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TO OPTIMAL CURVES AND PLANE ARCS

FERNANDO TORRES
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INTRODUCTION

The objective of this paper is to report applications of the approach of Stohr-Voloch
to the Hasse-Weil bound [99], to the investigation of the uniqueness of certain optimal
curves, as well as to the search of upper bounds for the second largest size that a
complete plane arc (in a projective plane of odd order) can have.
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Let X be a (projective, geometrically irreducible, non-singular algebraic) curve of genus
g defined over a finite field F, of ¢ elements. Weil [108] showed that

(*) [#X(Fy) — (¢ + 1) <24y,

being this bound sharp as Example 4.4 here shows. Goppa [37] constructed linear
codes from curves defined over F,. These codes were used by Tsfasman, Vladut and
Zink [105] to show that the Gilbert-Varshamov bound can be improved whenever ¢ is
a square and ¢ > 49. This was an unexpected result for coding theorist.

The length and the minimum distance of Goppa codes are related with the number
of F,-rational points in the underlying curve. Then Goppa’s construction provided
motivation and in fact reawakened the interest in the study of rational points of curves
which, despite of this motivation, is an interesting mathematical problem by its own.

Serre [93] noticed that (x) can be improved by replacing 2,/q by [2,/q|. A refined
version of Thara [58] shows that

0> ¢ —q
24 + 27— 2q

and in this case Serre [93], [95] upper bounded #X (F,) via explicit formulae.

#X(F,) <q+1+[2\/qlg,

A geometric point of view to bound #X(F,) was introduced by Stohr and Voloch [99]:
Suppose that X admits a base-point-free linear series g, defined over F,; then
< Tign(20 =) + (g + 1)

#X(Fq — =0 r )

where vy, ..., v,_; are certain Fy-invariants associated to g (see Theorem 3.13 here).
By an appropriate choice of ¢} this result implies (%) [99, Cor. 2.14], and in several
cases one obtains improvements on (x). We write an exposition of Stéhr-Voloch’s
approach in Sect. 3. For the sake of completeness we include an expository account
on Weierstrass point theory of linear series on curves: Sects. 1, 2.

Next we discuss two applications of [99] studied here. The first one is concerning the
uniqueness of certain optimal curves. The most well known example of a F,-maximal
curve is the Hermitian curve (Example 4.4 here) whose genus is |/q(,/q—1)/2; i.e., the
biggest one that a F,-maximal curve can have according to the aforementioned Ihara’s
result. Riick and Stichtenoth [87] showed that this property characterize Hermitian
curves up to Fg-isomorphic. In Sect. 4.1 we equip the curve X with a linear series
Dy obtained from its Zeta Function provided that X(F,) # (. It turns out that
Dy = |(/a+ 1)P|, Py € X(F;), whenever X is Fy-maximal. Then applying [99] to
Dy we prove a stronger version of Riick-Stichtenoth’s result; see Theorem 4.24 here.
Further properties of F,-maximal were proved via an interplay of Stohr-Voloch’s paper
[99], and results on linear series such as Castelnuovo’s genus bound and Halphen’s
theorem applied to Dy; see [24], [26],[67],[68]. A characterization result is also proved
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for the Suzuki curve (Theorem 4.27), which in fact is optimal with genus ¢o(¢ — 1) and
(¢* + 1) F-rational points.

The second application of [99] studied here is the bounding of the size k of a complete
plane arc K in P?(F,) which indeed is a basic problem in Finite Geometry. What
it makes this possible is the fact that associated to K there is a (possible singular)
plane curve C. A fundamental result of B. Segre [90] (see Theorem 5.2 here for the
odd case) allows then to upper bound £ via [99] applied to certain linear series defined
on the non-singular model of an irreducible component of C. Details of the following
discussion can be seen in Sect. 5. The largest £ is already well known and so the
problem is concerning the second largest size m4(2, q). Let ¢ be a square. If ¢ is even,
then m/(2,q) = ¢ — /g + 1 and a similar result is expected for ¢ odd, ¢ > 49. Let ¢
be odd. Applying (x) B. Segre showed that m/(2,q) < ¢ — /q/4 + 7/4. One obtains
the same bound by using [99]; see Proposition 5.11 here. If in addition, for ¢ large, one
takes into consideration a bound for the number of F,-rational of plane curves due to
Hirschfeld and Korchmaros [68] (see Theorem 5.24 here) one finds the currently best
upper bound for m/(2, ¢), namely

m,(27Q) S q— g

)

2
So far, for \/q € N, the best upper bound for m/(2, ¢) is due to Voloch [106], [107]; see
Lemmas 5.17, 5.19 here.

This paper is an outgrowth and a considerable expanded of lectures given at the Uni-
versity of Essen in April 1997 and the University of Perugia in February 1998.

Convention. The word curve will mean a projective, irreducible, non-singular alge-
braic curve.

1. LINEAR SERIES ON CURVES

The purpose of this section is to summarize relevant material regarding linear series on
curves. Standard references are Arbarello-Cornalba-Griffiths-Harris [3], Griffiths [39],
Griffiths-Harris [40], Hartshorne [45], Namba [79], Seidenberg [91], Stichtenoth [96].

Let X be a curve over an algebraically closed field F; set P" := P"(F).

1.1. Terminology and notation. We start by fixing some terminology and notation.

1.1.1. We denote by Div(X) the group of divisors on X; i.e., the Z-free abelian group
generated by the points of X. Let D = > npP € Div(X'). The multiplicity of D at P is
vp(D) := np. The divisor D is called effective (notation: D > 0) if vp(D) > 0 for each
P. For D, E € Div(X), we write D = E'if D — E = 0. The degree of D is the number
deg(D) := > vp(D), and the support of D is the set Supp(D) := {P € X : vp(D) # 0}.
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1.1.2. Let F(X') denote the field of rational functions on X'. Associated to f € F(X')* :=
F(X)\ {0} we have the divisor

div(f) =Y ve(f)P,
where vp stands for the valuation at P € X. Recall that vp satisfies: vp(0) := +oo,
vp(f +g) > min(vp(f),vp(g)), and vp(fg) = vp(f) +vp(g) for f,g € F(X).
For f € F*:=F \ {0}, div(f) =0 and for f € F(X)\ F, div(f) = divo(f) — dive(f),

where divo(f) = 32, (550 vp(f)P and dive(f) 1= 32, (py<o(—vp(f))P are respec-
tively the zero and the polar divisor of f. Moreover, deg(div(f)) = 0 and div(fg) =

div(f) + div(g).
Associated to D € Div(X) we have the F-linear space
L(D) :={f e F(X)*: D +div(f) = 0} U {0},
where ¢(D) := dimgL(D) < deg(D) + 1. For D, E € Div(X) such that L(D) C L(E),

we have

U(E) = (D) < deg(E) — deg(D) .
The Riemann-Roch theorem computes ¢(D): If C' is a canonical divisor on X" and g is
the genus of X', then

(D) =deg(D)+1—g+¢C—D).
In particular, C' is characterized by the properties: deg(C) = 2¢g — 2 and ¢(C) > g.
A local parameter at P € X is a rational function ¢t € F(X') such that vp(t) = 1.
Associated to f € F(X)* we have its local expansion at P, Z;’ivp(f) a;t', where a,, () #
0. Let f € F(X) be a separating variable of F(X)|F; i.e., let the field extension
F(X)|F(f) be separable. Then we have the divisor of the differential of f, namely

div(df) where vp(div(df)) equals the minimum integer i such that ia; # 0. It holds
that deg(div(f)) =29 — 2.

1.1.3. Two divisors D, E € Div(X) are called linearly equivalent (notation: D ~ E) if
there exists f € F(X)* such that D = E + div(f). In this case, deg(D) = deg(E) and
L(D) is F-isomorphic to L(F) via the map g — fg. For E € Div(X), let

|E|:=={D e€Div(X): D >0, D~ E};
ie.,

|El ={E+div(f) : f € L(E) \ {0}}.
Since, for f,g € F(X)*, div(f) = div(g) if and only if there exists a € F* such that

f = ag, the set |E| is equipped with a structure of projective space by means of the
map E +div(f) € |E| — [f] € P(L(E)); notation: |E| = P(L(E)).

A linear series D on X is a subset of some |E|, of type

{E+div(f): f €D\ {0}},
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with D’ being a F-linear subspace of L(E). The numbers d = deg(D) := deg(E) and
r = dim(D) := dimg(D’) — 1 are called respectively the degree and the (projective)
dimension of D. We say that D is a g on X. D is called complete if D = |E|. Observe
that, under the identification |E| = P(L(F)), D corresponds to P(D’); notation: D =
P(D') C |E|. A linear series D; = P(D}) C |E}| will be called a subspace of D =
P(D') C |E| if L(E)) C L(E) and D, C D'.

1.14. Let P € X and f € F(X) regular at P; i.e., vp(f) > 0. Then there exists a
unique ay € F such that vp(f —ay) > 0. We set f(P) :=ay. For f,g € F(X) regular
at P, (f+9)(P)= f(P)+g(P)and (fg)(P) = f(P)g(P). A point of the r-projective
space P will be denoted by (ag : ---: a,).

Let ¢ : X — P" be a morphism; i.e., let fo,..., f, € F(X), not all zero, such that
o(P) = ((t fo)(P) : ... (t" fr(P)),

where ¢ is a local parameter at P, and

ep := —min{vp(fo),...,vp(fr)}.

Observe that each t°7 f; is regular at P. The rational functions fy,..., f, are called
(homogeneous) coordinates of ¢. We set
b=(fo: i fr).

The coordinates fy, ..., f, are uniquely determinated by ¢ up to a factor in F(X)*; so ¢
corresponds to a point of P"(F(X')). If ¢ is non-constant, the image ¢(X) is a (possible
singular) algebraic curve in P" whose function field is F(¢(X)) = F(fo,..., fr). The
curve X' can be thought as a parametrized curve in P”, or ¢(X') as being a concrete
manifestation of X in P". For ) € ¢(X), the points of the fiber ¢~1(Q) will be called
the branches of ¢p(X') centered at (). The degree of ¢ is deg(¢) := [F(X) : F(¢(X))].
Example 1.1. Each rational function f € F(X') can be seen as a morphism f : X —
P! = F U {co}, such that P — f(P) if P & dive(f); P + oo otherwise. If f ¢ F,
we have d := deg(f) = [F(X) : F(f)] = deg(dive(f)). Moreover, if F(X)|F(f)
is separable, the genus g of X can be computed via the so-called Riemann-Hurwitz
formula:

2 — 2 = d(—2) + deg(Ry),
where Ry = div(df) + 2dive(f) is the ramification divisor of f. If char(F) does not
divide the ramification index ep of P over f(P), then vp(R;) = ep — 1 otherwise
vp(Rs) > ep — 1. We have the product formula

Z 6p:d.

pPef~'(f(P))

For all but finitely many Q@ € &(X), #6 '(Q) equals the separable degree of
F(X)|F(p(X)). ¢ is called birational (resp. embedding) if deg(¢) = 1 (resp. X is
F-isomorphic to ¢(X')); in both cases, X is a (the) non-singular model of ¢(X).
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Let H be a hyperplane in P” such that ¢(X) € H. Then #¢(X) N H is finite. To
each P € X one associates a number Ip(H) = I(¢p(X), H; P), called the intersection
multiplicity of ¢(X) and H at P, in such a way that Ip = 0 < P ¢ ¢(X) N H and
that >  Ip(H) is independent of H; i.e., if H' is another hyperplane in P” such that
¢(X) Z H', then Y Ip(H) = > Ip(H'). This number is called the degree deg(¢(X))
of ¢(X). If ¢(X) C P?, the degree of ¢(X) equals the degree of the polynomial that
defines ¢p(X).

A morphism ¢ : X — P7 is called non-degenerate if (X) ¢ H for each hyperplane H
in P". A curve X C P is called non-degenerate if the inclusion morphism X — P7 is
SO.

Lemma 1.2. A morphism ¢ = (fo:...: f;) : X — P" is non-degenerate if and only
if fo,..., fr are F-linearly independent.

Proof. There exists a hyperplane H in P" such that ¢(X) C H if and only if there
exist ap,...,a, € F, not all zero, such that ). a;f;(P) = 0 for all but finitely many
P € X. The last condition is equivalent to ) . a;f; = 0, as a non-zero rational function
has only finitely many zeros (cf. Sect. 1.1.2); now the result follows. O

For V C F(X), (V) stands for the F-vector space in F(X') generated by V.

1.2. Morphisms from linear series; Castelnuovo’s genus bound. Let D be a r-
dimensional linear series on X, say D = P(D’') C |E|. The following subsets will
provide information on the geometry of X.

Definition. For P € X and i € Ny,
Di(P):={DeD:D*»iP}.
Lemma 1.3. (1) D;(P) is a linear series;

(2) D;(P) is a subspace of D;
(3) dim(D;(P)) < dim(Dyy1(P)) + 1.

Proof. Set D; := D;(P) and let f € D'\ {0}. Then E + div(f) € D; if and only if
vp(E) +vp(f) > i; ie., D; =2 P(D]), where
D =D NL(E —iP).

This shows parts (1) and (2). Now D,/D,_, is F-isomorphic to a F-subspace of £ :=
L(E —iP)/L(E — (i + 1)P). Since dimpL < 1 (see Sect. 1.1.2), part (3) follows. O

Definition. The multiplicity of D at P € X is defined by
b(P) := min{vp(D): D € D}.
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We have b(P) > 0 if and only if P € Supp(D) for all D € D; so b(P) # 0 for finitely
many P € X. Consequently, we can define the effective divisor B = B? on X by
setting

vp(B) := b(P).
Definition. The divisor B is called the base locus of D. A point P € Supp(B) is called
a base point of D. It B =0, D is called base-point-free.

Thus D is base-point-free if and only if for each P € X’ there exists f € D'\ {0} such
that vp(E 4 div(f)) = 0. Now, since D = B for each D € D, D' C L(E — B) and
B.={D-B:DeD}CI|E- B

is a subspace of D such that DP = P(D') C |E — B|. We have B?” = 0; i.e., DP is a
Ya—deg(B) base-point-free on X.
Lemma 1.4. Let D =2 P(D') C |E| be a linear series, where D' = (fo,..., fs). Then
E is determinated by D; i.e,

vp(F) = b(P) — min{vp(fo),...,vp(fs)}-

Proof. Since D' C L(E — B), vp(E) — b(P) 4+ vp(f;) > 0 for each i and each P so that
vp(E) > b(P) — min{vp(fo),...,vp(fs)}. On other hand, as D? is base-point-free, for
each P there exists (ag : ... : a5) € P*(F) such that vp(E — B + div(}_; a;fi)) = 0;
now the result follows. O

Next we associate a morphism to D. For P € X we have D = Dyp)(P) 2 Dypy+1(P),
so that dim(Dypy11) = dim(D) — 1 by Lemma 1.3. Thus we have the following map
6p: X 5D =P(D), P Dypo

Homogeneous coordinates of ¢p are given as follows. Let {fo,..., f,} be a F-base of
D', t a local parameter at P, and f € D'\ {0}. Then vp(t*?F)=*F) f) > 0 and

E +div(f) € Dypya1 & vp(t" M0 f) > 1 & ¢rEP) ) (P) =0,

Since f =Y ".a;f; with (ag : ...: a,) € P, we have
Dypy+1 = {(ag : ... : ay) EP’":Z(t”P ) £)(P)a; =0} € P
i=0
= (MO fo)(P) c .. (NI f ) (P)) € P
Hence from Lemma 1.4 the morphism ¢z 5 = (fo : ... : fr) gives a coordinate

description of ¢p, and it will be referred as a morphism associated to D. If ¢y 4. is
another morphism associated to D, then ¢, o =T o ¢y, ., with T € Aut(P"(F));
i.e., a morphism associated to D is uniquely determinated by D, up to projective
equivalence. Observe that ¢p and ¢ps have the same coordinate description. We
summarize the above discussion as follows.
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Lemma 1.5. Let D = P(D') be a r-dimensional linear series on X. Each F-base
fos- .., fr of D' defines a non-degenerate morphism ¢y, 5 = (fo:...: fr): X = P".

If go, ..., gr is another F-base of D', then there exists T € Aut(P") such that ¢, 4 =

At this point we recall Castelnuovo’s genus bound. Let g be the genus of X.

Definition. A linear series D is called simple if a (any) morphism associated to D is
birational.

Let D be a simple g}, r > 2, on X. Let d’' := d — deg(B?”), and let ¢ be the unique
integer with 0 < e <r—2and d —1=¢ (mod (r —1)). Define Castelnuovo’s number
co(d',r) by

d—1-—¢
2(r —1)
Lemma 1.6. (Castelnuovo’s genus bound for curves in projective spaces, [10], [3, p.
116], [45, IV, Thm. 6.4], [86, Cor. 2.8])

g <cld,r).

co(d',r) = (d—r+e).

Remark 1.7.
, (d—1—(r—1)/2)%/2(r — 1) for r odd,
CO(d ) 7”) S
(d—1—(r—1)/2)>=1/4)2/(r — 1) for r even.
Remark 1.8. Any curve X of genus g admits a simple g2 (i.e., a birational plane model)
such that

g=d(d-1)/2-> 6p,

where the dp’s are the d-invariants of the plane curve ¢(X) with ¢ being a morphism
associated to g2. We have that dp > 0 if and only if ¢(X) is singular at P. A nice
method to compute §p was recently noticed by Beelen and Pellikaan [4].

1.3. Linear series from morphisms. Let ¢ = (fy:...: f.) : X — P" be a morphism on
X. In Sect. 1.1.4 we defined

ep = —min{vp(fo), ..., vp(f,)}, PEX.

Then ep # 0 for finitely many P € &X', and so we have a divisor £ = Ej,
by

7, defined

.....

UP(E) = €p.
Observe that f; € L(FE) for each i. Let
D' :=(fo,..., [r) C L(E).
Then we have the following linear series on X

Djy....ts = {E+div(f) : f € D'\ {0}} C |E],

.....
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which is base-point-free. Indeed, vp(E + div(f;,)) = 0 where i is defined by ep =
—vp(fiy). In addition, if ¢, = (go: ...: g,) =T o ¢ with T € Aut(P"), then

min{vp(go), ..., vr(gr)} = min{vp(fo), ..., vr(fr)},
and hence Dy, ., =Dy, . f. Moreover, if h € F(X)*, then
Efon,..fon = Efy,....5, — div(h)

and so

Dyt = Do,y -

Consequently, the linear series Dy := Dy, . is uniquely determinated by ¢ and it

is invariant under projective equivalence of morphisms. Summarizing we have the

.....

following.

Lemma 1.9. Associated to a morphism ¢ = (fo : ... : f;) : X — P", there exists a
base-point-free linear series Dy C |E|, where E is defined by

vp(F) := —min{vp(fo),...,vp(fr)}.
If ¢ is non-degenerate, then dim(Dy) =r. If g =To¢p, T € Aut(P"), then Dy, = D,.

In the remaining part of this subsection, we let ¢ = (fo : ... : f,) be a non-degenerate
morphism on X. Then Dy is given by

r

D¢ = {E—Fdiv(zaifi) : (ao e ar) € Pr}v

i=0

because Y . a;f; = 0 < a; = 0 for each ¢ by Lemma 1.2. Therefore, since the point
(ag :...:a,) can be identify with the hyperplane H of equation ) . a;X; = 0,

(1.1) Dy = {¢"(H) : H hyperplane in P"},

where ¢*(H) = E 4+ div(}_, a;f;) is the pull-back of H by ¢.

Lemma 1.10. We have ¢*(H) = (T o ¢)*(T(H)), where T € Aut(P") and H is a
hyperplane in P".

Proof. The result follows from the facts that E, = Epo, and that T(H) : Y. 0;Y; =0,
where (by,...,b) = (ag,...,a,)A"', A being the matrix defining T and H : Y, a; X; =
0. U

Lemma 1.11. With the aforementioned notation,

(1) P € Supp(¢*(H)) & ¢(P) € H; i.e, Supp(¢*(H)) = ¢ (¢(X) N H);
(2) For P € ¢~ (¢(P)), Pr € Supp(¢*(H)) < ¢ '(4(P)) C Supp(¢*(H));
(3) d:= deg(D) = deg(¢)deg(a(X)).
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Proof. Let t be a local parameter at P € X.

(1) The proof follows from the equivalences

P € Supp(¢*(H)) & Up(div(z att fi)) > 1< (Z ait’r f;)(P) = 0.

(2) The implication (<) is trivial. (=): Let P, € ¢ *(4(P)). Then ¢(P)) = ¢(P,)
which belong to H by part (1). Thus, once again by (1) we conclude that P, €
Supp(¢*(H)).

(3) Let H; be a hyperplane in P" such that ¢(X) N H N H; = (. Denote by h/hy
the rational function on P”, obtained by dividing the equation of H by the one of H;.
Then we obtain a rational function on X', namely ¢ := (h/hy) o ¢ (i.e., the pull-back
of h/hy by ¢). The function h/h; is regular on P"\ H; and hence ¢ is regular on
¢ Y(P"\ Hy). Moreover, by the election of Hy, we have that vp(p) > 1< ¢(P) € H
and therefore from part (1) we conclude that vp(p) > 1 < P € Supp(¢*(H)). From
the definition of ¢ we even conclude that ¢*(H) = divy(p).

Now suppose that ¢(P) = Q € ¢(X)N H is non-singular; let u be a local parameter at
@ and set ip := vp(u) (the ramification index at P). By considering h/h; as a function
on ¢(X) we have vp(¢ '(H)) = vp(p) = ipvg(h/h1), and by the product formula we
also have

> wp(¢7 (H)) = deg(p)vg(h/hi).

Pcop1(Q)

Now take H such that every point in ¢(X)N H is non-singular (this is possible because
#(X) has a finite number of singular points and so we can apply Bertini’s theorem).
Then from the above equation,

d=deg(¢) Y wqlh/h).

QeP(X)NH

It turns out that vg(h/hy) = I(¢(X), H; Q) (cf. [45, Ex.6.2]), and the result follows.
U

From this lemma and its proof we obtain:

Corollary 1.12. Let ¢ : X — P" be a non-degenerate morphism.

(1) If ¢ is birational; i.e., deg(¢) = 1, then deg(D,) = deg(p(X)).
(2) If X C P" and ¢ is the inclusion morphism, then

Dy ={X - H : H hyperplane in P"},

where X - H =Y, I(X, H; P) is the intersection divisor of X and H.
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1.4. Relation between linear series and morphisms. Define the following sets:

o L =L, :={D?:D linear series with dim(D) = r};
e M =M, :={{(¢p): ¢: X — P" non-degenerate morphism}, where
(¢p) :={T o¢:T € Aut(P")} denotes the projective equivalent class of ¢.

From Sects. 1.2 and 1.3 we have two maps, namely

M=M,:L— M; D s (coordinate representation of ¢ps),
and

L=L,:M— L, (¢) = Dy .
We have M o L. = id by definition, and L o M = id; by Lemma 1.4. Therefore,

Lemma 1.13. The set of base-point-free linear series of dimension r is equivalent to
the set of projective equivalent class of non-degenerate morphism from X to P’.

Remark 1.14. The fact that (L o M)(D?) = D? means that
D? = {¢*(H) : H hyperplane in P’} C |E — B|,

where ¢ : X — P” is the non-degenerate morphism determinated, up to an automor-
phism of P”, by a base of D'.

S

1.5. Hermitian invariants; Weierstrass semigroups I. Let D be a ¢ on X, say D =
P(D') C |E|, and P € X. We continue the study of the linear series D;(P) started in
Sect. 1.2. Recall that D;(P) = D' N L(E — iP) and that D;(P) O D;1(P).

Definition. A non-negative integer j is called a (D, P)-order (or an Hermitian P-
invariant), if Dj(P) 2 Dj1(P).

From Lemma 1.3, there exist r + 1 (D, P)-orders, say
Jo(P) = jg (P) <...<jw(P)=j; (P).
For:=0,...,r,
Ji(P) = min{vp(E) +vp(f) : f € Djp)(P)'},
and thus D;,(P) is a g} on X.
Lemma 1.15. (Esteves-Homma [21, Lemma 1]) For P,Q € X, P # Q,
Ji(P) + jr—i(Q) < d.

Proof. Since dim(Dj;p)(P)ND;,_,0)(Q)) > 0, there exists D € Dj,(p)(P)ND;,_,)(Q)

i

and the result follows. O

This result will be complemented by Corollary 2.14.
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Remark 1.16. (i) Since jo(P) equals b(P), D is base-point-free if and only if jo(P) =0
for each P € X. Moreover, j is a (D, P)-order if and only if j —b(P) is a (D?, P)-order.

(ii) j,(P) < d as Dy(P) = 0 for i > d.

(iii) Let j € Ny. From Lemma 1.3, the following statements are equivalent:

(1) jis a (D, P)-order;

(2) 3 D € D such that vp(D) = j;

(3) 3 f € D' such that vp(F) + vp(f) = J;

(4) 3 f € D' such that f € L(E — jP)\ L(E — (j + 1)P);
(5) dimp(Dj(P)) = dimg (D), (P)) + L;

(6) dim(D;(P)) = dim(D;11(P)) + 1.

(iv) Let D = |E]; i.e., D' = L(E), C a canonical divisor on X, and j € Ny. From
Di(P) = L(E — jP), the Riemann-Roch theorem, and part(iii)(5) above, the following
statements are equivalent:

Y

jis (|E| P)-order;

3 f € L(F) such that vp(E) + vp(f) = j;

3 f € L( —JP)\L(E - (j +1)P);
LIC—-E+(j+1)P)=L(C - E+jP);

(5") Afe€L(C—FE+(j+1)P)such that vp(C — E) +vp(f) = —(j + 1).
Example 1.17. Let g be the genus of X', and D := |F| with d = deg(E) > 2g. For
P € X, we compute some (D, P)-orders. We have j;(P) =i for 0 < i < d—2g. Indeed
for such an i, deg(C' — F + (i + 1)P) < 0 and then Remark 1.16(iv(4’)) is trivially
satisfied. In particular, D is base-point-free.

(1)
(27)
(3)
(4)

Y

Example 1.18. We claim that for a given sequence of non-negative integers /y < ... <
(., there exists a curve ), a point Py € ), and a linear series F on ) such that the
sequence equals the (F, Py)-orders. Indeed, let Y := P!(F) and z a transcendental
element over F. Set P, := (0 : 1), and P, := (1 : a) for « € F. We assume
div(z) = Py — Py, vp,(x —a) =1 for a € F. Define

E :=/(.P,, and Fl= (g%, ...  2%) CF(2).

Then F := {E+div(f): f € F'}isag; on ). We have E+div(z%) = (; Py+ (0, —{;) Py
and hence the (F, P,)-orders are {y,..., /.. In addition, we have that jJ (P) = 0 for
P # Py; i.e., the base locus of F is B¥ = (yP,. Moreover, for the morphism associated
to F ¢ = (z% :...:2%) we have Ey = (, Py, — lyPy. If {, = r, then F is complete
and base-point-free, and the curve ¢()’) is the so-called rational normal curve in P,
Conversely, if F is complete, say F = |Ey|, then E; = E by Lemma 1.4, and so ¢ = r.

We will introduce next the so-called Weierstrass semigroup. To begin with we state a
definition which is motivated by Remark 1.16(iv)(5’).
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Definition. Let D € Div(X') and ¢ € Ny. We say that £ is a (D, P)-gap if does not
exist f € L(D + (P) such that vp(D) 4+ vp(f) = —L.

We have that
lis a (D, P)-gap if and onlyif ¢—1isa (|C — D|, P)-order,
where C' is a canonical divisor on X. Denote by K = Ky := |C/| the canonical linear

series on X.
Definition. The (0, P)-gaps are called the Weierstrass gaps at P. The Weierstrass
semigroup at P is the set
H(P):=No\G(P),
where
G(P):={¢ € Z" : { Weierstrass gap at P} .
The elements of H(P) are called Weierstrass non-gaps at P.
Lemma 1.19. Let g be the genus of X. Then
(1) #G(P) = g (Weierstrass gap theorem);
(2) For h € Ny, the following statements are equivalent:
(i) h € H(P);
(ii) 3 fn € L(hP) such that vp(f,) = —h;
(iii) 3 fr € k(X) such that divy(fs) = hP;
(iv) £(hP) = ¢((h—1)P) + 1.

Proof. Since dim(K) = ¢g — 1 and

G(P) ={jg (P) + 1, gy (P) + 1},
part (1) follows. Remark 1.16(iv) implies part (2). O

We see now that H(P) is indeed a semigroup.
Corollary 1.20. The set H(P) is a sub-semigroup of (No,+) such that
H(P) 2 {29,2g+1,29+2,...},

where g is the genus of X .
Proof. Tt follows from Lemma 1.19(2.(iii)) and j}- , (P) < deg(K) = 29 — 2. O

Let (n;(P) :i=0,1,...) denote the strictly increasing sequence that enumerates the
Weierstrass semigroup H(P). From Lemma 1.19(2)(iv), ¢(n;(P)P) = i+ 1 and from
Corollary 1.20, n;(P) = g +i for i > g.

Remark 1.21. For ¢ =0, K = () and hence H(P) = Ny for any P € X. If g = 1, then
dim(K) = 0 and hence H(P) = {0,2,3,...} for any P € X.

Corollary 1.22. If X is a curve of genus g > 1, then K is base-point-free.
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Proof. We have to show that jo(P) := j¥(P) = 0 for each P € X. Suppose that
Jo(FPo) > 1 for some Py € X. Then 1 € H(F,) and hence H(F,) = Ny. This implies
g=0. 0]

Example 1.23. We consider complete linear series on X" arising from Weierstrass non-
gaps which will be useful for applications to optimal curves. Let P € X, set n; := n;(P)
and consider D := |n, P|. Then

(1) Dis a g base-point-free on X;
(2) The (D, P)-orders are n, —n;, i =0,...,r.

In fact, we already noticed that dim(D) = r; P cannot be a base point of D by Lemma
1.19(2)(iv); if Q # P, then D :=n, P +div(1) € D and vg(D) = 0. This prove (1). To
see (2), let f; € F(X) such that div(f;) = dive(f;) —n;P; cf. Lemma 1.19(2)(iii). Then

n.P + div(f;) = (n, —n;) P + dive(fi) ,

and the result follows.

Lemma 1.24. Let f € F(X) such that diveo(f) = ni(P)P. Then f is a separating
variable of F(X)|F.

Proof. If F(X)|F(f) were not separable, then f = g7, g € F(X') by [96, Prop. I11.9.2].
Then ny(P)/p would be a non-gap at P, a contradiction. O

By definition, a Weierstrass semigroup H(P) belongs to the class of numerical semi-
group; i.e., it is a sub-semigroup H of (Ny,+) whose complement in Ny, G(H) :=
Ny \ H, is finite. For such a semigroup H, g(H) := #(INo \ H) is called the genus of H.
We let (n;(H) : i € N) (resp. ((;(H):i=1,...,9(H))) denote the strictly increasing
sequence that enumerates H (resp. G(H)). Clearly n;(H) = g(H) + i for i > g(H),
and n;(H) = 2i for i = 1,...,g(H) whenever ny(H) = 2. H is called hyperellitpic if
2 € H (note that 2 € H if and only if ny(H) = 2, whenever g(H) > 1). This defini-
tion is motivated by the so-called hyperelliptic curves, namely those curves admitting
a gy, or equivalently those admitting rational functions of degree two. Indeed, X is
hyperelliptic if and only if there exists P € X such that 2 € H(P) (see Example 2.28).
Lemma 1.25. (Buchweitz [7, 1.3], Oliveira [81, Thm. 1.1]) Ifn,(H) > 3, thenn;(H) >
20+ 1 fori=1,...,9(H)—2. In particular, n,_,(H) > 2g(H) — 2.

The weight of H is w(H) := fg]) (¢;(H) —1i). It is easy to see that
g(H)

(1.2) w(H) = (3g(H)* +g(H))/2 =) _ni(H),
i=1

and that w(H) = g(H)(g(H) — 1)/2 if H is hyperelliptic. Now Lemma 1.25 and (1.2)
imply:
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Corollary 1.26. (1) 0<w(H)<g(H)(g(H)—1)/2;

(2) w(H) =g(H)(g(H) —1)/2 if and only if H is hyperelliptic;

(3) w(H) < (9(H)* = 3g(H) +4)/2 if na(H) > 3.
Remark 1.27. (Kato [59]) If ny(H) > 3, we indeed have w(H) < g(H)(g(H) — 1)/3,
for g(H) = 3,4,6,7,9,10 and w(H) < (g(H)* — 59(H) + 10) /2, otherwise.

Definition. A numerical semigroup H is called Weierstrass if there exist a curve X
and a point P € X such that H equals the Weierstrass semigroup H(P) at P.

Remark 1.28. If H is Weierstrass, say H = H(P) on a curve X of genus g = g(H),
then Lemma 1.25 follows from Castelnuovo’s genus bound (Lemma 1.6): We want to
show that n; := n;(P) > 2i + 1 provided that n; :=n;(P) >3 and 1 <i < g— 2. Let
¢ be the least integer for which n; < 2¢. Then ¢ > 2, n, | = 2i — 1, and n; = 2. Thus
D := |n;P| is a simple g}z on X’; therefore Castelnuovo’s genus bound implies g < i+1,
a contradiction.

A numerical semigroup H is Weierstrass if any of the following conditions hold:

e cither g(H) <7, or g(H) = 8 and 2n,(H) > (,(H); see Komeda [63];

e ny(H) < 5; see Komeda [61], [64], Maclachlan [75, Thm. 4];

o cither w(H) < g(H)/2 or g(H)/2 < w(H) < g(H) — 1 and 2n,(H) > {,(H);
see Eisenbud-Harris [19], Komeda [62];

We remark that the underlying curve in these examples is defined over the complex
numbers.

In 1893, Hurwitz [57] asked about the characterization of Weierstrass semigroups; see
[8, p. 32] and [19, p. 499] for further historical information. Long after that, in 1980
Buchweitz (see Corollary 1.30) showed the existence of a non-Weierstrass semigroup as
a consequence of the following.

Lemma 1.29. (Buchweitz’s necessary condition, [8, p. 33|) Let H be a numerical
semigroup. For an integer n > 2, let nG(H) be the set of all sums of n elements of
G(H). If H is Weierstrass, then

(1.3) AnG(H) < (2n — 1)(g(H) — 1).

Proof. We have that g := g(H) is the genus of the underlying curve, say X. For a
canonical divisor C' on X, we observe that ¢(nC) = (2n — 1)(g — 1) by the Riemann-
Roch theorem. Let ¢ := ¢, +...+ ¢, € nG(H). From Remark 1.16(iv)(2’), there exists
fi € L(C) such that vp(C) +vp(f;) =¢; —1fori=1,...,n. Then f:= fi...f, €
L(nC) and being the map ¢ — f; injective, the result follows. O

Corollary 1.30. ([8, p. 31]) {1,...,12,19,21,24,25} is the set of gaps of a numerical
semigroup H of genus 16 which is not Weierstrass.
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Proof. We apply the case n = 2 in Lemma 1.29. An easy computations shows that
2G(H) = [2,50]\ {39,41,47}. Then #2G(H) = 46 > 3g — 3 = 45 and so H cannot be
Weierstrass. O

In addition, Buchweitz (loc. cit.) showed that for every integer n > 2 there exist
numerical semigroups which do not satisfy (1.3). Further examples of such semigroups
were given in [104, Sect. 4.1] and Komeda [65]. On the other hand, what can we
say about semigroups H that satisfy (1.3) for each n > 2 7 In fact, there exist
at least two classes of such semigroups, namely symmetric semigroups (resp. quasi-
symmetric semigroups); i.e., those H with ¢((H) = 2¢g(H) —1 (resp. {(H) = 2¢g(H) —2).
Indeed, equality in (1.3) for each n characterize symmetric semigroups (see Oliveira
[81, Thm. 1.5]), and Oliveira and Stohr [82, Thm. 1.1] noticed that #nG(H) =
(2n—1)(g—1) — (n—2) whenever H is quasi-symmetric. In 1993, Stohr [103, Scholium
3.5] constructed symmetric semigroups which are not Weierstrass. Indeed, symmetric
non-Weierstrass semigroups of any genus larger than 99 can be constructed (loc. cit.)
by using the Buchweitz’s semigroup (Corollary 1.30) as a building block. A similar
result was obtained for quasi-symmetric semigroups [82, Thm. 5.1] and these examples
were generalized in [104, Sect. 4.2]. We stress that any symmetric (resp. quasi-
symmetric) semigroup is a Weierstrass semigroup on a Gorenstein (resp. reducible
Gorenstein) curve; see [98] (resp. [82]).

Finally, we mention that Hurwitz’s question for numerical semigroups that satisfy (1.3)
for each n > 2 is currently an open problem.

2. WEIERSTRASS POINT THEORY

In this section we study Weierstrass Point Theory of linear series on curves from Stohr-
Voloch’s paper [99, §1]. Other references are Farkas-Kra [22, IT1.5], Homma [54, Sects.
1,2], Laksov [71], F.K. Schmidt [88], [89].

Let X be a curve over an algebraically closed field F of characteristic p > 0. Let D be
agyon X,say D=P"(D') C |E|

In Sect. 1.5, to any point P € X we have assigned a sequence of (r + 1) integers,
namely the (D, P)-orders. Here we study the behaviour of such sequences for general
points of X’; i.e, for points in an open Zariski subset of X'. In order to do that we use
“wronskians” on X; i.e., certain functions in F(X) defined via derivatives. To avoid
restrictions on the characteristic p, we use Hasse derivatives.

2.1. Hasse derivatives. Let x be a trascendental element over F. For 7,5 € Ny, set

Digi = (7 )ai
xT Z )
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and extend it F-linearly on F[z]. The F-linear map DY, is called the i-th Hasse derivative
on Flz]. i! Dix is the usual i-th derivative d‘ii, and D! # 0, as Dz’ = 1, but £ =0
for:>p>0.

Remark 2.1. For f(z) € F[z], D f(z) is the coefficient of u’ in the expansion of f(z+u)
as a polynomial in wu.

The F-linear maps D!, i € Ny, satisfy the following four properties:

(H1) D? = id;

(H2) D;‘F =0 for ¢ > 1;

(H3) Di(fg) = Y;_, DifDiig (Product Rule);

(H4) Dio DI = (")Dit.
Properties (H1), (H2) and (H4) easily follow from the definition of D!, while (H3)
follows by comparing the coefficients of (fg)(z + u) and f(z + u)g(z + u).
Next one extends D’ to F(z) and then to each finite separable extension of F(x). This
is done in just one way; moreover, the extended map remains F-linear and still satisfies
the four aforementioned properties. The extension on F(z) is constructed as follows.

By (H1) and (H3) it is enough to define D% (1/f) fori > 1 and f # 0. From f(1/f) = 1,
(H2) and (H3) one finds the following recursive formula:

> Di(1/f)DIf =0.

i=0
For i = 1 one obtains the expected relation DL(1/f) = —(DLf)/f? and in general |38,
p. 119]

D.(1/0) =Y 7 > Dif...Dif.
j=1 B yeeny ijZl; i1+...+i]‘:i
Remark 2.2. The maps D! on F(z), i € Ny, are characterized by the following four
properties:

(i) they are F-linear;

(ii) they satisfy (H1) and (H3) above;

(iii) Dlz = 1;

(iv) Diz =0 for i > 2.

To see this, let 7;, i € Ny, be maps on F(z) satisfying (i), (ii), (iii) and (iv). From the
formula for Di(1/f) above, is enough to show that n;(z/) = Dz (x) for i, € Nj.
Now, since the 7;’s satisfy (H3), it follows [47, Lemma 3.11]

2.1) m(o) = @) + 3 3 0 (@) O (2))

=2 m=1

and we obtain () by induction on i and j.
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Remark 2.3. The maps D', i € Ny, on F(z) have also a unique extension to the Laurent
series F((x)) which satisfy (H1), (H2), (H3), and (H4) above. One sets D (3, a;27) :=

> (Daa', see [47, p. 12],
Next we extend D! to a finite separable extension K|F(z). Let y € K be such that

K = F(z,y), and F(z)[Y] the minimal polynomial of y over F(x). Then we define
Diy™ by using F(z,y) = 0 and (2.1). For example, for i = 1 we obtain

(2.2) Fy (2,y)Dyy + Z(Diaj(ﬂﬂ))yj =0,

so that Dly is well defined as Fy(z,y) # 0. Notice that these extensions satisfy (H1),
(H2), (H3) and (H4) above and depend on the element y. However, it is a matter of

fact that the F-linear maps DY on F(z) admit a unique extension to F-linear maps on
K satisfying the aforementioned (H1), (H2), (H3), and (H4); see [46].

Therefore, F(X) is equipped with F-linear maps D such that (H1), (H2), (H3) and
(H4) above hold true, with x being a separating variable of F(X')|F. If y is another
separating variable of F(X)|F, relations among the D%’s and the DJ’s are given by the
so called chain rule; see (2.3) and (2.4).
Remark 2.4. For i € Ny, let D* be F-linear maps on a F-algebra K satisfying (H1),
(H2), (H3) and (H4) above. From (H4),

i'! D'= (D" :=D'"o...oD" i times,

so that each D' is determinated by D! provided that p = 0. Suppose now p > 0.
Claim. Let 0 < a,b < p, a, f € N. Then

(1) D +t0" — pa” o pbr?
(2) D" = (DP")e/al.

Proof. The statements are consequence of (H4) and the following property of binomial
numbers: if i = Y a*®, j = >, b*p® are the p-adic expansion of 7,7 € N, then

() =T (). -
Therefore in positive characteristic the D%’s are determinated by D', DP, Dr oo

A F-linear map D on F(X) satisfying D(fg) = fD(g) +gD(f), is called a F-derivation
on F(X). For example, D! is a derivation on F(X), where z is a separating variable
of F(X)|F. From (2.1) follows that two F-derivations ¢; and d, on F(X) are equal if
§1(x) = d2(x).

Now let y be another separating variable of F(X)|F. Since the F-derivations d, := D,
and &y := D} (x) D, satisfy 0,(x) = d2(x), we obtain the usual chain rule, namely

(2.3) D, = D,(z)D;.
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To generalize this relation to higher derivatives, let 7" be a trascendental element over
F(X). The maps D and D} can be read off from the homomorphisms of F-algebras
Nz, Ny: F(X) — F(X)[[T]] defined respectively by

() =D DUNT', and ny(f) =D Dy(HT".

i>0 i>0
Let h : F(X)[[T]] — F(X)[[T]] be the F-homomorphism defined by hjg(x) = idjp(x) and
MT) == >, D;(x)T". Since D}(z) # 0 by (2.3), h is an automorphism of F(X)[[T]].
Consider the F-homomorphism 7 : F(X) — F(X)[[T]] given by n := h™' on,. For
f € F(X), set n(f) :== > 5onmi(f)T". Then the maps 7; are F-linear on F(X) and
satisfy properties (H1) and (H3) above. Write h(T) = TU, U = D, (z)+ D (x)T +.. ..
Claim. Let i € Ng and f € F(X). Then 5o(f) = Dy(f) and for i > 1 the following
holds

3

Di(f)=>am(f),

j=1

where a; is the coefficient of T"7 in U7. In particular, a; = D;(x), a; = (D, )"

Proof. Write 1, = h on. The coefficient of T" in (h on)(f) can be read off from
>0 ai(f)(TU)’, and the claim follows. O

Then we have n;(z) = 1 and n;(z) = 0 for 4 > 2. Therefore from Remark 2.2, n; = D!
on F(z) and hence also on F(X). This implies the generalized chain rule:
772/ = h’ © 77:13 )

or equivalently
(2.4) Di=> fiDi, i=12...,
j=1

where f; € F({Dj*(z) : m = 1,2,...}). Observe that fi = D}(x) and f; = (D,x)".
Remark 2.5. We mention two further properties of Hasse derivatives regarding prime
powers of rational functions. Let f € F(X), x a separating variable of F(X)|F, and ¢
a power of p = char(F) > 0. We have

(i) Dif? = (DYf)7if ¢ divides i, and Di f9 = 0 otherwise;
(ii) ([46, Satz 10]) 3 g € F(X) such that f = g7 if and only if D.(f) = 0 for
i=1,....,q—1.

Definition. A wronskian on X is a rational function of type

Wior = det((DY f))
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where ¢y < ... </, is a sequence of non-negative integers, x is a separating variable of
F(X)|F, and fy,..., f, € F(X). We set

A(fo,- -5 frsm) := {(mo, ..., my) € NGT img < ..o <my; W37 20}
2.2. Order sequence; Ramification divisor. Let P € X and t be a local parameter at
P. Let
jo=Jo(P) <...<jr =7 (P)
denote the (D, P)-orders. From Remark 1.16(iii)(3) there exists f; € F(X') such that
vp (P B ) = 4, (=0,...,r.

Claim. {fo,..., fr} is a F-base of D'.

Proof. If there exists a non-trivial relation ) . a;f; = 0 with a; € F, then we would
have vp(f;) = vp(fs) for i # £ and so j; = j, a contradiction. O

Definition. The aforementioned F-base { fy, ..., f,} is called a (D, P)-base (or (D, P)-
Hermitian base).

Remark 2.6. Let {fo,..., f;} be a (D, P)-base. For i =0,...,r, Di(P)=D'NL(E —
JiP) so that

D;l(P) = <fza . '7f7"> )
or equivalently

r

D, (P)={E + div(Z acfe) : (@i ... a,) € PT(F)}.
Thus
Ji(P) = min{vp(z apfet”* ) (a;: ... a,) € PTTUF)}.

Let {fo,..., fr} be a (D, P)-base. Set g, := t'?(®) f,.

Lemma 2.7. If my < ... < m, s a sequence of mon-negative integers such
that det((gf.)) Z 0 (mod p), then (mg,...,m;) € A(go,---,9r;t). In particular,

(jOa"'aj?‘) E A(g()a"')gT‘;t)'



STOHR-VOLOCH’S APPROACH TO THE HASSE-WEIL BOUND AND APPLICATIONS 21

Proof. Let go = Y22 . ckt®, ¢§, # 0, be the local expansion of g, at P. Set C := []}_, ¢},

s=j¢ 78" 7 7
Then
sty — 1 =[5\ s
i = de (S (1 )b
s=Js !
Ot Timig t(i < ° ) “ £)
o e 2
< \n; Ce-
s=J¢ Jt
= Cdet(<‘” ) Je2ebimma) £,
my;
and the result follows. O

For ¢ € Ny, set Dt¢ := (D!go, ..., D’g,). Since each coordinate of this vector is regular
at P, we also set D{@(P) := (Digo(P),. .., Dig.(P)).

Then, for 0 < my < ... < my,, (mg,...,m;) € A(go,...,gr;1t) if and only if
D¢, ..., D" ¢ are F(X)-linearly independent.
Scholium 2.8. (1) Set j_1:=0. Fori=0,...,r,

ji = JP(P) = min{s > ji_y : (DI"6)(P), ... (D}~ §)(P), (D;6)(P) are F-Li.}:

(2) Let my < ... < mu be non-negative integers, with ' < r, such that the vectors
(D™ ¢)(P),..., (D" ¢)(P) are F-linearly independent. Then j; < m; for i =
0,...,7"

Proof. (1) From Lemma 2.7 and its proof, the vectors (D°¢)(P), ..., (D} ¢)(P) are
F-linearly independent and

0 ifl>1,
Dligi(P) = e, ifl=i,
¢ ifl<i.

Ji

Let 5,1 < s < ;. For £=0,...,2— 1, we have vectors of type
(DI'¢)(P) = (%,...,%,¢,0,...,0),

» Ty Mg
with (r —¢) zeros and where * denotes an element of F. Since the last (r —i+1) entries
of the vector (Dj¢)(P) are zeroes, (1) follows.

(2) From (1), dimp({(D*¢)(P):s=0,...,75; — 1}) =i so that j; — 1 < m,. O
In Z™"! we have a partial order given by the so-called lexicographic order <. For

o, € Z' o < B if in the vector 8 — a the left most non-zero entry is positive. This
order is a well-ordering on N" !, see e.g. [16, p. 55]. Let

E = (e,...,€)
be the minimum (in the lexicographic order) of A(go,. .., g-;t).
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Lemma 2.9. (1) € = 0;
(2) €, = 1 whenever p does not divide deg(D) — deg(BP);
(3) Fori=1,...,r,

¢ =min{s > ¢, 1 : D¢,...,D;"""¢,Dj$ are F(X)-Li.}.

Proof. (1) Suppose that eg > 0. Then D¢ = >77_, h,lefj(/) with some hj, € F(X)*,
because (0, €1,...,6) < €. Then we replace the row Dy’ by D{¢ in W2 so that
(0,€0, -3 €jo—15Ejot1s- - - &) € Ao, - ., gr; ), a contradiction to the minimality of £.

(2) As in part (1) we have that €; = 0 if and only if D}g, = 0 (or equivalently Dig, = 0
for 1 <i < p) for any £ =0,...,r. Then each g, is a p-power by Remark 2.5(ii), and
so p divides vp(E) — b(P) by Lemma 1.4; i.e., p divides deg(D) — deg(B?).

(3) Clearly D;°¢,...,D;'¢ are F(X)-linearly independent. Let ¢, 1 < s < ¢;. Since
(€0y. vy € 1,5, €41,...,6) <&, there exists a relation of type

i1 r
Di¢=> hDi¢+ > hiDi'o,
=0 j=it1
with h; € F(X). We claim that h; = 0 for j > i + 1. Indeed, suppose that h;, # 0
for some jo > i + 1. Then by replacing D;”°¢ by Di¢ in Wy we would have
that (€g,...,€-1,5,€, s €jo—1,€jot1s---»€) € Ao, ..., gr;t), a contradiction to the
minimality of £. This finish the proof. O
Corollary 2.10. (1) Let (myg,...,m,) € A(go,...,gr;t). Then for each i, ¢; < m,.
In particular, €; < j; = ji(P);
(2) If 0 < my < ... < m, are integers such that det((gfl)) # 0 (mod p), then
€ < m; for each 1.

Proof. From Lemma 2.9,
(2.5) ({D'¢:0=0,....,6; =1}y ={D7$p:5=0,...,0i—1}).
If ¢, > m;, we would have
dimpxy({Dipp: £ =0,...,6 —1}) > dimpry({D™ ¢ : £ =0,...,i}) >i+1,
a contradiction. This proves (1). Now (2) follows from Lemma 2.7 and (1). O
Proposition 2.11. (1) If hy =) ai;9; with (a;;) € M,41(F), then
Wi = det((asg) W2y
(2) If f € F(X), then
Wit = I Wangra

(3) Let x be any separating variable of F(X)|F. Then
T €ormer (Dit)zl EiW€0 ..... €r

G05-e0rGr T 905--59r3t
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Proof. (1) It follows from D;'h; = > a;jD;‘g;. Note that this result does not depend
on the minimality of &£.

(2) By the product rule (cf. Sect. 2.1), we have
Dii(fg;) = ZfoDfl 9 -
=0

Then

(Df*fgo, ..., Df' fg:) = [Di¢+ > _ DifD; 6.
=1
By (2.5) we can factor out f in each row of Wi, . and (2) follows.
(3) The proof is similar to (2) but here we use the chain rule (2.4) instead of the product
rule. We have

Dezg] Zfé t95

where f, € F(X) and f., = (Dlt)%. Hence

€;—1

D¢ = (Dyt) Dy + > feDi,
/=1

and again by (2.5) we can factor out (D,t) in each row of Worer . O
Now we see that £ depends only on D: Let f],..., f, be any F-base of D’ and z any
separating variable of F(X)|F; since g, = t'?(F) f,. from Proposition 2.11(1)(2) & is
the minimum for A(f{,..., f/;t). Moreover by part (3) of that proposition, £ is also
the minimum for A(go, ..., gr;x). Finally, from part (2), £ is also the minimum for

A(fos -5 fr ).
Deﬁnltlon. E = &p is called the order sequence of D. The order sequence of a mor-
phism ¢ is the order sequence of D,.

Remark 2.12. Let my < ... < m, be a sequence of non-negative integers such that
det( (7 )) # 0 (mod p). Then ¢; < m; for each ¢ by Corollary 2.10(2). We shall discuss
the best election of the m;’s. In Example 1.18 we have seen that the (D, P)-orders
jo < ... < j, are the (Dy, Pp)-orders for ¢ = (z%° : ... : 27") : P}(F) — P’ and
Py = (1:0). Observe that

(2.6) T/ 05Tl = det( <‘”> )in(jrm) .
Let no, ..., n, be the Dg-orders. Then

(1) det(( )) # 0 (mod p) by (2.6) with n; = n;, and the definition of D,-orders;
(2) ne < my for each ¢ by (2.6) with n; = m;, and Corollary 2.8(2).
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This shows that the best way to upper bound the ¢;’s is by means of the sequence
Mo, - - -, Ny- In addition, from (2.6) and Lemma 2.9 applied to Dy, we obtain the follow-
ing.

Corollary 2.13. Let i € {0,...,7} and let mg < ... < m; be non-negative integers,
such that the vectors ((T]f?z)’ el (7;7,:[)), ¢ =0,...,i are Fy-linearly independent. Then

€ <my for{=0,...,1.
Corollary 2.14. (Esteves, [20])

€i + Jje(P) < Jire(P) i+l<r.

Proof. (Following Homma [56]) By means of suitable central projections [20, Lemma
2] one can assume that i + ¢ = r. Let Dy be the linear series on P!(F) in Remark
2.12, and 7, ..., n, the Dy-orders. By Example 1.18, j, — jr, Jr — Jr—1,...,Jr — Jo are
the (Dy, (0 : 1))-orders. Then, for each 4, j, — j,—; > 1; > €; by Corollary 2.10(1) and
Remark 2.12, and the result follows. 0]

Remark 2.15. Corollary 2.14 was first noticed by Homma [55] for D-orders; see also
[28] and [56].

Now we define the so-called ramification divisor of D. Let f{,..., f; be any base of D’
and z any separating variable of F(X')|F. As before let P € X, t a local parameter at
P, {fo,..., f+} a (D, P)-base; set g, = t"?E) f,, We have a matrix (a;;) € GL(r +1,F)
such that f] = Zj a;j f; for each i. Proposition 2.11 implies

Weo ..... e det(aij)W;é):_._._.:;:;x — det(az_j)tf(rJrl)uP(E)Weo ..... €r

f(),---afi;x 90,--es gr;T
= det(ay)t "V E(DINZ WL
ie.,
2 7 WEO ..... €p Dl El eip(r+)vp(E) _ d . WEO ..... [
( ’ ) f(’),...,f;;:v( tx) t - et(al]) 905e-grit

Thus the divisor

r

R=RP :=div(Wph )+ (O e)divide) + (r + 1)E |

fosnsfrsm
i=0

just depends on D and locally is given by (2.7).

Definition. R is called the ramification divisor of D. The ramification divisor of a
morphism ¢ is the ramification divisor of Dy.

Example 2.16. Let x be a separating variable of F(X)|F and consider the mor-
phism ¢ = (1 : z) : X — P}F). Then E; = dive(x); moreover, as #z '(x(P)) =
deg(dive(z)) for infinitely many P € X, the Dy-orders are 0,1. Then

RP? = div(dz) + 2dive(7);

i.e., it coincides with the ramification divisor R, of z, see Example 1.1.
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Lemma 2.17. (Garcia-Voloch [33, Thm. 1]) Let ¢ = (fo : ... : fr) be a morphism
associated to D, and ¢' a power of char(F) > 0. Then ¢, > ¢' if and only if there exist
20, .+, 2r € F(X), not all zero, such that

W fo+... 420 f=0.

Corollary 2.18. Let P € X. Under the hypothese of the previous lemma, there exist
i,0 €{0,...,r}, i # L, such that j;(P) = j,(P) (mod ¢).

Proof. We can assume that fy,....f, is a (D, P)-base. Now there exist 0 < i < ¢ <r
such that vp(2? fi) = vp(zf f;) and the result follows. O

2.3. D-Weierstrass points. Let us keep the notation of the previous subsection. Now
we study R locally at P via (2.7); i.e., we study

UP(R) — UP(WEO,...,eT t) )

gos---39r;
We observe that vp(R) > 0 since gy is regular at P for each /.
Theorem 2.19. (1) vp(R) > >\, (ji(P) — €&);
(2) vp(R) =>"1_,(7i(P) — &) < det((ﬂg))) Z 0 (mod p).

Proof. Set j; := j;(P). From the proof of Lemma 2.7 with m; = ¢; we have a local
expansion of type

Weo,...,er = Cdet( <]4> )tzl(Jz—Ez) + ...,

90s--59r; €;

with C € F* and the result follows. O

We have already observed that R is an effective divisor which also follows from j;(P) >
¢; (cf. Corollary 2.10(1)). Moreover, the following is clear from the theorem.
Corollary 2.20. vp(R) = 0 if and only if j;(P) = €; for each i. In particular, for all
but finitely many P € X, the (D, P)-orders equal €, . . ., €,.

Definition. The D-Weierstrass points of X are those of Supp(R). The D-weight of P
is UP(R).

Thus the number of D-Weierstrass points of X', counted with their weighs, equals

r

deg(R) = () _e) (29— 2) + (r+ 1)d.
i=0
Lemma 2.21. (p-adic criterion) Let € be a D-order and let p be an integer such that
(;) # 0 (mod p). Then p is also a D-order. In particular, 0,1,... ¢ — 1 are D-orders
provided that p > €.
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Proof. Let £ € {0,...,r — 1} be such that ¢, < p < €41 < €. We apply Corollary 2.13
to a point P ¢ Supp(R); i.e., such that j;(P) = ¢; for each i. Let my = €g,...,my =
€p, Mgy := . Then the vectors ((;05),...,(“)), s = 0...,0+ 1, are F,-linearly

independent and the result follows. ’ 0]
Definition. The curve X is called classical with respect to D, or the linear series D is
called classical, if the D-orders are 0,...,r. A morphism ¢ is called classical if Dy is
classical.

Lemma 2.22. Suppose that [],., W # 0 (mod p). Then

(1) D is classical,

(2) vp(R) = 325 (6:(P) — ).
Proof. (1) Set j; = ji;(P). We have
der (7)) =TIZ=2 %0 God p).

by hypothesis. Then ¢; < i by Corollary 2.10(2); i.e, ¢; =i for each i.
(2) Follows from Theorem 2.19(2). O

In particular, as j,(P) < d = deg(D), we obtain:
Corollary 2.23. If p=0 or p > d = deg(D), then

(1) D is classical;
(2) For each P € X, vp(R) = >_,(ji(P) — i).

2.4. D-osculating spaces. Assume that D is base-point-free, D = g = P"(D’) C |E].
From Remark 1.14,

D = {¢*(H) : H hyperplane in P"}
where ¢ = (fo : ... : f;), and where {fo,..., f.} is a F-base of D'. Let P € X with
(D, P)-orders jy < ... < j.. From Lemma 1.4,

vp(E) = —min{vp(fo), ..., vp(fr)}-

Fori=0,...,r—1, let Llf""“’f’“ (P) be the intersection of the hyperplanes H in P such
that vp(¢*(H)) > jiy1- If go, ..., g- is another base of D', there exists T' € Aut(P"(F))
such that ¢ :=(go : ... : g,) =T o ¢; thus

(2.8) L9 (P) = T(L{ 7 (P)).

We conclude then that L{O """ fT(P) is uniquely determinated by D up to projective
equivalence.
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Definition. L;(P) = L{/"(P) is called the i-th osculating space at P (with respect
to the base {fo,..., fr}).

Clearly we have:
Lo(P)C ... C L, a(P).

Lemma 2.24. Lz-f0 """ fT(P) is an i-dimensional space generated by the wvectors
(D}*¢)(P), s =0,...,i, where ¢' = (t»F) fo o ... por(B)f,),

Proof. From Lemma 1.10 and (2.8) we can assume that fo,..., f, is a (D, P)-base. Let
H; be the hyperplane corresponding to X; = 0, where X,..., X, are homogeneous
coordinates of P". Let H : ) .a;X; = 0 be a hyperplane. Then vp(¢*(H)) > jiy1 if
and only if ag = ...a; = 0, since vp(t"?F) f,) = j, for each . Thus

LI (P)y = Hyn 0.0 Hy

i.e., it has dimension i. In addition, it is generated by the vectors (Di*¢')(P) by the
proof of Scholium 2.8 0

From the proof above we obtain:
Scholium 2.25. H D L;(P) if and only if vp(¢*(H)) > jit1-

Remark 2.26. If D has base points, the i-osculating spaces for D are, by definition,
those of DP.

Definition. The 1-osculating (resp. (r—1)-osculating) space at P is called the tangent
line (resp. osculating hyperplane ) at P.

A consequence of Lemma 2.24 is the following.

Corollary 2.27. The osculating hyperplane at P (with respect to the base { fo, ..., f+})
18 given by the equation

X X,
ot (D§°g:o)(P) (D§°g:r)(P) 0.
(DI 'go)(P) ... (D" 'g.)(P)

where gp :=t"PEVf, 0 =0,..., 1.

2.5. Weierstrass points; Weierstrass semigroups II. In this sub-section we consider
Weierstrass Point Theory for the canonical linear series X = K% on the curve X of
genus ¢g. By Remark 1.21 we can assume g > 2. The special feature in the canonical
case is the existence of a (numerical) semigroup, namely the Weierstrass semigroup
H(P) at P € X (cf. Sect. 1.5) which is closely related to the (IC, P)-orders. We stress
the following.
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Definition. (1) The Weierstrass points of the curve X is the set W = Wy of its
K-Weierstrass points; i.e., W = Supp(R"). The K-weight of P is called the
Weierstrass weight wp of P;i.e., wp = vp(RF).

(2) We set wp := 3.7 (jF(P) —); i.e., wp is the weight of the Weierstrass semi-
group H(P) at P.

(3) The curve X is called classical if it is classical with respect to the canonical
linear series /.

In particular, since K has dimension g —1 and degree 2g — 2, the number of Weierstrass
points P € W counted with their weights wp equals

-1

(2.9) deg(R*) = (> &)(29—2) +g(29 —2),

3

Q

Il
o

where €y < ... < ¢, are the KC-orders. From Theorem 2.19(1) we have

P2 YUK ).

In general, wp > >, (jX(P) — €;) and wp # wp (see Example 2.28); however, if either
p=0orp> 2g— 2, then the curve is classical and wp = >_,(jF¥(P) — i) = wp by
Corollary 2.23; in this case the curve has g(g*> — 1) Weierstrass points (counted with
their weights) by (2.9).

Example 2.28. (Hyperelliptic curves) Let X be hyperelliptic with g3 = |dive(f)],
f € F(X) of degree two. Note that f is a separating variable since g > 0. We have
K =|(g — 1)dive(f)], where K’ is generated by 1, f,..., f9~'. Then WE’;,’,'_',',’?;—Il;f =1;
i.e., X is classical.

The ramification divisor of I is thus
g9(g — 1)
2
so that R* = @Rf by Example 2.16. Note that f has deg(R;) = 2¢+2 ramifications
points (counted with multiplicity), and that P € Supp(Ry) if and only if ep = 2; see

Example 1.1. Therefore the following conditions are equivalent:

RE — div(df) + g(g — 1)diveo(f),

Pew,

P € Supp(Ry);

Ep = 2;

2 € H(P);

the (K, P)-orders are 0,2,...,2g9 — 2.
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If P ¢ W, then the (K, P)-orders are 0,1,...,9 — 1; i.e.,, H(P) = {0,9g+ 1,...}. In
particular, a hyperellitpic curve has only two types of Weierstrass semigroups.

If p=0orp > 2 and P € Supp(Ry), then vp(R;) = 1 and hence X has 2¢g + 2
Weierstrass points P such that wp = g(g — 1)/2. In particular, here we have wp =

>0 — i) = wp (%)
If p =2, then (x) is in general not true as the following example shows. Let X be the
non-singular model of the plane curve of equation

Yy +y =2t

over F of characteristic two, and where ¢ = 2% a > 2. Then z € F(X) has degree two
an so X is hyperellitpic. There are two different points in X over each a € F, since
Y? +Y = a has two different solutions. Let P over z = co. Then 2vp(y) = —(q+1)ep
so that ep = 2; hence there is just one point P,, over x = oo; i.e., #Supp(R;) = 1. In
particular, P, is the only Weierstrass point of X and thus its weight is wp = deg(R¥X) =
g(g*> = 1) >3 ,(JF(P) — i) = wp = g(g — 1)/2 because g > 1 as we see below.

To compute the genus of X we use the fact that P, is the only ramified point for x:
We have 2g — 2 = deg(dz) = vp,_(dx) =q¢—2 and so g = ¢/2 > 1.

Lemma 2.29. Let X be a classical curve of genus g such that wp = wp for each P
(e.g. if p=0 orp>2g9—2). Then

(1) 29 +2 < #W < g(¢* - 1);
(2) #W =2g + 2 if and only if X is hyperelliptic;
(3) #W = g(g*> — 1) if and only if wp = 1 for any P € X.

Proof. We have g(g*> —1) = deg(R*) = >, wp < #Wg(g —1)/2 by Corollary 1.26(1).
This proves (1). (2) follows from Corollary 1.26(2)(3) and Example 2.28. (3) is trivial.
0J

Lemma 2.30. Let (n; : i € N) be the Weierstrass semigroup at non-Weierstrass
points. Then n;(P) < n; for each P and each i.

Proof. Let i be the minimum positive integer such that n;(P) > n;. Then i > 2 and
ni—1(P) < n;—1 so that n;_1(P) < n;—1 < n; < ni(P). Now we have n; = l5,_j41 >
l,—i+1 by Corollary 2.10(1), where /; < f, < ... are the gaps at non-Weierstrass
points. Since {;,_;11 > n; + 1 we have a contradiction and the result follows. O

Lemma 2.31. The largest K-order €, is less than deg(K) = 2g — 2.

Proof. (Garcia [27, p. 235]) Suppose €,_; = 2g — 2. Then for P ¢ W, (29 — 2)P is a
canonical divisor. In particular, (29 —2)P ~ (29 —2)F, for P, Py ¢ VW (*). We consider
the isogeny ¢ : D — (29 — 2)D on the Jacobian variety J associated to X', and the
natural map X — J, P — [P — B,]. Note that [P — Py] = [ — ] if and only P =
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since g > 0. Then (%) says that there are infinitely points in J belonging to the kernel
of i, a contradiction since this kernel is finite [77, p. 62]. O

Example 2.32. (The non-classical curve of genus 3) It is easy to see that the only
semigroups of genus two are {0,3,4,5,...} and {0,2,4,5,...}. Since a curve of genus
two must have at least one Weierstrass points, then such a curve is hyperelliptic and
hence classical.

Now let X be a curve of genus three. We shall show a result due to Komiya [66]: X
is non-classical if and only if p = 3 and X is F-isomorphic to the non-singular plane
curve of equation y® + y = a*. If X is non-classical, then 0 < p < 29 — 2 = 4 by
Corollary 2.23 so that p = 2,3. We have ¢ = 0,¢; = 1 and ¢, = 3. Then p = 3 by
the 2-adic criterion. We have P € W & j(P) = 0,58 (P) = 1,j5(P) =4 & H(P) =
{0,3,4,6,...}; then wp = 1 and X has deg(RX) = 28 Weierstrass points (note that a
classical curve of genus 3 has 3 x (3% — 1) = 24 Weierstrass points counted with their
weights). Let Py € W,z,y € F(X) such that dive(z) = 3P and divy(y) = 4.

We see that 4P, is a canonical divisor and so K = [4F)|. We also see that x is a
separating variable of F(X)|F so that Wf;;w = D2y = 0 as e > 2. Now the eleven

functions 1, z,y, 2%, zy, y? 23, 2%y, zy?, x*, y® belong to L(12P)) which has dimension
10. Therefore there is a non-trivial relation over F of type

Qoo + 10T + Aoy + ar’ + a1y + C¢02Z/2 + azoz® + a21a:2y + alﬂyz + agz’ + a03y3 =0.

Since vp(xiy?) < 12 for 3i + 45 < 12 we must have aq # 0 and ag3 # 0. In particular

we can assume aq = 1. Next we apply D2 to the equation above; using the fact that
D%y =0 we find:

a0 + a11 Doy + a02(Day)? + a1 (y + 20 D,y) + a12(20y Dy + 2(Dyy)?) = 0.
Let vp(D,y) = a. Then the valuation at P of the functions
L, Duy. (Day)®, y, 2Dy, vy Dyy, (Day)?

are respectively
0,a,2a,—4,—3+a,—7+a,—3 + 2a;

we see that they are pairwise different and hence asy = a11 = ag2 = az; = a2 = 0; i.e.,
we have

Qoo + G10T + AprY + azr’ + ' + a03y3 =0.

By means of 2 — (x — ag) and y — —(ag3)"/?y we can assume asy = 0 and ag3 = —1.

Now as [F(X) : F(x)] = 3 the above equation is irreducible and hence ag; # 0 because
x is a separating variable. Then by means of x +— ag{gx and y — —aé{zy we can assume

ap1 = 1. So we have an equation of type

y3+y:x4+a10x+a00.
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Finally let P, be another Weierstrass point. Then 4P, ~ 4F, as both divisor are
canonical. So we can choose y such that div(y) = 4P, — 4F,. Then 4 = vp (y) =
Up, (:LA + apr + aoo) implies agy = a9 = 0.

Conversely if X is defines by 3> +y = z*, we have that X is a non-singular plane
curve of genus three. Moreover there is just one point P, over z = oo and H(Py) =
{0,3,4,6,...}. This implies that z is a separating variable and we have D%y = 0; i.e.,
X is non-classical.

Further examples of non-classical linear series can be found in Neeman [80]. Finally
we mention that Weierstrass Point Theory on schemes was considered by Laksov and
Thorup [72]; see the introduction there for further references.

3. FROBENIUS ORDERS

Let X be a curve defined over F, a finite field with ¢ elements; i.e., X' is a curve over
the algebraic closure Fq of Fy, equipped with the action of the Frobenius morphism ®,,
relative to F,. Let D = P(D’) C |E| be a base-point-free ¢} on X'. Assume that D is
also defined over F; i.e., for any D = > ,npP € D, (®,).(D) :=> ., npPy(P) = D.
Let ¢ = (fo : ... : fr) be a morphism over F, associated to D; i.e., its coordinates
belong to F,(X) and they form a F -base of D’

The starting point of Stohr-Voloch’s approach to the Hasse-Weil bound is to look at
points P of X such that ¢(®,(P)) belongs to the osculating hyperplane L/ (P) at
P. Then Corollary 2.27 leads to the consideration of rational functions of type

foo®, ... fio®,
Dlof, ... Db,

Vi bimdet |0 T TR
Dbify ... Dbf,

where z is a separating variable of F,(X)|F,. We set

B(fo, -, fr;x) = {(mo,...,mp 1) €NG:mg < ... <myy; VOt £ 04
Lemma 3.1. Let (myg,...,m;) € A(fo,..., fr;x) with mg = 0. Then there exists
0 < I <r such that (mo,...,mr 1, mry1,...,my) € B(fo,..., fr;x).

Proof. Let I be the smallest integer such that ¢ o ®, := (fy o ®,,...,fr 0 ®,) is a
F(X)-linear combination of D¢, ..., D ¢. Since fy,..., f, is a F,-base of D', then
I > 0 and the result follows. O

Since the D-order sequence (e, ...,€.) belongs to A(fo,..., fr;z) (cf. Proposition
2.11), B(fo, ..., fr;x) # 0. Let

V= (vo,... V1)
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be the minimum (in the lexicographic order) of B(fo, ..., fr; ).
Lemma 3.2. (1) vy = 0;
(2) Fori=1,...,r—1,

v =min{s > v;_1 : po @y, DL, ..., Di' ¢, Di¢ are F (X)-Li};
(3) Let (mo,...,m, 1) € B(fo,..., fr;x). Then v; < m; for each i.

Proof. Similar to the proofs of Lemma 2.9 and Corollary 2.10(1). O

Corollary 3.3. There exists 0 < I < r such that
{ei ifi<I,
V; =

e ifi> I

Proof. From Proposition 2.11(3) and Lemma 3.1, there exists 0 < I < r such that
(€0y. vy €1 1,€1415---56) € B(fo,..., fr;x). Hence from Lemma 3.2, v; <¢; fori < I
and v; < €4 fori > 1. Since D2°¢, ..., Dy'~' ¢ are F(X)-Li, from Lemma 2.9(3) follows
that ¢, <wvy; forv=20,...,1 —1; thus v; =¢; fori =0,...,I — 1. The same argument
yields €; < vy; in fact, €¢; < vy by the definition of I in the proof of Lemma 3.1. Suppose
that v; < €71. Then by Lemma 2.9(3) the vectors D¢, ..., Dy~ ¢, DS ¢, D¥ ¢ would
be linearly dependent over F(X) so that D" € (D%¢,..., Dy "¢, D ¢). This is a
contradiction because ¢ o ®,, D¢, ..., Dy "¢, D*¢ are F,(X)-linearly independent.
A similar argument shows that v; = ¢, if i > I. O

We remark the following computation regarding change of basis. Let g; = > a;; f; with

(ai]') S M,«+1(Fq). Then

9o e Gy
Dﬁog L Dﬁogr
) dev | T T | = dentag) Vi
Dﬁf*lgg - DﬁTflgr

where g; = . a;;j fi o ®,. The following is analogous to Proposition 2.11.
Proposition 3.4. (1) If gi = > aij f; with (aij) € My (Fy), then
Vot = det((ag ) Vi 77t
(2) If f € F (X), then
Vigone = Vi
(3) Lety be any separating variable of F (X)|F,. Then

[ Z Vp—1 __ 1,.\>, v/ Y05sVr—1
Vfo ..... friy _(Dyx) ' Vfo ..... frix
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Proof. (1) follows from (3.1) taking into consideration that aj; = a;;. (2) and (3) follow
as in Proposition 2.11. 0]

Now we show that V just depend on D and ¢. Let {f},..., fl} C F,(X be another
F,-base of D' and y another separating variable of F,(X)|F,. From part (1) above,
V is the minimum for B(f},..., fl;x) and from part (3) it is also the minimum for
B(fo,- -, [} 0)-

Definition. V = (v,...,v,_;) is called the F,-Frobenius orders of D. If v; = i for
each 7, D is called F,-Frobenius classical.

Now let P € X. We have that vp(E) = —min(vp(fy),...,vp(f)) because D is base-
point-free, cf. Lemma 1.4. In addition, the rational functions g¢; := t"?(¥) f; are regular
at P for each i, where ¢ is a local parameter at P. Let {f{,..., f'} and y be as above.
Let f{ =3, ai;fj, ai;; € Fy. Applying Proposition 3.4 we have

Vo=t det(az_j)vllo,---,l/rq

fé,---,f,’-;y f07"'7f7‘§y
= det(ai;) (Dyt) > Vo
= det(ai;) (Dyt) 2 vig - arneeEy o
ie.,
(3 2) VVO,---,Vr—l(@)Eiuit(qur)vp(E) _ det(a_.)vllo,---,l’wl
' fornflsy N ¢ W)Y goyengrit
Therefore the divisor
r—1
S = SP = div(Vyp) + O w)div(dy) + (¢ +r)E,
i=0

just depend on D and ¢ and locally at P is given by (3.2).
Definition. S is called the F -Frobenius divisor of D.

The divisor S is effective because, as we already noticed, each g, is regular at P. Note
that

r—

1
deg(S) = (O _vi)(2g—2) + (g +r)d.
i=0
Next we study vp(S) by means of (3.2); i.e. we study

UP(S) == UP(VVO """ Vr_l) .

905---5gr;t
We consider two cases according as P is F,-rational or not.
Case I: P € X(F,). Here we can assume that fo,..., f, is a (D, P)-base; i.e, vp(gs) =
jo for £ =0,...,r. By Proposition 3.4(2)

or(8) = vrlgy " Vig i) = o (Vig il )
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where hy := g1/ go. Note that hy =1 and that v,(hs) = j,. In particular,

hy —hY ... h,—hd
V0Qyeney Vp—1 Déjlhl Déjlhr

(33) Vho,...,h,-_l;t = det : . . R
D;Tﬁlhl ce D;Tﬁlhr

and we can made similar computations as in the proof of Lemma 2.7: Expand h, at
P, hy =302 cit*, set C:=][,_, ¢,; then

$=J¢

(34) Vhyoo""’}:jr.zl = Cdet( <‘“> )tZ:;il(ji—Vi—l) +...,
..... i ”
where 7 =0,...,r—1;¢=1,...,r in the matrix above involving the binomial operator.

Now vp(S) can be estimated via this local expansion.

Case II: P ¢ X(F,). Let hg,...,h, be a (D, P)-base. Then there exists (a;;) €
M, 1(F,) such that h} := t#(E)p,; = > @ij9;- Then from (3.1)

r

vp(S) = UP(Z(—l)%de‘),

where the d;’s are the determinants obtained by Cramer’s rule. Clearly vp(h}) > 0 and
S0

'UP(S) > min{UP(dO)a s 7'UP(dr)} :
Once again we can expand each d; at P as in the proof of Lemma 2.7: Let M :=

((Zi))k:[] ,,,,, r—1—o0,.. and let M; be the matrix obtained from M by deleting the ith
column. Then

(3.5) d; = Cydet(M;)tSk=o i = Sicove
where C; € F,". Thus (3.4) and (3.5) imply the following.
Proposition 3.5. (1) For P € X(F,), vp(S) > >.._,(ji(P) — vi_1); equality holds
if and only if det((""))izo,..p—10=1...r Z 0 (mod p);
(2) For P ¢ X(F,), vp(S) > S0Z1(i(P) — v); if det((jl,f)))z‘,ézo ..... r-1 =0
(mod p), then the stric inequality holds.

Proposition 3.6. Let v be a Fy-Frobenius order such that v < q. Let i an integer such
that (:) # 0 (mod p). Then p is also an F,-Frobenius order. In particular, if v; < p
then (vg,...,v;) = (0,...,19).

Proof. Let v = v;. For j < i, we have D}’ (f?) = 0 by Remark 2.5. So vy,...,v; are
the first ¢ + 1 orders of the morphism (hy — h{ : ... : h, — h?), where hy, ..., h, are as
in (3.3). Then the resul follows from the p-adic criterion (Lemma 2.21). O]



STOHR-VOLOCH’S APPROACH TO THE HASSE-WEIL BOUND AND APPLICATIONS 35

Next we study relations between the F,-Frobenius orders and (D, P)-orders at F,-
rational points P.

Proposition 3.7. Let P € X(F,) and my < ... < m,_y be a sequence of non-negative

.....

2.

Proof. Set j; = j7;(P) and let ¢ := (1 : 277t : ... : z7»=/1) where x is a separating
variable of F,(X)|F,. Let ny < ... < 1, be the orders of ¢. Then n; < m; for each i
by (2.6), hypothesis and Corollary 2.10(1). Then, as ¢ = (2% : ... : a7"), det(((fn)) £ 0
(mod p), and the result follows from (3.4). O
Remark 3.8. From the proof above follows that the best election of the m;’s in Propo-
sition 3.7 are the orders of the morphism ¢ = (2:(P) ;1 23-(P)),

Corollary 3.9. Let P € X(F,).

(1) v; < jiy1(P) — j1(P) fori=0,...,r — 1, and so vp(S) > rji(P);

(2) Suppose a = [],c;cpe, (Ge(P) = 5i(P))/(€ — i) # 0 (mod p). Then D is Fy-
Frobenius classical and vp(S) =r+ Y . (ji(P) —i).

Proof. Note that a = det((j‘(ip)))i:o,...,r—l;g:L,,,,,«. Then (1) (resp. (2)) follows from
Proposition 3.7 with m; = j;(P) — j1(P) (resp. from the proof of Proposition 3.7 with
m; = i, and Proposition 3.5(1)). O
Remark 3.10. The criterion of Corollary 3.9(2) is satisfied if j,(P) — j;(P) Z 0 (mod p)
for 1 <i < £ <r. In particular, the criterion is satisfied if p > j,(P).
Corollary 3.11. (1) If P € X(F,) and det((“77)) ;o i s # 0
(mod p), then v; =¢; fori=20,...,r — 1, '
(2) If D is not F,-Frobenius classical, then j.(P) > r for any P € X(F,);
(3) If (vo,...,vp—1) # (€0, ..., €—1), then X(F,) C Supp(R).

Proof. (1) follows from Proposition 3.7 with m; = ¢;.

(2) If there exists P € X(F,) such that j.(P) = r, then v; = i for each i by Corollary
3.9(1).

(3) Suppose that there exists P € X(F,) \ Supp(R). Then j;(P) = ¢ for each i and

hence v; < €;11 — € by Corollary 3.9(1); i.e. v; = ¢; for each i, a contradiction. O
Remark 3.12. If we choose i such that X(F ;) Z Supp(R), then from Corollary 3.11(3)
we see that the F i-order sequence of D coincide with (eg, ..., €1).

Theorem 3.13. Let X be a curve defined over F, that admits a base-point-free linear
series D = g} defined over Fy. Let vy < ... < v,_; be the F,-Frobenius orders of D.
Then

>ico vi29 —2) + (g +r)d

#X(F,) < -
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Proof. Let S be the F,-Frobenius divisor of D. Then vp(S) > r for each P € X(F,)
by Corollary 3.9(1), and so #X(F,) < deg(S)/r. O

Example 3.14. (The Hermitian curve over Fy) We are looking for a curve X’ of genus
3 defined over F, such that #X(F,) > 2¢+ 8. Let ¢¢ = 0 < ¢, = 1 < € (resp.
vp = 0 < vy) be the canonical orders (resp. canonical Fg-orders).

Claim. X is non-classical; i.e., €5 > 2.

Indeed, if €, = 2, then 14 < 2 by Corollary 3.3 and Theorem 3.13 gives #X (F,) < 2¢+38.

Therefore from Example 2.32 we conclude that ¢ is a power of three, e, = 3, and that
X is given by y® + a1y = x*, with ap; € F, (notice that the change of coordinates
involving ag; in Example 2.32 is not defined over F,). Moreover, the proof above also
shows that 14 > 1; i.e v = 3.

Claim. ¢ = 9 and X is Fg-isomorphism to the Hermitian curve y®+y = z*. In addition,
X(F9) =W (so that #X(Fy) =28 > 2 x 9+ 8).

Let  and y be as in Example 2.32. Then \Gomlyw = 0 or equivalently y — y? =
(x — 27) D,y (%). Then taking valuation at P we have —4¢ = —3¢ — 9 so that ¢ = 9.
Moreover from () and the equation defining X we have (1 — a3,)y® + (a;p — 1)y° =0
so that apy = 1. That X'(Fg) C W follows from Corollary 3.11(3) and equality holds

since #X (Fy) = 28 (see Sect. 4.2).
Finally, observe that #X (Fy) attains the bound in Theorem 3.13.

Example 3.15. (The Hermitian curve, I) Let ¢ be a power of a prime and # the plane
curve of equation

(3.6) Y'Z +YZ = Xt

It is easy to see that A is non-singular so that it has genus g = ¢(¢ — 1)/2 by Remark
1.8.

Claim. #H(Fp) = 3 + 1.

Indeed, we have HN(Z =0) = {(0:1:0)}; in Z # 0 we look for points (z : y : 1)
such that y* 4y = 21 It follows that # € Fj» = y € Fp» and since Y/ +Y = 2!
has ¢ different solutions for Y we conclude that there are ¢3 such (z : y : 1) points.

Now over x := X/Z = oo there is just one point say Py, such that H(Py) C (¢, + 1).
Since #(IN\ ((,0+ 1)) = (({ — 1)/2 = g, H(Px) = ({,{ + 1). Next we consider
D :=|({ + 1) Py | which is a g7,, base-point-free on H. Since L((¢ +1)Px) = (1,z,y),
where y* +y = 2! we see that D is just the linear series cut out by lines on H. Let
€0 = 0,61 = 1,6 (resp. vy = 0,1 € {1,€3}) denote the D-orders (resp. Fy2-Frobenius
orders) of H.

Claim. (1) e =11 = ¢

(2) jo(P) =+ 1if P € H(Fp2); j2(P) = £ otherwise.
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In fact, 2#H (Fp) < 11(29 — 2) + (> + 2)(¢ + 1) by Theorem 3.13 so that v; > /.
Then ¢{ < vy =€ <+ 1 and so { = v; = €, by Lemma 2.21 (p-adic criterion). That
J2(P) = £ + 1 whenever P € H(F;2) follows from Corollary 3.9(1) and part (1). In
particular for such points P, vp(R) = 1. Now we have deg(RP) = (3 + 1 and therefore
Jo(P) = L for P X (Fp2).
We can write a direct proof of part (2) as follows. Let a,b € F; such that b*+b = a**!.
It is easy to see that (x — a) is a local parameter at (a: b: 1) € H so that (y — b) =
a‘(z —a)+ (a—a*)(x —a) + (x —a)*t +.... Let

fi=(y-b—d(x—a).
Then

2

div(f) =€(a:b:1)+ (@ b :1) = (L4+1)Py

and part (2) follows.

Further arithmetical and geometrical properties of Frobenius orders can be read in
Garcia-Homma [29]. From that paper we mention the following.

Lemma 3.16. ([29, Cor. 3]) Let V = €\ {€;} and suppose that I < r. Then char(F,)
divides €r41.

4. OPTIMAL CURVES

Let X be a curve defined over F, of genus g. To study quantitative results on the
number of F-rational points of X’ it is convenient to form a formal power series, the
so-called Zeta Function of X relative to F:

T q(t) == exp(Z w#) :

By the Riemann-Roch theorem there exists a polynomial P(t) of degree 2¢g with integer
coefficients, such that (see e.g. [78, Thm. 3.2], [96, Thm. V.1.15])

P(t)

(4.1) Zaal) = T p =g

Remark 4.1. ([96, Thm. V.1.15])
(i) Let P(t) = Z?io a;it’. Then ag =1, az, = ¢, and agy—; = ¢ ‘a; for i =0,...,g.
(ii) Set
h(t) = hyg(t) == t9Pt");
then the 2¢g roots (counted with multiplicity) o, ..., ay, of h(t) can be arranged
in such a way that ooy, ; = ¢ for j =1,...,g. Note that a; = — 259:1 ;.
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Now (4.1) implies #X (F,) = ¢ + 1 + a; and hence that
29
#X(F)=q+1-) aj,
j=1
by Remark 4.1(ii). Furthermore [96, Cor. V.1.16],
29
#X(Fp)=q +1-> aj.
j=1

By analogy with the Riemann hypothesis E. Artin conjectured that the absolute value
of each a; equals /q. This result was showed by Hasse for ¢ = 1 and for A. Weil for
arbitrary g [108] (see also [99, Cor. 2.14], [78], [96, Thm. V.2.3]). In particular, we
obtain the Hasse-Weil bound on the number of F,-rational points of X, namely

[#X(Fy) — (¢ +1)| <249
If X attains the upper bound above, it is called F,-mazimal; in this case ¢ must be a
square.
Lemma 4.2. Let ¢ = (*. The following statements are equivalent:
(1) X is Fp2-mazimal,
(2) aj=—L fori=1,...,2¢;
(3) hualt) = (t+ 0.
If any of these conditions hold and X is defined over ¥y, then
r+1 ifi=1 (mod 2),
H#X(Fu) =0 +14+2V/0g ifi=2 (mod4),
(i +1—-20lg ifi=0 (mod 4).

Proof. X is Fp-maximal if and only if Z?il o = >0 (0 + @) = —20g. By the

Riemann-hypothesis, this is the case if and only if a; = —/ for each 7 and the equiv-
alences follow. Now we show the formulae on the number of rational points. Let
#X(Fy) =(+1-— Z?ilﬁj. Then 5]2 = —/( for each j so that B; —l—B; =0fori=1
(mod 2); i.e., #X(Fyi) =0+ 1. If i =2 (mod 4), 8} = —+/¢i and follows the formula
for such ’s. Finally, if i =0 (mod 4), 8; = V0P and the proof is complete. O

Corollary 4.3. (Thara [58|) If X is Fp-mazimal, then g < £({ —1)/2.
Proof. We have X(Fp2) C X(Fp). Then from the lemma above, > + 1 + 2{g <
?* +1 — 20%g, and the result follows. O

Example 4.4. (The Hermitian curve, II) The curve # in Example 3.15 has genus
((f —1)/2 and 3 + 1 Fp-rational points. Hence it is Fp-maximal and attains the
bound in Corollary 4.3.
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This curve is called the Hermitian curve and it is the most fancy example of a maximal
curve. By Lachaud [70, Prop. 6] any curve Fjp-covered by a Fjp-maximal curve is
also Fyp2-maximal. Then one obtains further examples of F,:-maximal curves by e.g.
considering suitable quotient curves # /G, whit G a subgroup of Autg 2 (H); see Garcia-
Stichtenoth-Xing [31], and [14], [15]. As a matter of fact, all the known examples of
F,2-maximal curves arise in this way.

Problem 4.5. Is any F,2-maximal curve F2-covered by H?

Further properties of maximal curves can be found in [24], [26], [67], [68] and the
references therein.

If ¢ is not a square, the Hasse-Weil bound was improved by Serre [93, Thm. 1] as
follows (see also [96, Thm. V.3.1])

[#X(Fy) — (¢ + 1) < [2V/alg-

Lemma 4.6. The following statements are equivalent:

(1) X is mazimal with respect to Serre’s bound,
(2) o +a; =—[2y/q] fori=1,...g;
(3) hag(t) = (# + [2y/4)t + )7,

Proof. X is maximal with respect to Serre’s bound if and only if Y7 (o + &;) =

—[2/q]g if and only if o; +@ = —|2,/q]. Now, as we can assume o;@; = ¢ by Remark
4.1(ii) so that hy4(t) = [[_,(t — a;)(t — &), the result follows. O

Corollary 4.7. We have g < (¢* — q)/(12/q)* + [2/4] — 2q) whenever X is mazimal
with respect to Serre’s bound.

Proof. As in the proof of Corollary 4.3 we use X'(F;) C X(F,2). We have o; + @; =
—|2y/q) and o;@; = ¢ so that of + &7 = |2,/q)* — 2¢; hence

#X(F,) =q+1+2yq] < #X(Fp) = ¢ +1—([2v4]* — 29,
and the result follows. O

Remark 4.8. The proofs of the following statements are similar to the proofs of Lemmas
4.2 and 4.6.

(i) A curve X defined over Fye is Fp2-minimal; i.e., #X (Fyp2) = (2 +1 — 2(g if and
only if hy p2(t) = (t — £)%.
(ii) A curve X defined over F, is minimal with respect to Serre’s bound; i.e.,
#X(F,) =q+1—[2,/q]g if and only if hy4(t) = (* — [2\/q]t + ¢)°.
Example 4.9. (The Klein quartic) Let X be the plane curve over F defined by

XY +Y*Z+7°X =0.
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It is easy to see that X' is non-singular if and only if char(F) # 7; in this case X
has genus 3. This curve was considered by many authors since the time of Klein who
showed that Aut(X’) reaches the Hurwitz bound for the number of automorphism of
curves of genus 3 whenever char(F) = 0. A connection with the Fano plane was noticed
by Pellikaan [84].

Claim. X defined over Fg reachs the Serre’s bound; i.e, #X (Fg) = 1+9+|2v/8]3 = 24.

To see this we first notice that (1 :0:0),(0:1:0),(0:0: 1) are Fg-rational points
(this is true for any field where X is defined). Now (cf. [84, p. 10]) we look for
(z:y:1) € X such that z # 0,y # 0 and such that 7 = 1. We have

0=2’y++y° +2 =2y + 27y + 2 = (2% + (2%y)* + 1);

ie., > +1+1=0 (%) with £ = 2%y (). Conversely, it is easy to see that equation (x)
is irreducible over Fy and hence its three roots are in Fg. Then once z € F§ we have
y € F§ by (*;). Therefore we have 21 such points (z : y : 1) and the claim follows.

Then hyg(t) = (t* + 5t + 8)3 by Lemma 4.6.
Claim. hxyo(t) = t® + 5t* + 8; in particular #X (Fs) = 3.

Let hyo(t) = [[_ (t—Bi)(t—Bi). Then 32+ 33 = —5 (cf. Lemma 4.6) so that 87 and 57
are roots of T2 +5T7 +8 = 0; then hyo(t) = t°+5t*+8 so that #X(Fy) =2+1-0 = 3.

Finally, we mention that X is Fjp2-maximal if and only if either ¢/ = p®*! and p = 6
(mod 7), or £ = p%*3 and p = 3,5,6 (mod 7), or £ = p%*5 and p =6 (mod 7); see [2,
Cor. 3.7(2)].
Remark 4.10. (Lewittes [74, Thm. 1(b)]) Let P € X(F,) and f : X — P(F,) be the
F,-rational function on X such that dive(f) = ny(P)P. Then X(F,) C f~Y(PY(F,)) =
{P} U f~Y(F,) and hence

#X(F,) <1+ qgn(P).

Now from Corollaries 4.3 and 4.7 we see that neither the Hasse-Weil bound nor Serre’s
bound is effective to estimate #X (F,) whenever g is large with respect to ¢. So in
general one studies the number

N,y(g) == max{#Y(F,) : Y curve of genus ¢ defined over F,} .

For instance N,(0) = ¢ + 1, and Example 4.9 shows that Ng(3) = 24. The study of
the actual value of N,(g) was initiated by Serre [93] who computed N,(1) and N,(2).
Further properties were proved by Serre himself [94], Lauter [73], and Kresh-Wetherell-
Zieve [69]. Tables for N,(g) with ¢ and g small can be found in van der Geer-van der
Vlugt [34].

Definition. A curve X of genus ¢ and defined over F, is called optimal (with respect
to g and q) if #X(F,) = Ny(9).
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If ¢ = (2 and X is Fpe-maximal then X is certainly optimal. We already noticed
(Example 4.4) that the Hermitian curve #H is Fp-maximal whose genus attains the
bound in Corollary 4.3. Indeed, this property characterizes Hermitian curves:
Theorem 4.11. (Riick-Stichtenoth [87]) A Fp-mazimal curve X has genus (£ —1)/2
if and only if X is Fyp2-isomorphic to the Hermitian curve of equation (3.6).

This result follows from Theorem 4.24.

Next we discuss optimal curves for \/g ¢ N. Besides some curves of small genus (see
above), the only known examples of optimal curves are the Deligne-Lusztig curves S
and R associated to the Suzuki group Sz(q), ¢ = 2%*1, s > 1, and to the Ree group
R(q), g = 3%%1 s > 1, respectively [17, Sect. 11]. As a matter of terminology, S (resp.
R) will be call the Suzuki curve (resp. the Ree curve). After the work of Hansen-
Stichtenoth [43], Hansen [41], Pedersen [83], Hansen-Pedersen [42], the curves & and
R can be characterized as follows.

Theorem 4.12. The curves S and R are the unique curves (up to F,-isomorphic) X
defined over F, such that the following three conditions hold:

(1) #X(Fy) =¢*+1 (resp. #X(Fy) = ¢’ +1);
(2) X has genus qo(q — 1) (resp. 3qo(q¢ — 1)(q+ qo + 1)/2), where qo := 2° (resp.
3°);
(3) Autp, (X) = Sz(q) (resp. Autg, (X) = R(q)).
Moreover, the Suzuki curve S (resp. the Ree curve R) is the non-singular model of

Y79 _y 7ato-1 — qu(Xq _ XZ‘]_I),

(resp.
YIWe® — YW etao—1 — Xo(X9— qufl)
ZaW 290 _ YWV at290—1 — X 240 (29 — qufl)) .

In Sect. 4.3 we prove a stronger version of this theorem for the Suzuki curve.

Lemma 4.13. Let X be a curve defined over ¥, such that (1) and (2) in Theorem
4.12 hold. Then X is optimal; moreover:

(1) [fq = 228-1-1, hé\’,q(t) = (t2 4+ 2q0t + q)lIO(q;l);
(2) [fq = 328-1-1, h;\/‘,q(t) = (t2 + 3th + q)qo(q —1) (t2 + q)iIO(Q—l)(q+3q0+1)/2.

Proof. It is easy to see that Serre’s bound is not effective to bound #X(F,); in this
case one uses the so-called “explicit formula” (4.2) of Weil [93]: (following Stichtenoth
96, p. 183]) Let haq(t) = [12,(t — o) (t — &), oy = /ge¥ "%, and write
g
TPHX(Fy) =g + 77 — ¢ (ol +al);

j=1
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this equation can we rewritten as
g
#X(F )i = ;g + ;7% + cig™/? Z(a; +ak) — (#X(Fg) — H#X(F,)cig™?,
Jj=1
where ¢; € R. Now suppose that cq,..., ¢, are given real numbers. Then from the
above equation we obtain:
g

HXF ) A7) = An(0) + A (@) + 9= g™ Pay)—
(4.2) =

D _(#X(Fy) = #X(Fy))eig™?,

i=1
where A\, (t) := Dm, ¢it” and f,(f) = 14+ A\p(t) + An(671). Note that f,(f) € R
whenever ¢t € C and |t| = 1.

Case ¢ = 2! and g = qo(q — 1). Here we choose m = 2, ¢; = v/2/2, ¢y = 1/4. Then
fo(eV71) =1+ V/2c050 + cos(20)/2 = (cosh 4+ /2/2)? > 0. Then from (4.2) we have
#X(F)Aa(a %) < Xad"?) + Xala ?) + g,
so that #X(F,) < ¢* + 1, and hence X is optimal. Moreover, as #X (F,) = ¢* + 1 we
must have f>(¢~'/2a;) = 0 by (4.2) so that cosf; = —/2/2. Then a; + a; = —2q and

the result on hy ,(t) follows.

Case ¢ = 3% and ¢ = 3qo(q¢ — 1)(g + qo + 1)/2. Here we use m = 4, ¢, = /3/2,
c; = T/12, ¢35 = V/3/6, ¢4 = 1/12. Then fi(eV~") = 1 + /3cosf + Tcos(26)/6 +
V/3c05(30) /3 + cos(40) /6 = (1 + v/3cosh + c0s26)?/3 > 0. Then from (4.2)

#X(F)Ma(a™?) < M(@'?) + Mala™?) + g,

so that X (F,) < ¢*+ 1. Moreover, 1+ v/3cosf; + cos20; = 0 whenever X (F,) = ¢> +1.
Hence cosfl; = 0 or cosfl; = —+/3/2 so that

hao(t) = (2 + 3qot + q)* (12 + q)9™4,

where A is the number of j’s such that cosf; = —/3/2. To compute A we use the facts
that a; = #X(Fy) — (¢+1) = ¢* — ¢ and azy—y = ¢ 'a;. We have ay_y = h'y (0) =
3qoq? ' A and hence that A = qo(q* — 1). O

4.1. A F,-divisor from the Zeta Function. Assume now that X (F,) # 0, and fix a
F,-rational point Py € X. Let f = f™ : P — [P — Fy] be the canonical map from X
to its Jacobian over F,, J = {D € Div(X) : deg(D) = 0}/{div(x) : x € F,(X)*}. Let
®,' be the Frobenius morphism on J induced by ®,.

We recall some facts concerning the characteristic polynomial of @," which in fact turns

out to be the polynomial h(t) = hy 4(t) which was defined in Remark 4.1; see e.g. [77,
p. 205], or [76, proof of Thm. 19.1].
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For a prime ¢ different from char(F,), let J, denote the kernel of the isogeny J — 7,
P+ ('P. Then one defines the Tate modulo associated to J as the inverse limit of
the groups Jp, ¢ > 1, with respect to the maps Jp+1 — Jp, P — (P. We have
that #J: = (£4)?9 [77, p. 62] so that Jy is a finite abelian group such that for all 7,
1 < j < i it contains exactly (£/)%9 elements of order /. Therefore

T = (Z/0°Z)% and hence T,(J) = Zy,

where Z, denotes the (-adic integers. Thus T;(J) is a free Z,-module of rank 2g. Now
clearly ®,'(Jzi) C Jpi and hence ®, gives rise to a Z,-linear map T,(®,’) on Ty(J). Let
7 be the characteristic polynomial of T,(®,’). A priory we have that 7 is a polynomial
of degree 2¢g with coefficients in Z,. As a matter of fact, = € Z[t] [77, proof of Ch. IV,
Thm. 4], and 7 = h as we mentioned before. In particular, the minimal polynomial m
of T,(®,') has integral coefficients. We claim that

(4.3) m(®,) =0 on J .

To see this, notice that any endomorphism o € End(J) : J — J acts on Ty(J) giving
rise to a Zs-linear map Ty(«). This action is injective because End(J) is torsion free
and because of [77, Ch. IV, Thm. 3]. Now, as m(®,’) € End(J), we have

0=m(Te(®,)) = Te(m(®,"))

and (4.3) follows. Moreover, it is known that Q ® End(J) is a finite dimensional
semisimple algebra over Q whose center is Q[®,'] [77, Ch. IV, Cor. 3], [100, Thm.
2(a)]. In particular, Q[®,'] is semisimple and it is not difficult to see that T,(®,’) is
semisimple; cf. [77, p. 251]. This means that

m(t) = H hi(t)

where hy(t),..., hp(t) are the irreducibles Z-factors of h(t). Let U be the degree of
m(t) and let by, ..., by € Z be the coefficients of m(t) — tU; i.e,

U
m(t) =tV +) btV
=1

Thus (®,")V + 37 b;(®,')V~" = 0 by (4.3). Now we evaluate the left hand side of this
equality at f(P) = [P — P, and by using the fact that ®,/ o f = f o ®, we find that

(@ (P)) + Zaif(@qU’i(P)) =0, Pecx;

(4.4) ie, @, (P)+) ni® (P)~ (14D b)Py=m(1)P.
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This equivalence is the motivation to define on X’ the linear series
(4.5) Dy := [Im(1)| o],
which is clearly independent of Py being F-rational.

Problem 4.14. For a curve X over F,, how is the interplay among its F,-rational
points, its Weierstrass points, its Dy-Weierstrass points, and the support of the F-
Frobenius divisor of Dy.

Next we discuss some properties of Dy.
Lemma 4.15. (1) If P,Q € X(F,), then m(1)P ~ m(1)Q; in particular, |m(1)]| is
a Weierstrass non-gap at each P € X(F,).
(2) If #X(F,) > 29 + 3, then there exists P, € X(F,) such that |m(1)| — 1 and
|m(1)| are Weierstrass non-gaps at P;.

Proof. (1) Tt follows immediately from (4.4).

(2) (Following Stichtenoth-Xing [97, Prop. 1]) Let Q € X (F,) \ {FP}. From (1), there
exists a morphism z : X — PY(F,) with div(z) = |m(1)|P, — |[m(1)|Q. Let n be the
number of F -rational points of X which are unramified for . Let 2° : X — P(F,) be
the separable part of x. We have that div(z®) = |m(1)|'"Py — |m(1)|'Q (here |m(1)| is
the separable degree of z) and from the Riemman-Hurwitz applied to z* we find that

29 =22 [m()['(=2) +2(Im()|' = 1) + (#X(Fy) —n - 2),
so that n > #X(F,) —2¢g — 2. Thus n > 1 by hypothesis, and hence there exists
a € F,, P e X(F,) \ {P,Q} such that div(x — ) = P, + D — mQ with P;,Q ¢
Supp(D). Let y € F (X) be such that div(y) = |m(1)|Q — |m(1)|P; (cf. (1)). Then
div(y(z — a)) = D — (|m(1)| — 1) P, and (2) follows. O

Corollary 4.16. (1) Dy is base-point-free;
(2) If #X(F,) > 2g + 3, then Dy is simple.

Proof. (1) follows by Lemma 4.15 and Example 1.23
(2) Let P, be as in Lemma 4.15(2), ¢ a morphism associated to Dy, f1, f2 € Fq( )

such that dive(f1) = (Jm(1)| — 1) P, and dive(f2) = [m(1)|Py. Then [F,(X): F (f)]
i = 1,2, divides [F,(X) : F,(¢(X))] and the result follows.

Now we study (Dy, P)-orders. We let ¢ = 0 < € = 1 < ... < ey (resp. vy =
0 < ... < vy_1) denote the Dy-orders (resp. the F,-Frobenius orders) of Dy, where
N := dim(Dy). Notice that ny(P) = |m(1)| for any P € X(F,) by Lemma 4.15(1).
From Example 1.23 we obtain:

Lemma 4.17. For P € X(F,), the (Dx, P)-orders are

]N_Z(P):TLN(P)—TLZ(P), ZZO,]_,,N
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This result (for ¢ = 1) and Remark 4.10 yield the following.
Corollary 4.18. Let P € X(F,). If #X(F,) > q(|m(1)| —by) + 1, then jy_1(P) < by.
Lemma 4.19. Suppose

(4.6) b, >0, i=1,...,U,
and let P € X such that ®,'(P) # P fori=1,...,U. Then:

(1) The numbers 1,by, ..., by are (Dy, P)-orders;
(2) If in addition

(4.7) by >by:=1 and by >0b;, fori=1,...,U—1,

then by (resp. by — 1) is a Weierstrass non-gap at P whenever ®,V(P) # P
(resp. ®,VT(P) = P).

Proof. (1) Fix j € {0,1,...,U}, and let @ € X such that ®,77/(Q) = P (). From
(4.4) we have
> b®"Q) + 0P ~m(1)P.
i€{0,1,..,UN\ {5}
We claim that @, “(Q) # P; otherwise from () we would have &, /(P) = P, a
contradiction. This shows (1).

(2) Applying @, to (4.4) we have
®,"(P)+> i@, (P) ~ m(1)Py ~ &, (P) + Y 0@, H(P),
=1 =1

so that
U

buP ~ &,V (P) + ) (b — bi1) @, H(P),
i=1

and (2) follows. O

Remark 4.20. (i) Minimal curves as well as minimal curves with respect to Serre’s
bound (Remark 4.8) do not satisfy (4.6).

(ii) The Klein curve (Example 4.9) defined over F, satisfies (4.6) but not (4.7).

(iii) Other examples as in (i) and (ii) can be found in Carbonne-Henocq [9].
Corollary 4.21. Assume (4.6).

(1) If P ¢ X(Fy) and X(Fy) = ... = X(F ), then 1,by,...,by are (Dy, P)-orders.

(2) The numbers 1,by, ..., by are Dy-orders. In particular, dim(Dy) > U + 1 pro-
vided that b; # b; for i # j;

(3) If in addition (4.7) holds and g > by, then X is non-classical.
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Proof. Lemma 4.19(1) implies (1) and (2) since there are infinitely many points P such
that ®,(P) # P fori=1,...,U. To see (3) we take P € X such that ®,Y"'(P) # P.
Then by € H(P) by Lemma 4.19(2). If X were classical then n;(P) = g + 1 so that
g < by, a contradiction. O

Corollary 4.22. Assume (4.6).

(1) €N = Vn_1 = by;

(2) X(F,) C Supp(RP).

Proof. (1) We have ey_; < jy_1(P) for any P by Corollary 2.10(1); thus ex_; < by
by Corollary 4.18. Therefore ey = by by Corollary 4.21(2), and so

0" (Ly-1(P)) = ®,"(P) + ) _0;2," ' (P)

by (4.4), where ¢ is a morphism associated to Dy. It follows that ¢(®,(P)) € Ly_;(P)
so that UN—1 = €EN.

(2) By Lemma 4.17 jn(P) = ny(P) = m(1) for each P € X(F,). Since m(l) =
1+ 37 b > by = ey (cf. (1)), the result follows. O

Corollary 4.23. Assume (4.7). Then ny(P) < by for each P € X(F,), and equality
holds provided that #X(F,) > qby + 1.

Proof. Let P € X(F,). By Lemma 2.30 n,(P) < ny(Q) where ) ¢ W. Therefore
n1(P) < by by Lemma 4.19(2). Now if #X(F,) > ¢by + 1, then 1+ gn,(P) > gby + 1
by Remark 4.10 and the result follows. 0]

4.2. The Hermitian curve. Let X be a Fjp-maximal curve of genus g. Recall that
g < {(£+1)/2 by Corollary 4.3 and that the Hermitian curve is F,2-maximal of genus
(0 —1)/2 (cf. Example 3.15). From Lemma 4.2 and (4.5), X is equipped with the
linear series Dy := |(¢ + 1)Fy|. By Corollary 4.16, Dy is simple and base-point-free.
We see that X satisfies (4.7) (and hence (4.6)); in particular 1, ¢ are Dy orders so that
N :=dim(Dy) > 2.

Theorem 4.24. ([26, Thm. 2.4]) Let X be a Fp-mazimal curve of genus g. The
following statements are equivalent:

(1) X is Fy2-isomorphic to the Hermitian curve H of equation (3.6);

(2) g> (£ —1)*/4;
(3) N=2.

Proof. (1) implies (2) because the genus of H is ¢(¢ — 1)/2. Assume (2) and suppose
that N > 3. Then Castelnuovo’s genus bound (Remark 1.7) applied to Dy would yield
g < (£ —1)?/4, a contradiction. Finally let N = 2. By (4.4) ({+1)P ~ ({ + 1)P, for
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any P € X(F;2) and hence we can assume that ¢,/ +1 € H(F,) by Lemma 4.15(2);
in this case, as N = 2, nj(Py) = ¢ and no(FPy) =+ 1. Let ¢ =0 < ¢ =1 < €
(resp. vy = 0 < v1) denote the Dy-orders (resp. Fjp-orders) of X'. Then e; = 14 = £ by
Corollary 4.22. Let z,y € Fp2(X) such that divy(z) = (P and divy(y) = (€ + 1) .
We have thatx is a separating variable (Lemma 1.24) and therefore

1 "L‘Zz yéZ
2 2
(%) V&l’y,;x =det |1 =z Y = (z — 2t )DLy — (y — y)=0.
0 1 D;,y

Claim. There exists f € Fp2(X) such that Dly = f*.

To proof this we have to show that D.(DLly) = 0 (%) for 1 < i < ¢ by Remark 2.5(ii).
We apply D! to (¥): (z — 2®)DL(Dly) = 0 and so (%;) holds for i = 1. Suppose
that (%) is true for t = 1,...,7, 1 < j < £ —2. We apply D/ to (*) and using the
inductive hypothesis and Remark 2.5(i) we find that (z — 2 ) DIt (Dly) = Ditly. It
turns out that

' 1 =z Y
Winge! = {0 1 Dy | =Di"'y =0,
0 0 Ditly

since €5 = ¢, and the claim follows.

Claim. #x~ ' (x(P)) = for P # P,.

From (x) vp,(Dly) = —¢2. Let ¢ be a local parameter at Py. Then vp,(D}z) = (2 —1—2
since D}y = D}zDly by the chain rule (2.3). We have that deg(dz) = 2g — 2 (see
Example 1.1) and that vp(z) > 0 for P # Py. Therefore 29 — 2 > (2 — [ — 2; i.e.,
g >1(1—2)/2;ie. g=L{—1)/2 by Corollary 4.3. It follows that vp(dz) = 0 for
P # P, and so the claim.

We conclude that D%y = f* with div,nftyf = (P,; moreover f € F (X) since D}y €
F,(X). Then f = a+ bx with a,b € Fp2 and (x) gives a relation of type

(i +y — 2™ =yl +yf — it

Finally we have that y¢ +y; — "' = ¢ € F; and with 3, := 4, + A\, M + X = a, we
have that (3.6) holds; i.e., X is Fy2-isomorphic to H. O

Corollary 4.25. ([25]) The genus g of a Fp-mazimal curve satisfies
either g < ({—1)*/4 or  g=(l-1)/2.

Remark 4.26. This result was improved in [68] where it is shown that g < ((?—/¢+1)/6
whenever g < (¢ —1)?/4.
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4.3. The Suzuki curve. Set gy := 2%, s € N, q := 2¢3. Let X be a curve defined over
F, of genus g such that

(4.8) g=qo(qg—1) and  #X(F)=¢+1.

The main result of this sub-section is the following theorem which improves Theorem
4.12 for the Suzuki curve S.

Theorem 4.27. A curve X defined over ¥, is F-isomorphic to the Suzuki curve S if
and only if (4.8) hold true.

If (4.8) hold, then hy4(t) = (t* 4+ 2qot + q)¢ by Lemma 4.13(1), and from (4.5) we see
that X is equipped with the linear series

Dx = (g + 2q0 + 1) Py, P,e X(F,).

The results of Sect. 4.1 applied to this case are summarized in the following proposition.
Let N :=dim(Dy), ¢ =0< e =1< ... < ey (resp. vp =0 < ... < vy_1) be the
Dax-orders (resp. F,-Frobenius orders) of X.
Proposition 4.28. (1) jn(P) = ny(P) = ¢+ 2qo + 1 for any P € X(F,); in
addition, there exists Py € X(F,) such that ny_1(P1) = q + 2qo;
(2) Dy is simple and base-point-free;
(3) 2qo and q are Dx-orders so that N > 3;
(4) en =vN1 = ¢
(5) ni(P) = q for any P € X(F,).
From (5) and (1) above and Lemma 4.17, jy_(P) = jn(P) — ni(P) = 2¢p + 1 for any
P e X(F,) so that

20 <ey-1 < 2qo+ 1.

Lemma 4.29. ey 1 = 2qp.
Proof. Suppose that ey_; > 2¢qy. Then ex_s = 2qg and ey_; = 2¢q9 + 1. By Corollary

3.9(1) vy—2 < jn-1(P) — j1(P) < 2¢p = €x_2, and thus the F -Frobenius orders of Dy
would be €y, €, ...,ex 2, and ex. Now from Proposition 3.5(1)

(4.9) vp(S) > D (i(P) = wvim1) > (N = 1)1 (P) + 1+ 2g0 > N +2go
for P € X(F,) so that deg(S) = 3., v:)(29 —2) + (¢ + N)(¢ +2¢ + 1) > (N

2q0)#X(F,). From the identities 29 — 2 = (2¢0 — 2)(q + 2¢o + 1) and #X(F,)
(¢ —2q0 +1)(¢ + 2go + 1) we would have

N-2 N-2
ZI/Z' == Zﬁi Z (N—l)qU
1=1 =1

I+
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Now, as € +€; < €4 for i + j < N by Corollary 2.14,

N-2
(N=1)2g0= (N = 1)eny—2 > 2> € >2(N —1)qo,
i=0
and hence €;+ey_o_; = ey_o fori =0,..., N —2. In particular, ey_3 = 2gp — 1 and by

the p-adic criterion (Lemma 2.21) we would have ¢; = i for i = 0,1,..., N — 3. Then
N = 2¢y + 2. Now from Castelnuovo’s genus bound (Remark 1.7)

29 = 2q0(g — 1) < (¢ + 290 — (N = 1)/2)*)/(N = 1);
ie., 2qo(q — 1) < (¢ + )?/2q0 = qoq + q/2 + qo/2, a contradiction. O
Corollary 4.30. There exists Py € X (F,) such that

J(P) =1
Gi(P)=v; 1 +1 ifi=2,...,N—1.

Proof. Since we already observed that vp(S) > (N — 1)j1(P) +2qy + 1 > N + 2q, for
P e X(F,), it is enough to show that there exists P, € X' (F,) such that vp (S) =
N + 2¢y. Suppose that vp(S) > N + 2¢y + 1 for any P € X(F,). Then by Theorem
3.13

=

1
sz(I‘i‘N‘JO‘Fla

<.
Il
o

so that

N-1

Z € > Nqo+ 2,

i=0
because ¢ = 1, vy 1 = ¢ and v; < €;41. Then from Corollary 2.14 we would have
Neny_ 1 > 2Nqy + 4; i.e., ey 1 > 2Nqp, a contradiction by Lemma 4.29. O

Lemma 4.31. (1) 1 >e =1;
(2) € is a power of two.

Proof. If vy > ¢; =1, then v; = €5 and it must be a power of two by the p-adic criterion
(Lemma 2.21): i.e., (1) implies (2). Suppose now that vy = 1. Then from Corollary
4.30 there exists a point P, € X (F,) such that j(P) = 1, jo(P;) = 2; thus

H(P,) CH:=(q,q+29 —1,¢+2q0, ¢+ 2q0 + 1),

by Proposition 4.28(1)(5) and Lemma 4.17. In particular ¢ = ¢(¢ — 1) < § =
#(No \ H). This is a contradiction as follows immediately from the claim below.

Claim. g =g — ¢3/4.
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In fact, L := U?iol_lLi is a complete system of residues module ¢, where

L; = {ig+i(2¢p—1)+7:5=0,...,2i} if 1<i<gq—1,
Lg, = {wg+a—q+j:7=0,...,q9 — 1},
‘LLIO‘|‘1 = {(q0+1)q+1+].]:077q0_1}7

{(go+i)g+ (2 —3)qo+i—1+j:5=0,...,q0 — 2i +1}U
{lgo+i)g+ (20 —=2)go+i+j:5=0,...90— 1} if 2<i<qy/2,
Lsgo2+i = {(Bao/2+1i)g+ (q/2+1—1)2¢0—1)+qo+2i—1+j:
J=0,...,q0—2i—1} if 1<i<gqy/2—1.

Ll10+i

Moreover, for each ¢ € L,/ € H and { —q ¢ H. Hence g can be computed by summing
up the coefficients of ¢ from the above list (see e.g. [92, Thm. p.3]); i.e.,
g o= X020+ 1) + a3 + (a0 + Do + 05 (g0 + 1) (200 — 2+ 2)+
2-1 . .
S (300/2 4 ) (a0 — 20) = ao(q — 1) — /4.
O

In the remaining part of this sub-section we let P, = P, be a F-rational point satisfying
Corollary 4.30; we set n; := n;(P;) and v := vp,.

Lemma 4.31(1) implies v; = €¢;41 for i = 1,..., N — 1. Therefore from Corollary 4.30
and Lemma 4.17 we have

n; =2qo+q— en_; ifi=1,...N =2
(4.10)
ny-1=2q+q, ny=1+2q+q.
Let z,ys,...,yny € Fy(X) be such that dive(z) = ni Py, and dive(y;) = n; P, for
i=2,...,N. The fact that v; > 1 means that the following matrix has rank two (see
Sect. 3)
Loz yd oo ys
1 =z Yo ... Yy
0 1 Dly, ... Dly,

In particular,
(4.11) y! —y; = Diy;(2? — z) for i=2,...,N.

Lemma 4.32. (1) (29 —2)P is canonical for any P € X(F,); i.e., the Weierstrass
semigroup at such a P is symmetric;
(2) Let m € H(Py) such that m < g+ 2qo. Then m < q + qo;
(3) There exists g; € Fy(X) such that Dly; = g¢i* for i2,...,N. Furthermore,
dlvoo(gz) = qmi;qz Pl.

€

Proof. (1) By the identity 2g — 2 = (2¢0 — 2)(q¢ + 2¢p + 1) and (4.4) we can assume
P = P;. Now the case i = N of Eqs. (4.11) implies v(dz) = 2g — 2 and the result
follows since vp(dx) > 0 for P # P;.
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(2) From (4.10), q¢,q + 2o and ¢ + 2¢gp + 1 € H(P;). Then the numbers
(290 —2)g+q —4q0 +J J=0,...,q00—2
are also non-gaps at P;. Therefore, by the symmetry of H(Py),
q+q+1+y J=0,...,q90—2
are gaps at P, and the proof follows.

(3) Set f; := Dly;. We have Diy; = (27 — z)Dif; + DY Vf, for 1 < j < ¢ by the
product rule applied to (4.11). Then, D’ f; = 0 for 1 < j < €y, because the matrices

1 =z y ... yn
01 D}tyz . D;.yN , 2 < ] < €9

have rank two (see Sect. 2.2). Consequently, as €, is a power of two by Lemma 4.31(2)),
from Remark 2.5(2), f; = g;* for some g; € F,(X). Finally, from the proof of (1) we
have that x — xz(P) is a local parameter at P if P # P;. Then, by the election of the
yi’s, g; has no pole but in Py, and from (4.11), v(g;) = —(qgm; — ¢*) /€. O

Lemma 4.33. N =4 and €3 = q.

Proof. We know that N > 3. We claim that N > 4 otherwise we would have €5 = 2q,
ni = q, ng = q+ 2qo, n3 = g+ 2qo + 1, and hence v(gy) = —q (with g being as in
Lemma 4.32(3)). Therefore, after some F-linear transformations, the case i = 2 of
(4.11) reads

yd —yy = 2 (27 — ).

Now the function z := yd® — z®*! satisfies 29 — z = 2% (27 — x) and we find that ¢, + ¢
is a non-gap at P, (cf. [43, Lemma 1.8]). This contradiction eliminates the possibility
N = 3.

Let N > 4 and 2 < i < N. By Lemma 4.32(3) (qn; — ¢*)/e; € H(P;), and since
(qn; — ¢*)/ea > ni_1 > q, by (4.10) we have

2q0262+6N—i fori:2,...,N—2.

In particular, e < go. On the other hand, by Lemma 4.32(2) we must have ny_o <
q + qo and so, by (4.10) we find that €5 > qq; i.e., €2 = qo.

Finally we show that N = 4. e; = ¢ implies ey o < gp. Since ny < ¢+ g (cf. Lemma
4.32(2)), by (4.10), we have ey o > qo. Therefore ey o = gy = €5 so that N = 4. O

Proof of Theorem 4.27. Let P, € X(F,) be as above. By (4.11), Lemma 4.32(3) and
Lemma 4.33 we have the following equation

Y5 — Yo = g5 (27 — ) ,
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where go has no pole except at P;. Moreover, by (4.10), no = g + ¢ and so v(g2) = —¢q
(cf. Lemma 4.32(3)). Thus go = ax + b with a,b € Fy, a # 0, and after some F -linear
transformations (as those in the proof of Theorem 4.24) the result follows.

Remark 4.34. (i) From the above computations we conclude that the Suzuki curve
S is equipped with a complete, simple and base-point-free gg +2g0+1» namely Ds =
|(g+2q0+1)Py|, Py € S(F,). Such a linear series is an F -invariant. The orders of Dg
(resp. the F,-Frobenius orders) are 0,1, g, 2¢p and ¢ (resp. 0, g, 2gp and q).

(ii) There exists P, € S(F,) such that the (Dg, P;)-orders are 0,1, gy + 1,2¢y + 1 and
q + 2qy + 1 (Corollary 4.30). Now we show that the above sequence is, in fact, the
(Ds, P)-orders for each P € S(F,). To see this, notice that

deg(S) = (3q0+¢)(29 — 2) + (g + 4)(q + 2q0 + 1) = (44 2¢9)#S(F,).
Let P € S(F,). By (4.9) we conclude that vp(SP) = S0, (ji(P) — vi_1) = 4 + 2qp
and so, by Proposition 3.5(1) that j;(P) = 1, ja(P) = qo + 1, j3(P) = 2¢gp + 1, and
Ja(P) = q + 2qo + 1.
(iii) Then, by Lemma 4.17 H(P) contains the semigroup H := (q,q + qo,q + 2q0,q +

2go+ 1) whenever P € S(F,). Indeed H(P) = H since #(Ny \ H) = g = qo(¢—1) (this
can be proved as in the claim in the proof of Lemma 4.31(1); see also [43, Appendix]).

(iv) We have
4
deg(R) = > (29 —2) +5(q+2g0 + 1) = (2q0 + 3)#S(F,) ,
i=0
and vp(R) = 2¢qo+3 for P € S(F,) as follows from (i), (ii) and Sect. 2.2. Therefore the
set of Dg-Weierstrass points of S is equal to S(F,). In particular, the (D, P)-orders
for P ¢ S(F,) are 0, 1, qo, 2¢o and g¢.

(v) We can use the above computations to obtain information on orders for the canon-
ical morphism on S. By using the fact that (2¢y — 2)Ds is canonical (cf. Lemma
4.32(1)) and (iv), we see that the set {a 4+ qob+ 2qoc +qd :a +b+c+d < 2gy — 2} is
contained in the set of orders of s at non-rational points. (By considering first order
differentials on S, similar computations were obtained in [30, Sect. 4].)

(vi) Finally, we remark that S is non-classical for the canonical morphism: We have
two different proofs for this fact: loc. cit. and Corollary 4.21(3).

Remark 4.35. (A. Cossidente) Recall that an ovoid in PV (F,) is a set of points P no
three of which are collinear and such that for each P the union of the tangent lines at
P is a hyperplane; see [49]. We are going to related the Suzuki-Tits ovoid O in P*(F,)
with the Fg-rational points of the Suzuki curve S.

It is known that any ovoid in P*(F,) that contains the point (0:0:0:0: 1) can be
defined by

{(T:a:b: f(a,b) :af(a,b) +b*):a,b € FyU{(0:0:0:0:1)},
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where f(a,b) := a?®F! 4 p?D0; f. [102], [85, p.3].

Let ¢ = (1:x:y:z:w) be the morphism associated to Dgs such that divy(x) = ¢F,
diveo (y) = (g + q0) Po, divee(2) = (¢ + 2g0) Py and dive, (w) = ¢ + 2go + 1; see Remark
4.34(ii).

Claim. O = ¢(S(F,)).

Indeed we have ¢(FPy) = (0 : 0 : 0 : 0 : 1); in addition the coordinates of ¢ can be
choosen such that y?9 —y = % (29 — ), z 1= p?©T! 4 420 and w = Ty?® + 220 =
Ty?00 4+ 2020 4927 (see [43, Sect. 1.7]). For P € S(F,)\{Py} set a := x(P), b := y(P),
and f(a,b) := z(a,b). Then w(a,b) = af(a,b) + b* and the claim follows.

Remark 4.36. The morphism ¢ in the previous remark is an embedding. To see this,
as j1(P) = 1 for any P € S ( Remarks 4.34(ii)(iv)), it is enough to show that ¢ is
injective. We have

(4.12) (q+2q0 + 1) Py ~ ¢@,*(P) + 290%,(P) + P

so that the points P € S where ¢ could not be injective satisfy either P ¢ S(F,),
or ®*(P) = P or ®,(P) = P. Now from the Zeta function of S one sees that
#S(Fp) = #S(F,2) = #S(F,), and the remark follows.

Remark 4.37. From the claim in Remark 4.35, (4.12) and [48] we have

Autg, (S) = Autg, (S) = {A € PGL(5,¢) : A0 = O}

5. PLANE ARCS

In this section we show how to apply Sections 2 and 3 to study the size of plane arcs.
The approach is from Hirschfeld-Korchmaros [50], [51] and Voloch [106], [107]. Our
exposition follows [36].

A k-arc in P?(F,) is a set K of k points no three of which are collinear. It is complete
if it is not properly contained in another arc. For a given ¢, a basic problem in Finite
Geometry is to find the values of k for which a complete k-arc exists. Bose [6] showed
that

k< m(2q) = {q—l—l if ¢ is odd,

q+ 2 otherwise.

For ¢ odd the bound m(2,¢q) is attained if and only if I is an irreducible conic [90],
[49, Thm. 8.2.4]. For ¢ even the bound is attained by the union of an irreducible conic
and its nucleus, and not every (q + 2)-arc arises in this way; see [49, Sect. 8.4]. Let
m'(2,q) denote the second largest size that a complete arc in P?(F,) can have. Segre
[90], [49, Sect. 10.4] showed that

—i\/a—l—g if ¢ is odd,
q—/q+1 otherwise.

(5.1) m'(2,q) < {
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Besides small ¢, namely ¢ < 29 [11], [49], [53], the only case where m/(2,¢) has been
determined is for ¢ an even square. Indeed, for ¢ square, examples of complete (¢ —
VG + 1)-arcs [5], [12], [18], [23], [60] show that

(5.2) m'(2,q) > q—+/q+1,

and so the bound (5.1) for an even ¢ square is sharp. This result has been recently
extended by Hirschfeld and Korchméros [52] who showed that the third largest size
that a complete arc can have is upper bounded by ¢ —2,/q + 6.

If ¢ is not a square, Segre’s bounds were notably improved by Voloch [106], [107].

If ¢ is odd, Segre’s bound was slightly improved to m'(2,q) < ¢ — /g/4 + 25/16 by
Thas [101]. If ¢ is an odd square and large enough, Hirschfeld and Korchmaros [51]
significantly improved the bound to

5)

3

Inequalities (5.2) and (5.3) suggest the following problem, which seems to be difficult
and has remained open since the 60’s.

(53) m(20) < 4~ 5T+

Problem 5.1. For ¢ an odd square, is it true that m/(2,¢) = ¢ — /g + 17

The answer is negative for ¢ = 9 and affirmative for ¢ = 25 [11], [49], [53]. So Problem
5.1 is indeed open for ¢ > 49.

5.1. B. Segre’s fundamental theorem: Odd case. We recall a fundamental theorem of
Segre which is the link between arcs and curves.

Let K be an arc in P?(F,). Segre associates to K a plane curve C in the dual plane
of P?(F,). This curve is defined over F, and it is called the envelope of K. For
P € P%(F,), let £ denote the corresponding line in the dual plane. A line ¢ in P%(F,)
is called an i-secant of IC if #)C N ¢ = i. The following result summarizes the main
properties of C for the odd case.

Theorem 5.2. (B. Segre [90], [49, Sect. 10]) If g is odd, then the following statements
hold:

(1) The degree of C is 2t, with t = ¢ — k + 2 being the number of 1-secants through
a point of IC.

(2) All kt of the 1-secants of K belong to C.

(3) Each 1-secant £ of K through a point P € K is counted twice in the intersection
of C with lp; i.e., I(C,lp;l) = 2.

(4) The curve C contains no 2-secant of K.

(5) The irreducible components of C have multiplicity at most two, and C has at
least one component of multiplicity one.
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(6) For k > (2q + 4)/3, the arc K is incomplete if and only if C admits a linear
component over F,. For k > (3¢ + 5)/4, the arc K is a conic if and only if it
is complete and C admits a quadratic component over F,.

Next we show some properties of C. Recall that a non-singular point P of a plane curve
A is called an inflezion point of A if I(A,¢; P) > 2, with ¢ being the tangent line of A
at P.

Definition. A point F; of C is called special if the following conditions hold:

(i) it is non-singular;
(ii) it is Fy-rational;
(iii) it is not an inflexion point of C.
Then, by (i), a special point Py belongs to an unique irreducible component of the
envelope which will be called the irreducible envelope associated to Py or an irreducible
envelope of K.
Lemma 5.3. Let Cy be an irreducible envelope of K. Then

(1) C, is defined over F;
(2) if q is odd and the k-arc K, with k > (3¢ +5)/4, is complete and different from
a conic, then the degree of Cy is at least three.

Proof. (1) Let C; be associated to Py, let ® be the Frobenius morphism (relative to F,)
on the dual plane of P%(F,), and suppose that C; is not defined over F,. Then, since
the envelope is defined over F, and F; is F,-rational, F, would belong to two different
components of the envelope, namely C; and ®(C;). This is a contradiction because the
point is non-singular.

(2) This follows from Theorem 5.2(6). O

The next result will show that special points do exist provided that ¢ is odd and the
arc is large enough.

Proposition 5.4. Let K be an arc in P*(F,) of size k such that k > (2¢+4)/3. If q
15 odd, then the envelope C of KC has special points.

Remark 5.5. The hypothesis £ > (2¢ + 4)/3 in the proposition is equivalent to k > 2t¢,
with t = ¢ — k 4+ 2. Also, under this hypothesis, the envelope C is uniquely determined
by K, see [49, Thm. 10.4.1(i)].

To prove Proposition 5.4 we need the following lemma.

Lemma 5.6. Let A be a plane curve defined over F, and suppose that it has no multiple
components. Let o be the degree of A and s the number of its singular points. Then,

()

and equality holds if A consists of a lines no three concurrent.
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Proof. That a set of « lines no three concurrent satisfies the bound is trivial. Let G = 0
be the equation of A, let G = G ... G, be the factorization of G in F,[X,Y], and let
A; be the curve given by G; = 0. For simplicity we assume « even, say a = 2M.
Setting «; = deg(G;), i = 1,...,r and [ := Z:;ll a; we have o, = 2M — I. The
singular points of A arise from the singular points of each component and from the
points in A4; N A, i # j. Recall that an irreducible plane curve of degree d has at most

(d;) singular points, and that #.4; N A; < a;a;, i # j (Bézout’s Theorem). So

r—1 r—1
a; — 1 2M -1 -1
s < E < 5 ) + < 5 ) + | E Qi Gy + E (2M — I
i=1 1< <2 <r—1 1=1

r—1 9 2 2

o —30; +2  AM  —4AMI +1° —6M + 31 + 2
-y n + Y ana, + (@M -DI
2 5 ;g + ( )

2

1< <ea<r—1
1 r—1 , ) ,
= 5[Zai — 31 +2(r —1)+4M? —AMI + I> — 6M + 31 + 2+
=1
2 Y a0, +AMI - 207

1< <i2<r—1

<2M? —3M +a =2M*—- M.
O

Proof. (Proposition 5.4) Let F' = 0 be the equation of C over F,. By Theorem 5.2(5),
F admits a factorization in F,[X,Y, Z] of type

Gy .G H ... H,
with » > 1 and s > 0. Let A be the plane curve given by
G:ZGl...GTZO.

Then A satisfies the hypothesis of Lemma 5.6 and it has even degree by Theorem
5.2(1). From Theorem 5.2(3) and Bézout’s theorem, for each line ¢p (in the dual
plane) corresponding to a point P € K, we have

where 2M = deg(G), and so at least kM points corresponding to unisecants of K
belong to A. Since k > 2¢ (see Remark 5.5) and 2¢ > 2M, then kM > 2M? and from
Lemma 5.3 we have that at least one of the unisecant points in A, says Py, is non-
singular. Suppose that P, passes through P € K. The point F; is clearly F,-rational
and Py is not a point of the curve of equation H = 0: otherwise I(Py,C N{p) > 2 (see
Theorem 5.2(3)). Then, I(Py,CN{p) = I(Py, AN{p) =2 and so lp is the tangent of
C at Fy. Therefore P, is not an inflexion point of C, and the proof of Proposition 5.4
is complete. 0]
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Let C; be an irreducible envelope associated to a special point Py, and
m: X —Cq,

the non-singular model of C;. Then by Lemma 5.3(1) we can assume that X and 7 are
both defined over F,. In particular, the linear series ¥; cut out by lines of P?(F,)* on
X is F-rational. Also there is just one point Py € X such that 7T(P0) P.

Lemma 5.7. Let q be odd. Then,

(1) the (X1, Py)-orders are 0,1, 2;
(2) the curve X is classical with respect to ¥;.

Proof. (1) follows from the proof of Proposition 5.4 while (2) from (1) and Corollary
2.10(1). 0

Remark 5.8. The hypothesis ¢ odd in Lemma 5.7 (as well as in Proposition 5.4) is
necessary. In fact, from [23] and [101] follow that the envelope associated to the cyclic
(¢ — \/q + 1)-arc, with ¢ an even square, is irreducible and F-isomorphic to the curve
of equation XY V7 4+ XVi7 + Y 7V® = (. It is not difficult to see that this curve is
F,-isomorphic to the Hermitian curve H in Example 3.15 (see e.g. [15, p. 4711]) so
that it is ¥; non-classical.

Next consider the following sets:
X (F,) :={PeX:n(P)e
Xi1(Fy) :={P € Xi(F,) : jo(P) =
Xip(Fg) ={P € Xi(F,) : j,(P) #

and the following numbers:

(5-4) M, = MQ(CI) = Z j11(P)a Mé = Mq'(cl) = Z j11(P),

PEX11(Fy) PEX;5(Fy)
where 0 < j{(P) < ji(P) denotes the (X, P)-order sequence. We have that
Mg+ M, > #X(Fg) > #X(F,)  and  #X(F,) > #Ci(F,).

Proposition 5.9. Let K be an arc of size k and d the degree of an irreducible envelope
of K. For My and M, as above we have

2M, + M. > kd.

To prove this proposition we first prove the following lemma.

Lemma 5.10. Let IC be an arc and C; an irreducible envelope of K. Let (Q € K and
Ag be the set of points of Ci corresponding to unisecants of K passing through (). Let
u = #Aq and v be the number of points in Ag which are non-singular and inflexion
points of Cy. Then

2u—v)+v>d,
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where d is the degree of Cy.

Proof. Let P' € Ag. Suppose that it is non-singular and an inflexion point of C;. Then,
from Theorem 5.2(3) and the definition of Ag, we have that {¢ is not the tangent line
of C; at P’, i.e. we have that I(P’,C;N{g) = 1. Now suppose that P’ is either singular
or a non-inflexion point of C;. Then from Theorem 5.2(3) we have I(P',Cy N{g) < 2
and the result follows from Bézout’s theorem applied to C; and Z. U

Proof of Proposition 5.9. Let Q € K and Ag be as in Lemma 5.10. Set
Yo :={P € Xi(F,) : w(P) € Ag},
and
m@ =2 Y P+ Y ji(P).
PeX1(F)NVo PeX1(Fy)NVo

We claim that m(Q) > d. Indeed, this claim implies the proposition since, from
Theorem 5.2(4),

YoNYo, =10 whenever Q+#Q.

To prove the claim we distinguish four types of points in Vg, namely

Y4 :={P € Yq : 7(P) is non-singular and non- inflexion point of C;}

yé :={P € Vg : 7(P) is a non-singular inflexion point of C, },

Vo, :={P € Yo : 7(P) is a singular point of C; such that #7~'(7(P)) = 1},

V4 :={P € Yq : 7(P) is a singular point of C; such that #=~'(xr(P)) > 1}.
Observe that Y5, C X11(F,) and so

m(@Q)>2 > J(P)+ D> iR+ Y AP+ Y iP).

PeYh PeY} PeYy PeY}
Since ji (P) > 1 for all P € ), the above inequality becomes
m(Q) > 24V + 2#V4 + #Vo + #V -

Therefore, as to each singular non-cuspidal point of C; in Ay corresponds at least two
points in Y}, it follows that

m(Q) > 2#{P" € Ag : P' is either singular or not an inflexion point of C; }+
#{P' € Ag : P' is a nonsingular inflexion point of C;} .

Then the claim follows from Lemma 5.10 and the proof of Proposition 5.9 is complete.
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5.2. The work of Hirschfeld, Korchmaros and Voloch. Throughout the whole sub-
section we fix the following notation:

e ¢ is a power of an odd prime p;

e [ is a complete arc of size k such that (3¢ +5)/4 < k < m'(2, q); therefore the
degree of any irreducible envelope of K is at least three by Theorem 5.2(6);

e P is a special point of the envelope C of K and the plane curve C; of degree d
is an irreducible envelope associated to Fy;

e 7 : X — (C; is the normalization of C; which is defined over F ; as a matter of

terminology, X will be also called an irreducible envelope of .

P, is the only point in X such that 7(P,) = Py; g is the genus of X' (so that

g < (d—1)(d-2)/2)

The symbols M, and M are as in Sect. 5.1;

¥ is the linear series g2 cut out by lines of P?(F,)* on X; ¥, is the linear series

g5, cut out by conics of P2(F,)* on X; then ¥y = 2%;. Notice that dim(3;) =5

because d > 3 and that ¥; and Y5 are base-point-free;

e S is the F,-Frobenius divisor associated to ¥y;

e js(P,) is the 5th positive (X3, Py)-order; e is the 5th positive Yy-order; vy is
the 4th positive F,-Frobenius order of Y.

We apply the results in Sects. 2 and 3 to ¥X; and ¥5. We have already noticed that
the (X1, Py)-orders, as well as the ¥;-orders, are 0,1 and 2; see Lemma 5.7. Then, the
(23, Py)-orders are 0,1,2,3,4 and j5(Py), with 5 < j5(Py) < 2d, and the Ys-orders are
0,1,2,3,4 and €5 with 5 < e5 < j5(P).

Then, we compute the F -Frobenius orders of ¥;. We apply Proposition 3.5(1) to P,
and infer that this sequence is 0,1,2,3 and vy, with

vy € {4,65} .

Therefore

deg(S) = (6 +v4)(29 — 2) + (¢ + 5)2d,
and

vp(S) > 551 (P), for each P € X\ (F,),
where j2(P) stands for the first positive (35, P)-order.
Claim. j?(P) equals j}(P) (the first positive (X, P)-order).
Proof. Let ¥y = {E +div(f) : f € X1\ {0}}. From Sect. 2.2 we can assume that
¥ = (1, z,y) where

(+) ji(P)=vp(E) +vp(x) and 5 (P)=vp(E)+uvp(y).
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Now Xy = {2F + div(f) : f € ¥, \ {0}}, where ¥}, = (1, 2,9, zy, 2 y*), and there
exists f € 3, such that

Ji(P) =vp(2E) +vp(f).
Let f = ap+ a1 + agy + a3z + ayzy + asy?®. From Lemma 1.4,

vp(2E) = —min{vp(1),vp(x),vp(y), vp(2?), ve(zy), vp(y*)} .

Suppose that 0 < vp(z) and 0 < vp(y). Then vp(2E) = 0 so that vp(f) = j2(P) > 0
and hence ap = 0. Then the result follows from (x). Now suppose that 0 > vp(x) or
0 > vp(y). Then vp(2F) < 0 and hence a; # 0 for some i € {1,...,5}. Then the result
follows from () and the fact that vp(f) > min{vp(z),vp(y),ve(z?), ve(xy), ve(y?)}.

U

We then have
deg(S) > 5(M, + Mé) ,
where M, and M; were defined in (5.4).

Proposition 5.11. Let K be a complete arc of size k such that (3¢ +5)/4 < k <

m/(2,q). Then
. 1 7 28 + 41/4 32 + 21/4
k< — = -
<min{g = vt 0 o9 94, )
where vy is the 4th positive F,-Frobenius order of the linear series o defined on an

irreducible envelope of KC.

Proof. From the computations above and Proposition 5.9,
5
deg(S) = (6 + v4)(29 — 2) + (¢ +5)2d > 5(M, + M) > k.

Now d(d—3) > 2¢g—2 and d < 2t =2(¢+2—k) (Theorem 5.2(1)). Then k(29 +v4) <
(28 + 4v4)q + (32 4 2v4). On the other hand, vy < j5(Fp) — 1 < 2d — 1 (Proposition
3.5(1)) and hence k < g —vq/4+ 7/4. O

Next we consider separately the cases v, = 4 and vy = €.

Case v, = 4. In this case, the corresponding irreducible envelope will be called
Frobenius classical. Proposition 5.11 becomes the following.

Corollary 5.12. Let K be a complete arc of size k such that (3¢+5)/4 < k <m/(2,q).
Suppose that K admits a Frobenius classical irreducible envelope. Then

The bound in the corollary holds in the following cases:
(A) (Voloch [107]) Whenever ¢ = p is an odd prime;

(B) (Giulietti [35]) The arc is cyclic of Singer type whose size k satisfies 2k # —2,1,2,4
(mod p), where p > 5.
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For the sake of completeness let us prove (A): Let C; be an irreducible envelope of K
and d the degree of C;. If p < 2d, then p < 4t = 4(p+2—k) so that k < (3p+8)/4 and
the result follows. So let p > 2d. Then from Remark 3.10 we have that C; is Frobenius
classical and (A) follows from Proposition 5.11.

Next we show that, for ¢ square and k& = m’(2, q), Corollary 5.12 can only hold for ¢
small.

Corollary 5.13. Let K be an arc of size m'(2,q) and suppose that q is a square. Then,

(1) if ¢ > 9, K has irreducible envelopes;
(2) if ¢ > 43%, any irreducible envelope of K is Frobenius non-classical.

Proof. (1) As we mentioned in (5.2), m/(2,q) > ¢—./q+1. Since ¢—\/g+1 > (2¢+4)/3
for ¢ > 9, (1) follows from Proposition 5.4.

(2) If existed a Frobenius classical irreducible envelope of I, then from Lemma 5.14
and (5.2) we would have

q—+q+1<m'(2,q) <44q/45+ 40/45 .
so that ¢ < 432. O

Case vy = €5. Here, from Lemma 3.16 we have that p divides e5. More precisely we
have the following result.

Lemma 5.14. FEither €5 is a power of p or p = 3 and €5 = 6.

Proof. We can assume €5 > 5. If €5 is not a power of p, by the p-adic criterion (Lemma
2.21) we have p < 3 and € = 6. O

From Proposition 5.11, the case v, = €5 = 6 provides the following bound:

Lemma 5.15. Let K be a complete arc of size k such that (3¢ +5)/4 < k < m'(2,q).
Suppose that K admits an irreducible envelope such that vy = €5 = 6. Then p = 3 and

As in the case vy = 4, for ¢ an even power of 3 and k = m/(2,¢q) the case vy = €5 =6
occur only for ¢ small. More precisely, we have the following result.

Corollary 5.16. Let K be an arc of size m'(2,q). Suppose that q is an even power of
p and that KC admits an irreducible envelope with vy = €5 = 6. Then p =3 and q < 3°.

Proof. From the p-adic criterion (Lemma 2.21), p = 3. Then from Proposition 5.11
and (5.2) we have

q—+q+1<m'(2,q) <52¢/53+44/53,
and the result follows. O
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From now on we assume
vy = €5 = a power of p.
Then, the bound

1 7
5.5 E<qg— - —
(5.5) =q 4V4+4

in Proposition 5.11 and Segre’s bound (5.1) provide motivation to consider three cases
according as vy > \/q, vy < \/q, or vy = /4.
Case v4 > ,/q. Since vy is a power of p, here we have that v? > pq and so from (5.5)
the following holds:
Lemma 5.17. Let K be a complete arc of size k such that (3¢ +5)/4 < k < m'(2,q).
Suppose that IC admits an irreducible envelope such that vy is a power of p and that
vy > \/q. Then

k< q— i\/pq+£ if q s not a square,

— ip\/ﬁ + % otherwise.

If ¢ is a square and k = m'(2,¢q), then v, > /g can only occur in characteristic 3:

Corollary 5.18. Let K be an arc of size m'(2,q). Suppose that q is an even power of
p and that K admits an irreducible envelope with vy a power of p and vy > \/q. Then

p =3, vs=3,/q, and

3 7
ksq_z\/a—f‘z-

Proof. From Lemma 5.17 and (5.2) follow that ,/g(p —4) < 3 and so that p = 3. From
vy <2d—1and 2d < 4t = 4(q¢ + 2 — m'(2,q)) < 4,/q + 4 we have that vy < 4,/g+3
and it follows the assertion on v4. The bound on k follows from Lemma 5.17. O

Case vy < ,/q. Let
F(z):= 2z +32—q)/(4x + 29) .

Then the bound
28 + 41/4 32 + 21/4

< +
- 29+4V4q 29+4V4
in Proposition 5.11 can be written as

(5.6) k< q+F(va).

For > 0, F(x) is an increasing function so that

F(w) < F(\/q/p) :—i\/pqﬂL%pﬂL%—i-R if ¢ is not a square,
4 - .
F(yq/p) = —ip\/a + %pZ + % + R otherwise,

where
_ 841p—280
R— 16(4+/q/p+29)
_ 841p>—280
16(44/q/p+29)

if ¢ is not a square,

otherwise.
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Then from (5.6) and since R < 0 we have the following result.

Lemma 5.19. Let K be a complete arc of size k such that (3¢ +5)/4 < k < m'(2,q).
Suppose that IC admits an irreducible envelope such that vy is a power of p and that

vy </q. Then

I < — i\/pq + %p + % if q is not a square,
— ip\/a + %_2192 + % otherwise.
Corollary 5.20. Let K be a complete arc of size m'(2,q). Suppose that q is an even

power of p and that K admits an irreducible envelope with vy a power of p and vy < \/q.
Then one of the following statements holds:

(1) p=3, va = \/q/3, and m'(2, q) satisfies Lemma 5.19.
(2) p=5, ¢=>5% vy =5, and m'(2,5%) < 613;

(3) p=5, ¢ =55, vy =52, and m'(2,5%) < 15504;

4) p=7,q=T" vy =7, and m'(2,7%) < 2359.

Proof. Let ¢ = p**; s0 e > 2 as p < vy < p°. From (5.2) and Lemma 5.19 we have that
(p—4)p°/4 < 29p*/16 — 0.5,
so that p € {3,5,7,11}.
Let p=3. If vy < /q/9 (so e > 4), then from (5.2) and m/(2,q) < q + F(\/q/9) we
would have that
¢— i+ 1< q—9,q/4+2357/16 — 67841/16(43° 2 + 29) ,
which is a contradiction for e > 4.

Let p = 11. Then p® < 125 and e = 2 and v4 = 11. Thus from Proposition 5.11 we
have m/(2,11%) < 11* + F(11), i.e. m/(2,11%) < 14441. This is a contradiction since
by (5.2) we must have m’(2,11*) > 14521. This eliminates the possibility p = 11.

The other cases can be handled in an analogous way. O

Case vy = ,/q. In this case, according to (5.5), we just obtain Segre’s bound (5.1).

Next we study geometrical properties of irreducible envelopes associated to large com-
plete arcs in P?(F,), ¢ odd. In doing so we use the bounds obtained above and divide
our study in two cases according as ¢ is a square or not.

Case ¢ square. Let X be an irreducible envelope associated to an arc of size m’(2, q).
Then from Lemma 5.7, and Corollaries 5.13, 5.16, 5.18, 5.20, we have the following
result.

Proposition 5.21. If ¢ is an odd square and q > 432, then X is 3, -classical. The 3o-
orders are 0,1,2,3,4, €5 and the F,-Frobenius Yg-orders are 0,1,2,3, vy, with €5 = vy,
where also one of the following holds:
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(1) va € {V/4/3,3/a} forp=3;
(2) (V47 Q) € {(57 54)7 (527 56)7 (77 74)};
(3) vy = \/q for p>5.

Case ¢ non-square. In this case there is no analogue to bound (5.2). From Corollary
5.12 and Lemmas 5.15, 5.17, 5.19, and taking into consideration (5.6) we have the
following result.

Proposition 5.22. Let ¢ > 43? and ¢ = p**™', e > 1. Then, apart from the values on
vy, the curve X, vy and €5 are as in Proposition 5.21. In this case

m'(2,q) > ¢ — 3\/pg/4 +T7/4
implies

(1) va = \a/p;

(2) M'(2,q) < q—/Pq/4+29p/16 4 1/2.

In particular, our approach just gives a proof of Segre’s bound (5.1) and Voloch’s

3

bound [107]. However, both propositions above show the type of curves associated to
large complete arcs. The study of such curves, for ¢ square and large enough, allowed
Hirschfeld and Korchmaros [50], [51] to improve Segre’s bound (5.1) to the bound in
(5.3).

Next we stress here the main ideas from [51] necessary to deal with Problem 5.1. Due
to Proposition 5.9, the main strategy is to bound from above the number 2M, + Mé
(which is defined via (5.4)). For instance, if one could prove that

(5.7) 2M, + M, < d(q —\/q+ 1),

where d is the degree of the irreducible envelope whose normalization is X', then from
Proposition 5.9 would follow immediately an affirmative answer to Problem 5.1. How-
ever, since we know the answer to be negative for ¢ = 9 and d < 2t = 2(¢+2—-m/(2,q)),
then one can assume that d is bounded by a linear function on /g and should expect
to prove (5.7) only under certain conditions on g.

Lemma 5.23. Let q be an odd square. If (5.7) holds true for d < 2,/q—a with o > 0,
then m'(2,q) < ¢ — \/q+2+ /2. In particular, if (5.7) holds true for d < 2,/q, then
the answer to Problem 5.1 is positive; i.e,, m'(2,q) = q — \/q + 1.

Proof. If m'(2,q) > ¢ — \/q+ 2+ a/2, then from d < 2(¢ +2 —m/(2,¢)) we would have
that d < 2,/¢ — o and so, from Proposition 5.9 and (5.7), that m/(2,q) < ¢ — /g +1,
a contradiction. OJ

Now, in [50], (5.7) is proved for d < /g — 3 and ¢ large enough, and so (5.3) follows.
More precisely we have the following.
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Theorem 5.24. (Hirschfeld-Korchmaros [51, Thm. 1.3]) Let q be a square, q > 232,
q#3% Let3<d< V4 — 3. Suppose that ¥, is classical, that 0,1,2,3,4,,/q are the
Yy-orders, and that 0,1,2,3,,/q are the F-Frobenius orders of Xy. Then (5.7) holds.

Proof. (Sketch) Suppose that 20, + M, > d(q — /g + 1). We are going to show that
2My + M; = d(q — \/q +1). Notice that d > (/g + 1)/2 by Corollary 3.9(1). Let
¢ = (fo : ... : f5) be a morphism associated to 5. From Lemma 2.9 there exist
20, - -, 25 € F(X), not all zero, such that Z?:o z;/afi =0. Set

Z:=(2:...:25)(X).

(This curve is related to the dual curve of @(X) since it is easy to see that
0 z‘/a(P)Xi = 0 is the hyperplane tangent at P for infinitely many P’s.)

i=0 %i
We have [51, Props. 8.3, 8.4, 8.5]
(1) V/qdeg(Z) < d(2d+q+3) — (2M, + M});

(IT) deg(Z2) > /qj1(P) for any P € X;
(III) deg(Z) > 2,/q whenever C, is singular.

It follows from (I) and (II) that j;(P) < 2 since d < /g — 3. Now from Corollary 2.18
and the hypothesis on d there are three possibilities for (3, P)-orders:

(A) j2(P) = 251(P);
(B) 72(P) = (/g + 71.(P))/2;
(C) j2(P) = a — ju(P).
We see that points of type (C) cannot occur since j;(P) < 2 and d < /g — 3. Now
from the proof of [51, Prop. 9.4] we have that
Vadeg(2) = 2(dg +d — 2M, — M,) < 2d\/q,,

so that deg(Z) < 2,/q as d < ,/q — 3. It follows from (III) that C, is non-singular; i.e.,
X = C;. In particular the X;-Weierstrass points are of type (B) and we have

deg(Ry) = 3d(d — 2) = (g~ 3)/3r,

where R, is the ramification divisor of ¥; and 7 is the number of points of type (B).
Now we use the following relation between deg(Z) and 7 [51, Prop. 9.3]:

(IV) 3deg(Z) = 27.

Since we already notice that deg(Z) < 2d it follows that d < (\/g +1)/2; ie., d =
(/@ +1)/2. Next we show that 7 = M;. For P of type (B), the (3,5, P)-orders are
0,1,2,(va+1)/2,(y/a + 3)/2,\/g + 1. Suppose that P ¢ X(F;). Then 2(p is the
tangent hyperplane L,(P) at P with respect to Yo, where {p is the tangent line at P
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with respect to ¥;. It is easy to see that ®,(P) € Ly(P) so that ®,(P) € ¢p. This
implies d > (\/q+1)/2, a contradiction. Thus M; = 3(,/g +1)/2. Finally by means of

+1
deg(S)) =d(g+d—1)=2M, + \/(_]2 M,,

where S; is the F-Frobenius divisor associated to ¥;, we find that
M, = (\/q4+1)(¢—+/q—2)/4, and one easily checks that 2M,+ M, = d(q—/q+1). O

Remark 5.25. The plane curve X' of degree d = (/g + 1)/2 in the above proof satisfies
HX(F,) = My + M, = q+1+/g(d—1)(d—2);

i.e, it is Fy-maximal. If ¢ > 121, such a curve is F-isomorphic to the Fermat curve
X(\/EJFU/? + Y(\/aJFl)/Z + Z(\/§+1)/2 — 0; see [13]

Recently, Aguglia and Korchmaros [1] proved a weaker version of (5.7) for d = /g — 2
and ¢ large enough, namely

2M, + M. < d(q— /q/2—9/2) — 3.

From this inequality and Proposition 5.9 one slightly improves (5.3) to m/(2,q) <
¢ —+/q/2 — 11/2 whenever d = ,/q — 2 and g is large enough. Therefore the paper [1],
as well as [50] or [51], is a good guide toward the proof of (5.7) for \/g—2 < d < 2,/q.
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