Stanley's Conjecture on monomial square free ideals of S, that is:

Weak Conjecture Let $I \subset S$ be a monomial square free ideal. Then sdepth $_{S} I \geq$ $\operatorname{depth}_{S} I$.

This conjecture says in fact that $\operatorname{sdepth}_{S} I \geq 1+\operatorname{depth}_{S} S / I$ for any monomial square free ideal I of S. This remind us a question raised in [7], saying that sdepth ${ }_{S} I \geq 1+$ $\operatorname{sdepth}_{S} S / I$ for any monomial ideal I of S. A positive answer of this question in the frame of monomial square free ideals would state the Weak Conjecture as follows:

$$
\operatorname{sdepth}_{S} I \geq 1+\operatorname{sdepth}_{S} S / I \geq 1+\operatorname{depth}_{S} S / I=\operatorname{depth}_{S} I
$$

the second inequality being a consequence of [4, Theorem 4.3], or of our Theorem 1.9.
First we present a result of Asia Rauf which we will need in the proof of our Lemma 2.8

Proposition 2.1. ([7]) $\operatorname{depth}_{S} S /\left(I, x_{n}\right) \geq \operatorname{depth}_{S} S / I-1$.
We will need later also the following easy lemma:
Lemma 2.2. Let $I \subset J, I \neq J$ be some monomial ideals of $S^{\prime}=K\left[x_{1}, \ldots, x_{n-1}\right]$ and $T=$ $\left(I+x_{n} J\right) S$. Then

$$
\begin{equation*}
\text { sdepth } T \geq \min \left\{\operatorname{sdepth}_{S^{\prime}} I, \operatorname{sdepth}_{S} J S\right\} \tag{1}
\end{equation*}
$$

sdepth $T \geq \min \left\{\operatorname{sdepth}_{S} J S / I S\right.$, sdepth $\left._{S} I S\right\}$.
Proof. Note that $T=I \oplus x_{n} J S$ as linear K-spaces and so (1) holds. On the other hand the filtration $0 \subset I S \subset T$ induces an isomorphism of linear K-spaces $T \cong I S \oplus T / I S$ and so

$$
\text { sdepth } T \geq \min \left\{\operatorname{sdepth}_{S} T / I S, \operatorname{sdepth}_{S} I S\right\}
$$

Note that the multiplication by x_{n} induces an isomorphism of linear K-spaces $J S / I S \cong$ $T / I S$, which shows that sdepth ${ }_{S} T / I S=\operatorname{sdepth}_{S} J S / I S$. Thus (2) holds too.

It is the purpose of this section to study Stanley's Conjecture on monomial square free ideals of S, that is the Weak Conjecture.

Let $S^{\prime}=K\left[x_{1}, \ldots, x_{n-1}\right]$ be a polynomial ring in $n-1$ variables over a field K and $U, V \subset S^{\prime}, U \subset V$ two homogeneous ideals. We want to study the depth of the ideal $W=\left(U+x_{n} V\right) S$ of S. Actually every monomial square free ideal T of S has this form because then $\left(T: x_{n}\right)$ is generated by an ideal $V \subset S^{\prime}$ and $T=\left(U+x_{n} V\right) S$ for $U=T \cap S^{\prime}$.
Lemma 2.3. Suppose that $U \neq V$ and $\operatorname{depth}_{S^{\prime}} S^{\prime} / U=\operatorname{depth}_{S^{\prime}} S^{\prime} / V=\operatorname{depth}_{S^{\prime}} V / U$. Then $\operatorname{depth}_{S} S / W=\operatorname{depth}_{S^{\prime}} S^{\prime} / U$.

Proof. Set $r=\operatorname{depth}_{S^{\prime}} S^{\prime} / U$ and choose a sequence f_{1}, \ldots, f_{r} of homogeneous elements of $m_{n-1}=\left(x_{1}, \ldots, x_{n-1}\right) \subset S^{\prime}$, which is regular on $S^{\prime} / U, S^{\prime} / V$ and V / U simultaneously. Set $\bar{U}=\left(U, f_{1}, \ldots, f_{r}\right), \bar{V}=\left(V, f_{1}, \ldots, f_{r}\right)$. Then tensorizing by $S^{\prime} /\left(f_{1}, \ldots, f_{r}\right)$ the exact sequence

$$
0 \rightarrow V / U \rightarrow S^{\prime} / U \rightarrow S^{\prime} / V \rightarrow 0
$$

we get the exact sequence

$$
0 \rightarrow V / U \otimes_{S^{\prime}} S^{\prime} /\left(f_{1}, \ldots, f_{r}\right) \rightarrow S^{\prime} / \bar{U} \rightarrow S^{\prime} / \bar{V} \rightarrow 0
$$

and so $\bar{V} / \bar{U} \cong V / U \otimes_{S^{\prime}} S^{\prime} /\left(f_{1}, \ldots, f_{r}\right)$ has depth 0 .
Note that f_{1}, \ldots, f_{r} is regular also on S / W and taking $\bar{W}=W+\left(f_{1}, \ldots, f_{r}\right) S$ we get $\operatorname{depth}_{S} S / W=\operatorname{depth}_{S} S / \bar{W}+r$. Thus passing from U, V, W to $\bar{U}, \bar{V}, \bar{W}$ we may reduce the problem to the case $r=0$.

If $r=0$ then there exists an element $v \in V \backslash U$ such that $(U: v)=m_{n-1}$. Thus the nonzero element of S / W induced by v is annihilated by m_{n-1} and x_{n} because $v \in V$. Hence $\operatorname{depth}_{S} S / W=0$.

Example 2.4. Let $n=4, V=\left(x_{1}, x_{2}\right), U=V \cap\left(x_{1}, x_{3}\right)$ be ideals of $S^{\prime}=K\left[x_{1}, x_{2}, x_{3}\right]$ and $W=\left(U+x_{4} V\right) S$. Then $\left\{x_{3}-x_{2}\right\}$ is a maximal regular sequence on V / U and on S / W as well. Thus depth $S_{S^{\prime}} V / U=\operatorname{depth}_{S^{\prime}} S^{\prime} / U=\operatorname{depth}_{S^{\prime}} S^{\prime} / V=\operatorname{depth}_{S} S / W=1$.

Lemma 2.5. Let $I, J \subset S^{\prime}, I \subset J, I \neq J$ be two monomial ideals, $T=\left(I+x_{n} J\right) S$ such that
(1) $\operatorname{depth}_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S} S / T-1$,
(2) sdepth $_{S^{\prime}} I \geq 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / I$,
(3) sdepth $_{S^{\prime}} J / I \geq \operatorname{depth}_{S^{\prime}} J / I$.

Then $\operatorname{sdepth}_{S} T \geq 1+\operatorname{depth}_{S} S / T$.
Proof. By Lemma 2.2 we have

$$
\operatorname{sdepth}_{S} T \geq 1+\min \left\{\operatorname{sdepth}_{S^{\prime}} I, \operatorname{sdepth}_{S^{\prime}} J / I\right\} \geq 1+\min \left\{1+\operatorname{depth}_{S^{\prime}} S^{\prime} / I, \operatorname{depth}_{S^{\prime}} J / I\right\}
$$

using (3), (2) and a Lemma of Herzog-Vladoiu-Zheng. Note that in the following exact sequence

$$
0 \rightarrow S / J S=S /\left(T: x_{n}\right) \xrightarrow{x_{n}} S / T \rightarrow S /\left(T, x_{n}\right) \cong S^{\prime} / I \rightarrow 0
$$

we have depth $S / J S=\operatorname{depth}_{S^{\prime}} S^{\prime} / I+1$ because of (1) and the Depth Lemma. Thus $\operatorname{depth}_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S^{\prime}} S^{\prime} / J$. As depth $S_{S^{\prime}} S^{\prime} / I \neq \operatorname{depth}_{S} S / T$ we get depth ${ }_{S^{\prime}} S^{\prime} / I \neq \operatorname{depth}_{S^{\prime}} J / I$ by Lemma 2.3. But depth $S_{S^{\prime}} J / I \geq \operatorname{depth}_{S^{\prime}} S^{\prime} / I$ because of the Depth Lemma applied to the following exact sequence

$$
0 \rightarrow J / I \rightarrow S^{\prime} / I \rightarrow S^{\prime} / J \rightarrow 0 .
$$

It follows that depth ${ }_{S^{\prime}} J / I \geq 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / I$ and so

$$
\operatorname{sdepth}_{S} T \geq 2+\operatorname{depth}_{S^{\prime}} S^{\prime} / I=1+\operatorname{depth}_{S} S / T \text {. }
$$

Remark 2.6. The above lemma introduces the difficult hypothesis (3) and one can hope that it is not necessary at least for square free monomial ideals. It seems this is not the case as shows somehow the next example.

Example 2.7. Let $n=4, J=\left(x_{1} x_{3}, x_{2}\right), I=\left(x_{1} x_{2}, x_{1} x_{3}\right)$ be ideals of $S^{\prime}=K\left[x_{1}, x_{2}, x_{3}\right]$ and $T=\left(I+x_{4} J\right) S=\left(x_{1}, x_{2}\right) \cap\left(x_{2}, x_{3}\right) \cap\left(x_{1}, x_{4}\right)$. Then $\left\{x_{4}-x_{2}, x_{3}-x_{1}\right\}$ is a maximal regular sequence on S / T. Thus depth $S / T=2$, $\operatorname{depth}_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S^{\prime}} S^{\prime} / J=1$.

Lemma 2.8. Let $I, J \subset S^{\prime}, I \subset J, I \neq J$ be two monomial ideals, $T=\left(I+x_{n} J\right) S$ such that
(1) $\operatorname{depth}_{S^{\prime}} S^{\prime} / I \neq \operatorname{depth}_{S} S / T-1$,
(2) sdepth $_{S^{\prime}} I \geq 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / I, \quad \operatorname{sdepth}_{S^{\prime}} J \geq 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / J$.

Then $\operatorname{sdepth}_{S} T \geq 1+$ depth $_{S} S / T$.
Proof. By Lemma 2.2 we have

$$
\operatorname{sdepth}_{S} T \geq \min \left\{\operatorname{sdepth}_{S^{\prime}} I, 1+\operatorname{sdepth}_{S^{\prime}} J\right\} \geq 1+\min \left\{\operatorname{depth}_{S^{\prime}} S^{\prime} / I, 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / J\right\}
$$

using (2). Applying Proposition 2.1 we get depth $S_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S} S /\left(T, x_{n}\right) \geq \operatorname{depth}_{S} S / T-$ 1 , the inequality being strict because of (1). We have the following exact sequence

$$
0 \rightarrow S / J S=S /\left(T: x_{n}\right) \xrightarrow{x_{n}} S / T \rightarrow S /\left(T, x_{n}\right) \cong S^{\prime} / I \rightarrow 0 .
$$

If depth ${ }_{S^{\prime}} S^{\prime} / I>\operatorname{depth}_{S} S / T$ then $\operatorname{depth}_{S} S / J S=\operatorname{depth}_{S} S / T$ by Depth Lemma and so
$\operatorname{sdepth}_{S} T \geq 1+\min \left\{\operatorname{depth}_{S^{\prime}} S^{\prime} / I, \operatorname{depth}_{S} S / J S\right\}=1+\operatorname{depth}_{S} S / T$.
If depth $S_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S} S / T$ then $\operatorname{depth}_{S} S / J S \geq \operatorname{depth}_{S^{\prime}} S^{\prime} / I$ again by Depth Lemma and thus

$$
\operatorname{sdepth}_{S} T \geq 1+\operatorname{depth}_{S^{\prime}} S^{\prime} / I=1+\operatorname{depth}_{S} S / T
$$

Example 2.9. Let $n=5, J=\left(x_{1}, x_{2}, x_{3}\right), I=\left(x_{1}, x_{2}\right) \cap\left(x_{3}, x_{4}\right)$ be ideals of $S^{\prime}=K\left[x_{1}, \ldots, x_{4}\right]$ and $T=\left(I+x_{5} J\right) S$. Then $\left\{x_{4}, x_{3}-x_{1}\right\}$ is a maximal regular sequence on J / I and so $\operatorname{depth}_{S^{\prime}} J / I=2>1=\operatorname{depth}_{S^{\prime}} S^{\prime} / I=\operatorname{depth}_{S^{\prime}} S^{\prime} / J=\operatorname{depth}_{S} S / T$.

Theorem 2.10. Suppose that the Stanley's conjecture holds for factors V / U of monomial square free ideals, $U, V \subset S^{\prime}=K\left[x_{1}, \ldots, x_{n-1}\right], U \subset V$, that is
$\operatorname{sdepth}_{S^{\prime}} V / U \geq \operatorname{depth}_{S^{\prime}} V / U$. Then the Weak Conjecture holds for monomial square free ideals of $S=K\left[x_{1}, \ldots, x_{n}\right]$.
Proof. Let $r \leq n$ be a positive integer and $T \subset S_{r}=K\left[x_{1}, \ldots, x_{r}\right]$ a monomial square free ideal. By induction on r we show that sdepth ${S_{r}}^{T} \geq 1+$ depth $_{S_{r}} S_{r} / T$, the case $r=1$ being trivial. Clearly, $\left(T: x_{r}\right)$ is generated by a monomial square free ideal $J \subset S_{r-1}$ containing $I=T \cap S_{r-1}$. By induction hypothesis we have sdepth $S_{S_{-1}} I \geq 1+\operatorname{depth}_{S_{r-1}} S_{r-1} / I$, sdepth $_{S_{r-1}} J \geq 1+$ depth $_{S_{r-1}} S_{r-1} / J$. If $I=J$ then $T=I S, x_{r}$ is regular on S_{r} / T and we have

$$
\text { sdepth }_{S_{r}} T=1+\operatorname{sdepth}_{S_{r-1}} I \geq 2+\operatorname{depth}_{S_{r-1}} S_{r-1} / I=1+\operatorname{depth}_{S_{r}} S_{r} / T \text {. }
$$

Now suppose that $I \neq J$. If depth ${ }_{S_{r-1}} S_{r-1} / I \neq \operatorname{depth}_{S_{r}} S_{r} / T-1$, then it is enough to apply Lemma 2.8. If depth $S_{S_{r-1}} S_{r-1} / I=\operatorname{depth}_{S_{r}} S_{r} / T-1$, then apply Lemma 2.5.

Corollary 2.11. The Weak Conjecture holds in $S=K\left[x_{1}, \ldots, x_{4}\right]$.

Proof. It is enough to apply Lemmas 2.5, 2.8 after we show that for monomial square free ideals $I, J \subset S^{\prime}=K\left[x_{1}, \ldots, x_{3}\right], I \subset J, I \neq J, T=\left(I+x_{4} J\right) S$ with $\operatorname{depth}_{S^{\prime}} S^{\prime} / I=$ $\operatorname{depth}_{S} S / T-1$, we have $\operatorname{sdepth}_{S^{\prime}} J / I \geq \operatorname{depth}_{S^{\prime}} J / I$. But then $I \neq 0$ because otherwise $\operatorname{depth}_{S} S / T \leq 3=\operatorname{depth}_{S^{\prime}} S^{\prime} / I$, which is false. Thus $\operatorname{dim}_{S^{\prime}} J / I \leq 2$ and we may apply Theorem 1.9.

References

[1] I. Anwar and D. Popescu, Stanley conjecture in small embedding dimension, J. Alg. 318(2007), 10271031.
[2] J. Herzog, M. Vladoiu and X. Zheng, How to compute the Stanley depth of a monomial ideal, to appear in J. Alg.
[3] S. Nasir, Stanley decompositions and localization, Bull. Math. Soc. Sc. Math. Roumanie 51(99), no. 2 (2008), 151-158.
[4] D. Popescu, Stanley depth of multigraded modules, Arxiv:Math. AC/0801.2632, to appear in J. Algebra.
[5] D. Popescu, An inequality between depth and Stanley depth, Preprint Bucharest 2009.
[6] A. Rauf, Stanley Decompositions, Pretty Clean Filtrations and Reductions Modulo Regular Elements, Bull. Math. Soc. Sc. Math. Roumanie 50(98), no. 4 (2007), 347-354.
[7] A. Rauf, Depth and Stanley depth of multigraded modules, Arxiv:Math. AC/0812.2080, to appear in Communications in Alg.
[8] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations, J. Algebra, 312(2007), 1011-1032, Arxiv:Math. AC/0605119.
[9] R. P. Stanley, Linear Diophantine Equations and Local Cohomology, Invent. Math. 68 (1982), 175193.

