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1 Introduction

NOTES PROVISOIRES !! (les notes sront complétées et améliorées)
PROVISORY NOTES !! (some parts have to be improved and completed)

1.1  Projet du cours- main goals of the course

Décrire en 6-8 heures quelques aspects de la théorie semi-classique. On se
concentre donc sur ’équation de Schrodinger de I'opérateur de Schrédinger
avec champ magnétique et I’'étude du bas de son spectre.

Our aim is to describe in 6-8 hours some aspects of the semi-classical theory.
We focus on the Schriodinger operator with magnetic fields and the study of
the bottom of its spectrum.

1.2 Prerequisites- Background

Le cours suppose connue la théorie spectrale élémentaire et 1’auditeur est
supposé avoir une bonne maitrise de ’analyse hilbertienne, de la théorie des
distributions (espaces de Sobolev) et une certaine connaissance des éléments
de base de la géométrie différentielle (niveau maitrise).

Pour la théorie spectrale, ’étudiant peut par exemple consulter le livre:
Introduction a la théorie spectrale, par P. Lévy-Bruhl [LB], aux éditions
Dunod. Il trouvera aussi de l'aide dans les notes de cours du DEA de
B. Helffer (Année 2001-2002) accessible sur le web http://webmail.math.u-
psud.fr/ helffer.

The student is supposed to have a good knowledge of the elementary spectral
analysis, of the Hilbertian analysis and of the theory of distributions (Sobolev
spaces). For the spectral theory, Reed-Simon is more than enough and the
reader can also look at [LB] (in french) or to the notes of an unpublished
course which is available on the web hitp://webmail. math.u-psud.fr/ helffer.

1.3 Bibliographie préliminaire-preliminary bibliography

Sur le sujet du cours lui-méme, je donnerai en regle générale les détails
mais les références et certains compléments peuvent étre utilement retrouvés
dans des chapitres de mon livre [Hell] ou dans celui plus récent de Dimassi-
Sjostrand [DiSj]. D’autres références sont aussi les livres de :



Cycon-Froese-Kirsch-Simon [CFKS] orientés vers la théorie de Morse et Hislop-
Sigal [HiSi]. Des résultats sur les opérateurs de Schrodinger avec champ
magnétique apparaissent aussi dans les surveys de [Hel2, Hel3] et Mohamed-
Raikov [MoRa], [Hel4] pour les relations avec la supraconductivité et dans
le livre de B. Thaller [Tha]. Pour des développements semi-classiques plus
récents, on peut aussi regarder [Hell] et [Hel5]. D’autres aspects de ’analyse
semi-classique sont présentés dans les livres de D. Robert [Ro], Kolokoltsov
[Ko] (en liaison avec les travaux de Maslov) and A. Martinez (dans esprit de
I'analyse microlocale) [Mal. Details will be given in general but more substan-
tial references and complements can be found in the books [Hell] and [DiSj].
Other referenes are the book [CFKS](Chapter 11, which is oriented towards
Morse theory) and [HiSi]. When Schrédinger operators with magnetic fields
are concerned, we should also mention the surveys by [Hel2, Hel3], Mohamed-
Raikov [MoRa], [Helj] for the relations with superconductivity and the book
by B. Thaller [Tha]. Other aspects in Semi-classical analysis are presented in
the books by D. Robert [Ro], Kolokoltsov [Ko] (in connection with results of
the Maslov’s school) and A. Martinez (in the spirit of the microlocal analysis)
[Ma].

1.4 Plan du cours-Organization of the course

Le plan est le suivant. Apres quelques rappels généraux de théorie spectrale
concernant les liens entre la construction de vecteurs propres approchés et
la construction de vrais vecteurs propres (donnés en appendice), nous rapp-
pellerons les principales propriétés de notre principal sujet d’investigation:
'opérateur de Schrodinger avec champ magnétique (en régime semi-classique).
Puis nous passerons en revue quelques apsects de I’analyse semi-classique: ap-
proximation harmonique, décroissance des fonctions propres dans différents
contextes dont celui provenant de la supraconductivité. Comme application,
nous finirons par la détermination du bas du spectre pour la réalisation de
Neumann de l'opérateur de Schrodinger avec champ magnétique.

The course is organized as follows. After recalling some elements of per-
turbation theory concerning the links between approrimate eigenvectors or
ergenvalues and exact eigenvectors or eigenvalues, we will present the main
properties of the Schrodinger operators with magnetic fields. We then give
some elements in semi-classical analysis : harmonic approximation, WKB
constructions and analysis of the decay of eigenfunctions. We will conclude
by two applications to the splitting for the double well problem and to the



analysis of the bottom of the spectrum of the Neumann realization of the
Schrodinger operator with magnetic fields in connection with the supercon-
ductivity.



2 On the Schrodinger with magnetic fields

2.1 Preliminaries

Let 2 be an open set in R", 4 = (A1, Ay, ..., A,) a C>®(Q) vector field on €,
corresponding to the so called magnetic potential, and V' (which can depend
on h) a C*=(Q) real valued function, corresponding to the so called electric
potential, and let A > 0 is a small parameter (playing the role of the Planck
constant, or in other context of the inverse of the intensity of the magnetic

field). The vector A corresponds more intrinsically to a 1-form

Wy = ZAjdmj . (21)
J
One can then associate to wy a 2-form called the magnetic field op :
op =dwy = ZBjkd:Ej Adxy . (2.2)
j<k

When n = 2, the unique Biy defines a function, more simply denoted by
x +— B(z), also called the magnetic field.
When n = 3, the magnetic field is identified to a magnetic vector E, by the
Hodge map :

B = (B!, B?, B®) = (Bys, Bs1, Bs) . (2.3)
All these objects can be defined more generally on a Riemannian manifold
(with notions like Connections, Curvature, ....) but it is outside the aim of
this short course.

We would like to discuss the spectrum of selfadjoint realizations of the
Schrodinger operator in an open set {2 in R” :
n
Ph,A,V,Q = Z(h, ij — AJ)2 + V(.ZU) .

J=1

2.2 Selfadjointness

Our main interest is the analysis of the bottom of the spectrum of Py 4 v.q
in an open set ). This open set can be bounded or the whole space R".
Many physically interesting situations correspond to n = 2,3. In the case
of an open set {2, we can consider the Dirichlet realization or the Neumann
condition (other conditions appear also in the applications).
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The Dirichlet realization
The Dirichlet realization corresponds to take the so called Friedrichs exten-
sion attached to the quadratic form :

Ce(C) > u

> QP sa(®) = fo (Viaul + V(@) u(@)?) do (24)

whose existence follows immediately from the proof of the existence of a
constant C' such that :

/Q (IVnau? + V@)u(@)P) de> —Cllull®, Yu e C2(Q),  (25)

with )
Viha=hV —iA.

In this case, we say that the quadratic form is semibounded (from below).
When (2 is regular (bounded), the form domain of the operator is

VP(Q) = Hy(Q)
and the domain of the operator, which is denoted by P,EA’V, is
D(Pyayv) = Hy(Q) N H*(Q) .
The Neumann realization

The Neumann realization corresponds to take the so called Friedrichs exten-
sion attached to the quadratic form :

C®(Q;C) 2 urr Qp yyqlu) = /Q (IVhaul> + V(2)|u(z)[*) dz(2.6)Span

whose existence follows immediately from the proof of the existence of a
constant C' such that :

/Q (IVhaul* + V(2)|u(2)]?) de > =C|lu|]*, Yu e C*(Q) . (2.7)

When (2 is regular (bounded), the form domain of the operator is

YN(Q) = H'Y(Q), (2.8)



and the domain of the operator, which is denoted by P,{YAyv, is
D(PY,v)={ue H*(Q) |7 (hV —iAd)u=0 on dQ }. (2.9)
Here 71 is the normal derivative to 02, this condition :
fi- (hV —iA)u=0 on 09, (2.10)

is called the magnetic-Neumann boundary condition.

The case of R

In the case of R”, it is more difficult to characterize the domain of the op-
erator. When V' > —C, it is easy to characterize the form domain which
is

VRY) = {ue L*R") | Vyaue L*, (V+C)ruec L} . (2.11)

In the general case, if the operator is semi-bounded on C§°(R") in the sense
of (2.5), one can show (Simader) that the operator is essentially selfadjoint.
This means that the Friedrichs extension is the unique selfadjoint extension
in L?(R") starting of C§°(R") and the domain D(P, 4 v) satisfies in this case :

D(Pyav) ={u€ L?, Pyayue L?}. (2.12)

2.3 Spectral theory

All the operators introduced above are selfadjoint. In particular one can
analyze their spectrum, defined as the complementary in C of the resolvent
set p(P) corresponding to the points z € C such that (P — 2)~! exists.
The spectrum o(P) is a closed set contained in R. The spectrum contains in
particular the set of the eigenvalues of P. We recall that )\ is an eigenvalue, if
there exists a non zero vector u € D(P) such that Pu = Au. The multiplicity
of A is the dimension of Ker (P — A). We call discrete spectrum o4(P) the
subset of the A € o(P) such that A is an eigenvalue of finite multiplicity.
Finally we call essential spectrum of P (denoted by o.ss(P) the closed set :

Oess(P) = a(P) \ 04(P) . (2.13)

In this course, we will be mainly interested in the analysis of the bottom of the
spectrum of P as a function of the various parameters (mainly /). Depending
on the assumptions, this bottom could corresponds to an eigenvalue of to the
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botttom of the essential spectrum.
This bottom being determined by

inf(a(Ph’Ay)) = 111615 Qh,A,V(u) s (214)

it is enough, in order to determine if the bottom corresponds to an eigenvalue,
to find a non trivial u in the form domain such that

Qh,A,V(U) < iIlf(O'ess(P}l’,q’v)))||u||2 . (215)

An easy case when this is satisfied is when oess(Ppav)) = 0, corresponding
to the case when P is with compact resolvent. For verifying this last prop-
erty, it is enough to show that the injection of V in L? is compact. This is
in particular the case (for Dirichlet and Neumann) when ( is regular and
bounded. In the case, when €2 is unbounded, it is possible to determine the
bottom of the essential spectrum using Persson’s Lemma (see Appendix C).

2.4 Lieb-Thirring inequalities

In order to complete the picture, let us mention (confer [ReSi], p. 101) the
following theorem due to Cwickel-Lieb-Rozenbljum :

Theorem 2.1 .
There exists a constant L,,, such that, for any V such that V_ € L%, and

if m > 3, the number of strictly negative eigenvalues of S1 N_ is finite and
bounded by

N < Lm/ (=V)2da . (2.16)
V(z)<0

This shows that when m > 3, we could have examples of negative po-
tentials V' (which are not identically zero) and such that the corresponding
Schrédinger operator S; has no eigenvalues. A sufficient condition is indeed

Lm/ (=V)2dx < 1.
V<0

If A < info.g(P), it is natural to count the number of eigenvalues strictly
below A :
N = #{) <A\ € o(P)} (2.17)

10



each eigenvalue being counted with multiplicity.

In this situation, it is useful to have either universal estimates (Cwickel-Lieb-

Rozenblum) or semiclassical asymptotics (see Robert [Ro] or Ivrii [Iv]).
More generally, we are interested in controlling the more general moments

(also called Riesz means) defined for s > 0 by

N () =D (A= N)" . (2.18)

Theorem 2.2 (see [LieTh])
There exists a universal constant C, such that, if V satisfies V_ € L2 7*(R")
and 5 + s > 1, then the eigenvalues of P = —h2A +V satisfy

> (=)< c/ (=V)3+da . (2.19)
;<0 V<o
The same 1is true with magnetic field.

This inequality (for s = 1) has played an important role in the analysis of
the stability of the matter in physics.

2.5 Diamagnetism

By Kato’s inequality (cf for example [CFKS]), which says that, for all u €
H! . for all j,

locy

10;|u|| < [(0; — iA;)u|, a.e., (2.20)

it can be shown that the effect of the magnetic field is to increase the bottom
of the spectrum (in the case when inf o(Pa—) < inf 0es5(Pa=g)). We recall
that this inequality gives, for any real potential V', the comparison :

inf Sp (P4 +V) > inf Sp (=hAg +V) | (2.21)
and that a similar result is true in the case of Neumann :
inf Sp (P40 +V) >inf Sp (-h*AJ +V) , (2.22)

This inequality admits a kind of converse, showing its optimality (Lavine-
O’Caroll-Helffer) (see [Hell])

11



Proposition 2.3
Let \s be the ground state of Pa(h), then Ax = Aa—q if and only if B =0
(when €2 is simply connected).

When (2 is not simply connected, the condition B = 0 is NOT sufficient and
one should add a quantization condition' on the circulation of A along any
closed path.

2.6 Very rough estimates for the Dirichlet realization

When n = 2, it is immediate to show the inequality

(Ppaou | u) > h / B(@)u(@)Pdr , Yue C(Q) . (2.23)
Q
This leads for the Dirichlet realization and when B(z) > 0, to the trivial
estimate :
inf o(P,) > hinf B(z) := hb . (2.24)

€N
Note that the converse is asymptotically true. In a system of coordinates,
where © = 0 denotes a minimum of B which is assumed to be inside {2, and in
a gauge where A(z1,29) = 1b(z, —21) + O(|z|?), we consider the quasimode
1 |z|?
u(z; h) :==ch 2 exp —p\/ETx(x) ,
where x is a cutoff function equal to 1 in a neighborhood of 0. The optimal p

is computed by minimizing over p the energy corresponding to the constant
magnetic field b :

(/000 + i5muts D + 13, = igmyutes D @y ) (i DIE-

One easily gets that this quantity is minimized for p = % and that the
corresponding energy is b.
The control of the remainders is easy, and we get :

inf o(PP,) < hb+ O(h?) . (2.25)

So we have proved? (in the 2-dimensional case) :

I This circulation divided by 27 should be an integer.
2We leave to the reader the proof for when the minimum of |B(z)| is attained at the
boundary. This affects only the remainder term.
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Theorem 2.4 .
Under assumption (8.1), the smallest eigenvalue AV (h) of the Dirichlet re-
alization P, o of Py a0 satisfies :

A(l)(h)
h

Let us define the theorem in the more general case. Let us extend at each
point Bj; as an antisymmetric matrix (more intrinsically, this is the matrix
of the two-form og). The the eigenvalues of iB are real and one can see
that if A\ is a matrix of +B, with corresponding eigenvector u, then u is an
eigenvector relative to the eigenvalue —A\. If the A; denote the eigenvalues of
1B counted with multiplicity, then one can then define

=b+o(1). (2.26)

TrtB(z) = ) A (2.27)

A;>0
The extension of the previous result is then

Theorem 2.5 .
Under assumption (8.1), the smallest eigenvalue AV (h) of the Dirichlet re-
alization Ph’A’Q of Py a0 satisfies :

A (h)

= inf Tr (B(z)) +o(1) . (2.28)

zeN

The idea is to first treat the constant case, and then to make a partition of
unity. For the constant case, after a change variable, we will get, for n = 2d,

the model ;
Z (01a +1b;)*]

7=1
and for n = 2d + 1, the model

— 05441 + Z[ (0j1a +1b;)*]

with

D |bl=Tr'B.
J
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2.7 Magnetic bottles

This problematic was introduced by Avron-Herbst-Simon [AHS] and then
discussed by Colin de Verdiere and Helffer-Mohamed (see later Kondratiev-
Mazya-Shubin and references therein). The question was to analyze the
question of compact resolvent when there is no magnetic electric field. In
the case of dimension 2 the previous trivial inequality (2.23) shows that in
the case of Q = R? and if B(z) — +oc as |z| — +oo, then the Schrodinger
magnetic operator is with compact resolvent. This is indeed an easy exercise
to show that its form domain has compact injection in L?. The 2-dimensional
case is too particular for guessing the right result in the general case. We
just mention the following result of [HelMol]. Let us introduce

milx) = > |D:By
la|=k,j,

Theorem 2.6
Suppose 2 = R" that there exists r > 0 such that :

ka(l‘) — 00, Myy1 < Cm'r .
k<r
Then —A 4 is with compact resolvent.
This theorem is based on an iterated Bracket argument inspired by Kohn’s

proof of the hypoellipticity of the Hormander’s operators (see [HelNi] for
discussions on recent evolutions of the subject).

2.8 Other rough lower bounds.

Let us start the analysis of the question with very rough estimates. In the
case of Dirichlet, n = 2, and if B(x) # 0 (say for example B(z) > 0), we
can use (2.23) which gives a comparison between selfadjoint operators in the
form (for any p € [0,1])

PPy> p(PPy) + (1= p)hB(x) (2.29)

The lower bound is now a new Schrodinger operator, which has this time an
“effective” electric potential (1 — p)hB. In order to find a lower bound for
the smallest eigenvalue of the Dirichlet realization, it is enough to apply for
a suitable p a rough lower bound for the operator :

14



p(Pyls) + (1 = p)hB(z) .
We shall show as quite preliminary result the following proposition, which
improves Theorem 2.4 :

Proposition 2.7 .

Under the condition that x — B(z) is > 0, non constant and analytic, then
there exists 0 €]0, 3] and C' > 0 such that :
1
AD(R) — bh > 5h% : (2.30)

where b = inf | B(x)|.

Proof :
Using the Lieb-Thirring bounds for the Schrodinger operator —eA + V' (see

above and [BeHeVe]) with € = ph and V (z) = £(B(z) — b), we start from the

property, that there exists 6 €]0, 1] and C such that, Vp €]0, 1],
1

AW () = (1= p)hb > = (ph®)(ph) ™" .

Ql

This can be rewritten in the form :
1
A (R) — hb > 6;)1*"}%" — bph

or

1
A(l)(h) —hb> ph <5h19 _ bp9> ‘

If we take p = vhl%e and b small enough, we get (2.30) for h small enough.

Remark 2.8 .

The optimality of this inequality will be discussed later in particular cases.
In particular, we will discuss the case when B(x) = b and the case when
B(z) — b has a non degenerate minimum.

Remark 2.9 .
When b = 0, we can take p = %, and get, for some 6 > 0 :

1
AD(h) > Zh* 0
(h) 2 =

Results in [HelMo3], [Mon], [Ue2] or [LuPal] show that it is optimal.
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3 Models with constant magnetic field in di-
mension 2

Before to analyze the general situation and the possible differences between
the Dirichlet problem and the Neumann problem, it is useful- and it is ac-
tually a part of the proof for the general case— to analyze what is going on
with models.

3.1 Preliminaries.

Let us consider in a regular domain € in R? the Neumann realization (or the
Dirichlet realization) of the operator P 4,0 with

1 1
A(](.ZEl,fEQ) = (—5172, ——.251) . (31)

2 2
Note that the Neumann realization is the natural condition considered in
superconductivity. We will assume b > 0 and we observe that the problem

has a strong scaling invariance :
Ph,bAO - hQPI,bAo/h . (32)

As a consequence, the semi-classical analysis (b fixed) is equivalent to the
analysis strong magnetic field (h being fixed). If the domain is invariant
by dilation, one can reduce the analysis to h = b = 1. Let us denote by
p I (h,b, Q) and by A (h, b, Q) the bottom of the spectrum of the Neumann
and Dirichlet realizations of P}, 54, in €2. Depending on (2, this can correspond
to an eigenvalue (if Q is bounded) or to a point in the essential spectrum
(for example if Q@ = R? or if O = R?). The analysis of basic examples will
be crucial for the general study of the problem.

3.2 An important model

Let us begin with the analysis of a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples.
We consider the Neumann realization HY¢ in L?(R") associated to the op-
erator D2? + (z — £)%. Tt is easy to see that the operator is with compact
resolvent and that the lowest eigenvalue (&) of HY¢ is simpl. For the second
point, the following simple argument can be used. Suppose by contradiction
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that the eigenspace is of dimension 2. Then, we can find in this eigenspace
an eigenvector such that u such that «(0) = «/(0) = 0. But then it should
be identically 0 by Cauchy uniqueness.
We denote by ¢, the corresponding strictly positive normal eigenvector. The
minimax shows that £ — p(§) is a continuous function. It is a little more
work (admitted (see Kato [Ka]) to show that the function is C*. It is im-
mediate to show that u(£) — +o00 as £ - —oo. We can indeed compare by
monotonicity with D? + 22 + &2

The second remark is that ;(0) = 1. For this, we use the fact that the
lowest eigenvalue of the Neumann realization of D? +¢* in R" is the same as
the lowest eigenvalue of D? + #? in R, but restricted to the even functions,
which is also the same as the lowest eigenvalue of D7 + ¢* in R.

Moreover the derivative of p at 0 is strictly negative.
It is a little more difficult to show that

L p(€) =1

The proof can be done in the following way. For the upper bound, we
observe that p(§) < A(&) where A\(£) is the eigenvalue of the Dirichlet real-
ization. By monotonicity of A(£), it is easy to see that A() is larger than one
and tend to 1 as £ — 400. Another way is to use the function exp —3(z—¢&)?
as a test function.
For the converse, we start from the eigenfunction ¢¢(x), show some uniform
decay of ¢¢(x) near 0 as & — 400 and use z — x(z + &) ge(x + &) as a test
function for the harmonic oscillator in R.

All these remarks lead to the observation that the infimum infeeg inf Sp (HV+)
is actually a minimum [DaHe] and stricly less than 1. Moreover one can see
that p(§) > 0, for any &, so the minimum is strictly positive. To be more
precise on the variation of u, let us first establish (Bolley-Dauge-Helffer)

(&) = —[1(&) — €pe(0)* . (3.3)
To get (3.3), we observe that, if 7 > 0, then

0= [, [Dive(t) + (t = €)*@e(t) — (&) pe(t)pesr(t + 7)dt
= —0e(0) 0y (T) + (W(§ +7) = (&) [, e()pesr(t +7)dt .
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We then take the limit 7 — 0 to get the formula.

From (3.3), it comes that, for any critical point &. of p in RT

p'(&) = 260z, (0) > 0. (3.4)

So the critical points are necessarily non degenerate local minima. It is then
easy to deduce that there exists a unique & > 0 such that p(§) continues to
decay monotonically till some value O < 1

O = inf (&) = (&) - (3.5)
and is then increasing monotonically and tending to 1 at +o0c. Moreover

=& . (3.6)

Finally, it is easy to see that ¢¢(z) decays exponentially at oc.

Let us give additional remarks on the properties of ;1 and ¢¢(z) which
are related to the Feynman-Heilmann formula. We admit again (See Kato
[Ka]) that we can “freely” differentiate with respect to &.

Let us start® from :

HY ()¢ (5€) = n(&)e(:€) - (3.7)
Differentiating with respect to £, we obtain :
(OH™ (&) = 1 () (5 €) + (HY(€) — 1(€))(9ep) () = 0 . (3.8)

Taking the scalar product with ¢¢ in L*(R"), we obtain the socalled Feynman-
Heilmann Formula

“+oo
PO = (@ el ¢ =2 [ (=OleeOPar.  (39)
Taking the scalar product with d¢p)(-; ), we obtain the identity :

((OHN (&) — 1 () (+5€) | () (+5€)) (3.10)
HHN ()¢ (5€) = n(€)(0ep) () | (Oep) () =0 . '

3We change a little the notations for H:¢ (this becomes H™ (¢) ) and ¢ (this becomes
©(+;€)) in order to have an easier way for the differentiation.
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In particular, we obtain for £ = &, that :

HHN (§)e(5 &) = 1(60)) (Oe0) (1 &0) | () (+:&0)) =0 . '

We observe that the second term is positive (and with some extra work
coming back to (3.8) strictly positive) :

((OH™ (80))p(-1 &) | Dep) (5 60)) < 0. (3.12)

Let us differentiate one more (3.8) with respect to &.

200 HN () — 1'(£))0eep (5 €)
+(HY() — n(£) (9F) (-5 €) (3.13)
+HOFHN(E) — 1"(€))p(56) = 0.

Taking the scalar product with ¢, and § = £y, we obtain
1'(&) = 2+ ((OeH" (S)p (- 0) | ) (5 60)) < 2. (3.14)

Proposition 3.1 The eigenvalue ji(§) and the corresponding eigenvector ¢
are of class C'*° with respect to €.

Proof :

Step 1 :

Let u(&) the lowest eigenvalue of HY(&;). We recall that it is simple. Let
¢¢, the normalized eigenvector attached to p(§p). Let us denote by ©g, the
orthogonal projection on ¢g,. The domain of the operator can be seen as

D(H"(€)) = {u € BR") [ u'(0) =0,

and we observe that it is independent of £&. We will use a variant of the
so called Grushin’s method. Let us introduce the unbounded operator on

L*(RY) x C
My: = ( HY (&) = n(&) vg )
Peo 0
with domain D(HY(&)). Let us show its invertibility. By elementary alge-
bra, we get that the inverse is

B E+>
Ro= (%0 ~0 )
° (Eo Ey
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with :

By = ((HY(&) — &))" (3.15)
Ef = gq (3.16)
Ey = ¢ (3.17)
Ef~ = 0. (3.18)

Step 2 :
Let us now introduce

Mg = (1T Fe ).

Let us show that the inversibility is stable when £ remains near &, and p
remains near p(&). We observe that :

M(E,p) = Mo+ ( (HE) ~ H(E) (1= (&) 0

o (m A <(HN(&)—HN(@S»—(M—M(&O)) 8))

But the map & — H™ (&) is continuous from C into L(D(H (&), L?). So
the result is clear and the inverse can be given by the convergent Neumann
series :

M(g,u)—l — Z(_l)j (RO ( (H(é‘) - H(€0)8 - (M - M(&O)) 8 )) RO-
< (3.19)
Let us denote by

_( E ) EY(En)
R&w) = ( E= (& p) ET(& 1) )

the inverse of M (&, i1). The following result is standard :

Lemma 3.2
The inverse of M (&, 1) is a C map in a neighborhood of (&, (o)) with
value in D(H™(&)) x C).
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Proof of Lemma 3.2 :
It is clear that

e = (o (1O~ =i 0))

is C°. Let us also observe that :

M(& )t =Y (=1YT (€, p) Ro.

jEN

Consider
(& ) = (H(E) — H(&)) — (1 — p(&)) -
The derivatives of r(&, p) are given by :

Oer(€.p) = OH(E) =2t — )
(& n) = L

In view of (3.21), we will estimate T'(&, p)? :

( (57 0)) = (0% %) (57 5))

((pzor(é-: :U’)) (E()T(é-, :U’))j_l

So

M(& )™t = 3 en(=1) < ( (Eor(&m)y 0 ) Ry.

@z, (& W) (Eor (&, 1)) 0

It is then easy to show the C*° property.

Lemma 3.3
w is an eigenvalue of HN(€) if and only if ET (&, u) = 0.

( (Eor(&, p))? g ) .

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Moreover, if p is an eigenvalue, E* (&, ) is the associated eigenvector in a

neighborhood of (&o, 11(&o))-

Proof of Lemma 3.3 :

Again this is simple linear algebra. Expressing that R(, p1) is the inverse of
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M (&, ) gives :

E(& p)(H (&) — )+ ET(§, g, = 1d (3.25)
E7(& nee = (3.26)
E(& p)pe, = 0 (3.27)
E(&u(H(E) =)+ BT (6 mpg, = 0 (328)
(H(&) = m)E(& 1) + pe E7 (6, p) = 1d (3.29)
oL B, = 1 (3.30)
(H(&) = ET (& 1) + 00 BT (&) = (3.31)
e, B 1) = (3.32)
Taking the composition of E* (&, u) with (3.28) on the left, we get
ET (& ) E™ (& p)(H (&) — p) + B (&, ) BT (€, p) g, = 0,
E+ (6: M)(pzo _ _E'Jr (57 M)g+(§&g)ﬁ§{(€) - /L)‘ (333)

This quantity (3.33) is well defined if £ # 0. So using (3.25) et(3.33) we
get,

E* (& n)E (&, 1)
()

So we have shown that if " # 0, then H(§) — p is invertible.

(H(§) —n) ' =E(n) -

(3.34)

Conversely, let us assume that E/~ = 0. Then using (3.31), E¥(&, p) is an
eigenvector as soon that ET (&, ) is different from 0. But E ., = Ef =
¢, 1s non zero, so by continuity it is also true for E*(, p) .

Step 8 : Analysis of the equation E1~ (&, u) = 0.
We have just to apply the implicit function theorem in the neighborhood of
(&0, 11(&). But by elementary computations, we have

) = D1 (@ ren) (Bor (6. 1) g, (3-35)

Jz1
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The derivatives at (&g, (&) are easily computed as :

afE(&/i)Jr_(fo,M(%)) = —9020867"(50,#(50))8050 (3.36)
=2 t-eda @D
OB (&) (& m&) = —1. (3.38)

In particular (0, E)(&, )™ (&, 11(&)) # 0 and the implicit function theorem
leads to

Lemma 3.4
There exists n > 0 and a C™ map i on [& — 0, & + 1| such that

VE €léo — n, & +nl, Y €lu(éo) — 0, (&) + 1l B =0 <= p= j(§).

We then obtain a C'* function £ — [i(€) such that fi(€) is an eigenvalue
of HY (&) and which is equal to u(€) at &. By uniqueness, we get that for

€ — &o| small enough fi(§) = p(§).

3.3 The case of R?

We would like to analyze the spectrum of :
B B
Sp = (Dy, — 5:52)2 + (D, + 5331)2 : (3.39)

We first look at the selfadjoint realization in R?. Let us show briefly, how
one can analyze its spectrum. We leave as an exercise to show that the spec-
trum (or the discrete spectrum) of two selfadjoints operators S and 7" are the
same if there exists a unitary operator U such that U(S+:)~'U~! = (T+1:)~".
We note that this implies that U sends the domain of S onto the domain of
T.

In order to determine the spectrum of the operator Sg, we perform a succes-
sion of unitary conjugations. The first one is called a gauge transformation.
We introduce U; on L?(R?) defined, for f € L? by

U f =expiB2 f (3.40)
It satisfies
SBUlf = Ulb%f , Vf € S(RQ) , (341)
with
Sk = (Dy,)? + (D,, + Bxy)*. (3.42)
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Remark 3.5 .

U, is a very special case of what is called a gauge transform. More generally,
we can consider U = expig where ¢ is C®. If Ay := 3 (D, — Aj)°
is a general Schrodinger operator associated with the magnetic potential
A, then U 'A U = Aj; where A = A+ grad¢. Here we observe that
B :=rot A =rot A. The associated magnetic field is unchanged in a gauge
transformation. We are discussing in our example the very special case (but

important!) when the magnetic potential is constant.

We have now to analyze the spectrum of Sj.
Observing that the operator is with constant coefficients with respect to the
xo-variable, we perform a partial Fourier transform with respect to the xs
variable

Us = Faoses (3.43)

and get by conjugation, on L*(RZ, ),
S = (Dg,)? + (& + Bxy)* . (3-44)

We now introduce a third unitary transform Us

(U31) 0:6) = F(1,8) , with gy =+ L (3.45)
and we obtain the operator
Sy = D.+ B*)”, (3.46)

operating on L*(R? ).

The operator depends only on the y variable. It is easy to find for this
operator an orthonormal basis of eigenvectors. We observe indeed that if f €
L*(Re, ), and if ¢, is the (n + 1)-th eigenfunction of the harmonic oscillator,
then

(2,&) = |B|7 [ (&) - 6n(|B|7y)

is an eigenvector corresponding to the eigenvalue (2n + 1)|B|. So each
eigenspace has an infinite dimension. An orthonormal basis of this eigen-
value can be given by vectors e;(£)|B|7f(&) ¢n(|B|2y) where ¢; (j € N) is
a basis of L?(R).

We have consequently an empty discrete spectrum. The eigenvalues are usu-
ally called Landau levels.
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3.4 The case of R>™

For the analysis of the spectrum of the Neumann realization of the Schrodinger
operator with constant magnetic field Sz in R*>*, we start like in the case of
R? till (3.44). Then we can use the preliminary study in dimension 1. The
bottom of the spectrum is effectively given by :

inf o (SY*7) = | Bl inf (&) = ©|B| . (3.47)

Similarly, for the Dirichlet realization, we find (See Problem E.14, for
details) : ‘
inf o(SEH) = |B|inf A(¢) = |B] . (3.48)

3.5 The case of the corner

After preliminary results devoted to the case {2 = R, x R, and obtained by
[Ja] and [Panl], a more systematic analysis have been performed by V. Bon-
naillie in [Bon]. Let us mention her main results. We consider the Neu-
mann realization of the Schrodinger operator with A~ = 1, b = 1 in a sector
Qo {(z1,22) € R | |zo| < tgSa1}. One can first show, using Persson’s
Theorem (see for example [Ag]) that the bottom of the essential spectrum is
equal to ©g. So the question is to know if there exists an eigenvalue below
the essential spectrum. One result obtained in [Bon] is that :
lim 271 L (3.49)
a—0 « \/g
Computing the energy of the quasimode u, (following an idea of Bonnaillie-
Fournais [Bon])

2 32 2
Q5 (2.4) = (peos b, psin6) 1 ua(z.4) == coxpi 02 exp -
Wi’Fh B = \/3‘17 and ¢ such that the L?-norm in the sector is 1, one has the

universal estimate
a
“r(a) < (3.50)

kv
which gives (3.49) above (the lower bound is more difficult). This also answers

to the question about the existence of an eigenvalue below ©y under the

condition that
Q

— < 0Oy.
V3 + a? ‘
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3.6 The case of the disk.

The case of Dirichlet was considered by L. Erdds in connexion with an isoperi-
metric inequality [Er]. By using the techniques of [BoHe]|, one can then show
[HelMo3] the following proposition which is a small improvment of his result

Proposition 3.6 .
As RV large, the following asymptotics holds :

b 2
A (b, D(0, R)) — b ~ Q%W_%b%Rexp(—%) | (3.51)

The Neumann case is treated in the paper by Baumann-Phillips-Tang [BaPhTa]
(Theorem 6.1, p. 24) (see also [PiFeSt]) who prove the

Proposition 3.7
1 .
pM (b, D(0, R)) = ©¢b — 2M; b+ o(1). (3.52)

Here we recall that ©g was introduced in 3.5, and that M3 > 0 is a universal
constant.

Remark 3.8

Another interesting case is the exterior of the disk. One first observes that
the bottom of the essential spectrum is b and one can show that as b s large,
there exists at least one eigenvalue below b. One shows also in [HelMo3]
that the above formula for the smallest eigenvalue is still valid by replacing
% par —%. This permits to verify that it is indeed the algebraic value of the

curvature which appears for all the models.
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4 Harmonic approximation

In this section we discuss one of the basic technics for analyzing the ground-
state energy (also called lowest eigenvalue or principal eigenvalue) of a Schrédinger
operator in the case the electric potential V' has non degenerate minima.

4.1 Upper bounds
4.1.1 The case of the one dimensional Schrodinger operator

We start with the simplest one-well problem:
St = —h2d?/da® + v(x) , (4.1)

where v is a C'°- function tending to oo and admitting a unique minimum
at 0 with v(0) = 0.
Let us assume that

v"(0) > 0. (4.2)

In this very simple case, the harmonic approximation is an elementary exer-
cise. We first consider the harmonic oscillator attached to O :

1
—h?d?/dx® + 5’0”(0)x2 . (4.3)

This means that we replace the potential v by its quadratic approximation
at 0 3v”(0)z? and consider the associated Schridinger operator.

Using the dilation x = h%y, we observe that this operator is unitarily equiv-
alent to

h —dQ/dyu%v"(o)y?] | (4.4)

Consequently, the eigenvalues are given by

n
A(h) = h- (1) = 20+ 1)h -1/ 2 ;0) : (4.5)
and the corresponding eigenfunctions are
wh(e) = b buy(—) (4.6)
h2
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with 4

v"(0) y?
Uy (y) = Paly) exp — —; )5 : (4.7)
We are just looking for simplicity at the first eigenvalue. We consider the

. " happ.
function wu}"*"*

’U”(O) LE_Q
2 2h°

= x(@)ul () = ¢ x(w)h™% exp —

where Y is compactly supported in a small neighborhood of 0 and equal to 1
in a smaller neighborhood of 0. We now get

v"(0)

h —_ .
(Sv h 2

Jul = O(h) .

The coefficients corresponding to the commutation of S" and y give expo-
nentially small terms and the main contribution is

l(w(e) — 52" (0)a) ()i ()

which is easily seen as (’)(hg). Then the spectral theorem gives the existence
for S of an eigenvalue \(h) such that

"
IN(h) — h- “T(O)| <C-hi
In particular, we get the inequality
"
M(h) < h- ”T(())+Ch3. (4.8)

Combining with other techniques, one can actually prove that

() = [P0 < o (49)

*We normalize by assuming that the L?-norm of u” is one. For the first eigenvalue, we
have seen that, by assuming in addition that the function is strictly positive, we determine
completely u”(x).
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4.1.2 Harmonic approximation in general: upper bounds
In the multidimensional case, we can proceed essentially in the same way.
The analysis of the quadratic case

1
H(hD,,z) = —h*A + §(Ax | )

can be done explicitly by diagonalyzing A via an orthogonal matrix U. There
is a corresponding unitary transformation on L?(R") defined by

Uf) ()= f(U '),

such that .
U'HU =) (—(hayj)2 + §Ajy§) .
J

Using the Hermite functions as quasimodes we get the upper bounds.

4.1.3 Case with multiple minima

When there are more than one minimum, one can apply the above con-
struction near each of the minima. The upper bound for the ground state
is obtained by taking the infimum over all the minima of the upper bound
attached to each minimum.

4.2 Harmonic approximation in general: lower bounds

Here we follow Simon’s approach (See also [CFKS]) (another approach is
described in [Hell] and another variant in [DiSj]). The reader is sent to
Chapter 11 of CFKS.

Given a covering by balls of radius R and a corresponding partition of
unity, such that :
Zj (¢f)2 =1,
> 1D26f1? < 4
we can write that, Vu € C§°,

(Pv(h)u, w) =2 (Pr(h)gju, dju) —h* 355 [1|1Ds, ' |ull?
S {(Pr(h¢fu, ¢fu) — Cgzllul®.

(4.10)

(4.11)

v
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We can in addition assume that either the balls are centered at the minima
of V, or that the ball are at a distance of % of these minima.

In the first case, we observe that :
[(Pv()gftu . ¢ffu) — (PY(R)¢ftu . dfu) < CR?||gftull?

In the second case, using the fact that the minimas of V' are non degenerate,
we get :

R2
(PRl oty > G llfullP
The optimization between the two errors leads to the choice of

h? 3
ZA

4
that is R = h%, and we then observe that %2 = %5 >> h. We then get the
lower bound

A1(h) > inf V + h(inf ju1 (h, 2,)) — ChS (4.12)

where the infimum is over the various minima z, (assumed to be non degen-
erate) and fi (h, ;) denotes the lowest eigenvalue of the harmonic approxi-
mation at x,.

Note that in the case of a Manifold there is another term which leads to a
small change in the argument (see Simon [Si]). The Laplacian has indeed the
form Zij g_%amiggijamjg_% after a change of function in order to come back
to the selfadjoint case.

4.3 The case with magnetic field

Let us consider two situations.

4.3.1 V has a non degenerate minimum.

The first case is the case when V' has a non degenerate minimum at 0. In
this case the model which gives the approximation is

SU(hD., — AY? 4+ (V' (0)x | )

J
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where A? is a linear magnetic potential attached to the constant magnetic
field Bj, = Bj;(0) so that in a suitable gauge is such that A(z) — A%(z) =
O(|z]?).

After the dilation z = h%y, we get
1
h (Z(Dyj — AD)? + 5V (0)y | y)) :
J

whose spectrum can be determined explicitely (see [Mat]). One then get
easily the upper bound.
The lower bound is obtained similarly once we have observed that

Re (Pay(h)u, u) = Z<pA,V(h)¢fu, dlu) — h?Z || Dy, |ul? . (4.13)

J gt
4.3.2 Magnetic wells

We will be interested in the special case when B(z) € C3TM(Q) satisfies,
for some z; € Q:

B(z) > b:=DB(z)>0,Vz € Q\{x}, (4.14)
and we assume that the minimum is non degenerate :
Hess B(zp) > 0. (4.15)

We introduce in this case the notation :
1 1/2
a="Tr <§Hess B(zo)> . (4.16)

Theorem 4.1 .
If A € CY"M(Q;R?), with M >0, and if the hypotheses (4.14) and (4.15)
are satisfied, then there exists a constant C > 0 such that

2

u(h) ~ [b+ g—bh]tho(hQ). (4.17)
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The proof can be found in [HelMo4]. It is based on the analysis of the
simpler model where near 0

B(2) = b+ ax® + By*. (4.18)

In this case, we can also choose a gauge A(z) such that
A(2) =0 and Ay(2) = bz + %x3 + Bay? . (4.19)
When the assumptions are not satisfied, and that B vanishes. Other
models should be consider. An interesting case is the case when B vanishes

along a line. This model was proposed by Montgomery. We will discuss a
toy model of this type when presenting the Grushin’s method.

4.4 Higher order expansion

After a dilation z = v/h, we can look at
1
=2y + Vo(Vhy) + Vi(Vhy)
that we can rewrite by formal expansions :

J

We can then find a complete expansion by recursion.
Another idea will be to introduce a Grushin problem. This will be ex-
plained in the next section.
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5 Grushin’s problem- alias Feschbach method

This method (as initiated by Grushin and Sjdstrand in this context) is also
called the Feschbach’s projection method (and is analogous in bifurcation
theory)(see also Combes-Duclos-Seiler and Martinez in the context of the
Born-Oppenheimer approximation... ). We have already seen how to use
it in the analysis of the model on R*. We will present various possible
applications.

5.1 High order harmonic approximations

Starting from our operator —h*A + V(z) with V' a C'* positive potential
admitting a minimum at 0 such that V' (0) = V'(0) = 0, we use the dilation

x = h%y , (5.1)
and get by Taylor expanding V' at 0, the operator hH (h), with
1 i
H(h) = =2y + (V" (0)y | y) + > hITy(y) (5.2)
Jjz3

where Tj(y) is an homogeneous polynomial of order j. We note also that T
is odd (resp. even) with respect to the map y +— —y if j is odd (resp. even).
We denote by i the lowest eigenvalue of

Hy:= =2, + 5070y | ) (53

and by 1y the (unique) corresponding eigenvector such that g > 0, ||t =
1.
The starting point is to consider the (unbounded) operator on L?(R") x R

denoted by :
(P Ry
where
Py = Hy— po ,
(Ry 2)(y) = 240 (y) . (5.5)

(Ry f) = [ F)oly)dy .

We observe that Py = P (formally) and in particular we have

Ry = (R{)".
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We also verify that :
RyRf =1, RfRy =1l , (5.6)

where Ilj is the projector on the space {Re)g} :

(Mof)(y) = ( / F ) bo(y)dy)to(y) (5.7)

The first point to observe at this stage is that this operator Py is inversible
with explicit inverse given by

_( Ey Rg
an(B R o

Eo = (I — o) (Py)~" (I — Ty) . (5.9)

Our idea is to now consider the more general operator P(z) :

P2) = ( (P—2) Rj ) , (5.10)

where

Ry 0
P being considered in a weak sense as a perturbation of F :
P=Py+) T;=Py+ 0P, (5.11)
i3

and z being small enough. Note that d P(h) will gain at least h3 in formal
expansions.

So the first simple idea is that at least formally P(z) would be right in-
vertible (like Pgy) and that &, is an approximate inverse.

Before to verify in which sense this can be true, let us recall (formally)
why it is interesting to have the inverse of P(z) for any small z in C. Writing

£(2)
£(z) = < g(_z()z) gigg ) , (5.12)

The main “standard result” is that (P — 2) is invertible (resp. left or right
invertible) if E*(z) is invertible (resp. left or right invertible). This is im-
mediately seen by starting of :

P()o&(z) =1,
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which in particular reads

( ) (Z)+R++E (i) :

RE+

b

I

We shall use this in the following form :
If (z(h),¢(z;h)) is a pair such that E*(2)¢(z,h) = 0 (or is very small in
L?) then the pair (z,(t,z;h), where ¢(t,x;h) := E,(2)é(x, h)), gives an
(approximate) eigenvector of P associated to the (approximate) eigenvalue
z.

Very formally, if E* has a right inverse, then (P — z) has a left inversse given
by :
(P—2)""'=E(2) — BT (2)(E*(2))'E~(2) . (5.14)

So it is important to determine perturbatively E*(z).
We first observe that

(% ) (3 ) (7% ) o

For the right inverse, we have consequently :

E(z) = &(2) (Z(—w‘/@‘) :

J
Observing that

i (6P =2)El [(6P — 2)Eoli Y[(6P — 2)R{
/c_<[( 0) P ) ]O[( ) ]>.

In particular we get

E*(z) ~ Z(—l)jRg[(dP — 2)Eo (P — 2)R{] . (5.15)

J=1

At the level of the research of quasimodes, we will look for z(h) in the

form )
2(h) ~ Zzﬂﬁ , (5.16)

>1
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and the quasimode in the form

6y, h) ~ Y duly)hs | (5.17)
E*(2(h)) ~ 0. (5.18)

Coefficient of hz.
It is given by
Ef(2) = Ry (Ts — 21)Ry .
2

Observing that T3 is orthogonal (by parity) to 1, we get

Ef(z) = —2 . (5.19)

2

So we get z; = 0.

Coefficient of h.
We have to visit the terms inside the terms corresponding to j = 1 and 2 in
the expansion. This gives :

Eif(2) = Ry (Ty — %)R{ + Ry Ty EyTsR{

and leads to the determination of 2.

The recursion argument
We can continue by recursion. Using the parity of Tj, we observe that the
odd powers of z2 should vanish in order to get (5.18).

Let us by recursion verify the statement. We first start with the case
. k
k = 2p even. For the coefficient, of h2, we get

Ry [Thso — 26| R§ — Pi(22, ..., 26-2) = 0.

This gives :
R = RaTkJrQRar + Pk(ZQ, cee Zk,Q) .
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When k£ = 2p+ 1, we obtain the same equation but using the imparity of the
Tj, the fact that Ej respects the parity, and the property of k, the equation
reduced to

Zop+1 = 0.

Note that this vanishing of the odd terms for the eigenvalues did not in
general occur for the expnasion of the corresponding eigenvector (except if
the potential is assumed to be even).

5.2 Grushin’s approach for the construction of quasi-
modes of the Montgomery’s approach

We now look at another example called the Montgomery’s example. This
model corresponds to the case when the magnetic field vanishes on uniformly
along a line (here z; = 0). The initial operator is

—h?D5, + (hDay — 21(1+ ma3))*

with 7, > 0.

For this example the magnetic field B(z1, z2) = 221(1 + y,22) vanishes along
the line ;1 = 0. But as observed in [KwPa] the variation of VB along the
line creeates a localization at 1 = x5 = 0. This has some similarity with the
example treated in [HelSj5] of a degenerate well :

RPA + (142D (1 — (22 + 23))? .

For the analysis of the Montgomery’s model, we introduce the dilation
1 1 . e 4
x1 = h3t, x9 = hsx which after division by h3 leads to the model :

H(h) := D? + (h D, — t2(1 + y1h3?))? . (5.21)
The starting point is to consider the (unbounded) operator on L?(R?) x L*(R)
denoted by :
_ (P Ry
where

Py = Dj + (* - §0|)|2 —HNO ;

Pytho = 0,10 > 0, |[tho]|r2m) =1,

(R )(t, ) = tho(t)p() | (5.23)
(Ro f)(@) = [ f(t,z)dho(t)dt .
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We observe that Py = P; (formally) and in particular we have
Ry = (Rg)" .
We also verify that :
RaRar - ILQ(R) s R;Ra = H() , (524)

where Tl is the projector on the space {Ri} ® L*(R,) :

(Taf)(w.0) = ([ £(t.0)val01d0)valt). (525

The first point to observe at this stage is that this operator Py is inversible
with explicit inverse given by

_( Ey Rg
an(B R -

where

Ey = (I = o) (D} + (#* = &) — po) ™' (I — Iy) - (5.27)

Our idea is to now consider the more general operator P(z) :

P(z) = ( %Z_ ?) OR(T ) , (5.28)

with
P =Py+heP, +hiPy+h>Py+ hiP, = Py + 6P | (5.29)

and z being small enough. Note that dP(h) will gain at least h# in formal
expansions. Here

Py :2(60_t2)Dm )

P2 = Dz, — 2’}/1 (&) - tz)tQZEQ s
P3 = —’Ylt2(Dx'I2+ZE2 Dm) s
P4 = t41'4 .

(5.30)

So the first simple idea is that at least formally P(z) would be right
invertible (like Py) and that & is an approximate inverse.
Using formula (5.15), we proceed as before looking for an expansion in z(h) ~

> sl z;hs. In this case, it remains to expand £(z) in powers of hé.
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Coefficient of hs.
It is given by the operator

[ Ry (o — t°)¢o(t) Duf () + 21 f -
Observing that (£ — #)1(t) is orthogonal to 1, we get

Ef(z) =2 . (5.31)

6

Coefficient of h3.

We have to visit the terms inside the terms corresponding to j = 1 and 2 in
the expansion.
This gives :

3
= Z9 — RO_D:%R(—]'_ + QR(; (50 - t2)’}/1$2t2R8—
4Ry (& — ) Byl — )Ry D
= 25 — 3"(po) D2 — 2127 .

(5.32)

This leads to the choice of 25 as lowest eigenvalue of the harmonic oscillator
37" (p0) D + 271[(&0 — ) 3ol [*2*.

We leave the reader to verify that one can find the terms of the sequence
zj at any order.
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6 WKB construction for the Schrodinger op-
erator: formal approach

6.1 WKB construction
Let V(z) = Vi(x) + hVi(x) a potential. We are looking for a WKB solution

of the form
u (z;h) = hfa(z, h) exp —¢o(z)/h
for the Schrodinger equation

Sy = —h’A+V(x:h),

in the neighborhood of a non degenerate minimum of the potential V; defined
on RP. The potentials Vj and V; are C'*°, defined in a neighborhood around
the minimum of Vj which is assumed to be at 0. We emphasize that we
are looking for a real positive phase ¢y and for an amplitude admitting an
expansion

a(x,h) ~ Z W aj(z)
§=0
The research of a formal WKB solution corresponds to the simultaneous
research of a(z; h) and of E(h) ~ Y22 E; h? such that
(=h*A + V(z;h) = E(h)) (a(-, h) exp —go(-) /h) ~ 0
that is
(Vo — |Vgo?)a+2h V- Va—hAa+hApya+ hVia— E(h)a~0. (6.1)

This leads first to
Vo(z) — |V¢)o(x)|2 —FEy=0. (6.2)

This equation is called the eiconal equation. Assuming that a solution of
this equation has been found, we then obtain a system of equations which
we shall call transport equations

(T1)  2Véo(z) - Vag + (Vi + Ao — Er)ag =0,
(TQ) 2v¢0($) . Va1 + (Vvl + A(ﬁg — El)al = Aao + EQ(J/U,

. (6.3)
(Tk+1) 2V¢0((17) : Vak + (Vi + A¢g — El)ak = Z?:Q Ej Ap41—j
+Aap1 + Epria0 .
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These equations have all the same structure. There is a real vector field X
defined as
X =2V¢py-V

which will vanish at 0 (and this determine £, = 0 = minV}), a function
g = (Vi + A¢y — E1) which has to vanish at 0 (and this will determine Ej,
assuming that a¢(0) = 1) and a function f which will be either identically 0
(in the case of (7})) or which will be given by

k
f= Z Ejapy1-5 + Aag1 + Eyppaao,

Jj=2

and will vanish at 0 and this will determine Ej ;.
We have then to solve
Xu+gu=f

with 4(0) =1 in the case of (7}) and with u(0) = 0 in the other cases.

We shall sketch later how to solve these equations in the general case. In
order to meet the difficulties in successive steps, let us first consider the one
dimensional case.

6.2 The case of dimension p =1

Let us first rewrite the eiconal equation. We get in dimension 1

() =V (1).

We write V (¢) in the form

with b(¢) # 0 in a sufficiently small neighborhood of 0.
This leads to the choice

$o(t) = t3/b(t) , $0(0) =0,

which is the only one compatible with the constraints on ¢y. This gives
explicitely

dolt) = / sv/B(5)ds .
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which is clearly well defined and C'* in a neighborhood of 0. We recall that
we take Fy = minV = 0. Let us now look at the transport equation

2¢(t)ag(t) + (Ey — ¢g(t))ao(t) = 0,

with the initial condition
00(0) =1.

FE is determined by
Ey = ¢g(0) .

We can solve explicitely this ordinary differential equation by observing that

(B - el)
(nao) = =32

All the other equations have the same structure and can be solved using the
variation of constants.

6.3 The general case

We explain the situation in the quadratic case
1 2
Volw) = 5(3- Niad)
J

and Vi (x) general.

Determination of the phase.
The phase should satisfy
Vol|* = Vo , (6.4)

If we look for ¢y has a quadratic form

60(2) = 5(Av, @),

we get the equation
1
A? = §Hess |
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and we can take A has the positive root of %Hess Vo, which was assumed to
be strictly positive.

Note that without assuming that V; is quadratic, one gets at a critical

point . of Vj the following necessary relation (by differentiating two times
the eiconal equation) for the solution ¢y :

(Hess dofr.))? = 5 Hess Vi(r.)

Solving formally (in powers of z“) the transport equation.
For each transport equation, we expand the amplitudes as formal series at 0.

We observe that :
Do 1a0na® = (Y nyag)a
J

and it is then easy to solve the transport equation by recursion, observing
that ¢(z)x® is a formal series vanishing at order |a|+ 1.

Solving in spaces of flat functions (integration along bicharacteris-
tics).

(3 20, = e(@)ula) = (@)

with ¢(0) = 0 and p; =/ /\2—1

Reduction to ¢ = 0. We observe that, for ¢ flat at 0, the function

0
T / g(exp pt xq, ..., exp pint x,) dt

is well defined and that :

0
O ujxjamj)(/ g(exp put xy, ..., exp ppt x,)dt = g() .
j — 00

The general situation in the general case is explained in Helffer® [Hell] or in
Dimassi-Sjostrand [DiSj]) (and of course in [HelSj1]) .

5Note that the simplification in the exposition proposed therein through to Sternberg’s
linearization theorem is not true in full generality.
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6.4 Application

Eigenvalues expansions modulo O(h*°). As in the “generalized” harmonic
approximation method, we deduce complete expansions. The advantage,
which is not developed here is that the WKB solution is in the neighborhood
of the minimum a good a pproximation of the corresponding eigenvector.
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7 Decay of the eigenfunctions and applica-
tions

7.1 Introduction

As we have already seen when comparing the spectrum of the harmonic
oscillator and of the Schrédinger operator, it could be quite important to
know a priori how the eigenfunction attached to an eigenvalue \(h) decays
in the classically forbidden region (that is the set of the z’s such that V' (x) >
A(Rh)). The Agmon’s [Ag] estimates give a very efficient way to control such
a decay. We refer to [Hell] or to the original papers of Helffer-Sjostrand
[HelSj1] or Simon [Si] for details and complements.

Let us start with very weak notions of localization. For a family h — 1,
of L?-normalized functions defined in Q, we will say that ¢, lives (resp. fully
lives) in a closed set of  if for any neighborhood V(U) of U,

lim [Yp)?dx > 0,
h=0 Jy@w)na

respectively
lim || ?de =1 .
h=0 Jy@)na

For example one expects that the groundstate of the Schrédinger oper-
ator —h?A + V(z) fully lives in V~!(inf V). Similarly, one expects that if
limy, oA (h) < E < inf 0455(Sp.1/) and ¢y, is an eigenvector associated to A(h),
then 1)y, will fully live in V(] — oo, E]). This is the way one can understand
that in the semi-classical limit the quantum mechanics should recover the
classical mechanics.

Of course the above is very heuristic but there are more accurate mathemati-
cal notions like the frequency set (see [Ro]) permitting to give a mathematical
formulation to the above vague statements.

In this section, we will discuss the behavior of v, outside the region where
by, fully lives (the smallest U such that 1, has the above property).

To illustrate the discussion, one can start with the very explicit example
of the harmonic oscillator. The ground state z — ch™T exp —% of —h?d?+z*
lives at 0 and is exponentially decaying in any interval [a,b] such that 0 &
[a,b]. This is this type of result that we will recover but WITHOUT having
an explicit expression for 1y.
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7.2 Energy inequalities

The main but basic tool is a very simple identity attached to the Schrodinger
operator
Sy, =—h’A+V

Proposition 7.1 : )
Let Q be a bounded open domain in R™ with C* boundary. Let V € C°({); R)
Q

and ¢ a real valued lipschitzian function on Q. Then, for any u € C%(Q; R)
with w9q = 0, we have
W fo IV (expo/h )l du+ [o(V = Vo) exp26/h o do=

Joexp2¢/h (Spu)(x) - u(z) dx .

Proof:
In the case when ¢ is a C?(£2)- function, this is an immediate consequence
of the Green-Riemann formula

/ Vo Vwdr = —/ Av - wdr — / (Ov/On)wdoyg . (7.2)
Q Q o9

This gives in particular :

/Vv-dex:—/Av-wdz, (7.3)
Q

Q

for all v, w € C?(Q) such that w/sa = 0 or (Jv/dn) a0 = 0.

This can actually be extended to v, w € H}(Q).

To treat the general case, we just write ¢ as a limit as € — 0 of ¢, = x x ¢
where x.(z) = x(%) €™ is the standard mollifier and we remark that V¢ is
almost everywhere the limit of V¢, = V. x ¢.

7.3 The Agmon distance

The Agmon metric attached to an energy F and a potential V' is defined
as (V — E),.dx?® where dz? is the standard metric on R*. This metric is
degenerated and is identically 0 at points living in the ”classical” region:
{z | V(z) < E}. Associated to the Agmon metric, we define a natural
distance

(7,y) — dv_p), (z,y)
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by taking the infimum :

yect-rw([0,1]5z,y)

dyv-p), (z,y) = inf /0 [(V(y(®) = B2 (@)]dt,  (7.4)

where C'P% ([0, 1]; 2, y) is the set of the piecewise (pw) C' paths in R" con-
necting x and y

cr([0,1];z,y) = {y € C""([0,1;R") , 7(0) =z, v(1) =y}. (7.5)

When there is no ambiguity, we shall write more simply dy_g), = d.
Similarly to the Euclidean case, we obtain the following properties

e Triangular inequality

ld(z',y) — d(z,y)| <d(2', ), Vz,2',y € R . (7.6)

Vad(z,y) | < (V = E)4(2), (7.7)

almost everywhere.

We observe that the second inequality is satisfied for any derived distance
like
d(z,U) = inf d(z,y) .

yeU

The most useful case will be the case when U is the set {z | V(z) < E}.
In this case d(z,U) measures the distance to the classical region. All these
notions being expressed in terms of metrics, they can be easily extended on
manifolds.

7.4 Decay of eigenfunctions for the Schrodinger oper-
ator.

When uy, is a normalized eigenfunction of the Dirichlet realization in 2 sat-
isfying Spup = Ayuy, then the identity (7.1) gives roughly that exp ¢/h uy, is
well controlled (in L?) in a region

(e, h) = {2 | V() = [Vo(@)]> = M > & > 0},
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by exp (supQ\Q1 qﬁ(x)/h) The choice of a suitable ¢ (possibly depending on
h) is related to the Agmon metric (V —FE), dz?, when \;, — E as h — 0. The
typical choice is ¢(z) = (1 — €)d(x) where d(z) is the Agmon distance to the
"classical” region {z | V(z) < E'} . In this case we get that the eigenfunction
is localized inside a small neighborhood of the classical region and we can
measure the decay of the eigenfunction outside the classical region by

exp(l — e)d(x)/h up = O(expe/h) , (7.8)

for any € > 0.
More precisely we get for example the following theorem

Theorem 7.2 :
Let us assume that 'V is C*, semibounded and satisfies

lim| i|nf V>infV =0 (7.9)
T|—00
and

V(z) >0 for|z| #0. (7.10)

Let uy, be a (family of L?-) normalized eigenfunctions such that
Sv(h)uh = )\huh s (711)

with A\, — 0 as h — 0. Then for all € and all compact K C R™, there exists
a constant Ce i such that for h small enough

[V(expd/h - up)||r2(x) + || expd/h - up|| 12y < Cex expe/h (7.12)

where x — d(x) is the Agmon distance between x and 0 attached to the Agmon
metric V - dz?.

Useful improvements in the case when ' = min V' and when the minima are
non degenerate can be obtained by controlling more carefully with respect
to h, what is going on near the minima. It is also possible to control the
eigenfunction at co. This was actually the initial goal of S. Agmon [Ag]

Proof:
Let us choose some € > 0. We shall use the identity (7.1) with

e V replaced by V — A,

48



e ¢ =(1—0)d(z,U), with 6 small enough possibly depending on e,
e u = uy,, and
[ ] Sh: —th—f—V—)\h

Let
Qf={zeQ,V(x)>d}, Q5 ={zeQ, V(z) <d}.

We deduce from (7.1)
h? [, |V (exp Lup) [Pdx + fﬂg(V — M — Vo) exp 22w} dx
< sup,cq; V() = M= [VOP| (fon exp 2 uf do) .

Then, for some constant C' independent of h €]0, ko] and 6 €]0, 1], we get

h? [, |V (exp Luy) dx + fﬂj{(v — M\ — |Vo|?) exp 22 v da
<C- (ng exp 22 u? dx) .
Let us observe now that on f we have (with ¢ = (1 — §)d(-,U))
V=2 — Vo> > (2—6)6% +o(1) .
Choosing h(d) small enough, we then get for any h €]0, h(d)]
V=X —|Vo]? > 6%
This permits to get the estimate
h? [, |V (exp Luy) [Pdx + 62 fﬂj{ exp 22 u? dx
<C (for e 2 u} du) |
and finally

h? [ |V (exp Luy) [2dx + 62 [, exp 22 w2 dx
< é - exXp a(h_é) )

where a(d) = 2SUp, g ¢(x). We now observe that lims_,qa(d) = 0 and the
end of the proof is then easy.
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Remark 7.3 : When V' has a unique non degenerate minimum the estimate
can be improved when N, € [0,Coh|, by taking 6 = Ch, for some C > 1 and
¢ = d — Chinf(log(£),logC). We observe indeed that V, d and |Vd|?* are
equivalent in the neighborhood of the well.

Applications:

As a first corollary, we can compare different Dirichlet problems correspond-
ing to different open sets {2; and {2, containing a unique well U attached to an
energy E. If for example €2; C )5, one can prove the existence of a bijection
b between the spectrum of Sy, o) in an interval I(h) tending (as h — 0) to £
and the corresponding spectrum of Sy, o,) such that |[b(\) —A| = O(exp —S/h)
(under a weak assumption on the spectrum at 9I(h)). S is here any constant
such that

0<S< d(VfE)_,_(anaU) .

This can actually be improved (using more sophisticated perturbation the-
ory) as O(exp —25/h).

Remark 7.4
It can be useful to extend the properties of the eigenvectors to the decay
properties of the kernel of the resolvent of the operator. The reader is invited

to look in [DiSj].

7.5 The case with magnetic fields
7.5.1 The case with V.

When V satisfies the previous assumptions, the first result [HelSj7] is that
that the addition of a magnetic potential can only improve the decay. This
is in the same spirit of the property of diamagnetism. The main reason (with
the extension to the case with magnetic field of the Green-Riemann formula)
is that we can replace the inequality (7.1) by

Jo IVnalexpd/hu)? de + [o(V = [Vo[?) exp2¢/h |u]? dv = (7.13)
Re ([, exp2¢/h (Papyu)(z) - u(z) dz) | '

which is valid for » in the domain of the Dirichlet or Neumann realization of
Papy.
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7.5.2 The case without electric potential

In this case, there is no hope to use the result for V', which does not create any
localization. The idea is that the role previously played by V(x) is replaced
by h|B(z)| (or more generally to x — Tr(B(x)). This is due to (2.23) in
the case n = 2 (B(x) of constant sign) and to their extensions. The Agmon
distance will be attached to h (Tr . (B(z)) — inf, Tr (B(x))) dz?.

The proof is in two steps: treatment of the case with constant magnetic field
and then partition of unity for controlling the comparison with this case.
This explains, due to the presence of h before | B|, that the decay is measured
through a weight in exp —%, where ¢ should satisfy :

Vo < Tr ,(B(x)) — inf Tr . (B(x)) .

outside a neighborhood of the magnetic well, that is the set of points where
Tr . (B(x)) = inf, Tr ((B(z).
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8 Application to the superconductivity

8.1 Introduction

The analysis of the superconductivity is based on the analysis of a functional.
In the analysis of the stabilty of some minimizers (called the normal solution),
one is immediately let to the spectral analysis of the Neumann realization
of a Schrodinger opeerator with magnetic fields. We will mainly discuss a
theorem by Lu-Pan. As we said one motivation comes from superconductivity
but this is also one of the basic problems in the literature in mathematical
physics in connexion with semi-classical problems (h being in this context
the Planck constant). If one can naturally refer to Kato and, at the end
of the seventie’s to Avron-Herbst-Simon [AHS] or Combes-Schrader-Seiler
[CSS] for the mathematical analysis of the problem, the implementation of
semi-classical techniques for the analysis of the ground state appears first in
[HelSj7] and then in [HelMo2]. Very roughly, it is shown in [HelMo2] that, if
Q2 =R", h|Curl A(z)| plays the role of an effective electric potential. By this
we mean that the anlysis of the operator : —h*A + h|B(z)|, can give a good
information for the localization of the ground state. The boundary case was
less analyzed. Of course the case of the Dirichlet realization does not lead to
really new phenomena in comparison with the case 2 = R", at least if the
condition

b<t, (8.1)

is satisfied, where we used the notations :

inf |B(z)| =b, inf |[B(z)|=10". (8.2)

el €N

8.2 Main results

We recall that we have given a rough asymptotic estimate for the Dirichlet
realization in dimension 2 (see Theorem 2.4) and that by the minimax this
gives an upper bound in the case of Neumann. The first “rough” theorem
for Neumann is the following :

Theorem 8.1

1
lim —inf o(PY,, o) = min(b, Ogb’) . (8.3)
h—=0 h ohs
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The points where the minima of |B| are sometimes called magnetic wells
for the energy b. The decay of the ground state outside the wells can be
estimated (cf [Br], [HeNo2]) as a function of the Agmon distance associated
to the so called Agmon metric (|B| — b)dz?, where da? denotes the euclidean
metric. Note that this metric is degenerate.

We recall that this estimate is very easy to get from (2.23) in the special case
when n = 2 and when the magnetic field has a constant sign. Here (- | -)
denotes the scalar product in L*(€2) and || - || the corresponding norm.

In the general case. one can get a similar result but with a remainder in
O(h1)||u||? (cf [HelMo3], Theorem 3.1).

As in the case when A = 0 but an electric potential V' is added, it is
possible to discuss the various asymptotics in function of the properties of B
near the minima (cf [HelMo2, HelMo3, Mon, Sh, Uel, Ue2] or more recently
[KwPa]). As we shall see later, this property is no more true in the case of
the Neumann realization. The infimum b of |B(x)|on Q is not necessarily the
right quantity for analyzing the bottom of the spectrum as (8.1) is satisfied.
Of course, by direct comparison of the variational spaces corresponding to
Dirichlet and Neumann, one knows that the smallest eigenvalue p")(h) of
the Neumann realization P}, , of P, 1¢ is bounded from above by A (h)
(but the lower bound (2.26) is not correct in general).

One important theorem that we would like to present is

Theorem 8.2 .
If the magnetic field is constant and not zero, then any ground state corre-
sponding to the Neumann realization is localized as h — O near the boundary

of €.

This theorem is general and does not depend on the dimension.
These two theorems are not satisfactory in the sense that they are not
necessarily optimal. In the case n = 2, we can state [HelMo3|

Theorem 8.3 .

Let us assume that n = 2. If the magnetic field is constant and not zero,
then any ground state corresponding to the Neumann realization is localized
as h — 0 near the boundary of Q2 at the points of maximal curvature.

This gives the general answer for the case of dimension 2. The case of dimen-

sion 3 was more difficult and only solved quite recently [HelMo4, HelMo5].
Although the methods of proof can also lead to localization results for

the ground state (see [HelMo3], [HelMo4], [HelMo5]) or more generally for
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minimizers of the Ginzburg-Landau functional (see [LuPal]-[LuPa5], [HePal),
but this will not be discussed here. This is actually explored in [Pan3].

8.3 About the proofs

In the Dirichlet case, the inequality (2.23) was (at least when the condition
B(zx) > 0 is satisfied) the starting point of the analysis of the decay. This is
no more the case when Neumann boundary conditions are assumed, but we
can keep the general strategy as developed in [HelMo3].

We assume that €2 is a bounded, regular open set and that

B(z)>0. (8.4)

8.4 Upper bounds

Using suitable quasimodes (Gaussians and in the case of the boundary tan-
gential Gaussians multiplied by a “normal” solution constructed with the
help of the first eigenfunction of the model on R*), one can get :

1D (R) < min(b, Ogb') h+ C hi | (8.5)
Note that Lu-Pan give the weaker :
pM (R) < min(b, Ogb’) b+ o(h) | (8.6)

which is enough for the analysis of the decay. Note also that the upper bound
involving b = inf B can also be obtained by using [HelMo3].

8.5 Lower bounds

Let 0 < p < 1. We first claim that there exists C' such that, for any ¢, > 0,
we can, by scaling a standard partition of unity of R?, and by restricting it
to €2, find a partition of unity x” satisfying in €,

Y IP=1, (8.7)
J

DIV <Ce®n ™, (8.8)

J
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and
supp(x?) C Qj = B(zj,eh’), (8.9)

where B(c,r) denotes the open disc in R? of center ¢ and radius r. Moreover,
we can add the property that :

either supp x; N0 =0, either z; € 0 . (8.10)

According to the two alternatives in (8.10), we can decompose the sum in

(8.7) in the form :
2= D

int bnd

where “int” is in reference to the j’s such that z; € 2 and “bnd” is in refer-
ence to the j's such that z; € 0€.

The second point is to implement this partition of unity in the following
way :

an () = Y an(Gu) = B2 |V ull® . Yue H'(Q). (8.11)
j j

Here ¢i¥ (or q,]xA, if we want to keep the reference to the magnetic potential)
denotes the quadratic form :

an a(u) = / \hVu — iAu|? dx | (8.12)
Q

and we recall that || - || denotes the L?-norm in Q.

This formula is usually called IMS formula (see [CFKS]) but is actually much
older.

If ah]\f 4 1s the associated sesquilinear form, (8.11) is the consequence of the

identity, for any function xy € C*(2) and any u € H'(Q) :
dia(xu) = Re ap 4 (u, x*u) + 12| [Vx|u |72 - (8.13)

We will also use later the property that, for any function x € C*°(€2) and any
u in the domain of P, that is for any w in the space
D(P,q) ={ve H*Q) |v- (0 — iA)ujgq =0} :

dialxu) = Re (Pl qu | x*u)r2) + 12 Vx| |2 - (8.14)
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We can rewrite the right hand side of (8.11) as the sum of three (types
of) terms.

an(u) =Y an(ju) + D an(xju) — hQZ 11VxGlull?, Yue H'(Q).

int bnd j
(8.15)
For the last term in the right hand side of (8.15), we get using (8.8) :

Ry VG P < CR 2% e [[ul (8.16)

J

This measures the price to pay when using a fine partition of unity : If p is
large, the error is big as h?72/. We shall see later what could be the best
choice of p or of €, for our various problems (note that the play with ¢, large
will be only interesting when p = 3).

The first term in the right hand side of (8.15) can be estimated from
below by using (2.23). The support of X;‘u is indeed contained in 2. So we

have :
th(xgu) >h Z/B(x)|x§‘u|2 dx . (8.17)
int int
The second term in the right hand side of (8.15) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for g;(x”u) for some j such that z; € 9Q. We emphasize that
zj depends on h, so we have to be careful in the control of the uniformity.
Let z be a point in 9. The boundary being regular, we can, by a change of
coordinates in a small neighborhood of this point, rewrite the form ¢, 4 for
u’s with support in this neighborhood of 2z :

Gn,a (1) = / » > 9" @) (ihg, i+ Ax(#)a)- (ihds, i+ Ad(@)a) det(g(7)) d7 .

Here we can assume that the new cordinates of z are (0,0) and we can
also assume that the matrix ¢ is the identity at 2 :

gk’e((]) = 5k’g .
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Of course g depends on z, but all the estimates we could need on the deriva-
tives of ¢ will be uniform in z.

The game is now to compare for u’s with support in a ball of the type
B(z,2Ceyh”) qp,a with the quadratic form :

1 1
4n. (@) = / (s, — 5 B()a)ul? + (110, + 5 B )l di
z2>0

We have omitted for simplicity the tilde’s in the right hand side. The com-
parison is not direct but as an intermediate step, we have to use a gauge
transformation (multiplication by exp —Z%J) associated to a C'*° function ¢,
such that :

wa = wAnew,j o dd)] ’

with
Anew’J(z]) = O I
1
[Anew,j(@) = 5(B(z;) (=22, 21))] < Clz|?.

In this formula, w, is the one-form attached to the vector field A : w, =
Aqidzy + Asdry. Let us emphasize that C' is independent of 5. Let us also
1

introduce for the next formula : A" := (B(z;)(—x3, 71)).

Following line by line the computations of [HelMo3], we get :

gna(xtu) > (1 —Ch?e — Ceoh”)qh[A%f"](eXp —%%XZU) — Ch='e?|||x*xul”
> (1 —Ch*e — Cegh?) " [ A4 (exp — ¢ xtu) — ChY=20e=2| |\ ul|? .

We can now use the result concerning the half -plane in order to get :

an.a(Xju) > (1—Ch2962—060h”)h90/B(Zj)IX?U|2de—Ch4"2962||X?U||2-

(8.18)
We now put together all the estimates and obtain :
‘Jh,A(U) > hZintIB(mﬂX?UPdm
+(1 - C’h29 2 — C’Gohp)h@() and f B(Z])|X§lu|2 dx (8 19)

Rt T
~Cey* Bl

We have now to optimize our choices of p, 6 and ¢, ¢,. If we just want to
get a lower bound of the spectrum, we can first write :

qn.a(u) > hmin (b, Opb") ||ul|?
— (Ch?H1e? + Ceoh?™ + Ch*7=2e2 4+ Ceg > h*=2) ||ul > .
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Takingpz%,@z €e=¢€ =1, we get :

1
]9
ana(u) > (min(b, Ol )h — Ch%) a2 (8.20)

So, taking u = u}, where uj, is a groundstate, we obtain from (8.20) :

Proposition 8.4 .
There exist constants C > 0 and hy > 0 such that, for all h €]0, ho] :

1D () > (min(b, Ogb') ) h — Ch7 . (8.21)

But for the control of the decay, we need also to take in (8.19) p = 3,
0 = 3, e =1 and ¢ large. This gives an estimate which may look weaker but
will be more efficient.

Proposition 8.5 .
There ezists C' and hy and, for all ¢g > 0, there exists C(eq) such that, for
h €]0, hyl, the following inequality :

ana(w) > hd5,, [ Bla)x}ul*de
~C(e)h Y pna | Xul* da (8.22)
_f_gh thf |X;‘l“|2d$ .

is satisfied, for all v € H'(2).

8.6 Agmon’s estimates

We continue to follow the proof given in [HelMo3| and will explain the mod-
ifications needed in order to treat Neumann problems.

We first observe that if ® is a real and uniformly Lipschitzian function and
if u is in the domain of the Neuman realization of P, 4, then we have by a
simple integration by part (see (8.13)) :

Re (P, au, exp )

= Re ((2V - A) (& V—A)expz )
= (4 — A) exp Su, (4V — A) exp-Su) — h]||[ VD] exp Sl (8.23)

1
h2
= [ Alexp ) — [V exp Sal?



We now take u = u;, an eigenfunction attached to the lowest eigenvalue
p(h). This gives :

2 2

¢ ¢ ®
PO exp—ull = gy a(exp ) = Al|[VO] exp -l (824

It remains to reimplement the previous inequality in this new one and to
use the upper bound (8.5).
Let us take ®(z) = amax(d(z, 8Q), h?), where a > 0 has to be deter-
mined. Let us use Proposition 8.5. We first write :
qn.a(exp %u) > hy .. [ B(x)|exp %X?M?dx
—Cle0)h Yy [ X exp Tul® do (8.25)

~% 5, [ lexp 2 xtulbda.
Let us first consider the case B(x) = b. The inequality (8.5) becomes :
pV(h) < Ogbh+ Chi . (8.26)

Using (8.23), we finally obtain :

1 C d
(b(1 — ©4) — Chi —%—a2)2/|exp h—%xgu|2dx < C(GO)Z/|X§‘u|2daz.

int bnd

(8.27)
Taking ¢ large enough and
a < b(l — @0)
we finally obtain the estimate :
d(x, 002
lexpa™ ™2 < Cllull, (829)

for some new constant C' > 0.

Note that we just need a weak upper bound of ,u(l)(h) in order to make
the argument correct. In particular, the remainder C'h% in (8.27) can be
replaced by o(1) without changing the argument. This is the upper bound
obtained in [LuPa2].

29



Let us now show how to go from an L?-estimate to an L*>°-estimate. Using
(8.24), we first get :

) )
qn,a(exp —u) < C hl|exp —ul|* . (8.29)
h2 h2

This gives, together with (8.28), an estimate in H' norm. Coming back to
the second order differential equation satisfied by exp ’%u and using that
2

® is constant near the boundary®, we can use the regularity of the Neu-
mann problem for getting a control in H?. This gives finally (through the
Sobolev injection theorem) the proof in the constant magnetic field case of
the following theorem :

Theorem 8.6 .
Let us assume that the condition :

Ot < b, (8.30)

15 satisfied.
There exists C > 0, a > 0 and v € R, such that if uy, is the ground state of
Py q, then :

d(zx, 0L

exp a%mh(zﬂ < Ch7"||upl|z2 , Vo € Q2. (8.31)

The condition (8.30) is always satisfied when B is constant because b = V'
and Oy < 1 ( [PiFeSt)).

The proof when B is not constant is essentially the same. The inequality
(8.27) becomes :

(b — Opb' —0o(1) — 692 - a2> Z/ | exp %X?M?d:ﬁ < Cle) Z/ |X?u|2dx .
0 2

int bnd
(8.32)
We can then conclude in the same way (modulo the proof of (8.5) which will
be given later.

N

Remark 8.7 .
On the contrary, when b < ©¢b’ the ground state decays exponentially outside
neighborhoods of points where B(z) = b.

6 Actually, we need first to use a regularized ® in order to make the argument rigorous.
Another way, would be to use L? estimates.
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9 Splitting between the two first eigenvalues

We will be only very brief on this part but this was one of the main mo-
tivation (before we get this application to superconductivity) for a careful
analysis of the decay of the eigenfunctions.

The control of the decay of the eigenfunctions has also immediate conse-
quences on the splitting. To understand what is needed, let us recall the
following classical formula for the splitting which is nothing else than a ver-
sion of the minimax principle applied to the orthogonal of R - uq,

)\2—)\1:

in ([ 1ol o) f 162 ol w2 )|
{ ¢: ¢ €CF, }
J o) ui™ ()2 dw = 0

(9.1)
Here uﬁ’") denotes the first normalized eigenfunction of the Schrédinger oper-
ator. The estimates about the splitting are then deduced from a good choice
of ¢ and from a precise information on the decay of ugm) in suitable domains.
Let us consider the double well situation. The potential v is symmetric and
has two non degenerate minima. We now choose a function ¢ in C§° which

satisfies

¢(z) = —¢(—x)
and
p=1
in a neighborhood of the critical point x. of V. We recall also that the first

eigenfunction is even

ul™ (z) = ui™ (~z) .

We have used here that the first eigenvalue is simple and that the first eigen-
function can be chosen strictly positive (Perron-Frobenius argument).
As a consequence we have effectively

/qﬁ(x)ugm) (z)%dr = 0.

We observe also using the Agmon estimates that
2, (m)( 2 S
$(a)ul" (@) da =1+ Ofexp )
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and that

S
[ Vot @2ds = Otexn -3
for some S > 0. Coming back to the formula giving the splitting we obtain
S
)\2 — )\1 = O(exp —E) . (92)

In the situation of a symmetric double well, we have consequently two eigen-
values whose difference is exponentially small.

Remark 9.1 :

According to the result concerning the decay of the first eigenfunction, show
that S can be seen as any real number such that

S < d(V_E)+(£L‘C, —l'c) .

Remark 9.2 :

In some generic cases, one can actually give a more precise estimate for the
splitting in the form
1 Sm

)\2 - )\1 = h?Am(h)(eXp —T) , (93)
where Sy, is the Agmon’s distance between the two wells and A,,(h) is a non
zero function admitting an expansion of the type A, (h) ~ Zj am,;h7 . This
involves the approximation of the eigenfunction of reference one-well problem
by WKB solutions and the use of the Laplace integral method.
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A Variations around the spectral theorem

We just come back to the way one can deduce from the existence of quasi-
modes information on the spectrum of a selfadjoint operators.

A.1 Spectral Theorem

We refer for this part to any standard book in Spectral Theory (for example
Reed-Simon or Lévy-Bruhl). We recall only that if A ¢ Sp (A), then

1

(A.1)
This implies immediately that if there exists v € D(A) and n € R such
that [|¢)]| = 1 and |[(A — n)¥|| < €, then there exists A € Sp (A) such that
d(\,n) < e. We emphasize here that there is no assumption of discreteness
of the spectrum.

A.2 Temple’s Inequality

Let A be a selfadjoint operator on an Hilbert space and ¢ € D(A). Suppose
that A is the unique eigenvalue of A in some interval |a, . Suppose in
addition that n = (¢b | AvY) belongs to the interval Jo, 5] and let € = ||(A —
n)1||. Then it is easy to show that :
€2 €2
n - <A<n+
B—n n— o
For the proof we can reduce to the case when 17 = 0 and simply observe that
(A—a)(A—\) and (A—B)(A— ) are positive operators. We can then apply
this positivity property for the vector ¢. Note that this gives an additional
information, only if € is small enough, more precisely

< (B-nh—a). (A.3)

(A.2)

A.3 Extensions

There is a need to generalize this lemma to more general situations.
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Let E and F' be closed subspaces in a Hilbert space H. Let IIg and Ilg
be the orthogonal projections on E and F respectively. We can then define

the non-symmetric distance d(F, F) as

d(E,F)= sup d(z,F). (A.4)

2B, |lafj=1

This can be recognized as

d(E.F) = sup ||z = Tpa|] = (I = Ip) gll = [e = Mellgl| . (A.5)
zel ,||z||=1
Observing that [|A|| = ||A*|| in £L(H) we finally get :

d(E,F) = ||llg — Hpllg|| = ||[l1g — Upllpg|| . (A.6)
It is easy from the first definition” to verify that :

— — —

d(E,G) < d(E.F)+d(F,G) . (A7)

Note that d(E, F) =0 if and only if E C F.
We then have the following lemmas

Lemma A.1

-

Ifd(E.F) <1, then (Ilp)|g : E — F is injective and (I1g)|p has a bounded
right inverse.
The injectivity is easy. If z € E and Ilpx = 0, we get

|z]l = [z — Hpz|| < d(E, F)][z]] ,

which implies z = 0.

On the other hand, if x € E, we look for y = Ilpz, 2 € FE, such that
x = gy = [Igllpz. Writing this as :

we get that if d(E, F) < 1 then

So the right inverse is given by :

(Mg),p" = Mp(I — (Mellp —Tg)) " (A.8)

"First observe that

-

d(z,G) < d(z,F)+d(F,G)||lpz|| .

71



Lemma A.2

If d(E,F) < 1 and d(F,E) < 1, then (Hp)|r and (Ilg)p are bijective and

d(E,F)=d(F,E).

Proof.
We have
dE.F)?=sup (1—||Ip)mal) .
z€E , ||z||p=1

This implies

inf ||(TIp) pz|[> =1 — d(E, F)? .

z€E , ||z||g=1

This implies that (I1z)| 5 is injective with bounded left inverse. Similarly, its
adjoint is (Ily)| r and has the same property. It follows that they are bijective
and have the same norm. The same property is true for their inverse. But
the last identity can be written as

-

I(ITp) |7 =1 - d(E, F)*,

and we have similarly

-

[(Ig) |l =1 - d(F, E)*,
This achieves the proof of the lemma.

Proposition A.3

Let A be a selfadjoint operator in a Hilbert space H. Let I C R be a compact
interval and let v; (j =1,...,N) N linearly independent vectors in H and
i (j=1,...,N) in I such that :

Ay = pby + 1, with ||ry]] <e. (A.9)

Let a > 0 and assume that Sp (A)N[(I + B(0,2a))\ I| = 0. Then if E is the
space spanned by the v;’s and if F' is the eigenspace associated to Sp (A)N1I,
we have

-

d(E, F) < (N7)/(a(§™)7) , (A.10)
where NI is the smallest eigenvalue of the N x N matriz : S = ({{; | 1;))ij-

Proof.
Let A€ C\ ({p1,..-,un} U Sp (A)). Let I = [e, 5]. Then by assumption :

(A= Ny = (uj — Ny + 15,
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which can be written as :
(A=N) M= (= A) "y = (A=A (i = A) (A.11)
If g is the oriented boundary of (I + B(0,a)) x i[— R, +R], we have :

1 1
ety = 5— [ (= N "hjdd — o= [ (A= X)) (g = A) " rjd

2T - 2 -

The first integral of the right hand side is equal to ¢; and the second one
tends as R — +00 to

1 B+a+ioco . . a—a+1i00 . .
— A=N) "=\ rd) — —— AN "=\ " Lrad)
27 J s saine (A=A)" (1= A) " rjdA T (A=A)" (1= A) " rjdA

With A= 8+ a—+it or A = a — a + it, we have

A= N =Nl < =S
1A =07 g = gl <
Hence N
€ < 1 €
e — sl < — ——dt = —.
e =il < £ [ —2par =€
Now if u = > a;1; € E, then
lul* = (Sa | @) = Ag™[|al?.
So
eN2 eN2
Mpu — ul| < ;| |[[HpY; — ;|| < |a < —||ul| .
Hpu — ul| zj:| illees = 5]l < flall— a(Ang)iH I

The proposition follows.

Remark A.4
If Sp (A) N1 is discrete of finite multiplicity and if the right hand side above

18 strictly less than 1, then we conclude that A has at least N eigenvalues in
I.
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A.4 Another improvment

We only consider the case when N = 1 (and in this case this is essentially
a variant of Temple’s inequality, see for more general situations the book
[Hell] p. 38-39) and suppose that we have shown that for some normalized
1) generating the one dimensional vector space F, we have

(A=pwp=r,

with ||r|] < e
We assume that we have applied the previous proposition and that we have

— —

proven that d(E, F) = d(F,E) = O(e) < 1.

Of course we get by the spectral theorem that for the unique eigenvalue
Ain I, we have |A — u| < Ce, but what we would like to show is that the
approximation is actually much better, i.e. of order O(e)?.

If A is the eigenvalue and if v := 7p1), we start from the identity :
A= (Av[v)/(v|v).
So we now write
A—p={A-po|v)/(v]v),

that we would like to compare with the quantity ((A — u) | ) which will
be in many examples explicitely computable. Let us estimate the difference.
Using the projection 7z, we obtain :

Il1* = [[B]1* = lJv — | |*
which leads to the estimate :
o] = 1| < d(B, F)*.
In the same way, we observe that :

(A=pv[v) =(A=wv|v) = (A=p)(v—1)|(v-1v))

which leads to the estimate :
(A=pv|v)=((A—w¢ |¢)—({r](v—1))
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and finally to
(A= pv | v) = (A= [P)] < ed(E, F).
This leads to

M=l <
| u|_1

1
T a el ) (A.12)

Remark A.5
Compare with what is given by Temple’s inequality.
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B Variational characterization of the spec-
trum

B.1 Introduction

The max-min principle is an alternative way for describing the lowest part
of the spectrum when it is discrete. It gives also an efficient way to localize
these eigenvalues or to follow their dependence on various parameters.

B.2 On positivity
We first recall the following definition

Definition B.1 .
Let A be a symmetric operator. We say that A is positive (and we write
A>0), if

< Auyu>>0, Yu € D(A) . (B.1)

The following proposition relates the positivity with the spectrum

Proposition B.2 .
Let A be a selfadjoint operator. Then A > 0 if and only if o(A) C [0, +o0].

Example B.3 .
Let us consider the Schrodinger operator P := —A 4+ V, with V € C* and
semi-bounded, then

o(P) C [inf V, 400 . (B.2)

B.3 Variational characterization of the discrete spec-
trum

Theorem B.4 .

Let A be a selfadjoint semibounded operator. Let X := inf o.5(A) and let
us consider o(A)N] — oo, X[, described as a sequence (finite or infinite) of
ergenvalues that we write in the form

)\1<)\2<...<)\n...
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Then we have

M= inf < Ag, >, B.3
ol < 460 (B3
M = inf ]| 2 < Ag, ¢ >, (B.4)

$ED(ANK {970

and, forn > 2,

A" = inf 1617 < Ag, 6 >, (B.5)

dED(ANKE |60

where .
Kj - @Z’S]’ KGT’ (A — )\Z) .

One can prove actually that, if the right hand side of (B.3) is
strictly below ¥, then, the spectrum below ¥ is not empty, and the
lowest eigenvalue is given by (B.3).

Example B.5 .

Let us consider S, := —h%?A +V on R™ where V is a C™ potential tending
to 0 at oo and such that inf,cgm V(z) < 0.

Then if h > 0 is small enough, there exists at least one eigenvalue for S;. We
note that the essential spectrum is [0, +00[. The proof of the existence of this
eigenvalue is elementary. If z,,;, is one point such that V(z;,) = inf, V(z),
it is enough to show that, with ¢p(x) = exp—%|x — Tpmin|?, the quotient

% tends as h — 0 to V(2pin) < 0.

B.4 Max-min principle

We now give a more flexible criterion for the determination of the bottom of
the spectrum and for the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need an explicit knowledge of the various
eigenspaces.

Theorem B.6 .
Let A be a selfadjoint semibounded operator of domain D(A) C H. Let us
introduce

p(A) = sup inf (46| Sn.  (BS)
Y1Y2, ¥t { d) € [Span(,lvbla tees d)n—l)]l; }
6 € D(A) and ||6]] = 1
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Then either
(a) pn(A) is the n-th eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has a discrete spectrum in

| = 00, i (A)]

or
(b) pn(A) corresponds to the bottom of the essential spectrum. In this case,
we have 1;(A) = pn(A) for all j > n.

Remark B.7 .

In the case when the operator is with compact resolvent, case (b) does not
occur and the supremum in (B.6) is a maximum. Similarly the infimum is a
minimum. This explains the traditional terminology “ Max-Min principle”
for this theorem.

Note that the proof gives also the following proposition

Proposition B.8 .
Suppose that there exists a and an n-dimensional subspace V- C D(A) such
that

(Ap | ¢) <all9||*, Vo eV, (B.7)

1s satisfied. Then we have the inequality :
tn(A) <a. (B.8)

Corollary B.9 .

Under the same assumption as in Proposition B.S8, if a is below the bottom of
the essential spectrum of A, then A has at least n eigenvalues (counted with
multiplicity).

Exercise B.10 .

In continuation of Fxample B.5, show that for any € > 0 and any N, there
exists hg > 0 such that for h €]0, ho|, Sy, has at least N eigenvalues in

[inf V,inf V' + €]. One can treat first the case when V has a unique non
degenerate minimum at 0.

A first natural extension of Theorem B.6 is obtained by
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Theorem B.11 .
Let A be a selfadjoint semibounded operator and Q(A) its form domain
Then

8

im(A) = sup inf (A6 | S (BY)
1ttt { b € [span(n, ., n 1] }
6 € Q(A) and ||¢]| = 1

Applications

e It is very often useful to apply the max-min principle by taking the
minimum over a dense set in Q(A).

e The max-min principle permits to control the continuity of the eigen-
values with respect to parameters. For example the lowest eigenvalue
A1 (€) of —%—Hﬁ%—ez‘l increases with respect to €. Show that € — A (e)
is right continuous on [0, +o00[. (The reader can admit that the corre-

sponding eigenfunction is in S(R) for € > 0).

e The max-min principle permits to give an upperbound on the bottom
of the spectrum and the comparison between the spectrum of two op-
erators. If A < B in the sense that, Q(B) C Q(A) and’

< Au,u ><< Bu,u >, Yu € Q(B) ,

then
tin(A) < pin(B) .

Similar conclusions occur if we have D(B) C D(A).

Example B.12 (Comparison between Dirichlet and Neumann,).

Let €2 be a bounded regular connected open set in R™. Then the N-th
eigenvalue of the Neumann realization of —A4 + V is less or equal to the
N-th eigenvalue of the Dirichlet realization. It is indeed enough to observe
the inclusion of the form domains.

8associated by completion with the form u ~ (u|Au)y initially defined on D(A).
Tt is enough to verify the inequality on a dense set in Q(B).
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Example B.13 (monotonicity with respect to the domain).

Let 21 C Q5 C R™ two bounded regular open sets. Then the n—th eigenvalue
of the Dirichlet realization of the Schrodinger operator in €25 is less or equal
to the n-th eigenvalue of the Dirichlet realization of the Schrodinger operator
in ;. We observe that we can indeed identify HJ(€;) with a subspace of
H;(€3) by just an extension by 0 in Q; \ Q.
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C Essential spectrum and Persson’s Theorem

We refer to [Ag] for proofs and generalizations.

Theorem C.1 .
Let V' be a real-valued potential such that, there exists a €)0,1] and C such
that :

Vull® < al|Aul]* + Cllul[*, Yu € C5°(R™) (C.1)

and let H = —A+V be the corresponding self-adjoint, semibounded Schrodinger
operator with domain H?(R™). Then, the bottom of the essential spectrum
15 given by

inf o,5s(H) = S(H) | (C.2)

where

Y(H):= sup | inf {<¢d,Hp> | o€ CTR"\K)}]| ., (C.3)

Kcrm [|[¢]=1
where the supremum is over all compact subset K C R™.

Essentially this is a corollary of Weyl’s Theorem and the property that
Uess(H) — Oess (H + W) ) (C4)

for any regular potential W with compact support.
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D Classical Laplace methods

We recall very simple results concerning Laplace integrals and which are the
main tool for getting asymptotic expansions. The first one is modelled on
the stationary phase theorem:

Theorem D.1 .
Let ® be a real C'*° phase defined in a neighborhood V of the closure of the
ball B(0,1) in R™ such that

e >0 0n B(0,1) ;>0 0ondB(0,1),
o 3(0) = V&(0) = 0,
e & has a unique non degenerate minimum at 0.

Let a be a C* function defined in V and let us consider the Laplace integral

I(a,®;h) = /B(O : a(x) exp —®(z)/h dz

where h €]0, ho]. Then, as h tends to 0, I(a,®;h) has the following asymp-
totic behavior ‘
I(a,®;h) ~ h® Y aj- b, (D.1)
J
with .
ap = (27)2 - a(0) (det Hess ®(0)) "2 . (D.2)

The proof is rather simple (and actually simpler than for an oscillatory inte-
gral). The assumptions permit to reduce modulo exponentially small contri-
butions (in O(exp —¢g/h) for some ¢y > 0) to an arbitrarily small neighbor-
hood of 0. We can then use the Morse Lemma (see below) in order to write
in new coordinates: ®(z) = 3 y; =: ®(y). We are then reduced to the study
of I(b, ®; h) which is easy by taking the Taylor expansion of b at 0. We have
indeed, if b is with compact support

h=s [Yh(y)exp—Ldy ~ 3 Lb*(0)h2 [Ty exp —Ldy
~ D ken @b%((})hkl% )

with
Iy, = / 2% exp —t2dt |
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which is explicitly computable by integration by parts (note that Iy, =
2’“2—’1[%,2). We leave to the reader the control of the remainder.

We are then reduced to the computation of very explicit integrals associ-
ated with gaussian measures on R".

Lemma D.2 (The Morse Lemma) .

Let f(z,y) (x € R,y € RY ) be a real valued C* function in a neighborhood
of (0,0). Assume that (V,f)(0,0) =0 and that A = (Hess ., f)(0,0) is non-
singular. Then the equation f,(z,y) = 0 determines in a neighborhood of 0
a C* function x(y) with x(0) = 0 and we have in a neighborhood of 0

f(@,y) = f(@(y),y) + (Az|2)/2

where z = x — x(y) + O(Jz — z(y)|) (|| + |y|) is a C*° function of (x,y) at
(0,0).

The proof is standard.
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E Exercises in Spectral Theory

Exercise E.1 .

Let us consider in Q =0, 1[xR, a positive C* function V' and let Sy be the
Schridinger operator Sy = —A + 'V defined on C§°(2).

(a) Show that Sy admits a selfadjoint extension on L*(Q2). Let S this exten-
S107N.

(b) Determine if S is with compact resolvent in the following cases :

1. V(z) =0,

2. V(x) =23 + 23,
3. V(z) = a2,

4. V(z) = 23

5. V(x) = (21 — x3)?

Determine the spectrum in the cases (1) and (4). One can first determine the
spectrum of the Dirichlet realization (or of Neumann) of —d?/dx? on |0, 1].

Exercise E.2 .
Show that the selfadjoint extension in L*(R?) of

d , d?
T:= —(d—%1 — iyx])? — 72 + 3,

18 with compact resolvent.

Exercise E.3 .

Let H, be the Dirichlet realization of —d?/dx®+x* in]—a,+a|. Show that the
lowest eigenvalue \i(a) of H, is strictly positive, monotonically decreasing as
a — +0o and tend exponentially fast to 1 as a — 4+o00. Give an estimate as
fine as possible of |A\i(a) — 1|.

In order to get finer results, one can try to find a formal solution at +00 in
the form exp Z |z |’ > im0 Cilel .

Exercise E.4 .
Let ¢ be a C*- function on R™ such that |V¢(z)| — +oo as |z| — +oo
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and with uniformly bounded second derivatives. Let us consider the differ-
ential operator on C°(R?) —A + 2V ¢ - V. We consider this operator as
an unbounded operator on H = L*(R™, exp —2¢ dz). Show that it admits a
selfadjoint extension and that its spectrum is discrete.

We assume in addition that : me exp —2¢dr < +oo. Show that its lowest
etgenvalue 18 simple and determine a corresponding eigenvector.

Exercise E.5 .

Let us consider in RY, the Neumann realization in R of Py(§) := D? + (t —
£)?, where £ is a parameter in R. We would like to find an uppr bound for
©¢ = inf, (&) where (&) is the smallest eigenvalue of Py(§). Following the
physicist Kittel, one can proceed by minimizing (Po(§)o(+; p) | &(-;p)) over
the normalized functions ¢(t; p) :== c,exp —pt* (p > 0). For which value of &
is this quantity minimal? Deduce the inequality :

2
Oy < 1——.
V s
Problem E.6 '°

Let V be in C°(R™) (m = 1,2). Show that the essential spectrum of Sy =
—A+V is [0, 400l
Let us assume in addition that

/ V(z)de <0. (E.1)

Find ¢ € D(S1) such that
< S1U,¢ >r2rm)< 0.

When m = 1, consider the family 1, = exp —alz|, a > 0, and, when m = 2,
Yule) = exp bl o> 0.
Deduce that Sy = —A + 'V has a negative eigenvalue.

Problem E.7 .
Let us consider in the disk of R? 2 := D(0, R) the Dirichlet realization of the
Schrodinger operator

S(h) = ~A 4 5 V() (£.2)

0These counterexamples come back (when m = 1 to Avron-Herbst-Simon [AHS] and
when m = 2 to Blanchard-Stubbe [BS]).
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where V is a C* potential on Q0 satisfying :
V(z) >0, (E.3)

Here h > 0 is a parameter.

a) Show that this operator is with compact resolvent.

b) Let A\i(h) be the lowest eigenvalue of S(h). We would like to analyze
the behavior of A\i(h) as h — 0. Show that h — A{(h) is monotonically
INCreasing.

¢) Let us assume that V > 0 on Q; show that there exists e > 0 such that

WA (h) > e . (E.4)

d) We assume now that V =0 in an open set w in 2. Show that there exists
a constant C' > 0 such that, for any h > 0,

M(R) <O (E.5)

One can use the study of the Dirichlet realization of —A in w.
e) Let us assume that :

V' > 0 almost everywhere in ) . (E.6)
Show that, under this assumption :

lim A (h) = +o00 . (E.7)

h—0

One could proceed by contradiction supposing that there exists C' such that
M(h) < C, Vh such that 1 > h > 0. (E.8)
and establishing the following properties.

e For h >0, let us denote by x + uy(h)(x) an L*-normalized eigenfunc-
tion associted with Ai(h). Show that the family u;(h) (0 < h < 1) is
bounded in H*(Q).

e Show the ezistence of a sequence h,, (n € N) tending to 0 as n — 400
and us, € L*(Q) such that

in L*(92).
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e Deduce that :

/ V(z) too(2)* dz =0 .
Q
e Deduce that us = 0 and make explicit the contradiction.

f) Let us assume that V(0) = 0; show that there ezists a constant C, such

that : o
Ar(h) < 5
g) Let us assume that V(z) = O(|z|*) prés de 0. Show that in this case :
C
A(h) < e

h) We assume that V(z) ~ |z|* near 0; discuss if one can hope a lower
bound in the form
1
M(h) > —.

Justify the answer by illustrating the arguments by examples and counterez-
amples.

Problem E.8 .
We consider on R and for € € I := [—%, +oo[ the operator H. = —d?/da? +
z? + ez
a) Determine the form domain of H. and show that it is independent of €.
b) What is the nature of the spectrum of the associated selfadjoint operator?
c¢) Let \i(€) the smallest eigenvalue. Give rough estimates permitting to esti-
mate from above or below \i(€) independently of € on every compact interval
of I.
d) Show that, for any compact sub-interval J of I, there exists a constant C
such that, for all € € J, any L*-normalized eigenfunction u,. of H, associated
with \i(€) satisfies :

||l 1wy < Cr -

For this, on can play with : (Heue, ue)2(w)-

e) Show that the lowest eigenvalue is a monotonically increasing sequence of
ecl.

f) Show that the lowest eigenvalue is a locally Lipschitzian function of € € 1.
On utilisera de nouveau le principe du max-min.
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g) Show that A(e) — +00, as € — +oo and estimate the asymptotic behavior.
h) Discuss the same questions for the case H, = —d?/dx® + 2% + ex* (with
€>0).

Problem E.9 .

Let H, be the Dirichlet realization of —d?/dx?® + x* in | — a, +a|.

(a) Briefly recall the results concerning the case a = +oc.

(b) Show that the lowest eigenvalue M\ (a) of Hy, is decreasing for a €]0, +oc]
and larger than 1.

(c) Show that A\ (a) tends exponentially fast to 1 as a — +oo. One can use
a suitable construction of approrimate eigenvectors.

(d) What is the behavior of A\i(a) as a — 0. One can use the change of
variable * = ay and analyze the limit lim,_,q a®A;(a).

(e) Let ui(a) be the smallest eigenvalue of the Neumann realization in | —
a,+al. Show that pyi(a) < Ai(a).

(f) Show that, if u, is a normalized eigenfunction associated with p,(a), then
there exists a constant C' such that, for all a > 1, we have :

lzval|20-aq4ap < C-

(g) Show that, for u in C*([—a,+a]) and x in C3(] — a,+a|), we have :
- [ = [ oo [z

(h) Using this identity with u = u,, a suitable x which should be equal to 1
on [—a+1,a — 1] , the estimate obtained in (f) and the minimaz principle,
show that there exists C such that, for a > 1, we have :

)\1(@) S ,ul(a) + 0072 .
Deduce the limit of pi(a) as a — +oc.

Problem E.10 (Avron-Herbst [CFKS])

The aim of this problem is to analyze the spectra of the operators
d2

Hy = ———
+ dz?

+aq(2)* £4'(2)
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where q(z) is a polynomial :
m—1
q(z) = 2™ + Z a;jz’ .
=0

a) Show that these operators are with compact resolvent if and only if m > 1.
b) Observing that

discuss the kernel of Hy in function of m.
¢) Observing that

(5% a(a) Hy

=
|
H_
()
&
!

show that H, and H_ have the same spectrum except possibly 0.

d) Treat completely the case m = 1.

e) We assume now that q(z) = z + gz* with g # 0. Show that the corre-
sponding operators are unitary equivalent (up to a multiplicative factor) to
semiclassical Schrodinger operator.

f) Show that in this case H, and H_ are unitary equivalent.

g) Show that there erists a unique eigenvalue \(g) which is o(1) as g — 0.
h) Show that this eigenvalue is actually exponentially small.

i) (More difficult) Find an equivalent of A(g) in the form

IS
Ag) ~ algl’“eXp—?

for suitable a > 0, k € R and S > 0.
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Exercise E.11
By mimicking the WKB construction given in the course, show that, near

the minimum of Vo (which is assumed to be non degenerate), there erists a
WKB solution u”**(x, h) of the operator —h?A + Vy(z) in the form

u”*(x, h) := exp _glash)
h
with

B(aih) ~ 3 Wo(@)

attached to a “formal” eigenvalue E(h) ~ 3. E;h.
The reader can try a direct proof or to explore the link between this W K B
solution and the WKB solution described in the course.

Exercise E.12
Solve the eikonal equation |V®|> =V —inf V near a non degenerate minimum
of V' formally in the sense: modulo flat function at the minimum.

Problem E.13
One would like to understand the problem on R given by the Dirichlet real-

ization PP (h) of )

d
. 2
P(h,) = —h @ —f—’U(ZL') s

with v'(z) > ¢ > 0 on RF.

a) Show that the operator is with compact resolvent.

b) We first analyze the case v(x) = x, h = 1 (In this case the operator is
called the Airy operator A(x,D,)). Show that, for the Dirichlet realization
AP of A in R", there exists a sequence (ju;)jen- of eigenvalues tending to oo.
Show that the lowest one y s strictly positive. What is the form domain
Q(AP) of the Airy operator?

¢) Show that the corresponding eigenfunctions u; are in C*®(R").

d) Show that the eigenvalues are of multiplicity 1.
e) We admit that

D(AP) = {u € H}(R") N H2(R"); zu € L2(R")}
= {ue HY(R"), z2u € L2(R"), A(z,D,)u € L2(R")} .

Show that the eigenvectors are in S(RT).
Another approach could be to analyze the Fourier transform of xu; where x
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s equal to 1 for x large and is equal to O in a neighborhood of 0.
f) Describe the spectrum of AP (x, hD,) for any h > 0.
g) We come back to the general case. Transpose for PP(h) what was done for
the one-well problem via the harmonic approximation, the harmonic oscilla-
tor being replaced by the Airy operator. The student can use if needed that
(AP (2, D,) — 1) is a bijection from So(R*) N {Ruy}* onto S(RT) N {Ruy }+
where

So(RF) = {u € S(R) s. t. u(0) =0} .

Problem E.14 .
The aim of this problem is to analyze the spectrum XP(P) of the Dirichlet
realization of the operator P := (D,, — 322)* 4+ (D,, + 121)? in RY x R.

1. Show that one can a priori compare the infimum of the spectrum of P
in R?and the infimum of ©P(P).

2. Compare ¥.P(P) with the spectrum XP(Q) of the Dirichlet realization
of @:=D; + (11 —y2)* in R" x R.

3. We first consider the following family of Dirichlet problems associated
with the family of differential operators : v H(«) defined on ]0, +oc

by :
H(a) =D} + (t—a)*.

Compare with the Dirichlet realization of the harmonic oscillator in
| — a,+ool.

4. Show that the lowest eigenvalue N(a) of H(«) is a monotonic function
of v € R.

5. Show that a — A(«) is a continuous function on R.
6. Analyze the limit of AN(a) as @ — —o0.
7. Analyze the limit of AM(«) as o — +oc.

8. Compute A\(0). For this, one can compare the spectrum of H(0) with
the spectrum of the harmonic oscillator restricted to the odd functions.
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9. Lett — u(t; @) the positive L?-normalized eigenfunction associated with
Ma). Let us admit that this is the restriction to R™ of a function in
S(R). Let, for « € R, Ty be the distribution in D'(RT x R) défined by

“+oc

¢ To(p) = d(y1, @)ua(y1)dy: -

0
Compute QT,.

10. By constructing starting from T, a suitable sequence of L?-functions
tending to T,, show that M\(a) € ¥(Q).

11. Determine P (P).

Problem E.15 .

Let H, be the Dirichlet realization of —d?/dx? + x* in | — a, +a].

(a) Briefly recall the results concerning the case a = +oc.

(b) Show that the lowest eigenvalue A\ (a) of H, is decreasing for a €0, +o0]
and larger than 1.

(¢) Show that \i(a) tends exponentially fast to 1 as a — +oo. One can use
a suitable construction of approrimate eigenvectors.

(d) What is the behavior of Ai(a) as a — 0. One can use the change of
variable x = ay and analyze the limit lim,_,q a®A;(a).

(e) Let pq(a) be the smallest eigenvalue of the Neumann realization in
| — a,+al. Show that ui(a) < A(a).

(f) Show that, if u, is a normalized eigenfunction associated with py(a), then
there exists a constant C' such that, for all a > 1, we have :

||ztallL20-a4ap < C-

(g9) Show that, for u in C*([—a,+a)) and x in CZ(] — a,+al), we have :

- / " (t)u(t)dt = / Oy (1) P — / (et

a —a —a

(h) Using this identity with v = u,, a suitable x which should be equal to 1
on [—a+ 1,a — 1] , the estimate obtained in (f) and the minimaz principle,
show that there exists C such that, for a > 1, we have :

Mi(a) < pya) +Ca? .

Deduce the limit of p1(a) as a — +o0.
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Exercise E.16
Using Agmon’s inequalities, show that any eigenfunction of —(i—zz + a2t decays
exponentially at oc.

Exercise E.17
Using refined Agmon estimates, analyze the decay of the groundstate of the
Dirichlet realization of —p2E v(z) on RY, under the assumption that

dz?
v'>6>0.

Problem E.18
One would like some spectral properties of the family of operators :

Ps=D; + (t* — B)*.

a) Define the Friedrichs extension starting of C§°(R) and show that the op-
erator 1s with compact resolvent.
b) We denote by A\ () the smallest eigenvalue of Pg. Show that [ +— X\ (B)
s a continuous function of 3.
¢) Show that as B < 0, B+ A (B) is a monotone function of f.
d) Analyze the behavior of \() as f — —oo. Find first the universal lower
bound :

M(B) > 6%
e) Using a scaling and a semiclassical analysis, give an asymptotics of A (f)—
B2 as f — —o0.
e) Using a scaling and a semiclassical analysis, give an asymptotics of A(fB)
as 3 — —+o0.
f) Show that as f — 400, A\y([3), the second eigenvalue, has the same asymp-
totics as M\ ().
g) Give the asymptotics of A\3(8) as f — +00.
h) Find an upperbound, as accurate as possible, for Ao(5) — A (B).
i) Show that B+ A (B) has at least one minimum over R, which belongs to
[0, +o0f.
j) One admits that 3 — X (B) is of class C* and simple. Let uj the corre-
sponding L?-normalized strictly positive eigenvector. Admitting that 3 — ué
is of class C', show that

V() = =2 [ (2= 5)(u (0.

Deduce that the minimum should be in |0, +oc].
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