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Chapter 1

Hilbert spaces

1.1 Scalar product

Let E and F be two C-vector spaces. A mapping f : E −→ F is said to be
antilinear if, for all x, y ∈ E and all λ ∈ C we have f(x + y) = f(x) + f(y)
and f(λx) = λf(x).

Definition 1.1.1 Let E be a complex vector space. We call sesqui-linear
form on E a mapping B: E ×E −→ C such that, for all y ∈ E the mapping
x 7−→ B(x, y) is linear and the mapping x 7−→ B(y, x) is anti-linear.

Proposition 1.1.1 (polarization identity)

1. Let E be a complex vector space and B a sesqui-linear form on E. For
all x, y ∈ E we have

4B(x, y) = B(x+y, x+y)−B(x−y, x−y)+iB(x+iy, x+iy)−iB(x−iy, x−iy).

2. Let E be a real vector space and B a bilinear form on E. For all
x, y ∈ E we have

4B(x, y) = B(x + y, x + y) − B(x − y, x − y).

Proof. We have B(x + y, x + y) − B(x − y, x − y) = 2B(x, y) + 2B(y, x).
Replacing y by iy, we find B(x+ iy, x+ iy)−B(x− iy, x− iy) = 2B(x, iy)+
2B(iy, x) = −2iB(x, y) + 2iB(y, x). ¤

In particular, to determine a symmetric sesqui-linear form B, it suffices
to determine B(x, x) for all x ∈ E.

Corollary 1.1.1 Let E be a complex vector space and B a sesqui-linear
form on E. The following are equivalent:

5



6 CHAPTER 1. HILBERT SPACES

(i) For all x, y ∈ E we have B(y, x) = B(x, y).

(ii) For all x ∈ E, B(x, x) ∈ R.

Proof. Set S(x, y) = B(x, y)−B(y, x). This define a sesqui-linear form. By
the polarization identity, S is zero if and only if, for all x ∈ E, S(x, x) = 0.

¤

Definition 1.1.2 Let E be a complex vector space. We call hermitian
form on E a sesqui-linear form verifying any of the equivalent conditions
of corollary 1.1.1. A hermitian form B on E is said to be positive if, for all
x ∈ E, B(x, x) ≥ 0.

A symmetric bilinear form B on a real vector space E is said to be positive
if, for all x ∈ E, B(x, x) ≥ 0.
We call semi-scalar product, often denoted by (x, y) 7−→< x, y >, any
symmetric positive form on a real vector space or any positive hermitian
form on a complex vector space. It is called scalar product if, it verify in
addition the following property: for all x ∈ E, < x, x >= 0 if and only if
x = 0.
On appelle espace prhilbertien (rel ou complexe) un espace vectoriel (rel
ou complexe) muni d’un produit scalaire.

Exemples.

1. Let E = RN . If a1, · · · , aN are positive real numbers, the relation

< x, y >:=
∑

1≤i≤N

ajxjyj

define on E a semi-scalar product, which is a scalar product if and
only if all aj are strictly positive.

2. Let X be metric space locally compact and separable, µ a positive
Radon measure on X and E := D0(X, K). The relation

< f, g >:=

∫

f(x)g(x) dµ(x)

define a semi-scalar product, which is a scalar product if and only if
Suppµ = X.

3. The space E := C2π = {f : R 7−→ K continuous and 2π − periodical}
with the relation

< f, g >:=
1

2π

∫ 2π

0
f(x)g(x) dx

is a prehilbert space.
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4. Let I be a set. Denote, for p ≥ 1, by ℓp(I) ⊂ KI the set of sequences
(xi)i∈I such that |xi|p is summable. Put on ℓp(I) the discrete measure
m,

∫

x dm =
∑

i∈I

xi := sup
J∈Pf (I)

∑

i∈J

xi < ∞,

where Pf (I) is the set of finite parts of I.

The case p = 2 is very particular, ℓ2(I) with the scalar product defined
by

< x, y >:=
∑

i∈I

xiyi

is a prehilbert space.

The classical proof is applicable to the prehilbert case for:

Proposition 1.1.2 (Cauchy-Schwarz inequality) Let E a prehilbert space.
For all x, y ∈ E we have

| < x, y > |2 ≤< x, x >< y, y > .

Corollary 1.1.2 Let E be a prehilbert space. the mapping x 7−→ √
< x, x >

define a semi-norm on E.

Proof. For all x, y ∈ E, we have < x + y, x + y >=< x, x > + < y <
y > + < x, y > +< x, y > ≤< x, x > + < y, y > +2| < x, y > | ≤
[
√

< x, x > +
√

< y, y >]2, by Cauchy-Schwarz inequality. ¤

Proposition 1.1.3 Let E be a prehilbert space. For all x ∈ E, the linear
form fx: y 7−→< y, x > is continuous. Moreover the mapping x 7−→ fx is
anti-linear and isometric from E into E∗.

Proof. Let p be the semi-norm of corollary 1.1.2. For y ∈ E we have
|fx(y)| ≤ p(x)p(y) (Cauchy-Scwarz). So fx ∈ E∗ and ‖fx‖ ≤ p(x). Now
since p(x)2 = fx(x) ≤ ‖fx‖p(x), we get that ‖fx‖ = p(x). ¤

In the following we give a case where equality in the Cauchy-Schwarz
inequality occur.

Proposition 1.1.4 Let x, y ∈ E a prehilbert space. Then
| < x, y > | = ‖x‖ · ‖y‖ if and only if x and y are linearly dependent.
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Proof. The condition is clearly sufficient. Assume that | < x, y > | =
‖x‖ ‖y‖ and let ε ∈ C, |ε| = 1 such that Re[ε < x, y >] = | < x, y > |. Then
‖y‖x‖ − ε‖y‖x‖2 = 0. ¤

A direct consequence of the definition of the norm is

Proposition 1.1.5 (parallelogram identity) For all x, y ∈ E we have

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

x − y

2

∥

∥

∥

∥

2

=
1

2

(

‖x‖2 + ‖y‖2
)

.

Definition 1.1.3 Let E be a prehilbert space. We say that two elements x
and y of E are orthogonal if < x, y >= 0. We say that the subsets A and
B are orthogonal if every element of A is orthogonal to every element of B.
We call orthogonal of a part A of E the set A⊥ of elements of E orthogonal
to A.

It is clear that A⊥ =
⋂

x∈A

kerfx. Hence its is a closed sub-vector space of E.

A direct consequence is

Proposition 1.1.6 (Pythagore’s theorem) If x, y ∈ E are orthogonal in
a prehilbert space, then

‖x + y‖2 = ‖x‖2 + ‖y‖2.

Definition 1.1.4 A Hilbert space is a complete prehilbert space for the norm
defined by its scalar product.

Fundamental examples.

1. Every finite dimensional prehilbert space is a Hilbert space.

2. If µ is a measure on a measured space, the space L2(µ) define a Hilbert
space with the following scalar product:

< f, g >:=

∫

fg dµ.
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1.2 Projection Theorem

One of the fundamental tools of the Hilbert structure is projection theorem.
In the following H is a Hilbert space endowed with the scalar product <,>
and the associated norm ‖ · ‖.

Theorem 1.2.1 Let C be a nonempty closed and convex set of H. Then
for all x ∈ H, there exists a unique y ∈ C such that

‖x − y‖ = d(x,C).

This point y, called projection of x on C and denoted by PC(x), is char-
acterized by

y ∈ C and for all z ∈ C Re < x − y, z − y >≤ 0. (1.1)

Proof. Denote by d := inf{‖x− y‖; y ∈ C} the distance to C. Let y, z ∈ C
and set b := x − y+z

2 and c := y−z
2 . Then d ≤ ‖b‖ since y+z

2 ∈ C. Since
x − y = b − c and x − z = b + c, we have

‖x − y‖2 + ‖x − z‖2 = 2
[

‖b‖2 + ‖c‖2
]

≥ 2d2 +
‖y − z‖2

2
.

Thus ‖y − z‖2 ≤ 2[‖x − y‖2 − d2] + 2[‖x − z‖2 − d2].
For n ∈ N, set Cn := {y ∈ C; ‖x − y‖2 ≤ d2 + 1

n}. Cn is nonempty closed
set of H and the diameter of Cn, δ(Cn) ≤ 2/

√
n hence tends to zero. Since

H is complete, the intersection of Cn, that is equal to {y ∈ C; ‖x−y‖ = d},
contains a unique point y0.
Let y ∈ C. For t ∈ [0, 1], we have y0 + t(y − y0) ∈ C, hence ‖y0 + t(y −
y0)− x‖ ≥ ‖y − y0‖. Set f(t) := ‖y0 + t(y − y0)− x‖2 = ‖y0 − x‖2 + 2tRe <
y0 − x, y − y0 > +t2‖y − y0‖2. Since f(0) ≤ f(t) for all t ∈ [0, 1], f ′(0) ≥ 0,
i.e. Re < y0 − x, y − y0 >≥ 0. ¤

Denote by PC the projection on C. Condition (1.1) permits to show that
PC is a contraction:

Proposition 1.2.1 Under the same hypothesis, for all x, y ∈ H, we have

‖PC(x) − PC(y)‖ ≤ ‖x − y‖.

Proof. Set u := PCx and v := PCy. We have

Re < x − y, u − v > = Re < x − v, u − v > +Re < v − x, u − v >

= Re < x − u, u − v > +‖u − v‖2 + Re < v − x, u − v >

≥ ‖u − v‖2.
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Hence by Cauchy-Schwarz inequality, ‖u − v‖2 ≤ ‖x − y‖ ‖u − v‖. ¤

In the case of sub-vector space:

Proposition 1.2.2 Let E be a closed sub-vector space of H. Then PE is a
linear operator from H to E. If x ∈ H, then PE(x) is the unique element
y ∈ H such that

y ∈ E and x − y ∈ E⊥.

Proof. Condition (1.1) could be written as
y ∈ E, and for all z ∈ E, Re < x − y, z − y >≤ 0.

But if y ∈ E and λ ∈ C∗, the mapping z′ 7−→ z = y + λ̄z′ is a bijection from
E onto itself. Condition (1.1) is then equivalent to

y ∈ E, and for all z′ ∈ E, and all λ ∈ C, Re[λ < x − y, z′ >] ≤ 0
which is equivalent to

y ∈ E and x − y ∈ E⊥.

¤

Corollary 1.2.1 For all closed sub-vector space E of H, we have

H = E ⊕ E⊥

and the projector on E associated to this direct sum is PE. PE is called
orthogonal projector on E.

Proof. If x ∈ F , x = PEx + (x − PEx) and by proposition 1.2.2, PEx ∈ E
and x−PEx ∈ E⊥. From the other hand, if x ∈ E ∩E⊥, then < x, x >= 0,
so x = 0. ¤

Corollary 1.2.2 For all sub-vector space E of H, we have

H = E ⊕ E⊥.

In particular, E is dense in H if and only if E⊥ = {0}.

Proof. Remember that E⊥ = Ē⊥. ¤

Corollary 1.2.3 For all sub-vector space E of H, we have

E = E⊥⊥.
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Proof. Clearly E ⊂ E⊥⊥ and hence, since E⊥⊥ is closed, Ē ⊂ E⊥⊥. From
the other hand we have H = Ē ⊕ E⊥ and H = E⊥⊥ ⊕ E⊥. ¤

Proposition 1.2.3 The anti-linear isometric mapping x 7−→ fx of propo-
sition 1.1.3 is a bijection from H onto H∗.

Proof. Let x∗ ∈ H∗ and denote by E its kernel. If x∗ 6= 0 then E 6= H
and E⊥ 6= {0} (corollary 1.2.2). Let then x ∈ E⊥, x 6= 0. So fx is zero on
E. Since fx(x) 6= 0, there exists λ ∈ K such that x∗(x) = λfx(x). Since E
is a hyperplane and x 6∈ E, we have H = E ⊕ Kx. Thus x∗ and λfx that
coincide on E and on x are equal. Therefore x∗ = fλ̄x. ¤

Corollary 1.2.4 Every Hilbert space is reflexive.

Proof. Let H be a Hilbert space and ℓ ∈ H∗∗. The mapping x 7−→ ℓ(fx)
belongs to H∗. By the last proposition, there exists y ∈ H such that for all
x ∈ H we have ℓ(fx) = fy(x) =< y, x >= fx(y). Thus for every x∗ ∈ H∗ we
have ℓ(x∗) = x∗(y), i.e ℓ is the image of y by the canonical injection from H
to H∗∗. ¤

1.3 Adjoint of a linear continuous mapping

Recall that L(E, F ) denote the space of linear continuous (operator) from
E into F and that L(E) = L(E, E). In what follows E and F are Hilbert
spaces.

Theorem 1.3.1 (Riesz) The mapping

{

E −→ E∗

y 7−→ φy: y
∗ ∈ E∗ 7−→ φy(y

∗) :=< y∗, y >

is surjective isometry. In other words, for all linear continuous form φ on
E, there exists a unique y ∈ E such that φ = φy and ‖y‖ = ‖φy‖.

In the following we study some important applications of Riesz’s Theo-
rem.

Proposition 1.3.1 Let T ∈ L(E,F ). There exists a unique T ∗ ∈ L(F,E)
such that for all x ∈ E and all y ∈ F we have

< Tx, y >=< x, T ∗y > .

T ∗ is called the adjoint of T .
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Proof. For all y ∈ F , the mapping x 7−→< Tx, y > is linear and continuous.
There exists then a unique element y∗ denoted by T ∗y ∈ E such that for all
x ∈ E we have < Tx, y >=< x, T ∗y >. Clearly T ∗ is linear.
Now, for all x ∈ E and all y ∈ F we have | < x, T ∗y > | = | < Tx, y >
| ≤ ‖Tx‖ ‖y‖ ≤ ‖T‖ ‖x‖ ‖y‖. Thus ‖T ∗y‖ ≤ ‖T‖ ‖y‖. Therefore T ∗ is
continuous and ‖T ∗‖ ≤ ‖T‖. ¤

Hereafter some properties of adjoint operator:

Proposition 1.3.2 The mapping T 7−→ T ∗ is anti-linear and isometric
from L(E, F ) into L(F, E): for all T ∈ L(E, F ) we have T ∗∗ = T and
‖T ∗ ◦ T‖ = ‖T‖2. For all Hilbert space G, all S ∈ L(E, F ) and all T ∈
L(F,G) we have (T ◦ S)∗ = S∗ ◦ T ∗

Proof. ‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ ≤ ‖T‖2. Now, for x ∈ E, with ‖x‖ ≤ 1 we have
‖Tx‖2 =< Tx, Tx >=< x, T ∗Tx >≤ ‖T ∗T‖ (Cauchy-Schwarz). Hence
‖T‖2 ≤ ‖T ∗T‖. ¤

Proposition 1.3.3 Let T ∈ L(E, F ). Then ker T ∗ = Im T⊥ and T ∗(F ) =
(ker T )⊥.

Proof. Let y ∈ F . y ∈ kerT ∗ if and only if for all x ∈ E, < Tx, y >=<
x, T ∗y >= 0 if and only if y ∈ T⊥. From corollary 1.2.3, ImT = kerT ∗⊥,
replace then T by T ∗. ¤

Definition 1.3.1 An element U ∈ L(E, F ) is said to be unitary if U∗◦U =
IdE and U ◦U∗ = IdF . T ∈ L(E) is said to be normal if T ∗ ◦ T = T ◦ T ∗,
self-adjoint if T = T ∗ and positive if it is self-adjoint and, for all x ∈ E
we have < Tx, x >≥ 0.

Examples.

1. Let H be a Hilbert space and P ∈ L(H) an orthogonal projector and
E := Im(P ) its image. For all x, x′ ∈ E and y, y′ ∈ E⊥ we have
< P (x + y), x′ + y′ >=< x, x′ >=< x + y, P (x + y) >; hence P is
self-adjoint. Moreover, < P (x + y), x + y >=< x, x >≥ 0 hence P is
positive.

2. For all T ∈ L(H), TT ∗ and T ∗T are self-adjoint.
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3. Consider the Hilbert space H := L2(Ω, µ) where Ω is a measurable
space and µ a σ-finite measure (i.e. Ω is countable union of subset of
finite measure for µ). Let K ∈ L2(µ × µ). For f ∈ H define

TK(f) :=

∫

K(x, y)f(y) dµ(y)

for µ-a.e. x. By Cauchy-Schwarz inequality, TKf ∈ H and TK is a
linear continuous operator on H whose norm verify

‖TK‖ ≤ ‖K‖L2(µ×µ).

By Fubini’s theorem, one can verify that

< TKf, g >= f, TK∗g >,

where K∗(x, y) := K(y, x). Thus T ∗
K = TK∗ . It is easy to verify that

TK is self-adjoint if and only if, K(x, y) = K(y, x) for µ-a.e x and y.

Proposition 1.3.4 Let T be a self-adjoint operator on H, then

‖T‖ = sup{< Tx, x > with x ∈ E, ‖x‖ = 1}.

Proof. Let γ := sup{< Tx, x > with x ∈ E, ‖x‖ = 1}. We have γ ≤ ‖T‖
and for all x ∈ H, | < Tx, x > | ≤ γ‖x‖2. Let y, z ∈ H nad λ ∈ R, then

| < T (y±λz), y±z > | = | < Ty, y > ±2λRe < Ty, z > +λ2 < Tz, z > | ≤ γ‖y±z‖2.

Hence

4|λ|Re < Ty, z >≤ γ
[

‖y + λz‖2 + ‖y − λz‖2
]

= 2γ
[

‖y‖2 + λ2‖z‖2
]

,

this is true for all real λ, hence |Re < Ty, z > | ≤ γ‖y‖ ‖z‖. Choose now
z = Ty. ¤

Proposition 1.3.5 Let T ∈ L(E,F ). The following conditions are equiva-
lent:

(i) T is unitary.

(ii) T is surjective and T ∗ ◦ T = IdE.

(iii) T is an isometry from E to F .
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Proof. (i)⇒(ii): Since T ∗T = IdF , T is surjective.
(ii)⇒(iii): If T ∗T = IdF , then for all x ∈ E, we have ‖Tx‖2 =< Tx, Tx >=<
x, T ∗Tx >=< x, x >= ‖x‖2.
(iii)⇒(i): Since (x, y) 7−→< x, T ∗Ty >=< Tx, Ty > is a scalar product on
E, by polarization identity we get that, for all x, y ∈ E, < x, T ∗Ty >=<
x, y >. Hence T ∗Ty − y ∈ E⊥ = {0}. Thus T ∗T = IdF and since T is
bijective, T ∗ = T−1. ¤

Definition 1.3.2 (Weak convergence) We say that a sequence (xn) ⊂ E
converges weakly in E if for all y ∈ E we have

lim
n→∞

< xn, y >=< x, y > .

x is called weak limit of the sequence (xn).

It is clear that a weak limit of a sequence is unique, and by Cauchy-
Schwarz inequality, strong convergence implies weak convergence.

As a direct application of Riesz’s Theorem one can deduce the following
version of Banach-Alaoglu’s Theorem in Hilbert space.

Theorem 1.3.2 From every bounded sequence of E one can extract a weakly
convergent subsequence.

The existence of the adjoint of an arbitrary linear continuous operator
gives the following property.

Proposition 1.3.6 Let (xn) be a sequence of E that converges weakly to
x ∈ E. Then for all T ∈ L(E), the sequence Txn converges weakly to Tx.

Proof. For all y ∈ E we have

lim
n

< Txn, y >=< xn, T ∗y >=< x, T ∗y >=< Tx, y > .

¤

1.4 Hilbert basis

In this section E will denote a prehilbert space. A system (xi)i∈I of E is
said to be orthogonal system if for all i 6= j, xi ⊥ xj . Recall that, by
Pythagore’s theorem, we have, for all finite subset J of I

∥

∥

∥

∥

∥

∑

i∈J

xi

∥

∥

∥

∥

∥

2

=
∑

i∈J

‖xi‖2.

We get then directly the following proposition.
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Proposition 1.4.1 An orthogonal system in which all elements are non
zero is a free system.

Proof. Let J ⊂ I a finite part and (λj)j∈J ⊂ K such that
∑

j∈J λjxj = 0.
Then

0 =

∥

∥

∥

∥

∥

∥

∑

j∈J

λjxj

∥

∥

∥

∥

∥

∥

2

=
∑

j∈J

|λj |2‖xj‖2,

and so λj = 0 for all j ∈ J . ¤

Definition 1.4.1 An orthogonal system whose elements are of norm 1 is
called orthonormal basis (or orthonormed). A total orthonormal basis of
E is called Hilbert basis of E.

Examples.

1. Let T > 0 and CT the space of T -periodic continuous functions from
R into K which is a prehilbert space. For n ∈ Z set

en(x) := e
2iπnx

T .

It is easy to see that the class (en)n∈Z is an orthonormal system of CT .
Moreover this system is total in CT endowed with supremum norm.
Since the norm associated to the scalar product is less than or equal
to the supremum norm, this system is a Hilbert basis.

2. Consider the space E = ℓ2(I). Define for j ∈ I, the element ej ∈ E
by ej(j) = 1 et ej(i) = 0 for i 6= j. The system (ej)j∈I is orthonormal
(evident). Let’s show that it is total. For this, let x ∈ E and ε > 0. By
definition, and since

∑

i∈I |xi|2 < ∞, there exists a finite part J ⊂ I
such that

∑

i∈I,i 6=J

|xi|2 =
∑

i∈I

|xi|2 −
∑

i∈J

|xi|2 ≤ ε2.

This implies that
∥

∥

∥

∥

∥

x −
∑

i∈J

xiei

∥

∥

∥

∥

∥

2

≤ ε2.

Thus ℓ2(I) is a Hilbert space and (ei)i∈I is a Hilbert basis of ℓ2(I).
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Proposition 1.4.2 Let (ei)i∈I a finite orthonormal system of E and let F
be the vector space generated by this system. For all x ∈ E, the orthogonal
projection PF (x) is given by

PF (x) =
∑

i∈I

< x, ei > ei.

Consequently,

‖x‖2 =

∥

∥

∥

∥

∥

x −
∑

i∈I

< x, ei > ei

∥

∥

∥

∥

∥

2

+
∑

i∈I

| < x, ei > |2.

Proof. For the first point, it suffices to show that y :=
∑

j∈J < x, ej > ej

verify the properties of proposition 1.2.2. It is clear that y ∈ F and for all
j ∈ J , < x − y, ej >= 0, so x − y ∈ F⊥. For the rest apply Pythagore’s
theorem. ¤

A first consequence:

Proposition 1.4.3 Bessel’s inequality Let (ei)i∈I be an orthonormal sys-
tem of E. Then for all x ∈ E we have

∑

i∈I

| < x, ei > |2 ≤ ‖x‖2.

In particular, (< x, ei >)i∈I is an element of ℓ2(I).

The equality in the previous inequality is characterized by

Theorem 1.4.1 Bessel-Parseval Let (ei)i∈I an orthonormal system of E.
The following properties are equivalent:

(i) The system (ei)i∈I is a Hilbert Basis.

(ii) For all x ∈ E, ‖x‖2 =
∑

i∈I | < x, ei > |2 (Bessel’s equality).

(iii) For all x, y ∈ E, < x, y >=
∑

i∈I < x, ei >< ei, y >.

Thus, if (ei)i∈I is a Hilbert basis of E, the mapping from E into ℓ2(I) defined
by x 7−→ (< x, ei >)i∈I is a linear isometry. This isometry is surjective if
and only if E is Hilbert space.
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Proof. (i)⇒(ii): Let x ∈ E. For all ε > 0, there exists a finite subset J ⊂ I
s.t. the distance between x and span(ej , j ∈ J) is less than ε or equal. By
proposition 1.4.2,

‖x‖2 − ε2 ≤
∑

j∈J

| < x, ej > |2 ≤
∑

j∈i

| < x, ej > |2.

Making ε → 0 and using Bessel’s inequality we get the result.
(ii)⇒(i): Conversely, for all x ∈ E, and all ε > 0, there exists a finite subset
J ⊂ I such that ‖x‖2 − ε2 ≤ ∑

j∈J | < x, ej > |2 and then by proposition
1.4.2

∥

∥

∥

∥

∥

∥

x −
∑

j∈J

< x, ej > ej

∥

∥

∥

∥

∥

∥

≤ ε.

Thus (ei) is total.
The equivalence between (ii) and (iii) is direct from the definition of the
scalar product in terms of the norm:

< x, y >:= 1
2

[

‖x + y‖2 − ‖x‖2 − ‖y‖2
]

+
i

2

[

‖x + iy‖2 − ‖x‖2 − ‖y‖2
]

.

If the isometry is surjective then E is isometric to ℓ2(I) and hence complete.
Now assume that E is a Hilbert space and let (xi)i∈I ∈ ℓ(I). Set a :=

∑ |xi|2.
There exists then an increasing sequence (Jn) of finite subsets of I such that
for all n ∈ N,

∑

Jn
|xi|2 ≥ a − 2−n. Set un :=

∑

Jn
xiei. Then, if p < n,

‖up − un‖2 =
∑

j∈Jp,j 6∈Jn

|xi|2 ≤ 2−n.

Thus (un) converges to some x ∈ E. Since a =
∑

i∈∩nJn

|xi|2, for all i 6∈ ∩Jn,

xi = 0 and < x, ei >= limn→∞ < un, ei >= 0. If i ∈ ∩Jn, then < x, ei >=
limn→∞ < un, ei >= xi. Thus < x, ei >= xi for all i, which proves the
surjectivity. ¤

As a consequence we get

Theorem 1.4.2 Let (ei)i∈I a Hilbert system of E. Then for all all x ∈ E
we have

x =
∑

i∈I

< x, ei > ei.

Proof. By proposition 1.4.2 we know that for every finite subset J ⊂ I we
have

∥

∥

∥

∥

∥

∥

x −
∑

j∈J

< x, ej > ej

∥

∥

∥

∥

∥

∥

2

= ‖x‖2 −
∑

j∈J

| < x, ej > |2.
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It suffices then to apply the definitions and the second property of the last
theorem. ¤

Proposition 1.4.4 Schmidt orthonormalization procedure Let N ∈
{1, 2, · · ·} ∪ {+∞} and (fn)0≤n≤N a free system of E. There exists an or-
thonormal system (fn)0≤n≤N of E, such that, for all p < N , the systems
(fn)0≤n≤p and (en)0≤n≤p generate the same sub-vector spaces of E.

Proof. Left as an exercise to the reader.

Using this procedure, one can directly show the following

Corollary 1.4.1 A prehilbert space is separable if and only if it admits a
countable Hilbert basis.

Two prehilbert spaces are said to be isometric if there exists a surjective
isometry from one of them to the other. Another consequence of theorem
1.4.1:

Corollary 1.4.2 An infinite dimensional Hilbert space is separable if and
only if it is iometric to the Hilbert space ℓ2.



Chapter 2

Spectrum of a bounded

operator

In this chapter we give elementary definitions and properties concerning the
spectrum of a linear operator on a Banach or Hilbert space.

2.1 Spectrum

If E is a Banach space on K = C, denote by L(E) the Banach algebra (non
commutative) of linear continuous mappings from E into itself. The product
of two elements T, S is the composition: TS := T ◦S. An element T ∈ L(E)
is said to be invertible, if it admits an inverse in L(E). In other terms, if
T is invertible, it is bijective and its inverse in L(E) is unique and equal to
T−1. Indeed, a direct application of the open mapping theorem is that the
inverse of a linear bijective continuous operator is always continuous.

We start by a simple but useful lemma.

Lemma 2.1.1 Let T ∈ L(E) with ‖T‖ < 1. Then Id+T is invertible. The
series of general term (−T )n converges and its sum is (Id + T )−1.

Proof. Set Sn :=
∑

0≤k≤n(−T )k. Since ‖Tn‖ ≤ ‖T‖n, we have, for p ≤ q,

‖Sq − Sp‖ =

∥

∥

∥

∥

∥

∥

∑

p+1≤k≤q

(−T )k)

∥

∥

∥

∥

∥

∥

≤ ‖T‖p

(1 − ‖T‖) ,

thus Sn is a Cauchy sequence in the complete space L(E). Let S be its limit.
For all n, Sn+1 = Id−TSn = Id−SnT . Making n → ∞ we get the equality:
S = I − ST = Id − TS, thus Id + T is invertible and (Id + T )−1 = S. ¤

19
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Proposition 2.1.1 Let E, F be two Banach spaces. The set U ⊂ L(E, F )
of linear continuous and invertible mapping is an open of L(E, F ). The
mapping Φ: T 7−→ T−1 is continuous is differentiable from U into L(F, E)
and its differential is (dΦ)T : S 7−→ −T−1ST−1.

Proof. If F = E and by the last lemma, V the set of linear continu-
ous invertible mapping in L(E), is a neighborhood of Id and the mapping
ψT 7−→ T−1 is continuous and differentiable and dψIdh = −h.
In general. Let T ∈ U . Observe that S is invertible if and only if T−1S is
invertible. In this case, S−1 = (T−1S)−1T−1. In other terms, denoting by
f :L(E, F ) → L(E), f(S) := T−1S and g:L(E) → L(E, F ), g(S) := ST−1,
we have U = f−1(V ) and for all S ∈ U , φ(S) = g(ψ(f(S))). Therefore, U
is a neighborhood of T and since f and g are linear and continuous, φ is
differentiable at T and dφT = g ◦ dψId ◦ f , i.e. dφT (h) = −T−1hT−1. ¤

Definition 2.1.1 Let T ∈ L(E). We call resolvant of T , denoted by ρ(T )
the set of λ ∈ C such that λId − T is invertible. We call spectrum of
T , denoted by σ(T ), the complementary of the resolvant: σ(T ) := C\ρ(T ).
Finally, we call resolvent of T the mapping that to λ ∈ ρ(T ) associate
(λId − T )−1, denoted by R(λ) or R(λ, T ).

Proposition 2.1.2 (Resolvent equation)
Let T ∈ L(E). Then, for all λ, µ ∈ ρ(T ), we have

R(λ) − R(µ) = (µ − λ)R(λ)R(µ) = (µ − λ)R(µ)R(λ).

Proof. Direct calculation. ¤

Theorem 2.1.1 Let E be a non trivial Banach space and T ∈ L(E). The
spectrum of T is a nonempty compact of C, the resolvent is analytic from
ρ(T ) into L(E) and for all λ ∈ ρ(T ), we have R′(λ) = R(λ)2.

Proof. Let U ⊂ L(E) be the set of invertible operators. The mapping
fλ:λ 7−→ T − λ is continuous, hence the inverse image of U is open. Thus
σ(T ) is closed. Let φ:U → L(E) defined by g(S) := S−1. We have
R(λ) = φ ◦ fλ hence by proposition 2.1.1, Rλ is continuous and differ-
entiable and R′(λ) = dφfλ(λ)f

′
λ(λ), so since f ′

λ(λ) = −Id then R′(λ) =
−R(λ)(−Id)R(λ) = R(λ)2.
Now let |λ| > ‖T‖. By lemma 2.1.1, Id − λ−1T is invertible, hence λ − T
is invertible and λR(λ) = −R(λ−1). Therefore σ(T ) is bounded and so a
compact of C. Moreover limλ→∞ λR(λ) = −Id. It is clear that λ 7−→ R(λ)
is analytic on ρ(T ). If σ(T ) is empty then R would be entire, and since
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limλ→∞ R(λ) = 0, by Liouville’s theorem, R ≡ 0, so ‖Id‖ ≤ ‖λ − T‖‖(λ −
T )−1‖ = 0, which is impossible unless E is trivial. ¤

Remark. If dimE < ∞, the spectrum of T could be empty in the case
where K = R. For this, it suffices that the characteristic polynomial does
not admit real solutions, but this is false in the case where K = C.

Example. Let E := C([0, 1]) and T the operator defined for all f ∈ E by

Tf(x) :=

∫ x

0
f(t) dt.

It is easy to see that kerT = {0} and ImT = {g ∈ C1([0, 1]); g(0) = 0}.
T is injective but not surjective, in other terms 0 ∈ σ(T ) and 0 6∈ σp(T ).
Let’s show that 0 is the unique spectral value of T : For this take λ 6= 0 and
g ∈ E. If f verify the equation

λf − Tf = g, (2.1)

then the function h := Tf ∈ C1([0, 1]) and verify

h(0) = 0 and λh′ − h = g. (2.2)

Conversely, if h ∈ C1([0, 1]) verify (2.2), then the function f := h′ is solution
of (2.1). One can see directly that the unique solution of the differential
equation (2.2) is given by

h(x) =
ex/λ

λ

∫ x

0
g(t)e−t/λ dt.

Therefore,

λf − Tf = g ⇐⇒ f(x) =
1

λ

[

g(x) +
ex/λ

λ

∫ x

0
g(t)e−t/λ

]

,

hence λ ∈ ρ(T ) and

(λ − T )−1g (x) =
1

λ

[

g(x) +
ex/λ

λ

∫ x

0
g(t)e−t/λ

]

.

Proposition 2.1.3 Let T ∈ L(E). The limit limn→∞ ‖Tn‖1/n exists and

lim
n→∞

‖Tn‖1/n = inf
n∈N∗

‖Tn‖1/n.

This value will be denoted by r(T ) and called spectral radius of T . Moreover,
for all λ ∈ σ(T ), we have |λ| ≤ r(T ) and

r(T ) = max{|λ|; λ ∈ σ(T )}.
In particular r(T ) ≤ ‖T‖ and for all λ ∈ σ(T ), |λ| ≤ ‖T‖.
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Proof. Set a := infn∈N∗ ‖Tn‖1/n. We have

a ≤ lim inf
n→∞

‖Tn‖1/n.

Let ε > 0 and n0 > 0 such that ‖Tn0‖n0 ≤ a+ ε. Let n > 0 and p, q integers
with 0 ≤ q ≤ n0 and n = n0p + q. Hence

‖Tn‖ ≤ ‖Tn0‖p‖T‖q.

Since limn→∞
q
n = 0 and lim p

n = 1
n0

, we deduce that

lim sup
n→∞

‖Tn‖1/n ≤ ‖Tn0‖1/n0 ≤ a + ε.

Since this is valid for all ε > 0, we get limn→∞ ‖Tn‖1/n = a.
Now let λ with |λ| > r(T ) and r ∈]r(T ), |λ|[. Since r > r(T ), there is n0 > 0
such that for all n ≥ n0, ‖Tn‖ ≤ rn. The series

∑

n≥0 λ−n−1Tn is then
normally convergent in L(E) and it is easy to see that

(λ − T )





∑

n≥0

λ−n−1Tn



 =





∑

n≥0

λ−n−1Tn



 (λ − T ) = Id

hence λ ∈ ρ(T ).
Let ρ := max{|λ|; λ ∈ ρ(T )}. We know that ρ ≤ r(T ). Set for n > 0 and
t > ρ

Jn(t) :=
1

2π

∫ 2π

0
(t exp(iθ))n+1R(teiθ) dθ.

Since

∂

∂θ

[

(t exp(iθ))n+1R(teiθ)
]

= it
∂

∂θ

[

(t exp(iθ))n+1R(teiθ)
]

,

we see that

dJn

dt
=

1

2itπ

∫ 2π

0

∂

∂θ

[

(t exp(iθ))n+1R(teiθ)
]

dθ = 0

on ]ρ,∞[. Hence (expanding R(λ) =
∑

λ−n−1Tn) for all t > ρ, Jn(t) = Tn,
thus ‖Tn‖ = ‖Jn(t)‖ ≤ tn+1Mt, where Mt is the maximum of ‖R(teiθ)‖, for
θ ∈ [0, 2π]. Therefore, for all t > ρ, r(T ) ≤ t, since r(T ) = limn→∞ ‖Tn‖1/n,
and so r(T ) ≤ ρ(T ). ¤

We will often use the following (simple) proposition

Proposition 2.1.4 Let E, F two Banach spaces and T ∈ L(E, F ). The
following are equivalent:



2.1. SPECTRUM 23

(i) T is injective and its image is closed.

(ii) There exists K > 0 such that for all x ∈ X we have ‖Tx‖ ≥ K‖x‖.
(iii) There is no sequence (xn) ⊂ E such that ‖xn‖ = 1 and limn→∞ ‖Txn‖ =

0.

Proposition 2.1.5 Let E, F be two Banach spaces and T ∈ L(E,F ). Then
tT ∈ L(F ∗, E∗) is invertible if and only if T is invertible.

Proof. If T is invertible then T−1T = IdE and TT−1 = IdF . This gives
that tT t(T−1) = IdE∗ and t(T−1)tT = IdF ∗ . Hence tT is invertible and
(tT )−1 = t(T−1).
Conversely, if tT is invertible. Let x ∈ E and x∗ ∈ E∗ (by Hahn-Banach)
with ‖x∗‖ ≤ 1 and x∗(x) = ‖x‖. Set y∗ := (tT )−1x∗. Then x∗ = tTy∗ =
y∗ ◦ T and ‖y∗‖ ≤ K‖x∗‖ ≤ K, where K := ‖(tT )−1‖. Thus ‖x‖ = x∗(x) =
y∗(Tx) ≤ K‖Tx‖. Hence T is injective and its image is closed in F .
By Hahn-Banach theorem there exists A ⊂ F ∗ such that ImT = ∩y∗∈Akery∗.
So, for all y∗ ∈ A, y∗ is zero on ImT . Hence tTy∗ (= y∗ ◦ T ) is zero, and
since tT is bijective, y∗ = 0. Therefore A ⊂ {0}, i.e. ImT = F . ¤

We get directly:

Corollary 2.1.1 σ(T ) = σ(tT ).

Definition 2.1.2 Let T ∈ L(E) and λ ∈ σ(T ). We distinguish three possi-
bilities:

1. λ is an eigenvalue, i.e. λ− T is not injective. We say that λ is in the
point spectrum σp(T ) of T .

2. λ − T is injective but Im(λ − T ) is not dense in E. We say that λ is
in the residue spectrum σr(T ) of T .

3. λ − T is injective but its image is not closed. We say that λ is in the
continuous spectrum σc(T ) of T .

Remarks

1. λ ∈ σr(T ) means that λ is an eigenvalue of tT , but not of T , i.e λ− T
is injective but λ − tT is not: there exists then x∗ ∈ E∗ such that
(λ− tT )x∗ = 0 hence x∗ ◦ (λ−T ) = 0 which implies that Im(λ−T ) ⊂
kerx∗. Then Im(λ − T ) is not dense in E.

2. λ ∈ σc(T ) means that λ ∈ σ(T ) but λ is not eigenvalue of T or of tT .

3. We have σ(T ) = σp(T ) ∪ σr(T ) ∪ σc(T ).
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2.2 Hilbert case

In this section we consider the particular case where H is a non trivial
Hilbert space. Some properties of bounded self-adjoint operators are given.

From proposition 1.3.3 we deduce directly:

Corollary 2.2.1 Let T ∈ L(H), then

σ(T ∗) = σ(T ) = {λ, λ ∈ σ(T )}.

If λ ∈ ρ(T ), then λ ∈ ρ(T ∗) and

R(λ, T ) = [R(λ, T )]∗.

Moreover
σr(T ) = {λ ∈ C\σp(T ); λ̄ ∈ σp(T

∗)}

Proposition 2.2.1 The residue spectrum of a normal operator is empty.

Proof. Let T ∈ L(H) a normal operator. For all x ∈ H, we have
‖T ∗x‖2 =< T ∗x, T ∗x >=< x, TT ∗x >=< x, T ∗Tx >=< Tx, Tx >= ‖Tx‖2.
So kerT ∗ = kerT . Since for all λ, λ − T is normal, we have ker(λ̄ − T ∗) =
ker(λ − T ). Thus λ̄σp(T

∗) if and only if λ ∈ σp(T ). We get the result
applying the last corollary. ¤

There is no relation between eigenvalues of T and those of T ∗:

Example. Let E = ℓ2(N) and T the operator right shift, defined by (Tu) =
v where v is the sequence defined by v0 = 0 and for all i ≥ 1, vi = ui−1. T
does not admit eigenvalues: σp(T ) = ∅. It is easy to verify that the adjoint
of T is the conjugate of the operator left shift and that σp(T

∗) = D(0, 1)
the open unit disc.

Proposition 2.2.2 For all T ∈ L(H) we have ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2.

Proof. Since ‖T ∗‖ = ‖T‖ we have ‖T ∗T‖ ≤ ‖T‖2. From the other hand,
‖Tx‖2 =< Tx, Tx >=< x, T ∗T, x >≤ ‖x‖2‖T ∗T‖. Hence ‖T‖2 ≤ ‖T ∗T‖.
Thus ‖T‖2 = ‖T ∗T‖. ¤

Proposition 2.2.3 The spectral radius of a normal operator is equal to its
norm.
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Proof. If T is self-adjoint, then < Tx, Tx >=< x, T 2x >, thus ‖T 2‖ = ‖T‖2

and ‖T 2n‖ = ‖T‖2n
. Hence r(T ) = limn→∞ ‖T 2n‖2−n

= ‖T‖.
Now if T is normal then we have ‖Tx‖2 =< Tx, Tx >=< x, T ∗Tx >,
hence ‖T ∗T‖ = ‖T‖2. By induction, ‖(T ∗T )n‖ = ‖Tn‖2 and then ‖T ∗T‖ =
ρ(T ∗T ) = ρ(T )2 = ‖T‖2. ¤

This gives directly

Corollary 2.2.2 Let T ∈ L(H), then

‖T‖ =
√

r(TT ∗) =
√

r(T ∗T ).

Proposition 2.2.4 Let T be a self-adjoint operator on H. Then

1. σp(T ) ⊂ R.

2. For all λ ∈ C, Im(λ − T ) = [ker(λ − T )]⊥.

3. Eigen-spaces associated to distinct eigenvalues are orthogonal.

Proof. 1. Let λ ∈ σp(T ) and x ∈ Hλ, i.e. x 6= 0, Tx = λx. Then
λ‖x‖2 =< Tx, x >∈ R since T is self-adjoint, hence λ ∈ R.
2. direct from proposition 1.3.3.
3. If λ 6= µ are two eigenvalues of T and x ∈ Hλ and y ∈ Hµ, then
λ < x, y >=< Tx, y >=< x, Ty >= µ < x, y >. Thus < x, y >= 0. ¤

The following theorem states that, in fact, the whole spectrum is real.

Theorem 2.2.1 Let T be a bounded self-adjoint operator on H. Then

σ(T ) ⊂ [m,M ],

m ∈ σ(T ) and M ∈ σ(T ), where

m = inf{< Tx, x >, with x ∈ E, ‖x‖ = 1}

and
M = sup{< Tx, x >, with x ∈ E, ‖x‖ = 1}

Proof. Set, for λ ∈ C, d(λ) the distance from λ to the interval [m,M ]. For
all x ∈ H, x 6= 0, we have

< λx − Tx, x >= ‖x‖2 [λ− < Ty, y >] ,

where y := x/‖x‖. Then by Cauchy-Schwarz inequality we have

d(λ)‖x‖2 ≤ | < λx − Tx, x > | ≤ ‖x‖ ‖λx − Tx‖. (2.3)
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Now if λ 6∈ [m,M ], then d(λ) > 0 and then λ − T is injective. Let’s show
that ImT is closed. If (λxn − Txn) is a sequence that converges to y ∈ H,
then by equation (2.3), (xn) is a Cauchy sequence hence convergent to some
x ∈ H. Clearly λx − Tx = y hence y ∈ Im (λ − T ). By proposition 2.2.4,
we have Im(λ − T ) = ker(λ̄ − T )⊥. Since λ̄ 6∈ [m,M ], Im(λ − T ) = H and
hence λ − T is bijective. Therefore λ ∈ ρ(T ).
Remainder to show that m,M ∈ σ(T ). Let’s show, for example, that m ∈
σ(T ) (for M consider −T ). Set S := T −m, then S is positive. The mapping
(x, y) 7−→< Sx, y > is a scalar product on H. Cauchy-Schwarz inequality
for this scalar product gives, for all x, y ∈ H

| < Sx, y > |2 ≤ | < Sx, x > | | < Sy, y > |. (2.4)

Now by definition of m, there is a sequence (xn), ‖xn‖ = 1, with limn→∞ | <
Sxn, xn > | = 0. Hence by (2.4)

‖Sxn‖2 ≤ | < Sxn, xn > | 12 | < Sxn, Sxn > | 12 ≤ | < Sxn, xn > | 12 ‖S‖ 1
2 ‖Sxn‖.

Therefore ‖Sxn‖ ≤ | < Sxn, xn > | 12 ‖S‖ 1
2 hence tends to zero. If m 6∈ σ(T ),

S is invertible and hence xn → 0 which is impossible. ¤

Using proposition 1.3.4 we get

Corollary 2.2.3 Let T be a self-adjoint operator on H. Then T is positive
if and only if σ(T ) ⊂ R+. In this case ‖T‖ ∈ σ(T ).

Proof. Since T is self-adjoint, ‖T‖ = sup‖x‖=1 | < Tx, x > | hence ‖T‖ =
max{|m|, |M |}. T positive implies that 0 ≤ m ≤ M and so ‖T‖ = M ∈
σ(T ). ¤



Chapter 3

Symbolic Calculus

One of the most important aims of spectral theory is the symbolic calculus:
Given a linear operator A, find the functional space A (the best possible) on
which one can define f(A), f ∈ A. A good functional space is for example
H(O) the space of analytic functions on the open O of the complex plane
that contains the spectrum of A. But also, in the case where the spectrum
is real, the space C(R). With a functional space we can “translate properties
of functions to the operators”.

In this chapter we will define such symbolic calculus in the case where
A is bounded, and then in the Hilbert case where A is self-adjoint. Later
we will deal with the case of unbounded self-adjoint operator...

3.1 Case of bounded operator

In all this section X is a Banach space and A a bounded operator, A ∈ L(X).
Denote by RA(X) the set of rational fractions without poles in σ(A), i.e. the
set of fractions p

q , where p, q ∈ C(X) with Zero(q) ∩ σ(A) = ∅. This space
will play an important role, since we can define p(A) in a naturel way and
hence p

q (A). Note that RA is a ring with identity (1) and for all p, q ∈ RA,
p(A)q(A) = q(A)p(A).

Proposition 3.1.1 There exists a unique linear mapping Φ:RA → L(X)
homomorphism of rings verifying Φ(1) = Id and Φ(X) = A.

Proof. existence. For all polynomial p(x) =
∑

akX
k ∈ C[X], set Φ(p) :=

∑

akA
k ∈ L(X). It is obvious that Φ is linear and Φ(pq) = Φ(p)Φ(q).

Now if p is a polynomial (6= 0) with Zero(p)∩σ(A) = ∅, then Φ(A) is invert-
ible: Indeed, it suffices to write p(X) = aΠ(X − rk), where the rk’s are the
roots of p (counted with their multiplicity). Since the rk’s are not in σ(A),
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28 CHAPTER 3. SYMBOLIC CALCULUS

each A − rk is invertible and so Φ(A).
Now if f = p

q ∈ RA then Φ(f) = p(A)[q(A)]−1. Of course Φ(f) is indepen-
dent of the choice of p and q.
The linearity of Φ as well as the homomorphism is direct.
uniqueness. If Ψ:RA → L(X) is another mapping verifying the same prop-
erties, we can show by induction that Ψ(xn) = An, so by linearity Ψ and Φ
coincide on C[X]. ¤

The uniqueness of the mapping Φ justify the following notation:

Notation. The operator Φ(f) will be denoted: f(A).

Remark. This justify the appellation symbolic calculus. In fact, if for all
nonnegative integer n, xn is the function x 7−→ xn, then xn(A) = An. From
this we get that for all polynomial p(x) =

∑

aix
i, p(A) defined by use of Φ

is the same as the “classical” p(A).

Theorem 3.1.1 Spectral mapping theorem
For all f ∈ RA we have

σ(f(A)) = f(σ(A)),

and for all g ∈ Rf(A)), we have g(f(A)) = [g ◦ f ](A).

Proof. Let λ ∈ C. If f − λ does not vanish on the spectrum of A then
h : (f − λ)−1 ∈ RA and since (f − λ)h = 1 then (f − λ)(A)h(A) = Id. Thus
(f − λ)(A) = f(A) − λId is invertible and so σ(f(A)) ⊂ f(σ(A)).
Now let λ ∈ C, that is not a pole of f , there exists then h ∈ RA such that
f − f(λ) = (x − λ)h. Then f(A) − f(λ) = (A − λ)h(A) = h(A)(A − λ). If
f(λ)−f(A) is invertible of inverse R then (T−λ)h(A)S = Id = Sh(A)(A−λ)
and so A − λ is invertible, i.e. λ 6∈ σ(A). Thus f(σ(A)) ⊂ σ(f(A)).
To terminate, notice that the two mappings Rf(A) → L(X) defined by g 7−→
g(f(A)) and g 7−→ [g ◦ f ](A) verify the conditions of proposition 3.1.1, thus
they coincide. ¤

Other type of symbolic calculus could be defined in this framework:
Since the spectrum of A is compact hence bounded, let γ be an arbitrary
path, that is bounded and turns around σ(T ). γ oriented positively. Briefly,
note that the theory of integrals on paths could be generalized for analytic
functions defined on a neighborhood O of Imγ into L(X). Notice also that
the residue formula (Cauchy) still valid. Therefore, if f ∈ H(O), an analytic
function on O valued in L(X) then the formula

∫

γ
f(z) dz,
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define a bounded operator in L(X). In this framework we can show that
the Dunford integral:

Φ(f) :=
1

2iπ

∫

γ
f(z)R(z,A) dz

define symbolic calculus on H(O) (that extend the one defined above).

3.2 Case of a bounded self-adjoint operator

In this section, H will be a Hilbert space.

Proposition 3.2.1 Let A ∈ L(X) and f ∈ RA. Then f(A)∗ = f̃(A∗),
where f̃ is defined by f̃(λ) = f(λ) for all λ ∈ C that is not a pole of f .

Proof. The mapping RA → L(H) defined by f 7−→ f̃(A∗)∗ verify the
conditions of proposition 3.1.1. ¤

Proposition 3.2.2 If A ∈ L(H) is normal then for all f ∈ RA, f(A) is
normal.

Proof. For all Y ⊂ L(H) denote by Y ′ := {S ∈ L(H); ST = TS ∀T ∈ Y }.
Y ′ is a closed subspace and a sub-ring of L(H). Moreover, if S ∈ Y ′ and S
invertible then S−1T = S−1TSS−1 = S−1STS−1 = TS−1, for all T ∈ Y . In
other words, S−1 ∈ Y ′. Therefore, if S ∈ Y ′ and f ∈ RS , then f(S) ∈ Y ′.
Let Y = {A,A∗} and Z = Y ′. Since all elements of Y commutes with all
elements of Z, we see that Y ⊂ Z ′. So f(A), f̃(A∗) ∈ Z. Since A is normal,
Y ⊂ Z, then Z ′ ⊂ Y ′ = Z. Thus f(A) ∈ Z ′ and f̃(A∗) = f(A)∗ ∈ Z ′ ⊂ Z
so they commute, i.e. f(A) is normal. ¤

Proposition 3.2.3 1. The spectrum of any unitary operator of L(H) is
included into the unit circle C(0, 1) of the complex plane.

2. The spectrum of any self-adjoint operator of L(H) is included into the
real line R.

Proof. 1. Let U ∈ L(H) and λ ∈ σ(U). Since ‖U‖ ≤ 1 the spectral radius
of U is less than 1 or equal, hence |λ| ≤ 1, and since U is bijective λ 6= 0
and by theorem 3.1.1, λ−1 ∈ σ(U−1). But U−1 = U∗ so ‖U−1‖ ≤ 1 thus
|λ−1| ≤ 1, i.e. |λ| = 1.
2. Let A ∈ L(H) a self-adjoint operator. For all real t, with t > ‖A‖,
A ± tId are invertible. Denote by f the mapping X 7−→ (X + ti)/(X − ti).
Since f̃ = f−1, by proposition 3.2.1, f(A)∗ = f̃(A) = f(A)−1 thus f(A) is
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unitary and by the first point σ(f(A)) ⊂ C(0, 1) = f(R). Using theorem
3.1.1 we get the result. ¤

Notations. If K is a compact space, denote by C(K) the Banach space of
continuous functions from K into C with the supremum norm:
‖f‖∞ := sup{|f(x)|; x ∈ K}.
If K is a compact of C, denote by zn, for all integer n, the mapping λ 7−→ λn.

Theorem 3.2.1 Let H be a Hilbert space and A ∈ L(H) a self-adjoint or
unitary operator. There exists a unique linear continuous mapping
Φ:C(σ(A)) → L(H) verifying Φ(1) = Id, Φ(z) = A and for all f, g ∈
C(σ(A)), we have Φ(fg) = Φ(f)Φ(g). For all f ∈ RA, we have Φ(f) =
f(A). Moreover, Φ is an isometry, and for all f ∈ C(σ(A)) we have Φ(f)∗ =
Φ(f).

Proof. Let φ: RA → C(σ(A)) defined by φ(f) = f|σ(A)
and Ψ:RA → L(H)

defined by Ψ(f) = f(A). For all f ∈ RA, f(A) is normal by proposi-
tion 3.2.2 hence ‖f(A)‖ is equal to its spectral radius. Thus by theorem
3.1.1, ‖f(A)‖ = sup{|λ|, λ ∈ σ(f(A))} = sup{|f(λ)|, λ ∈ σ(A)}. Therefore
‖Ψ(f)‖ = ‖φ(f)‖∞.
Now if A is unitary then z̄ = z−1 = φ(X−1) ∈ φ(RA), and if A is self-adjoint
then z̄ = z = φ(X) ∈ φ(RA). In both cases z̄ ∈ φ(RA). Now for all f ∈ RA,
f(z) = f̃(z̄) ∈ φ(RA). Therefore φ(RA) is sub-vector space and sub-ring
of C(σ(A)) that contains constants (since 1 = φ(1)) stable under conjugate
and separate points of σ(A) (since z ∈ φ(RA)), so by Stone-Weierstrass the-
orem, φ(RA) is dense in C(σ(A)). Therefore there exists a unique linear
continuous mapping Φ:C(σ(A)) → L(H) such that Ψ = Φ ◦ φ.
We have Φ(1) = Φ(φ(1)) = Ψ(1) = Id. Φ(z) = Φ(φ(X)) = Ψ(X) = A.
The mappings that to (f, g) ∈ C(σ(A)) × C(σ(A)) associates respectively
Φ(fg) and Φ(f)Φ(g) coincide on Φ(RA)×Φ(RA) so they are equals. More-
over the set of functions f ∈ C(σ(A)) with ‖f(A)‖ = ‖f‖∞ is closed and
contains Φ(A). Hence Φ is an isometry. Finally, for f ∈ RA, we have
f(A)∗ = f̃(A∗)Φ(f̃(z̄)) = Φ(f(z)). The set of functions f ∈ C(σ(A)) such
that Φ(f)∗ = Φ(f̄) is closed and contains φ(A), hence this true for all
f ∈ C(σ(A)).
Remains to show uniqueness. If Φ1 is another one, then Φ ◦ φ and Φ1 ◦ φ
coincide on φ(RA). By density we get Φ = Φ1. ¤

Notation. For all f ∈ C(σ(A)), denote by Φ(f) = f(A).

Theorem 3.2.2 Spectral mapping theorem
Let A be a self-adjoint, or unitary operator and f ∈ C(σ(A). Then
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1. f(A) is normal and σ(f(A)) = f(σ(A)).

2. If f(σ(A)) ⊂ R then f(A) is self-adjoint. If f(σ(A)) ⊂ C(0, 1) then
f(A) is unitary. Moreover, in these cases, for all g ∈ C(σ(f(A))) we
have g ◦ f(A) = g(f(A)).

Proof. 1. We have f(A)∗ = f̄(A), so f(A)f(A)∗ = [ff̄ ](A) = f(A)∗f(A),
so f(A) is normal.
Now, if λ 6∈ f(σ(A)), let h ∈ C(σ(A)) the function s 7−→ 1/[f(s)−λ]. Since
h(f − λ) = (f − λ)h = 1, then h(A)[f(A) − λ] = [f(A) − λ]h(A) = Id and
so λ 6∈ σ(f(A)).
Conversely, if λ ∈ f(σ(A)), for ε > 0, set f1 := f − ε and g := ε/(|f1| +
ε). Notice that ‖g‖∞ = 1, and since |f1g|(t) = ε|f1(t)|/[|f1(t)| + ε] so
‖f1g‖ < ε. Since Φ is isometry we have ‖g(A)‖ = 1 and ‖f1(A)g(A)‖ < ε.
Since ‖g(A)‖ = 1 > ‖f1g‖∞/ε, there exists x ∈ H such that ‖g(A)x‖ >
‖f1g‖∞‖x‖/ε and so ‖f1(A)g(A)x‖ ≤ ‖f1(A)g(A)‖‖x‖ < ε‖g(A)x‖. Thus
there is y = g(A)x such that ‖f1(A)y‖ < ε‖y‖. Thus f1(A) = f(A) − λ is
not injective hence λ ∈ σ(f(A)).
2. If f = f̄ then f(A) = f̄(A) = f(A)∗. If f(σ(A)) ⊂ C(0, 1) then ff̄ = 1,
hence f(A)f(A)∗ = f(A)∗f(A) = [ff̄ ](A) = Id; f(A) is unitary. Finally the
mapping g 7−→ [g ◦ f ](A) verifies the conditions of the last theorem, hence
coincides with g 7−→ g(f(A)). ¤

Theorem 3.2.3 Let A ∈ L(H). The following conditions are equivalent:

(i) For all x ∈ H, < Ax, x >∈ R+.

(ii) There exists S ∈ L(H), A = S∗S.

(iii) There exists S ∈ L(H) self-adjoint, A = S2.

(iv) A is self-adjoint and σ(A) ⊂ R+.

Proof. (ii)⇒(i): < Tx, x >=< S∗Sx, x >=< Sx, Sx >≥ 0.
(iii)⇒(ii) is direct.
(iv)⇒(iii): Assume that A∗ = A and σ(T ) ⊂ R+. Denote by f : t 7−→

√
t.

Then by the last theorem, we have f(A) = f(A)∗ , moreover f(A)2 = A.
(i)⇒(iv): The mapping (x, y) 7−→< Ax, y > is sesqui-linear and < Ay, x >=
< Ax, y > hence A is self-adjoint. Thus σ(A) ⊂ R. Let t < 0 and let’s show
that A − t is bijective. For all x ∈ H, we have

−t‖x‖2 ≤ −t‖x‖2+ < Ax, x >=< (A − t)x, x >≤ ‖(A − t)x‖‖x‖

so −t‖x‖ ≤ ‖(A − t)x‖ and so A − t is injective with closed graph. Now
since the residual spectrum of every normal operator is empty, we get the
result. ¤
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Definition 3.2.1 (Fractional powers) If A ∈ L(H) is self-adjoint and
positive and α ∈]0,+∞[, set Aα = fα(A) where fα is the mapping t 7−→ tα.

Remark. By theorem 3.2.2, we have, for all α, β > 0

• A1 = A,

• (Aα)β = Aαβ ,

• AαAβ = Aα+β.

Corollary 3.2.1 (Square root) For all positive self-adjoint operator A ∈
L(H), square root of A, A

1
2 is a positive self-adjoint operator.



Chapter 4

Compact operators

In this chapter we will study spectral properties of some particular type of
operators: compact operators and Hilbert-Schmidt operators. We will see
also Fredholm alternative.

4.1 General properties

In all this section, E and F are two Banach spaces.

Definition 4.1.1 A ∈ L(E, F ) is called compact if the image of the closed
unit ball of E, A(BE(0, 1)) is relatively compact in F . Denote by K(E, F )
the set of compact operators from E into F and K(E) = K(E, E).

Remarks.

1. A ∈ K(E, F ) if and only if the image by A of any bounded subset of
E is relatively compact in F .

2. A ∈ K(E, F ) if and only if the image by A of any bounded sequence
of E is a sequence of F with convergent subsequences.

3. Riesz theorem becomes: Id ∈ K(E, E) if and only if the dimension of
E is finite.

Examples.

1. Every operator T of finite rank, i.e. dim ImT < ∞ is compact. In
fact, the image T (B̄) is bounded in a finite dimensional space hence
relatively compact in ImT hence relatively compact in F .

33
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2. Let X,Y be two compact metric spaces, K ∈ C(X × Y ) and µ any
Radon measure on Y . Define the kernel operator TK , for all f ∈
C(Y ) by

(TKf)(x) :=

∫

K(x, y)f(y) dµ(y).

TK is compact operator.

3. Let a < b, K ∈ C([a, b]2) and α, β two continuous functions from [a, b]
into itself. For f ∈ C([a, b]) and x ∈ [a, b] set

Tf(x) :=

∫ β(x)

α(x)
K(x, y)f(y) dy.

The operator T is compact: T ∈ K(C([a, b]).
In fact, for all f ∈ E where E := C([a, b]), we have

‖Tf‖ ≤ M‖K‖ ‖f‖,

where M := supx∈[a,b] |β(x) − α(x)|. Hence T (B̄) is a bounded in E.
From the other hand, for all x, y ∈ [a, b] and all f ∈ E we have

|Tf(x) − Tf(y)| ≤ Mx,y‖f‖,

where

Mx,y := ‖K‖ (|β(x) − β(y)| + |α(x) − α(y)|)
+(‖α‖∞ + ‖β‖∞) sup

z∈[a,b]
|K(x, z) − K(y, z)|.

Uniform continuity of K on [a, b]2 implies that T (B̄) is equicontinuous
in E. We conclude using Ascoli’s theorem.

4. Integration operator

Tf(x) :=

∫ x

a
f(t) dt

is a compact operator on C([a, b]).

Proposition 4.1.1 Let R ∈ K(E, F ), T ∈ L(E1, E), S ∈ L(F, F1) where
E1 and F1 are normed spaces. Then SRT is a compact operator.

Proof. Indeed,

SRT (BE) ⊂ ‖T‖S
(

R(BE)
)

.

Continuous image of a compact being a compact, we get the result. ¤
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Proposition 4.1.2 K(E, F ) is a closed sub-vector space of L(E, F ).

Proof. Let T, S be two compact operators from E to F and λ, µ ∈ K. Then

(λT + µS)(BE) ⊂ λT (BE) + µS(BE),

and this last set is compact since if K and H are two compacts then λK+µH
is compact as continuous image of K×H. To show that K(E, F ) is closed, let
(Tn) be a sequence of compact operators that converges to T (in L(E, F )). It
suffices to show that TB̄E . Let ε > 0, and n ∈ N such that ‖T − Tn‖ ≤ ε/3.
Let f1, · · · , fk ∈ B̄E such that the balls B(Tnfi, ε/3) is a cover of TnB̄E .
Let then f ∈ B̄E and let j ≤ k such that ‖Tnf − Tnfj‖ ≤ ε/3. By triangle
inequality we get ‖Tf − Tfj‖ < ε. Hence

TB̄E ⊂
⋃

1≤j≤k

B(Tfj , ε),

thus TB̄E is precompact. ¤

Since every finite rank operator is compact, we get

Corollary 4.1.1 Every limit of operators of finite rank is a compact oper-
ator.

We terminate this section by the Schauder Theorem:

Theorem 4.1.1 Let T ∈ L(E,F ). T is compact if and only if tT is com-
pact.

Proof.

4.2 Spectral properties of compact operators

In all this section E is a Banach space and T a compact operator.

Lemma 4.2.1 Let F be a closed sub-vector space of a normed vector space
E, F 6= E, then there exists u ∈ E, ‖u‖ = 1 with d(u, F ) ≥ 1

2 .

Proof. Let v ∈ E\F and δ := d(v, F ). Let w ∈ F with ‖v −w‖ < 2δ. Take
u := v−w

‖v−w‖ . ¤

Proposition 4.2.1 Let T ∈ K(E). Then
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1. the sub-vector-space ker(I − T ) is of finite dimension.

2. the sub-vector-space Im(I − T ) is closed

3. the operator I − T is invertible in L(E) if and only if it is injective.

Proof. 1. Denote by F := ker(I − T ). F is a closed sub-vector-space of E
and B̄F = TB̄F = TB̄E∩F hence compact, so by Riesz theorem dimF < ∞.
2. Let y ∈ Im(I − T ) and (xn) a sequence of E with limxn − Txn = y.
First case: The sequence (xn) is bounded. Since T is compact, by choos-
ing a subsequence we can assume that (Txn) converges to z ∈ E. Then
limxn = y+z and by continuity of T , z = T (y+z) hence y = (y+z)−T (y+z).
Second case: The sequence is not bounded. Set, for n ≥ 0, dn := d(xn, ker(I−
T )). Since, by the first point, dimker(I−T ) < ∞, there exists zn ∈ ker(I−T )
with dn = ‖xn − zn‖ (since the continuous function distance will attain its
minimum on the nonempty compact B(xn, ‖xn‖) ∩ ker(I − T )). If the se-
quence (dn) is bounded we can replace (xn) by (xn − zn) (since Tzn = zn)
and apply the first case. If not, using a subsequence, we can suppose that
lim dn = ∞. Since the sequence ((xn − zn)/dn is bounded, we can assume,
by use of subsequence, that T [(xn − zn)/dn] is convergent to some u ∈ E.
We deduce that

lim
n→∞

xn − zn

dn
= u + lim

y

dn
= u,

which implies that Tu = u and for n large, ‖xn − zn − dnu‖ < dn which is
impossible and so the sequence (dn) is bounded and y ∈ Im(I − T ).
3. Assume that I − T is injective, set E1 := Im(I − T ) and suppose that
E1 6= E. Set for all n, En := Im(I − T )n with E0 := E. Let’s show by
induction that for all n, En is closed and En+1 ( En. This is true for n = 0.
Assume it true for n. Clearly TEn ⊂ En and hence T induces Tn ∈ L(En).

Since En is closed TnBEn ⊂ TB̄E ∩ En which is compact. Hence Tn is
compact on En. Since En+1 = (IdEn − Tn)En, then by the second point,
En+1 is closed in En and hence in E. It is obvious that En+1 ⊂ En+2. Now
since I − E is injective we get, En 6= En+1 implies that En+1 6= En+2 since
En+1 = (I − T )(En) and En+2 = (I − T )(En+1). To find a contradiction,
by the last lemma, there is a sequence (un) such that for all n, un ∈ E,
‖un‖ = 1 and d(un, En+1) ≥ 1

2 . Then for n < m, Tun − Tum = un − vn,m

with vn,m = Tum+(I−T )un ∈ En+1. Thus for all n 6= m, ‖Tun−Tum‖ ≥ 1
2 .

This is in contradiction with the compacity of TB̄. Thus I −T is surjective.
Remainder to show continuity of (I −T )−1. By contradiction, suppose that
there is a sequence (xn) 6→ 0 with limxn −Txn = 0. By use of subsequence,
we can assume that for all n, ‖xn‖ ≥ ε, for some ε > 0. Set un := xn/‖xn‖.
Again, since T is compact, we can assume that (Tun) converges to some
v ∈ E. But this will imply that limun = v and so ‖v‖ = 1 and then by
continuity Tv = v, so (I−T )v = 0 which is impossible since I−T is injective.

¤
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Theorem 4.2.1 Let T ∈ K(E).

1. If dimE = ∞ then 0 ∈ σp(T ).

2. σ(T )\{0} = σp(T ) and for all λ ∈ σp(T ) dimEλ < ∞.

3. σ(T ) is countable.

Proof. 1. If 0 is not an eigenvalue then by proposition 4.1.1 I = TT−1 is
compact and so dimE < ∞.
2. Let λ ∈ K, λ 6= 0. λ ∈ σ(T ) if and only if I − T/λ is not injective and
ker(λ − T ) = ker(I − T/λ). On the other hand, λ ∈ σ(T ) if and only if
I − T/λ is not invertible in L(E). Apply then the last proposition.
3. For this it suffices to show that for all ε > 0 there is a finite number of
λ ∈ σ(T ) with |λ| ≥ ε. If not, assume that there is a sequence (λn) ⊂ σ(T )
of distinct elements with |λn| ≥ ε. By the last point λn are eigenvalues.
Let then (en) corresponding eigenvectors with ‖en‖ = 1. Thus the (en) is a
free system. For all n, set En := span{e0, · · · , en}. The (En is a sequence
of strictly increasing of finite dimension spaces. From lemma 4.2.1 there
exists a sequence of (un), ‖un‖ = 1 and un ∈ En+1 with d(un, En) ≥ 1

2 .
Set vn := un

λn+1
. This sequence is bounded by 1

ε and for n > m we have

Tvn − Tvm = un − vn,m with vn,m = Tvm + 1
λn+1

(λn+1 − T )un. Since

Tvm ∈ Em+1 ⊂ En and (λn+1 − T )En+1 ⊂ En, we get vn,m ∈ En and
‖Tvn − Tvm‖ ≥ 1

2 which is impossible since T is compact. ¤

4.3 Hilbert-Schmidt operators

In this section E and F are two separable Hilbert spaces (of infinite dimen-
sions).

Lemma 4.3.1 Let B and B′ be two Hilbert bases of E and F respectively.
For all T ∈ L(E, F ) we have:

∑

b∈B, b′∈B′

| < b′, T b > |2 =
∑

b∈B

‖Tb‖2 =
∑

b′∈B′

‖T ∗b′‖2 ≤ +∞,

and this value does not depends on the choice of B or B′.

Proof. For x ∈ E and y ∈ F we have ‖x‖2 =
∑

b∈B | < x, b > |2 and
‖y‖2 =

∑

b′∈B′ | < y, b′ > |2. Now it is clear that
∑

b∈B ‖Tb‖2 is independent
of B′ and

∑

b′∈B′ ‖T ∗b′‖2 is independent of B. ¤

Notation. For all T ∈ L(E, F ), set

‖T‖2 :=

[

∑

b∈B

‖Tb‖2

] 1
2
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where B is any base of E. Set L2(E, F ) the set

L2(E, F ) := {T ∈ L(E, F ); ‖T‖2 < ∞}.

Examples.

1. Finite dimensional case.
If E = F has finite dimension n, and (ej) a basis formed of eigenvectors
of T ∗T , then

‖T‖2
2 =

n
∑

k=1

< T ∗Tek, ek >=
n

∑

k=1

λk,

where (λk) are the eigenvalues of T ∗T .
If T ∗ = T then

‖T‖2
2 =

n
∑

k=1

β2
k,

where (βk) are the eigenvalues of T .

2. Let H := L2(0, 2π) and define the Volterra operator, for all f ∈ H by

V f(x) :=

∫ x

0
f(t) dt.

By the example 4, this operator is compact. Consider the basis en(t) :=
1√
2π

eint, n ∈ Z. It is easy to verify that ‖V en‖2 ≤ 2
πn2 and so V is a

Hilbert-Schmidt operator.

Theorem 4.3.1 Let E,F be two separable Hilbert spaces.

1. L2(E, F ) is sub-vector space of L(E,F ).

2. For al S, T ∈ L2(E, F ) and all Hilbert basis B of E,
∑

b∈B < Tb, Sb >
is finite and the mapping (S, T ) 7−→ ∑

b∈B < Tb, Sb > is a scalar
product on L2(E, F ) (independent of the choice of B).

3. With this scalar product L2(E,F ) is a Hilbert space.

4. L2(E, F ) ⊂ K(E,F ).

Proof. 1 Let S, T ∈ L(E,F ) and B a Hilbert basis of E. For all b ∈ B
we have | < Sb, Tb > | ≤ ‖Sb‖‖Tb‖ ≤ 1

2 [‖Sb‖2 + ‖Tb‖2]. We deduce that
∑

< Sb, Tb > is finite. Since ‖Sb+Tb‖2 = ‖Sb‖2+‖Tb‖2+2Re < Sb, Tb >,
S + T ∈ L2 and so the first point is proved.
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2. It is clear that (S, T ) 7−→ ∑

< Sb, Tb > is a scalar product. Now
by the polarization identity (proposition 1.1.1) we have 4

∑

< Sb, Tb >=
‖S + T‖2

2 −‖S − T‖2
2 + i‖S + iT‖2

2 − i‖S − iT‖2
2 we get the independence of

the basis.
3. From the second point L2 is a pre-Hilbert space. For all T ∈ L2 and
all x ∈ E, ‖x‖ = 1, by taking a Hilbert basis containing x we get that
‖T‖2 ≥ ‖Tx‖, so ‖T‖2 ≥ ‖T‖. Thus L2 is separate. By this inequality, if
(Tn) is a Cauchy sequence in L2, it is also a Cauchy sequence in L which
is complete, so (Tn) converges to an operator T ∈ L(E, F ). Now for ε > 0
notice that the set Cε := {S ∈ L2; ‖S‖2 ≤ ε} is the intersection on all
finite subset I ⊂ B, of {S ∈ L2;

∑

b∈I ‖Sb‖2 ≤ ε2}, hence Cε is a closed
set in L(E, F ) (Indeed, this last set is the inverse image of [0, ε2] by the
continuous mapping which to S ∈ L2 associates

∑

b∈I ‖Sb‖2). Fix ε > 0.
There is N > 0 such that for all m,n ≥ N we have ‖Tn − Tm‖2 ≤ ε. Fix
n ≥ N and since Tm −Tn → T −Tn, we get that T −Tn ∈ Cε. Thus T ∈ L2

and that lim ‖T − Tn‖2 = 0.
4. Let T ∈ L2 and (en) a basis of E. For all k, consider the operator
Tk : E −→ F defined, for all x ∈ E, by Tkx :=

∑

n≤k < x, en > Ten. Since
Tk is of finite rank, using corollary 4.1.1, it suffices to show that Tk → T .
For this, we write

‖(T − Tk)x‖ = ‖
∑

n≥k

< x, en > Ten‖ ≤





∑

n≥k

| < x, en > |2




1
2




∑

n≥k

‖Ten‖2





1
2

≤ ‖x‖





∑

n≥k

‖Ten‖2





1
2

.

¤

Definition 4.3.1 Operators in L2(E, F ) are called Hilbert-Schmidt op-
erators.

Proposition 4.3.1 Let E, F, H Hilbert spaces. For all S ∈ L(E, F ) and
T ∈ L(F,H) we have:

1. ‖S‖2 = ‖S∗‖2.

2. If T or S is a Hilbert-Schmidt operator then TS is a Hilbert-Schmidt
operator also and ‖TS‖2 ≤ ‖T‖‖S‖2 or ‖TS‖2 ≤ ‖T‖2‖S‖.



40 CHAPTER 4. COMPACT OPERATORS

Proof. 1. Direct from the definition of ‖S‖2.
2. Let B be a Hilbert basis of E. For all b ∈ B we have ‖TSb‖ ≤ ‖T‖ ‖Sb‖
hence ‖TS‖2

2 =
∑

b∈B ‖TSb‖2 ≤ ‖T‖2
∑ ‖Sb‖2 = ‖T‖2‖S‖2

2. The second
point could be obtained substituting S and T by their adjoints.
3. Similarly as 2. ¤

4.4 Compact self-adjoint operators

A classic theorem of linear algebra shows that every normal matrix, i.e.
a matrix that commutes with its adjoint, in a finite dimensional complex
Hilbert space, is diagonalizable in an othonormal base. We will generalize
this result to infinite dimensional case, but for compact self adjoint opera-
tors. Generalization to normal compact operators could be done. To omit
compacity of the operator we need a very powerfull theory as spectral mea-
sures or distributions.

Assume that T is an operator of finite rank. Since kerT = (ImT )⊥ and
since dimImT < ∞ we have H = ImT ⊕ kerT . Thus T induce on the finite
dimensional space ImT an invertible self-adjoint operator, whose eigenvalues
are those (6= 0) of T . Since we can diagonalize in finite dimension, we get
that ImT is direct sum of (orthogonal) eigen-sub-spaces of T , associated to
nonzero eigenvalues of T and then

H =
⊕

λ∈σp(T )

ker(λ − T ).

We have proved the diagonalization of a finite rank operator. In the following
we will generalize this result to the case of a compact self-adjoint operator.

In the following H is a Hilbert space, and T a compact self-adjoint
operator on H (not of finite rank).

Lemma 4.4.1 T admits at least one eigenvalue and

‖T‖ = max{|λ|; λ ∈ σp(T )}.

Proof. Clearly, if λ ∈ σp(T ), then |λ| ≤ ‖T‖. Now, by theorem 2.2.1 there
is λ ∈ σ(T ) such that |λ| sup‖x‖=1 | < Tx, x > |, which is equal to ‖T‖. ¤

Theorem 4.4.1 Let H be a Hilbert space and T a compact self-adjoint op-
erator. For all λ ∈ σp(T ) denote by Hλ the eigen-space associated to λ.
Then
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1. σp(T ) is bounded, countable and infinite subset of R, whose unique
accumulation point is 0.

2. For all λ ∈ σp(T )\{0}, dimHλ < ∞.

3. For all λ 6= µ ∈ σp(T ), Hλ and Hµ are orthogonal.

4. Spectral decomposition of the identity.
Denote for all λ ∈ σp(T )\{0}, Pλ the orthogonal projection on Hλ.
Then

T =
∑

λ∈σp(T )\{0}
λPλ.

Proof. a. Assume that T is not of finite rank. The fact that eigenvalues of
T are real and the orthogonality of eigen-spaces was shown in proposition
2.2.4
b. Let’s show that Λ∗ := σp(T )\{0} is infinite. By lemma 4.4.1, there exists
λ ∈ σp(T ), |λ| = ‖T‖. Since T is not trivial, then λ 6= 0 and so Λ∗ is not
empty. Assume that Λ∗ is finite, Λ∗ = λ1, · · ·λk. Set then G := ⊕k

j=1Hλj

and F := G⊥. Since G is of finite dimension, H = F ⊕ G. It is clear that
TG ⊂ G and since T is self-adjoint, TF ⊂ F . T induces then an operator
TF from F into itself, and since F is closed, TF is compact also. If TF = 0
then ImT ⊂ G and so T is of finite rank. Thus TF is a self-adjoint non
trivial operator on F . By lemma 4.4.1, TF has a non zero eigenvalue µ.
But this means that µ ∈ σp(T )\Λ∗, since for example there is x ∈ F , x 6= 0,
TF x = Tx = µx (so x 6∈ G). This gives a contradiction and Λ∗ is infinite and
by theorem 4.2.1, σp(T ) is countable, and so 0 is the unique accumulation
point.
c. Let J be a finite subset of Λ∗ and GJ := ⊕λ∈JHλ, FJ := G⊥

J . T induces
on FJ a compact self-adjoint operator, whose norm ‖TFJ

‖ = max{|λ|, λ ∈
σp(TFJ

)}. But every eigenvalue λ of TFJ
is an eigenvalue of T does not

belongs to J , since by construction Fj ∩ Hµ = {0} for all µ ∈ J . Therefore,
σp(TFJ

) ⊂ σp(T )\J . Conversely, if λ ∈ σp(T )\J , then (by orthogonality),
Hλ ⊂ G⊥

λ = FJ and hence λ is an eigenvalue of TFJ
. Thus σp(TFJ

) =
σp(T )\J and

‖TFJ
‖ = max{|λ|, λ ∈ σp(T )\J}.

Moreover, the orthogonal projection on GJ is
∑

λ∈J Pλ. Hence, for all x ∈ E,
xJ := x − ∑

λ∈J Pλx ∈ FJ and

‖TxJ‖ = ‖TFJ
xJ‖ ≤ ‖TFJ

‖ ‖x‖ ≤ ‖TFJ
‖ ‖x‖.

We deduce that,
∥

∥

∥

∥

∥

T −
∑

λ∈J

TPλ

∥

∥

∥

∥

∥

≤ max
λ∈σp(T )\J

|λ|,
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and so
∥

∥

∥

∥

∥

T −
∑

λ∈J

λPλ

∥

∥

∥

∥

∥

≤ max
λ∈σp(T )\J

|λ|.

Let ε > 0. Since 0 is an accumulation point of σp(T ), the set K := {λ ∈
σp(T ), |λ| ≥ ε} is finite. Thus, for all finite part J ⊂ σp(T )\{0} that
contains K, we have

∥

∥

∥

∥

∥

T −
∑

λ∈J

λPλ

∥

∥

∥

∥

∥

≤ max
λ∈σp(T )\J

|λ| ≤ max
λ∈σp(T )\K

|λ|,

which terminate the proof. ¤

Corollary 4.4.1 With the same notations we have

ImT =
⊕

λ∈σp(T )\{0}
Hλ.

Proof. We know that, for all x ∈ H, Tx =
∑

λ∈σ(T ) λPλx. Thus ImT ⊂
⊕λ∈σp(T )\{0}Hλ. Conversely, if λ ∈ σp(T )\{0}, then Hλ ⊂ ImT . ¤

We can express the last theorem and corollary in the following

Corollary 4.4.2 The space ImT admits a countable Hilbert basis (fn)n∈N
formed of eigenvectors of T associated to nonzero eigenvalues (µn)n∈N.
The sequence (µn)n∈N tends to zero and, for all x ∈ H, we have

Tx =
∑

n∈N
µn < x, fn > fn.

Corollary 4.4.3 For all x ∈ ImT

x =
∑

λ∈σp(T )\{0}
Pλx.

Corollary 4.4.4 Let P0 be the orthogonal projection on H0 := kerT . Then
for all x ∈ E

x =
∑

λ∈σp(T )

Pλx,

and

H =
⊕

λ∈σp(T )

Hλ.
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Proof. Since T is self-adjoint, H0 = kerT = ImT
⊥
. Hence, H = H0⊕ImT .¤

Corollary 4.4.5 If H is a separable Hilbert space, then it admits a Hilbert
basis formed of eigenvectors of T .

Proof. By corollary 4.4.2, ImT admits a countable Hilbert basis. Complete
it by a basis of H0 (formed of eigenvectors associated to 0) to get a Hilbert
basis of H formed of eigenvectors. ¤

4.5 Fredholm equation

In this case, in the case of a compact self-adjoint operator, for all bounded
function f on the set σp(T ), we can define the operator f(T ) on H as

f(T )x :=
∑

λ∈σp(T )

f(λ)Pλx

for all x ∈ H. By the orthogonality of the spaces Eλ we get the following
(Bessel) equalities

‖f(T )x‖2 =
∑

λ∈σp(T )

|f(λ)|2‖Pλx‖2,

‖x‖2 =
∑

λ∈σp(T )

‖Pλx‖2.

We deduce then that

‖f(T )‖ = sup
λ∈σp(T )

|f(λ)|.

This shows that this symbolic calculus is an extension of the previous one.
In particular, if µ ∈ K∗ 6∈ σp(T ), then for all x ∈ H

(µ − T )−1x =
∑

λ∈σp(T )

(µ − λ)−1Pλx. (4.1)

Now if µ ∈ σp(T ), µ 6= 0, then Im(µ − T ) = E⊥
µ . Hence the operator T

induces on E⊥
µ a compact self-adjoint operator Tµ with σp(Tµ) = σp(T )\{µ},

to Tµ we can again apply the formula (4.1) and deduce that, if x ∈ E⊥
µ , then

for all u ∈ E⊥
µ we have the equivalence

µu − Tu = x ⇐⇒ u =
∑

λ∈σp(T )\{µ}
(µ − λ)−1Pλx.
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Now if x ∈ E⊥
µ and y ∈ E, then y = u + v with u ∈ E⊥

µ and v ∈ Eµ. Thus

µy − Ty = x ⇐⇒ ∃v ∈ Eµ s.t. y = u +
∑

λ∈σp(T )\{µ}
(µ − λ)−1Pλx.

In short, if we consider the Fredholm equation

µy − Ty = x, (4.2)

with µ ∈ K∗ and x ∈ E, then we can distinguish two cases (Fredholm
alternative):

• µ is not an eigenvalue of T . Then the equation (4.2) admits a unique
solution y, given by

y = (µ − T )−1x =
∑

λ∈σp(T )

(µ − λ)−1Pλx.

• µ is an eigenvalue of T . Then the equation (4.2)

– admits an infinite number of solutions if x ∈ ker(µ− T )⊥, in this
case those solutions are given by

y = u +
∑

λ∈σp(T )\{µ}
(µ − λ)−1Pλx,

with u ∈ ker(µ − T ).

– does not admit any solution if not, i.e. if x 6∈ ker(µ − T )⊥.



Chapter 5

Unbounded self-adjoint

operators

In this chapter we start by giving some properties of closed operators, then
general properties of symmetric and self-adjoint operators on a Hilbert space.
We terminate by defining symbolic calculus of unbounded self-adjoint oper-
ators.

In all this chapter H will be a Hilbert space and X a Banach space.

5.1 Closed operators

Definition 5.1.1 Let D ⊂ X be a sub-vector space. A linear unbounded
operator is a linear mapping from D to X.

Remarks.

1. An operator is always a couple (A,D). D, denoted sometimes by D(A)
or DA, is called domain of A.

2. Changing the domain could change considerably the operator. See
examples below.

3. In all this chapter we will always use densely defined operators,
i.e. such that D(A) = X.

4. Two operators (A,DA) and (B,DB) are equals if and only if DA = DB

and for all x ∈ DA we have Ax = Bx. And we say that B is an
extension of A, A ⊂ B, if DA ⊂ DB and for all x ∈ DA we have
Ax = Bx.

45
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5. The appellations ”bounded”, ”unbounded” are due to the fact that
for linear operators, continuity is equivalent to the inequality: ‖Ax‖ ≤
C‖x‖ for some C > 0 and all x ∈ X, i.e. to boundedness on the closed
unit ball.

Examples.

1. Let X := BC1(R) the space of continuously bounded differentiable
functions and A := d

dx . Clearly A is a linear bounded operator. Ob-
serve that for all n > 1, the operator (An, Dn) defined by: Dn :=
Cn(R) and Anf := f (n) is an unbounded, densely defined operator.

2. Let X := BC∞(R). For all n ≥ 1, An := (d/dx)n is a linear bounded
operator.

3. Let X := L2(]0, 1[) and define the operator (A,DA) with DA := {f ∈
C1([0, 1]); f(0) = f(1) = 0} and A := d/dx is linear unbounded
densely defined operator (since D(0, 1) ⊂ DA).

4. On the same space X := L2(]0, 1[) define the operator (B, DB) with
DB := {f ∈ C1([0, 1]); f(0) = 0, f(1) = 1} and B := d/dx is linear
unbounded (but not densely defined) operator.

The notion of operators whose graph is closed will play an important
role:

Definition 5.1.2 The operator (A,DA) is called a closed operator if and
only if for any (xn) ⊂ DA such that xn → x ∈ X and Axn → y ∈ X it
follows that x ∈ DA and y = Ax.

Remarks.

1. (A,DA) closed is equivalent to G(A) := {(x,Ax); x ∈ DA} (the graph
of) is closed in X × X.

2. By linearity this definition is equivalent to the following: for any
(xn) ⊂ DA such that xn → 0 then Axn → 0.

3. The closure of an operator (if it exists) (A,DA) is the least closed
extension of A. We say in this case that A is closable. It is denoted
by Ā. It is the operator whose graph is G(A).

4. If D ⊂ DA is a sub-vector space denote by A|D, called the part of A
on D, the operator such that A|D ⊂ T with domain D(A|D) = {x ∈
D; Tx ∈ D}.
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If an operator (A,DA) is injective, the operator A−1: ImA 7→ X is de-
fined.

Definition 5.1.3 Let (A,DA) be a closed linear operator on X and λ ∈ C.
We say that λ ∈ ρ(A), the resolvant of A, if λ−A admits a bounded inverse
on Im(λ − A). We call spectrum of A, σ(A) the complementary in C of
ρ(A): ρ(A) = C\σ(A).

Proposition 5.1.1 The inverse of a closed injective operator is closed.

Proof. Let A: DA ⊂ X → Y be a closed injective operator, where X and
Y are Banach spaces. The graph G(A−1) = Φ(G(A)) hence closed, where
Φ : E × F → F × E is the homeomorphism Φ(x, y) = (y, x). ¤

Remarks.

1. Let A be a closed operator on X. If λ − A is bijective from DA to X
for some λ then (λ−A)−1 is continuous from Imλ−A = X to X since
closed (by the last proposition and the closed graph theorem). Hence
λ ∈ ρ(A).

2. The spectrum of A is union of the three disjoint following sets:

(a) σp(A) the point spectrum: the set of all eigenvalues.

(b) σr(A) the residue spectrum: the set of all λ that are not eigen-
values and such that the image of λ − T is not dense in X.

(c) σc(A) the continuous spectrum: the complementary of σp(A) and
σr(A) it is also the set of λ such that λ−A is injective with dense
image, but (λ − A)−1 is not continuous.

Lemma 5.1.1 Let A be an injective closed operator and λ ∈ ρ(A), λ 6= 0.
Then 1/λ ∈ ρ(A−1) and

(λ−1 − A−1)
−1

= λA(λ − A)−1 = −λ − λ2(λ − A)−1.

Proof. λ−1 − A−1 = −λ−1(λ − A)A−1 (they have the same domain ImA).
Thus λ−1−A−1 is bijective from D(A−1) onto X and its inverse is −λAR(λ,A).
But AR(λ,A) − λR(λ,A) = Id, so we get the result. ¤

Proposition 5.1.2 Let A be a closed operator.
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1. The spectrum σ(A) is a closed set of C.

2. The mapping λ ∈ ρ(A) 7−→ R(λ,A) ∈ L(X) is analytic.

Proof. If σ(A) = C there is nothing to show. Otherwise, rescalling A by
some λ ∈ ρ(A) we can assume that 0 ∈ ρ(A). Set B := A−1.
1. By lemma 5.1.1, σ(A) = {λ 6= 0; λ−1 ∈ σ(B)} and since σ(B) is compact,
σ(A) is closed.
2. By lemma 5.1.1, R(λ,A) = −λ−1BR(λ−1, B), so the mapping λ 7−→
R(λ,A) is analytic on ρ(A)\{0}. Since σ(A) is closed, there is λ0 ∈ ρ(A),
λ0 6= 0. Rescalling we get that the mapping λ 7−→ R(λ,A) is analytic on
ρ(A)\{λ0}. ¤

Remark. For all nonempty closed set S of C we can construct a closed
operator whose spectrum is S:
Since S is not empty, let (λn) be a dense sequence in S. Consider the
operator A on H := ℓ2(N), with domain the set of sequences (xn) ∈ H
such that (λnxn) ∈ H, and A(xn) = (λnxn) (A is called the multiplication
operator see the section forthcoming). It is not difficult to verify that A is
closed, densely defined, and σ(A) = σp(A) = S.

5.2 Adjoint of an operator

In this section H will denote a Hilbert space and < ·, · > its scalar product.

Lemma 5.2.1 Let (A,DA) be a linear densely defined operator on H. Let
y ∈ H, and assume that there exists y∗ ∈ H such that for every x ∈ DA

< Ax, y >=< x, y∗ > . (5.1)

Then y∗ is unique.

Proof. If there is z ∈ H s.t. < Ax, y >=< x, y∗ >=< x, z > for all x ∈ DA,

we get that z − y∗ ∈ DA
⊥

which is trivial since D(A) = H. ¤

Definition 5.2.1 Let (A,DA) be a linear densely defined operator on H.
Define the (unbounded) operator A∗, adjoint of A by

D(A∗) := {y ∈ H, so that ∃y∗ ∈ H s.t. (5.1) is verified}

and

A∗y = y∗.
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The adjoint could be characterized by

for all x ∈ DA and all y ∈ DA∗ < Ax, y >=< x, A∗y > . (5.2)

Definition 5.2.2 We say that A is a symmetric operator if DA = H and
for every x, y ∈ DA we have

< Ax, y >=< x, Ay > .

We say that A is self-adjoint if A = A∗.

In the following we give direct properties:

Proposition 5.2.1 Let (A, DA) be a linear densely defined operator on H.
Then

1. The adjoint of A is always closed.

2. If B is an extension of A, A ⊂ B then B∗ ⊂ A∗.

3. If A is closable, then (Ā)
∗

= A∗.

4. If D(A∗) = H then A is closable and

Ā ⊂ A∗∗.

5. If A is a symmetric operator then every symmetric extension B of A
verify: A ⊂ B ⊂ A∗.

6. ImA⊥ = kerA∗.

Proof. 1. If yn → y, y∗n → y∗ and < Ax, yn >=< x, y∗n > for every x ∈ DA

then < Ax, y >=< x, y∗ > so y ∈ DA∗ and A∗y = y∗.
Points 2, 3, 4 and 5 are obvious.
6. y ⊥ ImA means that < Ax, y >=< x,A∗y >= 0 for all x ∈ DA, and so
A∗y = 0. ¤

Theorem 5.2.1 let (A,DA) be a symmetric operator on a Hilbert space H.
If DA = H then A is bounded.

Proof. For all x, y ∈ H we have | < Ax, y > | = | < x, Ay > | ≤ ‖x‖ ‖Ay‖.
So by The Banach- Steinhauss theorem A is bounded. ¤

Let’s see some examples:

Examples.
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1. Let H := L2(0, 1) and define the operator (A,D) by

D(A) := {f ∈ H; f ∈ C1 and f(0) = f(1) = 0},

Af(t) = if ′(t),

in other terms A = i d
dx . This operator is symmetric and A ⊂ A∗:

Indeed, integrating by parts (G(t) :=
∫ t
0 g(s) ds) we get

< Af, g > = < g, g∗ >=

∫ 1

0
fḡ∗ dt

= f(1)Ḡ(1) − f(0)Ḡ(0) −
∫ 1

0
f ′(t)Ḡ(t) dt

=

∫ 1

0
(if ′)(t)(−iG)(t) dt.

Since ImA is dense in E, we get g = −iG. Therefore there is y′ ∈ L2

with −y′ = iy∗. Hence D(A∗) = {y ∈ H; y′ ∈ L2} and y∗ = A∗y = iy′.
Thus A is symmetric and A ⊂ A∗. A is not closed (because of the
boundary conditions) but is closable, it is closure A1 := Ā is defined
by

D(A1) := {f ∈ H; f ′ ∈ L2 and f(0) = f(1) = 0},

A1f(t) = if ′(t).

2. Define A2 on the same space H by

D(A2) := {f ∈ H; f ′ ∈ L2 and f(0) = f(1)},

A2f(t) = if ′(t).

Thus A1 ⊂ A2 and then A∗
2 ⊂ A∗

1. Let’s show that A2 is self adjoint:
For this let’s calculate

< A2f, g > =

∫ 1

0
(if ′)ḡ dt

= i[f(1)ḡ(1) − f(0)ḡ(0)] +

∫ 1

0
f(t)ig′(t) dt

= if(1)[ḡ(1) − ḡ(0)] +

∫ 1

0
f(t)ig′(t) dt.

Since A∗
2 ⊂ A∗

1 then < A2f, g >=< f, A∗
1g >=< f, iy′ > so if(1)[ḡ(1)−

ḡ(0)] = 0. If g(1) 6= g(0) then choosing a sequence fn → 0 with
fn(0) = fn(1) = 1 we get that < A2fn, g >6→ 0 but < fn, A∗

2g >→ 0.
So g(1) = g(0) and then A∗

2 = A2.
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3. Define, on the space H := L2[0,∞[, the operator

D(A1) := {f ∈ E; f ′′ ∈ L2 and f(0) = f ′(0) = 0},

A1f(t) = −f ′′(t).

By the same way as in the first example, y ∈ D(A∗) implies that
y′′ ∈ L2, then

< A1f, g > =

∫ ∞

0
(−f ′′)ḡ dt

= −[f ′ḡ]∞0 +

∫ ∞

0
f ′(t)ḡ′(t) dt

= [−f ′ḡ + fḡ′]∞0 + < f,−g′′ > .

Therefore we see that < A1f, f >≥ 0, and that y∗ = A∗y = −y′′ and
D(A∗) = {y ∈ L2; y′′ ∈ L2}. So A1 ⊂ A∗

1 and A1 is symmetric but
not self-adjoint.

4. Consider the same operation on the same space, L2[0,∞[,

D(A2) := {f ∈ H; f ′′ ∈ L2 and f(0) = 0},

A2f(t) = −f ′′(t).

Obviously A1 ⊂ A2 and then A∗
2 ⊂ A∗

1. Repeating the same calculation
as above we get

< Af, g >=< f, g∗ >= −f ′(0)g(0)+ < f,−g′′ >,

and necessarily g(0) = 0 (otherwise consider a sequence fn → 0 in
L2 with f ′

n(0) = 1 to get a contradiction). This shows that A2 is
self-adjoint (extension of A1).

Theorem 5.2.2 If A is a symmetric operator and ImA = H then A is
self-adjoint.

Proof. We know that A ⊂ A∗. Now let y ∈ D(A∗) and set y∗ = A∗y. Since
ImA = H there is x ∈ D(A) such that A∗y = y∗ = Ax. For every z ∈ D(A)
we have

< Az, y >=< z, A∗y >=< z, y∗ >=< z,Ax >=< Az, x >,

thus y = x and so A = A∗. ¤
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Theorem 5.2.3 Let A be a bounded self-adjoint operator. Assume that
kerA = {0} then A−1 is also self adjoint.

Proof. First let’s show that A−1 is densely defined: If not, D(A−1) =
ImA 6= H, then by proposition 5.2.1.6, there is y0 ∈ kerA∗, y0 6= 0, which
is not possible since A = A∗. Now < A−1x, y >=< x, A−1∗y >, setting z =
A−1x, x = Az we get < z, y >=< x, y∗ >=< Az, y∗ >=< z, A∗y∗ > and so
y = A∗y∗ = Ay∗ or y∗ = A−1y, but y∗ = A−1∗y. Thus y ∈ ImA = D(A−1),
and A−1y = A−1∗y. Thus A−1 is self-adjoint. ¤

Remark. This theorem 5.2.3 gives us many examples of unbounded self-
adjoint operators. Start with any self-adjoint compact operator A with
kerA = {0}. Then A−1 is an unbounded self-adjoint operator.

5.3 The L
∞-spectral theorem

In this section we will show a theorem, known as spectral theorem, for
bounded self-adjoint or unitary operators, stating that each self-adjoint or
unitary operator is unitary equivalent to a real multiplication operator.
Thus, self-adjoint and real multiplication operators are effectively the same
things. It is frequent to regard an arbitrary self-adjoint operator as being a
real multiplication operator.

We will start by defining multiplication operator:

Let (X,µ) a measured space and f ∈ L∞(X,µ).

Definition 5.3.1 The multiplication operator Af : L2(X,µ) −→ L2(X,µ) is
defined by Af (g) := fg.

It is easy to see that Af is a linear bounded operator on L2, and ‖Af‖ ≤
‖f‖∞. Moreover, A∗

f = Af̄ , hence Af is normal. If in addition f is real-
valued then Af is self-adjoint and if |f | = 1 a.e. then A∗

fAf = A|f |2 = IdL2 .

Proposition 5.3.1 σ(Af ) = Ress(f) = {λ ∈ C; ∀ε > 0, the set of x ∈
X, |f(x) − λ| < ε is not µ-negligeable}.

Proof. Let λ ∈ C\Ress(f). If there is ε > 0, such that the set of x ∈
X, |f(x)−λ| < ε is µ-negligeable, denoting by h the function h(x := (f(x)−
λ)−1 for f(x) 6= λ and 0 if not. |h(x)| < ε−1 for µ-a.e. x and h(x)(λ−f(x)) =
1. Thus h ∈ L∞(X, µ) and Ah(Af − λ) = (Af − λ)Ah = IdL2 .
Now if λ ∈ Ress(f) then for every ε, the set Aε := {x ∈ X, |f(x) − λ| < ε}
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is not µ-negligeable, consider a function χ ∈ L2(X,µ), ‖χ‖2 = 1, χ = 0
outside Aε. Then |(Af − λ)χ| ≤ ε|χ|, hence ‖(Af − λ)χ‖ ≤ ε. Thus Af − λ
is not bijective. ¤

Proposition 5.3.2 For all g ∈ RAf
we have g(Af ) = Ag(f). If Af is self-

adjoint or unitary, then for all g ∈ C(σ(Af ) then g(Af ) = Ag(f).

Proof. The mapping g 7−→ Ag(f) is linear morphism of ring, so we get the
first point using uniqueness in proposition 3.1.1. The second point could be
obtained by applying theorem ??. ¤

In the following, H is a Hilbert space and T a bounded self-adjoint or
unitary operator.

Lemma 5.3.1 Let x ∈ H.

1. There exists a finite measure µx on σ(T ) such that, for all f ∈ C(σ(T ))
we have < f(T )x, x >=

∫

σ(T ) f(t) dµx(t).

2. Denote by φx: C(σ(T )) −→ H the linear mapping defined by φx(f) :=
f(T )x, and w: C(σ(T )) −→ L2(σ(T ), µx) the mapping that to a con-
tinuous function associate its class in L2. There exists an isometry
ψx: L2(σ(T ), µx) −→ H such that ψx ◦ w = φx. Moreover, ψx(1) = x,
ψx(Az) = Tφx and ψx(Az̄) = T ∗φx.

Proof. 1. The linear form Φx: f 7−→< f(T )x, x > is positive on C(σ(T )):
Indeed, if f is positive, then f(T ) is a positive operator by theorems ??
and 3.2.3 (f(T ) is self-adjoint and σ(f(T )) = f(σ(T )) ⊂ R+). There ex-
ists then a unique measure µx on σ(T ) such that < f(T )x, x >= Φx(f) =
∫

σ(A) f(t) dµx(t).

2. Let f ∈ C(σ(T )). We have ‖φx(f)‖2 =< f(T )x, f(T )x >=< f̄(T )f(T )x, x >

=< [ff̄ ](T )x, x >=
∫

σ |f(t)|2 dµ(t) = ‖w(f)‖2. On the space C(σ(T )) en-
dowed with semi-norm ‖φx(f)‖, w is a linear isometric of dense image,
there exists then ψx ∈ L(L2(σ(T ), µx),H) such that φx = ψx ◦ w. For
all f ∈ C(σ(T )) we have ‖ψx(w(f))‖ = ‖φx(f)‖ = ‖w(f)‖, then by density
of the image of w we have ‖ψx(g)‖ = ‖g‖ for all g ∈ L2(σ(T ), µx): ψx is
isometric. ψx(1) = φx(1) = Ix = x.
Finally, for all f, g ∈ C(σ(T )), we have ψx(Af (w(g)))ψx(w(fg)) = φx(fg) =
f(T )g(T )x = f(T )φx(g) = f(T )ψx(w(g)). Again, by the density of the im-
age of w, we get for all f ∈ C(σ(T )) and all g ∈ L2(σ(T ), µx), we have
ψx(Af (g)) = f(T )ψx(g). Take f = z and f = z̄ to terminate. ¤
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Lemma 5.3.2 Let x ∈ H and denote by Ex the image of ψx.

1. If y ∈ E⊥
x then Ey ⊂ E⊥

x .

2. There exists a subset D ⊂ H such that for all x, y ∈ D, x 6= y, Ex ⊥ Ey

and ⊕x∈DEx = H.

Proof. 1. If y ∈ E⊥
x , then for all f ∈ σ(T ) and all g ∈ L2(σ(T ), µ),

we have < ψx(g), f(T )y >=< f̄(T )ψx(g), y >=< ψx(Af̄g), y >= 0. Since
{f(T )y; f ∈ C(σ(T ))} is dense in Ey, we get the result.
2. Denote by G the set of subsets D of H\{0} such that for all x, y ∈ D,
Ex ⊥ Ey. Endowed with inclusion G is inductive. It is easy to show that G
admits a maximal element D that is our candidate. ¤

Theorem 5.3.1 Let H be a separable Hilbert space and T ∈ L(H) a self-
adjoint or unitary bounded operator. There exists a measured space (X, µ),
a function f ∈ L∞(X, µ) and an isomorphism ψ: L2(X,µ) −→ H such that
T = ψAfψ∗

Proof. Let x ∈ H and D as in the last lemma. For all y ∈ H, we have
y ∈ Ey and since H is separable, D is countable. Rearrange D to be a
discrete set and set X := σ(T ) × D. If g is a function on X, denote for
y ∈ D, gy the function t 7−→ g(t, y). Denote by Cc(X) the set of continuous
functions of compact support on X, i.e. g ∈ Cc(X) if all except finite number
of the functions gy are null. Denote by

Φ(g) :=
∑

y∈D

∫

σ(T )
gy(t) dµy(t).

Since Φ is a positive linear form on Cc(X), there exists a unique measure µ
on X such that, for all lg ∈ Cc(X) we have

∫

X
g(x) dµ(x) = Φ(g) =

∑

y∈D

∫

σ(T )
gy(t) dµy(t).

Denote by φ: Cc(X) −→ H the mapping defined by φ(g) :=
∑

y∈D gy(T )y

and w: Cc(X) −→ L2(X, µ) the function class. For g ∈ Cc(X) we have
gy(T )y ∈ Ey. by orthogonality we get ‖φ(g)‖2 =

∑

y∈D < gy(T )y, gy(T )y >

=< ḡy(T )gy(T )y, y >=
∑

y∈D

∫

σ(T ) |gy(t)|2 dµy(t) =
∫

X |g(x)|2 dµ(x) = ‖w(g)‖2.

On the space Cc(X) endowed with semi-norm ‖φ(f)‖, w is a linear isometric
of dense image, there exists then ψ ∈ L(L2(X, µ),H) such that φ = ψ ◦ w.
For all f ∈ C(σ(T )) we have ‖ψ(w(f))‖ = ‖φ(f)‖ = ‖w(f)‖, then by density
of the image of w we have ‖ψ(g)‖ = ‖g‖ for all g ∈ L2(X,µ): ψ is isometric.
Let’s show that ψ is surjective. Let y ∈ D and h ∈ C(σ(T )). Set g(t, y) :=
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h(t) and g(t, x) = 0 for x ∈ D, x 6= y. We have ψ(w(g)) = φ(g) = h(T )y.
Hence the image of ψ contains all h(T )y, y ∈ D, h ∈ C(σ(T )). Since ψ is
isometric, its image is closed, hence contains all Ey. Thus ψ is surjective.
Denote by P1 the first projection on X. For all g ∈ Cc(X) and all y ∈ D
we have (P1g)y = zgy, hence (P1g)y(T ) = Tgy(T ). So ψ(AP1w(g)) =
ψ(w(P1g)) = φ(P1g) =

∑

y∈D(P1g)y(T )y = Tφ(g) = Tψ(w(g)). By density

of the image of w, we deduce that for all g ∈ L2(X, µ), ψ(Af (g)) = Tψ(g).
This implies that ψAf = Tψ hence T = ψAfψ−1 = ψAfψ∗. ¤

Using this theorem, one can define a symbolic calculus from C(σ(T )) into
L(H): for g ∈ C(σ(T )), wet g(T ) := ψAg◦fψ∗. Notice that this symbolic
calculus could be extended to the B(σ(T )) the vector space of bounded
borelean functions on σ(T ).

5.4 The L
2-spectral theorem

In this section we consider a particular self-adjoint operator which appears
to be a very particular (and simple) example, but which will be central to
the description and application of the spectral theorem. This will be seen
by the main theorem of the next section.
In the last section we have defined multiplication operator for a bounded
function, which gives a bounded operator. In this section we will define the
multiplication operator for L2-functions, which gives unbounded operator.
The proofs are roughly the same, so they are omitted.

Let (X, µ) be a measured space. Define H := L2(X,µ) the space of all
measurable functions of square integrable, with the classical identification
between two functions if ever they are equal almost everywhere.

Fix a measurable real-valued function a that is bounded on every bounded
subset of X. Let D be the set of all functions f ∈ H such that

∫

X
[1 + a(x)2]|f(x)|2 dµ < ∞,

and define the operator Aa with domain D by

Aaf(x) := a(x)f(x),

the multiplication operator.

Lemma 5.4.1 The operator (Aa, D) is self-adjoint.

Define the essential range of a, Ress(a), the set of all λ ∈ R such that
for all ε > 0 the measure of the set {x ∈ X; |a(x) − λ| < ε} is zero.
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Lemma 5.4.2 σ(Aa) = Ress(a), and if λ 6∈ σ(A) then
[

(λ − Aa)
−1f

]

(x) = [λ − a(x)]−1f(x)

for all f ∈ H and all x ∈ X, and

‖(λ − Aa)
−1‖ =

1

dist(λ, σ(Aa))
.

Now we can generalize the results of the last section to the case of un-
bounded self-adjoint operators.

Theorem 5.4.1 (Spectral theorem) Let H be a Hilbert space and T a
densely defined self-adjoint operator on H. Then

1. σ(T ) ⊂ R.

2. The operator U := (i − T )(i + T )−1 is a unitary operator in L(H).

3. There exists a measured space (X, µ) a measurable function f :X → R

and an isomorphism ψ: L2(X, µ) → H of Hilbert spaces such that T =
ψAaψ

∗.

Proof. 1. Let λ ∈ C\R. Denote by b its imaginary part. For all x ∈ D(T )
we have < Tx, x >=< x, Tx > hence < Tx, x >∈ R and the imaginary part
of < (λ − T )x, x > is then b‖x‖2. Thus |b|‖x‖2 ≤ | < (λ − T )x, x > | ≤
‖(λ− T )x‖‖x‖ and so ‖(λ− T )x‖ ≥ |b|‖x‖. Thus, for all (x, y) ∈ G(λ− T ),
we have ‖y‖ ≥ |b|‖x‖, hence (1+ b2)‖y‖2 ≥ b2(‖x‖2 + ‖y‖2). By proposition
, the mapping (x, y) 7−→ y from G(λ−T ) into H is injective of closed image.
Since (λ − T )∗ = λ̄ − T is also injective, we deduce, by proposition 5.2.1.6,
that the image of λ − T is dense.
2. Since Im((i+T )−1) = D(i−T ), D(U) = H and U is bijective by 1. Now
for x ∈ D(T ), we have ‖(i − T )x‖2 = ‖Tx‖2 + ‖x‖2 − i < x, Tx > +i <
Tx, x >= ‖Tx‖2 + ‖x‖2 = ‖(i + T )x‖2. For y ∈ H, set x = (i + T )−1y, we
have ‖Uy‖ = ‖(i − T )x‖ = ‖(i + T )x‖ = ‖y‖. Thus U is isometric.
3. Let y ∈ H and set x := (i + T )−1y, we have Uy = (i − T )x = 2ix − (i +
T )x = 2ix− y. Thus x = 2(Uy + y)/i and then (i+T )−1 = 2(U + Id)/i and
T = i(U + Id)−1 − i.
By theorem 5.3.1, there exists a measured space (X, µ), a function g:X −→
C, |g| = 1 measurable and an isomorphism ψ: L2(X,µ) −→ H such that
U = ψAgψ

∗. Since U − Id is injective, Ag−1 is injective, and so the set
{x ∈ X; g(x) = 1} is µ-negligeable. Then (U − Id)−1 = (ψAg−1ψ∗)−1 =
(ψ∗)−1Agψ

−1ψAgψ
∗ = U . Thus T = ψAfψ∗ where f := 2(g − 1)−1/i − i =

−i(g + 1)(g − 1)−1. ¤

As in the bounded case, one can define a symbolic calculus on B(σ(T ))
the space of bounded borelean functions on σ(T ).
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5.5 Stone’s theorem

Definition 5.5.1 Let E be a Banach space. We call a one parameter C0-
group any family of linear bounded operators (G(t))t∈R ⊂ L(E) verifying

1. G(0) = IdE.

2. G(t + s) = G(t)G(s), for all t, s ∈ R.

3. For all x ∈ E, the mapping t 7−→ G(t)x is continuous.

The operator defined by

D(A) := {x ∈ E; lim
t→0

G(t)x − x

t
exists},

Ax := lim
t→0

G(t)x − x

t

is called generator of the C0-group.

Let H be a Hilbert space. A C0-group is called unitary C0-group if each
operator is unitary.

Theorem 5.5.1 Let H be a separable Hilbert space. Let (A,D(A)) be a
densely defined operator. The following are equivalent:

(i) iA generates a unitary C0-group.

(ii) A is self-adjoint.

Proof. (i)=⇒(ii). We have G∗(t) = G(t)−1 = G(−t). Let’s show that
A ⊂ A∗. Indeed, let x, y ∈ D(A), we have

< Ax, y > = −i lim
t→0

〈

G(t)x − x

t
, y

〉

= −i lim
t→0

〈

x,
G∗(t)y − y

t

〉

= −i lim
t→0

〈

x,
G−1(t)y − y

t

〉

= −i lim
t→0

〈

x,
G(−t)y − y

t

〉

= −i < x,−iAy >,

thus x ∈ D(A∗) and < Ax, y >=< A∗x, y >.
A = A∗: Let x ∈ D(A), y ∈ D(A∗) we have

< x, A∗y > = < Ax, y >= −i lim
t→0

〈

G(t)x − x

t
, y

〉

= −i lim
t→0

〈

x,
G∗(t)y − y

t

〉

= −i lim
t→0

〈

x,
G−1(t)y − y

t

〉

= −i lim
t→0

〈

x,
G(−t)y − y

t

〉

=< x,Ay >,
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Therefore y ∈ D(A) and hence A = A∗.
(ii)=⇒(i). Since A admits a L∞(σ(B)) symbolic calculus. Denote by Φ this
symbolic calculus and define, for all t ∈ R, G(t) := Φ(et) = et(A), where
et(s) := exp(ist). Since σ(A) ⊂ R, et is bounded. Using properties of the
symbolic calculus, it is easy to verify that (G(t)) is a unitary group generated
iA. ¤

5.6 Laplace operator on bounded open domain of

RN

Let Ω be an open of RN and H = L2(Ω) as a real Hilbert space. Define the
operator ∆0 on H by

D(∆0) := {u ∈ H1
0 (Ω), ∆u ∈ L2(Ω)},

∆0u = ∆u, u ∈ D(∆0).

Then we have

Proposition 5.6.1 (∆0, D(∆0)) is negative self adjoint operator.

Proof. Since D(Ω) ⊂ D(∆0), D(∆0) is dense in H. Let u ∈ D(∆0) ⊂
H1

0 (Ω), by Green’s formula, we have

< ∆0u, u >=

∫

Ω
∆u · u dx = −

∫

Ω
|∇u|2 dx

so ∆0 is negative. By a similar calculation, one can see that ∆0 is symmetric.
In order to use theorem 5.2.2, let’s show that Im∆0 = H. In fact we will
show that 0 6∈ σ(∆0). For this, and using Lax-Milgram lemma, for all f ∈ H,
there exists u ∈ H1

0 (Ω) such that, for all v ∈ H1
0 (Ω)

∫

(λuv + ∇u · ∇v) dx =

∫

fv,

for all λ > −λ0, λ0 being one over the Poincar constant. Which gives (by
Green) that in the distribution sens

λu − ∆u = f.

Thus (u ∈ H1
0 ) ∆u = u − f ∈ L2, i.e. u ∈ D(∆0). In other terms σ(∆0) ⊂

] −∞,−λ0[. ¤

Corollary 5.6.1 i∆0 generates a unitary C0-group.
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Remark 5.6.1 If the boundary of Ω is bounded and is of class C2, then
D(∆0) = H2(Ω) ∩ H1

0 (Ω) with equivalent norm.

In order to determine the eigenvalues of Laplace operator, notice first
that if u is an eigenvalue then there is λ (≤ −λ0) such that

∆0u = λu. (5.3)

This means that u ∈ D(∆0). But asking u to be in H1
0 is sufficient, since in

this case, ∆u ∈ L2. Therefore it is sufficient to solve (5.3) in H1
0 . We start

by the following direct application of theorem 5.2.3.

Corollary 5.6.2 (−∆0)
−1: L2(Ω) 7−→ L2(Ω) is a positive bounded self-adjoint

operator.

Corollary 5.6.3 (−∆0)
−1: H1

0 (Ω) 7−→ H1
0 (Ω) is a positive compact self-

adjoint operator.

Proof. Remainder to show that this operator is compact. Denoting by
A this operator then A = −∆−1

0 ◦ J , where J : u 7−→ u is the canonical
injection from H1

0 into L2. Since J is compact (Rellich theorem) and using
proposition 4.1.1 A is compact. ¤

We terminate by

Theorem 5.6.1 The set of eigenvalues of Laplace operator with Dirichlet
condition ∆0 on Ω is a strictly decreasing sequence that tends to −∞.
Each eigen-space is of finite dimension.
Denote by (µn) the sequence of eigenvalues of −∆0, repeated each with its
multiplicity. Then there exists a Hilbert basis (un) of H1

0 (Ω) such that for
all n, we have ∆0un = µnun

Remark 5.6.2 By the same argument above each un ∈ H∞
0 (Ω), hence C∞

and so un is an ordinary solution of the equation ∆un = µnun.


