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STANLEY DEPTH

DORIN POPESCU

Lahore, February 21–28, 2009

1. LECTURE: STANLEY DECOMPOSITIONS AND FILTRATIONS

Let S = K[x1, . . . ,xn] be a polynomial ring in n variables over a field K and M a finitely

generated multigraded (i.e. Z
n-graded) S-module. Given m ∈ M a homogeneous element

in M and Z ⊆ {x1, . . . ,xn}, let mK[Z] ⊂ M be the linear K-subspace of all elements of

the form m f , f ∈ K[Z]. This subspace is called Stanley space of dimension |Z|, if mK[Z]
is a free K[Z]-module. A Stanley decomposition of M is a presentation of the K-vector

space M as a finite direct sum of Stanley spaces D : M =
⊕r

i=1 miK[Zi]. Set sdepthD =
min{|Zi| : i = 1, . . . ,r}. The number

sdepth(M) := max{sdepth(D) : D is a Stanley decomposition of M}

is called Stanley depth of M. Some properties of Stanley depth appeared in [8], [6], [3],

[2]. R. Stanley [9, Conjecture 5.1] gave the following conjecture.

Stanley’s Conjecture sdepth(M) ≥ depth(M) for all finitely generated Z
n-graded S-

modules M.

This lecture is completely based on [4]. We show here that the above conjecture holds

when dimS M ≤ 2 and M = J/I for some monomial ideals I ⊂ J of S with I square free.

The result is true even when I is not square free (see [4]), but the proof is harder. If n ≤ 5

Stanley’s Conjecture holds for all cyclic S-modules by [1] and [4, Theorem 4.3]. We rely

on the talks from this school of M. Vladoiu, where some preparations were made.

Let M be a finite multigraded S-module. A chain of multigraded submodules

F : 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

is called a prime filtration of M if Mi/Mi−1
∼= S/Pi(−ai), where ai ∈ Z

n and each Pi

is a monomial prime ideal. We call the set {P1, . . . ,Pr} the support of F and denote

it suppF . Prime filtrations always exist and define Stanley decompositions as follows

bellow. Suppose that the multigraded isomorphism S/Pi(−ai) → Mi/Mi−1 is given by

1 → ui +Mi−1, where ui is a Z
n-homogeneous element of Mi of degree ai. Set Zi = {x j :

x j 6∈ Pi}. Then

D(F ) : M = ⊕r
i=1uiK[Zi]

is the Stanley decomposition of M induced by F .
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The above Stanley decomposition corresponds to the decomposition

M = ⊕r
i=1Mi/Mi−1

as linear spaces. The Stanley decompositions induced by filtrations are too few and in

general are not enough for computation of Stanley depth of M. However, given a filtration

F we can define fdepthF = mini∈[r] dimS/Pi and

fdepth(M) := max{fdepth(F ) :

F is a prime filtration of M}.

Clearly,

fdepth F = min
i∈[r]

|Zi| = sdepth D(F )

and it follows that fdepth M ≤ sdepth M. Also note that

depth M ≥ min
i∈[r]

depth Mi/Mi−1 =

min
i∈[r]

depth S/Pi = min
i∈[r]

dim S/Pi = fdepth F .

The following three lemmas appeared in Vladoiu talks, and here we just remind them.

Lemma 1.1. fdepth M ≤ depth M ≤

min{dim S/P : P ∈ Ass M},

and fdepth M ≤ sdepth M. If dimK Ma ≤ 1 for all a ∈ Z
n then

sdepth M ≤ min{dim S/P : P ∈ Ass M}.

Lemma 1.2. Suppose that M admits a prime filtration F with supp F = Ass M then

fdepth M = depth M =

min{dim S/P : P ∈ Ass M} ≤ sdepth M.

Moreover if dimK Ma ≤ 1 for all a ∈ Z
n then fdepth M = depth M =

min{dim S/P : P ∈ Ass M} = sdepth M.

M is clean if there exists a filtration F of M with supp F = Min M.

Lemma 1.3. If M is a clean module then fdepth M = depth M ≤ sdepth M.

Next lemma is known for all finitely generated multigraded S-modules, but here we

present only the case when M is reduced.

Lemma 1.4. Let M be a finitely generated multigraded S-module with AssM = {P1, . . . ,Pr},

dimS/Pi = 1 for i ∈ [r]. Let 0 = ∩r
i=1Ni be an irredundant primary decomposition of (0)

in M and suppose that Pi = Ann(M/Ni) for all i. Then M is clean.

Proof. Apply induction on r. If r = 1 then M is torsion-free over S/P1 and we get M free

over S/P1 since dim(S/P1) = 1. Thus M is clean over S.

Suppose that r > 1. Then 0 = ∩r−1
i=1 (Ni ∩Nr) is an irredundant primary decomposition

of (0) in Nr and by induction hypothesis we get Nr clean. Also M/Nr is clean because

Ass(M/Nr) = {Pr} (case r = 1). Hence the filtration 0 ⊂ Nr ⊂ M can be refined to a clean

filtration of M. ¤
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Next we will extend the above lemma for some reduced Cohen-Macaulay multigraded

modules of dimension 2 (from now on we suppose that n > 2). But first we need some

preparations.

Lemma 1.5. Let I ⊂U be two monomial ideals of S such that Ass S/I contains only prime

ideals of dimension 2, and Ass S/U contains only prime ideals of dimension 1. Suppose

that I is reduced. Then there exists p∈Ass S/I such that U/(p∩U) is a Cohen-Macaulay

module of dimension 2.

Proof. Let U = ∩t
j=1Q j be a reduced primary decomposition of U and Pj =

√

Q j. Since

P1 ⊃ I there exists a minimal prime ideal p1 containing I such that P1 ⊃ p1. Thus

P1 = (p1,xk) for some k ∈ [n]. We may suppose that p1 = (x2, . . . ,xn−1) and k = n af-

ter renumbering the variables. Using the description of monomial primary ideals we note

that Q1 + p1 = (p1,x
s1
n ) for some positive integer s1. Let

I = {i ∈ [t] : Pi = (pi,xn)

for some pi ∈ Min S/I}.

Clearly, 1 ∈ I . If i ∈ I , that is Pi = (pi,xn), then as above Qi + pi = (pi,x
si
n ) for

some positive integers si. We may suppose that s1 = maxi∈I si. Then we claim that

depth S/(p1 +U) = 1.

Let r ∈ [t] be such that p1 +Qr is m-primary. Since

U = U + I = ∩ j∈[t],q∈Ass S/I(q+Q j)

and depth S/U = 1 we see that p1 + Qr contains an intersection ∩e
j=1(q j + Qc j

) with

q j ∈ Ass S/I, c j ∈ [t] and dim(q j +Qc j
) = 1, that is q j ⊂ Pc j

. Note that p1 +Qr =

p1 +(xa1

1 ,xan
n , some xe with supp e = {1,n}).

Suppose that xn ∈ Pc j
for all j ∈ [e]. Then we show that p1 + Q1 ⊂ p1 + Qr. Indeed,

by hypothesis a power of xn belongs to the minimal system of generators of q j + Qc j
,

let us say x
bc j
n ∈ G(q j + Qc j

). Set b = max j bc j
. Then xb

n ∈ ∩e
j=1(q j + Qc j

) ⊂ p1 + Qr

and so b ≥ an. Let b = bc j
for some j. If xn ∈ q j then b = 1 and so an = 1 and clearly

p1 + Q1 ⊂ P1 ⊂ p1 + Qr. If xn 6∈ q j then c j ∈ I and so b = sc j
≤ s1. Thus p1 + Q1 =

(p1,x
s1
n ) ⊂ (p1,x

b
n) ⊂ p1 +Qr.

Now suppose that there exists j ∈ [e] such that xn 6∈ Pc j
, let us say j = 1. Then Pc1

=

(x1, . . . ,xn−1) and xn ∈ Pc j
for all j > 1. As above, let x

bc j
n ∈ G(q j + Qc j

) for j > 1 and

b = maxe
j>1 bc j

. If b ≥ an then as above p1 +Q1 ⊂ p1 +Qr. Assume b < an. Let xd
1 be the

power of x1 contained in G(q1 +Qc1
). If d ≥ a1 then we get p1 +Qc1

= (p1,x
d
1)⊂ p1 +Qr

and dim(p1 + Qc1
) = 1. Suppose that d < a1. Then note that xd

1xb
n ∈ G(∩e

j=1(q j + Qc j
))

and so xd
1xb

n ∈ p1 +Qr. Thus

(p1 +Q1)∩ (p1 +Qc1
) ⊂ (p1,x

d
1xb

n) ⊂ p1 +Qr.

Hence p1 +U is the intersection of primary ideals of dimension 1, that is depthS/(p1 +
U) = 1. From the exact sequence

0 →U/(p1 ∩U) → S/p1 → S/(p1 +U) → 0
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we get depthU/(p1 ∩U) = 2. ¤

Lemma 1.6. Let I ⊂ U be two monomial ideals such that U/I is a Cohen-Macaulay S-

module of dimension 2 and AssS/I contains only prime ideals of dimension 2. Suppose

that I is reduced. Then there exists p ∈ AssS/I such that U/(p∩U) is a Cohen-Macaulay

module of dimension 2.

Proof. Let U = ∩t
j=1Q j be a reduced primary decomposition of U and Pj =

√

Q j. From

the exact sequence

0 →U/I → S/I → S/U → 0

we get depthS/U ≥
min{depthU/I −1,depthS/I} ≥ 1.

Thus 1 ≤ dimS/Pj ≤ 2 for all j. Suppose that dimS/Pj = 2. Then we have Πq∈AssS/I q ⊂
I ⊂U ⊂Q j ⊂Pj. Thus Pj ⊃ p for some p∈AssS/I and we get Pj = p because dimS/Pj =
dimS/p. It follows that Πq∈AssS/I,q6=pq 6⊂ Pj and so p ⊂ Q j ⊂ Pj = p. Hence p = Q j. Set

U ′ = ∩t
i=1,i6= jQi, I′ = ∩q∈AssS/I,q6=p q. Then

(U + I′)/I′ ∼= U/(U ∩ I′) = U/(U ′∩ p∩ I′) =

U/(U ′∩ I) = U/I.

Changing I by I′ and U by U + I′ we may reduce to a smaller |AssS/I|. By recurrence

we may reduce in this way to the case when dimS/Q j = 1 for all j ∈ [t] since I 6= U . Now

is enough to apply the above lemma. ¤

The above lemma cannot be extended to show that U/(p∩U) is Cohen-Macaulay for

all p ∈ AssS/I, as shows the following:

Example 1.7. Let

I = (x1x2) ⊂U = (x1,x
2
3)∩ (x2,x3)

be monomial ideals of S = K[x1,x2,x3]. We have depthS/U = 1 and depthS/I = 2. Thus

U/I is Cohen-Macaulay but U/(U∩(x2)) is not since U +(x2) = (x1,x2,x
2
3)∩(x2,x3), that

is depthS/(U +(x2)) = 0. However, U/(U∩(x1)) is Cohen-Macaulay because U +(x1) =
(x1,x

2
3).

Theorem 1.8. Let I ⊂ U be two monomial ideals such that U/I is a Cohen-Macaulay

S-module of dimension 2. Suppose that I is reduced. Then U/I is clean. In particular

fdepth U/I = sdepth U/I = 2.

Proof. We follow the second part of the proof of Lemma 1.3. Let I =∩r
i=1 pi be a reduced

primary decomposition of I (so pi are prime ideals). Apply induction on r. If r = 1 then

U/I is a maximal Cohen-Macaulay (so free) over S/p1. Thus U/I is clean. Suppose that

r > 1. Then there exists j ∈ [r] such that U/(p j ∩U) is a Cohen-Macaulay module of

dimension 2 using Lemma 1.6. From the exact sequence

0 → (p j ∩U)/I →U/I →U/(p j ∩U) → 0

we see that (p j ∩U)/I is a Cohen-Macaulay module of dimension 2. Set I′ = ∩r
i=1,i 6= j pi.

We have (p j ∩U)/I ∼= ((p j ∩U) + I′)/I′ because (p j ∩U)∩ I′ = U ∩ I = I. Applying

induction hypothesis we get the modules ((p j∩U)+I′)/I′ and (U + p j)/p j
∼=U/(p j∩U)

clean and so the filtration 0 ⊂ (p j ∩U)/I ⊂U/I can be refined to a clean one. ¤
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Theorem 1.9. Let U, I be some monomial ideals of S such that I ⊂U, U 6= I. If dimS U/I ≤
2 then sdepthS U/I ≥ depthS U/I.

Proof. If U/I is a Cohen-Macaulay S-module of dimension 2 then it is enough to apply

the above theorem. If depthS U/I = 1 then the result follows from [4, Theorem 3.11].

¤

2. LECTURE: WEAK CONJECTURE

In this lecture we study Stanley’s Conjecture on monomial square free ideals of S, that

is:

Weak Conjecture Let I ⊂ S be a monomial square free ideal. Then sdepthS I ≥
depthS I.

This conjecture says in fact that sdepthS I ≥ 1 + depthS S/I for any monomial square

free ideal I of S. This remind us a question raised in [7], saying that sdepthS I ≥ 1 +
sdepthS S/I for any monomial ideal I of S. A positive answer of this question in the

frame of monomial square free ideals would state the Weak Conjecture as follows:

sdepthS I ≥ 1+ sdepthS S/I ≥ 1+depthS S/I = depthS I,

the second inequality being a consequence of [4, Theorem 4.3], or of our Theorem 1.9.

First we present a result of Asia Rauf which we will need in the proof of our Lemma

2.8

Proposition 2.1. ([7]) depthS S/(I,xn) ≥ depthS S/I −1.

We will need later also the following easy lemma:

Lemma 2.2. Let I ⊂ J, I 6= J be some monomial ideals of S′ = K[x1, . . . ,xn−1] and T =
(I + xnJ)S. Then

(1)

sdepth T ≥ min{sdepthS′ I,sdepthS JS},

(2)

sdepth T ≥ min{sdepthS JS/IS,sdepthS IS}.

Proof. Note that T = I ⊕ xnJS as linear K-spaces and so (1) holds. On the other hand the

filtration 0 ⊂ IS ⊂ T induces an isomorphism of linear K-spaces T ∼= IS⊕T/IS and so

sdepth T ≥ min{sdepthS T/IS,sdepthS IS}.

Note that the multiplication by xn induces an isomorphism of linear K-spaces JS/IS ∼=
T/IS, which shows that sdepthS T/IS = sdepthS JS/IS. Thus (2) holds too. ¤

It is the purpose of this section to study Stanley’s Conjecture on monomial square free

ideals of S, that is the Weak Conjecture.

Let S′ = K[x1, . . . ,xn−1] be a polynomial ring in n − 1 variables over a field K and

U,V ⊂ S′, U ⊂ V two homogeneous ideals. We want to study the depth of the ideal

W = (U + xnV )S of S. Actually every monomial square free ideal T of S has this form

because then (T : xn) is generated by an ideal V ⊂ S′ and T = (U +xnV )S for U = T ∩S′.

Lemma 2.3. Suppose that U 6=V and depthS′ S′/U = depthS′ S′/V = depthS′ V/U. Then

depthS S/W = depthS′ S′/U.
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Proof. Set r = depthS′ S′/U and choose a sequence f1, . . . , fr of homogeneous elements

of mn−1 = (x1, . . . ,xn−1) ⊂ S′, which is regular on S′/U , S′/V and V/U simultaneously.

Set Ū = (U, f1, . . . , fr), V̄ = (V, f1, . . . , fr). Then tensorizing by S′/( f1, . . . , fr) the exact

sequence

0 →V/U → S′/U → S′/V → 0

we get the exact sequence

0 →V/U ⊗S′ S
′/( f1, . . . , fr) → S′/Ū → S′/V̄ → 0

and so V̄/Ū ∼= V/U ⊗S′ S
′/( f1, . . . , fr) has depth 0.

Note that f1, . . . , fr is regular also on S/W and taking W̄ = W + ( f1, . . . , fr)S we get

depthS S/W = depthS S/W̄ +r. Thus passing from U,V,W to Ū ,V̄ ,W̄ we may reduce the

problem to the case r = 0.

If r = 0 then there exists an element v ∈V \U such that (U : v) = mn−1. Thus the non-

zero element of S/W induced by v is annihilated by mn−1 and xn because v ∈ V . Hence

depthS S/W = 0. ¤

Example 2.4. Let n = 4, V = (x1,x2), U = V ∩ (x1,x3) be ideals of S′ = K[x1,x2,x3] and

W = (U + x4V )S. Then {x3 − x2} is a maximal regular sequence on V/U and on S/W as

well. Thus depthS′ V/U = depthS′ S′/U = depthS′ S′/V = depthS S/W = 1.

Lemma 2.5. Let I,J ⊂ S′, I ⊂ J, I 6= J be two monomial ideals, T = (I + xnJ)S such that

(1) depthS′ S′/I = depthS S/T −1,
(2) sdepthS′ I ≥ 1+depthS′ S′/I,
(3) sdepthS′ J/I ≥ depthS′ J/I.

Then sdepthS T ≥ 1+depthS S/T.

Proof. By Lemma 2.2 we have

sdepthS T ≥ 1+min{sdepthS′ I,sdepthS′ J/I} ≥ 1+min{1+depthS′ S
′/I,depthS′ J/I}

using (3), (2) and a Lemma of Herzog-Vladoiu-Zheng. Note that in the following exact

sequence

0 → S/JS = S/(T : xn)
xn−→ S/T → S/(T,xn) ∼= S′/I → 0

we have depthS S/JS = depthS′ S′/I + 1 because of (1) and the Depth Lemma. Thus

depthS′ S′/I = depthS′ S′/J. As depthS′ S′/I 6= depthS S/T we get depthS′ S′/I 6= depthS′ J/I

by Lemma 2.3. But depthS′ J/I ≥ depthS′ S′/I because of the Depth Lemma applied to

the following exact sequence

0 → J/I → S′/I → S′/J → 0.

It follows that depthS′ J/I ≥ 1+depthS′ S′/I and so

sdepthS T ≥ 2+depthS′ S′/I = 1+depthS S/T.

¤

Remark 2.6. The above lemma introduces the difficult hypothesis (3) and one can hope

that it is not necessary at least for square free monomial ideals. It seems this is not the

case as shows somehow the next example.
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Example 2.7. Let n = 4, J = (x1x3,x2), I = (x1x2,x1x3) be ideals of S′ = K[x1,x2,x3] and

T = (I +x4J)S = (x1,x2)∩ (x2,x3)∩ (x1,x4). Then {x4−x2,x3−x1} is a maximal regular

sequence on S/T . Thus depthS S/T = 2, depthS′ S′/I = depthS′ S′/J = 1.

Lemma 2.8. Let I,J ⊂ S′, I ⊂ J, I 6= J be two monomial ideals, T = (I + xnJ)S such that

(1) depthS′ S′/I 6= depthS S/T −1,
(2) sdepthS′ I ≥ 1+depthS′ S′/I, sdepthS′ J ≥ 1+depthS′ S′/J.

Then sdepthS T ≥ 1+depthS S/T.

Proof. By Lemma 2.2 we have

sdepthS T ≥ min{sdepthS′ I,1+ sdepthS′ J} ≥ 1+min{depthS′ S
′/I,1+depthS′ S

′/J}

using (2). Applying Proposition 2.1 we get depthS′ S
′/I = depthS S/(T,xn)≥ depthS S/T −

1, the inequality being strict because of (1). We have the following exact sequence

0 → S/JS = S/(T : xn)
xn−→ S/T → S/(T,xn) ∼= S′/I → 0.

If depthS′ S
′/I > depthS S/T then depthS S/JS = depthS S/T by Depth Lemma and so

sdepthS T ≥ 1+min{depthS′ S
′/I,depthS S/JS} = 1+depthS S/T.

If depthS′ S
′/I = depthS S/T then depthS S/JS ≥ depthS′ S

′/I again by Depth Lemma and

thus

sdepthS T ≥ 1+depthS′ S
′/I = 1+depthS S/T.

¤

Example 2.9. Let n = 5, J =(x1,x2,x3), I =(x1,x2)∩(x3,x4) be ideals of S′ = K[x1, . . . ,x4]
and T = (I + x5J)S. Then {x4,x3 − x1} is a maximal regular sequence on J/I and so

depthS′ J/I = 2 > 1 = depthS′ S′/I = depthS′ S′/J = depthS S/T .

Theorem 2.10. Suppose that the Stanley’s conjecture holds for factors V/U of monomial

square free ideals, U,V ⊂ S′ = K[x1, . . . ,xn−1], U ⊂V , that is

sdepthS′ V/U ≥ depthS′ V/U. Then the Weak Conjecture holds for monomial square free

ideals of S = K[x1, . . . ,xn].

Proof. Let r ≤ n be a positive integer and T ⊂ Sr = K[x1, . . . ,xr] a monomial square free

ideal. By induction on r we show that sdepthSr
T ≥ 1+depthSr

Sr/T , the case r = 1 being

trivial. Clearly, (T : xr) is generated by a monomial square free ideal J ⊂ Sr−1 containing

I = T ∩ Sr−1. By induction hypothesis we have sdepthSr−1
I ≥ 1 + depthSr−1

Sr−1/I,

sdepthSr−1
J ≥ 1 + depthSr−1

Sr−1/J. If I = J then T = IS, xr is regular on Sr/T and we

have

sdepthSr
T = 1+ sdepthSr−1

I ≥ 2+depthSr−1
Sr−1/I = 1+depthSr

Sr/T.

Now suppose that I 6= J. If depthSr−1
Sr−1/I 6= depthSr

Sr/T − 1, then it is enough to

apply Lemma 2.8. If depthSr−1
Sr−1/I = depthSr

Sr/T −1, then apply Lemma 2.5. ¤

Corollary 2.11. The Weak Conjecture holds in S = K[x1, . . . ,x4].
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Proof. It is enough to apply Lemmas 2.5, 2.8 after we show that for monomial square

free ideals I,J ⊂ S′ = K[x1, . . . ,x3], I ⊂ J, I 6= J, T = (I + x4J)S with depthS′ S′/I =
depthS S/T − 1, we have sdepthS′ J/I ≥ depthS′ J/I. But then I 6= 0 because otherwise

depthS S/T ≤ 3 = depthS′ S′/I, which is false. Thus dimS′ J/I ≤ 2 and we may apply

Theorem 1.9. ¤
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