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1 Introduction

This are some draft notes intended to support the lectures given by the
author at CIMPA’s School on Algebraic Geometry and its Applications to
Coding Theory an Crytography.

1.1 Jacobian varieties

Let C' be a complete non singular curve defined over a field F. A divisor
D on C is an element of the free abelian group generated by the set of
F-points of C, i.e. a formal finite sum of F-points D = Y m;P;. For K an
algebraic extension of IF, we say that the divisor D is defined over K if for any
o € Gal(F/K) we have D? = D, where D° = >~ m;P? and P? is nothing but
letting act o in the coordinates of P. For a fixed K| let D denote the additive
group of divisors defined over K, and let D° be the subgroup composed by
the divisors of degree 0 (the degree of D is defined as the integer >  m;).
Given a K-defined rational function f, by K-defined we mean f% = f for
all o € Gal(F/K), it has associated a degree zero divisor (f) (the divisor of
zeroes and poles of f). We call such a divisor a principal divisor and denote
by P the subgroup of D composed of all principal (K-defined) divisors. The
quotient J(C) = D" /P is called the jacobian of the curve C.

Let g denote the genus of the curve C and suppose our curve has a point
Py € C(F). Let D be a divisor on D°, then there exists points P, ..., P,
and a rational function f such that D —(}9_; P, —gPo) = (f). This follows
almost directly from Riemann-Roch theorem. Note that it may be possible
that some of the points P; are equal to each other or equal to the point Po.
From this it follows that any element g of J(C) has a representative, called
the reduced representation of g, of the form .7 P; — Py, with s < g and
P; # Py. Mind that this reduced representation don’t has to be (necessarily)
unique.

Problem 1.1 Given g1,90 € J(C), with reduced representations Dy =
Sl Py —s1Py and Dy = Y72 Py — s9Po, 51,52 < g, respectively, then
find a reduced representation D3 = >, P3j — s3Po of g3 = g1 + go.

1.2 Jacobian varieties over finite fields

Definition 1.1 Let C be a non-singular complete curve defined over I,
and let M, = #C(F,r) for r > 1. The power series

Z(C[Fg;T) = exp(Y_ M,T" [r), (1)

is called the zeta-function of C.



Theorem 1.1 (Weil) Let C be a genus g curve defined over Fy, and let
Z(C[Fq;T) be its zeta-function. Then

1. Z(C[Fy;T) is a rational function of the form

P(T)
(1-T)(1—qT)’

Z(C[Fy;T) = (2)

where P(T) is a polynomial of degree 2g with integer coefficients such
that

P(T) = 14+aiT+...+ ag,2T9’2 + a,gingfl + ang
+qag,1Tg+1 + q2a972Tg+2 +.+ qgfla1T2gfl + qugg‘

(In fact Pr(T) = T?9P(1/T) is nothing but the characteristic polyno-
mial of the frobenius endomorphism m of J(C) relative to IF,.)

2. The polynomial P(T) factors as

g
P(T) = [[(1 - ) (1 — @),
i=1

where the a;’s are complex numbers of absolute value \/q and - denotes
complex conjugation.

3. The numbers N, = #J(C)(Fy) are given by
9
N = [Tl =gl
=1
where || - || denotes the usual absolute value. Note that in particular
Ny =TI 11— aal® = P(1)

Remark 1.1 Using equations (1) and (2) we see the numbers My, ..., M,
are enough to determine a1,...,aq and therefore all the numbers N, for
r>1.

2 Elliptic curves

An elliptic curve E (defined) over a field FF is a non singular plane projective
curve defined by the equation

YW + a1 YXW + az3YW? = X3 + apg X2W + as XW3 +agW3,  (3)

with a; € F. For K D T, let E(K) denotes the set of points (z : y : w) € P(K)
that satisfy this equation, i.e. the affine (z,y) := (z : y : 1) satisfying (3)



and the point at infinity O = (0 : 1 : 0). The non singularity condition

amounts to say that there is no affine point (z,y) € E(F) which is also a
solution of the system

aY =3X% +2a0 4 as, 2Y + a1 X + a3 = 0.

If char (F) # 2 then without lost of generality we may suppose a; = a3 = 0.
Moreover, if char (F) # 2,3 then we may suppose our equation is of the form

YW = X3 + aXW? + bW3 (4)

and the non singularity condition translates to —(4a® + 27b?) # 0.

For any field K D F, the set F(K) is an abelian group whose identity
element is the point O. This group structure is given by (we suppose F is
given by equation (4)):

1. Define the point of O as the identity element, i.e. —O = O and for
any @, we have Q + O = Q.

2. If P = (z,y) # O then define —P := (z,—y). If Q := —P then we
define P+ @Q = O.

3. Given P and @ with different z-coordinates, we see the line [ = PQ
intersects F in exactly one more point R. Then we define P + @) as
the point —R.

4. If P = @, then the tangent line [ to £ at P intersects E in one more
point R. Define P + @) as —R.

Remark 2.1 All these rules may be stated as: the points P, QQ and R add
to zero uif there exists a projective line intersecting E exactly ot P, Q, R.
If P = (z1,y1) and P = (z9,y2) and R = P + Q = (x3,y3), then these
relations are expressed in coordinates as

1. If P # Q then

r3 o= ()" — o - (5)
ys = —yi+ (L=t (z1 — a3).
2. If P=Q then
T3 = (3%?&)2 — 271; 6
_ 3:vf+a ( )
ys = —yi+ (g ) (@ — @3).



2.1 Elliptic curves over finite fields

In the rest of this section F will be a finite field I, with ¢ = p! elemens. Let
E be an elliptic curve defined over F;, then it is also defined over the fields
Fgr for all r = 1,2,..., and it makes sense to look at the Fj-points on E.
Let N, denote the number of F7-points on E. These numbers are used to
define the so called zeta-function of the elliptic curve E (over [,) by setting

Z(E[Fg;T) = exp()_ N, T"[r), (7)

where T' denotes an indeterminate and the notation E/F, is used to stress
the fact we are considering E as an elliptic curve defined over Fj.

Theorem 2.1 (Hasse) The zeta-function of an Elliptic curve E/F, is a
rational function on T of the form

1 —aT + ¢qT?

2BEGT) = oy = g1y

Coefficient a depends on E and it is related to Ny as follows: Ny = q+1—a.
Moreover we have a < 4q, so that the polynomial T?> —aT +q has two complex
conjugated roots o, @ with absolute value ¢*/2.

Corollary 2.1 If N, denotes the number of Fy-points on E and o, @ the
roots of the quadratic polynomial T? — aT + q. Then

Ny =l =1|*=¢" +1-a" -7, (8)
where ||| denotes the usual complex absolute value.

Corollary 2.2 The number Ny of Fy-points on an elliptic curve defined
over [y is bounded by

g+1-2G<N<qg+1+2/q.

Example 2.1 Consider the elliptic curve (over Fy) define by E : Y2W +
YW? = X3. This curve has 3 rational points (over Fy), so it follows that
its zeta-function has a numerator of the form 1+ 2T2%. As the roots of this
polynomial are +iv/2 we find the number N, of For -points of E is

N — 2N 41, if v is odd
T2+ 1—2(=2)""2, ifr is even.

Taking r = 101 we obtain

N, =3 -845100400152152934331135470251,



orr =127
N, = 3-56713727820156410577229101238628035243,
or r =167

N, =3-62357403192785191176690552862561408838653121833643.

For algorithms to compute the size of the group E over [F, for an arbitrary
elliptic curve E the reader may consult: [14], [9], [11] and [10].

3 Hyperelliptic curves

Definition 3.1 A hyperelliptic curve C is the completion of a non-singular
affine curve defined by an equation

C :v? 4+ h(u)v = f(u) 9)

where h(u) € Flu] is of degree at most g and f(u) € Flu] is a monic polyno-
mial of degree 2g + 1.

Remark 3.1 1. If h(u) = 0 then char (F) # 2. Moreover, in case
char (F) # 2, by means of change of variables

u— Uyv — (v—h(u)/2),

we may suppose C is of the form v? = f(u) where f(u) has degree
29 + 1.

2. In case h(u) = 0 then the non-singularity conditions is equivalent to
impose the condition that f(u) has no repeated roots in F.

3. By the term completion we mean the affine curve C, given by (9), plus
one point at infinity co. This notion can be made precise, for example
in the case h(u) =0, by considering the algebraic curve C defined by
glueing the curve given by (9) and the curve

2g9+1
Cr:yl==x H(l—aix),
=1

where f(u) = H?f{l(u — «;), along the glueing morphism given by

u = 1/x and v = y/z9'. Note that the mysterious point co now
corresponds to the well defined point (0,0) on Cj.



4. Let C be a hyperelliptic curve defined as in the previous point. Con-
sider a point Py = (ug,vp). It follows that the divisor associated to
the rational function u — ug is equal to (u — ug) = Py + o Py — 200,
where 0Py = (ug, —vg) (is called the conjugated of Py). To see this
note © = 1/u. Note that if we take Py equal to one of the 2g+2 points
Ry = (1,0),..., Rogt1 = (2941, 0),00 then we have o Py = Py (these
are all the ramification points of the covering morphism (u,v) — u).

3.1 Adding on the Jacobian of an Hyperelliptic curve

For simplicity we are going to suppose char K # 2 and our hyperelliptic
curve C' is defined by an affine equation, as in (9), with h(u) = 0.

Definition 3.2 The greatest commun divisor of D = > m;P; € DY and
D =" m;P; is defined to be > min(m;, m;)P; — (x)oo, where the coefficient
(%) is chosen so that the greatest common divisor has degree 0.

Definition 3.3 A divisor D = Y. m;P; — (¥x)oo € D is said to be semi-
reduced if:

a) All the m; are non-negative, and m; < 1 if P; is a ramification point
(i.e. P, =0PF;).

b) If P; # oP;, then P; and oP; do not occur both in the sum.

A semi-reduced divisor is called reduced if it satisfies the additional condition
c) > m; <g.

Any semi-reduced divisor D = Y m;P; — (x)oo can be uniquely repre-
sented as g.c.d. of the divisor of the rational function a(u) = [[(u — z;) and
the divisor of the rational function b(u) — v, where P; = (x;,y;) and b(u) is
the unique monic polynomial of degree less than degree of a(u) interpolating
the values y; with multiplicities m; (i.e. b(z;) = y; for each i and b(u)? — f(u)
is divisible by a(u)). That is denoted D = div(a,b).

Theorem 3.1 For each divisor D € DV there is a unique reduced divisor
Dy such that D ~ D;.

Proof. See [7, Theorem 6.1.]. &

The set J(C)(F) of all divisor classes in J(C') that have a representative
that is defined over F is a finite subgroup of J(C'). Each element of J(C)(F)
has a unique representation as a reduced divisor div(a, b), where a(u), b(u) €
Flu] with deg, a(u) < g and deg, b(u) < deg,, a(u).



Let Dy = div(a1,b1) and Dy = div(as, be) be two reduced divisors defined
over F. The following algorithm find a semi-reduced divisor D = div(a, b)
such that D ~ Dy + Ds. (See [1] and [5]).

Algorithm 1

Input: Semi-reduced divisors Dy = div(ay,b1) and Dy = div(ag, by), both
defined over F.
Output: A semi-reduced divisor D = div(a,b) defined over F such that
D ~ Dy + Ds».

1. Find polynomials dy,e1,es € Flu|, by means of the Euclidean algo-
rithm, such that dy = g.c.d.(a1,a2) and dy = eja1 + ezas.

2. Find polynomials d,cj,co € Flu] where d = g.c.d.(d1,b1 + by) and
d= Cldl + Cg(bl + b2).

3. Let s1 = cieq, s9 = cies, and s3 = co, so that

d = s1a1 + ssa9 + 83(b1 + bg).

4. Set
. a1ag
=%
and b b bib
T 2 + S2a2 1;-83( 1b2 + f) mod a,
where () mod a denotes the remainder polynomial when (x) is di-
vided by a.

End Algorithm 1.

Remark 3.2 For a proof of the correctness of the Algorithm 1 see [7,
Theorem 7.1.]

Algorithm 2

Input: Semi-reduced divisors D = div(a,b) defined over F.
Output: The unique reduced divisor D = div(a, b) defined over F such that
D ~ Dy + Ds.

1. Set
i=(f—¥)/a

and R
b= (—b) mod a.



2. If deg,a > g then set a «— @, b — b and go to step 1.

3. Let ¢ be the leading coefficient of @, and set & = ¢ la.

4. Output(a, b).

End Algorithm 2.

Remark 3.3 For a proof of the correctness of the Algorithm 2 see [7,
Theorem 7.2.]

Example 3.1 Let C be the elliptic curve C' of genus 2 defined over Fo b:
C:v’4+v=uv’+uv’+u

Counting points over Fo and Fy we find the numerator of the zeta-function
is 14+ 2T%2 +4T* = (1 — 7)1 — @ T)(1 — aoT)(1 — @ T), where aq =
(V2 +V6i)/2 and as = (—v/2 + V6i)/2. From here it follows

22T 427 41, if r=1,5 ( mod 6),
2 2 ) @722 12 ifr =24 ( mod 6),
(2772 — 1)4, if r =0 ( mod 6).

For r =101

N=(7)(607)(1512768222413735255864403005264105839324374778520631853993) .

4 Picard Curves

Definition 4.1 (Picard curves) Let k be any field of characteristic # 3.
Then o Picard curve C' is a non-singular plane projective curve with model:

Y3W = W'py(X/W) C P}, (10)

where py(x) € k[x] is a monic polynomial of degree 4 without multiple roots

(in k).
4.1 The naive solution to the addition on Picard Jacobians

The problem of making explicit the addition on the jacobian variety of a
Picard curve has been completely solved in [13]. In fact the underlying
geometric idea supporting the construction given in [13] works for a more
general class of plane projective quartics. That is for any non-singular plane
projective quartic C' (defined over a field k) containing a k-rational point
Py such that the tangent line to C' at Py intersects C only at Po; i.e. Py
is a k-rational hyperflex of C'. The precise idea is the following:



1. By Riemann-Roch theorem, any element of J(C') may be represented
by a divisor D of the form

D=P +PFP+P;—3Po.
Note this does not depends on the fact Py is a hyperflex of C.
2. Suppose given
Dy = Py + Pia + P13 — 3P, Dy = Py + Py + Po3 — 3P,

two divisors representing the points x1, o € J(C), respectively. Mak-
ing explicit the addition z; + z2 (in J(C)) is nothing but finding a
rational function f € k(C') and a divisor

Dy=0Q1+ Q2+ Q3 — 3Py,

such that
Dy + (f) = D1+ Do,

where (f) denotes the principal divisor associated to f and + is the
addition as divisors on C.

3. Given a divisor
Dy=P +P,+ P+ P, — 4P,

we show how to construct a divisor Dy and a function f € k(C) such
that

Do+ (f) = Dy-
First we interpolate the curve C with a conic vy having zeroes at the
points Py, ..., Py (with the corresponding multiplicities if some point

P; appears more than once at the support of Dy) and having a zero of
order at least one at the point Py. By Bezout’s Theorem, the conic
vo intersects C' (counting multiplicities) in at most three more points
My, Ms, M3, then we get

Dy = (vo/h%) — (M} + My + M3 — 3Py);

where ho = a X + Y +7vZ is the homogeneous equation of the tangent
line to C at Py. Note that here we strongly use Po is an hyperflex of
C. In order to get rid of the — sign we repeat the process: we take a
conic vy interpolating C at the points My, My, M3 but now with a zero
of order at least two at the point Py. The same argument applied, we
conclude the existence of points ()1, (2, @3 such that

Dy + (’UU/Ul) =Q1+ Q2+ Q3 — 3Po.

4. To solve 2 we apply 3 in a recursive way.



4.2 Factorization free addition algorithm for Picard Jaco-
bians

In the previous section we has seen the general strategy in order to solve
problem 1.1 for a class of quartics including Picard curves family (in Pi-
card’s case the point Py can be chosen as the point P,, = (0: 1:0). In
order to obtain a factorization free addition algorithm we will assign some
kind of polynomial coordinates (as in hyperelliptic case) to divisors. Unfor-
tunately, the the way to define these coordinates is not so strightforward as
in Hyperelliptic case.

Lemma 4.1 Let C be a Picard curve. A divisor D = Py + P, + P3 satisfies
dimg £(D) = 2 iff Py, P> and Ps are collinear points of C.

Proof. The canonical class K is given by the intresection of lines with C
(that is true for any quartic). Then a divisor D = P; + P, + P5 satisfies
I(D)=2 < K > D. &

Remark 4.1 1. Let C be a Picard curve defined over a field k containing
a 3" root of unity & # 1. Then the curve C possesses an order three
automorphism 6 defined by 6((xo :yo: 1)) = (2o : 0yo: 1) and 6((0: 1:
0)) =(0:1:0). This automorphism fizes the points R; = (r; : 0: 1),
i =1,...,4, where the r; are the zeroes of ps(z) € k[x], and also the
point Py, = (0 : 1 :0). These are also the ramification points of the
covering morphism m: C — P} induced by k(z) < k(C).

2. The divisor associated to the rational function x —xy, where v = X/W
and xq is a constant such that there exist a point P = (xo : yo : 1) € C,
is equal to (x — x9) = P + 6P + 62P — 3Ps. Given a divisor D =
Py + Py+ P3—3P,, such that E(Pl +P2+P3) = d’imkﬁ(Pl —I—Pg—i—Pg) =2,
then D ~ Dy, where D1 = 6M + §°M — 2P, and M is the fourth
point in which the line r crossing by Py, Py and Ps (see Lemma 4.1)
intersects C.

Theorem 4.1 Given a 0 # g € J(C) then it has a (unique) representative
of one of the following forms

1. P + P, + P3 — 3P with K(Pl + P +P3) =1o0r P+ 0P, —2P4 or
2. P+ Py — 2P, with P, # 6*Py, k =1,2, or
3. P, — Py.

Proof. By Remann-Roch Theorem we know there exists points Py, Py and
P3 such that P + Py + P3 — 3Py € g. If some of the points P; is equal
to Py then we obtain cases 2 and 3, if (P + Py + P3) = 2 then we apply
Remark 4.1. &

10



Suppose given a divisor Dy = Py + ...+ Py — 4Py, and Dy = My + M> +
M3 — 3Py and Dy = Q1 + Q2 + Q3 — 3P4 such that

Dy ~ =Dy ~ Ds,

as in the previous section. We assign some kind of polynomial coordinates
to the divisors D; in order to avoid doing factorization in this reduction
process.

1. For D= Y91 P, — 81 Py, 1 < S <3, such that P; # 0¥ P;, for i # j
and k = 1,2, we assign to it the coordinates D = (u(z), v(x,y)), where

o u(zr) = Hf:ll(x —x;), where P; = (z; 1 y; : 1).

e v(z,y) =y — b(x), where b(z) € k[z] is the unique monic poly-
nomial interpolating the point P;, i.e. b(z;) = y; with the right
multiplicity.

2. Given a divisor D = P +...+ P, —4P,, we have to consider the cases:

(a) The points Pi,..., Py, lie in the same line. Then Dy ~ 0.
(b) Dy = P, + 6Py + 0°Py + Py — 4Py, then Dy ~ P, — Po.

(¢) Dy =P+ 6P+ P+ 6Py — 4Py, where Py, P, € C. In this case
Dy ~ My + My — 2P, where My, Ms are the two other points in
which the line r = (62 Py, 02P,) intersects C. That is

Dy ~ —(8%P, + 0°Py — 2Py) ~ (M + My — 2Py).

In coordinates we have D, = (u; = (z — 21)(z — 22),7(x,y))
and Dy = (ua(z),r(z,y)), where up = Ry(r,C)/ur and Ry(x, *)
means resultant with respect to y.

(d) Otherwise we assign to Dy the ”polynomial coordinates” Dy =
(ug(z),vo(z,y), Pp) defined in the following way:

o uy(z) = H;-lzl(x —x;), where P; = (z; : y; : 1).

o vo(z,y) = axr? + anwy + apx + agry + ago is the rational
function (in z = X/W and y = Y/W) having zeroes (with
the right multiplicities) at the points P, ..., Py and a number
of poles at P, as small as possible (given the restriction
we stated for the zeroes of v(x,y)). Such a function always
exists and the minimality condition for the poles translates
to the annilation of some of the coefficients: for example, if
the points P, ..., Py lie in a line that means forcibly asy =
a;; = 0 (note that in that case D ~ 0).

11



e The point Pp will be equal to Py, except in the case D = P+
Py + P3+6P3 — 4P, in which we define Pp = §2P5. At first it
may seems a very strange definition but the problem comes
from the fact that the minimal v(z,y), in that case, is of the
form vo(z,y) = (a1y + a2y +a3)(x — x3), x3 the z-coordinate
of the point P3, and the polynomials u(z) and v(z,y) do not
provide enough information to recover D in a unique way (for
example the divisor D = P, + P, 4+ P3 4 6°P3 — 4P, gives
the same u and v). This difficulty can be overcome also by
using a third polynomial w(y) = [[;,_,(y —v;) but in practice
is simpler, and more efficient, to use Pp.

Given these coordinates 150 we proceed to compute 131 and 131
(or in some cases the divisors Dy and D) by:

o Set u; := Ry (v, C)/ug. To get v1 we try to solve the linear
system
Ry(vl,vg):A-ul, 0#MN€EE.

In case we can not solve the system we recover D; and Dy
explicitly.
o We set up = Ry(v1,C)/ur and vy = vy.

3. The points 1. and 2. show how to efficiently reduce a degree 4 divisor.
So, in order to completely solve the problem of the reduction of and
arbitrary divisor we have to show how to compute from Dy and a
divisor of the form E := () — P, the coordinates corresponding to the
divisor Dy := Dy + E (mind that we don’t know necessarily the points
in the support of Dy, only its coordinates). We proceed as follows:

o We set up =uy - (z — zg), where Q = (z¢ : yg : 1).
e We try to find vy by solving the system
{ Ry(vo,v2) = A-up
vo(zQ,yq) = 0
In case the system has no solution we obtain Dy explicitly.

4. Now given an arbitrary divisor D = Zij\;O P, — NPy, N > 3, we find
its reduction by means of the following algorithm

A0. Input: D =Y P, — NP,.

Al.Sete D=P +...+ P, —4Px and D =D — (Dy) and I :=5
A.2. Compute Dy,

A.3. Compute Dy, and Ds.

12



A.4. Ifdeg Dy > 0 then set Dy = Dy+(P;—Ps,), D = D—(P;—Py),
I =1+1 and go step A.3. Else finish with output Dy

A.5. Output: The coordinates Ds.

Of course this is a simplified version of the real algorithm.

Remark 4.2 For C a genus 3 curve defined over Fy let Pr(\) = Z?:o ai\’
be the characteristic polynomial of the Frobenius endomorphism w of J(C)
relative to Fy and p, = N, — (¢" + 1), r = 1,2,3, where the N, are the
number of Fyr -rational points of C. Then we have

1. ag =1 and ag = ¢*
2. a5 = p1, aa = 5(p2 + p3) and a3 = Suz + Spapn + Gt
3. a1 = ¢®as and as = qay.
Therefore, Py (\) is completely determined by the numbers N1, Ny and Nj.

Example 4.1 Let C be the Picard curve defined by the equation Y3W =
X4+ X2W?2 4+ XW3 + W* over Fy. By direct computation we find g =
po = p3 =0 and Pr(\) = (A2 +2)(A\* — 202 +4). The roots of Pr()\) are

i\/i—i\/i\/1—if,—\/1—z'\/§,\/1+if,—\/1+z'\/§.
That gives
(1427) (142 305, 3277 +2%5+2) r=2s+1
N, =

. ’ .
(1427 —2(=2)"/2) (142 305 2 3% +245H2 —4(2454+1) 3, 3/2428) v =2,

where E, means j takes only even values. For example, if we take r = 101
we obtain Nig1 = A - B where

A = (3)(845100400152152934331135470251),
and
B = (17)(293)(647)(1994519569119104126310426419423013773089140471968053901) .

It follows from the above prime decomposition that J(C)(Fqio1) is a cyclic
abelian group.
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