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COMBINATORICS OF TRIANGULATIONS AND HILBERT SERIES

VOLKMAR WELKER

Lahore, February 21–28, 2009

1. LECTURE: GRÖBNER BASIS THEORY

In this lecture we describe the basics of Gröbner basis theory from the point of weight

vectors and polyhedral combinatorics. All material can be found in the book by Sturmfels

[11].

Let S = k[x1, . . . ,xn] be the polynomial ring in n variables over the field k. For a vector

α = (α1, . . . ,αn) ∈ N
n we write xα for the monomial x

α1

1 · · ·xαn
n . A termorder � on the

set of monomials in S is a linear order such that 1 � m for all monomials m and such that

m ≺ m′ implies mn � m′n for all monomials m,m′,n.

Let f = ∑α∈Nn cαxα be a polynomial in S; that is cα ∈ k and for almost all α we have

cα = 0. For a given term order � the leading term lt�( f ) is cαxα for the largest monomial

xα for which cα 6= 0. For an ideal I in S the initial ideal in�(I) is the ideal generated by

the leading terms of the polynomials in I.

Clearly, for n ≥ 2 there are infinitely many different term orders. But for a fixed ideal I

the number of possible initial ideals is finite.

Theorem 1.1. Let I be a an ideal in S then there are only finitely many initial ideals of I.

This result has an interesting consequence. It shows that for a given ideal I there is a

finite set of polynomials that is a Gröbner basis for I for any term order �. Before we

proceed to that consequence, we review some basic definitions.

A set of polynomials G⊆ I is a Gröbner basis for the ideal I with respect to a given term

order � if in≺(I) = 〈lt≺( f ) | f ∈ G〉. We call a Gröbner basis G reduced if lt≺( f ) does

not divide any monomial occurring in any g ∈ G\{ f}. Usually, in addition one assumes

that in a reduced Gröbner basis the leading term of any polynomial has coefficient 1. The

conditions for reduced Gröbner bases imply:

Lemma 1.2. For any termorder � and any ideal I there is a unique finite Gröbner basis

of I.

The preceding Lemma together with Theorem 1.1 then imply:

Corollary 1.3. For any ideal I there is a finite set G of polynomials that is a Gröbner

basis of I for all term order �.
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For a given ideal I a set of polynomials G satisfying Corollary 1.3 is called an universal

Gröbner basis.

Corollary 1.3 is proved by taken G as the union of reduced Gröbner basis of I, one for

each of the finitely many initial ideals.

Motivated by this fact it becomes an interesting task to determine all initial ideals of

a given ideal. It has turned out that for that purpose it is most suitable to consider a

geometric structure.

For an ω ∈ R
n we consider the following partial order on the set of monomials in S.

We set xα < xβ if and only if α ·ω < β ·ω . Clearly, ≤ depends on ω and in general is

not a term order. It usually fails to be a linear order and if ω contains negative entries

it may fail 1 � xα for some α . Now for a polynomial f = ∑α∈Nn cαxα the leading term

ltω( f ) with respect to ≤ is the sum ∑α∈J cαxα , where J is the set of α for which cα 6= 0

and there is no xα < xβ such that cβ 6= 0. Analogously, the initial ideal inω(I) is defined

as the ideal generated by ltω( f ) for f ∈ I.

Even though in general ω fails the conditions for a term order, for a given ideal any

term order in some sense can be represented by some ω .

Theorem 1.4. For any ideal I and any term order � there is an ω ∈N
n such that in≺(I) =

inω(I).

We call a vector ω ∈ R
n a representable vector if there is a termorder ≺ such that

inω(I) = in≺(I).
In a next step one collects for a given ideal I the ω which lead to the same inω(I). For

ω ∈ R
n we write C[ω] for the set of all ω ′′ ∈ R

n such that inω(I) = inω ′′(I).

Proposition 1.5. For a given ideal I and ω ∈ R
n the set C[ω] ⊆ R

n is a relatively open

polyhedral cone.

For basic definition from convex geometry we refer to the book by Barvinok [3]. We

call the union of the closures C[ω] for representable ω ∈ R
n the Gröbner region of I.

Proposition 1.6. If I is a homogeneous ideal then GR(I) = R
n.

Clearly, by definition for two representable ω,ω ′ ∈ R
n we have either C[ω] = C[ω ′] or

C[ω]∩C[ω ′] = /0. Moreover, the face structure of the closure of C[ω] is nice.

Proposition 1.7. Let ω ∈ R
n. If F is a face of the closure C[ω] of C[ω] then there is an

ω ′ such that C[ω ′] = F.

Now we are in position to state the final result on the geometric structure of the set of

initial ideal of a given ideal I in the case I is homogeneous.

Theorem 1.8. Let I be a homogeneous ideal. Then the set of cones C[ω] for ω ∈ R
n is a

finite complete polyhedral fan.

2. LECTURE: GRÖBNER BASIS, HILBERT SERIES AND EHRHART RINGS

In this section we seek applications of Gröbner basis theory in Combinatorics by means

of Hilbert series. For that we review another part of standard Gröbner basis theory (see

e.g. [1]) and outline applications to combinatorial questions.
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Of a given ideal I and term order � a monomial m is called standard if m does not lie

in in≺(I).

Proposition 2.1. The standard monomials form a k-basis of S/I.

The preceding proposition becomes interesting when considering the Hilbert series of

S/I. Recall that for a homogeneous ideal I the quotient S/I is a standard graded k-algebra

A; that is A ∼=
⊕

i≥0 Ai as k-vectorspaces and A1 = k, A is generated by A1, AiA j ⊆ Ai+ j

and dimk A1 < ∞.

Theorem 2.2 (Hilbert-Serre). Let A =
⊕

i≥0 Ai be a standard graded k-algebra. Then

∑
i≥0

dimk Ait
i =

h0 + · · ·+hst
s

(1− t)d

for d the Krull dimension of A and 1 = h0,h1, . . . , ,hs 6= 0 some integers.

For a standard graded k-algebra A the series ∑i≥0 dimk Ai is called Hilbert series of A

and denote by Hilb(A, t).
Now Proposition 2.1 implies:

Lemma 2.3. Let I ba a homogeneous ideal and � a term order. Then

Hilb(S/I, t) = Hilb(S/in≺(I), t).

.

For applications in Combinatorics it is often useful to find for a given finite sequence

1 = h0, . . . ,hs of integers a standard graded k-algebra A for which

∑
i≥0

dimk Ait
i =

h0 + · · ·+hst
s

(1− t)d
.

Indeed this happens surprisingly often. For example if hi =
(

n
i

)

then s = n. For I =

〈x2
1, . . . ,x

2
n〉 we have

Hilb(S/I, t) =
n

∑
i=0

(

n

i

)

t i = (1+ t)n.

Let us now come to a more interesting example. For a permutation π : [n]→ [n] we call

1 ≤ i ≤ n a descent if π(i) > π(i+1). Let des(π) be the number of descents of π .

Now if Sn denotes as usual the set of all permutations of [n] then An(t) := ∑π∈Sn
tdes(π)

is the Eulerian polynomial. More generally, we are interested in the following situation:

Let P ba a natural partial order on [n]; that is ≤P is a partial order such that if i ≤P j

then i ≤ j in the natural order. We call a permutation π ∈ Sn a linear extension of P if

for i ≤P j we have π−1(i) ≤ π−1( j). For a partial order P we write L (P) for the set of

π ∈ Sn that are linear extensions of P.

The polynomial

WP(t) := ∑
π∈L (P)

tdes(π)
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is called the W -polynomial of P. If P is the n-element antichain then all π ∈ Sn are linear

extensions of P and hence L (P) = Sn. Then WP(t) = An(t) is the Eulerian polynomial.

The polynomial WP(t) is the main object in the so called poset conjecture by Neggers.

Conjecture 2.4 (Neggers). For any naturally labelled poset P the polynomial WP(t) has

only real roots.

The conjecture was recently shown to fail by Petter Bränden: It was motivated by the

fact that the Eulerian polynomials are known to have only real roots. Nevertheless, it is

still open whether unimodality of the coefficient sequence of the polynomials WP(t) holds.

Recall that a sequence of numbers h0, . . . ,hs is unimodal if there is an index j such that

h0 ≤ ·· · ≤ h j ≥ h j+1 ≥ ·· · ≥ hs. Since it is easily seen that the coefficients of WP(t) are all

strictly positive up to the degree by well known facts from analysis the poset conjecture

implies unimodality of the coefficient sequence of the WP(t). So our goal now is to prove

unimodality in certain cases using an algebraic construction and Gröbner basis theory.

In order to construct an algebra HP for which Hilb(HP, t) = WP(t)/(1− t)d we need to

introduce more concepts from Combinatorics.

If P is a partial order on [n] then a lower order ideal O is a subset O ⊆ P such that if

i ∈ O and j ≤P i then j ∈ O. By the well known basic theorem of distributive lattices we

know that if P is a partial order on [n] then the set of its order ideals ordered by inclusion

is a distributive lattice LP and conversely for any distributive lattice L there is a poset P

such that L = LP.

Consider SP = k[xO | O order ideal in P], the polynomial rings whose variables are

indexed by order ideals of P. Let IP be the ideal generated by xOxO′ − xO∩O′xO∪O′ . Note

that if O and O′ are order ideals in P then O∩O′ and O∪O′ are again order ideals in

P. For a poset P on [n] the ring HP := SP/IP is called the Hibi ring of P. Clearly, IP is

homogeneous and therefore HP is a standard graded k-algebra.

Theorem 2.5 (Hibi). Let P be a naturally labelled partial order on [n]. Then

Hilb(HP, t) =
WP(t)

(1− t)ℓ(P)
,

where ℓ(P) denotes that number of order ideals in a maximal chain of order ideals of P.

Already the initial proof of Theorem 2.5 uses Lemma 2.3. Here one shows that there is

a term oder � for which in≺(IP) is generated by all xOxO′ such that O and O′ are incom-

parable lower order ideals. From that one deduced that the Hilbert series of HP equals the

Hilbert series of the Stanley-Reisner ring of the order complex of the distributive lattice

associated to P. For this ring the desired equality is well known and can for example

deduced via a shelling argument.

But the preceding proof using a reduction to order complexes of distributive lattices

does not provide much insight in the enumerative structure of the polynomials WP(t).
Since HP is Cohen-Macaulay it tells us that the coefficient sequence of WP(t) is always

an an M-sequence but this does not imply unimodality. Recall that a sequence h0, . . . ,hs

of strictly positive natural numbers is called an M-sequence if there is a 0-dimensional

standard graded k-algebra B = B0 ⊕·· ·⊕Bs such that dimk Bi = hi.
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This failure comes as there is no further structural insight into the Hilbert series of

Stanley-Reisner rings of order complexes of distributive lattices than that the coefficient

sequence of the numerator polynomial is an M-sequences. For more details on Stanley-

Reisner rings and M-sequences we refer the reader to the book by Bruns & Herzog [4].

Let us consider a more restricted class of distributive lattices.

Proposition 2.6 (Hibi). Let P be a naturally labelled partial order. Then the ring HP is

Gorenstein if and only if P is graded.

Recall that a graded partial order is a partial order in which all maximal unrefinable

chains have the same cardinality.

We will use deep and substantial information on the Hilbert series of boundary com-

plexes of simplicial polytopes.

Theorem 2.7 (g-Theorem by Stanley and Billera & Lee). Let h0, . . . ,hd be a sequence

of strictly positive natural numbers. Then there is a d-dimensional simplicial polytope

P such that the Stanley-Reisner ring k[∂P] of the boundary complex ∂P of P has Hilbert

series

Hilb(k[∂P], t) =
h0 + · · ·+hs

(1− t)d

if and only if

(i) h0 = 1.

(ii) hi = hd−i.

(iii) For g0 = 1 and gi = hi − hi−1, 1 ≤ i ≤ ⌊d
2
⌋ the sequence g0, . . . ,g⌊ d

2 ⌋
is an M-

sequence.

Note that condition (i) - (iii) of the g-Theorem 2.7 imply that h0, . . . ,hd is unimodal.

Before we can state the application of the g-Theorem 2.7 to the unimodality consequence

of the poset conjecture we need the following simple fact.

Lemma 2.8. Let ∆ = 2V ∗∆′ be a simplicial complex. Then

Hilb(k[∆], t) = Hilb(k[∆′], t) ·
1

(1− t)#V
.

Now key result connecting Gröbner basis theory, g-Theorem and poset conjecture is

the following.

Theorem 2.9 (Reiner & Welker [7]). Let P be a graded naturally labelled poset. Then

there is a term order � such that in≺(IP) is the Stanley-Reisner ideal of the simplicial

complex ∂P∗2V for a simplicial polytope P and some set V .

The desired consequence now is:

Corollary 2.10. Let P be a graded naturally labelled poset. The the coefficient sequence

of WP(t) satisfies conditions (i) - (iii) of the g-Theorem. In particular, the coefficient series

is unimodal.

It turns out the the method of proof leading to Corollary 2.10 is surprisingly general.

It was applied by Athanasiadis [2] to verify a long standing conjecture by Stanley on the
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unimodality of the so called h∗-vector of the Birkhoff-Polytope. Finally Bruns & Römer

[5] found the so far most general setting.

For a description of the result by Bruns & Römer we need the concept of an Ehrhart

ring. Let Q ⊆ R
n be an integer polytope; that is a polytope such that all its vertices

lie in Z
n. Then consider the embedding of the polytope into R

n+1 by sending x ∈ R
n

to (x,1) ∈ R
n+1. Clearly, the vertices of the embedded polytope are again integral. In

order to avoid technical difficulties we assume that all the vertices of Q have actually non-

negative integer coordinates. Consider, the algebra k[Q]⊆ k[x1, . . . ,xn+1] that is generated

by x(α,1) for α ∈ Q∩Z
n. The algebra k[Q] is called the Ehrhardt ring of Q.

Now let us return to the poset conjecture and the W -polynomial. Consider the following

polytope. For any order ideal O in the partial order P let eO be the 0/1-vector in R
n whose

ith entry is 0 if i 6∈ O and 1 if i ∈ O. Then let O(P) be the convex hull of the eO. The

polytope O(P) is known as the order polytope of P and its vertices are the eO. It is also

known that it does not contain any integer point in its interior.

Lemma 2.11. Let P be a naturally labelled partial order. Then HP
∼= k[O(P)].

In order to be able to use Gröbner basis theory, we need to define the toric ideal IQ

corresponding to Q. For that let SQ be the polynomial ring in the variables yα where α
runs through all integers points in Q. Then IQ is the kernel of the map from SQ to k[Q]

sending yα to x(α,1).

Theorem 2.12 (Bruns & Römer [5]). Let Q be an integer polytope that has a regular and

unimodular triangulation and such that k[Q] is Gorenstein. Then there is a term order �
for which in≺(IQ) is the Stanley-Reisner ideal of ∂R∗2V for the boundary complex ∂R of

a simplicial polytope R and some set V .

This indeed generalizes Theorem 2.9 since all assumptions are satisfied for Q = O(P).
As a consequence one obtains:

Corollary 2.13. Let Q be an integer polytope that has a regular and unimodular triangu-

lation and such that k[Q] is Gorenstein. Let

Hilb(k[Q], t) =
h0 + · · ·+hs

(1− t)d
.

Then the sequence h0, . . . ,hs satisfies (i) - (iii) of the g-Theorem 2.7. In particular, h0, . . . ,hs

is unimodal.

3. LECTURE: GRÖBNER BASIS FOR SOME GORENSTEIN DOMAINS

The assumption that all k[Q] in Theorem 2.12 are Gorenstein domains is crucial. Indeed

Hibi and Stanley conjecture that the coefficient sequence of the numerator polynomial

of the Hilbert series of a Gorenstein domain is unimodal. Moreover, it is known that

unimodality does not hold for Gorenstein algebras that are not domains. Therefore, it

seems worthwhile to search for other Gorenstein domains for which a similar Gröbner

approach works.

Here we outline two classical example.
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(i) Determinantal Rings Let SD = k[xi j | 1 ≤ i, j ≤ n] be the polynomial ring in n2

variables. For a number r ≥ 1 let In,r be the ideal generated by all r× r-minors of

the matrix (xi j)1≤i, j≤n. It is well known that SD/In,r is a Goresnstein domain.

(ii) Pfaffian Rings Let SP = k[xi j | 1 ≤ i < j ≤ n]. For a fixed r such that 2r ≤ n let

Jn,r be the ideal generated by the degree r Pfaffians of the skew-symmetric matrix

(ai j)1≤i, j≤n, where aii = 0, ai j = xi j if i < j and ai j = −xi j if i > j. Recall that

a degree r Pfaffian if obtained by taking the 2r × 2r-minor corresponding to 2r

column indices and the same row indices and then taking the square root of that

minor. Again it is classical that SR/Jnr is a Gorenstein domain.

Now one can prove the following:

Theorem 3.1 ([6]). For each 2 ≤ 2r ≤ n there is a term order � such that in≺(Jn,r) =
I∆n,r ∗2V where ∆n,r is the triangulation of a PL-sphere and V some set.

Theorem 3.2 ([10]). For each 1 ≤ r ≤ n there is a term order � such that in≺(Jn,r) =
I∆B

n,r
∗2V where ∆B

n,r is the triangulation of homology sphere over the field with 2 elements

and V some set.

Neither of the preceding results allows the application of the g-Theorem 2.7 since nei-

ther ∆n,r nor ∆B
n,r have been shown to be boundary complexes of simplicial polytopes.

But in either case the Stanley-Reisner ring of the complexes is Gorenstein∗ (over the field

with 2 elements in the case of ∆B
n,r). So the consequence on the coefficient sequence

of the numerator polynomial of the Hilbert series depends so far on the validity of the

g-conjecture.

Conjecture 3.3 (g-Conjecture). Let h0, . . . ,hd be a sequence of strictly positive natural

numbers. Then there is a Gorenstein∗ simplicial complex ∆ such that the Stanley-Reisner

ring k[∆] has Hilbert series

Hilb(k[∂P], t) =
h0 + · · ·+hs

(1− t)d

if and only if

(i) h0 = 1.

(ii) hi = hd−i.

(iii) For g0 = 1 and gi = hi − hi−1, 1 ≤ i ≤ ⌊d
2
⌋ the sequence g0, . . . ,g d

2
is an M-

sequence.

Note that only the forward direction of the g-Conjecture is open, the backward direction

already follows from the g-Theorem 2.7.
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