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EXTERIOR AND SYMMETRIC ALGEBRA METHODS IN ALGEBRAIC

COMBINATORICS

TIM RÖMER

Lahore, February 21–28, 2009

1. LECTURE: GLICCI SIMPLICIAL COMPLEXES

In this lecture we present results from [15] which is joint work with Uwe Nagel. At

first we recall some definitions and notations from liaison theory. See [12] and [13] for

more details and results not mentioned in the following. Liaison theory itself provides

an equivalence relation among equidimensional subschemes of fixed dimension. Here we

follow a purely algebraic approach to this theory and focus especially on questions related

to combinatorial commutative algebra.

Let S = K[x1, . . . ,xn] be a standard graded polynomial ring over a field K. We always

assume that |K| = ∞. Two graded ideals I,J ⊂ S are said to be G-linked (in one step) by a

Gorenstein ideal c ⊂ S if

c : I = J and c : J = I.

Then we write I ∼c J. This has several consequences. For example I and J are unmixed

and have the same codimension as c if I ∼c J. The concept of Gorenstein liaison is

obtained if one takes the transitive closure of ∼c. Thus I and J are in the same G-liaison

class if and only if there are Gorenstein ideals c1, . . . ,cs such that

I = I0 ∼c1
I1 ∼c2

· · · ∼cs
Is = J.

If we insist that all the Gorenstein ideals c1, . . . ,cs are in fact complete intersections, then

we get the more classical concept of liaison. We will refer to it here as CI-liaison.

Of particular interest are the equivalence classes that contain a complete intersection.

We say that the ideal I is glicci if it is in the G-liaison class of a complete intersection. It

is licci if it is in the CI-liaison class of a complete intersection.

In codimension 2 we know a lot in CI-liaison theory. It follows from a result of Gaeta

[6] that every graded codimension 2 Cohen-Macaulay ideal I ⊂ S is licci. In codimension

3 the situation is more complicated. It is well-known that not every codimension 3 Cohen-

Macaulay ideal is licci (see, e.g., Huneke-Ulrich [9]). This is one motivation to link with

Gorenstein ideals instead of complete intersection ideals.
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Note that glicci ideals are Cohen-Macaulay and that all complete intersections of the

same codimension are in the same CI-liaison class. One of the main open problems in

G-liaison theory is:

Conjecture 1.1 ([11]). Every graded Cohen-Macaulay ideal in S is glicci.

Several classes of Cohen-Macaulay ideals that are of interest in algebraic geometry

or commutative algebra are known to be glicci. In this lecture we study 1.1 for graded

Cohen-Macaulay ideals which are motivated from objects in combinatorial commutative

algebra.

Recall that an (abstract) simplicial complex on [n] = {1, . . . ,n} is a subset ∆ of the

power set of [n] such that F ⊆ G and G ∈ ∆ implies F ∈ ∆. The elements of ∆ are called

faces. The maximal elements under inclusion in ∆ are called facets. An F ∈ ∆ with

|F | = d + 1 is called a d-dimensional face. Then we write dimF = d. The complex ∆ is

called pure if all facets have the same dimension. If ∆ 6= {}, then the dimension dim∆ is

the maximum of the dimensions of the faces of ∆.

Simplicial complexes are related to algebraic objects via the following construction.

For F ⊂ [n] we write xF for the squarefree monomial ∏i∈F xi. The Stanley-Reisner ideal

of ∆ is

I∆ = (xF : F ⊆ [n], F 6∈ ∆)

and the corresponding Stanley-Reisner ring is K[∆] = S/I∆. We will say that ∆ has an

algebraic property like Cohen-Macaulayness if K[∆] has this property. For more details

on this subject we refer to Bruns-Herzog [4] and Stanley [18].

It is a natural question to ask whether a Cohen-Macaulay complex ∆ is glicci (i.e. if I∆

is a glicci ideal in S). Since we are interested in squarefree monomial ideals, we study

a slightly stronger property which implies being glicci, but is naturally defined in the

context of simplicial complexes:

Definition 1.2. A squarefree monomial ideal I ⊂ S is said to be squarefree glicci if there

is a chain of links in S

I = I0 ∼c1
I1 ∼c2

· · · ∼c2s
I2s,

where I j is a squarefree monomial ideal whenever j is even and I2s is a complete inter-

section.

Let ∆ be a simplicial complex with existing vertices {i : {i} ∈ ∆} = [n]. Then we call

∆ squarefree glicci if I∆ ⊂ S has this property.

Let I ⊂ S be an ideal and let R = S[y] be the polynomial ring over S in the variable y. If

I is glicci, then also the extension ideal I ·R is glicci, since the links in S also provide links

in R. This implies in particular, that if ∆ is squarefree glicci, then so is any cone over ∆.

We will use this fact sometimes in the following.

Next we present a method that allows us to link a given simplicial complex in two steps

to a subcomplex.

Lemma 1.3. Let c⊂ J ⊂ S be squarefree monomial ideals and let xk ∈ S be a variable that

does not divide any minimal monomial neither in J nor in c. If c is Cohen-Macaulay and

J is unmixed such that codimJ = codimc+1, then I := xkJ + c is a squarefree monomial

ideal that is G-linked in two steps to J. We say that I is a basic double link of J on c.
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We omit the proof (see [15, Lemma and Definition 2.3] for details). Note that a basic

double link is a special case of the more general concept of a basic double link for G-

liaison as introduced in [11].

We give a combinatorial interpretation of Lemma 1.3. Let ∆ be a simplicial complex

on [n]. Recall that each F ⊆ [n] induces the following simplicial subcomplexes of ∆: the

link of F

lkF = {G ∈ ∆ : F ∪G ∈ ∆,F ∩G = /0},

and the deletion

∆−F = {G ∈ ∆ : F ∩G = /0}.

Consider any k ∈ [n]. Then the cone over the link lkk with apex k considered as complex

on [n] has as Stanley-Reisner ideal Jlkk = I∆ : xk, and the Stanley-Reisner ideal of the

deletion ∆−k considered as a complex on [n] is (xk,J∆−k
) where J∆−k

⊂ S is the extension

ideal of the Stanley-Reisner ideal of ∆−k considered as a complex on [n]\{k}. Note that

xk does not divide any of the minimal generators of J∆−k
. Hence xk is not a zerodivisor on

S/J∆−k
. Moreover, we have that

I∆ = xkJlkk + J∆−k
.

Thus we see that if ∆ is pure and if the deletion ∆−k is Cohen-Macaulay and has the same

dimension as ∆, then ∆ is a basic double link of the cone over its link lkk ( where both are

considered as complexes on [n]).

Example 1.4. Let ∆ be the simplicial complex on [4] consisting of 4 vertices. The Stanley-

Reisner ideal of ∆ is

I∆ = (x1x2,x1x3,x1x4,x2x3,x2x4,x3x4).

It is easy to see that I∆ has a linear free resolution. Then it follows from [9] that it is not

licci. However, I is squarefree glicci because

I = x4 · (x1,x2,x3)+(x1x2,x1x3,x2x3)

provides that I is a basic double link of (x1,x2,x3).

Next we present a class of simplicial complexes that consists of squarefree glicci com-

plexes. Recall from [17] that a pure simplicial complex ∆ is said to be vertex-decom-

posable if ∆ is a simplex or equal to { /0}, or there exists a vertex k such that lkk and ∆−k

are both pure and vertex-decomposable and dim∆ = dim∆−k = dimlkk+1. We introduce

a less restrictive concept that is defined similarly:

Definition 1.5. Let ∆ 6= /0 be a pure simplicial simplex on [n]. Then ∆ is said to be

weakly vertex-decomposable if there is some k ∈ [n] such that ∆ is a cone over the weakly

vertex-decomposable deletion ∆−k or there is some k ∈ [n] such that lkk is weakly vertex-

decomposable and ∆−k is Cohen-Macaulay of the same dimension as ∆.

Observe, that if ∆ is not a cone over ∆−k, then dim∆−k = dim∆. We consider /0 as a

weakly vertex-decomposable simplicial complex.

Example 1.6.

(1) If ∆ is a simplex, then it is weakly vertex-decomposable.
3



(2) Assume that ∆ is pure of dimension n−2. Then for any vertex {k}∈∆, the Stanley-

Reisner ideals of ∆ and the cones over lkk and ∆−k, respectively, are principal

ideals. Thus we see that ∆ is weakly vertex-decomposable.

The main result of this lecture is:

Theorem 1.7. ([15]) Let ∆ be a simplicial complex. If ∆ is weakly vertex-decomposable,

then ∆ is squarefree glicci. In particular, ∆ is Cohen-Macaulay.

Analogously to the idea that a generic initial ideal of a given graded ideal I in S can

be used to study algebraic properties of I, one can associate to every simplicial complex

a shifted simplicial complex and these complexes share many combinatorial properties

(see, e.g., [8] or [10] for details). Recall that a simplicial complex ∆ is called shifted if for

all F ∈ ∆, j ∈ F and j < i such that i 6∈ F we have F −{ j}∪{i} ∈ ∆. Next we prove that

every pure shifted simplicial complex is squarefree glicci. Hence, for Cohen-Macaulay

simplicial complexes, the answer to 1.1 is affirmative up to “shifting.” This result is the

combinatorial counterpart of one of the main results in [14].

Corollary 1.8. Each Cohen-Macaulay shifted complex is squarefree glicci.

Proof. It follows from [3] that a Cohen-Macaulay shifted complex is vertex-decompo-

sable. Then Theorem 1.7 implies that this complex is squarefree glicci. ¤

Recall that a complex ∆ is called a matroid if, for all W ⊆ [n], the restriction ∆W =
{F ∈ ∆ : F ⊆W} is a pure simplicial complex. We get:

Corollary 1.9. Each matroid is squarefree glicci.

Proof. Let k ∈ [n]. Then lkk and ∆−k are the corresponding link and deletion in the sense

of matroid theory. In particular, they are again matroids; see [16]. It follows by induction

on the number of vertices that matroids are vertex-decomposable. ¤

Following [1], the complex ∆ is said to be 2-CM or doubly Cohen-Macaulay if, for

each existing vertex {k} ∈ ∆, the deletion ∆−k is Cohen-Macaulay of the same dimension

as ∆.

Corollary 1.10. Each 2-CM complex is squarefree glicci.

Proof. In order to see that each 2-CM complex is weakly vertex-decomposable it suffices

to check that its link with respect to any vertex is again 2-CM. This has been shown in

[1], [2]. ¤

A recent result by Casanellas-Drozd-Hartshorne [5] is that each Gorenstein ideal is

glicci. The proof is non-constructive and relies on the theory developed in [5]. In the

context of simplicial complexes one can prove an even stronger result.

Corollary 1.11. Each simplicial homology sphere is squarefree glicci.

Proof. Note that the Stanley-Reisner ring of a homology sphere is Gorenstein. Further-

more, Hochster’s Tor formula provides that each Gorenstein ideal is 2-CM; see [1]. ¤

In the remaining part of this lecture we present two examples.
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Example 1.12. Let S = K[x1, . . . ,x6]. Using the notation from [4, p. 236], the Stanley-

Reisner ideal of the triangulation of the real projective plane P2 is given by

I∆ = (x1x2x3,x1x2x4,x1x3x5,x1x4x6,x1x5x6,x2x3x6,x2x4x5,x2x5x6,x3x4x5,x3x4x6).

If charK 6= 2 this is a 2-dimensional Cohen-Macaulay complex. For charK = 2 this com-

plex is not Cohen-Macaulay. Assume now that K = Q. We used Macaulay 2 [7] to check

that ∆ is not weakly vertex-decomposable.

One of the main open questions in liaison theory is whether every Cohen-Macaulay

ideal is glicci. In view of the above dependence of the Cohen-Macaulayness on the char-

acteristic, we propose the following:

Problem 1.13. Decide whether the Stanley-Reisner ideal of the above triangulation of P2
R

is glicci.

It would also be interesting to know if so-called shellable simplicial complexes are

glicci. The second example shows that the two properties being weakly vertex-decom-

posable and being squarefree glicci depend on the characteristic of K.

Example 1.14. Let S = K[x1, . . . ,x7]. We consider the ideals

c = (x1x2x3,x1x2x4,x1x3x5,x1x4x6,x1x5x6,x2x3x6,x2x4x5,x2x5x6,x3x4x5,x3x4x6),

J = (x1, . . . ,x4), and

I = x7J + c .

Notice that c is the extension of the Stanley-Reisner ideal of the triangulation of the real

projective plane P2 in 6 variables. Hence, S/c is Cohen-Macaulay if and only if charK 6=
2. Therefore I is a basic double link of the complete intersection J if charK 6= 2. It follows

that in this case I is squarefree glicci and that the induced simplicial complex ∆ is weakly

vertex-decomposable.

Next assume that the characteristic of K is 2. Using the exact sequence

0 → c(−degx7) → c⊕J(−degx7) → I → 0,

it is not too difficult to check that S/I has depth 2 < dimS/I = 3, thus S/I is not Cohen-

Macaulay. It follows that ∆ is neither (squarefree) glicci nor weakly vertex decomposable

if charK = 2.
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Birkhäuser Boston 1996.

6



2. LECTURE: H-VECTORS OF GORENSTEIN POLYTOPES

In this lecture we an overview on results from [4] which is joint work with Winfried

Bruns. Let P ⊆ Rn−1 be an integral convex polytope; see [12] for details on convex

geometry. In algebraic combinatorics one considers the Ehrhart function of P which is

defined by

E(P,m)

{
|{z ∈ Zn−1 : z

m
∈ P}| if m > 0,

E(P,0) = 1 if m = 0.

It is a classical result that E(P,m) is a polynomial in m of degree dim(P) and the corre-

sponding Ehrhart series EP(t) = ∑m∈N E(P,m)tm is a rational function

EP(t) =
h0 +h1t + · · ·+hdtd

(1− t)dim(P)+1
.

(See also below for a sketch of a proof.) The vector h(P) = (h0, . . . ,hd) (where hd 6= 0) is

called the (Ehrhart) h-vector of P. See, e.g., [3] or [10] for results related to this vector.

Here we are interested in the following two questions:

(1) For which polytopes is h(P) symmetric, i. e. hi = hd−i for all i?

(2) For which polytopes is h(P) unimodal, i. e. there exists a natural number t such

that h0 ≤ h1 ≤ ·· · ≤ ht ≥ ht+1 ≥ ·· · ≥ hd?

The classical approach to this problem using methods from commutative algebra is due

to Stanley; see, e.g., [3] or [10]. We sketch the arguments.

At first one considers the cone C(P) defined as

C(P) = cone((a,1) : a ∈ P) ⊆ Rn.

Then we set

E(P) = C(P)∩Zn.

Note that E(P) is an affine monoid and we can consider its affine monoid algebra K[E(P)]
where K is a field. The monomial in K[E(P)] corresponding to the lattice point a is

denoted by Xa where X represents a family of n indeterminates. The algebra K[E(P)] is

graded in such a way that the degree of Xa (or of a) is the last coordinate of a. It is an easy

exercise to show that the Hilbert function of K[E(P)] coincides with the Ehrhart function

of P. In particular, using standard results about Hilbert-functions we see that E(P,m) is

indeed a polynomial in m, and that EP(t) is a rational function. Using the fact that the

Krull dimension of K[E(P)] is dim(P)+ 1 concludes the proof of the results mentioned

above about Ehrhart functions.

Since P is integral one proves that K[E(P)] is a finite module over its subalgebra gen-

erated by the degree 1 elements. But usually K[E(P)] is not generated by its degree 1

elements. If this is the case, we say that P is integrally closed. Then we simplify our

notation and write K[P] = K[E(P)].
Recall that a unimodular triangulation of P is a triangulation into simplices

conv(s0, . . . ,sr) for s0, . . . ,sr ∈ Zn−1

such that

s1 − s0, . . . ,sr − s0 generate a direct summand of Zn−1.
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If dimP ≥ 3, P need not have a unimodular triangulation. However, if a unimodular

triangulation of P exists, then P is integrally closed. This follows easily from the fact that

a unimodular simplex is integrally closed; see, e.g., [2] for details.

The monoid E(P) is always normal, i.e. an element a of the subgroup of Zn generated

by E(P) such that ka ∈ E(P) for some k ∈ N, k ≥ 1, belongs itself to E(P). It follows

from a famous theorem of Hochster, that K[E(P)] is Cohen-Macaulay. For example this

implies by standard arguments that

hi ≥ 0 for all i = 1, . . . ,d.

Stanley characterized Gorenstein rings among the Cohen-Macaulay domains in terms of

the Hilbert series. This implies that h(P) is symmetric if and only if K[E(P)] is a Goren-

stein ring. For the monoid E(P), the Gorenstein property has a simple interpretation: it

holds if and only if E(P)∩ relintC(P) is of the form y + E(P) for some y ∈ E(P). This

follows from the description of the canonical modules of normal affine monoid algebras

by Danilov and Stanley. See [3] and [10] for terminology and results from commutative

algebra.

It was conjectured by Stanley that question (2) has a positive answer for the Birkhoff

polytope P, whose points are the real doubly stochastic n×n matrices and for which E(P)
encodes the magic squares. This long standing conjecture was proved by Athanasiadis

[1]. (That P is integrally closed and K[P] is Gorenstein in this case is easy to see.)

Questions (1) and (2) can be asked similarly for the combinatorial h-vector h(∆(Q))
of the boundary complex ∆(Q) of a simplicial polytope Q (derived from the f -vector

of ∆(Q)). Here the following answers are known. The Dehn–Sommerville equations

express the symmetry, while unimodality follows from McMullen’s famous g-theorem

(proved by Stanley [9]): the vector (1,h1 − h0, . . . ,h⌊d/2⌋− h⌊d/2⌋−1) is an M-sequence,

i. e. it represents the Hilbert function of a graded artinian K-algebra that is generated by

its degree 1 elements. In particular, its entries are nonnegative, and so the h-vector is

unimodal.

The key idea of Athanasiadis proof of Stanley’s conjecture for the Birkhoff polytope P

mentioned above is to show that there exists a simplicial polytope P′ with

h(∆(P′)) = h(P).

More generally, the result of Athanasiadis applies to compressed polytopes (i. e. integer

polytopes all of whose pulling triangulations are unimodular). (The Birkhoff polytope is

compressed; see [8] and [10].) The main result of [4] is:

Theorem 2.1. Let P be an integral polytope such that P has a regular unimodular tri-

angulation and K[P] is Gorenstein. Then the h-vector of P satisfies the inequalities

1 = h0 ≤ h1 ≤ ·· · ≤ h⌊d/2⌋. More precisely, the vector (1,h1 − h0, . . . ,h⌊d/2⌋− h⌊d/2⌋−1)
is an M-sequence.

(See [2] or [11] for a discussion of regular subdivisions and triangulations.) The proof

of this theorem is a little bit technical.

The strategy of the proof is to consider the algebra K[M] of a normal affine monoid

M for which K[M] is Gorenstein. The Hilbert series of K[M] is related to the one of a

simpler affine monoid algebra K[N] which ones gets by factoring out a suitable regular
8



sequence of K[M]. In the situation of an algebra K[P] for an integrally closed polytope

P, the regular sequence is of degree 1, and one obtains an integrally closed and, up to a

translation, reflexive polytope such that h(P) = h(Q). Note that Mustaţǎ and Payne [7]

have given an example of a reflexive polytope which is not integrally closed and has a

nonunimodal h-vector. If P has even a regular unimodular triangulation, then there exists

a simplicial polytope P′ such that the combinatorial h-vector h(∆(P′)) of the boundary

complex of P′ coincides with h(P), that is

h(P) = h(∆(P′))

Then it only remains to apply the g-theorem to P′. Note that if the g-theorem could be

generalized from polytopes to simplicial spheres, then the theorem would hold for all

polytopes with a unimodular triangulation.

As a side effect of the proof one gets that the toric ideal of a Gorenstein polytope with

a square-free initial ideal has also a Gorenstein square-free initial ideal. More precisely,

it is possible to prove:

Corollary 2.2. Let P be an integer Gorenstein polytope such that the toric ideal IP has

a squarefree initial ideal. Then it also has a square-free initial ideal that is the Stanley-

Reisner ideal of the join of a boundary of a simplicial polytope and a simplex, and thus

defines a Gorenstein ring.

The corollary answers a question of Conca and Welker; see [5, Question 6] and [6] for

more details related to this result.
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[4] W. Bruns and T. Römer, h-vectors of Gorenstein polytopes. J. Comb. Theory, Ser. A 114 (2007), No.

1, 65–76.

[5] A. Conca, Betti numbers and initial ideals. Oberwolfach Reports 1(2004), 1710–1712.

[6] A. Conca, S. Hosten and R. Thomas, Nice initial complexes for some classical ideals. In: C.A.

Athanasiadis (ed.) et al., Algebraic and geometric combinatorics, American Mathematical Society

(AMS), Contemporary Mathematics 423 (2006), 11–42.
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3. LECTURE: KOSZUL HOMOLOGY AND SYZYGIES OF VERONESE SUBALGEBRAS

In this lecture we give an overview about recent results from [2] which is joint work

with Winfried Bruns and Aldo Conca. Let K be a field. Recall the following definitions of

Green and Lazarsfeld; see [5] and [6]. A finitely generated positively Z-graded K-algebra

R = ⊕i∈ZRi satisfies property N0 if R is generated in degree 1. In the following we will

always assume that this is the case. Then we can present R as a quotient R = S/I where S

is a standard graded polynomial ring and I ⊂ S is a graded ideal. We are interested in the

following property:

Definition 3.1. The K-algebra R satisfies property Np for some p > 0 if β S
i, j(R) = 0 for

j > i+1 and 1 ≤ i ≤ p.

Here β S
i, j(R) = dimK TorS

i (R,K) are the graded Betti numbers of R as an S-module.

Example 3.2.

(1) The property N1 means just that R is defined by quadrics, i.e. if we write R = S/I

for a graded ideal I containing no linear forms, then I is generated by homoge-

neous polynomials of degree 2.

(2) The property Np for p > 1 means that R = S/I is defined by quadrics and that the

minimal graded free resolutions of R is of the form

· · · → Fp+1 → S(−p+1)βp → ··· → S(−2)β1 → S → R → 0.

If R satisfies Np for some p > 1, then R satisfies Np′ for every 1≤ p′≤ p. This motivates

the following definition.

Definition 3.3. Let R be a standard graded K-algebra. If R satisfies Np for every p ≥ 1,

then we set index(R) = ∞. Otherwise we define index(R) to be the largest integer p ≥ 1

such that R has Np. We call index(R) the Green-Lazarsfeld index of R.

Determining index(R) in general seems to be a difficult problem. Here we focus on

the case of a Veronese subring R(c) =
⊕

i∈N Ric (d ≥ 1) of a standard graded K-algebra

R. Observe that we consider R(c) as a standard graded K-algebra with homogeneous

component of degree i equal to Ric.

Already the case of a polynomial ring S = K[X1, . . . ,Xn] is interesting.

Example 3.4. If n ≤ 2 or c ≤ 2, then S(c) is a determinantal ring. In this case the minimal

free resolution of S(c) is well-known and one is able to determine the Green-Lazarsfeld

index.

At first assume that n = 2. Then the minimal free graded resolution of S(c) is given by

the Eagon-Northcott complex which implies that index(S(c)) = ∞.

Next we consider the case c = 2. The resolution of S(2) in characteristic 0 is known by

work of Jozefiak, Pragacz and Weyman in [7]. We get that index(S(2)) = 5 if n > 3 and

index(S(2)) = ∞ if n ≤ 3.

For n ≤ 6 we get from results of Andersen [1] that index(S(2)) is independent on charK.

For n > 6 and charK = 5 she showed that index(S(2)) = 4.
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For n > 2 and c > 2 the following is known:

(1) c ≤ index(S(c)) ≤ 3c−3.

The lower bound follows from Green [4] for any c and n. Ottaviani and Paoletti [8] proved

the upper bound in characteristic 0. They also showed that index(S(c)) = 3c−3 for n = 3.

Motivated by these results they conjectured:

Conjecture 3.5. We have index(S(c)) = 3c−3 for every n ≥ 3 and c ≥ 3.

For n = 4 and c = 3 the conjecture is true by [8, Lemma 3.3]. See also Eisenbud, Green,

Hulek and Popescu [3] for related results.

Rubei [9] proved that index(S(3)) ≥ 4 if charK = 0. One of the main results of [2] is

the following improvement:

Theorem 3.6. We have:

(1) c+1 ≤ index(S(c)) if charK = 0 or > c+1.

(2) If R = S/I for a graded ideal I ⊂ S, then

index(R(c)) ≥ index(S(c)) for every c ≥ rateS(R).

In particular, if R is Koszul then index(R(c)) ≥ index(S(c)) for every c ≥ 2,

Using our methods one can also prove characteristic free the bounds (1) and of the

equality for n = 3.

We do not present a proof here and refer to [2] for details. The idea of the proof is to

study the Koszul complex associated to the c-th power of the maximal ideal of S which is

closely related to the problems described so far.

Indeed let m the maximal graded ideal of S. Let K(mc) denote the Koszul complex

associated to m
c, Zt(m

c) the module of cycles of homological degree t and Ht(m
c) the

corresponding homology module. Let T be the symmetric algebra on vector space Sc.

Then it is easy to see that:

Lemma 3.7. For i ∈ N, j ∈ Z and 0 ≤ k < c we have

β T
i, j(S

(c)) = dimK Hi(m
c) jc.

Thus studying the Np-property of S(c) is equivalent to study vanishing theorems of

Hi(m
c,S). Studying Zt(m

c) carefully allows to prove a result of Green [4, Theorem 2.2]:

Theorem 3.8. We have:

Hi(m
c) j = 0 for every j ≥ ic+ i+ c.

More precisely, a generalizations of this theorem is proved in [2] since one can give

upper bounds on the degrees of a minimal system of generators of Zt(m
c). Using the last

two results and some further arguments allows us to give a proof of Theorem 3.6; see [2]

for further details and more general statements.

Using an Avramov-Golod type of duality one can get Ottaviani and Paoletti’s upper

bound index(S(c)) ≤ 3c−3 in arbitrary characteristic. It is also not difficult to prove that

for n = 3 one has index(S(c)) = 3c−3 independently of the characteristic. Again we refer

to [2] for details.
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4. LECTURE: HOMOLOGICAL PROPERTIES OF ORLIK-SOLOMON ALGEBRAS

The content of this lecture is based on the article [7] which is joint work with Gesa

Kämpf. We beginn by reviewing notions from matroid theory that will be used in the

following. More details can be found, e.g., in the books [9] or [10].

Let M be a non-empty matroid over [n] = {1, . . . ,n}, i.e. M is a collection of subsets of

[n], called independent sets, satisfying the following conditions:

(1) /0 ∈ M.

(2) If F ∈ M and G ⊆ F , then G ∈ M.

(3) If F,G∈M and |G|< |F |, then there exists an element i∈F \G such that G∪{i}∈
M.

The subsets of [n] that are not in M are called dependent, minimal dependent sets are

called circuits. The cardinality of maximal independent sets (called bases) is constant and

denoted by r(M), the rank of M. In the following the letter “M” denotes always a matroid

and never a module.

Conditions (1) and (2) are just saying that a matroid is a simplicial complex. In an

earlier lecture we gave already a definition of a matroid, but this one is equivalent to the

one we consider here. There are two examples of classes matroids which motivate large

part of the theory:

Example 4.1.

(1) Let K be field and v1, . . . ,vn ∈ Km. Let M be the collection of sets {i1, . . . , ir} such

that vi1, . . . ,vit are K-linearly independent. Then it follows from basic results in

linear algebra that M is a matroid. Such matroids are called representable.

(2) Let G be a finite Graph with edges e1, . . . ,en. Now define M(G) as the collection

of sets {i1, . . . , ir} such that {ei1, . . . ,eit} contains no cycle. Then it follows that

M(G) is also a matroid. M(G) is called a graphic matroid.

Next we introduce algebraic objects associated to matroids. Let E = K〈e1, . . . ,en〉 be

the standard graded exterior algebra over K where degei = 1 for i = 1, . . . ,n and m =
(e1, . . . ,en). For F = { j1, . . . , jt} ⊆ [n] = {1, . . . ,n} we set eF = e j1 ∧·· ·∧e jt . Usually we

assume that 1 ≤ j1 < · · · < jt ≤ n. The elements eF are called monomials in E. Now we

define:

Definition 4.2. Let M be a matroid in [n]. Then we define the Orlik-Solomon ideal J(M)
of M to be the ideal which is generated by all

(2) ∂eF =
t

∑
i=1

(−1)i−1e j1 ∧·· ·∧ ê ji ∧·· ·∧ e jt for F = { j1, . . . , jt} ⊆ [n]

where { j1, . . . , jt} is a dependent set of M. The algebra R(M) = E/J(M) is called the

Orlik-Solomon algebra of M.

The motivating example for this definition is:

Example 4.3. Let A = {H1, . . . ,Hn} be an essential central affine hyperplane arrange-

ment in Cm, X its complement and K a field. We choose linear forms αi ∈ (Cm)∗ such

that Kerαi = Hi for i = 1, . . . ,n. Let M(A ) be the collection of sets {i1, . . . , ir} such
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that αi1, . . . ,αit are K-linearly independent. It is well-known that the singular cohomol-

ogy H
.(X ;K) of X with coefficients in K is isomorphic to the Orlik-Solomon algebra of

M(A ).

In the last years many researchers have studied the relationship between ring properties

of R(M(A )) and properties of A . See, e.g., the book of Orlik-Terao [8] and the survey

of Yuzvinsky [11] for more information.

In the following we study the Orlik-Solomon algebra R(M) of an arbitrary matroid M.

For this we consider module theory over the exterior algebra. Let N be a graded left

and right E-module satisfying am = (−1)degadegmma for homogeneous elements a ∈ E,

m ∈ N. For example, if J ⊆ E is a graded ideal, then E/J is such a module. Following [3]

we define:

Definition 4.4.

(1) We call an element v ∈ E1 regular on N (or N-regular) if the annihilator 0 :N v of

v in N is vN.

(2) An N-regular sequence is a sequence v1, . . . ,vs in E1 such that the element vi is

N/(v1, . . . ,vi−1)N-regular for i = 1, . . . ,s and N/(v1, . . . ,vs)N 6= 0.

(3) This maximal length of an N-regular sequence is called the depth of N over E and

is denoted by depthN.

Note that every N-regular sequence can be extended to a maximal one and all maximal

regular sequences have the same length.

Projective dimension is a meaningless concept for E-modules. Instead we consider the

following definition. For i ∈ N and j ∈ Z we call βi, j(N) = dimK TorE
i (K,N) j the graded

Betti numbers and µi, j(N) = dimK ExtiE(K,N) j the graded Bass numbers of N.

The complexity of N measures the growth rate of the Betti numbers of N:

Definition 4.5. We call

cxN = inf{c ∈ N : βi(N) ≤ α ic−1 for all i ≥ 1,α ∈ R}

complexity of N.

Here βi(N) = ∑ j∈Z βi, j(N) is the i-th total Betti number of N. A result of Aramova,

Avramov and Herzog [1, Theorem 3.2] states that

cxM +depthM = n.

In this sense the complexity plays the role projective dimension has over polynomial rings.

Recall that a module N has a d-linear (projective) resolution if βi,i+ j(N) = 0 for all i

and j 6= d. Since E is injective, injective resolutions are much simpler than over arbitrary

rings. We say that N has a d-linear injective resolution if µi, j−i(N) = 0 for all i and j 6= d.

Example 4.6. Let ∆ be a simplicial complex on [n]. Then ∆ is Cohen-Macaulay if and

only if the face ideal J∆∗ = (eF : F 6∈ ∆∗) of the Alexander dual ∆∗ = {F ⊆ [n] : Fc 6∈ ∆}
(here Fc denotes the complement of F in [n]) has a linear projective resolution as was

shown in [2, Corollary 7.6].

This is equivalent to say that the face ring K{∆} = E/J∆ has a linear injective res-

olution as it is the dual (J∆∗)∗ = HomE(J∆∗,E) ∼= E/(E/J∆∗)∗ ∼= E/0 :E J∆∗ ∼= E/J∆ of

J∆∗ .
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The second motivating example of modules with linear injective resolutions are Orlik-

Solomon algebras. This fact was first observed by Eisenbud, Popescu and Yuzvinsky

in [6] for Orlik-Solomon algebras defined by hyperplane arrangements, although their

proof works for arbitrary Orlik-Solomon algebras as well. A variation of the proof as it is

presented in [7].

Theorem 4.7. [6, Theorem 1.1] Let l = r(M) be the rank of the matroid M. Then the

Orlik-Solomon algebra E/J(M) of M has an l-linear injective resolution.

Module with linear injective resolutions have very good algebraic properties. We col-

lect some results from [7]:

Theorem 4.8. Let E/J has a d-linear injective resolution. Then:

(1) regE/J +depthE/J = d.

(2) There exists a polynomial Q(t) ∈ Z[t] with non-negative coefficients such that

H(E/J, t) := ∑
i∈Z

dimK(E/J)it
i = Q(t) · (1+ t)depthE/J and Q(−1) 6= 0.

Here regN = max{ j− i : βi, j(N) 6= 0} is the regularity of N. The proof of this theorem

is based on techniques from Gröbner-basis theory which can be developed similar to the

polynomial ring case. Specializing the results to matroids one gets for example:

Theorem 4.9. ([7]) Let J ⊆ E be the Orlik-Solomon ideal of a loopless matroid M on [n]
of rank l with k components, then

depthE/J = k and regE/J = l − k.

In [7] also a characterization is given of those matroids whose Orlik-Solomon ideal has

a linear projective resolution. We refer to that paper for details.

REFERENCES

[1] A. Aramova, L. L. Avramov and J. Herzog, Resolutions of monomial ideals and cohomology over

exterior algebras. Trans. Am. Math. Soc. 352 (2000), No.2, 579–594.

[2] A. Aramova and J. Herzog, Almost regular sequences and Betti numbers. Am. J. Math. 122 (2000),

No.4, 689–719.

[3] A. Aramova, J. Herzog and T. Hibi, Gotzmann Theorems for Exterior Algebras and Combinatorics. J.

Algebra 191 (1997), No.1, 174–211.

[4] A. Björner, The homology and shellability of matroids and geometric lattices. In: Matroid applications,

Encycl. Math. Appl. 40, 226–283, Cambridge University Press (1992).

[5] G. Denham and S. Yuzvinsky, Annihilators of Orlik-Solomon relations. Adv. Appl. Math. 28 (2002),

No.2, 231–249.

[6] D. Eisenbud, S. Popescu and S. Yuzvinsky, Hyperplane Arrangement Cohomology and Monomials in

the Exterior Algebra. Trans. Am. Math. Soc. 355 (2003), No. 11, 4365–4383.
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