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Chapter 1

Hilbert spaces

1.1 Scalar product

Let E¥ and F' be two C-vector spaces. A mapping f: F — F' is said to be
antilinear if, for all z,y € E and all A € C we have f(z+y) = f(x) + f(y)

and f(Az) = Af(z).

Definition 1.1.1 Let E be a complex vector space. We call sesqui-linear
form on E a mapping B: E x E — C such that, for all y € E the mapping
x +— B(z,y) is linear and the mapping x — B(y,x) is anti-linear.

Proposition 1.1.1 (polarization identity)

1. Let E be a complex vector space and B a sesqui-linear form on E. For
all x,y € E we have

4B(z,y) = B(a+y, v+y)—B(r—y, v—y)+i B(z+iy, x+iy) —iB(x—iy, x—iy).

2. Let E be a real vector space and B a bilinear form on E. For all
xz,y € E we have

AB(z,y) = B(z +y,z +y) — Bz —y,2 — y).
Proof. We have B(z +y,xz +y) — B(x —y,x —y) = 2B(x,y) + 2B(y, ©).
Replacing y by iy, we find B(x + iy, z +iy) — B(x —iy,x —iy) = 2B(z,iy) +
2B(iy,z) = —2iB(x,y) + 2iB(y, ©). O
In particular, to determine a symmetric sesqui-linear form B, it suffices

to determine B(z,x) for all z € E.

Corollary 1.1.1 Let E be a complex vector space and B a sesqui-linear
form on E. The following are equivalent:

)



6 CHAPTER 1. HILBERT SPACES

(i) For all z,y € E we have B(y,x) = B(z,y).
(ii) For allxz € E, B(z,x) € R.

Proof. Set S(x,y) = B(x,y)— B(y, z). This define a sesqui-linear form. By
the polarization identity, S is zero if and only if, for all z € E, S(z,x) = 0.
O

Definition 1.1.2 Let E be a complex vector space. We call hermitian
form on E a sesqui-linear form wverifying any of the equivalent conditions
of corollary 1.1.1. A hermitian form B on E is said to be positive if, for all
r € E, B(z,x) > 0.

A symmetric bilinear form B on a real vector space E is said to be positive
if, for allx € E, B(z,z) > 0.

We call semi-scalar product, often denoted by (z,y) —< z,y >, any
symmetric positive form on a real vector space or any positive hermitian
form on a complex vector space. It is called scalar product if, it verify in
addition the following property: for oll x € E, < x,x >= 0 if and only if
xz=0.

On appelle espace prhilbertien (rel ou complexe) un espace vectoriel (rel
ou complexe) muni d’un produit scalaire.

Exemples.
1. Let E=RY. If ay,---,ay are positive real numbers, the relation
< T,y >i= Z a;TiY;
1<i<N

define on E a semi-scalar product, which is a scalar product if and
only if all a; are strictly positive.

2. Let X be metric space locally compact and separable, u a positive
Radon measure on X and E := DY(X,K). The relation

< fg>i= / F(2)9(@) dpu(z)

define a semi-scalar product, which is a scalar product if and only if
Suppp = X.

3. The space E := Cy; = {f:R —— K continuous and 27 — periodical}
with the relation

2
<oz g [ I@aw

is a prehilbert space.
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4. Let I be a set. Denote, for p > 1, by ¢P(I) C K! the set of sequences
(z;)ier such that |z;|P is summable. Put on ¢P(I) the discrete measure

m,
/xdm:in:: sup in<oo,

i€l JEPrI) ey
where Py (I) is the set of finite parts of I.

The case p = 2 is very particular, £2(I) with the scalar product defined
by

<z,y >= Zaz,@
el

is a prehilbert space.

The classical proof is applicable to the prehilbert case for:

Proposition 1.1.2 (Cauchy-Schwarz inequality) Let E a prehilbert space.
For all x,y € E we have

|<z,y>P<<zz><yy>.

Corollary 1.1.2 Let E be a prehilbert space. the mapping x — /< x,x >
define a semi-norm on E.

Proof. For all xz,y € E, we have < z+y,z+y >=< z,2 > + < y <
y>—+ < zy>+<z,y> << z,x >+ <yy>+2 <zy>|<
[V/<z,7 >+ /< y,y >|% by Cauchy-Schwarz inequality. O

Proposition 1.1.3 Let E be a prehilbert space. For all x € E, the linear
form fpiy —< y,x > is continuous. Moreover the mapping x —— f, is
anti-linear and isometric from E into E*.

Proof. Let p be the semi-norm of corollary 1.1.2. For y € E we have
|fz(v)] < p(x)p(y) (Cauchy-Scwarz). So f, € E* and || fz]| < p(z). Now
since p(x)? = fo(2) < || follp(x), we get that || foll = p(z). O

In the following we give a case where equality in the Cauchy-Schwarz

inequality occur.

Proposition 1.1.4 Let x,y € E a prehilbert space. Then
| <z,y>|=|z| ||yl if and only if x and y are linearly dependent.
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Proof. The condition is clearly sufficient. Assume that | < z,y > | =
|z||||ly]| and let € € C, |e| = 1 such that Rele < z,y >] = | < ,y > |. Then
lyllz|l — ellyll=]* = 0. O

A direct consequence of the definition of the norm is

Proposition 1.1.5 (parallelogram identity) For all x,y € E we have

2
+

r+y 2

2

r—y
2

1
=5 (=l + [1yll*) -

Definition 1.1.3 Let E be a prehilbert space. We say that two elements x
and y of E are orthogonal if < x,y >= 0. We say that the subsets A and
B are orthogonal if every element of A is orthogonal to every element of B.
We call orthogonal of a part A of E the set A+ of elements of E orthogonal
to A.

It is clear that A+ = ﬂ ker f.. Hence its is a closed sub-vector space of F.
€A

A direct consequence is

Proposition 1.1.6 (Pythagore’s theorem) If z,y € E are orthogonal in
a prehilbert space, then

lz +3l* = [l 1> + llyll*.

Definition 1.1.4 A Hilbert space is a complete prehilbert space for the norm
defined by its scalar product.
Fundamental examples.

1. Every finite dimensional prehilbert space is a Hilbert space.

2. If ;1 is a measure on a measured space, the space L?(u) define a Hilbert
space with the following scalar product:

<= [ fadn.



1.2. PROJECTION THEOREM 9

1.2 Projection Theorem

One of the fundamental tools of the Hilbert structure is projection theorem.
In the following H is a Hilbert space endowed with the scalar product <, >
and the associated norm || - ||.

Theorem 1.2.1 Let C' be a nonempty closed and convex set of H. Then
for all x € H, there exists a unique y € C' such that

lz —yll = d(z,C).

This point y, called projection of x on C and denoted by Pco(x), is char-
acterized by

yeC andforallzeC Re<zxz—y,z—y><0. (1.1)

Proof. Denote by d := inf{||z — y||; y € C} the distance to C. Let y,z € C
and set b := z — Y32 and ¢ := Y3%. Then d < ||b]| since L% € C. Since
r—y=b—cand r —z=">b+ ¢, we have

ly — 2|1

lz = yll* + llz = 211" = 2 [[blI* + [lel|*] > 24" + 7=

Thus [ly — #[12 < 2[z — ol1? — ] + 2|z — 2|* — @]

For n € N, set C, := {y € C; |lz — y||* < d? + 1}. C, is nonempty closed
set of H and the diameter of C,, §(C},) < 2/y/n hence tends to zero. Since
H is complete, the intersection of Cy, that is equal to {y € C; ||z —y| = d},
contains a unique point yg.

Let y € C. For t € [0,1], we have yo + t(y — yo) € C, hence ||yo + t(y —
yo) =/l > lly = oll- Set f(t) := llyo +t(y — yo) — z[|* = llyo — ||* + 2tRe <
Yo — 2,y — yo > +2]ly — yol>- Since £(0) < (1) for all £ € [0,1], /'(0) > 0.
ie. Re<yg—z,y—yo>>0. O

Denote by Pc the projection on C. Condition (1.1) permits to show that
P¢ is a contraction:

Proposition 1.2.1 Under the same hypothesis, for all x,y € H, we have
[1Pc(z) = Po)|l < llz—yll.
Proof. Set u := Pox and v := Poy. We have

Re<z—y,u—v> = Re<z—-—v,u—v>+Re<v—z,u—v>
= Re<z—u,u—v>+u—v|?+Re<v—z,u~—
> fu— ]2

v >
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Hence by Cauchy-Schwarz inequality, ||u — v||? < ||z — yl| [Ju — v||. O

In the case of sub-vector space:

Proposition 1.2.2 Let E be a closed sub-vector space of H. Then Pg is a
linear operator from H to E. If x € H, then Pg(x) is the unique element
y € H such that

ye FE andfn—yEEL.

Proof. Condition (1.1) could be written as
ye FE andforall z€ E,Re<x—y,z—y ><0.
But if y € E and A € C*, the mapping 2’ — z = y + A2’ is a bijection from
E onto itself. Condition (1.1) is then equivalent to
y€ FE,and for all 2/ € E, and all A € C, Re]A <z —y,2' >] <0
which is equivalent to

yekr and x —y € B+,

Corollary 1.2.1 For all closed sub-vector space E of H, we have
H=EoFE*t

and the projector on E associated to this direct sum is Pg. Pg is called
orthogonal projector on E.

Proof. If x € F, x = Pgx + (z — Pgx) and by proposition 1.2.2, Pgz € E

and  — Pgxz € E+. From the other hand, if x € ENEL, then < z,2 >= 0,
sox =0. ]

Corollary 1.2.2 For all sub-vector space E of H, we have
H=FaoE*
In particular, E is dense in H if and only if E+ = {0}.

Proof. Remember that E+ = E+. O

Corollary 1.2.3 For all sub-vector space E of H, we have

E =g+t
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Proof. Clearly E C E++ and hence, since B+ is closed, £ C E++. From
the other hand we have H = E® E+ and H = E++ @ E*L. O

Proposition 1.2.3 The anti-linear isometric mapping x — f. of propo-
sition 1.1.83 is a bijection from H onto H*.

Proof. Let " € H* and denote by FE its kernel. If 2* # 0 then £ # H
and E+ # {0} (corollary 1.2.2). Let then x € E+, x # 0. So f, is zero on
E. Since fi(z) # 0, there exists A € K such that x*(z) = Af,(x). Since E
is a hyperplane and = ¢ E, we have H = E @& Kx. Thus z* and \f, that
coincide on E and on z are equal. Therefore z* = f5,. O

Corollary 1.2.4 Every Hilbert space is reflexive.

Proof. Let H be a Hilbert space and ¢ € H**. The mapping = — ¢(f;)
belongs to H*. By the last proposition, there exists y € H such that for all
x € H we have ((f;) = fy(z) =<y,z >= fy(y). Thus for every 2* € H* we
have £(z*) = z*(y), i.e £ is the image of y by the canonical injection from H
to H**. O

1.3 Adjoint of a linear continuous mapping

Recall that L(E, F') denote the space of linear continuous (operator) from
E into F and that £(F) = L(E, E). In what follows E and F are Hilbert
spaces.

Theorem 1.3.1 (Riesz) The mapping

{E — FE*
y — oyt € B — ¢y (y) =<y y >

s surjective isometry. In other words, for all linear continuous form ¢ on
E, there exists a unique y € E such that ¢ = ¢, and |ly|| = ||dy]|.

In the following we study some important applications of Riesz’s Theo-
rem.

Proposition 1.3.1 Let T € L(E,F). There exists a unique T* € L(F,E)
such that for all x € E and all y € F we have

<Tzx,y>=<uz,T'y > .

T* is called the adjoint of T'.
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Proof. For all y € F, the mapping x ——< Tz, y > is linear and continuous.
There exists then a unique element y* denoted by T*y € E such that for all
x € F we have < Tx,y >=< x,T*y >. Clearly T* is linear.

Now, for all z € F and all y € F we have | < ,T"y > | = | < Tz,y >
| < 1Tz lyll < [Tl Nyl Thus [[T*y[l < [[T][|ly]l. Therefore T is
continuous and ||T*|| < ||T|. O

Hereafter some properties of adjoint operator:

Proposition 1.3.2 The mapping T +—— T* is anti-linear and isometric
from L(E,F) into L(F,E): for all T € L(E,F) we have T** = T and
|T* o T|| = ||T||>. For all Hilbert space G, all S € L(E,F) and all T €
L(F,G) we have (T 0 S)* = S*oT*

Proof. |T*T| < ||T*|| |T|| < ||T||?>. Now, for z € E, with ||z|| < 1 we have
|Tz||? =< Tx,Tx >=< z,T*Tz >< ||T*T| (Cauchy-Schwarz). Hence
1712 < |- O

Proposition 1.3.3 Let T € L(E,F). Then ker T* = Im T+ and T*(F) =
(ker T)*.

Proof. Let y € F. y € kerT* if and only if for all x € F, < Tz,y >=<
z,T*y >= 0 if and only if y € T*. From corollary 1.2.3, ImT = kerT*L,
replace then T by T*. O

Definition 1.3.1 An element U € L(E, F) is said to be unitary if U*oU =
Idg and U oU* = Idp. T € L(E) is said to be normal if T*oT =T o T*,
self-adjoint if T' =T and positive if it is self-adjoint and, for all x € E
we have < Tx,x >> 0.

Examples.

1. Let H be a Hilbert space and P € L(H) an orthogonal projector and
E := Im(P) its image. For all 2,2’ € F and y,3 € E* we have
< Plx4+vy), 2 +y >=< z,2/ >=< x+y,P(x +y) >; hence P is
self-adjoint. Moreover, < P(z + y),x +y >=< x,z >> 0 hence P is
positive.

2. Forall T € L(H), TT* and T*T are self-adjoint.
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3. Consider the Hilbert space H := L?(, u) where © is a measurable
space and p a o-finite measure (i.e. € is countable union of subset of
finite measure for p). Let K € L?(u x p). For f € H define

Tr(f) = /K(w,y)f(y) du(y)

for p-a.e. z. By Cauchy-Schwarz inequality, Tx f € H and Tk is a
linear continuous operator on H whose norm verify

1Tk || < K 2 (uxp)-
By Fubini’s theorem, one can verify that
< TKf7g >= fvTK*g >,

where K*(z,y) := K(y,z). Thus Tj; = Tk~. It is easy to verify that
Tk is self-adjoint if and only if, K(z,y) = K(y,z) for p-a.e x and y.

Proposition 1.3.4 Let T be a self-adjoint operator on H, then
|T|| = sup{< Tx,x > withx € E, ||z|| = 1}.

Proof. Let v :=sup{< Tz,x > with € E, ||z|| = 1}. We have v < ||T||
and for all z € H, | < Tx,z > | < v|z||?. Let y,2 € H nad A € R, then

| < T(y£X2),yxz > | =| < Ty,y > £2XRe < Ty, z > +A2 < Tz, z > | < ~|jyxz|>
Hence
ANRe < Ty, 2 >< v [ly + Az)* + lly = Az[*] = 2 [llyl* + A?||=I°] ,

this is true for all real A, hence |Re < Ty,z > | < v]|y| ||z]|. Choose now
z="Ty. (]

Proposition 1.3.5 Let T' € L(E, F). The following conditions are equiva-
lent:

(i) T is unitary.
(ii) T is surjective and T* o T = Idp.

(iii) T is an isometry from E to F.
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Proof. (i)=(ii): Since T*T = Idp, T is surjective.

(ii)=(iii): If T*T = Idp, then for all x € E, we have | Tz|* =< Tx, Tx >=<
z, T*Te >=< z,x >= ||z|]°.

(iii)=(i): Since (z,y) —< z, T*Ty >=< Tz, Ty > is a scalar product on
FE, by polarization identity we get that, for all z,y € F, < x,T*"Ty >=<
x,y >. Hence T*Ty —y € E+ = {0}. Thus T*T = Idr and since T is
bijective, T* = T1. O

Definition 1.3.2 (Weak convergence) We say that a sequence (z,) C E
converges weakly in E if for all y € E we have

lim < zp,y>=<x,y>.

n—oo

x is called weak limit of the sequence (xy,).

It is clear that a weak limit of a sequence is unique, and by Cauchy-
Schwarz inequality, strong convergence implies weak convergence.

As a direct application of Riesz’s Theorem one can deduce the following
version of Banach-Alaoglu’s Theorem in Hilbert space.

Theorem 1.3.2 From every bounded sequence of E one can extract a weakly
convergent subsequence.

The existence of the adjoint of an arbitrary linear continuous operator
gives the following property.

Proposition 1.3.6 Let (x,) be a sequence of E that converges weakly to
x € E. Then for all T € L(E), the sequence Tx,, converges weakly to Tx.

Proof. For all y € E we have

m < Tap,y >=< x,, Ty >=< a2, T 'y >=<Tx,y > .
n

1.4 Hilbert basis

In this section E will denote a prehilbert space. A system (x;);cr of E is
said to be orthogonal system if for all i # j, x; L x;. Recall that, by
Pythagore’s theorem, we have, for all finite subset J of 1

2
D il =l

icJ icJ

We get then directly the following proposition.
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Proposition 1.4.1 An orthogonal system in which all elements are non
zero is a free system.

Proof. Let J C I a finite part and ();)jes C K such that ;. ; Ajz; = 0.
Then
2
0=>_ Nl =D Il
JjeJ JjeJ
and so \; =0 for all j € J. O

Definition 1.4.1 An orthogonal system whose elements are of norm 1 is
called orthonormal basis (or orthonormed). A total orthonormal basis of
E is called Hilbert basis of E.

Examples.

1. Let T" > 0 and C7 the space of T-periodic continuous functions from
R into K which is a prehilbert space. For n € Z set

2iTtn

en(x) :=e

It is easy to see that the class (e, )nez is an orthonormal system of Cr.
Moreover this system is total in Cr endowed with supremum norm.
Since the norm associated to the scalar product is less than or equal
to the supremum norm, this system is a Hilbert basis.

2. Consider the space E = (?(I). Define for j € I, the element ¢; € E
by e;(j) =1 et e;(i) = 0 for i # j. The system (e;);er is orthonormal
(evident). Let’s show that it is total. For this, let z € E and € > 0. By
definition, and since Y, |2i|* < oo, there exists a finite part J C I

such that
Mol =Yl Y i < €

i€lidJ il icd

This implies that

2
2
xr — xiell <e”.

ieJ

Thus ¢2(1) is a Hilbert space and (e;);cs is a Hilbert basis of £2(1).
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Proposition 1.4.2 Let (e;);er a finite orthonormal system of E and let F
be the vector space generated by this system. For all x € E, the orthogonal
projection Pp(x) is given by

Pp(z) = Z < x,e > e
el

Consequently,

2
]2 = Y <z P

el

1‘—Z<l’,€¢>€i

el

Proof. For the first point, it suffices to show that y := Zje] <z, ej>ej
verify the properties of proposition 1.2.2. It is clear that y € F' and for all
jeJ, <x—y,ej >=0,s0x —y € F. For the rest apply Pythagore’s
theorem. O

A first consequence:

Proposition 1.4.3 Bessel’s inequality Let (e;);cs be an orthonormal sys-
tem of E. Then for all x € E we have

dl<me > <zl
i€l

In particular, (< x,e; >)icr is an element of £2(I).
The equality in the previous inequality is characterized by

Theorem 1.4.1 Bessel-Parseval Let (e;);cr an orthonormal system of E.
The following properties are equivalent:

(i) The system (e;)ics is a Hilbert Basis.
(i) For allz € E, ||z]|* =Y ,c;| < z,e; > |* (Bessel’s equality ).
(iii) For allz,y € B, <x,y>=> ;.7 <z, ><e,y>.
Thus, if (e;)icr is a Hilbert basis of E, the mapping from E into (*(I) defined

by x — (< x,e; >)ier is a linear isometry. This isometry is surjective if
and only if E is Hilbert space.
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Proof. (i)=-(ii): Let x € E. For all £ > 0, there exists a finite subset J C I
s.t. the distance between = and span(ej, j € J) is less than € or equal. By
proposition 1.4.2,

> = <> I <ae; > P <> [ <ae >
jed jei
Making € — 0 and using Bessel’s inequality we get the result.
(ii)=(i): Conversely, for all z € E, and all € > 0, there exists a finite subset
J C I such that ||z]|> — &2 < el <> |2 and then by proposition
1.4.2

x—z<x,ej>ej <e.
jeJ
Thus (e;) is total.
The equivalence between (ii) and (iii) is direct from the definition of the
scalar product in terms of the norm:

i .
<zy>= g (letyl®=lel®=lyl’] +5 [lz+ayl* = l=1” = v)]-

If the isometry is surjective then F is isometric to £2(I) and hence complete.
Now assume that E is a Hilbert space and let (z;)ier € £I). Set a := 3" |z
There exists then an increasing sequence (J,,) of finite subsets of I such that
for all m € N, Y7 |og* > a — 27" Set uy, := Y, ; wse;. Then, if p <n,

lup —unl®> = > wP <27
JE Ty

Thus (u,) converges to some x € E. Since a = Z |z;|2, for all 4 & NJ,,,
1€NnJn

r; =0and < z,e; >=limy,_ oo < Up,e; >=0. If i € NJ,, then < z,e; >=

limy, oo < Up,e; >= x;. Thus < x,e; >= x; for all 7, which proves the

surjectivity. O

As a consequence we get

Theorem 1.4.2 Let (e;)ic; a Hilbert system of E. Then for all all x € E

we have
xr = E < x,e; > €.
i€l

Proof. By proposition 1.4.2 we know that for every finite subset J C I we

have
2

x—z<x,ej>ej :Hx||2—2]<:v,ej>\2.

jed jedJ
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It suffices then to apply the definitions and the second property of the last
theorem. 0

Proposition 1.4.4 Schmidt orthonormalization procedure Let N €
{1,2,---} U {400} and (fn)o<n<n a free system of E. There exists an or-
thonormal system (fn)o<n<n of E, such that, for all p < N, the systems
(fn)o<n<p and (en)o<n<p generate the same sub-vector spaces of E.

Proof. Left as an exercise to the reader.
Using this procedure, one can directly show the following

Corollary 1.4.1 A prehilbert space is separable if and only if it admits a
countable Hilbert basis.

Two prehilbert spaces are said to be isometric if there exists a surjective
isometry from one of them to the other. Another consequence of theorem
1.4.1:

Corollary 1.4.2 An infinite dimensional Hilbert space is separable if and
only if it is iometric to the Hilbert space ¢2.



Chapter 2

Spectrum of a bounded
operator

In this chapter we give elementary definitions and properties concerning the
spectrum of a linear operator on a Banach or Hilbert space.

2.1 Spectrum

If F is a Banach space on K = C, denote by £(E) the Banach algebra (non
commutative) of linear continuous mappings from FE into itself. The product
of two elements 7', S is the composition: TS :=T0S. An element T' € L(E)
is said to be invertible, if it admits an inverse in £(F). In other terms, if
T is invertible, it is bijective and its inverse in L(F) is unique and equal to
T—'. Indeed, a direct application of the open mapping theorem is that the
inverse of a linear bijective continuous operator is always continuous.
We start by a simple but useful lemma.

Lemma 2.1.1 Let T € L(FE) with | T|| < 1. Then Id+T is invertible. The
series of general term (—=T)" converges and its sum is (Id +T)™ .

Proof. Set S, := Zogkgn(_T)k' Since ||[T™]| < ||T'||™, we have, for p < q,
1P
1Sq — Spll = Z (=T)")| < T
i<y (1 =T}
thus S, is a Cauchy sequence in the complete space L(E). Let S be its limit.

For all n, Sy,41 = Id—TS, = Id— S, T. Making n — oo we get the equality:
S=1-ST=1d-TS, thus Id + T is invertible and (Id+T)' =S. O

19
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Proposition 2.1.1 Let E, F be two Banach spaces. The set U C L(E, F)
of linear continuous and invertible mapping is an open of L(E,F). The
mapping ®: T — T~ is continuous is differentiable from U into L(F, E)
and its differential is (d®)p: S — —T-1ST~L.

Proof. If FF = E and by the last lemma, V the set of linear continu-
ous invertible mapping in £(FE), is a neighborhood of Id and the mapping
YT —— T~ is continuous and differentiable and dirgh = —h.

In general. Let T € U. Observe that S is invertible if and only if 7715 is
invertible. In this case, S~! = (T-15)"!T~!. In other terms, denoting by
fiL(E,F)— L(E), f(S):=T71S and g: L(E) — L(E,F), g(S) := ST},
we have U = f~1(V) and for all S € U, ¢(S) = g(¢(f(S))). Therefore, U
is a neighborhood of T and since f and g are linear and continuous, ¢ is
differentiable at T and dér = g o diprqo f, ie. dor(h) = —T'hT~ L O

Definition 2.1.1 Let T € L(FE). We call resolvant of T', denoted by p(T)
the set of A € C such that A\Id — T s invertible. We call spectrum of
T, denoted by o(T), the complementary of the resolvant: o(T) := C\p(T).

Finally, we call resolvent of T the mapping that to X € p(T') associate
(Md —T)7 Y, denoted by R(\) or R(\,T).

Proposition 2.1.2 (Resolvent equation)
Let T € L(E). Then, for all A\, € p(T), we have

R(A) — R(u) = (b — M) R(A)R(p) = (= N R(p)R(A).

Proof. Direct calculation. O

Theorem 2.1.1 Let E be a non trivial Banach space and T € L(E). The
spectrum of T is a nonempty compact of C, the resolvent is analytic from
p(T) into L(E) and for all X € p(T), we have R'(\) = R(\)?.

Proof. Let U C L(F) be the set of invertible operators. The mapping
i A — T — X\ is continuous, hence the inverse image of U is open. Thus
o(T) is closed. Let ¢:U — L(E) defined by g(S) := S~!. We have
R(\) = ¢ o fy hence by proposition 2.1.1, Ry is continuous and differ-
entiable and R'(\) = dg¢y, (n)f1(A), so since fy(\) = —Id then R'(\) =
—R\)(—=Id)R()\) = R()\)>.

Now let [A| > ||T||. By lemma 2.1.1, Id — A~'T is invertible, hence A — T
is invertible and AR(\) = —R(A~!). Therefore o(T) is bounded and so a
compact of C. Moreover limy_,oo AR(\) = —Id. It is clear that A — R(})
is analytic on p(T'). If o(T) is empty then R would be entire, and since
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limy o R(A) = 0, by Liouville’s theorem, R = 0, so || Id|| < ||A = T|||(A —
T)~Y| = 0, which is impossible unless E is trivial. O

Remark. If dim F < oo, the spectrum of T could be empty in the case
where K = R. For this, it suffices that the characteristic polynomial does
not admit real solutions, but this is false in the case where K = C.

Example. Let E := C([0,1]) and T" the operator defined for all f € E by
Tf(x):= /0 f(t)dt.

It is easy to see that kerT = {0} and ImT = {g € C([0,1]); ¢(0) = 0}.
T is injective but not surjective, in other terms 0 € o(T") and 0 & o, (7).
Let’s show that 0 is the unique spectral value of T": For this take A # 0 and
g € E. If f verify the equation

N -Tf=g, 2.1)
then the function h := T'f € C1(]0,1]) and verify
h(0) =0 and A\ — h = g. (2.2)

Conversely, if h € C*(]0,1]) verify (2.2), then the function f := b’ is solution
of (2.1). One can see directly that the unique solution of the differential
equation (2.2) is given by

h _er et/ dt
)= [Catte

Therefore,

AM-=Tf=g <+ f(z)=

1 ea://\ x :
- —t/A
o)+ 5 [ atoe ]

hence A € p(T') and

A=1)"lg(x) =<

Proposition 2.1.3 Let T € L(E). The limit lim, o | T"||*/" exists and
lim |77V = inf |77/,
N—00 neN*
This value will be denoted by r(T') and called spectral radius of T. Moreover,
for all A € o(T), we have |A| < r(T) and
r(T) = max{|\[; Aeao(T)}.
In particular r(T) < ||T|| and for all X € o(T), |A| < ||T||.
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T"||/". We have

Proof. Set a := inf,cn=
a < liminf |77/,
n—oo

Let e > 0 and ng > 0 such that ||7™0||" < a+e. Let n > 0 and p, ¢ integers
with 0 < ¢ < ng and n = ngp + ¢q. Hence

[T < (1T "I

Since lim, o £ = 0 and lim £ = n%y we deduce that

limsup ||[T7(|*™ < [|[T7|V/™ < a +e.
n—oo

Since this is valid for all € > 0, we get lim, .o [|T"]'/™ = a.

Now let A with |A| > r(T) and r €]r(T), |\|[. Since r > r(T), there is ng > 0
such that for all n > ng, |77 < r™. The series >, <o A" 1T is then
normally convergent in £(E) and it is easy to see that

A=T) D AT = (Y AT | (A=T)=1d
n>0 n>0

hence A\ € p(T).
Let p := max{|A|; A € p(T)}. We know that p < (7). Set for n > 0 and
t>p

27
Tn(t) : /0 (texp(i6))" L R(te?) db.

T or
Since

% [(texp(z’e))”ﬂ R(teieﬂ - it% [(texp(ig))n-l-l R(tew)} |

we see that

d.J 1 ("9 .
S = [ = [(texp(i0))" T R(te)] db =0

dt  2itw Jy 00 [( exp(if)) (™)

on ]p, ocf. Hence (expanding R(A\) = Y A" 1T") for all t > p, J,(t) = T™,
thus |77 = ||Jn(t)]| < t"T1M,, where M, is the maximum of ||R(te?)]|, for
0 € [0,27]. Therefore, for all t > p, r(T) < t, since r(T) = lim,_« |T"]|*/™,
and so r(T) < p(T). O

We will often use the following (simple) proposition

Proposition 2.1.4 Let E, F two Banach spaces and T € L(E,F). The
following are equivalent:
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(i) T is injective and its image is closed.
(i) There exists K > 0 such that for all x € X we have |Tx|| > K|z|.

(i1i) There is no sequence (x,,) C E such that ||z, || = 1 and lim,, . ||Tx,|| =
0.

Proposition 2.1.5 Let E, F be two Banach spaces andT € L(E,F). Then
YT € L(F*, E*) is invertible if and only if T is invertible.

Proof. If T is invertible then 77T = Idgr and T7T~! = Idp. This gives
that ‘TY(T~!) = Idg- and *(T~')!T = Idp-. Hence !T is invertible and
(7)1 = (1),

Conversely, if T is invertible. Let x € E and z* € E* (by Hahn-Banach)
with [|z*]] < 1 and 2*(z) = ||z||. Set y* := (!T)~'z*. Then x* = Ty* =
y*oT and |y*|| < K||z*|| < K, where K := ||(*T)7!||. Thus |jz| = 2*(x) =
y*(Tx) < K||Tx|. Hence T is injective and its image is closed in F.

By Hahn-Banach theorem there exists A C F™* such that ImT" = N+ akery™.
So, for all y* € A, y* is zero on ImT. Hence ‘Ty* (= y* o T) is zero, and
since T is bijective, y* = 0. Therefore A C {0}, i.e. ImT = F. O

We get directly:
Corollary 2.1.1 o(T) = o('T).

Definition 2.1.2 Let T € L(E) and A € o(T"). We distinguish three possi-
bilities:
1. X\ is an eigenvalue, i.e. A —T is not injective. We say that X is in the

point spectrum o,(T") of T

2. X —T is injective but Im(\ —T) is not dense in E. We say that X is
in the residue spectrum o,(T) of T.

8. A =T 1is injective but its image is not closed. We say that X\ is in the
continuous spectrum o.(T) of T

Remarks

1. XA € 0,(T) means that \ is an eigenvalue of ‘T, but not of T', i.e A\ — T
is injective but A — T is not: there exists then * € E* such that
(A —='T)x* = 0 hence z* o (A —T) = 0 which implies that Im(A —T) C
kerz*. Then Im(\ — T') is not dense in F.

2. X € 0.(T) means that A € o(T) but X is not eigenvalue of T or of 'T.
3. We have o(T') = 0,(T) U 0, (T) U o (T).
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2.2 Hilbert case

In this section we consider the particular case where H is a non trivial
Hilbert space. Some properties of bounded self-adjoint operators are given.

From proposition 1.3.3 we deduce directly:

Corollary 2.2.1 Let T € L(H), then

o(T*) =o(T) ={\, A€ o(T)}.
If X € p(T), then X\ € p(T*) and
R\, T) = [R(\,T)]*

Moreover -
or(T) ={A € C\op(T); A € 0p(T7)}

Proposition 2.2.1 The residue spectrum of a normal operator is empty.

Proof. Let T € L(H) a normal operator. For all x € H, we have
|T*x||? =< T*z, T*x >=< 2, TT*x >=< 2, T*Tx >=< Tz, Tz >= ||Tz|>
So kerT* = kerT. Since for all A, A — T is normal, we have ker(A — T*) =
ker(A — T'). Thus Ao, (T*) if and only if A € 0,(T). We get the result
applying the last corollary. O

There is no relation between eigenvalues of T" and those of T™:

Example. Let E = (?(N) and T the operator right shift, defined by (Tw) =
v where v is the sequence defined by vo = 0 and for all ¢ > 1, v; = u;—1. T
does not admit eigenvalues: o,(71") = 0. It is easy to verify that the adjoint
of T is the conjugate of the operator left shift and that o,(7%) = D(0,1)
the open unit disc.

Proposition 2.2.2 For all T € L(H) we have |T*T|| = | TT*|| = ||T||*.
Proof. Since ||T*|| = ||T|| we have |[T*T|| < ||T||>. From the other hand,

|Tx||? =< Tx,Tx >=< z,T*T,z >< ||z||*|T*T||. Hence ||T||*> < ||T*T|.
Thus ||T||* = ||T*T|. O

Proposition 2.2.3 The spectral radius of a normal operator is equal to its
norm.
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Proof. If T is self-adjoint, then < Tw, Tx >=< x, T?x >, thus ||T?|| = ||T||?
and |T?"|| = ||T||*". Hence 7(T) = lim,,—o |T?" > " = |7

Now if T is normal then we have ||Tz|? =< Tz, Tz >=< z,T*Tz >,
hence | T*T|| = ||T||*>. By induction, ||(T*T)"|| = ||T™||* and then |T*T|| =
p(T*T) = p(T)? = || T2 O

This gives directly

Corollary 2.2.2 Let T € L(H), then

IT|| = /r(TT*) = /r(T*T).

Proposition 2.2.4 Let T be a self-adjoint operator on H. Then

1. 0,(T) CR.
2. For all \ € C, Im(\ —T) = [ker(\ — T)]*+.
3. Figen-spaces associated to distinct eigenvalues are orthogonal.

Proof. 1. Let A € 0,(T) and z € H), ie. « # 0, Te = Az. Then
A|z||? =< Tz, x >€ R since T is self-adjoint, hence X € R.

2. direct from proposition 1.3.3.

3. If X # p are two eigenvalues of 7' and x € H) and y € H,, then
A<zy>=<Tzx,y >=<z,Ty >=p < z,y>. Thus < z,y >=0. O

The following theorem states that, in fact, the whole spectrum is real.

Theorem 2.2.1 Let T be a bounded self-adjoint operator on H. Then
o(T) C [m, M],
m € o(T) and M € o(T), where
m = inf{< Tz,z >, withx € E, ||z|| = 1}

and
M =sup{< Tz,z >, withx € E, ||z|| = 1}

Proof. Set, for A € C, d()) the distance from A to the interval [m, M]. For
all x € H, z # 0, we have

<Ax—Tx,z>=||z|? N\ < Ty,y >],
where y := x/||z||. Then by Cauchy-Schwarz inequality we have

d()\)||56||2 <|<Adx—Tzx,x>| < |z]|\e — Tx||. (2.3)
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Now if A\ & [m, M], then d(\) > 0 and then X\ — T is injective. Let’s show
that Im7" is closed. If (Az,, — Tx,) is a sequence that converges to y € H,
then by equation (2.3), (x,) is a Cauchy sequence hence convergent to some
x € H. Clearly Ax — Tx = y hence y € Im (A — T). By proposition 2.2.4,
we have Im(\ — T) = ker(A — T)*. Since A & [m, M], Im(A — T) = H and
hence A — T is bijective. Therefore A € p(T).

Remainder to show that m, M € o(T). Let’s show, for example, that m €
o(T) (for M consider —T'). Set S := T —m, then S is positive. The mapping
(z,y) —< Sx,y > is a scalar product on H. Cauchy-Schwarz inequality
for this scalar product gives, for all x,y € H

| < Sz,y>><|<Sz,z>]||<Sy,y>| (2.4)

Now by definition of m, there is a sequence (z,,), ||z, || = 1, with lim, . | <
Sy, x, > | =0. Hence by (2.4)

1 1 1 1
HanH2 < | < Sz, xy > 2] < Sy, Sz > |2 < | < S,y > 2|92 || ST ]|

Therefore || Sz, || < | < Szp, xn > \%HSH% hence tends to zero. If m & o(T),
S is invertible and hence x,, — 0 which is impossible. U

Using proposition 1.3.4 we get
Corollary 2.2.3 Let T be a self-adjoint operator on H. Then T is positive
if and only if o(T) C Ry. In this case ||T'|| € o(T).
Proof. Since T is self-adjoint, ||T']| = supj=1| < Tz,x > | hence ||T|| =

max{|m|,|M|}. T positive implies that 0 < m < M and so |T|| = M €
o(T). O



Chapter 3

Symbolic Calculus

One of the most important aims of spectral theory is the symbolic calculus:
Given a linear operator A, find the functional space A (the best possible) on
which one can define f(A), f € A. A good functional space is for example
H(O) the space of analytic functions on the open O of the complex plane
that contains the spectrum of A. But also, in the case where the spectrum
is real, the space C(R). With a functional space we can “translate properties
of functions to the operators”.

In this chapter we will define such symbolic calculus in the case where
A is bounded, and then in the Hilbert case where A is self-adjoint. Later
we will deal with the case of unbounded self-adjoint operator...

3.1 Case of bounded operator

In all this section X is a Banach space and A a bounded operator, A € £(X).
Denote by R4(X) the set of rational fractions without poles in o(A), i.e. the
set of fractions 2, where p,q € C(X) with Zero(q) N o(A) = (). This space
will play an important role, since we can define p(A) in a naturel way and
hence E(A). Note that R4 is a ring with identity (1) and for all p,q € Ru,

p(A)g(4) = q(A)p(A).

Proposition 3.1.1 There exists a unique linear mapping ®: Ry — L(X)
homomorphism of rings verifying ®(1) = Id and ®(X) = A.

Proof. eristence. For all polynomial p(z) = > ap X* € C[X], set ®(p) :=
S apAF € L£(X). It is obvious that @ is linear and ®(pq) = ®(p)®(q).

Now if p is a polynomial (# 0) with Zero(p) No(A) = 0, then ®(A) is invert-
ible: Indeed, it suffices to write p(X) = all(X — r), where the r;’s are the
roots of p (counted with their multiplicity). Since the rj’s are not in o(A),

27
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each A — ry, is invertible and so ®(A).

Now if f =2 € Ry then ®(f) = p(A)[q(A)]7L. Of course ®(f) is indepen-
dent of the choice of p and q.

The linearity of ® as well as the homomorphism is direct.

uniqueness. If U: Ry — L(X) is another mapping verifying the same prop-
erties, we can show by induction that ¥(z") = A", so by linearity ¥ and ¢
coincide on C[X]. O

The uniqueness of the mapping ¢ justify the following notation:
Notation. The operator ®(f) will be denoted: f(A).

Remark. This justify the appellation symbolic calculus. In fact, if for all
nonnegative integer n, 2™ is the function  — z™, then z"(A) = A™. From
this we get that for all polynomial p(z) = 3 a;2°, p(A) defined by use of ®
is the same as the “classical” p(A).

Theorem 3.1.1 Spectral mapping theorem
For all f € R4 we have

and for all g € Ry(ay), we have g(f(A)) = [go f](A).

Proof. Let A € C. If f — X\ does not vanish on the spectrum of A then
h:(f—A)"' € Ru and since (f — A\)h =1 then (f — \)(A)h(A) = Id. Thus
(f —A)(A) = f(A) — Md is invertible and so o(f(A)) C f(o(A)).

Now let A € C, that is not a pole of f, there exists then h € R4 such that
f—f(\) = (x—=A)h. Then f(A) — f(A\) = (A= AN)h(A) = h(A)(A—-N). If
f(A)—f(A) is invertible of inverse R then (T'—A\)h(A)S = Id = Sh(A)(A—\)
and so A — X is invertible, i.e. A € 0(A). Thus f(o(A)) C a(f(A)).

To terminate, notice that the two mappings R4y — L£(X) defined by g —
g(f(A)) and g — [g o f](A) verify the conditions of proposition 3.1.1, thus
they coincide. O

Other type of symbolic calculus could be defined in this framework:
Since the spectrum of A is compact hence bounded, let v be an arbitrary
path, that is bounded and turns around o (7). «y oriented positively. Briefly,
note that the theory of integrals on paths could be generalized for analytic
functions defined on a neighborhood O of Im+y into £(X). Notice also that
the residue formula (Cauchy) still valid. Therefore, if f € H(O), an analytic
function on O valued in £(X) then the formula

A 1(2) dz,
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define a bounded operator in £(X). In this framework we can show that
the Dunford integral:

B(f) = / F(2)R(z A) dz

define symbolic calculus on H(O) (that extend the one defined above).

3.2 Case of a bounded self-adjoint operator

In this section, H will be a Hilbert space.

Proposition 3.2.1 Let A € £(X) and f € Ra. Then f(A)* = f(A*),

where f is defined by f(X) = f(A) for all X € C that is not a pole of f.

Proof. The mapping Ry — L(H) defined by f — f(A*)* verify the
conditions of proposition 3.1.1. O

Proposition 3.2.2 If A € L(H) is normal then for all f € Ry, f(A) is
normal.

Proof. For all Y C L(H) denote by Y/ :={S € L(H); ST =TSVT € Y}.
Y’ is a closed subspace and a sub-ring of L(H). Moreover, if S € Y and S
invertible then S~'7 = S~'T8S~ ! = §=1STS 1 =TS forall T €Y. In
other words, S~! € Y. Therefore, if S € Y’ and f € Rg, then f(S) € Y.

Let Y = {A,A*} and Z = Y’. Since all elements of ¥ commutes with all
elements of Z, we see that Y € Z'. So f(A), f(A*) € Z. Since A is normal,
Y C Z,then Z' CY' = Z. Thus f(A) € Z’ and f(A*) = f(A)* € Z' C Z
so they commute, i.e. f(A) is normal. O

Proposition 3.2.3 1. The spectrum of any unitary operator of L(H) is
included into the unit circle C(0,1) of the complez plane.

2. The spectrum of any self-adjoint operator of L(H) is included into the
real line R.

Proof. 1. Let U € L(H) and X € o(U). Since |U|| < 1 the spectral radius
of U is less than 1 or equal, hence |\| < 1, and since U is bijective A # 0
and by theorem 3.1.1, A™! € o(U™Y). But U~! = U* so ||[U7!|| < 1 thus
IATH <1, e [A =1

2. Let A € L(H) a self-adjoint operator. For all real ¢, with ¢ > ||4],
A + tId are invertible. Denote by f the mapping X —— (X + ti)/(X — ti).
Since f = f~!, by proposition 3.2.1, f(A)* = f(A) = f(A)~! thus f(A) is
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unitary and by the first point o(f(4)) C C(0,1) = f(R). Using theorem
3.1.1 we get the result. O

Notations. If K is a compact space, denote by C(K) the Banach space of
continuous functions from K into C with the supremum norm:

[flloc :=sup{|f(z)|; z € K7}.
If K is a compact of C, denote by 2", for all integer n, the mapping A — A™.

Theorem 3.2.1 Let H be a Hilbert space and A € L(H) a self-adjoint or
unitary operator. There exists a unique linear continuous mapping

®:C(0(A)) — L(H) verifying ®(1) = Id, ®(z) = A and for all f,g €

C(o(A)), we have ®(fg) = ®(f)P(g). For all f € Ra, we have ®(f) =
f(A). Moreover, ® is an isometry, and for all f € C(o(A)) we have ®(f)* =
O(f).

Proof. Let ¢: R4 — C(0(A)) defined by ¢(f) = f|, ,, and ¥: Ry — L(H)
defined by ¥(f) = f(A). For all f € Ra, f(A) is normal by proposi-
tion 3.2.2 hence ||f(A)| is equal to its spectral radius. Thus by theorem
3.1.1, || f(A)]| = sup{|A|, A € a(f(A))} = sup{|f(N)|, A € 0(A)}. Therefore
[9(H) ] = 16l

Now if A is unitary then z = 27! = ¢(X 1) € ¢(R4), and if A is self-adjoint
then z = 2z = ¢(X) € ¢(R4). In both cases z € ¢p(R4). Now for all f € Ry,
f(z) = f(2) € ¢(Ra). Therefore ¢(R,) is sub-vector space and sub-ring
of C(0(A)) that contains constants (since 1 = ¢(1)) stable under conjugate
and separate points of o(A) (since z € ¢p(R4)), so by Stone-Weierstrass the-
orem, ¢(Ry) is dense in C(0(A)). Therefore there exists a unique linear
continuous mapping ®: C(c(A)) — L(H) such that ¥ = & o ¢.

We have ®(1) = ®(¢p(1)) = ¥(1) = Id. ®(z) = (¢(X)) = ¥(X) = A.
The mappings that to (f,g) € C(0(A)) x C(c(A)) associates respectively
®(fg) and ®(f)P(g) coincide on P(R4) x P(R4) so they are equals. More-
over the set of functions f € C(c(A4)) with ||f(A)]] = ||f|le is closed and
contains ®(A). Hence ® is an isometry. Finally, for f € Ry, we have

fA)* = f(A")P(f(2)) = ®(f(2)). The set of functions f € C(o(A)) such

that ®(f)* = ®(f) is closed and contains ¢(A), hence this true for all

feC(a(A)).
Remains to show uniqueness. If ®; is another one, then ® o ¢ and ®; 0 ¢
coincide on ¢(R4). By density we get & = . O

Notation. For all f € C(0(A)), denote by ®(f) = f(A).

Theorem 3.2.2 Spectral mapping theorem
Let A be a self-adjoint, or unitary operator and f € C(c(A). Then



3.2. CASE OF A BOUNDED SELF-ADJOINT OPERATOR 31

1. f(A) is normal and o(f(A)) = f(o(A)).

2. If f(c(A)) C R then f(A) is self-adjoint. If f(o(A)) C C(0,1) then
f(A) is unitary. Moreover, in these cases, for all g € C(o(f(A))) we
have g o f(A) = g(f(A)).

Proof. 1. We have f(4)* = F(4), so f(A)f(A)* = [f7](4) = F(A)* F(A),
so f(A) is normal.

Now, if A & f(c(A)), let h € C(c(A)) the function s — 1/[f(s) — A]. Since
h(f —=X) = (f = AN)h =1, then h(A)[f(A) — A\] = [f(A) — AJh(A) = Id and
so N & a(f(4))

Conversely, if A € f(o(A)), for e > 0, set f1 := f —e and g := ¢/(|f1] +
). Notice that ||g]lcc = 1, and since |fig|(t) = elfi(®)|/[|fi(t)] + €] so
| fig]l < e. Since @ is isometry we have ||g(A)| = 1 and || f1(A)g(A)|| < e.
Since ||g(A)|| = 1 > ||f19]|loo/e, there exists z € H such that [|g(A)z| >
| fugllocllzll /= and so [ fi(A)g( Al < Ifi(Ag(A)llall < =lg(A)z]. Thus
there is y = g(A)x such that ||f1(A)y| < ¢|lyl|. Thus fi(A) = f(A) — X is
not injective hence A € o(f(A)).

2. If f = f then f(A) = f(A) = f(A)*. If f(o(A)) C C(0,1) then ff =1,
hence f(A)f(A)* = f(A)*f(A) = [ff](A) = Id; f(A) is unitary. Finally the
mapping g — [g o f](A) verifies the conditions of the last theorem, hence

coincides with g — g(f(A)). O

Theorem 3.2.3 Let A € L(H). The following conditions are equivalent:
(i) Forallz € H, < Az,x >€ R,.
(ii) There exists S € L(H), A= 5*S.
(iii) There exists S € L(H) self-adjoint, A = S2.
(iv) A is self-adjoint and o(A) C Ry.
Proof. (ii)=(i): < Tz,z >=< S*Sz,z >=< Sz, Sz >> 0.
(iii)=-(ii) is direct.
(iv)=(iii): Assume that A* = A and o(T) C RT. Denote by f:t — /1.
Then by the last theorem, we have f(A) = f(A)* , moreover f(A)? = A.
(i)=(iv): The mapping (z,y) —< Az, y > is sesqui-linear and < Ay, z >=

< Ax,y > hence A is self-adjoint. Thus o(A) C R. Let ¢ < 0 and let’s show
that A — t is bijective. For all z € H, we have

—tl|z]|* < ~tllz|*+ < Az,x >=< (A~ t)z,x >< [|(A ~ t)z| |||

so —t||lz|| < ||(A — t)z|| and so A — t is injective with closed graph. Now
since the residual spectrum of every normal operator is empty, we get the
result. d
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Definition 3.2.1 (Fractional powers) If A € L(H) is self-adjoint and
positive and o €]0,4+00], set A* = f,(A) where f, is the mapping t — t°.

Remark. By theorem 3.2.2, we have, for all a;, 3 > 0
o Al =A,
o (A%)P = A8,
o ACAB = Ao,

Corollary 3.2.1 (Square root) For all positive self-adjoint operator A €
L(H), square root of A, A3 isa positive self-adjoint operator.



Chapter 4

Compact operators

In this chapter we will study spectral properties of some particular type of
operators: compact operators and Hilbert-Schmidt operators. We will see
also Fredholm alternative.

4.1 General properties

In all this section, ' and F' are two Banach spaces.

Definition 4.1.1 A € L(E, F) is called compact if the image of the closed

unit ball of E, A(Bg(0,1)) is relatively compact in F. Denote by K(E, F')
the set of compact operators from E into F and K(E) = K(E, E).

Remarks.

1. A€ K(E, F) if and only if the image by A of any bounded subset of
E is relatively compact in F'.

2. A€ K(E,F) if and only if the image by A of any bounded sequence
of E is a sequence of F' with convergent subsequences.

3. Riesz theorem becomes: Id € K(E, E) if and only if the dimension of
E is finite.

Examples.

1. Every operator T' of finite rank, i.e. dim Im7T < oo is compact. In

fact, the image T'(B) is bounded in a finite dimensional space hence
relatively compact in Im7T" hence relatively compact in F.

33
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2. Let X,Y be two compact metric spaces, K € C(X x Y) and p any

Radon measure on Y. Define the kernel operator Tk, for all f €
C(Y) by

(Ti f)(z) = / K(2,y) /() du(y).

Tk is compact operator.

. Let a < b, K € C([a,b]?) and a, 3 two continuous functions from [a, b]
(

into itself. For f € C([a,b]) and z € [a, ] set

B(=)
Tf(z):= . K(z,y)f(y) dy.
The operator T is compact: T € K(C([a,b]).
In fact, for all f € E where E := C([a, b]), we have

1T < MK £1],

where M := sup,¢[qy) [3() — a(z)]. Hence T'(B) is a bounded in E.
From the other hand, for all z,y € [a,b] and all f € E we have

Tf(z) = Tf(y)| < Mayll fI],

where
Mey = K| (I8(z) = B(y)| + |a(z) — ay)])
+(llallos + 118ls0) sup |K (2, 2) — K(y,2)|.

Uniform continuity of K on [a, b]? implies that T'(B) is equicontinuous
in E. We conclude using Ascoli’s theorem.

. Integration operator

Tf(z):= /x f(t)dt

is a compact operator on C(]a,b]).

Proposition 4.1.1 Let R € K(E,F), T € L(F1,E), S € L(F,Fy) where
FEq and Fy are normed spaces. Then SRT is a compact operator.

Proof. Indeed,

SRT(Bg)  |TI|S (R(Bp)) -

Continuous image of a compact being a compact, we get the result. ([l
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Proposition 4.1.2 K(E, F) is a closed sub-vector space of L(E, F).

Proof. Let T, .S be two compact operators from F to F' and A, u € K. Then

(AT + uS)(Bg) C AT (Bg) + puS(BE),

and this last set is compact since if K and H are two compacts then ANK +pH
is compact as continuous image of K x H. To show that IC(E, F') is closed, let
(T},) be a sequence of compact operators that converges to T' (in L(E, F)). It
suffices to show that TBp. Let ¢ > 0, and n € N such that ||T —T,,|| < /3.
Let f1,---,fx € Bg such that the balls B(T,f;,¢/3) is a cover of T, Bg.
Let then f € Bg and let j < k such that | T, f — T, fj|| < /3. By triangle
inequality we get ||T'f — T'f;|| < e. Hence

TBEC U B(Tfj,z’:‘),
1<5<k

thus TBg is precompact. O
Since every finite rank operator is compact, we get

Corollary 4.1.1 Every limit of operators of finite rank is a compact oper-

ator.

We terminate this section by the Schauder Theorem:

Theorem 4.1.1 Let T € L(E,F). T is compact if and only if *T is com-
pact.

Proof.

4.2 Spectral properties of compact operators

In all this section E is a Banach space and T a compact operator.
Lemma 4.2.1 Let F be a closed sub-vector space of a normed vector space
E, F # E, then there exists u € E, |Ju|| = 1 with d(u,F) > 3.

Proof. Let v € E\F and ¢ :=d(v, F). Let w € F with [[v — w]|| < 2§. Take

u = = g
[lo—wl|

Proposition 4.2.1 Let T € K(E). Then
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1. the sub-vector-space ker(I — T) is of finite dimension.
2. the sub-vector-space Im(I —T) is closed
3. the operator I — T is invertible in L(E) if and only if it is injective.

Proof. 1. Denote by F :=ker(l —T). F is a closed sub-vector-space of E
and Br = TBr = TBgNF hence compact, so by Riesz theorem dimF' < oo.
2. Let y € Im(I —T') and (z,,) a sequence of E with limx,, — Tz, = y.

First case: The sequence (x,,) is bounded. Since T' is compact, by choos-
ing a subsequence we can assume that (T'z,) converges to z € E. Then
lim x,, = y+2 and by continuity of T', z = T'(y+z) hence y = (y+2)—T (y+2).
Second case: The sequence is not bounded. Set, forn > 0, d,, := d(x,, ker(I—
T)). Since, by the first point, dimker(I—T") < oo, there exists z,, € ker(/—T)
with d,, = ||z, — 2n|| (since the continuous function distance will attain its
minimum on the nonempty compact B(xy, ||z,||) Nker(I —T')). If the se-
quence (d,,) is bounded we can replace (z,,) by (z, — z,) (since Tz, = zy,)
and apply the first case. If not, using a subsequence, we can suppose that
limd,, = co. Since the sequence ((z,, — z,)/dy is bounded, we can assume,
by use of subsequence, that T'[(z,, — z,)/d,] is convergent to some u € E.

We deduce that

- :u—l—limi:u,
n n

lim
n—oo
which implies that Tu = u and for n large, ||z, — 2, — dpu|| < d,, which is
impossible and so the sequence (dy,) is bounded and y € Im(I — T').
3. Assume that I — T is injective, set F; := Im(/ — T') and suppose that
Ey # E. Set for all n, E, := Im(I —T)™ with Ey := E. Let’s show by
induction that for all n, F, is closed and E,+1 € E,. This is true for n = 0.
Assume it true for n. Clearly TE,, C F, and hence T induces T,, € L(E,,).
Since FE,, is closed TnBiEn C TBg N E, which is compact. Hence T}, is
compact on E,. Since E,+1 = (Idg, — T,)E,, then by the second point,
FEpny1 is closed in E,, and hence in E. It is obvious that F, 11 C FEy,y2. Now
since I — F is injective we get, E, # E,+1 implies that E,1q1 # E, 42 since
E,y1=UI—-T)(E,) and Epy9o = (I — T)(Epn+1). To find a contradiction,
by the last lemma, there is a sequence (u,) such that for all n, u, € E,
|lun|| = 1 and d(up, Ept1) > % Then for n < m, Tuy, — Tty = Up — Vnm
with vy, = T+ (I —T)uy, € Eptq. Thus for all n # m, || Tup—T || > %
This is in contradiction with the compacity of T B. Thus I — T is surjective.
Remainder to show continuity of (I —T)~!. By contradiction, suppose that
there is a sequence (z,) /4 0 with lim x,, — T'x,, = 0. By use of subsequence,
we can assume that for all n, ||x,|| > ¢, for some € > 0. Set u,, := x,/||zy]
Again, since T is compact, we can assume that (T'u,) converges to some
v € E. But this will imply that limu, = v and so ||v|| = 1 and then by
continuity Tv = v, so (I —=T")v = 0 which is impossible since I —T is injective.
d
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Theorem 4.2.1 Let T € K(E).
1. If dimE = oo then 0 € op(T).
2. o(T)\{0} = 0,(T) and for all A € o,(T) dim Ey < 0.
3. o(T) is countable.

Proof. 1. If 0 is not an eigenvalue then by proposition 4.1.1 I = TT~! is
compact and so dim E < oo.

2. Let A€ K, A # 0. X € o(T) if and only if I —T'/X is not injective and
ker(A — T) = ker(I — T/A). On the other hand, A € o(7T) if and only if
I —T/\ is not invertible in £(FE). Apply then the last proposition.

3. For this it suffices to show that for all € > 0 there is a finite number of
A € o(T) with |A| > e. If not, assume that there is a sequence (\,) C o(T)
of distinct elements with |\,| > €. By the last point ), are eigenvalues.
Let then (e,) corresponding eigenvectors with ||e,|| = 1. Thus the (e,) is a
free system. For all n, set E, := span{eg,---,ey}. The (E, is a sequence
of strictly increasing of finite dimension spaces. From lemma 4.2.1 there

exists a sequence of (up), |[un| = 1 and u, € Eny1 with d(u,, E,) > 3.

Set v, = )\ZL. This sequence is bounded by % and for n > m we have

Tv, — Tvym = Up — Vpm With vy = Top, + ﬁ(x\nﬂ — T)uy,. Since
Ty € Epy1 C E, and (Mpy1 — T)Ept1 C Ep, we get vy, € Ej, and
|[Tvn — Twm|| > & which is impossible since T is compact. O

4.3 Hilbert-Schmidt operators

In this section E and F are two separable Hilbert spaces (of infinite dimen-
sions).

Lemma 4.3.1 Let B and B’ be two Hilbert bases of E and F respectively.
For all T € L(E,F) we have:

Yoo <V TSP =) |THP = IT)? < oo,

beB, b eB’ beB veB’
and this value does not depends on the choice of B or B'.

Proof. For z € E and y € F we have |z||*> = Y, .5| < #,b > |* and
lyll? =Y pep | <y, b >|% Now it is clear that Y, || Tb||* is independent
of B and Y, |T*V||? is independent of B. O

Notation. For all T' € L(E, F'), set

N|—=

172 =

> ITbl?

beB
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where B is any base of E. Set L2(E, F) the set

LYXE,F):={T € L(E,F); ||T||2 < oo}

Examples.

1. Finite dimensional case.
If E = F has finite dimension n, and (e;) a basis formed of eigenvectors
of T*T, then

n n
ITN5 = < T*Tex, e >= Y A,
k=1 k=1
where (A;) are the eigenvalues of T*T.
If T* =T then .
1713 = 4t
k=1

where () are the eigenvalues of T'.

2. Let H := L?(0,27) and define the Volterra operator, for all f € H by

Vf(z):= /093 f(t)dt.

By the example 4, this operator is compact. Consider the basis e, (t) :=

\/%emt, n € Z. It is easy to verify that ||Ve,||? < 73? and so V is a

Hilbert-Schmidt operator.

Theorem 4.3.1 Let E, F be two separable Hilbert spaces.
1. L2(E, F) is sub-vector space of L(E, F).

2. For al S,T € L%(E,F) and all Hilbert basis B of E, > pen < Tb,Sb>
is finite and the mapping (S,T) — > cp < Th,Sb > is a scalar
product on L?(E, F) (independent of the choice of B).

3. With this scalar product L*(E, F) is a Hilbert space.
4. L2(E,F) C K(E,F).

Proof. 1 Let S,T € L(E,F) and B a Hilbert basis of E. For all b € B
we have | < Sb,Tb > | < ||Sb||[|Tb|| < [||Sb]|> + ||Tb]|*]. We deduce that
> < Sb,Tb > is finite. Since ||Sb+Tb||* = ||Sb||>+||Tb||*>+2Re < Sb, Th >,
S+ T € L5 and so the first point is proved.
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2. It is clear that (S,T) — >, < Sb,Tb > is a scalar product. Now
by the polarization identity (proposition 1.1.1) we have 4) < Sb,Tb >=
IS +T|3—|IS—T||3+il|S+iT||3 —i||S — iT||3 we get the independence of
the basis.

3. From the second point Lo is a pre-Hilbert space. For all T' € L9 and
all z € E, ||z]| = 1, by taking a Hilbert basis containing = we get that
T2 > ||Tx||, so || T|l2 > ||T||. Thus L2 is separate. By this inequality, if
(T},) is a Cauchy sequence in Lo, it is also a Cauchy sequence in £ which
is complete, so (T},) converges to an operator T' € L(E, F'). Now for € > 0
notice that the set C. := {S € Lo; ||S]l2 < €} is the intersection on all
finite subset I C B, of {S € L2; >,/ IISb]|* < €2}, hence C: is a closed
set in L(E, F) (Indeed, this last set is the inverse image of [0,&2] by the
continuous mapping which to S € £? associates Y, [|9b]|?). Fix ¢ > 0.
There is N > 0 such that for all m,n > N we have ||T,, — Tp,||2 < e. Fix
n > N and since Ty, — T,, — T —T},, we get that T — T, € C.. Thus T € £?
and that lim ||T" — T[]z = 0.

4. Let T € £? and (e,) a basis of E. For all k, consider the operator
Ty : E — F defined, for all x € E, by Ty := ), ;. < x,e, > Tey. Since
T}, is of finite rank, using corollary 4.1.1, it suffices to show that T, — T.
For this, we write

2 2
T =Tl = 1Y <zen>Tenl < [ S <men> | | S 1Tenll?
n>k n>k n>k
2
< 2l { D I Teall?
n>k
Il

Definition 4.3.1 Operators in L2(E, F) are called Hilbert-Schmidt op-
erators.

Proposition 4.3.1 Let E, F, H Hilbert spaces. For all S € L(E,F) and
T € L(F,H) we have:

1 ||Sl2 = [[5%[]2-

2. If T or S is a Hilbert-Schmidt operator then T'S is a Hilbert-Schmidt
operator also and ||T'S|lo < ||T||||S]l2 or [|TS]l2 < [|T||2]|S]|-
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Proof. 1. Direct from the definition of [|.S||2.

2. Let B be a Hilbert basis of E. For all b € B we have || T'Sb|| < ||T|| ||.Sb]|
hence [|TS[3 = 3 ,ep ITSHI* < | T] 32 [1Sb]* = | T||*||S]13. The second
point could be obtained substituting S and 7" by their adjoints.

3. Similarly as 2. O

4.4 Compact self-adjoint operators

A classic theorem of linear algebra shows that every normal matrix, i.e.
a matrix that commutes with its adjoint, in a finite dimensional complex
Hilbert space, is diagonalizable in an othonormal base. We will generalize
this result to infinite dimensional case, but for compact self adjoint opera-
tors. Generalization to normal compact operators could be done. To omit
compacity of the operator we need a very powerfull theory as spectral mea-
sures or distributions.

Assume that T is an operator of finite rank. Since ker? = (Im7)* and
since dimIm7T < oo we have H = ImT @ kerT. Thus T induce on the finite
dimensional space Im7T" an invertible self-adjoint operator, whose eigenvalues
are those (# 0) of T'. Since we can diagonalize in finite dimension, we get
that ImT is direct sum of (orthogonal) eigen-sub-spaces of T, associated to
nonzero eigenvalues of 1" and then

H= P ker(rA-T).

Aeop(T)

We have proved the diagonalization of a finite rank operator. In the following
we will generalize this result to the case of a compact self-adjoint operator.

In the following H is a Hilbert space, and T a compact self-adjoint

operator on H (not of finite rank).

Lemma 4.4.1 T admits at least one eigenvalue and
[T = max{|A[; A € op(T)}.

Proof. Clearly, if A € 0,,(T), then |A| < ||T'||. Now, by theorem 2.2.1 there
is A € o(T) such that |A|sup,|=1 | < T,z > |, which is equal to ||T]|. O

Theorem 4.4.1 Let H be a Hilbert space and T a compact self-adjoint op-
erator. For all X € o,(T) denote by Hy the eigen-space associated to \.
Then
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1. 0p(T') is bounded, countable and infinite subset of R, whose unique
accumulation point is 0.

2. For all X € o,(T)\{0}, dimH) < oc.
3. For all A\ # p € op(T), Hy and H, are orthogonal.

4. Spectral decomposition of the identity.
Denote for all X € o,(T)\{0}, Py the orthogonal projection on Hy.

Then
T = Z AP
Aeap(T)\{0}

Proof. a. Assume that T is not of finite rank. The fact that eigenvalues of
T are real and the orthogonality of eigen-spaces was shown in proposition
2.2.4
b. Let’s show that A* := 0,,(T")\{0} is infinite. By lemma 4.4.1, there exists
A € op(T), [N = ||T||. Since T is not trivial, then A # 0 and so A* is not
empty. Assume that A* is finite, A* = Ay,--- A\g. Set then G := @§:1H/\j
and F' := G*. Since G is of finite dimension, H = F & G. It is clear that
TG C G and since T is self-adjoint, TF C F. T induces then an operator
Tr from F into itself, and since F' is closed, T is compact also. If T = 0
then Im7T" C G and so T is of finite rank. Thus TF is a self-adjoint non
trivial operator on F. By lemma 4.4.1, Tr has a non zero eigenvalue pu.
But this means that p € 0,(T")\A*, since for example there is x € F, x # 0,
Trr =Tz = px (sox € G). This gives a contradiction and A* is infinite and
by theorem 4.2.1, 0,,(T) is countable, and so 0 is the unique accumulation
point.
c. Let J be a finite subset of A* and Gy := ®rcyHy, Fy:= Gj T induces
on Fy a compact self-adjoint operator, whose norm ||Tp,| = max{|A|, A €
op(Tr,)}. But every eigenvalue A of T, is an eigenvalue of T' does not
belongs to J, since by construction F; N H,, = {0} for all u € J. Therefore,
op(Tr,) C op(T)\J. Conversely, if A € 0,(T)\J, then (by orthogonality),
H, C Gf = Fj and hence A is an eigenvalue of Tr,. Thus o,(TF,) =
op(T)\J and

1T, || = max{[A], X € op(T)\J}.

Moreover, the orthogonal projection on Gy is ), ; Px. Hence, for all z € E,
ryi=x— ;P €Fyand

[Tz s\ = 1 Tey 25|l < NTr, |l 2] < 1T [ 1]

We deduce that,

T—ZTPA

aeJ

< max |,
Aeop(T)\J
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and so

T—ZAPA

AeJ

< max |AL
Aeap(T)\J

Let € > 0. Since 0 is an accumulation point of o,(T), the set K := {\ €
op(T), |A| > €} is finite. Thus, for all finite part J C 0,(7)\{0} that
contains K, we have

T - AP,

AeJ

< max [A < max  |A|,
Aeap(TI\J Aeap(TI\K

which terminate the proof. O

Corollary 4.4.1 With the same notations we have

ImT = @ H,.

Aeap(T)\{0}
Proof. We know that, for all x € H, Tx = Z)\GU(T) AP\z. Thus ImT C
Dreo,(m)\{0y Ha- Conversely, if A € o,(T)\{0}, then H) C ImT. O

We can express the last theorem and corollary in the following

Corollary 4.4.2 The space ImT' admits a countable Hilbert basis (fn)nen
formed of eigenvectors of T' associated to nonzero eigenvalues (jin)nen-
The sequence (fin)neN tends to zero and, for all x € H, we have

Tx:Zun<:c,fn>fn.

neN

Corollary 4.4.3 For all x € ImT

T = Z Pyx.

Aeap(T)\{0}

Corollary 4.4.4 Let Py be the orthogonal projection on Hy := kerl. Then

foralx e E
T = Z Pz,
Ae€op(T)

H= B H,

Aeap(T)

and
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Proof. Since T is self-adjoint, Hy = kerl' = T Hence, H = Hy®ImT'.[]

Corollary 4.4.5 If H is a separable Hilbert space, then it admits a Hilbert
basis formed of eigenvectors of T .

Proof. By corollary 4.4.2, ImT admits a countable Hilbert basis. Complete
it by a basis of Hy (formed of eigenvectors associated to 0) to get a Hilbert
basis of H formed of eigenvectors. O

4.5 Fredholm equation

In this case, in the case of a compact self-adjoint operator, for all bounded
function f on the set 0,(T"), we can define the operator f(7') on H as

fDz:= > f(N)P

Aeop(T)

for all x € H. By the orthogonality of the spaces E) we get the following
(Bessel) equalities

IF@)al? =D [FOPI P,

Xeop(T)

lz)>=" > IPa]®.

A€op(T)
We deduce then that
[£(T)| = sup [f(N)].

Aeop(T)

This shows that this symbolic calculus is an extension of the previous one.
In particular, if p € K* & 0,(T), then for all z € H

(u=T)'z= > (u—A)"'Pu. (4.1)
Aeop(T)

Now if p € o,(T), pp # 0, then Im(pp — T') = Ef; Hence the operator T
induces on Ej a compact self-adjoint operator T}, with o, (T,,) = op(T)\{11},
to T}, we can again apply the formula (4.1) and deduce that, if x € Ef;, then
for all u € Elf we have the equivalence

pu—Tu =2+ u= Z (n— \) "t Pyx.
Aeap(T)\{1}



44 CHAPTER 4. COMPACT OPERATORS

Nowif:nEEd- and y € E, theny:u—i—vwithuEEﬁ[ and v € E,. Thus

py —Ty=x<+= e E,st. y=u+ Z (n—\) 1Py
Aeap(T)\{n}

In short, if we consider the Fredholm equation
py — Ty =z, (42)

with p € K* and = € E, then we can distinguish two cases (Fredholm
alternative):

e 4 is not an eigenvalue of T. Then the equation (4.2) admits a unique
solution ¥, given by

Yy = (N - T)_1$ = Z (,M — )\)_IP/\J‘.
Aeop(T)

e 4 is an eigenvalue of T'. Then the equation (4.2)

— admits an infinite number of solutions if = € ker(y — T')*, in this
case those solutions are given by

y=u+ Z (1t —\)"tPy,
A€op(T)\{n}

with u € ker(p —T).

— does not admit any solution if not, i.e. if z & ker(u — T)*.



Chapter 5

Unbounded self-adjoint
operators

In this chapter we start by giving some properties of closed operators, then
general properties of symmetric and self-adjoint operators on a Hilbert space.
We terminate by defining symbolic calculus of unbounded self-adjoint oper-
ators.

In all this chapter H will be a Hilbert space and X a Banach space.

5.1 Closed operators

Definition 5.1.1 Let D C X be a sub-vector space. A linear unbounded
operator is a linear mapping from D to X.

Remarks.

1. An operator is always a couple (A4, D). D, denoted sometimes by D(A)
or Dy, is called domain of A.

2. Changing the domain could change considerably the operator. See
examples below.

3. In all this chapter we will always use densely defined operators,
i.e. such that D(A) = X.

4. Two operators (A, D) and (B, Dp) are equals if and only if D4 = Dp
and for all x € Dy we have Ax = Bx. And we say that B is an
extension of A, A C B, if D4y C Dp and for all x € D4 we have
Ax = Bux.

45
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5. The appellations ”bounded”, "unbounded” are due to the fact that

for linear operators, continuity is equivalent to the inequality: ||Az|| <
C||z|| for some C > 0 and all z € X, i.e. to boundedness on the closed
unit ball.

Examples.

1. Let X := BC!(R) the space of continuously bounded differentiable

functions and A := %. Clearly A is a linear bounded operator. Ob-

serve that for all n > 1, the operator (A", D,) defined by: D, :=
C™"(R) and A" f := f (") is an unbounded, densely defined operator.

. Let X := BC*®(R). For alln > 1, A" := (d/dx)" is a linear bounded

operator.

. Let X := L%(]0,1]) and define the operator (A, D4) with D4 := {f €

C([0,1]); f(0) = f(1) = 0} and A := d/dx is linear unbounded
densely defined operator (since D(0,1) C Dy).

. On the same space X := L?(]0,1[) define the operator (B, Dg) with

Dp = {f € C'([0,1]); f(0) = 0, f(1) = 1} and B := d/dx is linear
unbounded (but not densely defined) operator.

The notion of operators whose graph is closed will play an important
role:

Definition 5.1.2 The operator (A, Dj) is called a closed operator if and
only if for any (x,) C Da such that x, — x € X and Ax, — y € X it
follows that x € D4 and y = Ax.

Remarks.

. (A, D4) closed is equivalent to G(A) := {(x, Az); © € D4} (the graph

of) is closed in X x X.

. By linearity this definition is equivalent to the following: for any

(xn) C D4 such that x,, — 0 then Az, — 0.

. The closure of an operator (if it exists) (A, D4) is the least closed

extension of A. We say in this case that A is closable. It is denoted
by A. It is the operator whose graph is G(A).

. If D C Dy is a sub-vector space denote by A|D, called the part of A

on D, the operator such that A|D C T with domain D(A|D) = {z €
D; Tx € D}.
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If an operator (A, D,) is injective, the operator A=1:ITmA — X is de-
fined.

Definition 5.1.3 Let (A, D4) be a closed linear operator on X and X\ € C.
We say that A € p(A), the resolvant of A, if \— A admits a bounded inverse
on Im(XA — A). We call spectrum of A, o(A) the complementary in C of

p(A): p(A) = C\a(A).

Proposition 5.1.1 The inverse of a closed injective operator is closed.

Proof. Let A: D4 C X — Y be a closed injective operator, where X and
Y are Banach spaces. The graph G(A71) = ®(G(A)) hence closed, where
®: FE x F— F x E is the homeomorphism ®(z,y) = (y, x). O

Remarks.

1. Let A be a closed operator on X. If A — A is bijective from D4 to X
for some A then (A— A)~! is continuous from ImA — A = X to X since
closed (by the last proposition and the closed graph theorem). Hence

A€ p(A).
2. The spectrum of A is union of the three disjoint following sets:

(a) op(A) the point spectrum: the set of all eigenvalues.

(b) o,(A) the residue spectrum: the set of all A that are not eigen-
values and such that the image of A — 7T is not dense in X.

(¢) 0c(A) the continuous spectrum: the complementary of o,,(A) and
or(A) it is also the set of A such that A — A is injective with dense
image, but (A — A)~! is not continuous.

Lemma 5.1.1 Let A be an injective closed operator and X € p(A), X\ # 0.
Then 1/X € p(A™Y) and

A=A = aAN - A) T = A - 22— AL
Proof. A — A7l = —A"1(A\ — A)A~! (they have the same domain ImA).

Thus A~ — A~ is bijective from D(A~!) onto X and its inverse is —AAR(), A).
But AR(A\, A) — AR(\, A) = Id, so we get the result. O

Proposition 5.1.2 Let A be a closed operator.
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1. The spectrum o(A) is a closed set of C.

2. The mapping A € p(A) — R(\, A) € L(X) is analytic.

Proof. If 0(A) = C there is nothing to show. Otherwise, rescalling A by
some A € p(A) we can assume that 0 € p(A). Set B := A~

1. By lemma5.1.1, 0(A4) = {\ # 0; A~! € ¢(B)} and since o(B) is compact,
o(A) is closed.

2. By lemma 5.1.1, R(\,A) = —A"'BR(A"!, B), so the mapping \
R(\, A) is analytic on p(A)\{0}. Since o(A) is closed, there is Ay € p(A),
Ao # 0. Rescalling we get that the mapping A — R(\, A) is analytic on
p(AN\ Do} O

Remark. For all nonempty closed set S of C we can construct a closed
operator whose spectrum is S

Since S is not empty, let (\,) be a dense sequence in S. Consider the
operator A on H := (?(N), with domain the set of sequences (x,) € H
such that (A x,) € H, and A(zy,) = (Apxyn) (A is called the multiplication
operator see the section forthcoming). It is not difficult to verify that A is
closed, densely defined, and 0(A4) = o,(A) = S.

5.2 Adjoint of an operator

In this section H will denote a Hilbert space and < -,- > its scalar product.

Lemma 5.2.1 Let (A, D4) be a linear densely defined operator on H. Let
y € H, and assume that there exists y* € H such that for every x € Dy

< Az,y >=<z,y" >. (5.1)
Then y* is unique.

Proof. If thereis z € H s.t. < Az, y >=< z,y* >=<z,z > forall x € Dy,
we get that z — y* € D7AL which is trivial since D(A) = H. O

Definition 5.2.1 Let (A, D4) be a linear densely defined operator on H.
Define the (unbounded) operator A*, adjoint of A by
D(A") :={y € H, so that y* € H s.t. (5.1) is verified}

and
Afy = y*.
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The adjoint could be characterized by

forallz € Dpand all y € Dgx < Az,y >=<x, A%y > . (5.2)

Definition 5.2.2 We say that A is a symmetric operator if Do = H and
for every x,y € Dy we have

< Ax,y >=<uz,Ay > .
We say that A is self-adjoint if A = A*.

In the following we give direct properties:

Proposition 5.2.1 Let (A, Dy) be a linear densely defined operator on H.
Then

1. The adjoint of A is always closed.
If B is an extension of A, A C B then B* C A*.
If A is closable, then (A)* = A*.

If D(A*) = H then A is closable and

e e

AC A™.
5. If A is a symmetric operator then every symmetric extension B of A
verify: A C B C A*.
6. ImA*+ = kerA*.

Proof. 1. If y, — vy, vy, — y* and < Ax,y, >=< z,y; > for every z € Dy
then < Az, y >=< z,y* > soy € Dy~ and A%y = y*.

Points 2, 3, 4 and 5 are obvious.

6. y L ImA means that < Az,y >=< z, A*y >= 0 for all z € Dy, and so
A*y =0. U

Theorem 5.2.1 let (A, D4) be a symmetric operator on a Hilbert space H.
If Do = H then A is bounded.

Proof. For all z,y € H we have | < Az,y > | =| <z, Ay > | < ||z| ||Ay]|.
So by The Banach- Steinhauss theorem A is bounded. O

Let’s see some examples:

Examples.
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1. Let H := L?(0,1) and define the operator (A, D) by
D(A):={f e H; feC"and f(0)=f(1)=0},

Af(t) =if'(t),

4 This operator is symmetric and A C A*:

%.
Indeed, integrating by parts (G(t) := fgg(s) ds) we get

in other terms A = 1

1
<Af,g> = <g,9 >=/0 fg*dt
1
— F()G() - F(0)G(0) - / PG dt
0
1
— /0 (if')(6)(Ci0)(¢) dt.

Since ImA is dense in F, we get g = —iG. Therefore there is 3 € L?
with —y' = iy*. Hence D(A*) = {y € H; y € L?} and y* = A*y = iy/.
Thus A is symmetric and A C A*. A is not closed (because of the
boundary conditions) but is closable, it is closure A; := A is defined
by

D(A):={f € H; f'€L?and f(0) = f(1) = 0},

Arf(t) =if'(t).
2. Define A on the same space H by
D(Ay) :={f e H; f'eL”and f(0) = f(1)},

Ao f(t) = if'(t).

Thus A; C Ap and then A5 C Aj. Let’s show that Aj is self adjoint:
For this let’s calculate

1
< Asf,g> = /O(if’)gdt
1

= alf(Mg(1) - £(0)g(0)] + ; f(t)ig/(t) dt
1

= if(D[g(1) = g(0)] + ; F(t)ig(t) dt.

Since A5 C A then < Asf, g >=< f, Ajg >=< f,iy >so0if(1)[g(l)—
g(0)] = 0. If g(1) # g(0) then choosing a sequence f, — 0 with
fn(0) = fn(1) = 1 we get that < Aafy, g >/ 0 but < f,, Ag >— 0.
So g(1) = ¢g(0) and then A% = As.
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3. Define, on the space H := L?[0, o[, the operator
D(A1) ={feFE; f"eL?and f(0) = f'(0) =0},

A f(t) =—f"(t).

By the same way as in the first example, y € D(A*) implies that
y" € L2, then

<Aif,g> = /OO( g dt
_ /f
= [fg+fdI+<f—9">.

Therefore we see that < A; f, f >> 0, and that y* = A*y = —y” and
D(A*) ={y € L* " € L*}. So A; C A} and A; is symmetric but
not self-adjoint.

4. Consider the same operation on the same space, L?[0, oo,
D(Ay) :={f € H; f"e€L*and f(0) =0},

Ao f(t) = —f"(t).

Obviously A; C Ag and then A5 C A}. Repeating the same calculation
as above we get

< Af,g>=<f,g" >=—f(0)g9(0)+ < f,—g" >,

and necessarily ¢g(0) = 0 (otherwise consider a sequence f, — 0 in
L? with f/(0) = 1 to get a contradiction). This shows that Ay is
self-adjoint (extension of Aj).

Theorem 5.2.2 If A is a symmetric operator and ImA = H then A is
self-adjoint.

Proof. We know that A C A*. Now let y € D(A*) and set y* = A*y. Since
ImA = H there is x € D(A) such that A*y = y* = Ax. For every z € D(A)
we have

<Az, y >=< 2, A"y >=< 2,y >=< z, Az >=< Az, x >,

thus y =z and so A = A*. O
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Theorem 5.2.3 Let A be a bounded self-adjoint operator. Assume that
kerA = {0} then A~! is also self adjoint.

Proof. First let’s show that A~! is densely defined: If not, D(A-1) =
ImA # H, then by proposition 5.2.1.6, there is 3y € kerA*, yo # 0, which
is not possible since A = A*. Now < A~ lz,y >=< z, A=y >, setting z =
A7l = Az we get < 2,y >=< z,y* >=< Az,y* >=< 2z, A*y* > and so
y = A*y* = Ay* or y* = A~ 1y, but y* = A=y, Thus y € ImA = D(A™1),
and A~y = A=y, Thus A~! is self-adjoint. O

Remark. This theorem 5.2.3 gives us many examples of unbounded self-
adjoint operators. Start with any self-adjoint compact operator A with
kerA = {0}. Then A~! is an unbounded self-adjoint operator.

5.3 The L*-spectral theorem

In this section we will show a theorem, known as spectral theorem, for
bounded self-adjoint or unitary operators, stating that each self-adjoint or
unitary operator is unitary equivalent to a real multiplication operator.
Thus, self-adjoint and real multiplication operators are effectively the same
things. It is frequent to regard an arbitrary self-adjoint operator as being a
real multiplication operator.

We will start by defining multiplication operator:

Let (X, p) a measured space and f € L™(X, ).

Definition 5.3.1 The multiplication operator Ag: L*(X, u) — L*(X, p) is
defined by A¢(g) := fg.

It is easy to see that A is a linear bounded operator on L?, and || 4| <
[flloc. Moreover, A} = Ay, hence Ay is normal. If in addition f is real-
valued then Ay is self-adjoint and if |f[ =1 a.e. then A} Ay = A2 = Idp2.

Proposition 5.3.1 0(Af) = Ress(f) = {A € C; Ve > 0, the set of x €
X, |f(z) = Al < € is not p-negligeable}.

Proof. Let A\ € C\Ress(f). If there is € > 0, such that the set of = €
X, |f(x)—A| < € is p-negligeable, denoting by h the function h(z := (f(z)—
AL for f(z) # XAand 0 ifnot. |h(z)| < e~ ! for p-a.e. xand h(z)(A—f(x)) =
1. Thus h € LOO(X,,u) and Ah(Af - )\) = (Af — )\)Ah = Idj-.

Now if X\ € Ress(f) then for every ¢, the set A; :={z € X, |f(z) — | < ¢}
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is not p-negligeable, consider a function xy € L*(X,pu), |[xll2 = 1, x = 0
outside A.. Then (A — X)x| < elx|, hence ||(Af — X)x|| <e. Thus Ay — A
is not bijective. O

Proposition 5.3.2 For all g € Ra, we have g(Ay) = Aypy. If Ay is self-
adjoint or unitary, then for all g € C(o(Ay) then g(Af) = Ay

Proof. The mapping g —— Ay(y) is linear morphism of ring, so we get the
first point using uniqueness in proposition 3.1.1. The second point could be
obtained by applying theorem 77. O

In the following, H is a Hilbert space and T a bounded self-adjoint or
unitary operator.

Lemma 5.3.1 Letxz € H.

1. There exists a finite measure p, on o(T) such that, for all f € C(o(T))
we have < f(T)z,z >= fa(T) f(t) dug ().

2. Denote by ¢,:C(o(T)) — H the linear mapping defined by ¢, (f) :=
f(D)x, and w:C(o(T)) — L*(a(T), uz) the mapping that to a con-
tinuous function associate its class in L*>. There exists an isometry
e L2 (0 (T), ) — H such that 1, o w = ¢. Moreover, 1,(1) = z,
¢x(Az) =T¢, and ¢x(A2) =T"¢x.

Proof. 1. The linear form ®,: f —< f(T)x,z > is positive on C(o(T)):
Indeed, if f is positive, then f(T) is a positive operator by theorems 7?7
and 3.2.3 (f(T) is self-adjoint and o(f(T)) = f(o(T)) C RT). There ex-
ists then a unique measure u, on o(7T') such that < f(T)x,z >= ®,(f) =
fo’(A) f(t) g (t)

2. Let f € C(o(T)). We have ||¢.(f)||? =< f(T)z, f(T)x >=< f(T)f(T)x,z >

—< ATz, >= [, [P du(t) = [w(f)IP- On the space C(o(T)) en-
dowed with semi-norm ||¢,(f)||, w is a linear isometric of dense image,
there exists then v, € L(L*(o(T),ps), H) such that ¢, = 1, o w. For
all f € C(o(T)) we have ||tz (w(f)I| = [|o2(f)I| = [lw(f)]], then by density
of the image of w we have |[¢.(g)|| = ||g|| for all g € L?(a(T), piz): s is
isometric. (1) = ¢(1) =[x = z.

Finally, for all f,g € C(o(T')), we have ¥, (Af(w(g)))v(w(fg)) = ¢=(fg) =
f(M)g(T)x = f(T)p.(g9) = f(T)z(w(g)). Again, by the density of the im-
age of w, we get for all f € C(o(T)) and all g € L*(o(T), piz), we have
Ve (Ar(g)) = f(T)2(g). Take f = z and f = Z to terminate. O
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Lemma 5.3.2 Let x € H and denote by E, the image of 1.
1. Ify € Ef then E, C E-.

2. There exists a subset D C H such that for allz,y € D, x #y, E, L E,
and @®zcpb, = H.

Proof. 1. If y € E;, then for all f € o(T) and all g € L%(o(T), u),
we have < ¥,(g), f(T)y >=< f(T)¢(9),y >=< ¥2(Afg),y >= 0. Since
{f(T)y; f e C(a(T))} is dense in E,, we get the result.

2. Denote by G the set of subsets D of H\{0} such that for all z,y € D,
E, 1 FE,. Endowed with inclusion G is inductive. It is easy to show that G
admits a maximal element D that is our candidate. O

Theorem 5.3.1 Let H be a separable Hilbert space and T € L(H) a self-
adjoint or unitary bounded operator. There exists a measured space (X, p),
a function f € L®(X, p) and an isomorphism : L>(X, u) — H such that

T =pAp”

Proof. Let x € H and D as in the last lemma. For all y € H, we have
y € E, and since H is separable, D is countable. Rearrange D to be a
discrete set and set X := o(T) x D. If g is a function on X, denote for
y € D, g, the function t — g¢(t,y). Denote by C.(X) the set of continuous
functions of compact support on X, i.e. g € C.(X) if all except finite number
of the functions g, are null. Denote by

Z/U (1) dpy (2).-

yeD (T)

Since ® is a positive linear form on C.(X), there exists a unique measure p
on X such that, for all lg € C.(X) we have

/X()du Z/ (t) dpy (t).

yeD

Denote by ¢: Ce(X) — H the mapping defined by ¢(g) = >_, cp 9y(T)y
and w:C,(X) — L*(X,p) the function class. For g € C.(X) we have
gy(T)y € E,. by orthogonality we get [|¢(g)[|> = Zyep < gy(T)y 9y(T)y >
=< Gy(T)gy(T)y,y >= X yep Joiry 199 (O duy(t) = [ l9(2)? du(@) = [lw(g)]*.
On the space C.(X) endowed with semi-norm ||¢(f)||, w is a hnear isometric
of dense image, there exists then ¢ € L(L?*(X, ), H) such that ¢ = v o w.
For all f € C(o(T)) we have [l (w(f))[| = [|o(f)I| = |w(f)ll, then by density
of the image of w we have ||¢(g)|| = ||g|| for all g € L?(X, u): 9 is isometric.
Let’s show that 1 is surjective. Let y € D and h € C(o(T)). Set g(t,y) :=
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h(t) and g(t,x) = 0 for x € D, x # y. We have ¥(w(g)) = ¢(g) = h(T)y.
Hence the image of ¢ contains all h(T)y, y € D, h € C(o(T)). Since 1 is
isometric, its image is closed, hence contains all E,. Thus ¢ is surjective.

Denote by P; the first projection on X. For all g € C.(X) and all y € D
we have (Pig)y = zgy, hence (Pig)y(T) = Tg,(T). So ¢¥(Apw(g)) =
v(w(Prg)) = ¢(Prg) = Xyep(Pr9)y(T)y = Td(g) = Trp(w(g)). By density
of the image of w, we deduce that for all g € L*(X, u), ¥(Ar(g)) = T(g).
This implies that ¢ Ay = T hence T = Qj)AfQ/)_l =P App*. O

Using this theorem, one can define a symbolic calculus from C(o (7)) into
L(H): for g € C(o(T)), wet g(T) := 1pAgoptp*. Notice that this symbolic
calculus could be extended to the B(c(T)) the vector space of bounded
borelean functions on o(7).

5.4 The L*-spectral theorem

In this section we consider a particular self-adjoint operator which appears
to be a very particular (and simple) example, but which will be central to
the description and application of the spectral theorem. This will be seen
by the main theorem of the next section.

In the last section we have defined multiplication operator for a bounded
function, which gives a bounded operator. In this section we will define the
multiplication operator for L?-functions, which gives unbounded operator.
The proofs are roughly the same, so they are omitted.

Let (X, ) be a measured space. Define H := L?(X, u) the space of all
measurable functions of square integrable, with the classical identification
between two functions if ever they are equal almost everywhere.

Fix a measurable real-valued function a that is bounded on every bounded
subset of X. Let D be the set of all functions f € H such that

[ 11+ a@?I @) di < o,

X

and define the operator A, with domain D by
Auf(x) := alx) f(x),

the multiplication operator.
Lemma 5.4.1 The operator (Aq, D) is self-adjoint.

Define the essential range of a, Ress(a), the set of all A € R such that
for all € > 0 the measure of the set {z € X; |a(z) — A| < £} is zero.
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Lemma 5.4.2 0(A,) = Ress(a), and if A & o(A) then

(A= 40) 7] (2) = [\ = a(@)] 7 f(2)
forall f € H and oll z € X, and

1

1 =407 = Gy

Now we can generalize the results of the last section to the case of un-
bounded self-adjoint operators.

Theorem 5.4.1 (Spectral theorem) Let H be a Hilbert space and T a
densely defined self-adjoint operator on H. Then

1. o(T) CR.
2. The operator U := (i — T)(i + T)~! is a unitary operator in L(H).

3. There exists a measured space (X, 1) a measurable function f: X — R
and an isomorphism v: L>(X, ) — H of Hilbert spaces such that T =

YA

Proof. 1. Let A € C\R. Denote by b its imaginary part. For all x € D(T)
we have < Tz, z >=< x,Tx > hence < Tz,z >€ R and the imaginary part
of < (A —T)z,x > is then b[|z||>. Thus |b[||z||? < | < A= T)z,x > | <
|(A = T)zl||||z]| and so |[(A —T)z|| > |b|||z||. Thus, for all (z,y) € G(A—T),
we have [[y|| > [b[||2||, hence (1+6%)[[y[|* > b*(||z]|* + [[y||*). By proposition
, the mapping (z,y) — y from G(A—T) into H is injective of closed image.
Since (A — T)* = A — T is also injective, we deduce, by proposition 5.2.1.6,
that the image of A — T is dense.

2. Since Im((i+7T)~') = D(i —T), D(U) = H and U is bijective by 1. Now
for z € D(T), we have ||(i — T)xz|* = [|Tz|? + ||z]|* =i < z,Tz > +i <
Tx,x >=||Tz|? + ||=||?> = ||(i + T)x||?>. Fory € H, set x = (i + T) 'y, we
have ||Uy|| = ||(: = T)x|| = ||(: + T)z|| = ||ly||. Thus U is isometric.

3. Let y € H and set  := (i + T) "'y, we have Uy = (i — Tz = 2ix — (i +
T)x = 2ix —y. Thus ¢ = 2(Uy+y)/i and then (i +7T)~! = 2(U + Id)/i and
T=i(U+Id)~" —i.

By theorem 5.3.1, there exists a measured space (X, i), a function g: X —
C, |g| = 1 measurable and an isomorphism : L?(X, ) — H such that
U = YAgp*. Since U — Id is injective, A,-1 is injective, and so the set
{z € X; g(x) = 1} is p-negligeable. Then (U — Id)™! = (pA,-1¢*) " =
(P*) LA Agp* = U. Thus T = o App* where f:=2(g—1)7"1/i—i=
—i(g+1)(g—1)"" O

As in the bounded case, one can define a symbolic calculus on B(o (7))
the space of bounded borelean functions on o (7).
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5.5 Stone’s theorem

Definition 5.5.1 Let E be a Banach space. We call a one parameter Cy-
group any family of linear bounded operators (G(t))ier C L(E) verifying

1. G(0) = Idg.

2. G(t+s) =G(t)G(s), for allt,s € R.

3. For all x € E, the mapping t — G(t)x is continuous.
The operator defined by

G(t)xr —
D(A) :={z € E; }in% H::C exists},

Az = lim 7G(t>$ — 7
t—0 t
1s called generator of the Cy-group.

Let H be a Hilbert space. A Cy-group is called unitary Cy-group if each
operator is unitary.

Theorem 5.5.1 Let H be a separable Hilbert space. Let (A, D(A)) be a
densely defined operator. The following are equivalent:

(i) iA generates a unitary Co-group.
(ii) A is self-adjoint.

Proof. (i)==(ii). We have G*(t) = G(t)"! = G(—t). Let’s show that
A C A*. Indeed, let z,y € D(A), we have

<Az,y> = —ilim <G(t)x_$,y> = —ilim <x, G(t)y—y>
t—0 t t—0 t
-1 .
= —ilim <:U,G )y y>
t— t
G(—t)y —
= —ilim <:B, w =—i<uz,—iAy >,
t—0 t

thus x € D(A*) and < Az,y >=< A*x,y >.
A= A*: Let x € D(A), y € D(A*) we have

< Ax,y >= —ilim <G(t):c—:1:7y> = —ilim <x, G(t)y—y>
t—0 t t—0

_1 _
= —7lim <x, 7G (t)y y>
t—0 t

= —ilim <x, G(—t)y—y> =< x, Ay >,
t—0 t

<z, A'y >
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Therefore y € D(A) and hence A = A*.

(ii)==(i). Since A admits a L>°(c(B)) symbolic calculus. Denote by & this
symbolic calculus and define, for all ¢t € R, G(t) := ®(e;) = e;(A), where
er(s) := exp(ist). Since o(A) C R, e; is bounded. Using properties of the
symbolic calculus, it is easy to verify that (G(t)) is a unitary group generated
iA. O

5.6 Laplace operator on bounded open domain of
RN

Let 2 be an open of RY and H = L?(f2) as a real Hilbert space. Define the
operator Ag on H by

D(Ag) == {u € HY (), Au € L*(Q)},

Agu = Au, u € D(Ao)

Then we have

Proposition 5.6.1 (Ag, D(Ag)) is negative self adjoint operator.

Proof. Since D(Q2) C D(Ap), D(Ay) is dense in H. Let u € D(Ag) C
H}(2), by Green’s formula, we have

<A0u,u>:/Au-udx:—/|Vu]2d:r
Q Q

so Ay is negative. By a similar calculation, one can see that Ag is symmetric.
In order to use theorem 5.2.2, let’s show that ImAg = H. In fact we will
show that 0 & o(4Ay). For this, and using Lax-Milgram lemma, for all f € H,
there exists u € H}(2) such that, for all v € HJ(Q)

/()\uv+Vu-Vv) dx:/fv,

for all A > —)\g, A\¢p being one over the Poincar constant. Which gives (by
Green) that in the distribution sens

Au— Au = f.
Thus (u € HY) Au=u— f € L?, i.e. u € D(Ap). In other terms o(Ag) C
] — 00, —)\0[. ]

Corollary 5.6.1 iAg generates a unitary Cy-group.
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Remark 5.6.1 If the boundary of Q2 is bounded and is of class C?, then
D(Ag) = H?() N HY(QY) with equivalent norm.

In order to determine the eigenvalues of Laplace operator, notice first
that if v is an eigenvalue then there is A (< —\g) such that

Apu = M. (5.3)

This means that u € D(A). But asking u to be in H{ is sufficient, since in
this case, Au € L2. Therefore it is sufficient to solve (5.3) in H}. We start
by the following direct application of theorem 5.2.3.

Corollary 5.6.2 (—Ag)': L2(Q) — L2(Q) is a positive bounded self-adjoint
operator.

Corollary 5.6.3 (—A¢) " HY(Q) — HY(Q) is a positive compact self-
adjoint operator.

Proof. Remainder to show that this operator is compact. Denoting by
A this operator then A = —Agl o J, where J:u —— wu is the canonical
injection from H{ into L2. Since J is compact (Rellich theorem) and using
proposition 4.1.1 A is compact. ]

We terminate by

Theorem 5.6.1 The set of eigenvalues of Laplace operator with Dirichlet
condition Ag on § is a strictly decreasing sequence that tends to —oo.
FEach eigen-space is of finite dimension.

Denote by () the sequence of eigenvalues of —Ag, repeated each with its
multiplicity. Then there exists a Hilbert basis (un) of H}(Y) such that for
all n, we have Agun = Uy

Remark 5.6.2 By the same argument above each u, € H5(Q2), hence C*°
and $o uy, is an ordinary solution of the equation Aty = [inty,.



