
HAL Id: cel-00376443
https://cel.hal.science/cel-00376443

Submitted on 17 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of elliptic curves in cryptography and
computational number theory

Kamal Khuri-Makdisi

To cite this version:
Kamal Khuri-Makdisi. Applications of elliptic curves in cryptography and computational number
theory. 3rd cycle. Beyrouth (Liban), 2004, pp.15. �cel-00376443�

https://cel.hal.science/cel-00376443
https://hal.archives-ouvertes.fr

Applications of elliptic curves in

cryptography and computational

number theory

Kamal Khuri-Makdisi
Center for Advanced Mathematical Sciences

American University of Beirut
kmakdisi@aub.edu.lb

Lectures given during CIMPA summer school
Algebraic geometry and arithmetic of curves

Beirut, Lebanon, July 2004

– Typeset by FoilTEX –

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Introduction: what is cryptography?

Given: a (very large) finite set of messages M, or
more generally a finite set of plaintext messages
MP and a finite set of ciphertext messages MC.
Most often we’ll take M = MP = MC.

Question: Find “practical” encoding and decoding
maps E : MP → MC and D : MC → MP such
that D ◦ E = id.

Then two people, traditionally called Alice and
Bob, can communicate in privacy even if their
messages are being intercepted (e.g., over the
internet!). To send a message m ∈ MP , Alice sends
m′ = E(m) ∈ MC, and Bob decodes m′ by applying
D to it. This assumes that Alice and Bob have
decided on D and E, which they usually keep private
between themselves. The cryptographer (Cathy) only
sees the message m′, but in principle does not know
how to apply D. A reasonable model is to assume
that Alice and Bob have sent many messages m,
encoded and decoded using E, D, and that Cathy
has seen all the corresponding coded forms m′.
In addition, Cathy may have found out by other

1

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

means some of the original plaintext messages m, in
addition to knowing the corresponding ciphertexts.

What can one ask for in a cryptographic system
(abbreviated cryptosystem) to allow practical and
secure communication?

Basic Requirements:

• E must be injective

• A computer must be able to carry out both D
and E in reaonable time

• Cathy should not be able to figure out how to do
E, or even to guess part of m from a knowledge
of m′. Typically, Cathy will have intercepted
many different m′, and will know a number of
earlier sent pairs (m,m′). But it must remain
computationally infeasible for Cathy to determine
m from a newly sent m′.

Remark: different levels of security require different
levels of infeasibility: e.g., if a company is discussing
a merger that has to be kept secret for the next two

2

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

weeks only, then it’s okay if Cathy can figure out
how to decrypt messages using six months of work
on powerful computers.

Example: Julius Caesar’s cipher: M = Z/26Z, with
0 =’A’, 1 =’B’, etc.; then define E(m) = m + 3,
and D(m′) = m′ − 3. Thus

E(’A’) = ’D’ D(’A’) = ’X’

E(’B’) = ’E’ D(’B’) = ’Y’

E(’C’) = ’F’ D(’C’) = ’Z’

E(’D’) = ’G’ D(’D’) = ’A’

.

And we can encode messages letter-by-letter,
so E(’VENIVIDIVICI’) = ’YHQLYLGLYLFL’. This
code is of course quite easy to break using frequency
analysis, even if we use more complicated bijections
D,E : M → M. This is one reason why M must
be a large set.

Problem: If M = |M| is very large, then it is
infeasible to allow D (and its inverse E) to be an
arbitrary permutation. E.g., if M = 10100, then there

3

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

are M ! ∼ 1010102
possible permutations. No practical

notation or algorithm can describe all elements of the
symmetric group SM for M this large.

Solution: Restrict to a small class of E and D,
indexed by a key k ∈ K, where the set of keys K
is still large, but elements of K can be described
succinctly. Example: if |K| = 10100 then a key can
be described using 100 digits or about 300 bits. It
is possible to use different keys for encryption than
for decryption. So, say we have encryption keys
K, and decryption keys K̂, which describe distinct
encryption/decryption maps (k ∈ K, K̂ ∈ K̂):

Ek : M → M, DK̂ : M → M.

We assume we also have a good way to generate
pairs (k, K̂) for which DK̂ = E−1

k . Such a pair is
called an encryption/decryption pair.

4

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Private key cryptography

Here K = K̂, and k = K̂. Thus Dk is the
inverse of Ek. Alice and Bob agree on a particular
key k, which they keep secret between themselves.
They then use Ek and Dk to encrypt and decrypt
messages.

Basic cryptographic premise: Cathy knows how
the system works but doesn’t know the key. So she
knows the map k 7→ Ek,Dk, and typically has found
out several pairs (m, m′) where m′ = Ek(m) but
should have a hard time determining k. Hence Ek

and Dk should depend on k in a fairly complicated
way.

Example: Let M = Z/MZ, K = (Z/MZ)∗ ×
Z/MZ. For k = (a, b), with a invertible modulo
M and b any integer modulo m, define E(a,b)(m) =
am+b, and D(a,b)(m

′) = a−1(m−b). We have thus
restricted our permutations to the small set of affine
transformations of Z/MZ. Here |K| ∼ M 2 � M !.
This system is not secure, since knowledge of just
two pairs of the form (m, m′) usually allows one to
find the key k = (a, b).

5

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Advantage of private key cryptosystem:
Encryption and decryption of long messages can
be done very quickly with modern private key
cryptosystems.

Disadvantages of private keys:

• If n people need to communicate privately, then
need n(n−1)/2 keys, one for each pair of people.
Difficult to manage security with so many keys
floating around the different computers.

• Each given pair of people (Alice and Bob) must
somehow agree on a choice of k. They cannot
send the key over the internet (Cathy is watching).
They need to meet in person or have some kind
of secure communications channel — impractical.

6

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Public key cryptography

Main cryptographic application of number theory
and algebraic curves, particularly elliptic curves at
the moment.

Setup: Each user U (e.g., Alice or Bob) generates
an encryption/decryption pair (kU , K̂U) ∈ K × K̂,
and publishes kU in a directory while keeping K̂U

secret. Then if Bob wants to send a message m
to Alice, he sends her m′ = EkA

(m) which she can
decrypt using her private key. If he wants to sign the
message, he can send EkA

(DK̂B
(m)), which Alice

decrypts using DK̂A
to get n = DK̂B

(m). She then
applies EkB

to recover m. The point is that only
Bob can produce an n which satisfies EkB

(n) = m.

Important: It should be computationally infeasible
to find K̂U (more precisely, to find the map DK̂U

)
from a knowledge of kU . It is a bit surprising that
this can be done at all (modulo some plausible but
unproven conjectures).

Advantages of public key systems: Far fewer keys
have to circulate; n users need only n keys. Also,
no secret keys ever need to be exchanged over the
internet.

7

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Disadvantages:

• Existing public key cryptosystems are much slower
than private key cryptosystems. One standard
solution is to use a public key cryptosystem just
to agree on a private key for future communication
that same day.

• No formal proofs have been found to guarantee
the difficulty of breaking public key cryptosystems
(or of any private ones, for that matter!). One can
make heuristic arguments why systems are secure,
if one is willing to believe that certain problems
(like factoring large integers) are computationally
hard.

• In practice, the main source of insecurity in
cryptosystems seems to be the human side! A
poor choice of key, or a faulty implementation,
or an easily bribed insider, are much easier (and
apparently more common) ways for cryptographic
systems to be broken.

8

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Example: the RSA public key

cryptosystem

Remark: RSA (Rivest-Shamir-Adleman) does not
involve algebraic curves, but we discuss it because:

• It introduces the topic of efficient computations
in number theory.

• It gives practical motivation for the mathematical
question of either factoring a very large number
(say around 10300), or proving it to be prime. This
question is of course interesting for its own sake.

• We will later see how elliptic curves can help
answer the above question in practice.

Implementing RSA: First one sets up a
private/public key pair. Each user U (somehow?)
finds two very large prime numbers p = pU and
q = qU , both of the order of 10150, say. The basic
premise is that factoring is hard — so if someone
knows the product N = pq ∼ 10300 but does not
know p and q, then that person cannot factor N

9

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

in reasonable time. Now user U chooses an integer
e = eU that is relatively prime to p − 1 and q − 1.
This is typically done by choosing e to be a large
prime number.

The public key: is the pair k = kU = (N, e) =
(NU , eU).

The private key: is the pair K̂ = K̂U = d = dU ∈
Z, chosen such that de ≡ 1 mod (p − 1)(q − 1).
User U knows p and q, and therefore can find d
by using the extended Euclidean algorithm on e and
(p − 1)(q − 1). This yields d, ` ∈ Z such that
de + `(p − 1)(q − 1) = 1.

The message space: We theoretically use M =
(Z/NZ)∗, the group of invertible integers modulo
N . But in practice we do calculations in the ring
Z/NZ, since the probability of stumbling across an
element x ∈ Z/NZ that is divisible by p or by q is
less than 1/p + 1/q which is miniscule.

Encoding and decoding:

• Ek(m) ≡ me mod N ,

• DK̂(m′) ≡ (m′)d mod N .

10

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Reason this works: The group (Z/NZ)∗ has order
ϕ(N) = (p−1)(q−1), so if m is an integer relatively
prime to N , then m(p−1)(q−1) ≡ 1 mod N . Thus
(m′)d ≡ mde ≡ m1 = m mod N . Recall that
the chance of stumbling across an m that is NOT
relatively prime to N is so small as to be negligible.
If that happens, though, we can factor N and break
the cryptosystem.

Questions: many of the operations listed above may
seem difficult to do if the numbers are all large. We
deal eith them as follows:

• How can we find large primes p and q? The
prime number theorem says essentially that a
large number p is prime with “probability”
1/ log p. Thus since p ∼ 10150, the probability
is 1/150 log 10 ≈ 1/350. So somehow we must
test around 350 large numbers on average to find
one p, and we then repeat the process to find q.
We will discuss how to test primality later.

• Doing arithmetic with large numbers (up to
δ = 300 digits in our example) is not too bad
for a computer — either adapt the pencil and

11

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

paper algorithms from elementary school, which
works well for addition and subtraction but takes
time O(δ2) for multiplication, OR use fancier
techniques which do multiplication and division in
time O(δ1+ε).

• What about the impossibly large powers me,
(m′)d?

– We only care about me mod N . So of course
we NEVER calculate the integer me, since

me ∼ (10300)10
300

which has some 10302 digits!
– So do every calculation modulo N , and reduce

each intermediate result modulo N . So we
never see numbers bigger than N 2 ∼ 10600.
Much better.

– Wait — we cannot hope to get the eth
power by multiplying (m mod N)(m mod
N) . . . (m mod N). That would take e factors
which is too many since e ∼ 10300. Instead we
use fast exponentiation.

12

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Fast exponentiation

• Works for any group G where we can implement
the group operation. We then find me for m ∈ G,
even if e is large.

• Basic idea: write e in binary notation, and use
repeated squaring to get powers of the form
m,m2, m4,m8, . . . which get combined according
to the binary digits of e.

• Example: G = (Z/1000Z)∗, m = 3, and e = 147.

In other words, find 3
147

.

– The binary expansion is 147 = 100100112 =
128 + 16 + 2 + 1.

– By repeated squaring, we find 3
2

= 9, 3
4

= 81,

3
8

= 561, 3
16

= 721, . . . , 3
128

= 961.
– Put these together: 3

147
= 3

128 · 316 · 32 · 31
=

961 · 721 · 9 · 3 = 787.

13

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

First remarks on testing primality

If p is large, say with hundreds of digits, it is not
practical to try to divide p by all potential divisors
(less than

√
p). Of course we do check some small

divisors anyhow, so that p is not divisible by 2 or 3,
or by any number up to, e.g., a million.

In practice: Check first that p is probably prime.
Very roughly, we check that Fermat’s little theorem
ap−1 ≡ 1 mod p holds for many random a (where
we had better have (a, p) = 1). This is done using
fast exponentiation. If we ever get ap−1 6≡ 1, we
know that p cannot be prime. But there is a chance
that many a’s will falsely pass this test.

More precisely: one uses the Miller-Rabin test,
which also tests that a(p−1)/2 ≡ ±1 mod p, and
further similar identities with powers of a mod p. If
p is composite, then fewer than 1/4 of the choices
of a can pass the Miller-Rabin test. So if p passes
the Miller-Rabin test for many randomly chosen a’s,
we are willing to bet that p is prime.

Proving primality: This takes more work, and is
the topic of a later lecture. One can use the recent

14

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

breakthrough (2002) of Agarwal, Kayal, and Saxena,
a deterministic polynomial-time algorithm (in the
number of digits of p). For the sizes of numbers we
consider, there are other methods that are faster in
practice. We will see a probabilistic test using elliptic
curves later in these lectures.

15

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

The discrete logarithm problem

Premise: Public key cryptosystems can be built
from large finite abelian groups, based on the belief
that the Discrete Logarithm Problem (DLP) in a
well-chosen group G is intractable.

The DLP: Let g, h ∈ G. Then either find a ∈ Z

such that h = ga, or show that no such a exists. We
write a = logg h. The value of a actually belongs to
Z/NZ, where N is the order of the element g ∈ G.

Remark: In many cases we know that G is cyclic,
and we choose g to be a generator. Thus N = |G|.
In this case a exists, but finding it seems difficult in
general if N is very large. If G is not cyclic, we often
just work in the cyclic subgroup generated by g.

Careful: One has to avoid the case where N
is a product of small primes, since then there
exists an algorithm due to Silver-Pohlig-Hellman to
find the discrete logarithm quickly. Otherwise, for
“black box” groups, the best general methods known
take time O(

√
N) (probabilistic) or O(

√
N log N)

(deterministic). In a moment we will review one
such method, called “Baby-step-giant-step.”

16

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Examples of groups used in cryptography:

• Let p be a prime. Then (Z/pZ)∗ is a cyclic group
of order p−1. We can look for a generator g, called
a primitive root modulo p (finding g is difficult,
unless we somehow manage to factor p−1, which
we hope has some large prime factors to avoid
Silver-Pohlig-Hellman). The discrete logarithm in
this group is still believed to be hard, but ingenious
algorithms exist that are much better than those
for “black box” groups.

• If q is a power of a prime, let Fq be the finite
field with q elements. (Example: Fp = Z/pZ if p
is prime.) Given an elliptic curve E defined over
Fq, the Fq-rational points E(Fq) form a finite
group with q +1− 2

√
q ≤ |E(Fq)| ≤ q +1+2

√
q

(Hasse’s theorem). This is usually not cyclic,
but we can often work in a large cyclic subgroup
of E(Fq). No algorithm is currently known for the
DLP on an elliptic curve that improves on what is
known for a “black box” group.

• Fancier: let C be an algebraic curve of genus
g over Fq. Then the Jacobian J(C) is a

17

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

g-dimensional algebraic group (see Oesterlé’s
lectures), and its group of Fq-rational points
generalizes the above example. If q is fixed
and g grows, the DLP for these groups becomes
easier, while the group law becomes more difficult
to implement. Cryptographic applications seem
limited to rather small g, say g ≤ 6.

• A non-example: let G be the additive group
Z/NZ. Then the discrete logarithm problem
becomes the equation ag ≡ h mod N , which is
trivial to solve for a (or to find that no solution
exists).

Toy example of DLP: Let G = (Z/101Z)∗, so
|G| = 100 = 2252. One can check that g = 2 is a

generator, since g100/2 = 2
50

= 100, and g100/5 =
95, so the order of g is a factor of |G| = 100 but not
a factor of 20 or of 50.

• log2 8 = 3 (or 103, or 203, or −97, etc.).

• log2 3 =? Tricky way: notice from the above that

2
50

= −1, and 2
20

= −6. Then 2 · 3 = 2
50+20

,
and the discrete logarithm is 69.

18

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• The above trick generalizes to “index calculus
methods” in any (Z/pZ)∗. Idea: look for
powers gbhc mod p whose residues modulo p
factor easily, and combine identities to find the
discrete logarithm. These are much better than
the black box DLP algorithms such as Baby-step-
giant-step described below.

A trickier example of DLP: Let p =
172316432754274362361, and consider the elliptic
curve E over Fp, where E : y2 = x3+3141x+5926.

• |E(Fp)| = 172316432762555079388 = 22 · 13 ·
140534491 · 23579816809.

• The “randomly chosen” point P =
(2718, 73035449260546778840) generates the
group.

• Question: What is the discrete logarithm logP Q,
where Q = (271828, 53265169777564442543)?
This can be found in a small multiple
of

√
23579816809 ≈ 150000 steps using a

combination of Silver-Pohlig-Hellman and Baby-

19

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

step-giant-step, so it isn’t unreasonable. The
answer turns out to be 134712877515817113540.

20

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Black box ways to do DLP

We illustrate Baby-step-giant-step (BSGS) and
Silver-Pohlig-Hellman (SPH) on the example of
log2 3 in (Z/101Z)∗. Our goal: find a with 2

a
= 3.

We want to avoid trying out each of a = 0, 1, . . . , 99
until we reach a solution. This will take expected
time O(N) where N = 100.

BSGS: Write a = 10i+ j, where 0 ≤ i, j < 10. (For
general N , we replace 10 by the first integer >

√
N .)

Then we want to solve 2
10i

= 3 ∗ 2
−j

. We calculate
the 20 numbers corresponding to each choice of i
and j:

• Giant steps: 2
0

= 1, 2
10

= 14, . . . , 2
60

= 87, . . .

• Baby steps: 3∗2
0

= 3, 3∗2
−1

= 52, . . . , 3∗2
−8

=

73, 3 ∗ 2
−9

= 87.

These two lists have size 10 = O(
√

N). We find

the common element (87) and conclude that 2
60

=

3 ∗ 2
−9

, hence that a = 69.

SPH: We factor N = 100 = 2252. Our strategy:

21

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• Find a mod 2, and use this to find a mod 4.

• Find a mod 5, and use this to find a mod 25.

• By the Chinese Remainder Theorem, combine
a mod 4 and a mod 25 to obtain a mod 100.

The method is to write a = 4b2 + 2b1 + b0 =
25c2 + 5c1 + c0, where b0, b1 ∈ {0, 1} and c0, c1 ∈
{0, 1, 2, 3, 4}. We then find the unknown b0, b1, c0, c1

by a clever exhaustive search (can also use BSGS if
N has large prime factors). We illustrate for c0 and
c1:

• Precomputation: (2
0
, 2

20
, 2

40
, 2

60
, 2

80
) =

(1, 95, 36, 87, 84).

• Observe that if 3 = 2
5k+c0, then 3

20
= 2

20c0.
So we can find c0 mod 5 by consulting the above

table. Since 3
20

= 84, we get 20c0 = 80 and
c0 = 4.

• Now take 2
25c2+5c1 = 3 · 2

−c0 = 57 since we
know c0 = 4. By a similar argument we have

22

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

2
20c1 = 57

4
= 87. Thus c1 = 3 and 5c1+c0 = 19.

Thus a ≡ 19 mod 25.

• End of the argument: a similar calculation gives
b0 = 1, b1 = 0 so a ≡ 1 mod 4. Combining,
we get a ≡ 69 mod 100 = |G|, so we can take
a = 69.

23

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Cryptography based on DLP

Assume: G is a cyclic group with generator g.
The order |G| should be large, and not divisible by
too many small primes, in order that the DLP in G be
considered intractable. Remark: this is a necessary
but perhaps not sufficient condition for the following
cryptosystems to be secure!

Diffie-Hellman key exchange: Alice and Bob need
to agree on which key to use in their private-key
cryptosystem, but can only communicate across an
open channel where Cathy is listening. Method:
A, B agree on the group G and generator g. Cathy
knows this, but can’t solve DLP on G. Then A
privately chooses a random integer a < g,and sends
the group element ga to B. Similarly, B chooses a
random b, and sends gb to A. Their common secret
information is k = gab, which they can use as their
key.

• Alice knows a and gb, so computes k = (gb)a.

• Bob knows b and ga, so computes k = (ga)b.

24

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• Cathy knows ga and gb, but cannot solve for a
and b. It is unclear how she can compute gab.
Maybe some method exists that allows Cathy to
find gab without solving a DLP. (Partial results
suggest that the answer is no.)

• Note that A does not know b, and does not have
to try to find it, since A knows a.

ElGamal public-key cryptosystem: Essentially,
a different Diffie-Hellman key exchange for each
message. The space of messages is M = G, and
Alice has a private key kA = a < |G|, and a public
key K̂A = ga. If Bob wants to send a message m ∈ G
to Alice, he chooses a random number r < |G|, and
computes h = gr and n = (K̂A)rm. Bob then sends
the pair (h, n) to Alice.

• Alice knows h = gr and n = garm, and can
compute m = h−an. Note that Alice never finds
out what r is, but can decode due to her knowing
the private key a.

• Cathy cannot find m from n without somehow
finding gar. But she only knows ga and gr.

25

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

ElGamal digital signature: This uses the same
public-private key pair kA = a, K̂A = ga. Write
M = |G|. We fix a simple bijection f : G → Z/MZ,
sending h ∈ G to f(h) ∈ Z/MZ. This time, the
messages belong to Z/MZ, and A signs m ∈ Z/MZ

by giving a pair (h, s) ∈ G × Z/MZ such that

(K̂A)f(h)hs = gm.

Anyone can verify this signature.

• A can find the signature as follows: choose a
random r and let h = gr. Then the powers of g in
the above equation are af(h) + rs ≡ m mod M .
It is easy for A to solve for s using an inverse
of r mod M obtained by the Euclidean algorithm.
Note that A uses her knowledge of the private key
a.

• If Cathy fixes a choice of h and wants to forge the
signature by finding the correct s, she needs to
solve a DLP somewhere. If she starts from a fixed
s, she needs to solve a strange nonlinear equation
for h.

26

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• Nobody knows (rather, has admitted to knowing)
how to choose s and h simultaneously in some
other way to forge a signature.

Remark: The ElGamal digital signature algorithm
requires us to know the order |G| of the group. We
also need to know |G| to make sure that the DLP
in G is safe from the Silver-Pohlig-Hellman attack.
But finding |G| can be far from obvious.

• Example: how many points lie on the elliptic curve
E : y2 = x3 + x + 1? More precisely, given the
finite field Fp, we can view E as being defined over
Fp. (Actually, if p = 2 or p = 31 the equation
gives a singular curve, so it is not elliptic.)

• E(F5) = {P∞, (0, 1), (0, 4), (2, 1), (2, 4), (3, 1),
(3, 4), (4, 2), (4, 3)}, so |E(F5)| = 9.

• But what about E(F12532716264317)? Answer: this
curve has 12532721750444 points. Not obtained
by enumerating all the points!

• General result mentioned above: if E is any elliptic
curve over the finite field Fq, then |E(Fq)| =

27

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

q+1−t with |t| ≤ 2
√

q. This a theorem of Hasse,
and is analogous to the Riemann Hypothesis for
the function field Fq(E).

• In the example above, t = −5486126, while
2
√

p ≈ 7080315.3. We can use the limited range
of possible ts to direct our computation of the
number of points on E.

• Two main polynomial-time approaches exist to
counting points on E over a large finite field:

– (i) the Schoof-Elkies-Atkin algorithm — works
generally

– (ii) Satoh’s algorithm (also similar work by
Kedlaya) — better for finite fields like F2500

of small characteristic.

28

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Factoring large integers

Let N be a very large number (say N ∼ 10300),
which we know is composite because it has failed a
primality test. How do we find factors of N?

Here are some general ways:

• Trial division: try all integers j ≤
√

N to see if
N is divisible by j. This takes exponential time
since the input size is the number of digits of N ,
which is O(log N). In practice we do test all j up
to a moderate bound, say a few million.

• Remark: a polynomial time algorithm

means its running time is O
(

(log N)c
)

=

O(exp(c log log N)) for some constant c. An
exponential time algorithm takes time O(N c) =
O(exp(c log N)).

• The number field sieve takes (heuristic) time
O(exp(c(log N)1/3(log log N)2/3)). This is “one-
third of the way” between polynomial and
exponential time. (For some ranges of N , the

29

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

simpler quadratic sieve is still better, even though
its asymptotics are slower — “halfway” between
polynomial and exponential time.)

The above running times are given in terms of the
size of N , and allow for the worst case when the
composite number N is the product of two prime
numbers both approximately

√
N . Most composite

N have a significantly smaller prime factor p. Trial
division will then find this factor in time O(p).
But the number field sieve and quadratic sieve are
insensitive to the size of p. We will describe two more
methods that depend on the size of this smallest
prime factor p, in preparation for the elliptic curve
factorization method.

• A heuristic O(
√

p) algorithm: Pollard’s rho
method. Say for simplicity that N = pq, where p
is significantly smaller than N — e.g., N ∼ 10300

but p < 1020. Trial division to find p takes
O(1020) steps, too long. But the rho method
takes O(1010) steps, quite reasonable.

• Description of rho method: work in Z/NZ ∼=
Z/pZ × Z/qZ. Take a nice nonlinear function

30

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

like f(x) = x2 + 1 mod N which “works on each
coordinate independently.” I.e., say a ∈ Z/NZ

corresponds to (b, c) ∈ Z/pZ × Z/qZ, where
b ≡ a mod p and c ≡ a mod q. Then we mean
that f(a) corresponds to

(

f(b), f(c)
)

. Now
start from a random a ∈ Z/NZ, and compute
f(a), f(f(a)), . . . , fM(a) where M = O(

√
p).

Recall that fM(a) corresponds to the pair
(fM(b), fM(c)). We can reasonably expect that
for some i, j ≤ M , we have f i(b) ≡ f j(b) mod p
because the values of the iterated function f `(b)
inside the smaller set Z/pZ eventually have to
repeat themselves. But for that particular i, j we
usually have f i(c) 6≡ f j(c) mod q. Conclusion
the GCD (f i(a)− f j(a), N) gives us the factor p.

• The (p− 1) method: this works if N has a factor
p such that p−1 is highly composite. We say that
p − 1 is B-smooth if p − 1 = 2a3b5c . . . Bz with
a largest prime factor B (which need not appear
since we can have z = 0). Now p is unknown, so
a, b, c, . . . , z are unknown. However, since 2a ≤
p − 1 < N , we know that a < (log N)/(log 2).
Similarly, b < (log N)/(log 3), and so forth. Thus

31

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

define

S = 2[log N/ log 2]3[log N/ log 3] . . . B[log N/ log B].

This guarantees that S is a multiple of p − 1, so
for any number x we have xS ≡ 1 mod p.

• Description of the (p − 1) method: Again for
simplicity say N = pq with p − 1 a B-smooth
number. If x ∈ Z/NZ ∼= Z/pZ × Z/qZ, then
x corresponds to (x mod p, x mod q) and xS

corresponds to (xS mod p, xS mod q) = (1 mod
p, xS mod q). Usually, xS 6≡ 1 mod q, so we can
recover p as the GCD (xS − 1, N). Here the
power xS mod N is as usual computed by fast
exponentiation.

32

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

The elliptic curve factorization method

Keep the simplifying assumption N = pq.

Reinterpretation of p − 1 method: The
multiplicative group (Z/NZ)∗ decomposes as
(Z/pZ)∗ × (Z/qZ)∗, and the first factor has order
p − 1 which we hope is B-smooth for a moderately
sized B. The disadvantage is that p is a fixed factor
of N , so we have no choice in the order p − 1.

How to get many more choices: Replace the
group (Z/NZ)∗ by the group of points on an elliptic
curve: E(Z/NZ) ∼= E(Z/pZ)×E(Z/qZ). Now the
first factor has order |E(Z/pZ)| = p + 1 − t with
|t| ≤ 2

√
p. Varying the elliptic curve will vary t, and

there is a good chance that p+1− t will be smooth.

Outline of Elliptic Curve factorization:

• Find a random elliptic curve E defined over
Z/NZ, and a random point P0 ∈ E(Z/NZ).
Specifically, choose a random x1, y1, a ∈ Z/NZ,
and determine b ∈ Z/NZ such that y2

1 =
x3

1 + ax1 + b. Then the elliptic curve is E :
y2 = x3 +ax+ b, and P1 = (x1, y1). In projective

33

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

coordinates, P1 = [x1 : y1 : 1] and the identity
element is the point at infinity P∞ = [0 : 1 : 0].

• The order of E(Z/pZ) is known to be at most
p + 1 + 2

√
p < N . So if |E(Z/pZ)| is B-smooth,

then its order is a factor of

S = 2[log N/ log 2]3[log N/ log 3] . . . B[log N/ log B],

and so S · P1 ≡ P∞ mod p. In projective
coordinates this means that PS = S · P1 = [XS :
YS : ZS] with ZS ≡ 0 mod p. We usually have
PS 6≡ P∞ mod q, so ZS 6≡ 0 mod q. Thus we can
find the factor p as the GCD (ZS, N).

• We will show below that the expected time for the
elliptic curve method to find the factor p of N is
(roughly) O(

(

exp(
√

2 · (log p)1/2(log log p)1/2)
)

.
This is “halfway between” polynomial and
exponential time in the size of the smallest prime
factor p of N . For most large N , this is the best
way to factor since usually p � N c. However, for
the N = pq used in RSA cryptography, where
p ∼ q ∼

√
N , the number field sieve (and

quadratic sieve) are still asymptotically better.

34

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Asymptotics of elliptic curve method

Here is a heuristic justification of the rough
expected time O(

(

exp(
√

2·(log p)1/2(log log p)1/2)
)

.

Principle: A number of the order of Bµ has a chance
of about µ−µ of being B-smooth.

Since we want to find a factor p, we should
try elliptic curves until |E(Fp)| is B-smooth. How
should we choose B?

• |E(Fp)| ∼ p, so if we write p = Bµ, we need to
try about µµ elliptic curves.

• Trying ONE elliptic curve involves about
B log N/ log B group operations. Reason: for
each prime q ≤ B, we raise our point to the
power q`q, where `q ≈ log N/ log q. So we raise
to a power that is about N ; this takes about
log N group operations by fast arithmetic for each
q. But the number of prime q’s less than B is
around B/ log B.

• Thus, choose µ with B = p1/µ so as to minimize
µµB log N/ log B. Note that log N is fixed.

35

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

So, let us choose µ to minimize

Φ(µ) =
p1/µ

log p1/µ
· µµ =

p1/µ

log p
· µµ+1.

Easier: minimize log Φ after dropping the fixed log p
from the denominator. Thus minimize

Ψ(µ) =
1

µ
log p + (µ + 1) log µ,

whose derivative is

dΨ

dµ
=

−1

µ2
log p + log µ + 1 +

1

µ
∼ −1

µ2
log p + log µ

which is close to zero when µ2 log µ ≈ log p. As a
“zeroth” approximation, µ is about (log p)1/2, up to a
factor of order log log p. So we can well approximate
log µ ≈ (1

2) log log p. Substituting above, we get the
more precise approximation

µ ≈
√

log p

log µ
≈

√

2 log p

log log p
.

36

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

End of the argument: We now know that the
optimal value of Ψ = log(Φ log p) is

Ψ =
1

µ
log p + (µ + 1) log µ ≈

√

2 log p log log p.

The difference of log log p between Ψ and log Φ is
hence negligible. Moreover, the actual time needed
to factor is the time it takes to evaluate Φ log N
group operations in an elliptic curve modulo N ,
which takes time O(Φ(log N)c) for some c. This
power of log N also contributes the negligible amount
c log log N to the logarithm of the amount of time
needed, and so the amount of time actually needed
is O(exp

(

(1 + ε) log Φ
)

).

Final answer: the time needed is

O(exp(
(

(1 + ε)
√

2 log p log log p
)

).

37

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Primality proving

Given a number N which has resisted trial
division by moderately small numbers, and which has
passed a number of Rabin-Miller tests (variations
on a(N−1)/2 ≡ ±1 mod N for several a), we are
fairly certain that N is prime. But how can we be
completely sure?

• The engineer’s philosophical reason: if N were
composite, then the probability of a given a
passing the Miller-Rabin test is at most 1/4, and
is usually much, much less. So if N passes the test
for 100 randomly chosen a, we can bet with odds
of 4100 ≈ 1.6 × 1060 to 1 that N is prime. This
is much better odds than the chance of a random
fault in our computer! Besides, each Miller-Rabin
test runs very quickly (time O((log N)1+ε) with
fancy techniques for multiplication modulo N).

• The mathematician’s point of view: we still
want a complete proof that N is prime, even
if this takes longer. The AKS primality test,
in its fastest modification, takes expected time
O((log N)4+ε) to prove primality probabilistically

38

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

(working deterministically, the exponent becomes
7.5). But it isn’t yet the fastest method in practice
for primes of the size used in cryptography, which
have about 300 digits.

• Other methods exist, which give a certificate of
primality that can be checked rather quickly, even
if finding the certificate takes more time. We will
discuss such a method using elliptic curves, which
finds the certificate in heuristic probabilistic time
O((log N)4+ε), but with a better constant than
AKS.

A simple primality certificate: Say we know the
factorization of N − 1 = pe1

1 pe2
2 . . . per

r . (Need
a certificate of primality for each pi, obtained
recursively!) Now look for a ∈ Z/NZ such that:

• (a,N) = 1,

• aN−1 ≡ 1 mod N ,

• a(N−1)/pi 6≡ 1 mod N for all pi.

THEN N is prime.

39

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Conversely: if N is prime, then choosing a to be
any generator of (Z/NZ)∗ works. Such an a is called
a primitive root modulo N .

Why this is a certificate: We have a ∈ (Z/NZ)∗.
Write d for the order of a in this group; thus d is the
smallest possible number for which ad ≡ 1 mod N .
Now N −1 is a multiple of d, but (N −1)/pi cannot
be a multiple of d for any i. The only choice is that
d = N − 1, so a has order N − 1 in (Z/NZ)∗, but
(Z/NZ)∗ ⊂ Z/NZ − {0} cannot have more than
N − 1 elements. Thus (Z/NZ)∗ = Z/NZ − {0},
and N is prime.

A slight variation: Say that we factor N − 1 = q`
where q is a rather large prime, q >

√
N − 1. Now

say we find a such that

• (a,N) = 1,

• aN−1 ≡ 1 mod N ,

• (a(N−1)/q − 1, N) = 1.

Then N is prime because if p is any prime factor of
N , then the order of a in (Z/pZ)∗ is a multiple of

40

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

q, and hence p − 1 ≥ q >
√

N − 1; thus all prime
factors p of N satisfy p >

√
N , so N is prime.

Difficulty with both methods: We would have to
be lucky enough to either factor N − 1 completely,
or ensure that N − 1 has a large prime factor q. On
the other hand, if N is prime, then it should be easy
to come across a generator a of (Z/NZ)∗ by random
search.

Avoiding this difficulty: Just like for factoring, the
solution is to be able to choose other groups than
just (Z/NZ)∗. We again work with elliptic curves
defined over Z/NZ.

Basic idea: Say we find an elliptic curve E and
a point P ∈ E(Z/NZ) such that P “has order
somewhat larger than

√
N .” Then N cannot have

any prime factor p ≤
√

N , because the image of P
modulo p generates a subgroup of E(Z/pZ) of order
bigger than

√
N , which is too large compared to

p. In fact, Hasse’s theorem says that |E(Z/pZ)| ≤
p + 1 + 2

√
p ≤ (N1/4 + 1)2.

More precise version: Suppose we find a prime
q > (N1/4 + 1)2, an elliptic curve E defined over

41

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Z/NZ, a point P ∈ E(Z/NZ), and a multiple m of
our prime q, all satisfying

• [m]P = [0 : 1 : 0] in projective coordinates,

• [m/q]P = [a : b : c] with (c,N) = 1 in projective
coordinates.

Then P has order a multiple of q in E(Z/NZ), or
more generally when projected to any E(Z/pZ), and
so N is prime.

Strategy to make certificates of primality: Start
with N probably prime, and find q,E, P,m as above
with q ∼ N1/2. The certificate that N is prime is the
data q,E, P,m PLUS a certificate of the primality
of q, obtained recursively. Since q is considerably
smaller than N , this process terminates quickly
enough. The hard part of the above strategy is
in finding m and q.

First way (less practical but easier to explain):
try many choices of E with a given point P , and
use Schoof’s algorithm to count mE = |E(Z/NZ)|
for each E. Then look for an m = mE which has

42

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

a large (probably) prime factor q. This is done by
factoring out as much of m as possible, using, say,
trial division and elliptic curve factorization.

Second way (more practical): Choose q, m first
(!!) and look for an elliptic curve with |E(Z/NZ)| =
m. This is done by finding an elliptic curve over Q

with complex multiplication, and reducing “modulo
N .”

Complex multiplication for elliptic curves over
C: Then E ∼= C/L for a lattice L ⊂ C. A
homomorphism ϕ : E → E is determined by a
number α ∈ C such that αL ⊂ L. The map is:

C
·α−→ C





y





y

C/L
ϕ=[α]−−−−→ C/L

I.e., ϕ(z mod L) = αz mod L.

• End(E) = {α ∈ C | αL ⊂ L} is the
endomorphism ring of E.

• End(E) contains the multiplication-by-m maps

43

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

[m] for m ∈ Z. But occasionally it can be
larger. In that case we say that E has complex
multiplication.

• Some examples:

– If L = Z+Z · i, then the corresponding End E
is Z[i].

– If L = Z · 2 + Z · 5i, then EndE = Z[10i].
– If L = Z · 2 + Z · (1 +

√
−3), then EndE =

Z[1+
√
−3

2].

• Over C, or more generally in characteristic zero,
the possible endomorphism rings of complex
multiplication have the form O ⊂ Q(

√
−d), where

O is an order in the imaginary quadratic field
K = Q(

√
−d). So O = Z + Zβ for an algebraic

integer β ∈ K. The lattice L can be taken to be
a suitable ideal a ⊂ O, viewed as a subset of C.
So E ∼= C/a.

Part of Big Theorem: Assume that E has complex
multiplication by an order O ⊂ K, where K is an
imaginary quadratic field. Then

• The j-invariant j(E) is an algebraic integer.

44

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• The field K[j(E)] is a Galois extension of K, with
abelian Galois group canonically isomorphic to the
class group of O, and very little ramification. (In
terms of class field theory: K[j(E)] is the ring
class field of K with respect to O.)

• Write an equation for E over K[j(E)] ⊂ Q. This
equation can be reduced modulo almost all primes
as follows: take a prime number p ∈ Q, and a
prime ideal P of the ring of integers of K[j(E)],
lying over p, with residue field Fpr. Then we
can reduce the equation of E to obtain an elliptic
curve E defined over Fpr.

• The theory predicts r easily from the ideal
structure of O, without needing to find an exact
value of j(E). In case p = αα with α ∈ O, then
r = 1.

• The theory also gives a manageable formula for
∣

∣E(Fpr)
∣

∣. In case p = αα as above, we have

∣

∣E(Fp)
∣

∣ = p + 1 − α′ − α′

where α′ is usually equal to ±α. (More generally,
α′ = ζα with ζ a root of unity in K.)

45

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Constructing elliptic curves to prove

primality

Given N , which we want to prove prime.

• Look for a (small) d and α = x + y
√
−d ∈ K =

Q(
√
−d), for which x2 + dy2 = αα = N . (x, y

are integers or half-integers.)

• We know an elliptic curve E over the alleged
finite field FN with complex multiplication by
the maximal order O ⊃ Z[α] usually has order
m = N +1∓ (α+α) = N +1∓2x. Try to factor
m at least partially, to find a factor q of m with
q > (N1/4 + 1)2 and q probably prime, say by the
Miller-Rabin test. Repeat with different d’s until
one such m is found with an appropriate factor q.

• The hard part Look for an elliptic curve E defined
over Q with complex multiplication by O, and
reduce modulo a prime above N . The idea is to
look for j(E) and all its Galois conjugates.

– The conjugates are j(C/a), for a a set of
representatives for the ideal class group of O.

46

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

These are essentially classes of binary quadratic
forms of discriminant −d or −4d.

– Since the j-values are algebraic integers, the
polynomial P (X) =

∏

a
(X − j(C/a)) has

integral coefficients. Now j can be calculated
numerically as a complex number, so calculate
the values of j to sufficient accuracy to get the
coefficients of P (X) with an error < 0.5.

– We really want j(E), which is the reduction of
j(E) modulo a prime N lying above N . We
find this value by factoring P (X) over FN .

– Having found j(E) ∈ FN , we construct the
curve E, search for a point P ∈ E(FN), and
check that [m]P = P∞, [m/q]P = [a : b : c]
with (c,N) = 1 in projective coordinates.

– Finally, recursively produce a primality
certificate for q.

47

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Error-correcting codes

Here the word “code” does not refer to
cryptography. Instead, we are interested in how
to send information across a noisy channel while
minimizing errors in transmission.

Typical examples:

• Using a high-speed computer modem across a
phone line with crackling and hissing,

• Having CDs and CD-ROMs that still work despite
scratches and random faults,

• Communicating with a far-off satellite with a weak
signal.

Example of a code: Every time we transmit
three bits of data, we then send a fourth bit for
“parity check,” to make the number of 1 bits even.
This allows us to detect if one bit was garbled in
transmission, but we cannot correct it.

000 001 010 011 100 101 110 111
0000 0011 0101 0110 1001 1010 1100 1111

48

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Formal setup for error-correcting codes: We fix a
finite alphabet A, e.g., we used {0, 1} above, which
we can identify with F2; more generally, we will stick
to A = Fq.

• A word of length n is an element a =
(a1, . . . , an) ∈ An.

• A code is a subset C ⊂ An. An element of C is
called a codeword.

• The Hamming distance between two words of
length n is the number of places with differing
letters: d(a,b) = |{i | ai 6= bi}|. Example:
d(1101110, 1001011) = 3.

• The minimum distance d(C) of the code C is the
smallest value of d(a,b) | a 6= b ∈ C.

Basic fact: Using C with d(C) = d allows us to
detect < d errors in each codeword. We can correct
< d/2 errors per codeword. For a given n, d, our
goal is to make |C| as large as possible.

49

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Linear codes

This means that A = Fq is a finite field, and we
take C ⊂ An to be an Fq-subspace.

• If k = dim C, then |C| = qk; so a codeword
transmits k letters of information using n symbols.

• d(C) is easy for linear codes, since d(a,b) =
d(a − b,0), and a,b ∈ C =⇒ a − b ∈ C. Thus
d(C) is the minimum number of nonzero entries
in any nonzero codeword.

• Encoding of a linear code is easy, since we just
need linear algebra to describe an injection ϕ :
Fk

q → Fn
q with image C. We can also decode by

solving the linear system ϕ(x) = a; if the system
has no solution, we know that a transmission error
occurred. We will describe later how to correct
fewer than d/2 errors for certain codes.

• Our parity-check example: q = 2 and C =
{(a1, a2, a3, a4) ∈ F4

2 | ∑

ai = 0}. The minimum
distance is d = 2, so we can detect < 2 errors
(i.e., ≤ 1 error), and correct < 2/2 (i.e., 0) errors.

50

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Example: the [7, 4] Hamming code

Here C ⊂ F7
2 is the kernel of the matrix





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



, whose columns list the

numbers 1–7 in binary.

Hence C is the subspace of vectors (a1, . . . , a7) in
F7

2 satisfying a5 = a2 + a3 + a4, a6 = a1 + a3 + a4,
and a7 = a1 + a2 + a4. Its elements are:

(0000000), (0001111), (0010110), (0011001),
(0100101), (0101010), (0110011), (0111100),
(1000011), (1001100), (1010101), (1011010),
(1100110), (1101001), (1110000), (1111111).

Here (1101001) is shorthand for (1, 1, 0, 1, 0, 0, 1).
We see that the minimum distance of this code is
d = 3, which is the fewest number of 1s in any
nonzero codeword. Thus we can detect < 3 errors,
i.e., up to two errors, and we can correct < 3/2
errors, i.e., up to one error.

Exercise: Figure out how to correct one error if it
occurs. The matrix above is useful.

51

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Efficiency of the Hamming code: We use 7 bits to
send 4 bits of information, since dim C = 4. Our limit
is 3 errors. Essentially, we can say that 4/7 ≈ 57%
of the information that we transmit corresponds to
the actual data we want to send, and the remaining
< 3/7 ≈ 43% allows for errors. This code is best
possible in some sense, since (essentially) the sum
cannot exceed 100% by some general theorems.

52

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Reed-Solomon codes

Given n, q with q ≥ n, we choose n distinct
elements t1, . . . , tn ∈ Fq, and we define the code
C ⊂ Fn

q by

C = {af :=
(

f(t1), . . . , f(tn)
)

| f(x) ∈ Fq[x], deg f ≤ k},

for some fixed k < n. Thus the map sending f to
af is injective, since a nonzero f cannot have roots
at all of t1, . . . , tn. The dimension of this code is
dim C = k + 1. (In case k = n − 1, C is all of Fn

q ,
which is uninteresting. The purpose is to have k
somewhat smaller than n, so we include more values
of the polynomial f than are necessary to determine
f .)

Immediate observation: The minimum distance of
the above code is d(C) = n − k. Reason: a nonzero
f of degree ≤ k can vanish at up to k of the ti.
Thus we can detect < n − k errors, and can correct
< (n − k)/2 errors. Note that Reed-Solomon codes
are hence also optimal from the point of view of
information theory. Their disadvantage is that we
need to take q ≥ n, so the alphabet gets large.

53

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Goppa (i.e., algebraic geometry) codes

Reinterpretation of Reed-Solomon codes using
P1: We know P1(Fq) = Fq ∪ {P∞}. Take the
divisor D = k · P∞; then L(D) is the space of
polynomials f(x) with deg f ≤ k. We then associate
to f ∈ L(D) the codeword af =

(

f(t1), . . . , f(tn)
)

,
where t1, . . . , tn are distinct points of P1(Fq).

Goppa codes: Take a curve X of genus g, defined
over Fq, and choose n distinct points P1, . . . , Pn ∈
X(Fq). Take a divisor D, with deg D = k < n,
and with D disjoint from {P1, . . . , Pn}. Then the
corresponding Goppa code is

C = {
(

f(P1), . . . , f(Pn)
)

| f ∈ L(D), i.e., div(f) ≥ −D}.

Note that the codeword af :=
(

f(P1), . . . , f(Pn)
)

is
well-defined since f can have poles only at D, which
is disjoint from the Pi.

• The map f 7→ af is injective, since if f 6= 0, then
the number of zeros of f equals the number of
poles, which is ≤ deg D = k < n.

54

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

• By Riemann-Roch, dim C = dimL(D) = k +
1 − g + i(D). Usually we have k ≥ 2g − 1 so
i(D) = 0, and our code has g fewer dimensions
than the corresponding Reed-Solomon code.

• The minimum distance is d(C) ≥ n − k, by
the same reasoning as for Reed-Solomon codes.
However, the inequality can now be strict. In
principle, we can hope to get d(C) = n − k + g
in some cases (roughly: ensure that the Pi are in
linear general position with respect to L(D)).

• Goppa codes give (asymptotically) the best
performance known over a wide range of error
rates. The idea is that the percentage of data
transmitted is (dim C)/n ≥ (k + 1 − g)/n, in
order to deal with an error rate < (n − k)/n.
The sum is (n + 1 − g)/n, which is close to 1
if n can grow faster than g. For given q and
g, Weil’s theorem (the “Riemann Hypothesis for
curves,” generalizing Hasse’s theorem), says that
|X(Fq)| ≤ q + 1 + 2g

√
q. This is the maximum

possible n, and families of curves are known with
g → ∞ which come close to this bound. They
give asymptotically very good codes.

55

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Decoding Reed-Solomon codes

How do we correct (not just detect) errors?

The basic problem: Given b = (b1, . . . , bn), we
want to find f of degree ≤ k such that af =
(

f(t1), . . . , f(tn)
)

differs from b in ` < (n − k)/2
coordinates. So we must allow up to ` wrong letters.
To do this, we allow a corrector polynomial c(x) with
deg c ≤ `, that can vanish at the “bad” ti. We now
try to find polynomials c and f satisfying

(

c(t1)b1, . . . , c(tn)bn

)

=
(

c(t1)f(t1), . . . , c(tn)f(tn)
)

Now write F (x) := c(x)f(x) with deg F ≤ k+`, and
solve a linear system of equations for the coefficients
of F and c. (We temporarily forget about f .)

• If b is within distance ` of a codeword af ,
then a nontrivial solution (c0, F0) exists to this
homogeneous system, namely the one with c0

vanishing at the “bad” ti, and F0 = fc0.

• Claim: If (c, F) is any nontrivial solution of the
linear system, then c(x) is a factor of F (x), and
f = F/c.

56

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Proof of claim:

• Recall our system of equations is c(ti)bi = F (ti),
for i = 1, . . . , n.

• Note that c(x) is not the zero polynomial.
Otherwise F (x) vanishes at t1, . . . , tn, but
deg F ≤ k + ` < n, so F (x) is also the zero
polynomial. But we assumed that (c, F) was
a nontrivial solution of our homogeneous linear
system.

• Now use the existence of one “correct” solution
(c0, F0) with f = F0/c0. It is enough to show
that any other solution (c, F) satisfies cF0 = c0F .

• Both c(x)F0(x) and c0(x)F (x) are polynomials
of degree ≤ ` + k + ` = k + 2` < n, since ` <
(n − k)/2. They have the same value at all the
ti, namely c(ti)c0(ti)bi. Thus c0F and cF0 must
be the same polynomial. Q.E.D.

57

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Decoding Goppa codes (nonoptimal)

• We take the space of c’s to be L(E), where E is a
suitable divisor of degree e < (n− k + g)/2. This
only ensures that c can vanish at e − g < (n −
k−g)/2 arbitrary points, less than the “expected”
` = d(C)/2 ≥ (n − k)/2.

• E must be disjoint from the Pi. We also choose
E so that L(D + 2E − P1 − · · · − Pn) = 0. This
is reasonable since deg D + 2E −P1− · · · −Pn =
k + 2e − n < g, so a “generic” choice of E will
make L(D + 2E − P1 − · · · − Pn) = 0.

• The corresponding product F is the product of
f ∈ L(D) by c ∈ L(E), so F ∈ L(D + E).
We thus solve the system c(Pi)bi = F (Pi), for
i = 1, . . . , n, and obtain a nontrivial pair (c, F).

• If we only aim to correct < (n−k−g)/2 errors, and
find f , we know that a nontrivial solution (c0, F0)
exists with F0/c0 = f . But then cF0 − c0F is
an element of L(D + 2E) that vanishes at all Pi,
so is zero by construction. Thus F/c = F0/c0.
(Note c 6= 0, since otherwise we get F = 0.)

58

Kamal Khuri-Makdisi CIMPA-LEBANON summer school 2004

Very brief bibliography

• Ian Blake, Gadiel Seroussi, and Nigel Smart,
Elliptic Curves in Cryptography, Cambridge
Univ. Press

• Henri Cohen, A Course in Computational

Algebraic Number Theory, Springer

• Neal Koblitz, A Course in Number Theory and

Cryptography, Springer

• René Schoof, Algebraic curves and coding theory,
Abuja 1990, available from

http://swc.math.arizona.edu/oldaws/00Notes.html

• Joseph H. Silverman and John Tate, Rational

Points on Elliptic Curves, Springer

• Madhu Sudan, Course notes on coding theory,
http://theory.lcs.mit.edu/∼madhu/coding/course.html

• Jacobus Hendricus van Lint, Introduction to

Coding Theory, Springer

. . . and a free software package: GP/PARI,
available from http://pari.math.u-bordeaux.fr/

59

