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Introduction to cryptography:.

J. Estrada Sarlabous

January 9, 2001

<<... La inteligencia se encuentra en muchos lugares
Intelligence is found in many places
L’intelligence se trouve dans beaucoup endroits
Intelligenz findet sich an vielen Plaetzen ...>>

- Jorgito

1 Introduction

Cryptography has a long a fascinating history. The most complete non-
technical account is D. Kahn’s book, The Codebreakers, which starts with
the ancient Egyptians, 4000 years ago and ends with the XX century and
its crucial role in the World Wars. Cryptography applications were mainly
associated to the military and the diplomatic service, where it was used as
a tool to protect secrets.

Until some years ago, sophisticated secure systems were mainly restricted
to the military world. ENIGMA, was a famous machine used by the Ger-
mans during WW II, M-209 was its American counterpart. The English
were not only able to break the ENIGMA code, but also successful in keep-
ing the Germans unaware of this fact during the war.

With the proliferation of computers and communications systems in the
1960s arised a demand from the private, civil sector for means to protect
information in digital form and to provide security services:

- Phone calls via satellite are easy to listen in. Similarly, unauthorized
viewers arise with respect to payed TV

- In multiuser computer systems, each user must be identified. Today
passwords are used, in the future, smart cards should provide higher security



- Electronic banking requieres a susbtitute for handwritten signature

- Data authentification may be considered as a means of defense against
computer viruses

The works of Feistel at IBM in the early 1970s and their adoption in
1977 as an U.S. Federal Information Processing Standard for enciphering
unclassified information the Data Encryption Standard (DES), is the most
well known cryptosystem in history (it remains still the standard for secur-
ing electronic commerce in many places).

The famous paper New directions in Cryptography of Diffie and Hell-
man in 1976 began a revolution in cryptology, with the introduction of the
public key cryptosystems. In 1978, Rivest, Shamir and Adleman discovered
the PKC , which is nowdays refered to as RSA.

One of the most significant contributions provided by PKC is the digital
signature. In 1991, the first international standard for digital signatures
(ISO/IEC 9796) was adopted (it is based on RSA PKC). In 1994, the U.S.
Government adopted the Digital Signature Standard (based on ElGamal
PKC).

Aren’t there any other methods to achieve security? Besides bodygards,
special papers and inks, water marks, silver wires, etc., Mathematics pro-
vides the theoretical justification of the strength of an algorithm or a pro-
tocol. Once security is mathematically proved, there is no doubt that an
algorithm is secure and there is no need on (often contradictory) experts
opinions!



2 Some information security objectives

Privacy:

keeping information secret from unauthorized entities

Data integrity:

ensuring information unaltered

Entity authentication:

corroboration of the identity of an entity

Message authentication:

corroborating of source of information

(also known as data origin authentication)

Signature: a means to bind information to an entity
Authorization: conveyance (to another entity) of

official sanction to do or to be something
Validation: a means to provide timeliness of authorization

to use or to manipulate information

Access control:

restricting access to resources to privileged entities

Certification: endorsement of information by a trusted entity
Timestamping: recording the time of creation of information
Witnessing: verifying the existence or creation of information

by an entity other than the creator
Receipt: acknowledgement that information has been received
Confirmation: acknowledgement that services have been received
Ownership: a means to provide an entity with the legal right

to transfer or use a resource to others
Anonymity: concealing the identity of an entity

Non-repudiation:

preventing the denial of previous commitments

Revocation:

retraction of certification of authorization

2.1

Crytographic objectives

Confidentiality (Secrecy):

service to keep the information from all but those

authorized to have it

Data integrity:

service to address unauthorized alteration of data

Authentication:

service related to identification of entities

and/or of information

Non-repudiation:

service to prevent an entity from denying previous

commitment




2.2 Main problems of cryptography
- Enciphering

- Authentication
- Digital Signature
- Key Establishment Protocols

- Key Management

2.3 Crytographic primitives

Basic cryptographic tools to provide information security, such as encipher-
ing schemes, hash functions, generators of pseudorandom sequences and
digital signature schemes.

They should be evaluated with respect to several criteria:

- Level of security (work factor): Upper bound on the amount of work
needed to defeat the objective

- Functionality: Primitives may be combined to achieve several informa-
tion security objectives. Which are most effective for a given objective?

- Methods of operation: When applied with different ways and with dif-
ferent outputs, primitives have different characteristics, hence depending on
the context, one primitive could provide different functionality

- Performance: Efficiency of a primitive in a particular mode of operation
(for instance, rating of the number of bits per second which an enciphering
scheme can encipher)

- Ease of implementation: Difficulty of realizing the primitive in a prac-
tical situation (complexity of implementing a primitive in a software or a
hardware environment).



Figure 1: Security Primitives



3 Enciphering

3.1 Terminology.

A finite set, called the alphabet of definition
M the set of strings of symbols from A,
called message space

m € M | element of M, called plaintext

C the set of strings of symbols from an
alphabet of definition A’

ceC element of A', called ciphertext

K a set, called the key space

k € K | element of K, called key

Each element e € K determines a 1-1 transformation F, : M — C,
which is called enciphering function. The process of applying E, to m € M
is referred to as enciphering m

For each d € K, D, denotes a 1-1 transformation Dy : C' — M, which
is called deciphering function. The process of applying Dy to ¢ € C' is re-
ferred to as deciphering ¢

Definition 3.1 An enciphering scheme consists of a set {E, : e € K} of
enciphering transformations and a set {Dy : d € K} of deciphering trans-
formations, such that for each e € K, there is a unique key d € K, with
Dy(E.(m)) =m for all plaintexts m € M

Example 3.1 For a fized N-letter alphabet (with numerical equivalence also
fized), consider the following affine family of cryptosystems:

For each a € (Z/NZ)* and b € Z/NZ, the key is e = (a,b) and the
enciphering function is the map from M := Z/NZ to C := Z/NZ defined
by E.(m) =am +b (mod N), for any m € M.

For each e = (a,b) € K, the unique key d € K such that Dy = E;!
is d = (a=',—a"'b), where a=' denotes the multiplicative inverse of the
element a in Z/NZ.



3.2 Symmetric key enciphering

<<...Five or six weeks later, she [Mme. d’Urfé] asked me if I had deciphered
the manuscript which had the transmutation procedure. I told her I had.
”"Without the key, sir, excuse me if I believe the thing impossible”

"Do you wish me to name your key, madame?”

”If you please”

I then told her the key-word, which belonged to no language, and I saw her
surprise. She told me that it was impossible, for she believed herself the
only possessor of that word which she kept in her memory and which she
had never written down.

I could had told her the truth - that the same calculation which had served
me for deciphering the manuscript had enabled me to learn the word- but
on a caprice it struck me to tell her that a genie had revealed it to me. This
false disclosure fettered Mme. d’Urfé to me. That day I became the master
of her soul, and I abused my power...>>

- Casanova, 1757, quoted in D. Kahn’s The Codebreakers

Definition 3.2 Consider an enciphering scheme consisting of a key space
K, a set {E, : e € K} of enciphering transformations and a set {Dg : d €
K} of deciphering transformations. The enciphering scheme is called Sym-
metric key enciphering scheme, if for each associated enciphering/deciphering
pair (e,d), it is computationally "easy” to determine d knowing only e and
to determine e knowing only d

Since usually e = d, the term symmetric is appropriate.

The are two classes of symmetric key enciphering schemes: the block
ciphers and the stream ciphers.

Definition 3.3 A block cipher is an enciphering scheme which breaks up
the plaintext to be transmited into strings (called blocks) of a fixed length t
(blocklength) over an alphabet A and enciphers one block at a time.

Definition 3.4 (Monoalphabetic enciphering scheme) Suppose the cipher-
text and plaintext are the same. Let m = myimams.... be a plaintext message
consisting of juxtaposed characters m; € A, where A is some fixed character
alphabet. A monoalphabetic enciphering scheme uses a permutation e over
A, with enchipering mapping E.(m) = e(m1)e(ms)e(ms).... (concatenation
of the characters e(m;)).



Example 3.2 (Caesar enciphering scheme) If |A| = N and m; is associated
with the integer value i, 0 < i < N — 1, then the key is k € [0, N — 1], the
enciphering mapping e is defined as ¢; = e(m;) = m; + k (modN) and the
deciphering mapping is defined as d(c;) = ¢; — k (modN). According to
folklore, Caesar used the key k = 3.

Example 3.3 (Affine enciphering scheme) For a fized N-letter alphabet
(with numerical equivalence also fized), consider the following affine family
of cryptosystems:

For each a € (Z/NZ)* and b € Z/NZ, the key is e = (a,b) and the
enciphering function is the map from M := Z/NZ to C := Z/NZ defined
by Ec(m) = am + b (mod N), for any m € M.

For each e = (a,b) € K, the unique key d € K such that Dy = E, !
is d = (a~',—a~'h), where a~' denotes the multiplicative inverse of the
element a in Z/NZ.

The statistical study of the frecuence of occuring symbols of a given al-
phabet for messages written in a fixed language may make feasible to break
monoalphabetic enciphering schemes, if suffiently large messages are anal-
ysed by a cryptoanalist. It gave rise to the introduction of another family
of enciphering schemes.

Definition 3.5 (Polygram substitution enciphering scheme) Groups of t
characters of an alphabet A, with |A| = N are substituted by groups of t
characters of A. The key may be any of the N possible replacements of
groups of t characters of A by groups of t characters of A.

Example 3.4 (Hill encihering scheme) The key is an invertible (in Z/NZ )
txt matriz G = (a;;). Given a plaintext m = mymaoms...my, the enciphering
mapping s ¢ = C1C2...C¢, With ¢; = Z;Zl a;jmj, fori=1,.,1

3.3 DES

DES (Data Encryption Standard) is a Feistel enciphering scheme which
processes plaintext blocks of n = 64 bits, producing 64—bits ciphertext
blocks using a secret ket K of 56—bits (more precisely, the input key is a
64—bits key, 8—bits of which (bits 8,16,...,64) may be used as parity bits.
An overview of the algorithm is the following. Enciphering proceeds in
16 stages, called rounds. From the input key K, sixteen 48—bits subkeys K;
are generated, one for each round. Within each round, 8 fixed 6 —to — 4 bit
substitution mappings (called S—boxes) S;, collectivelly denoted S are used.
The 64—bits plaintext is divided into 32—bits halves Ly and Ry. Each round



takes 32—bit inputs L;_1 and R;_; from the previous round and produces
32—Dbits outputs L; and R; for 1 <14 < 16 after the formulae:

L;=R;
Ri=Li_1 @ f(Ri—1, K;)

where f(R;—1,K;) = P(S(E(Ri-1) @ K;))) , € denotes addition mod
2™ K is a fixed expansion permutation mapping from 32 to 48 bits and P
is another fixed permutation on 32 bits.

An initial bit permutation I P precedes the first round, following the last
round the left and right halves are exchanged and the resulting string is
bit-permuted by the inverse of IP. Deciphering involves the same key and
algorithm, but with subkeys in the reverse order.

A novel generalization of the Feistel structure is the enciphering scheme
IDEA (International Data Encryption Algorithm) , which mixes operations
from three different groups of 2" elements. This symmetric enciphering
scheme processes plaintext blocks of n = 64 bits, producing 64—bits cipher-
text blocks using a secret ket K of 128—bits

3.4 Stream enciphering schemes

Stream enciphering schemes are an important class of enciphering algo-
rithms, which encipher individual characters of the plain text one at a time,
using an enciphering transformation that changes with time. Generally are
faster than block enciphering schemes in hardware implementations and they
are sometimes more appropriate when buffereing is limited, when characters
must be individually processed as they are received and when transmission
errors are highly probable. There are relatively few fully-specified stream
enciphering schemes in the open literature.

Definition 3.6 (One-time-pad enciphering scheme) Denote by my,mg, ms3, ...
the plaintext characters over the binary alphabet, by ki, ko, ks, ... the key bi-
nary digits (key stream) and by c1,ca,cs, ... the ciphertext digits.

The enciphering transformation is defined by:

ci=mi@Pk; fori=1,23,...



where @ denotes the bitwise addition mod 2.
The deciphering transformation is defined by:

m; =c; P k; fori=1,2,3,...

When the keystream digits are generated independently and randomly,
the one-time-pad enciphering scheme is ”unconditionally secure” against
ciphertext-only attack, i.e., the ciphertext contributes no information about
the plaintext. A drawback is that the key should be as long as the plaintext
(difficult key distribution and key management). It motivates the use of
keystreams pseudorandomly generated from a smaller secret key, which are
no longer ”"unconditionally secure”, but one hopes to be computationally
secure.

4 Public key cryptosystems (PKC)

<< ... The security of a cryptosystem must not depend on keeping secret
the crypto algorithm. The security depends on keeping secret the key...>>

- Kerckhoff von Nieuwenhof, La cryptographie militaire

4.1 The idea of PKCs

Assume that any participant X has one pair of keys, e(X) and d(X), such
that the enciphering key is publicly known, but the deciphering key d(X) is
kept secret, and assume further that knowing e(X), is it not computationally
feasible, given a random ciphertext ¢ = E(x)(m), to determine the message
m. This property implies that given e(X) it is infeasible to determine d(X).

The public keys e(X) are publicly available (for instance, they may be
stored in a public file, such as a telephone book) but the private deciphering
keys d(X) are known only to their owners.

How the PKC works:

1.- If A wants to send a message m to B, A looks up the public key e(B)
of B, A enciphers m using e(B) and sends the enciphered text ¢ = E.(g)(m)
to B
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2.- B is able to decipher the received ciphertext c, since only B knows
the key d(B), Dy(p)(c) =m

No other participant can decipher ¢, since by hypothesis, no one can
deduce d(B) from e(B) (and ¢ = FEgpg)(m) ). In this process only keys
related to B are used.

4.2 Advantages of PKCs

- No key exchange among participants is necessary. In comparison to sym-
metric cryptosystems, spontaneous communication is possible, without pre-
vious exchange of keys

- Relatively small number of keys. In symmetric cryptosystems, every
pair of participants must have an secret key, in an asymmetric PKCs each
participant needs only two keys (and only one of them is kept secret)

- New participants can joint the PKC without new problems for the older
participants. In symmetric cryptosystems, if a new NP participant joints
the system, then all older participants have to exchange a secret key with
NP, in the asymmetric case, the older participants only have to update their
database with the new public key (if they wish) of NP.

- The pairs private key/public key may remain unchanged for consider-
able periods of time.

4.3 Disadvantages of PKCs

- Symmetric cryptosystems are faster. Some hardware implementations
achieve much better enciphering rates than efficient software implementa-
tions.

- Keys for symmetric cryptosystems are relatively short.

- Danger of impersonation. PKCs need some key management: If some
unauthorized person I uses the name B of an authorized participant and
sends to the old participants a public key e(I) as the public key of B, then
any participant X that assumes (incorrectly) that e(I) is actually the public
key of B will send messages to B using e([) and I may intercept the messages
from X to B, decipher them with his own private key d(I), re-encipher the
message using the public key e(B) and send it to B. That forces to check
that the public keys are authentic, i.e. the sender of a message must obtain

11



by some means an ”authentic” copy of the intended receiver’s public key.
There are elegant PK techniques to solve this problem.

4.4 The PKC RSA

Named after the names of its inventors R. Rivest, A. Shamir and L. Adle-
man, is the most widely used PKC. It security relays on the intractability
of the integer factorization problem.

1.- Key generation for RSA: Any participant X has a public key e(X)
and a secret key d(X), which are generated as follows:

- generate two large random (and different) numbers p and ¢, both ap-
proximately of the same size

- compute n =pqg and ¢ = (p — 1)(¢ — 1)
- select a random integer ex, 1 < ex < ¢, such that ged(ex, ) =1

- use the Euclidean algorithm to compute the unique integer dz, with
1 < dz < ¢, such that drex = 1 (mod ¢)

- set e(X) = (n,ez) and d(X) = dz

The integer ez is called the enciphering exponent, the integer dz is called
the deciphering exponent, n is called the modulus.

2.- RSA public key encryption scheme (A enciphers a message m for B,
B deciphers)

- Enciphering:
a) A obtains B’s authentic public key e(B) = (n, ex)
b) A represents the message as an integer m € [0,n — 1]

exr

c) A computes ¢ = m (mod n)

d) A sends the ciphertext ¢ to B
- Deciphering:

dxr

a) B uses the private key d(B) = dx, to recover m = ¢** (mod n)

12



Proof of correctness of the deciphering algorithm.-
Since exdr = 1 (mod ¢), there exist an integer k, such that

exdr =1+ k¢ . If ged(m,p) = 1, then by Fermat’s theorem holds

mP~! =1 (mod p)

Hence, raising both sides to the power k(¢ — 1) and multipliying by m,
holds

me = m (mod p)

and analogously,

me = m (mod q)

Since p and ¢ are different primes, after the Chinese Remainders Theorem

me = m (mod n)

and finally holds,

= (m®)% = m (mod n)

Some comments.-

- RSA is substantially slower than commonly used symmetric key cryp-
tosystems, such as DES. In practice, it is used for the transport of symmetric
cryptsystems keys and for enciphering of small data items

- RSA PKC has been patented in the U.S. and in Canada, and some
organizations have written or are in process of writing standars that address
the use of RSA

- Security of RSA: The problem of computing the deciphering exponent
dz from the public key (n, ex) is computationally equivalent to the problem
of factoring n

- Recommended size of modulus: After the latest algorithms for factoring
integers (1996), such as quadratic sieve and number field sieve, a modulus
n of at least 768 bits is recommended, for long term security, 1024-bit or
larger moduli should be used

13



- Selecting the primes p,q: In order to avoid the elliptic curve factor-
ing algorithm, both primes should be of the same bitlength and sufficiently
large, further their difference should not be too small (otherwise, p? = n
and n could be factored by trial division by all primes close to /n

4.5 The discrete logarithm problem DLP

Let G be a (multiplicatively written) finite cyclic group of order n with gen-
erator a, i.e.,

G={dd,j e}

Definition 4.1 Discrete logarithm problem: given o finite cyclic group G
of order n, a generator o of G and an element B € G, find the integer j,
0<j5<n-—1, such that o/ = .

Some commets:

- Solving the DLP in a cyclic group G of order n is essentially equivalent
to compute an isomorphism between the multiplicative G and the additive
group Z/nZ.

- Some known algorithms for the DLP:

1) algorithms for arbitrary groups (exhaustive search, baby-step giant-
step, Pollard’s rho algorithm), which are not efficient if the order of the
group is large

2) algorithms for arbitrary groups, which are especially efficient if the
order of the group has only small prime factors (Pohlig-Hellman algorithm)

3) the index-calculus algorithms, which are efficient only for certain
groups, such as Coppersmith’s algorithm for G = Fom

4.6 The PKC ElGamal

Its security is based on the intractability of the discrete logarithm problem
(DLP) in a finite, cyclic group G. The group must be chosen such as the
following conditions hold:

- Efficency: the group operation in G should be relatively easy to apply,

14



- Security: the DLP in G should de computationally infeasible.

1.- Key generation for ElGamal PKC: Select a multiplicative cyclic group
G of order n, with generator o and a multiplication algorithm in G for all
participants. Any participant X has a public key e(X) and a secret key

d(X), which are generated as follows:

- X selects a random integer a, 1 < a < n —1 and computes the element

al,

- X'’s public key is e(X) = («, %)
- X'’s private key is d(X) = a

2.- ElGamal public key encryption scheme (A enciphers a message m for
B, B deciphers)

- Enciphering:
- A obtains B’s authentic public key e(B) = (a, a®)
- A represents the message as an element m of the group G

- A selects a random integer k, 1 < k < n — 1 and computes v = o and
§ =m.(a®)F

- A sends to B the ciphertext ¢ = (v, 0)

- Deciphering:

- B uses the private key d(B) = a and computes y~¢

- B recovers the message m by computing (y~%).d

Proof of correctness of the deciphering algorithm.-

(Y7%).0 = a~%ma®* =m

- Some comments:

- Different random integers & must be used for enciphering different

messages (otherwise, if one uses the same integer k£ to encipher two mes-
sages m1 and my and the resulting ciphertexts are (7y1,01) and (72, d2), then

15



61.(52_1 = ml.m;1 and my could be easily computed if my is known.

- Recommended parameter sizes for G = Z, : As of 1996, a modulus p of
at least 768 is recommended, for long term security, 1024-bit or larger. If G
and its generator o are public, p must be even larger, since the precompu-
tation of a database of logarithms required in the index-calculus algorithm

for any particular p will comprise the secrecy of all private keys using p as
modulus.

4.7 The PKC McEliece

Is based on error-correcting codes. One selects first a particular code, for
which an efficient decoding algorithm is known, and then one disguises the
code as a general linear code.

1.- Key generation for McEliece PKC: The parameters k, n and ¢ are
fixed as common parameters. Any participant X has a public key e(X) and

a secret key d(X), which are generated as follows:

- X chooses a k x n generator matrix G for a (n,k)-linear code which
can correct ¢t errors and with known efficient decoding algorithm

- X selects a random k X k non-singular matrix S and also a random
n X n permutation matrix P

- X computes the & X n matrix GD = SGP
- X’s public key is e(X) = (GD, t); X’s private key is d(X) = (S, G, P)

2.- McEliece public key encryption scheme (A enciphers a message m for
B, B deciphers)

- Enciphering:

- A obtains B’s authentic public key e(B) = (GD, 1)

- A represents the message m as a string of length k

- A chooses a random error vector z of length n and weight at most ¢

- A computes the vector ¢ = mGC + z and sends ¢ to B

16



- Deciphering:
- B computes ¢* = cP~!

- using the efficient decoding algorithm for the code G, B decodes c¢* to

- B recovers m by computing m*S~!
Proof of correctness of the deciphering algorithm.-
¢t =cP ' =(mGD +2)P! = (mSGP + z)P~! = (mS)G + zP~!

Since zP~! is a vector of weight at most ¢, the decoding algorithm for
the code generated by G corrects ¢* to m* = mS, hence m*S~! = m and
the deciphering works.

The McEliece PKC has resisted cryptanalysis to date. It is the first
PKC to use radomization in the enciphering process. The ciphering and
deciphering algorithms are very efficient, but the very large size of the public
keys are a practical drawback. Its security is based on the NP-hardness of
decoding a general linear error correcting code.

5 Authentication.

<< ...The King had Allerleirauh brought before him. He spied the white
finger and saw the ring which he had put on it during the dance. Then he
grasped her by the hand and held her fast, and when she moved to release
herself and run away, her fur mantle opened and the star dress shone forth.
The King clutched the mantle and tore it off. Then her golden hair shone
forth and she stood there in full splendor, and could no longer hide herself
>>

- Brothers Grimm, ” Allerleirauh”

5.1 Some definitions.

Definition 5.1 (1-1 functions) A function f: X — Y is 1-1 (one-to-one)
if each element in the codomain Y is the image is the image of at most one
element in the domain X.

Definition 5.2 (One-way functions) A function f : X — Y s called a
one-way function if for allx € X, f(x) is "easy” to compute, but for "most”

17



elements y € Im(f) is “computationally infeasible” to find an © € X, such
that f(z) =vy.

Example 5.1 (One-way functions) Given two prime numbers p and q, set
n = pq and define the function

f(z) = 2* (modn)

If the factors of n are unknown and large, to compute = from n and f(x)
is a difficult problem.

Definition 5.3 ( Trapdoor one-way functions) A trapdoor one-way function
is a one-way function f: X — Y, such that given some extra information
(called the trapdoor information) it becomes feasible to find for any given
y € Im(f) an z € X with f(z) =y.

Definition 5.4 A hash function h is a many-to-one function that maps bit-
strings of arbitrary finite length to strings of fixed length, say n bits, such
that the possibility of collisions (pairs of inputs producing the same output)
s "very small”.

Hash functions take a message as input and produce an output referred
to as hash code or hash value (or simply hash). Restricting h to a domain
of t-bits inputs (¢ > n), if h were "random” (all outputs equiprobable) then
about 2!=" inputs would map to each output, hence two randomly chosen
inputs would yield the same output with probability 27", independently of ¢.

The main idea of using hash functions in cryptography is that they serve
as a compact representative image (imprint, data fingerprint, message di-
gest) of an input string and can be used as if it were uniquely identifiable
with the original string. Hash functions are also used in applications where
the one-way property is required but not compression.

Definition 5.5 ( MAC) A Message authentication code (MAC) algorithm
s a family of functions hy parametrized by a secret key k, with the properties:

- for a known function hy, given a value k and an input x, hy(x) is easy
to compute.

- hx maps an input x of arbitrary finite bitlength to an output hi(z) of
fized bitlength.

- given pairs (x;, hi(xz;)) it is computationally infeasible to compute any
pair (z,hg(z)) for any new input x # x;, including possibly for hy(x) =

18



hi(z;).-

5.2 MAC based on block ciphers

Cipher-block-chaining (CBC) based MAC algorithm . When DES is used as
the block enciphering scheme E, n = 64 and the MAC key is a 56-bit DES
key.

Algorithm CBC-MAC:
- Input: data z, specification of block cipher F; secret MAC key k for E
- Output: n-bit MAC on z (n is the blocklength of )

1.- Padd (append 0-bits to z untill obtaining a data string 2’ with length
multiple of n) and divide the padded text into n-bits blocks denoted x1, ...x¢

2.- Denoting by Ej, the encipering function using E and k, compute the
block H; as follows: Hy < Ey(z1); H; <+ Ex(H; 1 P x;),2 < i <t (this
is standard cipher-block chaining, IV = 0, discarding ciphertext blocks
C; = H;)

3.- Using a second secret key k' # k, optionally compute H + E,;l(Ht),
H; «+ Ey(H])

4. The MAC is the n-bit block H;

5.3 MAC and data integrity

If confidentiality and integrity are needed, the following data integrity tech-
nique using a MAC may be used. The originator of a message x computes
a MAC-value hy (x), appends it to the data and enciphers the augmented
message using a symmetric enciphering algorithm E with shared key k, pro-
ducing a ciphertext C' = Ej(x||h (z)). The recipient determines (using a
plaintext identifier field) which keys k and k" were used and separates the re-
covered data 2 from the recovered MAC-value hy (z) and compares it with
hy(z"), if both agree, the recovered data are accepted as being authentic
and having integrity.
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6 Digital Signature

<< ... Many a man applies his intellect to simplify, many to complicate...>>
- Erich Kaestner

6.1 PKCs and digital signatures

If using the public key of B, A inserts (at the beginning or at the end of the
message)the ciphertext (E,pyDgca))(ca), where cy is a secret, but mean-
ingful message identifying A. Then, when B deciphers the whole message,
including this part, using Dg(p), he finds that everything makes sense, ex-
cept a small section. Since the message is claimed to be from A, then B can
easily verify it, applying F,(4) to that part of the deciphered message and
obtaining c4. No one other than A could have computed Dg(4)(ca), since
d(A) is secret.

- PKS provide efficient digital signature schemes (”public key signature
schemes”) with much smaller keys than the symmetric counterpart.

6.2 The Digital Signature Algorithm DSA

The first digital signature scheme recognized by any government, the DSS is
based on the digital signature algorithm DSA proposed in 1991 by NIST. It
is based on ElGamal scheme and is a digital signature scheme with appendix
(i.e., it requires the message as input to the verificaion algorithm).

The signature mechanism requires a hash function A : {0,1}* — 7Z, for
some integer q. The DSS explicitly requires use of the hash function SHA-1.

1.- Key generation for the DSA (each entity A creates a public and a
private key) :

- Select a prime ¢ such that 2199 < ¢ < 2160

- Choose t so that 0 < ¢ < 8 and select a prime number p, where
25114648 4y 95124641 " with the property that ¢ divides p — 1.

- Select a generator « of the unique cyclic group of order ¢ in Z;:
(i) Select an element g € Z; and compute o = gP=1/4 mod p

(ii) If @ = 1 then go to step (i)
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- Select a random integer a, such that 1 <a <qg—1

- Compute y = a® mod p

- A’s public key is (p, q, a,y); A’s private key is a.

2.- DSA signature generation and verification (entity A creates a binary
message m of arbitrary length; any entity B can verify this signature by
using A’s public key) :

(i) Signature generation. Entity A should do the following:

(a) Select a random secret integer k, 0 < k < ¢

(b) Compute r = (a*mod p) mod q

(¢) compute k= mod ¢

(d) compute s = k~*{h(m) + ar} mod q

(e) A’s signature for m is the pair (r, s)

(ii) Verification (to verify A’s signature (r,s) on m, B should do the fol-
lowing):

(a) Obtain A’s authentic public key (p, ¢, @, y)

(b) Verify that 0 < r < ¢ and 0 < s < ¢ if not, reject the signature
(c) Compute w = s~ ! mod ¢ and h(m)

(d) Compute u; = w.h(m) mod ¢ and us = rw mod ¢

U2

(e) Compute v = (a"*y*? mod p) mod ¢

(f) Accept the signature iff r = v

Proof that signature works. If (r, s) is a legitimate signature of A on m,
then h(m) = —ar 4+ ks (mod ¢) must hold. Multiplying both sides by w, we
get w.h(m) + arw = k mod ¢, hence uj + auy = k mod ¢. Raising « to both
sides of this equation yields (3“2 mod p) mod ¢ = (a* mod p) mod q.
Thus, v =7 .
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7

7.1

Some computational problems of cryptographic
relevance

Factoring: Given a positive integer n, find its pairwise prime fac-
torization.

RSA inversion: Given a positive integer n = pq, a positive integer
e, ged(e, (p —1),(¢ — 1)) = 1, and an integer c, find an integer m such
that, m¢ = cmodn

Square root mod n: Given a composite integer n and b, a quadratic
residue mod n, find a square root of b mod n

DLP
Diffie-Hellman problem: Given a prime p and a generator « € Z;

and elements o mod p and o mod p find a® mod p.

Comparing asymptotic behaviour of functions

f(n)=0(g(n)) Fe¢>0, np eN

0= f(n) =cg(n), n=ng
fn)=Q(g(n)) Fe>0, ngeN
0=cg(n) = f(n), mnz=ng

f(n)=o0(g(n)) Ve>0, Iny eN

0= f(n) Scg(n), n2no

f(n) = Ly[a, ] if for some ¢ >0, 0<a<l,

F(n) = Ofexp((c + o(1)) (Inn)*(In Tnn)'~))

Recall that, o = 0 implies f(n) is polynomial in Inn and o = 1
implies f(n) is polynomial in n
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Examples

f(n) polynomial of degree k = f(n) = ©(nF)
Ve>0, log,(n) = ©(lg(n))
VaIn  (2)" < nl < V200 (L) s

= nl=o0(n") and n!=Q(2")

Ig(n!) = ©(nlg(n))

Definition 7.1 A Polynomial-time algorithm is an algorithm whose worst
case running time function is of the form O(nF), where n is the input size
and k is a constant. Any algorithm whose running time can not be so
bounded is called exponential time algorithm.

Definition 7.2 A subexponential-time algorithm is an algorithm whose worse
case running time function is of the form ™), where n is the input size.

Definition 7.3 A computational problem is tractable if it can be solved in
polynomial time, at least for a non-negligible fraction of all possible inputs.

7.2

Some complexity estimates

Pollard rho algorithm for factoring integers n: O(y/n) space
and O(y/n) time.

Elliptic curve factoring algorithm: It has expected running time
Ly[1/2,v/2] to find a factor p of n. In the hardest case, when n is the
product of two primes of the same size, the expected running time is
L,[1/2,1].

Finding square roots modulo a prime p : It has expected run-
ning time O((logp)?).

Baby-step-giant-step algorithm to solve DLP: O(y/n) group
operations, n =| G |.

Pollard’s rho algorithm for DLP: O(y/n) group operations for
G=17;.

Pohlig-Hellman algorithm to solve DLP: if

n:pr‘i

O(>_ ai(lgn + /pi)) group multiplications, hence it is efficient only if
each prime divisor p; of n is small.
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8 Jacobian Varieties suitable for DLP based cryp-
tosystems

Pollard rho methods shows that for general abstract groups G, the discrete
logarithm problem needs probabilistically O(\ﬂn)) group multiplications
for n = |G|.

Hence, it is important to give methods for the construction of groups
(more precisely of presentations of Z/pZ, with p large). One possible way
is to use embedings of Z/pZ into the group of rational points of Jacobian
Varieties J¢o of curves C' defined over finite fields.

We have to solve three tasks :

e Construct Jacobian Varieties Jo over finite fields [F;, such that both
the points on Jo and the addition law on J¢o are explicitly given in a
way that needs only O(log p) bits of space and such that the addition
is done in O(dim(J¢)) additions in F,

e Select Jacobian Varieties Jo satisfying the first condition, such that
large primes p divide |Jo(FF,)|. In adition, log p should be nearly equal
to log(|.Jo (Fy)|) = (dim Jc)log q

e Select Jacobian Varieties J¢o satisfying the previous two conditions,
such that all known algorithms for the computation of the DLP in
Jc(Fq) have probabilistic complexity > O(,/p)

In principle, the addition law on J¢ is given effectively by Riemann-Roch
Theorem, but in practice, we should restrict ourselves to curves with a cover
map to the projective line of fixed degree d, with d small.

The addition on Jacobian Varieties of hyperelliptic curves is based on
Cantor algorithm, which can be translated to Gauss theory of binary quadratic
forms, and works for any characteristic (including char = 2). An efficient
implementation and estimates of its performance can be found in U. Krieger
Diplome Thesis (Essen, 1997).
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