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Introduction

This course is dedicated to the study of bifurcation diagrams in the framework of the
Ginzburg-Landau theory. The aim is to characterize the properties of solutions according
to the values of the different free parameters: existence of non trivial solutions, number of
solutions, stability and symmetry.

In the first two chapters, we study the case of a superconducting material placed in a
magnetic field for two different geometries. In the Ginzburg-Landau model, the state of the
system can be described by a system of two coupled PDE’s. In chapter 1,for the infinite
slab, the equations get scalar and reduce to a system of two coupled ODE’s. Chapter 2
deals with the infinite cylinder, which is a 2d problem.

The 3rd chapter addresses a related problem: vortices in rotating Bose Einstein con-
densates. The physical phenomenon is modeled by a nonlinear Schrodinger equation with
a trapping and rotating term. Analogies are made with Ginzburg-Landau and symmetry
and breaking of symmetry of 3d vortices are analyzed.






Chapter 1

The Ginzburg-Landau system in
dimension 1

1.1 Introduction

The superconductivity of certain metals is characterized at very low temperatures by the
loss of electrical resistance and the expulsion of the exterior magnetic field hy. In the
model derived by Ginzburg and Landau in 1950 (see [GL]), the electromagnetic properties
of the material are completely described by the magnetic potential vector A (h = curl A
being the magnetic field) and the complex-valued order parameter . In fact, ¢ is an
averaged wave function of the superconducting electrons and its modulus corresponds to
the density of superconducting carriers. When the sample is wholly normal, |¢/| = 0 and
the magnetic field inside the material h is equal to the exterior magnetic field hy. On the
other hand, when the sample is perfectly superconducting, |[¢)| = 1 and the magnetic field
h is identically 0. Furthermore, in the Ginzburg-Landau theory, the state of the sample is
completely determined by the minimum of an energy depending on i and A. For a more
precise description of the general theory, one may refer to [CP], [G], [GL], [SJAG], [TT],
[T] or to [CHO], [DGP1].

In the special case when the sample is an infinite slab of constant thickness, between
the planes x = —a and = = q, it is usual to assume that both ¢y and A are uniform in the
y and z directions, and that the exterior magnetic field is tangential to the slab, that is
hg =(0,0,hq). A suitable gauge can then be chosen so that ¢ = f(z) is a real function, and
A = ¢(z)e,, where e, is the unit vector along the y direction (see [GL] for more details).
In this case, the nondimensionalized form of the Ginzburg-Landau energy is given by:

@1 1
Eufa) = [ (of™+ P+ 30 = 24— hol?) o (1)
The nondimensionalized parameter « is called the Ginzburg-Landau parameter. It is the
ratio of A\, the penetration depth of the magnetic field, to &, the coherence length, which
is the characteristic length of variation of f. The value of k determines the type of super-
conductor according to the type of phase transition which takes place between the normal
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6 CHAPTER 1. THE GINZBURG-LANDAU SYSTEM IN DIMENSION 1

phase and the superconducting phase: k small describes what is known as a type I super-
conductor and « large as a type II. More precisely, for a type 1 superconductor, there is
a critical magnetic field h. such that if hy < h., the material is entirely superconducting
and the magnetic field is expelled from the sample apart from a boundary layer of size
A. This is called the Meissner effect. If hy > h., superconductivity is destroyed and the
material is in the normal state, that is f = 0 and ¢’ = hy. For a type II superconductor,
the phase transition is different and there are two critical fields h., and h.,: for hy < h,,,
the exterior magnetic field is expelled from the sample and there is a Meissner effect as
for type I superconductors. But as hg is increased above h.,, superconductivity is not
destroyed straight away, since the superconducting and the normal phase coexist under
the form of filaments or vortices: the vortex is a zone of diameter &, at the center of which
the order parameter f vanishes. As hy increases further, the vortices become more nu-
merous until the critical value h,, is reached at which superconductivity is destroyed. For
ho > he,, there is no superconductivity and the material is in the normal state. The way
superconductivity is nucleated is highly dependent on a and k. We refer to Tinkham [T
for a detailed explanation. The vortex phenomena in superconductivity have been widely
studied in the literature. See for instance [BBH] or [DGP1] and the references therein. The
critical value of s usually given to separate type I and type II superconductors is k = 1//2.
We will describe how this value is computed in the limiting case a = co. However, as a is
decreased from infinity, we will see that the demarcation between type I and II behaviours
is no longer the constant x = 1/1/2. Instead, we find that there is a well defined curve in
the (k, a) plane which separates the two types of behaviours.

For a mathematical analysis of the problem, it is natural to assume that f € H'(—a,a)
and ¢ € H'(—a,a). Tt then follows from standard variational arguments that there exists
a minimizer of E,, and that the minimizer is a solution of

L =f(f2+¢—1) in (—a,a), f(ka)=0,
{ ¢"=qf* in (—a,a), q(£a)=hy. (GL)

Notice that f = 0 and ¢(z) = ho(x + €) is always a solution for any real e. From now on,
we will call this a normal solution. Regularity properties of minimizers yield that either f
is a normal solution, or f does not change sign, hence we will study the case f > 0. An
easy calculation shows that the energy E, is zero along the normal solution. Thus a global
minimizer cannot have positive energy.

We want to give a complete description (number, symmetry and stability) of the so-

lutions of the system (GL) for which f > 0 on [—a,al], according to the values of the
parameters a, k and hgy. Let us first recall the basic properties of solutions.

Proposition 1.1 If (f,q) is a solution of (GL) and if f is not identically zero then

(i) |[f| <1 in (—a,a),
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Figure 1.1: Symmetric solutions (full line) and asymmetric solutions (dotted line) (a) f
and (b) ¢, for a =3, k = 0.9.

(i1) q has a unique zero ag in (—a,a), q is increasing on (—a,a), ¢’ is decreasing on
(—a,ag) and increasing on (ag, a).

(iii) There exist x1 and xo with —a < x1 < ag < x9 < a and xg € [T1,x9] such that f' is
increasing on [—a, x1) U [xe, a] and decreasing on [x1,xs|, f is increasing on [—a, xq)
and decreasing on [xg, a).

The proof of (i) and (i7) can be found for instance in [BH3| and of (4i7) in [A1].

There are two types of physically important solutions of (GL): symmetric solutions and
asymmetric solutions (see Figure 1.1). We define a symmetric solution to be a solution
of (GL) such that f > 0, f is even and ¢ is odd on [—a,a]. Thus, a symmetric solution
satisfies the following problem:

L= f(fP+@=1) in (0,0), f(0)=8, f(0)=0, (GLoym)
¢"=qf in (0,a), ¢(0)=0, ¢(0)=e, sym

for 5 € (0,1) and « > 0. We need to choose o and 3 such that f’(a) = 0. Then (f, q) will
be a solution of (GL) with hy = ¢'(a). Notice that § is the amplitude of f for a symmetric
solution.

We define an asymmetric solution to be a solution of (GL) which satisfies f > 0 on
[—a, a|, yet which is not symmetric. That is f'(0) # 0 or ¢(0) # 0.

It is important to understand that symmetric solutions correspond to bulk supercon-
ductivity. When hg is decreased from infinity, superconductivity is not always nucleated
first in the volume of the sample, which would give rise to symmetric solutions, but some-
times rather in a sheath near the surface, due to the existence of asymmetric solutions.
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This is called surface superconductivity. If the slab is very thick, the two surface solu-
tions f(z) and f(—z) do not interact. In this region, superconductivity is first nucleated
in surface layers of size 1/k near the boundaries, and the middle part of the material is
normal. Now, if the slab is of intermediate size, the solutions f(z) and f(—z) interfere to
create vortices. Indeed, the original Ginzburg-Landau energy is gauge invariant so that a
solution (f(z), q(x)) has the same energy as (e f(z), q(z) + ¢) for any constant c. Thus,
when the sample is not too large, the linear combination of the asymmetric solutions f(x)
and f(—x) create two dimensionnal vortices along the mid-plane = 0. This is reflected
in the formula:

b = cosky(f(z) + f(—z)) +isinky(f(z) — f(-2)) (1.2)

Further discussion of vortex formation and the details of the derivation of formula (1.2)
are given in Tinkham [T].
We are now going to study the existence and multiplicity of solutions.

1.2 Symmetric solutions

For the existence of symmetric solutions, Kwong [Kw] has proved the following important
result.

Theorem 1.1 (Kwong [Kw|) For each [ in (0,1), there ezists a unique o > 0 such that
the solution (f,q) of (GLgym) satisfies f'(a) = 0. Moreover, o is a continuous, decreasing
function of (3,
lima(f) >0 and lima(B) = 0. (1.3)
£—0 p—1
For this choice of a(f), and the corresponding solution (f,q) of (GLsym), let h(B) = ¢'(a).
Then h is well-defined, continuous and

lim h(B) = hy >0 and lim h(3) = 0. (1.4)

£—0

1.2.1 Numerical results

There are three possible behaviours of the curve h(S3) defined in Kwong’s Theorem, and
these are shown in Figures 1.2, 1.3 and 1.4. Notice that instead of graphing h(53) vs
B, we have put S on the vertical axis and h on the horizontal axis, so that we keep the
convention originally adopted by Ginzburg [G, Figures 3 and 5]. This numerical simulations
are obtained with AUTO, a software developed by Doedel et al. (see [Dol], [Do2]) which
computes bifurcation diagrams for systems of ODE’s.

e Figure 1.2: for 8 € (0,1), h(p) is a decreasing function of f: if 0 < hg < hs, there is
exactly one symmetric solution of (GL), and if hy > hs, no such solution.
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Figure 1.3: Curve h(f) for a = 3 and kK = 0.3
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Figure 1.4: Curve h(8) for a = 3 and k = 0.9
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e Figure 1.3: for 8 € (0,1), h(B) is increasing until  reaches a maximum value A (here
h =~ 1.1), and then decreasing to 0 as 3 goes to 1. Thus, for hg < h,, (GL) has a
unique symmetric solution, for hy; < hg < h, two symmetric solutions, and for hy > h
no such solution.

e Figure 1.4: for 8 € (0,1), h(B) is decreasing until h reaches a local minimum value h
(here h ~ 0.83), increasing until 4 reaches a local maximum value % (here h ~ 0.95),
and then decreasing to 0 as 3 goes to 1. There h < h, < h. Thus, for hy < h, (GL)
has a unique symmetric solution, for Ao < hg < hg, three symmetric solutions, for
hs < hy < h, two symmetric solutions, and for kg > h no symmetric solution.

If h < hg, then for hy < h, (GL) has a unique symmetric solution, for h < hg < h,
three symmetric solutions, for h < hg < h,, a unique symmetric solution, and for
ho > hs no symmetric solution.

Note that in Figure 1.3 and 1.4, there are points on the curve where the resultant slope is
vertical, when h = h or h. We shall refer to such points as folds.

Our simulations also indicate that the (a, ) plane is the union of three connected sets
Si1, Sy and S; as shown in Figure 1.5. In Sj, the behaviour of A(3) of Figure 1.2 holds.
Likewise, S, and Sj reflect the behaviour of h(3) of Figures 1.3 and 1.4 respectively. The
region S corresponds to thin films for which there is at most one solution. The passage
from S; to S, was known for k small, and from S to S5 for a large. The difference between
Sy and S3 corresponds to going from type I to type II. The critical value is 1/ V2 for a
large but depends on a.

1.2.2 Rigorous results

The bifurcation diagrams indicate that if the applied field hy is sufficiently strong, super-
conductivity is destroyed. This has been proved by Kwong [Kw].

Proposition 1.2 (Kwong [Kw/) For any a and k, there exists h. such that for hg > he,
the only solution of (GL) is the normal solution f =0, ¢’ = hy.

As each of the Figures indicates, as one decreases hy from infinity, the material remains
in the normal state until a critical value of hg is reached at which there is a bifurcation of
nontrivial solutions from the normal state.

So for small € > 0, a nontrivial curve (f(.,¢),q(.,€), h(€)) of solutions of (GL) starting
from a normal solution (0, ho(z + €), hg) is sought, with the following asymptotic develop-
ment:

f(z,e) = efo(x) + 3 fi(x) +o(e3) in H?(—a,a),
q(z,€) = qo(x) + 2q1(x) + 0(?) in H?*(—a,a), (1.5)
h(&) = ho + 62h1 + 84h2 + 0(84),

where qo(z) = ho(x + €). It is important to note that when e = 0, the branch gives rise to
symmetric solutions and when e # 0 to asymmetric solutions. At first order, this leads to
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Figure 1.5: Curves k1(a), ko(a), k3(a).

an eigenvalue problem

= Dolhez =), fy(+a) =0. (1.6)

Furthermore, it can be proved (see [Ch1] or [BH2] for more details) that for small ¢ > 0,
the energy of the bifurcated superconducting solution, E,(f(.,¢),¢(.,€)), has the same sign
as hi. A curve of the form (1.5) is said to result from a supercritical bifurcation if h; < 0.
Then, for small ¢ > 0, the bifurcated solutions have lower energy than the normal state.
A bifurcation is said to be subcritical if A; > 0. Here the bifurcated solutions have larger
energy than the normal state. This means that for Figures 1.2 and 1.4, the bifurcation is
supercritical and for Figure 1.3 subcritical.

We now summarize the main results previously obtained concerning these figures de-
scribing symmetric solutions. We note that Ginzburg |G| had investigated the case k small
and found that h(83) behaves as in Figure 1.2 for small a and, as a is increased through
a critical value, the graph of h(f5) changes from Figure 1.2 to 1.3. He explained the type
of behaviour described by Figure 1.3 in terms of superheating and supercooling. More
precisely, when hg is large, superconductivity does not occur and the material is in the
normal state. As hg is decreased, the material stays in the normal state down to hg, even
though there is a range of hy where the normal solution is only a local minimizer and the
global minimizer is a superconducting solution (see [G, Figure 2|). If hq is decreased fur-
ther, there is a jump in the maximum of f and the material becomes superconducting, the
solution being given by the symmetric branch. In this case, h; is called the supercooling
field. Now, on the contrary, start from hy = 0 where the superconducting state (1,0) is
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the global minimizer and increase hg. The material will remain superconducting until A is
reached, though for fields slightly less then A, it is only a local minimizer and the global
minimizer is the normal solution. For hy above h, there is a jump in the maximum of f
and the material reverts to the normal state. This is the superheating phenomenon. These
two phenomena give rise to a hysteresis loop as described in [G] or later in [DGP1].

Ginzburg and Landau [GL] had also noticed that if a large is fixed, then there occurs a
symmetric supercritical bifurcation of superconducting solutions from the normal state as
k is increased through a critical value, but had no special explanation for this, since at that
time only superconductors with small k were known. However, as  is increased through
this critical value, our studies indicate that the behaviour seen in Figure 1.3 changes into
that seen in Figure 1.4.

Chapman [Chl] has studied the case a = oo, and showed that there is a change of
bifurcation from subcritical to supercritical that takes place for k = 1/4/2, which is the
critical value between type I and IT superconductors. Moreover, in [Ch2], a linear stability
analysis through the time dependent equations yield that the value k = 1/ V2 is also the
one for which stability of the normal solution switches.

Following these works which are mainly based on formal computations, Bolley and
Helffer have extensively studied the phenomenon of bifurcation of solutions from the nor-
mal solution in [BH1], [BH2], [BH3|, [BH4], [BH5], [BH6]. In particular, they have given
rigorous proofs of properties of bifurcating branches and asymptotic formula for the super-
heating and supercooling fields. Although their results are mainly local, they have made
a first attempt in [BH6| to give a global stability picture of the solutions.

Another type of study of these bifurcation diagrams consists in trying to get global
properties, not only near the normal solution. Hastings, Kwong and Troy [HKT] have
further investigated the multiplicity of symmetric solutions. They have proved that if
k < 1/4/2, and a is sufficiently large, then the behaviour of h(3) is described by Figure
1.3, that is there is a region of kg for which there are at least 2 solutions, and if k > 1/1/2
and a sufficiently large, by Figure 1.4, that is there is a region of hy for which there are at
least 3 solutions.

Another type of results deals with Sj.

Theorem 1.2 For each k > 0 there exists a = a(k) such that for 0 < a < a(k), the curve
h(B) defined in Theorem 1.1 is decreasing for 0 < B < 1 and there is no bifurcation of
asymmetric solutions from the symmetric branch. Moreover, there exist positive constants
ag and ay independent of k and B, such that ka(k) < ag and a(k) < a;.

Corollary 1.1 Let kK > 0 and 0 < a < @(k). For each hy in (0, hs) there ezists a unique
symmetric solution of (GL). If hg > hy, there is no symmetric solution.

1.3 Asymmetric solutions

As we have said earlier, asymmetric solutions correspond to vortices in this geometry.
Below, we summarize the results of our numerical investigation of asymmetric solutions
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shown in Figures 1.6 and 1.7: the vertical axis has been labeled ||f||. For the symmetric
branch, ||f]| refers to f(0) = 8 as in Figures 1.2, 1.3 and 1.4. For the asymmetric branch,
If]l = Il f|lco, Which is attained at some point x4 different from zero. For simplicity, we
will sometimes refer to the complete bifurcation diagram as h(f). In Figures 1.6 and
1.7, the curve h(f) for symmetric solutions is the typical curve in S;. On these curves,
there is a point (f, hy) denoted by a square: it is the branching point of the branch
of asymmetric solutions. More precisely, for || f||« close to f,, the asymmetric solution is
nearly symmetric. The branch of asymmetric solutions leads from the branch of symmetric
solutions to the branch of normal solutions. If the branch of asymmetric solutions crosses
the branch of symmetric solutions without any square indicated, it just means that for this
special hg, (GL) has a symmetric solution and an asymmetric solution having the same
maximum value of f.
We now describe the two possible behaviours of the asymmetric curve h(3).

e Figure 1.6: for 8 € (0, 3), h(B) is an increasing function of § and limg_,o h(8) = hqs,
limg_)ﬂb h(ﬁ) = ]’Lb, with hy, < hes < hy < h. If hy € (hasahb); there is a unique
asymmetric solution of (GL) and if hg < h,s or hg > hy, no such solution.

e Figure 1.7: for 8 € (0,5), h(B) is a decreasing function of § until h reaches a
minimum value h,, and then increasing to h, as 3 goes to (. thus, for hy € (h,,, hs),
there are two asymmetric solution of (GL), for hg € (hy, haes), @ unique asymmetric
solution and for hy < h,, or hy > hy, no such solution.

This implies in particular that for Figure 1.6 the bifurcation of asymmetric solutions from
the normal solution is subcritical and for Figure 1.7 supercritical.

In Figure 1.8, we have determined the regions in the (a, k) plane where there is no
asymmetric solution (region Ay), at most one pair of asymmetric solutions (region A;) and
at most two pairs of asymmetric solutions (region Ay). The curve k4 is defined by ax = c.

Hastings and Troy have proved that for k > k¢ and a large enough, then there is a range
of hy for which there is no symmetric solution and yet there is an asymmetric solution.
It means that h,, is much larger than the superheating field for symmetric solutions. In
the region A, asymmetric solutions exist and are stable, which corresponds to surface
superconductivity.

Let x be fixed. When a tends to oo, the bifurcated field of asymmetric solutions h;
tends to x/ul, where u is approximately 0.59, and is defined as the minimum over « of
the first eigenvalue of the Neumann problem of the harmonic oscillator in (—a, co) [BHI].
The curve k5(a) corresponds to the solution when the asymmetric bifurcated curve changes
stability. This happens when A, is equal to 1/v/2, hence the limit of x5(a) for a large is
Kas = 13/V/2.

In [AC1, AC2], the bifurcated solutions are studied near the curves &;. It turns out that
the amplitude of the solution is not determined at first order, but fixed by a solvability
condition at higher order. For most values of a and «, this is at first order, but along &;(a),
it is at even higher order.
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Figure 1.6: Bifurcation diagram for ¢ = 3 and x = 0.35.
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Chapter 2

The Ginzburg-Landau model in
dimension 2

2.1 Introduction

In this part, we want to give a detailed description of the bifurcation diagrams of an infinite
superconducting cylinder of cross section 2, submitted to an exterior magnetic field hy. As
in the previous section, the response of the material varies greatly according to the value of
hg, the size of the cross section and the Ginzburg-Landau parameter x that characterizes
the material: superconductivity appears in the volume of the sample for low fields and
small samples, under the form of vortices for higher fields, bigger samples and larger values
of k, and is destroyed for high fields. The type of response of a superconducting material
has been studied numerically and theoretically by various authors in various asymptotic
regimes [AD, BPT, BS, CDG, DFS, DPS, DGP1, DGP, GP, LP1, LP2, LP3, P, SS1, Serl,
Ser2, SP, SPD]. Here, we want to give a complete picture of the bifurcation diagrams for
all values of the parameters.

2
G, A) = /Q [(V —iA) @/1\2 + % (1 — |w\2)2 + |curl A — ho|?dQ,

where « is the Ginzburg-Landau parameter representing the ratio of the penetration depth
and the coherence length, hg the applied magnetic field and d the characteristic size of the
domain €2, that is 2 = dD where D is a fixed domain.

The system that we are going to study is the following Ginzburg-Landau equations
derived as the Euler-Lagrange equations for the minimizers of the functional G [GL]:

—curl curl A = [2A + £(4* Vi — V") in Q, '

which are supplemented by the boundary conditions

(Vi) —iAp) -n=0on 09,
curl A = hy on 09,

15
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and gauge constraints

div A=0in Q,
{ A-n=0on 09.
Here, 0€2 is the boundary of €2 and n is its unit outer normal. With the above nondimen-
sionalization, [1| takes values between 0 and 1: the normal state corresponds to |¢| = 0
while the Meissner state corresponds to || = 1.

This Ginzburg-Landau model has a special family of solutions called the normal solu-
tions: 1 = 0 and curl A = hy, which correspond to the situation where superconductivity
is destroyed. According to the values of the different parameters x, d and hy, the system
may have other solutions: superconducting solutions, for which 1 is never 0 and wvorter
solutions for which 1) has isolated zeroes (see Figure 2.1 and 2.2). For a complete intro-
duction to the topic, one may refer to [T]. In Figure 2.1, we have a solution with a single
vortex at the center of the domain which corresponds to the parameter values k = 0.23,
d = 16.8 and ho = 0.563. We have plotted respectively |¢|, |curl A| and the current.

I 4

Figure 2.1: A single vortex solution of (2.1).

In Figure 2.2, we present the plots for a solution with two vortices corresponding to
k=0.8,d=4and hg =1.2.

Figure 2.2: A solution of (2.1) with two vortices.

Here, the computation is made in a 2 dimensional domain using numerical solutions
based on a code first developed in [DGP1].
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2.2 The bifurcation diagrams

For fixed &, d and hg, we are interested in finding the number of solutions of (2.1) and their
stability. A continuation in the parameter spaces is used for getting solutions with different
parameter values. With k, d given but hq allowed to vary, for a computed solution branch,
we plot ||¥||o0, the maximum magnitude of the order parameter ¢ in the domain and the
free energy G versus the applied field hg. These phase diagrams or bifurcation diagrams
will give us information on the solutions (number and stability) for each hg. The results
of our numerical computations allow us to separate the k-d plane into different regions
depending on the shape of the bifurcation diagram.

It is well known that for large fields (h > h,), the only solution is the normal solution
[GP]. For smaller fields (A < h,), the normal solution always exists but there are other
solutions which display four different types of behaviors. These behaviors depend on the
values of k and d. In Figure 2.3, we have plotted four curve segments {r;(d)}} separating
the x — d plane into four regions {R;}].

1 T T T T ' T Ri(d)——
K K2 d)
09 - " @
Kka(d
08 -
07 R2
06 -
Ry
05
S O
R o
03
4
02

d
Figure 2.3: The curves x1(d), ka2(d), k3(d) and k4(d)

All four curves meet close to k = 1/4/2, ky(d) is of the form 2.112/d, k3(d) is tending
to 0.4 at infinity. For convenience, for each i = 1,2,3,4, we use d = d;(k) to denote
the inverse function of the function x = k;(d) wherever the inverse is well-defined. What
distinguishes the different regions are features like the existence (or the lack of existence) of
vortex solutions, the global and local stability of solutions, and the hysteresis phenomena.
behavior for each region in Figure 2.3.

Region 1: d < di(k) and d < da(k).
This corresponds to the situation where the cross section of the superconducting sample
is small enough. The bifurcation diagram is illustrated in Figure 2.4. The corresponding
plot of the energy is given in Figure 2.5.

Throughout this region, there is a unique non-normal solution for A < h,. This solution
is a superconducting solution which is the global minimizer of the free energy G. The curve
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Figure 2.4: The bifurcation curve for d = 2.0 kK = 0.3
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Figure 2.5: The energy for d = 2.0 kK = 0.3

|| against h is monotonically decreasing. When increasing the field, the magnitude of
the superconducting solution decreases until it turns normal at hy = h,. Conversely, when
decreasing the field, the normal solution turns superconducting also for hg = h,. The
transition to the normal solution is of second order, that is the energy of the supercon-
ducting solution tends to the energy of the normal solution at the transition and there is
no hysteresis phenomenon.

There is no vortex solution for the parameters (d, ) in this region. This reflects the
fact that d is too small to allow enough room for a vortex to exist since a vortex core is of
typical size C'/k. Rigorous results [AD] are given later.

Region 2: k > k(d) and k > k3(d) .

In contrast with Region 1, this region corresponds to the situation where the typical size
of vortices (C/k) is small enough compared to the size of the domain. This region displays
the typical type II behavior of superconductors. The bifurcation diagram is illustrated in
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Figure 2.6, the energy in Figure 2.7.
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Figure 2.6: The bifurcation curve ford =32k =1

Figure 2.7: The energy ford =32k =1

It has been well understood both physically and in more recent years mathematically
that, for sufficiently large k, there are vortex solutions which are the global minimizers
of the free energy for a certain range of fields. The number of vortices depends on the
strength of the applied field. The maximum number of vortices increases with d and k.

For very small fields, the global minimizer is the superconducting solution (solid line).
As the field is increased, the superconducting solution loses its global stability (h = h,,
and for even larger fields loses its local stability, A = hj). Then the global minimizer starts
to nucleate vortices. In Figures 2.6, 2.7, the solution branch corresponding to a one vortex
solution is illustrated by a dotted line and to a two vortex solution by a dashed line.

The mathematical description of this region will be made in more details in the course
of E.Sandier [Serl, Ser2, SS1, SS2, SS3].
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The onset of superconductivity in decreasing fields (instability of normal solutions and
computation of the fields of nucleation) has been analyzed by Bernoff and Sternberg [BS]
and del Pino, Felmer, Sternberg [DFS]. Other works concerning the linearized problem
include [HM, LP1, LP2] and also [LP3, HP] in dimension 3. Their works provide, as d and
k tends to oo, an asymptotic development of h.3, the field at which the normal solution
bifurcates to a vortex solution. This is what is called surface superconductivity. In the
high kappa limit, their computation yields

K2
heg ~ N + CkKmaz + 0(K) (2.2)
where K. is the maximal curvature of the domain and A; is the first eigenvalue of the
linearized problem and is approximately equal to 0.59. In the high d limit, it yields

k2 CkKmag 1

heg ~ (2.3)
This expansion is consistent with the work of Saint James and de Gennes [SJdG] who got
the first term of this expansion in the case of an infinite plane in one dimension. In two
dimensions, one has to take into account the curvature of the cross section. In the case of
the disc, the equivalent of expansions (2.2) and (2.3) have been carried out by [BPT] in
the limit kd large.

Pan [P] has rigorously analyzed the state of the material when the magnetic field is
further decreased from the nucleation. He proves that the wave function ) is non zero in
a uniform neighborhood of the boundary. It is very important to notice that because of a
boundary layer of size 1/k, the problem reduces to a 1d problem.

Curve kz(d):

For fixed x above 0.7, when d is increased from 0, the point (d, x) is first in Region 1.
Then it reaches the critical value dyo(k). For d = ds(k), the bifurcation diagram ||¢||e Vs
h is decreasing and the superconducting solution bifurcates from the normal solution at
h = h,. For d a little bigger than dy(k), there is a vortex solution bifurcating from the
normal solution close to h,. Hence for d = dy(k), at h = h,, the linearized problem near
the normal state has two eigenfunctions: one without vortices and one with a vortex. This
is how uniqueness of solution is lost when increasing d, though the assertion needs to be
proved mathematically.

Let D be the fixed domain such that 2 = dD. Then a bifurcated solution near the
normal state (0, hoag) (where ag is such that curlag = 1 in D and ag - n = 0 on 09) is of
the form (¢, hoag +eB). Let w = hod. The second variation of G near the normal state is

0G?

1
— (€0, hoag +eB) = —2/ |1V + w?ag)d|* — k*d?|6|* + |curl BJ%.
Oe d D

Let
Aw) = inf(/ 6V +&ag)of?, 6]l =1, 6 € H'(D,C)).
D



2.2. THE BIFURCATION DIAGRAMS 21

Hence if A(w) > x2d?, the normal solution is stable, if A(w) < k2d?, the normal solution is
unstable and if A\(w) = k?d?, degenerate stability occurs. For the eigenvalue \(w) = x%d?,
bifurcation of non normal solutions occurs. Thus, one has to study

{ (V —iw’ag)’¢p = A(w)¢ in D, (2.4)

%zﬂ on 0D,

with A(w) = x?d?. For most values of x and d, the field A such that the first eigenvalue
A(w) is equal to k%d? yields a single eigenfunction. In region 1, the eigenfunction has no
vortex while in region 2, the eigenfunction has a vortex. Thus, the curve k9(d) corresponds
to those values of k and d for which the eigenvalue has two different eigenfunctions, one
without vortices and one with a vortex. That is, on x2(d), the vortex state starts to exist.

This situation has been studied in the case of a ball in [BPT]. In this case, the solutions
of (2.4) with n vortices are of the form &,(r)exp(infl) and have eigenvalue A(w,n). In
particular in [BPT] they draw the function A(w,n) versus w. The curves A(w,0) and
Aw, 1) intersect exactly once for w = wy and A = \g. Because of the bifurcation condition
AMw) = k2d?, it implies that x2d? = )¢, hence the curve ky(d) is of the form xd = constant.
It would be interesting to give a rigorous proof that the curves A(w, 0) and A(w, 1) intersect
only once for the case of the disc and for the case of a more general domain. In region 1,
that is below rk2(d), the first eigenfunction is simple and leads to a solution without vortex.
In region 2, that is above ks(d), the first eigenfunction is simple and leads to a solution
with one vortex, but we expect that there is also an eigenfunction with no vortex for a
lower field h.

Similarly, the curves A(w,n) and A(w,n+ 1) also intersect only once on the numerics of
[BPT] which means in our setting that there are curves kd = C,, at which the eigenvalue
has two eigenfunctions with n and n + 1 vortices. Above kd = C,,, a solution with n + 1
vortices starts to bifurcate from the normal state and below it, a solution with n vortices
starts to bifurcate from the normal state, so that the curve kd = C,, are the critical curves
for the existence of n + 1 vortices.

In the general case that we are studying, it is totally open to prove that there is a
unique value of w such that A(w) has two eigenvalues, one with a vortex and one without.
This would yield to x2(d) = C/d, which is what we have found numerically. Moreover, we
observe that the field of bifurcation h, satisfies h.d = w hence is constant along ko (d).

Taking this analysis of bifurcation a little further allows us to define

H(k,d) = {h, s.t. \(Vhd) = k*d*}.

In region 1, we expect that # has a single element while in Region 2, we expect this set
to have several elements corresponding to the various branches of solutions with several
vortices bifurcating from the normal state. But this analysis is open even in the case of
the disc.

Region 3: k4(d) < k < K3(d).
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For parameters in this region, that is large domains and intermediate x (in a relative sense),
a typical phase diagram is illustrated in Figure 2.8 with the energy in Figure 2.9. Three
solution branches are shown which represent the normal solution, the superconducting
solution (solid line) and a solution with a single vortex (dashed line). A profile for one of
the vortex solutions is given in Figure 2.1.
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Figure 2.8: The bifurcation curve for d = 6.274 k = 0.35
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Figure 2.9: The energy for d = 6.274 k = 0.35

The superconducting solution displays a hysteresis behavior as before, but when in-
creasing the field, it turns normal instead of going on the vortex branch as in Region 2.
More precisely, as the field is increased, the superconducting solution loses its global sta-
bility, then its local stability and its drops to the normal branch when the super-heating
field is reached. Conversely when decreasing the field from the normal state, the solution
gets on the vortex branch, though it is only a local minimizer. So the transition when
going down the field is of second order, but when going up, there is a hysteresis. When
decreasing the field further, the solution jumps to the superconducting branch. The vortex
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solution is never a global minimizer. In fact, our numerical experiments indicate that there
are only locally stable vortex solutions.

We note that, for values of the Ginzburg-Landau parameter x in this region, the vortex
state has not been frequently studied in the literature, except for superconducting sample
with extreme geometrical conditions such as thin films, disks and rings. In the latter cases,
the material displays typical type-II behavior for all ranges of x as the Ginzburg-Landau
models can be simplified to allow an almost uniform penetration of the magnetic field
[CDG]. However, the current study is done for three dimensional infinite cylinders and the
simplified models are not directly applicable. In fact, from the plot of the magnetic field
given in Figure 2.1, we see that there is considerable variation in the field strength over
the cross section.

Curve k3(d):

Let us call H, the thermodynamic critical field introduced by Ginzburg [G]: the energy
of the superconducting solution is equal to the energy of the normal solution at this field
(in our nondimensionalization, it means that the energy of the superconducting solution
is zero). The curve x3(d) corresponds to the situation where there is a small amplitude
vortex solution bifurcating from the normal solution exactly at H.. One could hope to
determine this curve mathematically.

We notice that as d tends to infinity, x3(d) tends to a finite limit close to 0.4. A rigorous
mathematical justification of this asymptotic behavior remains to be provided. One may
notive that this is the same limiting value as in the 1d case. One could hope to prove that
the bifurcation is determined by the same eigenvalue problem. See [HM].

Region 4: k < k4(d) and d > d; (k).
For parameters in this region, that is x small but domains large enough, the typical bifur-
cation diagram is illustrated in Figure 2.10 with the energy in Figure 2.11.
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Figure 2.10: The bifurcation curve ford =4 k = 0.3
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Figure 2.11: The energy for d =4 k = 0.3

There are superconducting solutions displaying a hysteresis phenomenon and no locally
stable vortices. The superconducting solution is not always the global minimizer, but when
increasing the field, the sample remains superconducting until reaching a super-heating field
h*, where the solution becomes normal with a discontinuous transition. Similarly, when
decreasing the field, the sample stays normal until the field h, which is less than A*, where
it turns superconducting by a discontinuous transition. Mathematically, we believe that
there is a range of fields, between h, and h* where there are multiple superconducting
solutions. This is in analogy with what happens for the one dimensional case. For more
rigorous analysis of the one dimensional models, we refer to [AT1].

Next, we also note that there is no locally stable vortex solution in the region. It is well-
known that asymptotically for small k, the vortex solution is not energetically favorable,
and the material belongs to the typical type-I regime |G, T] where the phase transition is
characterized by the superconducting/normal interface rather than the vortex state. When
varying the field, the superconducting or normal solutions will not turn into a one vortex
solution. However, if we do continuation from a vortex solution for a bigger value of k
(in Region 3), and decrease k, we can still find existence of solutions with vortices when
we reduce k to values in Region 4 despite of the instability of vortex solutions. For even
smaller k, continuations in x or in other parameters from the vortex solutions fails to
produce any new vortex solutions. We believe that when decreasing x, the vortex solution
first loses its stability near the normal solution (on the curve x4(d), but it remains locally
stable for |[1]| a little higher in the branch. For very small &, (especially less than C'/d),
we believe that there is no vortex solution at all. This has been proved in [BPT] in the
case of a disc. It is an open problem to prove that for fixed d and for x small enough,
vortex solutions do not exist.

Curve k;(d):
If k is fixed below 0.7 and d is increased, then the curve d;(k) is crossed. It remains
establish the mathematical existence of this curve. In the particular case where k is very
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small, the order parameter v is almost constant, there are no vortices in the domain so
that system (2.1) simplifies to

AA = [¢p?A, in Q curl A =1 on 09

where |¢| is a constant that depends on k. The boundary condition for ¢ yields [ |¢|(|¢|*+
h2A% — 1) = 0, which is the equation of the bifurcation curve. One has to find the critical
d for which the curve |9|(hg) changes direction of bifurcation near [¢)| = 0, so that the
bifurcation goes from stable for small d to unstable for larger d. Another way to study this
curve is to make the bifurcation analysis near the normal state, described in the analysis
of kg(d), which yields to (2.4). Then one would need to take this development to higher
order to get the sign of energy of the bifurcated branch. This sign changes on k;(d). The
fact that the bifurcation from the normal state is unstable for large d has not been studied.

Curve ry(d):

Another open problem is to determine the behavior of k4(d) as d tends to infinity. We
expect it to be of the order C/d for some constant C. We believe that the analysis that we
have explained for the curve ko(d) is the same here, that is on k4(d) as well the eigenvalue
has two eigenfunctions. The same analysis of the linearized problem needs to be performed.
The difference with k9(d) is that the eigenfunction with no vortex is stable on k3(d) and
unstable on x4(d).

The point of intersection

Note that all curves k;(d) intersect at the same point. Indeed the point of intersection of
ko(d) and k4(d) has an eigenvalue with two eigenfunctions, one of which (the one without
vortices) changes stability. Hence this point also belongs to k1(d) since on k1(d) the
stability of the solution without vortex changes. Finally this point belongs to k3(d) since
the energy of the bifurcated solution is zero for both eigenfunctions, in particular for the
vortex solution. We want to point out that a similar analysis for the intersection of these
curves has been performed in [AC2] in the one dimensional setting and it yields to a
solvability condition of fourth order at the point of intersection.

2.3 Uniqueness for small d

Let us now prove rigorous results for region R;.

Theorem 2.1 Assume that D is a fized simply connected bounded domain and let 2 = dD.
For any dy > 0, there exists d; > 0, such that if d < min(dy, d1/k), for any Hy = Hy(d, k),
then any solution of (GL) which is not a normal solution is such that ¢ has no zero.
Moreover, |¢/|Y|0 — 1| < Ckd.

We let Hy be a function of d and k because it is expected that a superconducting solu-
tion exists up to fields Hy of the order of C/d. Additionally, we prove a symmetry and
uniqueness result when the domain is a small disc:
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Theorem 2.2 Let Q) be a disc of radius d. There exist constants dy and dy, such that if
d < min(dy, d1/k), for any Hy = Ho(d, k), then any solution of (GL) is radially symmetric,
that is Y (x,y) = ¥(r) and A(z,y) = A(r)ey, where r = /2% + y? and this solution is
unique up to multiplication of 1 by a constant of modulus 1.

Corollary 2.1 Under the hypotheses of Theorem 2.2, there exists H, = H.(d, k), with
limg 0 dH,(d, k) = 2v2 and for Hy < H,, there exists a unique non normal solution of
(GL), while for Hy > H,, the only solutions are the normal solutions.

We make a change of variables ' = x/d, y' = y/d so that the new variables lie in a
domain of unit size D. We also define B = kdA and hy = kd?Hy. In the following, we will
assume additionnally that

divB=0 in 2 and B-n=0 on 0. (2.5)
The equations then become

(V —iB)*p = k?d*)(|¢[? —1) in D,
AB = d*(5(y*"Vy — pVy*) + Bl¢[’) in D,

L
% =0 on 0D, (GLa)
curlBxn=hyxn on 0D.
Note that another way of writing the equation for B is
AB = —d* (i, Vi — iBv), (2.6)

where (., . ) is the real part of the scalar product in C.

We allow hg to vary with d and « but we will prove that if there exists a solution, then
in fact hg is bounded, that is Hy is bounded by C/kd?.

The proof consists in obtaining a priori estimates for the solutions (¢, B).

Proposition 2.1 Fizp > 1. Assume that (psi, B) is a non normal solution of (GL4) and
(2.5). For all constants dy and dy, if d < min(dy, di/k), then ¢ and B are bounded in
W?2P(D) by constants independent of d and k. Moreover, for fized k,
li = lim ||B||we2»py = 0. 2.
lim hy =0 and lim [[Bllw2»p) =0 (2.7)
We use these a priori estimates and the Poincaré inequality to derive that || V4/ |90l

and [1/|1|s — 1| are small, thus ¢ has no zero.
Then, we define the functions

B =v(-s), Bl = (5 PO,

w(z,y) = ﬁwu, y) - W,y), () = B(z,y) - B(z, ), (2.8)
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which satisfy elliptic PDE’s with small right hand side terms. Then we use that 1 is nearly
constant and hence we get that w and z are identically zero. This proves Theorem 2.2.
We obtain the uniqueness result proving that any solution is necessary a local minimizer
of the energy. Finally, we show how our proof can be adapted to the one dimensional case
to provide a symmetry result in this setting.
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Chapter 3

Vortices in Bose Einstein condensates

3.1 Introduction

Bose Einstein condensates owe their name to the prediction of Bose and Einstein in 1925
that for a gas of identical particules without interaction at very low temperature, a macro-
scopic fraction of the gas is in the state of lowest energy, that is condensed. At that time,
the idea was only theoretical. In 1937, superfluid helium was discovered and a link was
made with Bose Einstein condensation, but there are major differences between helium,
which is a liquid, and the theory of Bose and Einstein which applies to a gas. The first
experimental achievement of Bose-Einstein condensates in confined alkali-metal gases was
made by American teams in 1995 and was awarded the Nobel prize for physics in 2001.
Since then, there has been a huge experimental and theoretical interest in these systems
[BuR, CD, DGPS, MCDW, MCBD]. The study of vortices is one of the key issues. In
the ENS experiment [MCDW, MCBD], the trap has a cigar shape and is rotated along its
long axis at angular velocity €2. At small €2, no modification of the condensate is observed.
But at some threshold velocity, a dip of density appears, called a vortex. In[MCBD], it
has been observed that when the first vortex is nucleated, the contrast is not 100% which
means that the vortex line is not straight but bending. Numerical computations solving
the Gross-Pitaevskii equation [GP] have shown that there is a range of velocities for which
the vortex line is indeed bending (see Figure 3.1). At higher velocity, there are more vor-
tices. The aim of this part of the course is to justify these observations theoretically using
an appropriate mathematical model.

3.2 Mathematical formulation
The condensate is determined by the ellipsoid
D = {pr > 0} where prr = po — (2% + o®y* + 5%2?).

29
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Figure 3.1: Shape of the ground state: vortex bending

Here o and 3 are the geometrical parameters of he trap, a being close to 1 and S of order
1/15, which accounts for the elongated shape of D in Figure 3.1. Moreover

po/? = 15a3/8, (3.1)

so that

/DpTF(r) =1. (3.2)

The trap is rotating at angular velocity (2 and in the rotating frame, all the particules are
assumed to be condensed in the same state described by a wave function, which minimizes
the Gross-Pitaevskii energy:

1 ) 1
E.(u) :/D§|VU|Q+Q-(W,Vuxr)+4—€2(pTF(r)—|u|2)2 u € Hy (D), /D|u|2 =1. (3.3)

Here, for any complex quantities u and v and their complex conjugates @ and o, (u,v) =
(u?+1v)/2. The first term is the kinetic energy, then there is the term due to rotation, the
term in |u|? accounts for the interactions and pyr|u|? is the trapping term. The parameter &
is a non dimensional parameter of order 10~2. The velocity 2 has to be such that Q < 1/¢,
so that the trapping potential is stronger than the inertial potential. For a more precise
derivation of the physical model, see [ADu2]. We have written the energy in such a way
that the analogy with the Ginzburg-Landau becomes clear: the magnetic field is replaced
by rotation and the trapping prr plays the role of a pinning term.
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Note that a critical point u of F. is a solution of
. 1 .
—Au+2i(Q xr).Vu = ?u(pTF — |ul?) + pew in D, (3.4)

with . = 0 on D and . is the Lagrange multiplier. The specific choice of pg in (3.1) will
imply that the term p.u is negligible in front of prpu/e2.

We have set the framework of study of our energy. We want to determine the properties
of its minimizers according to the value of (2. We will make an asymptotic expansion of
the energy taking into account that € is small to obtain a simpler form of the energy which
only depends on the shape of the vortex lines. Then we check numerically and theoretically
that our characterization leads to solutions with a bent vortex for a range of values of the
rotational velocity which are consistent with the ones obtained numerically.

3.3 Asymptotic expansion of the energy

Our aim is to decouple the energy into 3 terms: a part coming from the profile of the
solution without vortices, a vortex contribution and a term due to rotation.

In Figure 3.2, 3.3, we have plotted |u.| as a function of z and y, at z = 0, for @ =0
and 20. The solution has the same profile except close to vortices and |ug|2 is close to pyp
except near the boundary.

Figure 3.3: |u| for 2 = 20.
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3.3.1 The profile of the solution

Firstly, we are interested in the profile of solutions so that we will study solutions without
vortices. Thus we consider functions of the form n = fe'¥, f is real and does not vanish in
the interior of D. We consider first minimizing F. over such functions without imposing
the constraint that the norm is 1, that is, f and S minimize

1 1 1
E(f,S) = / SIVP+ 5 (pre — f2)° + —/fQ\VS —Q x|’ — f20%? (3.5)
D2 4e 2
where r = ze; + ye,. We have f. =0 on 0D and
1
—Af. + fVS(VS. —2Q x1) = S—ng(pTF — f%) in D, (3.6)
div (f2(VS. —Q x 1)) = 0. (3.7)

From the first equation, one can derive that f? tends to prr on every compact subset of
D. Indeed there is a boundary layer since /prr is not in H'(D). the boundary layer is of
size €2/% and after proper nondimensionalization, is given by a solution of a Painleve type
equation:

V" =v(v? - 2y/poz) v(—00) =0 wv(x) = 1/2\/poT as T — oo.
The continuity equation (3.7) implies that there exists E, in H?> N H{ such that
fA(VS. —Q xr)=Qcurl E,. (3.8)

One can think of E, as the equivalent of a stream function in the case of fluid vortices. So
=, is the unique solution of

curl (%Curl E.)=-2inD, E.=0onadD. (3.9)
In the special case where the cross section of D is a disc (that is & = 1), the minimum of
(3.5) is reached for VS = 0 but this is not the case if the cross section is an ellipse and
there is a non trivial solution of (3.7). When ¢ is small, f2 tends to pr on every compact
subset of D and the function =, given by (3.8) or (3.9) is approximated by the unique
solution = of .
curl (—curlE) = -2in D, E =0 on 0D. (3.10)

Prr
One can easily get that

E(7,y) = —pae(®,9)/(2 + 20%)e,. (3.11)
Using (3.8), we can define Sy, the limit of S, to be the solution of prs(VSy — Q x 1) =
Q curl Z with zero value at the origin. We have Sy = CQzy with C = (o? — 1)/(a? + 1).
We see that Sy vanishes when a = 1, that is when the cross-section is a disc. Otherwise,
the solution 7. has a phase which is globally defined.



3.4. 2D CASE 33

3.3.2 Decoupling the energy

One now needs to add the vortex contribution on the profile of solutions. Let 1, = f.e*:
be the vortex free minimizer of E. discussed previously without imposing the constraint
on the norm of u.. Let u. be a configuration that will minimize E. and let v, = u./n..
Since 7. satisfies the Gross Pitaevskii equation (3.6)-(3.7), we have

lsz(pr — A + |V fee)? —2f2(VS.-Q xr))=0. (3.12)

2 1 2
JACERCINET

This trick was introduced in [LM] and leads to the following decoupling of the energy
E.(u):
E(uc) = E;(ne) + Gy (ve) + I, (ve) (3.13)

where
|4

1 I
G e) = Py 62v62 ——(1— 6227
(0 = [ PV + 2= o)

is the energy of vortices and

%@J=AM¥W&—QXﬂﬁ%Vm,

is the angular momentum of vortices. The first term in E.(7.) is independent of the solution
Ue, SO we have to compute the next two and find for which configuration v, the minimum
is achieved. We use that at zero order |n.|? is approximated by p.» when ¢ is small so that
we can estimate G, by G ;= G and I, by I, = I.. The mathematical techniques
to approximate G have been introduced in [BBH] in dimension 2 and in [Ri] in dimension
3. The vortices will be tubes of size ¢ around which v, has a degree. Away from the tubes,
|ve| is very close to 1 and only the phase of v, is of influence. In the vortex core, the
profile of v, is given by the cubic NLS equation. Our aim is to estimate the energy of u,
depending on the vortex tubes.

3.4 2D case

We first consider a situation in which the confinement along the z axis is so strong that
the motion of particles along this axis is frozen in the ground state of the strong harmonic
potential: hence the wave function is factorized into a component purely dependent on z
and another one which depends on the radial coordinates (x,y) and it minimizes E., but
with prp = po — 72 — o?y? and p? = 2a/7.

The energy of vortices G, is estimated as in [BBH]|, taking into account the weight
In:|* to obtain a leading order term in |log ¢| and an interaction term. The integral I is
computed via an integration by part. One can prove that as € goes to 0, the vortices tend
to the origin and they are all singly quantized vortices, that is d; = 1. The proof goes as
in [Serl]: to show it, one may define a test function that consists in putting the n vortices
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on a polygon centered at the origin of size 1/ VQin z and 1 / av/Q in y, and check that this
has a lower energy than any configuration with multiple vortices. Using a special ansatz,
it has been proved in [CD] that the multiply quantized vortices are unstable. In fact, it
is a physical signature of the harmonic trapping potentials that the minimizers have only
singly quantized vortices. When other trapping potentials are used, it is possible to have
minimizers with multiply quantized vortices (d; > 1).

We let p; be the location of vortices with coordinates (Z;, 7;) be such that z; = 2V Q
and §; = oy;v/Q. This allows us to estimate the energy of a solution with n vortices
centered at p;:

Qo
1+ o?

)+ = (n? =) pologQ+w(By, -.., ) +Cr+0(1) (3.14)

E.(u)= E-(n.) = mnpy(Jlog ¢| - .

where C,, is a constant that depends on n and a and

~ 12
- o ~ ~ Yi — Y5
W (D1, -y Pn) = —Tpo E 10g(|$z‘ — *+ 7| Z2a2]| )
i£]

o - 2 llog s|)
24+ 97 - : 3.15
o0 32+ 00 (70 ~ 0 (3.15)

Physically speaking, the first term in (3.15) gives the repulsive interaction between the
vortices and the second term illustrate the competition of the restoring and centrifugal
forces [MCBD, MCDW]. The location of vortices is determined by the minimum of w.
Recall that p3 = 2a/7. For fixed a, w is of order 1, hence is of lower order than the
previous terms. Then the critical angular velocity for the existence of n vortices can be
computed from (3.14)

0, = (1+ 042)\/%(\10g o 4+ > 1)1og((1 + aZ)\/%Hog g|)), (3.16)

The location of vortices is determined by the minimum of w or equivalently by the minimum

of . 9
— Z]og(ﬁ:i — 7 + 15 = 55" _Qyj| )
o
1#]
under the constraint Y, 7? + §? = cst. For a = 1, this has been studied by [GS]. When
a # 1, it is an open question. When n = 2 or 3 (and « not close to 1), the vortices are on
the longest axis of the ellipse.

3.5 3D case

In the general case, we want to estimate G.(v.) and I.(v.) to get an approximate expression
for (3.13). We will do it in the case u. has a single vortex tube tending to the curve 7.
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3.5.1 Estimate of G.(v;)

We want to estimate
_ 1 2 ‘pTF|2 212
G.(ve) = i‘pTFHVUs| + 122 (1 — v ]%)"
D e

We define
= {z € D s.t. dist(z,7) < Ae}, (3.17)

and assume that \e is small, A being our matching parameter to be fixed later on. Then
we split G, into two integrals: one in 7)., the energy of the vortex core and the other in
D\ T), the energy away from the vortex core.

Estimate near the vortex core

We are going to estimate G, in Ty.. At each point () of v, we define II7*(y(¢)) to be
the plane orthogonal to v at (t). Since e is small we assume that prp is constant in
It (y(¢)) N Ty and we call the value p; = prp(7(t)). We want to compute

1 P p
[ gemivnt o -mpra (5wl
T)\ 3 7(t nT)\E

This computation is valid as long as ke is small, where k is the curvature of . The zero
order approximation of v, is given by u;(ry/p/€), where u(r,0) = fi(r)e” is the solution
with a single zero at the origin of the cubic NLS equation

A+ u(1l — Ju?) = 0 in IR%.

Thus,
/ Vol 4 250 )2
=1 (y(t))NTxe
: /BJV(W\/”E) ’”)\+ (1-5(/2)
= [ vuP g fufy
By o
~ ¢+ 2wlog(A/pr), (3.18)
where

fi=1 ?
1 - i~ Uy
/ f fl) /Rz\Bl 2 * B r?

The last line of (3.18) would be an equality if the first two integrals in the expression of c,
were taken in B, /5 instead of IR?. This approximation is correct if Ay/pr is large (in fact
bigger than 3 is enough).

The final estimate of this section is

Golv)m, = [ por(’s +TlogON/Fm)l (3.19)
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Estimate away from the vortex core

We are going to estimate G. in D \ T).. In this region |v.| ~ 1, and we have seen that
Ay/pt is large, so that only the kinetic energy of the phase has a contribution.

1 2 P%F 212 / 1 2
—prr| VU |“ + —5 (1 — |v ~ —prr| VoL !|%, 3.20
/‘D\TAE 2 TF‘ 5‘ 452( | 5| ) D\T)\E 2 TF| 5‘ ( )

where ¢, is the phase of v.. Of course, ¢, is not defined everywhere. We let ¥ be a stream
function that is div ¥ = 0 and
curl ¥ = p V.

Then W is the unique solution of

1 -
curl (—curl \Il) = 276, ¥ =0 on 0D, (3.21)
Prr

where 5:, is the vectorial Dirac measure along ~, that is for a vectorial test function w,

<57,w>:/w-dl
v

while ¢, is the Dirac measure along 7. Thus,

1 1 1
/ Spp| Vo[ = / lcurl ¥ = —= U .-V, x v (3.22)
D\TAE 2 D\T/\E 2pTF 2 8T)\£

where v is the outward unit normal to the tube 7T).. We will see that ¥ is almost constant
at a distance \e from v and we call this value ¥,.(-y). Since the vortex line has a winding

number 27,
1
/ §pTF|V¢s|2 = W/\II,\E('Y) - dl.
D\T)\e Y

We have to compute ¥ on 07).. The computation is inspired by the paper of Svidzinsky
and Fetter [SvF2]. It follows from (3.21) that W satisfies

V =
—AW¥ — prx X curl ¥ = 27 prg.,.
Prr

Let 2y € v. We denote by e; = ¥(x) and (e, ez, e3) an orthogonal base in local coor-
dinates. Then ¥ has coordinates ; in e; and the variations of 3 are the only ones of
influence in the equation for ¥, since we want to compute W - dl. In the equation for ¥,
we neglect the terms in Vi; and V), in front of Vi3 and we get

o
— Ay + ~LTE iy = 2 pry, (3.23)

Prr
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where prp(z', 22) = pre(zt, 22, 23). Let € = ¢3/\/Prp. Then it follows from (3.23) that &
satisfies

—AE + p€ = 2m\/preb, (3.24)

where

= /D A 3.25
w prrl /— = VPrrAL /—pTF ( )
Here A, is the Laplacian in the plane perpendicular to e3 = §(zo). If the cross-section
of the condensate D is a disc one can compute . We denote by 6 the angle of es that is
e3 = cosfe, + sinfe, and (r, z) are the coordinates of z, in the original frame. Then

©w= 1+ sin20p) + f? cos + 3(rsin ;,2&22 = 9)2. (3.26)

Note that p > 0. In fact our numerical computations even yield x> 7. Our aim is now to
give an approximate expression for £&. We locally approximate the curve v near the point
7o by the parabola z = kz?/2, where k is the curvature of y at zo. This is where we use the
same ideas as in [SvF2]. Note that in our approximations, we are only taking into account
the shape of 7 close to zy. The justification for this relies on the fact that u > 7 as our
numerics show. Indeed if we solve

“AX +puX=f
where f is supported at a distance d of zy. Then using the Green function, we find that

e~ Vhd
47ru3d

In particular, for d = 0.1, this gives an error less than 10~2. This is to be compared to the
Euler constant and our approximation is reasonable. We rewrite (3.24) in local coordinates
to get

_AJ_é- + ka:mf + ,Ufg =27 \Y, pTF(xO)éesa

where de, is the Dirac mass supported along the line e; and e; is the normal to the vortex

line . Thus ,
~A(eTTE) + ((g) + 1) (e77°€) = 2m/p2e (w0) s (3.27)

The solution of this equation is

Vool Koyfn+ aist(z. ).

where K, is a modified Bessel function. In particular, Ky(z) ~ —log(e“x/2) for small =
where Cy ~ 0.577 is the Euler constant. Hence, we deduce

eCo k2 . ]
W(r) ~ —pTFlog(T u+ ZdlSt(I, 7))7. (3.28)
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Thus we conclude by the estimate for G.(v.) in D\ T

eCo k2
G:(ve)ip\13. —ﬂ/pTFlog(T "+ Z)\a) dl. (3.29)
v

Here we have used that Ae is sufficiently small. In the previous section, we needed \/p;
large. The existence of A is justified by the fact that \/prr/e is much bigger than 1, except
very close to the boundary. But in this region, the contribution of the energy is negligible.

3.5.2 Estimate of I.(v.)

We want to estimate
I (ve) = / prr(VSe — Q2 x 1) - (ive, V). (3.30)
D

Recall that the unique solution of (3.9) satisfies prs(VS: — Q x r) = Q curl E,. Hence we
integrate by part in (3.30) to get

L(v.) = Q/DE6 - curl (ive, Vo).

Let ¢. be the phase of v.. Since v, is tending to one everywhere except on the vortex line,
then (iv., Vv.) ~ V., hence we can approximate curl (iv., Vv.) by 276,. We use the value
of 2 given by (3.11) and the fact that §(¢) - e, = dz to get

Qm
1, ~—— 2 . 31
) =~y oy | P (331)

3.5.3 Final estimate for the energy

We use (3.13)-(3.19)-(3.29)-(3.31) to derive the energy of a solution with a vortex line .
Indeed the energy of any solution minus the energy of a solution without vortex is roughly
the vortex contribution in the sense:

E.(u:) — E:(n:) =~ &,. (3.32)

We find that the vortex contribution &, is

Cx 2 Prr Qm / 9
= — 1 dl — —— dz. .
&y /7'0TF( p 7 Og(eeCO w+ %)) (1+a?) 7pTF ® (3:33)

Hence if the right-hand-side of (3.33) is negative, it means that it is energetically favorable
to have vortices. Note that in the first integral of £,, we have dl = |§(z)|dz whereas in the
second one, we have dz, that is an oriented integral. This oriented integral precludes the
minimal configuration to have closed loops.
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3.5.4 Case of several vortices

Let us assume that the solution u. has n vortices along the lines v;, 1 < ¢ < n. We want
to estimate the energy in this case. For each v;, we define T} . as in (3.17).

One can check that the estimates (3.31) and (3.19), respectively for I.(v.) and for G.(v.)
close to each vortex core, are unchanged if the integral along v is replaced by the sum of
the integrals along ;. The only difference is for the estimate away from the vortex cores
where we have to take into account the interaction between the vortex lines. Let us denote

D,, = D\ U,Tj .. We still have

GE(UE)wn’:/ % lcurl |2, (3.34)
TF

where ¥ = > . ¥, and ¥, solves (3.21) with +; instead of . Thus, we need to estimate

Z/ 2101TF‘|Curl \I’Z|2 +Z/

i#£k

curl ¥y, - curl ¥;. (3.35)
,OTF

The first integral is estimated as in section C.2 by

Z—ﬂ'/ pTFlog(§\/u+ %2)\5) dl. (3.36)
i Yi

As for the second integral in (3.35), we integrate it by part to get

Ty | p-dl. (3.37)

ik Vi

The computation of ¥, (z) from the previous section is still valid and we have

/ k? . )
Wy (r) ~ —preKo(\/ 10 + ZdZSt(ﬂca'Yk))’Y-

This yields the contribution of n vortex lines (to be compared with (3.33) for 1 vortex)
Cy 2 PrF Qm 2
£, = (—+7rlo< 2))45—7/ dz
X[ oG e mnlam 7)) - v |

k2
_WZ/ preKo(\/ 1 + Zdzst(x,’yk))dl, (3.38)

i#£k

where K is a modified Bessel function. The extra term in the energy models the interaction
between vortex lines. Note that the curves are going to interact only in the region where
they are close to one another.
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3.6 Vortex bending

3.6.1 Numerical results

If the vortex line is straight, our computation yields

3/2
P (2(% 4 m (_ﬁ)) 2m, (04 Aog2) —@ 5™ ). (3.0
g \3\g Tmoslq)) T 3ot~ + 38 Ga+ay) %

Making this expression equal to 0 allows to derive a critical angular velocity 2; for which
a straight vortex has a lower energy than a vortex free solution. With our experimental
data, it yields €2; ~ 22.45. We are going to see that there is a range of value of {2 less than
2, for which a bent vortex has a negative energy and in particular a lower energy than a
straight vortex.

0.6

0.4

0.2

02 F

0.4 |

-0.6

Figure 3.4: The vortex line for various values of 2 in the z — y plane: Q0 = 21.8 (straight
line), 2 = 25.8 (dotted line), 2 = 33.1 (dashed line).

We plot the energy of the straight vortex line and the bent vortex vs €2 in Figure 3.5.
One can observe that for 2. = 21.8, in the initial units, the energy of the bent vortex starts
to be negative (that is below the energy of a solution without vortex), while the energy
of a straight vortex line is positive. For () = 33.1, the energy of the bent vortex and of a
straight vortex line become equal.

Let us point out that the bent vortex is a minimizer even if the cross section is a disc.
Nevertheless, when ¢ is fixed, if 8 gets too big, the straight vortex becomes the minimizer,
which is the case for § = 1.
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Figure 3.5: The energy vs. Q curves for the solution with a straight vortex (solid line) and
a bent vortex (dotted line).

3.6.2 Rigorous results

For a rigorous study, we are going to make a simplification on the energy &£,, valid for small
. After rescaling the energy and €2 by some appropriate constant, we are lead to

Bl = [ por 1= [ 2, dz (3.40)
Y Y

The energy E[v] reflects the competition between the vortex energy due to its length (1st
term) and the rotation term. Note that the rotation term is an oriented integral (dz not
dl), which actually forces the vortex to be along the z axis, while the other term wants to
minimize the length. This is why, according to the geometry of the trap, the shape of the
vortex varies. In this scaling, the energy of the vortex free solution is zero. Thus, a vortex
line is energetically favorable when €2, 5 are such that inf, E[y] < 0.

First of all, it has been observed numerically [GP] that the vortex line lies in the plane
closest to the axis of rotation and we can provide a rigorous justification:

Theorem 3.1 Ifa > 1, then the energy is minimized when the vortex line lies in the (y, z)
plane, that is the plane closest to the axis.

Indeed, if we have a curve y parametrized as y(t) = (z(t), y(¢), 2(t)), then we can define the
new curve ¥(t) = (0,7(t), 2(t)) by 2(t) = 2(t) and §(t) = /22 + o?y%. Then pr(y(t)) =
pre(3(1)). Since a > 1, § < &2+, hence p(7)|7] - 2p(7)% < p(7)|4] = Qp(7)%. Tt follows
that the energy of the new curve E[7] is less or equal than E[y]. If & = 1, that is the cross
section is a disc, then our arguments imply that the vortex line is planar, but of course all
transversal planes are equivalent.
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From now on, we will assume that the curve lies in the plane (y, z), so that p, only
depends on y and z and we will call it p. Recall from the expression of E, (3.40), that for
E[] to be negative, we need p — p? to be negative somewhere, that is Qp > 1. For fixed
2, we define the regions

D; :={(y, 2) : Q(y, z) > 1}, D, :=D\D,. (3.41)

We will refer to these sets as “the inner region” D; and “the outer region” D, respectively.
In the outer region, the energy of a vortex per unit arc length is necessarily positive, since
p — Qp* > 0, whereas in the inner region, for appropriately oriented vortices it can be
negative since p — Qp? < 0. One can see easily that for v to have a negative energy, part
of the vortex line has to lie in the inner region, that is close to the center of the cloud.
Note that for D; to be non empty, we need at least 2py > 1. In the region D;, we will
see that the vortex is close to the axis for all 5. On the other hand, in the region D, the
vortex goes to the boundary along the quickest path: if 8 is small, perpendicularly to the
boundary, which gives rise to a bent vortex and if 5 > 1, the vortex stays along the axis
of rotation.

Let v, be a straight vortex along the z axis. We say that the straight vortex is stable
if (v, E"[ys]Jv) > 0 for all v, and unstable if (v, E"[ys]v) < 0 for some v.

Theorem 3.2 The straight vortex is stable if

3 1
Q -+ —. 42
Po > 1 + 15 (3.42)
The straight vortex is unstable if 3 < 1/+/3 and
1 1
Q -+ —. 3.43
Po < 6 + 652 ( )

Note that the 2 values are consistent in the sense that they both scale like 1/3? when
B is small. For () large, one expects several vortices in the condensate, but the fact that a
straight vortex is stable gives an indication that for ) large, each vortex should be nearly
straight, which is consistent with the observations [AM].

It is interesting to see what happens in Theorem 3.2 when Qp, = 5/4, that is when
the straight vortex has zero energy. The first inequality yields that if 3 > 1/1/2, then the
straight vortex is stable for all 2 such that Qpy > 5/4, that is when E|v,] < 0. If 8 > 1,
we have that ~, is not just stable but in fact minimizes E. The second inequality implies
that, if 8 < /2/13 &~ .39 then the straight vortex is unstable at the velocity Qpy = 5/4
at which E[ys] = 0. As a result, for these values of 3, the first vortex to nucleate as Q
increases is a bent vortex. Note that it has been observed in [SvF2] that for 8 < 1/2, the
ground state of the system exhibits a bent vortex. Numerical results of [GP] also show
that bent vortices are energetically favorable when f is small.

All this indicates that by varying the elongation of the condensate, one may hope to
go from a situation where the first vortex is bent, to a situation where it is straight.
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For a curve v, let I,; := {t € I : v(t) € D;} and I,, = I\ I,;. And let +; be the
restriction of y(+) to I,;, and similarly 7,.
The definition of I, , implies that p(y(t)) — Qp*(y(¢)) > 0 for t € L, ,, and as a conse-

quence
p(Y@O)F(B)] = Qp*(v(1))2 > [(1)] (p(v(1)) — Q2 (+(1))) (3-44)
which is positive in I,,. Thus if y is such that I,; is empty, then clearly E[y] > 0 and it

is energetically favorable not to have a vortex. This is the case in particular for {2py < 1
since then D; is empty. We may thus restrict our attention to the case I, , nonempty.

Proposition 3.1 For all B and all 2, in the inner region, the straight vortexr minimizes
the energy, that is M; = inf{ E[,|}, where ~y; is the restriction of y(-) to L, is attained by
the straight vortez.

Proposition 3.2 For 8 > 1, in the outer region, the straight vortex minimizes the energy,
that is the infimum M, of {E|[,]}, where v, is the restriction of y(-) to L, ,, is attained by
the straight vortex.

Note that in the outer region, Proposition 3.2 only holds for 8 > 1. If § < 1, the situation
is somewhat more complicated: f pdl is minimized by a path that joins D; to 0D along
the y axis, whereas — f pdz is mlnlmlzed by the straight vortex running along the z-axis.
The minimizer of the full energy reflects the competition between these two terms, and
hence is bent.

In the case § < 1, that is when the vortex line is bent, we can prove that the vortex
has a minimum length. This is related to the fact that the vortex has to go to the center
of the cloud and spend some time in the inner region.

For an open set U C D with Lipschitz boundary, we endow 0U with an orientation in
the standard way, so that Stokes’ theorem holds.

We will prove the following isoperimetric-type inequality:

Theorem 3.3 For every0 < <1

/6 | < evm)” ( /8 ) pdl) " (3.45)

for every connected open subset U C D,

A short calculation starting from (3.45) shows that if E[y] < 0 then

/pdl > CEND) Q2\/_) (3.46)

We expect that even for a configuration with multiple vortices, each vortex line will satisfy
a lower bound of the type (3.46). In a configuration with several vortices -y, the energy

derived in [AR] is > E[vk] + I(7k,;), where

I(Ve, ;) = | og(dist(z, ;)| dl.

Tk
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Adding a vortex to a stable configuration with n — 1 vortices, requires

Elv.] + ZI(’Yn;’Yj) < 0.

Since I > 0, this implies in particular that E|y,] < 0 and hence the bound on the length.

3.7 Conclusion

We have obtained a simplified expression (3.33) of the energy of a minimizing solution of
the Gross Pitaevskii energy with a vortex line v and (3.38) for n vortex lines ;. This
expression depends on the shape of the vortex line. It has a term coming from the energy
of vortices and another one due to the angular momentum of vortices This has allowed us
to draw the vortex line for the minimizing solution and compute its energy. We have seen
that there is a range of rotational velocities for which a bent vortex line has a lower energy
than a straight vortex and a vortex free solution. These computations on the simplified
expression of the energy are in agreement with the computations on the full energy [GP].
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