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Introduction

These lecture notes correspond to an eight hours mini-course that the author taught at
the CIMPA summer school in Lanzhou (China) during July 2004.

The equation of motion of a perfect incompressible fluid were deduced by Euler [18] by
assuming that there is no friction between the molecules of the fluid. In the modern theory
of existence and uniqueness of solutions, the case of the dimension two is by far the richest.
Global existence and uniqueness of bidimensional solutions was first proved by Wolibner
[49] for smooth initial data and by Yudovich [51] for data with bounded vorticity. There
are also some global existence results (no uniqueness yet) when the vorticity is in Lp or is
a nonnegative compactly supported H−1 Radon measure. As far as the dimension three is
concerned, only some local in time results are known, except in some very particular cases.

After obtaining this global existence theory in dimension two under more or less sat-
isfactory hypothesis, a natural question arises: what is the large time behavior of these
solutions? Unfortunately, the answer to this question is still largely unknown. The few
results that are known give some information on the vorticity rather than the velocity it-
self. This 8 hours mini-course is intended to present the latest developments on the subject
together with a introduction to the equations and a review of the main global existence of
solutions results.

The structure of these notes is the following. In Chapter 1 we start by giving a very
short presentation of the equations, we introduce the main quantities and list without proof
the conservations laws that will be used in the sequel. Next, we review the most important
global existence and uniqueness of solutions results; the main ideas of the proofs are also
highlighted. After this introductory part, we discuss in Chapter 2 some relevant examples
of solutions for the Euler equations and the vortex model; the behavior observed here will
be precious in the sequel. Chapter 3 deals with the confinement properties of nonnegative
vorticity. We end this work with the most general case, the case of unsigned vorticity. Here
we will find another point of view for the large time behavior: we will try to describe the
weak limits of different rescalings of the vorticity.

Chapter 1 is given only to make these lecture notes self-contained. For these reasons,
the write-up is rather sketchy with very few details given. The main part of this work
consists in Chapters 2, 3 and 4 which are more complete and carefully written.
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Chapter 1

Presentation of the equations and
existence of solutions

1.1 Presentation of the equations, Biot-Savart law and

conserved quantities

Let u be the velocity of a perfect incompressible fluid filling Rn and p the pressure.
Assuming that the density is constant equal to 1, then the vector field u and the scalar
function p must satisfy the following Euler equation

∂tu+ u · ∇u = −∇p, div u = 0, u
∣∣
t=0

= u0,

where div u =
∑

i ∂iui and u · ∇ =
∑

i ui∂i. If we place ourselves on a bounded domain,
then we must also assume the so-called slip boundary conditions which say that the velocity
is tangent to the boundary and express the fact that the boundary is not permeable. We
define the vorticity to be the following antisymmetric matrix

Ω = (∂jui − ∂iuj)i,j.

In dimension 2 we identify Ω to a scalar function,

Ω ≡ ω = ∂1u2 − ∂2u1

while in dimension 3 we identify it with the following vector field.

Ω ≡ ω =

∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

 .

From the divergence free condition on u, one can check that

4u = div Ω =
(∑

j

∂jΩij

)
i

7



8 CHAPTER 1. PRESENTATION AND EXISTENCE OF SOLUTIONS

Using the formula for the fundamental solution of the Laplacian in Rn we deduce the
following formula expressing the velocity in terms of the vorticity.

u = Cn

∫
Rn

Ω(y)
x− y
|x− y|n

dy.

The above relation is called the Biot-Savart law. In dimension 2, the Biot-Savart law can
be expressed as follows:

u =

∫
R2

(x− y)⊥

2π|x− y|2
ω(y) dy =

x⊥

2π|x|2
∗ ω,

where x⊥ = (−x2, x1).

It is a simple calculation to check that the vorticity equation is

∂tΩ + u · ∇Ω + (∇u)Ω + Ω(∇u)t = 0

while in dimension 2 it can be expressed as a simple transport equation:

∂tω + u · ∇ω = 0. (1.1)

From this transport equation it is not difficult to deduce that the following quantities
are conserved in dimension 2:

•
∫

R2 u;

• the energy ‖u‖L2 and the generalized energy
∫∫

R2×R2 log |x− y|ω(x)ω(y) dx dy;

•
∫

R2 ω and all Lp norms of ω, 1 ≤ p ≤ ∞;

• center of mass
∫

R2 xω(x) dx;

• moment of inertia
∫

R2 |x|2ω(x) dx;

• circulation on a material curve
∫

Γ
u · ds (Γ is a curve transported by the flow).

1.2 Existence and uniqueness results

The aim of this section is to give a review of the most important global existence (and
sometimes uniqueness) of bidimensional solutions to the Euler equations and also to give a
very short sketch of the proof with the main ingredients. We start with the case of classical
solutions in Subsection 1.2.1, we continue with Lp vorticities in Subsection 1.2.2 and we
end with the very interesting case of vortex sheets in Subsection 1.2.3.
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1.2.1 Strong solutions and the blow-up criterion of Beale-Kato-
Majda

We first deal with strong solutions that belong to the Sobolev space Hm(Rn), m > n
2
+1.

By Sobolev embeddings, such a solution is C1 so it verifies the equation in the classical
sense. Their existence is in general only local in time, but the Beale, Kato and Majda [3]
blow-up criterion ensures that the existence is global in dimension 2. More precisely, we
have the following result.

Theorem 1.2.1 Suppose that the initial velocity u0 is divergence free and belongs to the
Sobolev space Hm(Rn) where m > n

2
+ 1. There exists a unique local solution u ∈

C0
(
[0, T );Hm

)
with T ≥ C

‖u0‖Hm
. Moreover, the following blow-up criterion due to Beale,

Kato and Majda holds: if T ∗, the maximal time existence of this local solution, is finite,
then

∫ T ∗

0
‖Ω‖L∞ =∞.

Corollary 1.2.2 In dimension 2 the above solution is global.

Proof of the corollary. The proof is trivial from the Beale, Kato and Majda blow-up
criterion since the L∞ norm of the vorticity is conserved. �

Sketch of proof of Theorem 1.2.1. The a priori estimates

∂t‖u‖2Hm ≤ C‖u‖2Hm‖∇u‖L∞

follow from the following Gagliardo-Nirenberg inequality

‖D`u‖
L

2k
`
≤ C‖u‖1−

`
k

L∞ ‖D
ku‖

`
k

L2 , 0 ≤ ` ≤ k,

and from the cancellation
∫
u ·∇DmuDmu = 0. The first part of the theorem follows from

the Sobolev embedding Hm−1 ⊂ L∞ used to estimate ‖∇u‖L∞ ≤ C‖u‖Hm .

We now prove the blow-up condition. Assume, by absurd, that
∫ T ∗

0
‖Ω‖L∞ < ∞.

From the vorticity equation and using that ‖∇u‖L2 ' ‖Ω‖L2 , one can easily deduce that
Ω ∈ L∞(0, T ∗;L2). We now use the following standard logarithmic inequality

‖∇u‖L∞ ≤ C[1 + ‖Ω‖L2 + ‖Ω‖L∞(1 + log+ ‖u‖Hm)]

to deduce that

‖∇u‖L∞ ≤ C(1 + ‖Ω‖L∞
∫ t

0

‖∇u‖L∞).

Gronwall’s inequality therefore implies that
∫ T ∗

0
‖∇u‖L∞ < ∞ which in turn gives that

u ∈ L∞(0, T ∗;Hm) which obviously contradicts the maximality of T ∗. �
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1.2.2 Solutions with compactly supported Lp vorticity

Let Lp
c denote the space of compactly supported Lp functions. If p > 1 and ω0 ∈ Lp

c then
ω ∈ L∞(R+;Lp) and therefore u ∈ L∞(R+;W 1,p

loc ). Global existence of solutions follows with
a standard approximation procedure and basically from the compact embedding W 1,p

loc ↪→
L2

loc, see [15]. Uniqueness of these solutions is not known unless p =∞ when the following
uniqueness result due to Yudovich [51] holds.

Theorem 1.2.3 (Yudovich) Suppose that ω0 ∈ L∞c . There exists a unique global solution
such that ω ∈ L∞(R+;L∞c ).

Sketch of proof of uniqueness. The proof relies on the following singular integral estimate:

‖∇u‖Lp ≤ Cp‖ω‖Lp ∀2 ≤ p <∞.

Let u and v be two solutions and set w = u− v. Then

∂tw + u · ∇w + w · ∇v = ∇p′.

We now make L2 energy estimates on this equation by multiplying with w to obtain

∂t‖w‖2L2 = −2

∫
w · ∇vw ≤ 2‖w‖L2‖∇v‖Lp‖w‖

L
2p

p−2
≤ Cp‖w‖

2− 2
p

L2 .

After integration we get ‖w(t)‖L2 ≤ (Ct)p. Sending p → ∞ yields w
∣∣
[0, 1

C
]
= 0. Global

uniqueness follows by repeating this argument. �

1.2.3 Vortex sheets and the Delort theorem

The vortex sheet problem appears when the velocity has a jump over an interface. In
this case, the vorticity is no longer a function but a measure since it must contain the
Dirac mass of the interface. Previous global existence results do not apply. Nevertheless,
we have the following very important global existence result due to Delort [12].

Theorem 1.2.4 (Delort) Suppose that u0 ∈ L2
loc(R2) such that the initial vorticity ω0

is a nonnegative compactly supported Radon measure. Then there exists a global solution
u ∈ L∞loc(R+;L2

loc).

Sketch of proof. We give here the main ideas of the proof in the version of Schochet
[46]. First of all, it is very easy to see by standard energy estimates that a priori u ∈
L∞loc(R+;L2

loc) which implies that ω ∈ L∞loc(R+;H−1
loc ).

The first main ingredient is the following weak definition of the nonlinear term from
the vorticity equation:

〈div(uω), ϕ〉 = −1

2

∫∫
R2×R2

(x− y)⊥

2π|x− y|2
[∇ϕ(x)−∇ϕ(y)]ω(x)ω(y) dx dy.
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Since the kernel above is bounded and smooth outside the diagonal, the double integral
above makes sense if the measure ω⊗ω doesn’t charge the diagonal which is the case since
ω ∈ H−1

loc and Dirac masses are not in H−1
loc .

The second main ingredient is to control the way how the vorticity doesn’t charge the
points. This control is contained in the following non-concentration lemma.

Lemma 1.2.5 For all T > 0, there exists C = C(‖u‖L∞(0,T ;L2
loc)

) such that∫
B(x0,r)

ω(t, x) dx ≤ C√
| log r|

for all t ∈ [0, T ], r ∈ (0, 1), x0 ∈ R2.

Proof of lemma. Let

hr(x) =


1, |x| < r;
log |x|
log

√
r
− 1, r ≤ |x| ≤

√
r;

0, |x| ≥ r.

Then hr is a continuous and nonnegative function such that ‖∇hr‖L2 ≤ C√
| log r|

. The

desired bound follows from an integration by parts and a simple estimate.∫
B(x0,r)

ω(t, x) dx ≤
∫
hr(x− x0)ω(t, x) dx =

∫
hr(x− x0) curl u(t, x) dx

=

∫
u(t, x) · ∇⊥hr(x− x0) dx ≤ ‖u‖L2(B(x0,1))‖∇hr‖L2 ≤ C√

| log r|
‖u‖L∞(0,T ;L2

loc)
.

�

The passing to the limit with a standard approximation scheme is now easy since what is
not on the diagonal passes to the limit immediately and what is on the diagonal gives no
contribution because of the above lemma. �
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Chapter 2

Some examples of solutions

In order to understand the large time behavior of solutions, a good starting point is to
look at the available examples. However, the smooth examples are not so numerous and
rather difficult to examine. On the other hand, there exists an approximation of the Euler
equations called the vortex model which is a system of ordinary differential equations much
more tractable from the point of view of examples.

The aim of this chapter is to examine all types of large time behavior that can be
observed in examples of solutions of the vortex model and of the Euler equation. We start
with the richer case of the vortex model and end with the more complicated case of smooth
solutions of the Euler equations.

2.1 Discrete examples, the vortex model

The vortex model corresponds to vorticity that is a sum of Dirac measures of some
points:

ω(t, x) =
k∑

i=1

aiδzi(t).

Accordingly, for x 6∈ {z1, z2, . . . , zk}, the associated velocity is

u(x) =

∫
R2

(x− y)⊥

2π|x− y|2
ω(y) dy =

k∑
j=1

aj
(x− zj)

⊥

2π|x− zj|2
.

The problem is of course how to define the velocity of each of the points z1, z2, . . . , zk since
the velocity is clearly not defined on each of these points. The vortex model consists simply
in ignoring the undefined terms and therefore reads

z′i =
∑

j∈{1,...,k}\{i}

aj
(zi − zj)

⊥

2π|zi − zj|2
, i ∈ {1, . . . , k}. (2.1)

This system of ordinary differential equations holds similar conservations as the Euler
equations, namely:

13



14 CHAPTER 2. SOME EXAMPLES OF SOLUTIONS

• center of mass
∑
aizi;

• moment of inertia
∑
ai|zi|2;

• generalized energy
∑
i6=j

aiaj log |zi − zj|.

Global existence of solutions for the vortex model holds for almost every initial data
(meaning that the set of initial data leading to blow-up is of vanishing Lebesgue measure)
but not for every data. An example of collapse will be given in subsection 2.1.5. We refer
to the excellent book by Marchioro and Pulvirenti [37] for a nice presentation and results
on the vortex model, and more generally on perfect incompressible flow.

2.1.1 Justification of the model

First we note that the solution of the vortex model is not a solution of the Euler equation
in the sense of distributions. The reason is that the velocity is not locally square integrable
as it would be required in order to define the terms uiuj that appear in the Euler equation.
Nevertheless, it can be considered as a good discrete approximation for the Euler system.

Formally, this can be justified in the following way. The vortex approximation consists

in ignoring the term (x−zi)
⊥

2π|x−zi|2 when it comes to define the velocity of the point zi. But this

contribution is just rotation about zi (faster and faster as x approaches zi) so it shouldn’t
affect zi itself.

Rigorously, the first complete justification is due to Marchioro and Pulvirenti [36] and
was later improved by Marchioro [34] and Serfati [47]. It consists in proving that if the
initial vorticity is localized and converges to a sum of Dirac masses in a certain way not
too restrictive, then at later times it will stay localized and converge to a sum of Dirac
masses that are the solutions to the vortex system. More precisely, we have the following
theorem.

Theorem 2.1.1 (Serfati) Suppose that ωε(0) =
k∑

j=1

ωj
ε(0) and z1(0), . . . , zk(0) are distinct

points such that

• ωj
ε(0) has definite sign;

• suppωj
ε(0) ⊂ D

(
zj(0), ε

)
;

• ‖ωj
ε(0)‖L1 = aj;

• |ωε(0)| ≤ C
εk for some arbitrary k ∈ N.

Let ωj
ε(t) denote the time evolution of ωj

ε(0) and
k∑

j=1

ajδzj(t) the solution of the vortex model

with initial data
k∑

j=1

ajδzj(0). Then for any T > 0 and µ < 1
2

there exists a constant
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C1 = C1(T, µ) such that
suppωj

ε(T ) ⊂ D
(
zj(T ), C1ε

µ
)
.

Moreover, for any T ≥ 0, we have the following weak convergence in the sense of measures:

ωε(T, ·) ⇀
k∑

j=1

ajδzj(T ) as ε→ 0.

2.1.2 The case when all masses are positive

If all masses ai are positive, then the conservation of the moment of inertia implies that
the trajectories zj(t) stay bounded. Moreover, the conservation of the generalized energy
also shows that collapse cannot occur as this would require blow-up of the generalized
energy. We infer that the right-hand side of (2.1) stays bounded and therefore global
existence of solutions of the vortex model holds in the case of positive masses and no
spreading of the vortices is observed.

2.1.3 Discrete vortex pairs

We call discrete vortex pairs a couple of two vortices with vanishing sum of masses.
The motion in this case is translation with constant velocity parallel to the perpendicular
bisector of the segment formed by the vortices. More precisely, suppose that z1(0) = (0, α),
z2(0) = (0,−α), a1 = a > 0 and a2 = −a. The vortex system then reads

z1(t) =
(
x(t), α

)
, z2(t) =

(
x(t),−α

)
, x′(t) =

a

4πα
·

The important thing to note that, in contrast to the positive masses case, the vortices
move linearly to infinity.

2.1.4 Vortices with diameter growing linearly

The previous example shows a couple of vortices moving fast to infinity. However, the
distance between the two vortices stays bounded. Is there any configuration showing linear
growth of the distance between the two vortices too? The answer is yes and here is an
example. Consider z = (x, y) a point vortex of mass a > 0 situated in the first quadrant
and extend it by symmetry with respect to the axis of coordinates and the masses by
antisymmetry. In other words,

ω = aδ(x,y) − aδ(x,−y) + aδ(−x,−y) − aδ(−x,y), a > 0.

This special symmetry is preserved by the flow and the vortex model simply reads

x′ =
ax2

4πy(x2 + y2)
, y′ = − ay2

4πx(x2 + y2)
.
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Therefore, x increases and y decreases. From the conservation of the generalized energy
we see that the quantity 1

x2 + 1
y2 is conserved, so the minimum distance between vortices

has a positive lower bound. We infer that lim
t→∞

y(t) > 0 and, since x has a limit at infinity

too, it follows that x′ = ax2

4πy(x2+y2)
has a finite limit. This shows that x(t) ' O(t) and so

does the diameter of this configuration since it equals 2
√
x2 + y2.

2.1.5 Collapse and special growth

We end this sequence of discrete examples with a configuration that can be found in
[37] and that leads on one hand to collapse and on the other hand to a peculiar kind of
growth. We consider an initial configuration of three point vortices

ω = a1δz1 + a2δz2 + a3δz3

such that

a1a2 + a2a3 + a3a1 = 0

and

a1a2|z1 − z2|2 + a2a3|z2 − z3|2 + a3a1|z3 − z1|2 = 0.

According to the known conservation laws, the above quantity is conserved and therefore
it will vanish for all times. Under this assumption it is not difficult to check that

d

dt

( |z1 − z2|2

|z1 − z3|2
)

=
d

dt

( |z1 − z2|2

|z2 − z3|2
)

=
d

dt

( |z1 − z3|2

|z2 − z3|2
)

= 0.

This means that the triangle formed by these vortices changes only in size by similitude.
We infer from this observation that

d

dt
|z1 − z2|2 =

2Aa3

π

[ 1

|z2 − z3|2
− 1

|z1 − z3|2
]

= constant in time,

where A is the area of the triangle formed by the three vortices. Setting

M =
2A(0)a3

π

[ 1

|z2(0)− z3(0)|2
− 1

|z1(0)− z3(0)|2
]

we get
|z1 − z2|2 = |z1(0)− z2(0)|2 +Mt.

Depending on the sign of M , that is on the one of a3, we get one of the following two
peculiar situations:

• either M < 0 which implies that the three vortices collapse at time t = − |z1(0)−z2(0)|2
M

;
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• or M > 0 which shows growth of the distance between the vortices as O(t
1
2 ).

An example of such an initial configuration is given by a1 = a2 = 2, a3 = −1, z1(0) =

(−1, 0), z2(0) = (1, 0), z3(0) = (1,
√

2). Even though the growth is of only O(t
1
2 ) instead

of O(t) as observed in the previous subsection, the interest of this example stems from the
fact that the total mass is non-zero. The significance of this will be obvious in section 4.1,
see Remark 4.1.2.

2.2 Smooth examples

Smooth examples are much more difficult to obtain. To exhibit similar large time
behavior as in the previous section is not always possible and when it is possible it requires
a nontrivial proof, not just simple observations and calculations. For instance, we cannot
prove that a smooth nonnegative vorticity has support bounded in time; for more details
we refer to section 3.1. What we can do, is to prove that the smooth versions of the
examples from subsections 2.1.3 and 2.1.4 retain some of the properties of their discrete
counterparts and this is our aim for the rest of this chapter.

2.2.1 Vortex pairs and nonnegative vorticity in the half plane

The initial-boundary value problem for the incompressible 2D Euler equations in the
half-plane (1.1) with bounded initial vorticity ω0 is globally well-posed since it is equivalent,
through the method of images, to an initial-value problem in the full-plane, with bounded,
compactly supported initial vorticity (shown to be well-posed by Yudovich in [51]). The
method of images consists of the observation that the Euler equations are covariant with
respect to mirror-symmetry. Thus an initial vorticity which is odd with respect to reflection
about the horizontal axis will remain so, and give rise to flow under which the half-plane is
invariant. Conversely, the odd extension, with respect to x2 = 0, of vorticity in half-plane
flow gives rise to full-plane flow. This observation is especially useful in order to deduce
the Biot-Savart law for half-plane flow, to recover velocity from vorticity.

Steady vortex pairs are a remarkable example of exact smooth solutions whose motion
is just translation at constant speed without deformation (i.e. traveling waves). The
initial vorticity is antisymmetric with respect to some axis of symmetry and has definite
sign on each side of the axis. An explicit example can be found in [2] p.534, while some
mathematical studies can be found in [6, 24, 39]. The sign and antisymmetry hypothesis
given above are of course not sufficient to define a steady vortex pair; we call it just vortex
pair. In fact it is equivalent to the motion of nonnegative vorticity in the half-plane.
However, it can be proved that for any vortex pair, the center of mass behaves like the one
of a steady vortex pair, meaning that it is exactly like O(t). More precisely, it is proved in
[23] the following theorem.

Theorem 2.2.1 Consider the Euler equation in the half-plane x2 > 0. Suppose that the
initial vorticity is nonnegative and compactly supported, ω0 ∈ L1(R2) ∩ L∞(R2). Then
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the center of mass P (t) =
∫
xω(t, x) dx is moving parallel to the boundary with a velocity

bounded from below by a positive constant. In other words, there exists a constant C > 0
such that P2 = cst. and P1(t) ≥ Ct for t sufficiently large.

Proof. In the following, C,C1, . . . denote some constants which may depend on ω0 and
may change from one line to another. The set D denotes the half-plane x2 > 0.

The following lemma will be very useful in the sequel.

Lemma 2.2.2 Let a ∈ (0, 2), S ⊂ R2 and h : S → R+ be a function belonging to L1(S) ∩
Lp(S), p > 2

2−a
. Then ∫

S

h(y)

|x− y|a
dy ≤ C‖h‖

2−a−2/p
2−2/p

L1(S) ‖h‖
a

2−2/p

Lp(S) .

Proof of lemma. Let k ∈ N be arbitrary. We can bound by Hölder’s inequality∫
S

h(y)

|x− y|a
dy =

∫
S∩{|x−y|>k}

h(y)

|x− y|a
dy +

∫
S∩{|x−y|<k}

h(y)

|x− y|a
dy

≤
‖h‖L1(S)

ka
+ ‖h‖Lp(S)

∥∥∥ 1

|x|a
∥∥∥

L
p

p−1 (|x|≤k)

=
‖h‖L1(S)

ka
+ C‖h‖Lp(S)k

2−a−2/p.

The choice k =
(
‖h‖L1(S)‖h‖−1

Lp(S)

) 1
2−2/p

completes the proof of the lemma. �

Let us return to the proof of Theorem 2.2.1. First remark that the conservations of the
center of mass and moment of inertia are no longer true in D. We assume for simplicity
that

∫
D

ω(x) dx = 1. It is not difficult to see that if we extend ω by antisymmetry with

respect to the axis x2 = 0, then the resulting vorticity obeys the Euler equations in R2.
The Biot-Savart law in the full plane therefore gives the Biot-Savart law in x2 > 0:

v(x) =
1

2π

∫
D

(
(x− y)⊥

|x− y|2
− (x− y)⊥

|x− y|2

)
ω(y) dy,

where y = (y1,−y2) denotes the complex conjugate of y. A very simple calculation now
shows that

v1(x) =
1

2π

∫
D

(
− x2 − y2

|x− y|2
+
x2 + y2

|x− y|2

)
ω(y) dy (2.2)

v2(x) =
2

π

∫
D

(x1 − y1)x2y2

|x− y|2|x− y|2
ω(y) dy. (2.3)
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Let

P (t) =

∫
D

xω(t, x) dx,

be the center of mass of the vorticity. We get from (1.1) and after an integration by parts
that

P ′(t) =

∫
D

x∂tω(t, x) dx = −
∫
D

xv(x) · ∇ω(x) dx =

∫
D

v(x)ω(x) dx. (2.4)

The Biot-Savart law (2.2)–(2.3) now implies that

P ′
1(t) =

1

2π

∫∫
D2

x2 + y2

|x− y|2
ω(x)ω(y) dx dy,

P ′
2(t) = 0,

where we have used the antisymmetry of the expressions x2−y2

|x−y|2ω(x)ω(y) and (x1−y1)x2y2

|x−y|2|x−y|2ω(x)ω(y)

with respect to the change of variables (x, y) ←→ (y, x). We immediately obtain a new
conservation law. ∫

D

x2ω(x) dx = cst.

Let us now prove that there exists a constant C > 0 such that P ′
1 ≥ C. For notational

convenience, we denote by ω the extension of the vorticity by antisymmetry with respect
to the axis x2 = 0. Since this new vorticity verifies the Euler equations in R2, the following
(generalized) energy is conserved.

E0 = − 1

2π

∫∫
R2×R2

log |x− y|ω(x)ω(y) dx dy

=
1

2π

∫∫
D2

log
|x− y|2

|x− y|2
ω(x)ω(y) dx dy

=
1

2π

∫∫
D2

log

(
1 +

4x2y2

|x− y|2

)
ω(x)ω(y) dx dy.

Note that the kernel above is nonnegative, in contrast to what happens for a nonnegative
vorticity in R2. An application of Hölder’s inequality gives

E0 ≤ C(P ′
1)

1−1/q

∫∫
D2

(
|x− y|2

x2 + y2

)q−1 [
log

(
1 +

4x2y2

|x− y|2

)]q

ω(x)ω(y) dx dy

1/q

,
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with q > 1 to be chosen later. We now use the obvious inequality log(1 + t) ≤ C t
(1+t)α ,

1− 1/q ≤ α < 1, with t = 4x2y2

|x−y|2 which implies 1 + t = |x−y|2
|x−y|2 . We therefore get∫∫

D2

(
|x− y|2

x2 + y2

)q−1[
log

(
1 +

4x2y2

|x− y|2
)]q

ω(x)ω(y) dx dy

≤ C

∫∫
D2

|x− y|2q−2xq
2y

q
2

(x2 + y2)q−1|x− y|2q−2αq|x− y|2αq
ω(x)ω(y) dx dy

≤ C

∫∫
D2

(x2 + y2)
3q−2αq−1

|x− y|2q−2αq
ω(x)ω(y) dx dy

= C

∫∫
D2

x2 + y2

|x− y|2−q
ω(x)ω(y) dx dy

= 2C

∫
D

x2ω(x)
(∫

D

1

|x− y|2−q
ω(y) dy

)
dx

where we have chosen α = 3/2 − 1/q which is allowed if q < 2. Lemma 2.2.2 therefore
yields

E0 ≤ C(P ′
1)

1−1/qP
1/q
2 = CP2(0)

1/q(P ′
1)

1−1/q,

from which we deduce that P ′
1 is bounded from below by a positive constant. Let us also

note that the velocity v being bounded in space and time and relation (2.4) implies that
P ′

1 is bounded by another constant. �

2.2.2 Smooth vorticity with diameter growing linearly

The aim of this subsection is to present an example of vorticity, with indefinite sign,
whose support grows like O(t). This rate is optimal since the growth can be at most linear
in time. The initial vorticity is not positive, rather it consists of four blobs, identical except
for alternating sign, located symmetrically in the four quadrants. The initial configuration
is inspired by two examples. First, the discrete analog of this set-up was investigated above
in subsection 2.1.4 and the point vortices are seen to spread at a rate of O(t). Secondly,
at the other extreme, Bahouri and Chemin [1] consider an example for which the initial
vorticity is piecewise constant with alternating values ±1 in the unit square of the four
quadrants. There one finds rapid loss of Hölder regularity of the flow map. The motion in
our example restricts to a solution of the Euler equations in the first quadrant with slip
boundary conditions. The proof will show that the center of the mass located in the first
quadrant moves at a rate of O(t). In this case, the conservation of the center of mass and
moment of inertia are no longer useful since both quantities vanish. Instead, we shall use
conservation of energy.

Let us denote the first quadrant by Q. Let ω̃0 be a nonnegative function, belonging
to L∞, compactly supported in Q. We denote m0 =

∫
ω̃0(x) dx, M0 = ‖ω̃0‖L∞ , and
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P0 =
∫
x ω̃0(x) dx. Our example of initial vorticity is a function antisymmetric with

respect with both coordinate axes and equal to ω̃0 in the first quadrant. In other words,
using x for the complex conjugate of x, we define ω0(x) = ω̃0(x) for x ∈ Q and extend ω0

to R2 so as to have ω0(x) = −ω0(x) = −ω0(−x) = ω0(−x). We shall prove the following
theorem from [22].

Theorem 2.2.3 There exists a constant C0 = C0(m0,M0,P0) such that, for every time t,
the diameter, d(t), of the support of the vorticity evolved from ω0 satisfies d(t) ≥ C0t.

Proof. By uniqueness, the vorticity ω(t, x) preserves the antisymmetry of the initial data,

ω(t, x) = −ω(t, x) = −ω(t,−x) = ω(t,−x).

Moreover, the flow map is antisymmetric, and so it leaves each quadrant and both coordi-
nate axes invariant. Consequently, we have∫

Q

ω(t, x) dx =

∫
Q

ω(0, x) dx =

∫
Q

ω̃0(x) dx = m0. (2.5)

We shall consider the evolution of the center of mass of ω(t, x) restricted to Q defined
by

P(t) =
1

m0

∫
Q

xω(t, x) dx.

Let P(t) = (P1(t), P2(t)). The support of ω has a non-empty intersection with the region
{x1 ≥ P1}. Therefore, the symmetry properties of ω(t, x) imply that the diameter of the
support of the vorticity is bounded by below by P1(t). So, in order to prove Theorem 2.2.3,
it is enough to prove that P1(t) ≥ C0(m0,M0,P0)t. In the course of the proof, we shall
also see that P1(t) is increasing and that P2(t) is decreasing.

From the Biot-Savart law (3.3) along with the obvious changes of coordinates, we deduce

v(x) =

∫
R2

(x− y)⊥

|x− y|2
ω(y) dy

=

∫
Q

(
(x− y)⊥

|x− y|2
+

(x+ y)⊥

|x+ y|2
− (x− y)⊥

|x− y|2
− (x+ y)⊥

|x+ y|2

)
ω(y) dy.

Separating the components, we can further write

v1(x) =

∫
Q

[
−(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
+ (x2 + y2)

(
1

|x− y|2
− 1

|x+ y|2

)]
ω(y) dy

v2(x) =

∫
Q

[
(x1 − y1)

(
1

|x− y|2
− 1

|x− y|2

)
+ (x1 + y1)

(
1

|x+ y|2
− 1

|x+ y|2

)]
ω(y) dy.

(2.6)
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Differentiating P(t), using the vorticity equation (3.2), and integrating by parts implies

P′(t) =
1

m0

∫
Q

x ∂tω(t, x) dx =
1

m0

∫
Q

v(t, x)ω(t, x) dx.

Furthermore, according to the modified Biot-Savart law (2.6), we obtain

P ′
1 =

1

m0

∫∫
Q2

[
−(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)

+ (x2 + y2)

(
1

|x− y|2
− 1

|x+ y|2

)]
ω(x)ω(y) dx dy

P ′
2 =

1

m0

∫∫
Q2

[
(x1 − y1)

(
1

|x− y|2
− 1

|x− y|2

)

+ (x1 + y1)

(
1

|x+ y|2
− 1

|x+ y|2

)]
ω(x)ω(y) dx dy.

(2.7)

Interchanging the coordinates, x↔ y, yields∫∫
Q2

(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
ω(x)ω(y) dx dy

= −
∫∫

(x2 − y2)

(
1

|x− y|2
− 1

|x+ y|2

)
ω(x)ω(y) dx dy,

so ∫∫
Q2

(x2 − y2)
( 1

|x− y|2
− 1

|x+ y|2
)
ω(x)ω(y) dx dy = 0.

In a similar manner, we see that∫∫
Q2

(x1 − y1)
( 1

|x− y|2
− 1

|x− y|2
)
ω(x)ω(y) dx dy = 0.

We conclude that relation (2.7) can be now written as

P ′
1 =

1

m0

∫∫
Q2

4x1y1(x2 + y2)

|x− y|2|x+ y|2
ω(x)ω(y) dx dy

P ′
2 = − 1

m0

∫∫
Q2

4x2y2(x1 + y1)

|x+ y|2|x+ y|2
ω(x)ω(y) dx dy.

(2.8)

The first thing to remark is that P1 is increasing and P2 is decreasing.
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The second main ingredient is conservation of energy. When the velocity lies in L2, its
norm is equivalent to the quantity

E0 = − 1

2π

∫∫
R2×R2

log |x− y|ω(x)ω(y) dx dy.

However, it can be seen directly that the latter integral is a constant of the motion. Thanks
to the symmetry, a few changes of coordinates reduce the integration to the first quadrant

E0 =
2

π

∫∫
Q2

log
|x− y||x+ y|
|x− y||x+ y|

ω(x)ω(y) dx dy.

The kernel is nonnegative, since we can write

log
|x− y||x+ y|
|x− y||x+ y|

=
1

2
log
|x− y|2|x+ y|2

|x− y|2|x+ y|2

=
1

2
log

(
1 +
|x− y|2|x+ y|2 − |x− y|2|x+ y|2

|x− y|2|x+ y|2

)
(2.9)

=
1

2
log

(
1 +

16x1y1x2y2

|x− y|2|x+ y|2

)
.

Taking 1/p + 1/q = 1, with 1 < q < 2, Hölder’s inequality along with relation (2.8)
imply

Ep
0 ≤ C m0 P

′
1 I

1/(q−1), (2.10)

in which

I ≡
∫∫
Q2

[
|x− y|2|x+ y|2

x1y1(x2 + y2)

]q−1 [
log
|x− y||x+ y|
|x− y||x+ y|

]q

ω(x)ω(y) dx dy. (2.11)

In the following, we will derive an upper bound for the integral I.
Since the logarithm grows more slowly than any power, given 0 < α < 1, there is a

constant Cα such that log(1 + z) ≤ Cαz/(1 + z)α, for all z > 0. Therefore, using (2.9), the
logarithm has the bound

log

(
1 +

16x1y1x2y2

|x− y|2|x+ y|2

)
≤ C

x1y1x2y2

|x− y|2|x+ y|2

[
|x− y|2|x+ y|2

|x− y|2|x+ y|2

]−α

= C
x1y1x2y2

|x− y|2(1−α)|x+ y|2(1−α)|x− y|2α|x+ y|2α
.

From (2.11), this leads to the upper bound

I ≤ C

∫∫
Q2

x1y1(x2y2)
q|x+ y|2αq−2

(x2 + y2)q−1|x− y|2q(1−α)|x+ y|2αq|x− y|2−2q(1−α)

× ω(x)ω(y) dx dy.
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If we agree to take α = 1/q, then this simplifies to

I ≤ C

∫∫
Q2

x1y1(x2y2)
q

(x2 + y2)q−1|x− y|2(q−1)|x+ y|2|x− y|2(2−q)
ω(x)ω(y) dx dy.

Now the trivial inequalities

x1y1 ≤ (x1 + y1)
2 ≤ |x+ y|2 and x2y2 ≤ (x2 + y2)

2 ≤ |x− y|2

ensure that

I ≤ C

∫∫
Q2

(x2 + y2)
3(q−1)

|x− y|2(q−1)
ω(x)ω(y) dx dy.

If q ≤ 6/5, so that 5(q − 1) ≤ 1, we can apply Hölder’s inequality to get

I ≤ CI
1−5(q−1)
1 I

2(q−1)
2 I

3(q−1)
3 ,

with

I1 =

∫∫
Q2

ω(x)ω(y) dx dy, I2 =

∫∫
Q2

1

|x− y|
ω(x)ω(y) dx dy,

I3 =

∫∫
Q2

(x2 + y2)ω(x)ω(y) dx dy.

From (2.5), we have that I1 = m2
0. Lemma 2.2.2 with a = 1 and p = ∞ tells us that

I2 ≤ Cm
3/2
0 M

1/2
0 . Also, the monotonicity of P2 gives I3 ≤ Cm2

0P2(0). Altogether, we have
the bound

I ≤ C(q)m2
0

[
M0P2(0)

3

m0

]q−1

.

Going back to (2.10), we obtain

P ′
1 ≥ C0 ≡ C(q)

[
E0

m2
0

]1/(q−1)
E0

M0P2(0)3
,

so that
P1(t) ≥ P1(0) + C0t.

This completes the proof of Theorem 2.2.3. �



Chapter 3

When the vorticity is nonnegative:
growth of the support

The confinement results for the vorticity depend heavily on the (unbounded) domain.
We first treat the most important case, the full plane, and we discuss at the end what can
be proved for other domains.

3.1 The case of the full plane

The evolution of ideal incompressible fluid vorticity preserves compactness of support.
We saw in Section 1.2 that the initial value problem for the 2d incompressible Euler equa-
tions is globally well-posed in variety of settings. The divergence-free fluid velocity vector
field v(t, x) generates a particle flow map Φ(t, p) through the system of ODE’s

d

dt
Φ(t, p) = v(t,Φ(t, p)), Φ(0, p) = p, (3.1)

such that the map p 7→ Φ(t, p) is a continuously varying family of area-preserving diffeo-
morphisms of the plane. Recall that the scalar vorticity ω = ∂1v2 − ∂2v1 is transported by
this flow

Dt ω = ∂t ω + v · ∇ω = 0, ω(0, x) = ω0(x), (3.2)

and the velocity is coupled to the vorticity through the Biot-Savart law

v(t, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(t, y) dy. (3.3)

Despite the successful existence theory, little can be said about the large time behavior
of solutions. This is not surprising since point vortex approximations, even using small
numbers of particles, can generate complex dynamics. Given that the vorticity is trans-
ported by a area-preserving flow (3.2), it follows that its Lp norms are constant in time.
In the case of smooth data, Hölder regularity of the flow map is preserved in time, but the

25
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Hölder norm of the flow map is only known to be bounded by an expression of the form
exp(expCt). Clearly, any growth in the Hölder norm of the flow map would be related to
the evolution of compact regions under the flow.

If the initial vorticity is supported in a compact set Ω ⊂ R2, then equation (3.2) shows
that at time t > 0 the vorticity is supported in Ω(t) = Φ(t,Ω). Nothing can be said about
the geometry of Ω(t). However in the case where the vorticity equals the characteristic
function of a set with smooth boundary, the so-called vortex patch, Chemin [8] proved that
the regularity of the boundary is propagated, see also [5]. A simple estimate from (3.3),
given in Lemma 2.2.2, provides a uniform bound for the velocity, and so the support of the
vorticity can grow at most linearly in time. For nonnegative initial vorticity, Marchioro [31]
demonstrated that the conservation of the moment of inertia,

∫
R2 |x|2ω(t, x)dx, further acts

to constrain the spreading of the support to a rate of O(t1/3). This result was generalized
to include vorticity in Lp for 2 < p <∞, in [28].

We will present in this section a result from [22] (see Theorem 3.1.1 below) which shows
that Marchioro’s bound for the growth rate of the support of nonnegative vorticity can be
improved to O[(t log t)1/4] by taking into account not only the conservation of the moment
of inertia but also the conservation of the center of mass,

∫
R2 xω(t, x) dx. Bounds for the

flow map will come from an estimate for the radial component of the velocity starting
from (3.3). The heart of the matter is to measure the vorticity in L1 outside of balls
centered at the origin, Proposition 3.1.2. The approach taken here is to estimate higher
momenta of the vorticity following the idea of Gamblin included in the Appendix of [22].
The analysis applies to weak solutions in Lp, 2 < p ≤ ∞. We also note that Serfati [47] has
independently obtained a result similar to Theorem 3.1.1 with the factor t1/4 log ◦ · · · ◦ log t
replacing (t log t)1/4.

There are a few examples of nonnegative explicit solutions, but none of these exhibit
any growth of support. Spherically symmetric initial vorticity gives rise to a stationary
solution whose velocity vector field induces flow lines which follow circles about the origin.
The support of the Kirchoff elliptical vortex patch rotates with constant angular velocity,
although the velocity vector field has a nontrivial structure exterior to the support, (see
[25], p.232). We also note that numerical simulations starting with a pair of positively
charged vortex patches show homogenization of the patches simultaneous with the forma-
tion of long filaments [7]. On the other hand, when the vorticity is not signed, we saw in
subsection 2.2.2 that it is useless to look for confinements results.

We will make use of several quantities that are conserved by the time evolution, namely
the total mass ∫

ω(t, x) dx =

∫
ω0(x) dx = m0,

the maximum norm
‖ω(t)‖L∞ = ‖ω0‖L∞ = M0,

the center of mass ∫
xω(t, x) dx =

∫
xω0(x) dx = c0,
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and the moment of inertia∫
|x|2ω(t, x) dx =

∫
|x|2ω0(x) dx = i0.

Assume that the support of ω0 is contained in the ball centered at the origin of radius d0.
We are going to prove the following theorem.

Theorem 3.1.1 Let ω(t, x) be the solution of the 2d incompressible Euler equations with
a nonnegative compactly supported initial vorticity ω0 ∈ L∞(R2). There exists a constant
C0 = C0(i0, d0,m0,M0) such that, for every time t ≥ 0, the support of ω(t, ·) is contained
in the ball |x| < 4d0 + C0[t log(2 + t)]1/4.

Proof. First, by making the change of variable x→ x− c0
m0

, we may assume, without loss
of generality, that the center of mass is located at the origin.

In the following estimates, constants will be independent of ω0, unless otherwise indi-
cated, and then the dependence will be only through the quantities i0, d0, m0, and M0. We
will establish the theorem for classical solutions, and the general result, for weak solutions,
follows immediately since these quantities are stable under passage to the weak limit. The
time variable will often be suppressed since it plays no role in the estimation of the various
convolution integrals.

We are going to show that the radial component of the velocity satisfies an estimate of
the form ∣∣∣∣ x|x| · v(t, x)

∣∣∣∣ ≤ C0

|x|3
, for all |x| ≥ 4d0 + C0[t log(2 + t)]1/4, (3.4)

with C0 = C0(i0, d0,m0,M0). The proof of the theorem concludes by noticing that the
region

{(t, x) : t ≥ 0, |x| < 4d0 + C0[t log(2 + t)]1/4}

is invariant for the flow
dt

ds
= 1,

dx

ds
= v(t, x)

since the bound (3.4) implies that the vector field (1, v(t, x)) points inward along the
boundary of this region.

We now turn to the verification of (3.4). The radial part of the velocity is

x

|x|
· v(x) =

1

2π

∫
x

|x|
· (x− y)

⊥

|x− y|2
ω(y) dy.

The last integral will be divided into two pieces.
The portion of the integral over the region |x − y| < |x|/2 is immediately seen to be

bounded by

C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy.
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Using that x · (x− y)⊥ = −x · y⊥ and the fact that the center of mass is at the origin,
we can express the other portion as

∫
|x−y|>|x|/2

x

|x|
· (x− y)

⊥

|x− y|2
ω(y) dy = −

∫
|x−y|>|x|/2

x · y⊥

|x||x− y|2
ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥

|x|

(
1

|x− y|2
− 1

|x|2

)
ω(y) dy

+

∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥

|x|
〈y, 2x− y〉
|x− y|2|x|2

ω(y) dy

+

∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy.

Next, we note that |x− y| > |x|/2 implies

|2x− y| ≤ |x− y|+ |x| < 3|x− y|,

and so the first of these integrals is bounded as follows∣∣∣ ∫
|x−y|>|x|/2

x · y⊥

|x|
〈y, 2x− y〉
|x− y|2|x|2

ω(y) dy
∣∣∣≤ ∫

|x−y|>|x|/2

|y|2|2x− y|
|x|2|x− y|2

ω(y) dy

≤ C

|x|3

∫
|x−y|>|x|/2

|y|2ω(y) dy ≤ Ci0
|x|3

.

On the grounds of simple homogeneity, it is difficult to see how to improve this estimate
using only the conserved quantities at hand.

As for the second piece, we use that |x− y| < |x|/2 gives |y| ≤ 3|x|/2 to write∣∣∣ ∫
|x−y|<|x|/2

x · y⊥

|x|3
ω(y) dy

∣∣∣≤ C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy.

We have deduced the following estimate for the radial component of velocity∣∣∣∣ x|x| · v(x)
∣∣∣∣ ≤ Ci0
|x|3

+ C

∫
|x−y|<|x|/2

ω(y)

|x− y|
dy. (3.5)
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The rest of the proof consists in showing that the last integral is negligible for large |x|.
From (3.5), Lemma 2.2.2 with a = 1, p =∞, and the fact that

{y : |x− y| < |x|/2} ⊂ {y : |y| > |x|/2},

the estimate for the radial component of the velocity is∣∣∣∣ x|x| · v(x)
∣∣∣∣ ≤ Ci0
|x|3

+ CM
1/2
0

(∫
|y|>|x|/2

ω(y) dy
)1/2

.

Given the following proposition, with k = 6, the last integral is also O(|x|−3) for |x| large
so that inequality (3.4) holds, and hence Theorem 3.1.1 is valid. �

Proposition 3.1.2 There exists a constant C0 = C0(i0, d0,m0,M0, k) such that for any
k > 0 ∫

|y|>|x|/2

ω(t, y) dy ≤ C0

|x|k
,

for all |x| > 4d0 + C0[t log(2 + t)]1/4.

Proof of the Proposition. In order to estimate the decay of the mass of vorticity far from
the center of mass, we introduce the higher momenta:

mn(t) =

∫
|x|4nω(t, x) dx.

Although these are not conserved quantities, a recursive estimate holds for their derivatives
leading to the following result.

Lemma 3.1.3 There exists a constant C0 such that for any n ≥ 1

mn(t) ≤ m0(d
4
0 + C0i0nt)

n. (3.6)

Assume, for the moment, that Lemma 3.1.3 is true and let us use it to prove Proposition
3.1.2. Fix k ≥ 1, and suppose that

r4 ≥ 2
[
d4

0 + C0i0kt log(2 + t)
]
. (3.7)

Choose n ≥ k/4 in such a way that

k log(2 + t)− 1 < n ≤ k log(2 + t). (3.8)

Recalling that the vorticity remains nonnegative during the motion, we have using (3.6),
(3.7), and (3.8) ∫

|x|≥r

ω(t, x) dx ≤ mn(t)

r4n
≤ m0

rk

(d4
0 + C0i0nt)

n

r4n−k

≤ m0

rk
2k/4−n

[
d4

0 + C0i0kt log(2 + t)
]k/4

.
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Note that by (3.8), we have that 2n+1 ≥ (2 + t)k log 2. This means that the right-hand side
can be bounded above by C(i0, d0,m0, k)/r

k when (3.7) holds, and so Proposition 3.1.2
follows. �

Proof of Lemma 3.1.3. Using the vorticity equation (2) and the Biot-Savart law (3.3), we
have after some integrations by parts

m′
n(t) =

2n

π

∫∫
〈x, (x− y)⊥〉
|x− y|2

|x|4n−2ω(t, x)ω(t, y) dx dy.

We define

K(x, y) = 〈x, (x− y)⊥〉
(

1

|x− y|2
− 1

|x|2

)
.

Since the center of mass is at the origin, we can write

m′
n(t) =

2n

π

∫∫
K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

Let us consider the following partition of the plane:

A1 =

{
(x, y) : |y| ≤

(
1− 1

2n

)
|x|

}
,

A2 =

{
(x, y) :

(
1− 1

2n

)
|x| < |y| <

(
1− 1

2n

)−1

|x|

}
,

A3 =

{
(x, y) : |x| ≤

(
1− 1

2n

)
|y|

}
.

Then, we have

m′
n(t) = α1(t) + α2(t) + α3(t)

with

αi =
2n

π

∫∫
Ai

K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

We will study each of these three terms.
First, assume that (x, y) ∈ A1 and write

K(x, y) = 〈y, (x− y)⊥〉 〈y, 2x− y〉
|x− y|2|x|2

.

Since |x− y| ≥ |x|/2n and |2x− y| ≤ 3|x|, we have the inequality

|K(x, y)| ≤ |y|
2|2x− y|
|x|2|x− y|

≤ 6n
|y|2

|x|2
,
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and we obtain the bound

|α1(t)| ≤
12n2

π

∫∫
A1

|x|4(n−1)|y|2ω(t, x)ω(t, y) dx dy ≤ 12n2

π
i0mn−1(t).

Now, assume that (x, y) ∈ A3. This implies that |x−y| ≥ |y|/2n and (1−1/2n)|y|/|x| ≥
1. The kernel K(x, y) may be written as

K(x, y) =
〈x, (x− y)⊥〉
|x− y|2

+
〈x, y⊥〉
|x|2

,

and we deduce that on A3

|K(x, y)| ≤ |x|
|x− y|

+
|y|
|x|
≤ 2n

|y|2

|x|2
.

It follows that

|α3(t)| ≤
4n2

π
i0mn−1(t).

Finally, we split the integral over A2 into two terms

α2(t) = I1(t) + I2(t)

where

I1(t) = −2n

π

∫∫
A2

|x|4n−2 〈x, y⊥〉
|x− y|2

ω(t, x)ω(t, y) dx dy,

I2(t) =
2n

π

∫∫
A2

|x|4(n−1)〈x, y⊥〉ω(t, x)ω(t, y) dx dy.

In the region A2, we have |x| ≤ 2|y|, and we can bound the second contribution, I2(t), by

|I2(t)| ≤
4n

π
i0mn−1(t).

Now, observe that the region A2 is symmetric with respect to the diagonal and that

H(x, y) ≡ 〈x, y
⊥〉

|x− y|2
= −H(y, x).

The integral I1(t) can be therefore rewritten as

I1(t) = −n
π

∫∫
A2

H(x, y)
(
|x|4n−2 − |y|4n−2

)
ω(t, x)ω(t, y) dx dy.
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To evaluate this integral, we first use the following identity

|x|4n−2 − |y|4n−2 = 〈x− y, x+ y〉
2n−2∑
j=0

|x|4n−4−2j|y|2j.

Thus, in the region A2, we find

∣∣|x|4n−2 − |y|4n−2
∣∣ ≤ 3|y||x− y||x|4(n−1)

2n−2∑
j=0

(
1− 1

2n

)−2j

≤ 6n |y||x− y||x|4(n−1).

On the other hand, we note that

|H(x, y)| =
∣∣〈x− y, y⊥〉∣∣
|x− y|2

≤ |y|
|x− y|

.

Combining the two last estimates yields

|I1(t)| ≤
6n2

π
i0mn−1(t).

Summing up the bounds for α1, α3, I1, and I2, and then using Hölder’s inequality we
get

m′
n(t) ≤ C0i0n

2mn−1(t) ≤ C0i0n
2m

1/n
0 mn(t)1−1/n.

It follows that mn(t) can be estimated as claimed in (3.6). �

3.2 Discussion of other cases

The influence of the boundary on the large time behavior of the vorticity is crucial.
The result for the full plane case is clearly false for domains with boundaries. To convince
ourselves, it is sufficient to remember that in subsection 2.2.1 it is proved that the center of
mass of nonnegative vorticity in the half-plane behaves exactly like O(t), so no confinement
is possible. On the other hand, in the latter case not even the diameter can be estimated
better than O(t); this is suggested by the discrete example of section 4.2.4. In fact, the
compactness of the boundary is extremely important. We discuss next two relevant cases:
the exterior domain and the half plane.

3.2.1 The case of the half plane

As noted above, no complete confinement can be true. However, partial confinements
can hold. We will discuss this in the following. Let us begin by fixing basic notation. We
denote by H the horizontal half-plane given by H = {x ∈ R2;x2 > 0}. Reflection with
respect to x2 = 0 will be denoted by x = (x1, x2) 7→ x = (x1,−x2). If z = (z1, z2) then
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its perpendicular vector is z⊥ = (−z2, z1). We use Lp
c(H) to denote the Lebesgue space of

p-th power integrable functions, p ≥ 1, with compact support in H. The dual of Lp is Lp′ ,
with the conjugate exponent given by p′ = p/(p− 1).

Let us fix an initial vorticity ω0. We will assume in this part that ω0 is a given non-
negative function in Lp

c(H) for some p > 2. If ω0 ∈ Lp
c(H), 2 < p < ∞, then we saw that

there exists a weak solution u, ω of (1.1) associated with this initial vorticity (see [29]).
Furthermore, ω(t, ·) ≥ 0, t ≥ 0, and the L1 and Lp-norms of ω(t, ·) are bounded by the
L1 and Lp-norms, respectively, of the initial vorticity. Using the method of images we can
write the velocity u in terms of vorticity ω as:

u(t, x) =

∫
H

[ (x− y)⊥

2π|x− y|2
− (x− y)⊥

2π|x− y|2
]
ω(t, y) dy. (3.9)

We denote the kernel appearing the integral above by:

K = K(x, y) =
(x− y)⊥

2π|x− y|2
− (x− y)⊥

2π|x− y|2
, (3.10)

whose components are given explicitly by:

K1(x, y) =
y2[y

2
2 − x2

2 + (x1 − y1)
2]

π|x− y|2|x− y|2
and K2(x, y) =

2(x1 − y1)x2y2

π|x− y|2|x− y|2
. (3.11)

It is easy to see that

|K(x, y)| ≤ 1

π|x− y|
, (3.12)

from which we can deduce the fact that, if p > 2, then an L1 ∩ Lp-vorticity ω gives rise to
an L∞-velocity u with the estimate:

‖u‖L∞(H) ≤ C‖ω‖p
′/2

Lp(H)‖ω‖
1−p′/2

L1(H)

as can be seen from Lemma 2.2.2.

3.2.1.1 Vertical confinement

We start with a vertical confinement result that was proved in [23].

Theorem 3.2.1 There exists a constant C such that for x2 ≤ C(t log t)
1
3 for all x ∈

suppω(t, ·).

We will show that there exists a constant C1 >
√

3 such that |v2(x)| ≤ C1x
−2
2 for all x

such that x2 ≥ C1(t log t)1/3 and t sufficiently large. This will imply that no fluid particle
can escape the region x2 ≤ C1(t log t)1/3.
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As |x− y|2 ≥ max(x2
2, x2y2) we can estimate by relation (2.3) and by the lemma

|v2(x)| ≤
2

π

∣∣∣ ∫
y2<x2/2

(x1 − y1)x2y2

|x− y|2|x− y|2
ω(y) dy

∣∣∣+2

π

∣∣∣ ∫
y2>x2/2

(x1 − y1)x2y2

|x− y|2|x− y|2
ω(y) dy

∣∣∣
≤ C

x2

∫
y2<x2/2

y2

|x− y|
ω(y) dy + C

∫
y2>x2/2

1

|x− y|
ω(y) dy

≤ C

x2

∫
y2<x2/2

y2

|x2 − y2|
ω(y) dy + C

(
‖ω‖L∞

∫
y2>x2/2

ω(y) dy

)1/2

≤ C

x2
2

∫
D

y2ω(y) dy + C

(
‖ω‖L∞

∫
y2>x2/2

ω(y) dy

)1/2

.

The proof of the theorem is completed once the following proposition is proved:

Proposition 3.2.2 For all k > 0 there exists a constant C0 such that∫
y2>x2/2

ω(t, y) dy ≤ C0

xk
2

,

for all x2 > C0

[
(1 + t) log(2 + t)

]1/3
.

Proof of the proposition. Let

fr(t) =

∫
D

η

(
x2 − r
λr

)
ω(t, x) dx,

where λ = λ(r) ∈ (0, 1) is to be chosen later and

η(s) =
es

1 + es
.

We easily see that

fr(t) ≥ η(0)

∫
x2>r

ω(t, x) dx.

So, to prove the proposition it suffices to estimate

fr(t) ≤
C0

rk
,

for all r > C0[(1 + t) log(2 + t)]1/3. To do that, we will deduce a differential inequality
verified by fr.
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The equation for ω as well as the Biot-Savart law (2.3) imply

f ′r(t) =

∫
D

η
(x2 − r

λr

)
∂tω(t, x) dx

= −
∫
D

η
(x2 − r

λr

)
v(x) · ∇ω(x) dx

=
1

λr

∫
D

η′
(x2 − r

λr

)
v2(x)ω(x) dx

=
2

πλr

∫∫
D2

η′
(x2 − r

λr

) (x1 − y1)x2y2

|x− y|2|x− y|2
ω(x)ω(y) dx dy.

Using the change of variables (x, y)←→ (y, x) we finally get

f ′r(t) =
1

πλr

∫∫
D2

[
η′

(x2 − r
λr

)
−η′

(y2 − r
λr

)]
(x1 − y1)x2y2

|x− y|2|x− y|2
ω(x)ω(y) dx dy. (3.13)

The mean value theorem implies

η′
(x2 − r

λr

)
−η′

(y2 − r
λr

)
=
x2 − y2

λr
η′′(ξ),

where ξ is situated between x2−r
λr

and y2−r
λr

. It is very easy to check that |η′′(s)| ≤ η(s)
for all s and that the function η is nonnegative and increasing. We can therefore conclude
that ∣∣∣η′(x2 − r

λr

)
−η′

(y2 − r
λr

)∣∣∣≤ |x2 − y2|
λr

(
η
(x2 − r

λr

)
+η

(y2 − r
λr

))
.

Inserting this relation in (3.13) yields

f ′r(t) ≤
1

πλ2r2

∫∫
D2

[
η
(x2 − r

λr

)
+η

(y2 − r
λr

)]
x2y2

(x2 + y2)2
ω(x)ω(y) dx dy

=
2

πλ2r2

∫∫
D2

η
(x2 − r

λr

) x2y2

(x2 + y2)2︸ ︷︷ ︸
L(x,y)

ω(x)ω(y) dx dy.

For x2 < r/2 we bound L(x, y) ≤ e−
1
2λ and for x2 > r/2 we estimate L(x, y) ≤ η

(
x2−r
λr

)
y2

x2
≤

2
r
η
(

x2−r
λr

)
y2. Using also the conservation of mass and of

∫
D

x2ω(x) dx we obtain the following

bound:

f ′r(t) ≤
C

λ2r2
e−

1
2λ +

C

λ2r3
fr(t).

Gronwall’s lemma now gives

fr(t) ≤ fr(0)e
Ct

λ2r3 + re
Ct

λ2r3−
1
2λ .
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We obviously have that fr(0) ≤ Ce−
1
2λ for r large enough. We therefore get

fr(t) ≤ Ce
Ct

λ2r3−
1
2λ (1 + r).

If we assume that t < λr3

4C
then

fr(t) ≤ Ce−
1
4λ (1 + r).

The choice λ =
[
4(k + 1) log r

]−1
, which leads to r ≥ C3(t log t)1/3, completes the proof of

the proposition. �

3.2.1.2 One-sided horizontal confinement

We saw in subsection 2.2.1 that the horizontal component of the center of mass in
half-plane flow travels with speed bounded below by a positive constant. This excludes
any possible sublinear-in-time horizontal confinement, at least in the direction x1 > 0. On
the other hand, half-plane flows with nonnegative vorticity have a tendency to move to the
right, resisting left “back flow”. The purpose of this part is to make this statement more
precise. The following result was proved in [20]:

Theorem 3.2.3 Let ω0 ∈ Lp
c(H), p > 2, ω0 ≥ 0. Let u and ω be solutions of (1.1) with

initial vorticity ω0. Then there exists a positive constant D depending solely on the initial
vorticity such that

suppω(t, ·) ⊂ {x ∈ H ; x1 ≥ −D(t log t)
1
2}

for all t > 2.

Before we give the proof of Theorem 3.2.3 we need a technical lemma, in which we
obtain an estimate on the mass of vorticity in the “back flow” region; we see that it is
exponentially small.

Lemma 3.2.4 Given k ∈ N, there exist positive constants D1 and D2, depending only on
the initial vorticity and on k, such that∫

y1<−r

ω(t, y) dy ≤ D1

rk

provided that r ≥ D2(t log t)
1
2 and t ≥ 2.

Proof. Consider the auxiliary function η = η(s) = es

1+es . It is easy to see that η is
nonnegative, increasing and

|η′′(s)| ≤ η(s). (3.14)

Set

fr(t) =

∫
η
(
−x1 + r

λr

)
ω(t, x) dx,



3.2. DISCUSSION OF OTHER CASES 37

where λ > 0 will be chosen later. As η is nonnegative and increasing we clearly have:

fr(t) ≥
∫

x1≤−r

η
(
−x1 + r

λr

)
ω(t, x) dx ≥ η(0)

∫
x1≤−r

ω(t, x) dx, (3.15)

where we have used that for x1 ≤ −r we have that −x1+r
λr
≥ 0. Therefore it suffices for our

purposes to estimate fr(t).
We will deduce a differential inequality for fr from which we estimate fr. To this end

we differentiate in time to find:

f ′r(t) = − 1

λr

∫
η′

(
−x1 + r

λr

)
u1(t, x)ω(t, x) dx,

where we have used the vorticity equation (1.1) and integration by parts to throw deriva-
tives onto η,

= − 1

2πλr

∫∫
η′

(
−x1 + r

λr

)[ x2 + y2

|x− y|2
− x2 − y2

|x− y|2
]
ω(t, x)ω(t, y) dx dy,

using the Biot-Savart law (3.9),

≤ 1

2πλr

∫∫
η′

(
−x1 + r

λr

) x2 − y2

|x− y|2
ω(t, x)ω(t, y) dx dy,

as η′, x2 and y2 are positive. Finally, we symmetrize the kernel above by making the change
of variables x↔ y to obtain:

f ′r(t) ≤
1

4πλr

∫∫ [
η′

(
−x1 + r

λr

)
− η′

(
−y1 + r

λr

)] x2 − y2

|x− y|2
ω(t, x)ω(t, y) dx dy

≤ 1

4πλr

∫∫
|x1 − y1|

λr
|η′′(θx,y)|

|x2 − y2|
|x− y|2

ω(t, x)ω(t, y) dx dy,

by the mean value theorem, with θx,y some point between −x1+r
λr

and −y1+r
λr

.
Next we use (3.14) and the fact that η is nonnegative and increasing to deduce that

|η′′(θx,y)| ≤ |η(θx,y)| ≤ η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)
.

Since |x1 − y1| |x2 − y2| ≤ |x− y|2 we finally obtain the differential inequality:

f ′r(t) ≤
1

4πλ2r2

∫∫ [
η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)]
ω(t, x)ω(t, y) dx dy =

‖ω0‖L1

2πλ2r2
fr(t),

where we have used that the L1-norm of ω(t, ·) is constant in time. Integration now yields

fr(t) ≤ fr(0) exp
(
t
‖ω0‖L1

2πλ2r2

)
.
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Clearly we may assume, without loss of generality, that suppω0 ⊂ {x1 ≥ 0}. Then

fr(0) =

∫
η
(
−x1 + r

λr

)
ω0(x) dx ≤ η

(
−1

λ

)
‖ω0‖L1 ≤ exp

(
−1

λ

)
‖ω0‖L1 .

Hence, we infer that

fr(t) ≤ ‖ω0‖L1 exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
.

In view of (3.15), to finish the proof it is now sufficient to choose λ such that

exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
≤ 1

rk
= exp(−k log r).

The choice

λ =
1

2k log r

is convenient provided that the following inequality holds

r2

log r
≥ t

2k‖ω0‖L1

π
. (3.16)

Notice that the function r 7→ r2/ log r is nondecreasing if r > e. Hence, choosing D2

sufficiently large, it is easy to ensure (3.16) if r ≥ D2(t log t)
1
2 and t ≥ 2. This completes

the proof. �

Next we use Lemma 3.2.4 to estimate the horizontal velocity.

Proposition 3.2.5 Under the hypothesis of Theorem 3.2.3, there exist positive constants
D3 and D4 such that

|u1(t, x)| ≤
D3

|x1|
for all t ≥ 2 and x ∈ H such that x1 ≤ −D4(t log t)

1
2 .

Proof. We will estimate directly u1(t, x). From the Biot-Savart law (3.9) and the decay
estimate (3.12) it follows that

|u1(t, x)| ≤
∫

1

π|x− y|
ω(t, y) dy

≤
∫

y1<x1/2

1

π|x− y|
ω(t, y) dy +

∫
y1≥x1/2

1

π|x− y|
ω(t, y) dy

≤ D1,p

π
‖ω0‖p

′/2
Lp

(∫
y1<x1/2

ω(t, y) dy
)1−p′/2

+
2

π|x1|
‖ω0‖L1 ,

using Lemma 2.2.2 with a = 1. We have also used that both the L1 and the Lp-norms of
ω(t, ·) are bounded by their initial values.
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Let

k =

[
2

2− p′

]
+ 1,

where [a] denotes the largest integer smaller than a. Choose D2 as in Lemma 3.2.4 and

let x satisfy x1 ≤ −D4(t log t)
1
2 with D4 = 2D2. The conclusion then follows from Lemma

3.2.4 with D3 computed accordingly. �

We finish this section with the proof of the horizontal confinement to the left.

Proof of Theorem 3.2.3. Let D3 and D4 be as in Proposition 3.2.5. If need be in-
crease the values of D3 and D4 to show that any trajectory which reaches the region
{x1 ≤ −D4(t log t)

1
2} does not have enough horizontal velocity to go past the line x1 =

−2D4(t log t)
1
2 . This proves that every trajectory lies in the region {x1 ≥ −2D4(t log t)

1
2}

(with D4 depending on the initial position of the trajectory); in particular, the support of
the evolved vorticity stays in that region. �

3.2.2 The exterior domain case

Let us now consider the case of an exterior domain. In this setting, the moment of
inertia and the center of mass are no longer conserved so a loss of 2 in the final result is
to be expected. Indeed, known estimates on the Biot-Savart kernel and a similar proof as
in section 3.1 or sub-subsection 3.2.1.1 imply that the propagation of vorticity’s support
is not faster than O

[
(t log t)

1
2

]
, see Marchioro [32]. Furthermore, using the conservation of

logarithmic moments of the vorticity, it is possible to improve this estimate up toO
[(

t
log t

) 1
2
]

in some cases.
Depending on the shape of the obstacle, further improvements can be obtained. For

instance, if the obstacle is the ball B(0, 1), the Biot-Savart kernel can be explicitly expressed
as

K(x, y) =
1

2π
∇⊥

x log
|x− y|
|x− y∗||y|

, y∗ =
y

|y|2
.

As a consequence, it can be checked that the moment of inertia is conserved. However, the
center of mass is not conserved, it rather turns around the origin. It can be proved in this
situation that the propagation of vorticity’s support is not faster than O

[
(t log t)

1
3

]
.

3.2.3 Other extensions

We simply note here that other extensions and improvements include unbounded initial
vorticity and velocity [28, 19], slightly viscous flows [33] and axisymmetric flows, [4, 30].
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Chapter 4

Asymptotics for unsigned vorticity

Incompressible, ideal fluid flow can be described in terms of the behavior of vorticity,
the curl of the fluid velocity. This is especially useful in two space dimensions, as in this
case (the scalar) vorticity is conserved along particle trajectories. The equations of fluid
dynamics can then be recast as the transport of an active scalar with vorticity as the
dynamic variable. In this context, the problem of describing the large time behavior of
unsigned vorticity is a very natural one, and it is the broad subject we address in this
chapter.

Let ω0 be a compactly supported function in Lp(R2), with p > 2, and let ω = ω(x, t)
be the vorticity associated to a weak solution of the incompressible two-dimensional Euler
equations in the full plane, with initial vorticity ω0. Recall that in vorticity form, the Euler
equations may be written as an active scalar transport equation:{

ωt + (K ∗ ω) · ∇ω = 0,
ω(x, 0) = ω0,

(4.1)

with K the Biot-Savart vector kernel for the full plane, given by

K(x) = K(x1, x2) =
1

2π|x|2
(−x2, x1) =

x⊥

2π|x|2
. (4.2)

We are interested in obtaining information on the behavior of the solution ω(·, t) as
t → ∞, particularly with regards to the spatial distribution of vorticity. We consider a
self-similar rescaling of vorticity of the form:

ω̃α(x, t) ≡ t2αω(tαx, t),

with α ∈ (0, 1]. This scaling preserves the integral of vorticity and its L1 norm. The
large time behavior of ω̃α carries information on the distribution of vorticity, focusing on a
certain asymptotic scale determined by the parameter α. The purpose of this chapter is to
prove three results. The first result is that, for any initial data ω0 and parameter α > 1/2,
we have ω̃α ⇀ mδ0, where m =

∫
ω0 and δ0 is the Dirac measure at the origin. The second

result analyzes the behavior in a case when only steady vortex pairs are present, the case

41
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of nonnegative vorticity in the half-plane. This result can be formulated as a full plane
result stating that, if: (i) the initial vorticity ω0 is odd with respect to the horizontal axis,
(ii) its restriction to the upper half-plane has a distinguished sign and (iii) α = 1, then
the hypothesis that |ω̃1(x, t)| ⇀ µ, where µ is a measure (which must be supported in
{|x1| ≤M}×{x2 = 0} for confinement reasons), implies that µ must consist of an at most
countable sum of Dirac masses whose supports may only accumulate at the origin. Our
last result in this chapter is a generalization of this one to the case of the full plane. We
remove conditions (i) and (ii) on ω0, keeping the same conclusion.

The confinement results from the previous chapter basically control the rate at which
vorticity is spreading. The present chapter is an attempt to go beyond controlling this
rate, actually describing the way in which vorticity is spreading.

If the initial vorticity does not have a distinguished sign, the best confinement one may
expect in general is at the rate a = 1, as we saw in subsections 2.2.1 and 2.2.2. This means
that the self-similar scale of interest is α = 1, and the time asymptotic behavior of |ω̃1| is
what would give a reasonably complete description of vorticity scattering in this case.

The remainder of this chapter is divided into four sections. In the next section we
discuss the result on the asymptotic behavior of ω̃α. The following section contains the
result for nonnegative vorticity in the half-plane. The third section deals with the theorem
on |ω̃1|. We end the chapter with some final conclusions.

All the results from this chapter can be found in [20, 21].

4.1 Confinement of the net vorticity

Let ω0 ∈ Lp
c(R2), for some p > 2 and consider ω = ω(x, t) a solution of (4.1) with initial

data ω0. Our basic problem is to describe the spatial distribution of the vorticity ω(·, t)
for large t. Clearly, if ω0 is single-signed, the known results on confinement tell us that, for
any α > 1/4, the support of ω̃α is contained in a disk centered at the origin whose radius
vanishes as t→∞. What happens when the vorticity is allowed to change sign?

Let ũα ≡ K ∗ ω̃α, with K given by (4.2). It is a straightforward calculation to verify
that ω̃α and ũα satisfy the equation

∂ω̃α

∂t
− α

t
div (xω̃α) +

1

t2α
div (ũαω̃α) = 0. (4.3)

We are now ready to state and prove our first result.

Theorem 4.1.1 Let α > 1/2 and set m =
∫
ω0(x) dx. Then ω̃α(·, t) ⇀ mδ0 weak-∗ in

BM(R2) as t→∞.

Proof. We will begin by considering the linear part of the evolution equation (4.3) with
initial condition at t = 1: 

∂f

∂t
− α

t
div (xf) = 0

f(x, 1) = g(x).
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The solution f is given by the (multiplicative) semigroup f(x, t) = St[g](x) ≡ t2αg(tαx),
interpreted in the sense of distributions. We then write (4.3) as an inhomogeneous version
of this linear equation, with source term given by

h(x, t) ≡ − 1

t2α
div (ũαω̃α).

With this we can write the solution ω̃α of (4.3), with initial data ω̃α(x, 1) = ω(x, 1) ≡ g(x),
using Duhamel’s formula:

ω̃α(x, t) = St[g](x) +

∫ t

1

St/s[h](x, s) ds. (4.4)

(In the integral above the semigroup is acting in the spatial variable only.) Of course (4.4)
must be interpreted in the sense of distributions. We now turn to the analysis of each term
in (4.4). Let ϕ ∈ C∞

c (R2). We then have:∫
R2

ϕ(x)ω̃α(x, t) dx =

∫
R2

ϕ
( y
tα

)
g(y) dy +

∫ t

1

∫
R2

ϕ

(
sαy

tα

)
h(y, s) dy ds ≡ I1 + I2.

First note that, as t→∞,

I1 →
(∫

R2

g(y) dy

)
ϕ(0),

by the Lebesgue Dominated Convergence Theorem. Next, recall that the total integral of
vorticity is conserved and hence the proof will be concluded once we establish that I2 → 0.
We compute directly, integrating by parts and using the relation between ũα and ω̃α:

I2 = −
∫ t

1

∫
R2

ϕ

(
sαy

tα

)
1

s2α
div (ũαω̃α)(y, s) dy ds

=

∫ t

1

∫
R2

1

sαtα
∇ϕ

(
sαy

tα

)
· (ũαω̃α)(y, s) dy ds

=

∫ t

1

1

sαtα

∫
R2

∫
R2

∇ϕ
(
sαy

tα

)
·K(y − z)ω̃α(z, s)ω̃α(y, s) dz dy ds.

We now use the antisymmetry of the Biot-Savart kernel K to obtain:

I2 =
1

2

∫ t

1

1

sαtα

∫
R2

∫
R2

Hϕ(s, t, z, y)ω̃α(z, s)ω̃α(y, s) dz dy ds,

where

Hϕ(s, t, z, y) ≡
(
∇ϕ

(
sαy

tα

)
−∇ϕ

(
sαz

tα

))
·K(y − z).

Let us observe that

|Hϕ| ≤
sα

tα
‖D2ϕ‖L∞|y − z||K(y − z)| ≤ C(ϕ)

sα

tα
.
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Hence we arrive finally at

|I2| ≤ C(ϕ)

(∫
R2

|ω0|
)2

t− 1

t2α
,

which clearly converges to 0 as t→∞ as long as 2α > 1. This concludes the proof. �

Remark 4.1.2 Surprisingly, this result seems to be optimal in the sense that it is false for
α = 1

2
. This is suggested by the discrete example from subsection 2.1.5 where the vortices

have non-vanishing total mass and stay in a region exactly like O(t
1
2 ).

Remark 4.1.3 The particular way in which we use the antisymmetry of the Biot-Savart
kernel together with the bilinearization of the nonlinearity of the Euler equations is due
to J.-M. Delort, who used it in his proof of existence of weak solutions for 2D Euler with
vortex sheet initial data, see [12].

Remark 4.1.4 This result does not say anything new if the initial vorticity has a distin-
guished sign. As we mentioned in the introduction, if the vorticity has a distinguished sign,
the support of vorticity is contained in a ball whose radius grows like O(tα), with 1/4 < α.
From that, Theorem 4.1.1 follows immediately.

Remark 4.1.5 What new information is contained in the conclusion of Theorem 4.1.1?
Imagine that we are given initial vorticity ω0 = ω+

0 −ω−0 , which are the positive and negative
parts of the initial vorticity. Let ω = ω+ − ω− be the solution of 2D Euler with initial
vorticity ω0. Due to the nature of vortex dynamics, both ω+ and ω− are time-dependent
rearrangements of ω+

0 and ω−0 respectively, and hence their integrals, which we may call
m+ and m−, are constant in time. Additionally, a consequence of Theorem 4.1.1 is that
the integral of vorticity in a ball of radius tα converges to m+−m−, for any α > 1/2. This
is weak confinement of the imbalance between the positive and negative parts of vorticity in
a ball of sublinear radius. This weak confinement is consistent with the conjectural picture
that the only way for the support of vorticity to grow fast is through the shedding of vortex
pairs.

4.2 Asymptotic behavior of nonnegative vorticity in

the half-plane

Let ω = ω(t, x) be the vorticity associated to a solution of the incompressible two-
dimensional Euler equations on the upper half-plane with an initial vorticity ω0 which is
bounded, compactly supported and nonnegative. We consider a rescaling ω̃ = ω̃(t, x) =
t2ω(t, tx), whose time-asymptotic behavior encodes information on the scattering of ω into
traveling wave solutions of the 2D Euler system on the half-plane. This choice of rescaling
was also made in view of the fact that the horizontal velocity of the center of vorticity
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is bounded away from zero from below (see Theorem 2.2.1). The rescaling ω̃ is weakly
compact as a time-dependent family of measures. The main purpose of this section is to
present a structure theorem, stating that if the rescaling ω̃ is actually weakly convergent to
a measure then this measure must be of the form

∑
miδ(x1−αi)⊗ δ(x2), with mi > 0, αi

a discrete set of points on an interval of the form [0,M ] whose only possible accumulation
point is x1 = 0, and where δ denotes the one-dimensional Dirac measure centered at 0.

Results on confinement of vorticity are rigorous actualizations of the rough idea that
single signed 2D vorticity tends to rotate around, but not to spread out. This is false if
the vorticity is not single signed, which can be seen by considering the behavior of vortex
pairs, vorticity configurations that tend to translate to infinity with constant speed due
to their self-induced velocity, see subsection 2.2.1. Due to the traveling wave behavior of
vortex pairs, vorticity scattering in two dimensions may become complicated, and inter-
esting, when vorticity is allowed to change sign. In the previous section we have proved
confinement, in a weak sense, of the net vorticity in a region with roughly square-root in
time growth in its diameter. From the point of view of scattering, this result accounts for
the behavior of the net vorticity, but says very little about the behavior of vortex pairs,
because these tend to be weakly self-canceling when looked at from a large spatial scale. It
one wants to study vortex scattering, the relevant information is the large-time behavior of
|ω̃a(t, ·)|, mainly in the case a = 1. The present section is directed precisely at this prob-
lem, with the simplifying assumption that the vorticity be odd with respect to a straight
line, single-signed on each side of the symmetry line. Another way of expressing this is to
say that in this section will study the scattering of co-axial, unidirectional vortex pairs.

Let ω = ω(t, x) be the solution of the half-plane problem defined for all time, associated
to initial data ω0, which we assume, for simplicity, to be smooth, compactly supported and
nonnegative. The confinement results proved in subsection 3.2.1 implies that the support
of ω(t, ·) is contained in a rectangle of the form (a1 − b1t

α, ct) × (0, a2 + b2t
β), with ai

real constants, bi, c > 0 and 0 ≤ α, β < 1. We wish to examine the asymptotic behavior
of the vorticity on the linearly growing horizontal scale that is naturally associated with
the motion of vortex pairs. The approach we use is inspired on work on the asymptotic
behavior of solutions of systems of conservation laws due to G. Q. Chen and H. Frid, see
[10]. Let ω̃(t, x) ≡ t2ω(t, tx). The function ω̃ has bounded L1 norm and will be shown
to have support in a rectangle of the form (−b1tα−1, c) × (0, b2t

β−1). Hence the family of
measures { ω̃(t, ·)}t>0 is weak-∗ precompact and any weak limit of subsequences of this
family is of the form µ⊗ δ0, with µ a nonnegative measure supported on the interval [0, c].
We will refer to such a measure µ as an asymptotic velocity density. Our main result may
be stated in the following way.

Theorem 4.2.1 Suppose that the initial data ω0 for the half-plane problem is such that
there exists a unique asymptotic velocity density µ, i.e., ω̃(t, ·) ⇀ µ ⊗ δ0 when t →
∞. Then µ is the sum of an at most countable set of Diracs whose supports may only
accumulate at zero.

The proof involves writing the PDE for the evolution of ω̃ and using the a priori
estimates available and the structure of the nonlinearity in a way that is characteristic of
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weak convergence methods, see [17]. We will briefly discuss the physical meaning of both
the hypothesis that ω̃(t, ·) converges weakly and the conclusion regarding the structure of
µ.

The study of the wavelike behavior of vortex pairs goes back to Pocklington in [43],
with more recent interest going back to work of Norbury, Deem and Zabusky and Pierre-
humbert, see [11, 39, 42]. The existence (and abundance) of steady vortex pairs, which
are traveling wave solutions of the 2D incompressible Euler equations, i.e. vorticity shapes
which propagate with constant speed without deforming, has been established in the liter-
ature in several ways, see [6, 24, 39]. Steady vortex pairs have been object of an extensive
literature, from asymptotic studies, see [50] and numerical studies, see [44] and even exper-
imental work, see [16]. Although some analytical results (see [38]) and numerical evidence,
[40], point to the orbital stability of steady vortex pairs under appropriate conditions, this
stability is an interesting, largely open problem, see [45].

Compactly supported vortex pairs interact in a way such that the intensity of the inter-
action decays with the inverse of the square of the distance between them. Hence, vortex
pairs moving with different speeds tend to behave like individual particles, decoupling after
a large time. This is what makes the study of vortex scattering interesting in this context.
Let us illustrate the point of view we want to pursue with the example of the Korteweg-
deVries equation. Nonlinear scattering for the KdV is well-understood, as solutions of KdV
with smooth, compactly supported initial data are expected to resolve into a scattering
state composed of an N -soliton plus a slowly decaying dispersive tail. This fact was first
formulated as a conjecture by P. Lax in [26] and broadly explored through the method
of inverse scattering since then. The conclusion of Theorem 4.2.1 may be regarded as a
weak, or averaged form of Lax’s conjecture for vortex pair dynamics. Note that steady
vortex pairs correspond to classical solitons in this analogy, but no existence for the multi-
bump solutions that would be associated to the classical N-solitons has been rigorously
established.

Let us call shape space the space of smooth compactly supported vorticity configura-
tions, identifying configurations which are related through horizontal translations. Steady
vortex pairs correspond to stationary shapes with respect to Euler dynamics. There are so-
lutions of the two-dimensional incompressible Euler equations that describe periodic loops
in shape space. Two examples of this behavior are: 1) a pair of like-signed point vor-
tices on a half plane, which orbit one another periodically as they translate horizontally,
called leapfrogging pairs, and 2) Deem and Zabusky’s translational V -states, which are
vortex patches with discrete symmetry, see [11]. From the point of view of scattering such
solutions represent another kind of asymptotic state or, in other words, another kind of
particle. Furthermore, one may well imagine solutions with quasiperiodic or chaotic be-
havior in shape space. Although there is no example of either case in the literature, the
passive tracer dynamics of the leapfrogging pair is known to be chaotic, see [41]. Possible
chaotic shapes represent an interesting illustration of Theorem 4.2.1, as both the hypoth-
esis of weak convergence and the conclusion are clearly related to the ergodicity of shape
dynamics and the self-averaging of the velocity of the center of vorticity of such generalized
vortex pairs. Finally, we must mention the work of Overman and Zabusky [40], where they
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do numerical experiments on the short term scattering of pairs of translational V -states,
the first (and only) study to date on the interaction of coaxial vortex pairs, which is the
main point of the present work.

We now turn to our main concern in this section, the rigorous study of the asymptotic
behavior of flows with nonnegative vorticity in the half-plane. We divide this section in
several subsections. In the first one we introduce the self-similar rescaling of the flow which
encodes the scattering information we wish to study, we write an evolution equation for
the rescaled vorticity and we interpret the vortex confinement information obtained in the
previous section in terms of the new scaling. The second subsection is the technical heart of
this section, where we study the behavior of the nonlinearity in the equations with respect
to the self-similar scaling. In the third subsection we use the information obtained to prove
our main result. We then end this half-plane paranthesis with a discrete example and some
comments and conclusions.

4.2.1 Rescaled vorticity and asymptotic densities

One key feature of vortex dynamics in a half-plane is nonlinear wave propagation. In
order to examine wave propagation it is natural to focus on a self-similar rescaling of
physical space, as has been performed by Chen and Frid in the context of systems of
conservation laws, see [10]. Let us fix, throughout this section, a nonnegative function
ω0 ∈ Lp

c(H), p > 2, and ω = ω(t, ·), u = u(t, ·), solutions with initial vorticity ω0. Set

ω̃(t, y) = t2ω(t, ty) and ũ(t, y) = tu(t, ty), (4.5)

the rescaled vorticity and velocity, respectively. The scaling above respects the elliptic
system relating velocity and vorticity so that we still have{

div ũ = 0
curl ũ = ω̃.

It is immediate that ũ2(t, x1, 0) = 0 and therefore we can recover ũ from ω̃ by means of
the Biot-Savart law for the half-plane:

ũ(t, x) =

∫
H
K(x, y) ω̃(t, y) dy, (4.6)

with K defined in (3.10).
Let M = ‖u‖L∞(R+×H). Then the confinement estimates for vorticity in the half-plane,

in particular Theorems 3.2.3 and 3.2.1 and the fact that the vorticity ω is transported by
the velocity u, imply that there exists a constant C > 0 such that:

suppω(t, ·) ⊂
[
−C(t log t)

1
2 , C0 +Mt

]
×

[
0, C(t log t)

1
3

]
for all t ≥ 2,

where C0 = sup{x1 ; x ∈ suppω0}. This in turn implies an asymptotic localization of
supp ω̃(t, ·) = 1

t
suppω(t, ·), namely:
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supp ω̃(t, ·) ⊂
[
−C

( log t

t

) 1
2 ,
C0

t
+M

]
×

[
0, C

( log t

t2
) 1

3

]
. (4.7)

Next, from the vorticity equation one may derive a transport equation for the evolution
of ω̃(t, y), which takes the form:

∂t ω̃(t, y)− 1

t
div

[
y ω̃(t, y)

]
+

1

t2
div

[
ũ(t, y) ω̃(t, y)

]
= 0. (4.8)

Using the scaling (4.5) we find

‖ ω̃(t, ·)‖Lq = t2(1− 1
q
)‖ω(t, ·)‖Lq ≤ t2(1−

1
q
)‖ω0‖Lq ∀q ∈ [1, p]. (4.9)

Furthermore, the L1-norm of ω̃ is conserved in time. We wish to treat ω̃ as a bounded
L1-valued function of time, possessing nonnegative measures as weak-∗ limits for large
time. The confinement estimate (4.7) implies that any weak-∗ limit of ω̃ must have the
structure µ⊗ δ0(x2), with the support of µ contained in the interval [0,M ].

It is in the nature of the self-similar rescaling (4.5) that much of the scattering behavior
of the flow is encoded in the measure µ. This measure is the main subject of the remainder
of this section, and, as such, deserves an appropriate name.

Definition 4.2.2 Let µ ∈ BM([0,M ]) be a nonnegative measure such that there exists a
sequence of times tk →∞ for which

ω̃(tk, ·) ⇀ µ⊗ δ0 in the weak-∗ topology of bounded measures, as tk →∞.

Then we call µ an asymptotic velocity density associated to ω0.

It can be readily checked that, if ω(t, x) = ω0(x1 − σt, x2), then there exists a unique
asymptotic velocity density µ, which is a Dirac delta at position (σ, 0) with mass given by
the integral of ω0. For a general flow an asymptotic velocity density encodes information
on typical velocities with which different portions of vorticity are traveling.

4.2.2 The key estimate

Our purpose in this part is to understand the structure of the asymptotic velocity
densities. To do so we make use of the evolution equation (4.8) for ω̃ and we examine the
behavior for large time of each of its terms. The main difficulty in doing so is understanding
the behavior of the nonlinear term div (ũ ω̃), which is our goal in this subsection.

We begin with two general measure-theoretical lemmas which will be needed in what
follows. These are standard exercises in real analysis and we include the proofs only for
the sake of completeness. Recall that a measure is called continuous if it attaches zero
mass to points.
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Lemma 4.2.3 Let µ be a finite and compactly supported nonnegative measure on R. Then
µ is the sum of a nonnegative continuous measure ν and a countable sum of positive Dirac
measures (the discrete part of µ). Moreover, for every ε > 0 there exists δ > 0 such that,
if I is an interval of length less than δ, then ν(I) ≤ ε.

Proof. Let A = {x ; µ({x}) 6= 0}. Then A is countable; indeed, A =
⋃

nAn and
each An = {x ; µ({x}) ≥ 1/n} must be finite because µ is finite. Hence we may write
A = {x1, x2, . . . } and mj = µ({xj}). Of course, ν = µ −

∑
j mjδxj

is a continuous,
nonnegative measure.

Let J be a compact interval containing the support of µ. For each x ∈ J , it follows
that, since ν({x}) = 0, there exists δx > 0 such that ν([x − δx, x + δx]) ≤ ε/2. Let
Jx = [x− δx, x+ δx]. Then J ⊂

⋃
x∈J Jx so that, using the fact that J is compact, we can

extract a finite subcover, J ⊂ Jx1 ∪ · · · ∪ Jxn . The interval J is now divided in a finite
number of disjoint intervals (not necessarily Jx1 , Jx2 , . . . , Jxn), each having ν–measure less
than ε/2. It is then sufficient to choose δ equal to one half of the minimum length of these
intervals. For that choice of δ, it is clear that an interval of length δ cannot intersect more
than two of the disjoint intervals constructed above so that its ν–measure will be less than
ε. �

Lemma 4.2.4 Let γn be a sequence of nonnegative Radon measures on H, converging
weakly to some measure γ, and having the supports uniformly bounded in the vertical di-
rection. Then, for every compact interval [a, b] one has that

lim sup
n→∞

γn([a, b]× R+) ≤ γ([a, b]× R+).

Proof. Fix ε > 0. Since

γ([a, b]× R+) = lim
δ→0

γ([a− δ, b+ δ]× R+),

there exists δ > 0 such that

γ([a− δ, b+ δ]× R+) < γ([a, b]× R+) + ε.

Let ϕ be a continuous function supported in (a − δ, b + δ) and such that 0 ≤ ϕ ≤ 1
and ϕ

∣∣
[a,b]

= 1. According to the hypothesis, we have that
〈
γn(y), ϕ(y1)

〉
→

〈
γ(y), ϕ(y1)

〉
,

so there exists N such that〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε ∀n ≥ N.

From the hypothesis on the test function ϕ it follows that, for all n ≥ N ,

γn([a, b]× R+) ≤
〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε

≤ γ([a− δ, b+ δ]× R+) + ε ≤ γ([a, b]× R+) + 2ε.
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We deduce that
lim sup

n→∞
γn([a, b]× R+) ≤ γ([a, b]× R+) + 2ε.

The desired conclusion follows by letting ε→ 0. �

Let us now return to the study of the asymptotic behavior of vorticity. Let ω0 ≥ 0
be a fixed function in Lp

c(H), for some p > 2, and let u, ω be solutions of the half-plane
problem, with ũ, ω̃ defined in (4.5). Let µ be an asymptotic velocity density associated to
ω0. Then µ is a nonnegative measure in BM([0,M ]), with M = ‖u‖L∞([0,∞)×H), and by
Lemma 4.2.3, µ can be written as

µ = ν +
∞∑
i=1

miδαi
, (4.10)

where ν is the continuous part of µ and αi ∈ [0,M ]. As ω0 ≥ 0 it follows that mi ≥ 0
and, as µ is a bounded measure,

∑∞
i=1mi <∞. Furthermore we can assume without loss

of generality that αi 6= αj in the decomposition (4.10).
Let {tk} be a sequence of times approaching infinity such that

ω̃(tk, ·) ⇀ µ⊗ δ0(x2),

as k → ∞, weak-∗ in BM(H). The following proposition is what we refer to as the key
estimate in the title of this subsection.

Proposition 4.2.5 Let ψ ∈ C0(R). Then there exists a constant D > 0, depending only
on p, such that the following estimate holds:

lim sup
k→∞

∣∣∣∣∫
H
ψ(y1)

ũ1(tk, y)

tk
ω̃(tk, y)dy

∣∣∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|. (4.11)

Before giving the proof of Proposition 4.2.5, let us motivate the statement with the
following example. Consider a steady vortex pair with vorticity given by ω(t, x) = ω0(x1−
σt, x2) and velocity u(t, x) = u0(x1 − σt, x2). Then it is easy to see that the rescaled
nonlinear term eu1

t
ω̃ converges to σmδσ ⊗ δ0 where m =

∫
ω0 dx. Based on this example,

one would expect the right-hand side of (4.11) to be
∑

i αimi|ψ(αi)| instead. On the other
hand, for the steady vortex pair, it can be easily checked that

σ =
1∫
ω0 dx

∫
(u0)1ω0 dx ≤ ‖u0‖L∞ .

Using Lemma 2.2.2 we infer that

|σ| ≤ D‖ω0‖p
′/2

Lp m1−p′/2.

which then implies that, as measures, the weak limit of eu1

t
ω̃ is less thanD‖ω0‖p

′/2
Lp m2−p′/2δσ⊗

δ0. Hence, in light of this example we see that estimate (4.11) is weaker than what might
be expected, but nevertheless it is consistent with the behavior of steady vortex pairs.
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Proof of Proposition 4.2.5. Let us denote the integral we wish to estimate by Bk, so that

Bk ≡
∫

H
ψ(y1)

ũ1(tk, y)

tk
ω̃(tk, y)dy. (4.12)

Fix ε > 0 throughout. Since
∑∞

i=1mi <∞ there exists N = N(ε) such that∑
i>N

mi <
ε

4
.

Additionally, it is easy to find δ = δ(ε) > 0 such that, if I is an interval, |I| ≤ δ, then

ν(I) <
ε

4
, (4.13)

by using Lemma 4.2.3, and also

µ([αi − 2δ, αi + 2δ]) < mi(1 + ε), i = 1, . . . , N, (4.14)

[αi − δ, αi + δ] ∩ [αj − δ, αj + δ] = ∅, i 6= j ∈ {1, . . . , N}, (4.15)

|ψ(y1)− ψ(αi)| < ε ∀ y1 ∈ [αi − δ, αi + δ], i = 1, . . . , N. (4.16)

In view of Lemma 4.2.4 and relation (4.14), there exists K0 such that, if k > K0 then∫
[αi−2δ,αi+2δ]×R+

ω̃(tk, y) dy < mi(1 + ε) ∀i = 1, . . . , N. (4.17)

Consider now an interval I ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) of length at most δ. According to

relation (4.13)

ν(I) <
ε

4
.

On the other hand µ − ν, the discrete part of µ, restricted to I avoids the Diracs at
α1, . . . , αN so that

(µ− ν)(I) ≤
∑
i>N

mi <
ε

4
.

Therefore
µ(I) <

ε

2
. (4.18)

Given a compact interval J ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) of length at most δ we can use

(4.18) and Lemma 4.2.4 together with the fact that ω̃(tk, ·) ⇀ µ⊗δ to find K0 large enough
so that, in addition to (4.17), we have∫

J×R+

ω̃(tk, y) dy <
ε

2
,



52 CHAPTER 4. ASYMPTOTICS FOR UNSIGNED VORTICITY

for any k > K0. We wish to show that this K0 can be chosen independently of J , but we
shall have to pay a price, namely the estimate above will hold with ε on the right-hand-side,
instead of ε/2.

Let J be a compact interval such that J × R+ contains the support of ω̃(t, ·) for all

t. We write the set J \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) as a finite disjoint union of intervals Ij, each of

which we subdivide into intervals of length exactly δ, together with an interval of size at

most δ, this being the right-most subinterval of Ij. This way the set J \
N⋃

i=1

(αi− δ
2
, αi + δ

2
)

can be written as the union of intervals J1, . . . , Jl of length precisely δ plus some remaining
intervals Jl+1, . . . , JL of length strictly less than δ. According to (4.18), we have that

µ(Ji) <
ε

2
∀i = 1, . . . , L.

Next we apply Lemma 4.2.4 and use the fact that ω̃(t, ·) ⇀ µ⊗ δ, to obtain K0 such that
(4.17) is satisfied together with:∫

Ji×R+

ω̃(tk, y) dy <
ε

2
∀i = 1, . . . , L, k > K0. (4.19)

Let I be a subinterval of R\
N⋃

i=1

(αi− δ
2
, αi+

δ
2
) of length less than δ. It is easy to see that

I can intersect at most two of the intervals Ji as otherwise, by construction, this would
imply it had to contain an interval of length precisely δ. According to (4.19) we deduce
that

∫
I×R+

ω̃(tk, y) dy < ε for all k > K0. We have just shown that, if I is an interval of

length at most δ, I ⊂ R \
N⋃

i=1

(αi − δ
2
, αi + δ

2
) then

∫
I×R+

ω̃(tk, y) dy < ε, ∀k > K0. (4.20)

Let k > K0 and set

Ei = [αi − δ, αi + δ]× R+, Fi = [αi − 2δ, αi + 2δ]× R+, E = E1 ∪ · · · ∪ EN .

According to (4.15), the sets E1, . . . , EN are disjoint, so we can write Bk, defined in
(4.12), as:

Bk =
N∑

i=1

∫
Ei

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy︸ ︷︷ ︸

Bk1

+

∫
Ec

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy︸ ︷︷ ︸

Bk2

.
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We will estimate separately Bk1 and Bk2. Note that both estimates rely in an essential
way on the Biot-Savart law and the fact that the kernel can be estimated by |x− y|−1 (see
(3.12)). In the remainder of this proof we will denote by C a constant which is independent
of ε and t.

Estimate of Bk1. Using the Biot-Savart law (4.6) and relation (3.12), one can bound
Bk1 as follows:

|Bk1| ≤
N∑

i=1

∫∫
x∈H
y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)

tk
ω̃(tk, y) dx dy

=
1

tk

N∑
i=1

∫∫
|x−y|≥δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

+
1

tk

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

≤ sup |ψ|
πtkδ

‖ ω̃‖L1

N∑
i=1

∫
Ei

ω̃(tk, y) dy +
1

tk

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

≤ C

δtk
+

N∑
i=1

∫∫
|x−y|<δ

x∈H,y∈Ei

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy.

According to (4.16), for y ∈ Ei we have that |ψ(y1)− ψ(αi)| < ε. We therefore deduce
that

|Bk1| ≤
C

δtk
+

N∑
i=1

|ψ(αi)|+ ε

πtk

∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy.

Applying Lemma 2.2.2 yields∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy ≤

∫
Ei

( ∫
[y1−δ,y1+δ]×R+

ω̃(tk, x)

|x− y|
dx

)
ω̃(tk, y) dy

≤ D1,p

∫
Ei

( ∫
[y1−δ,y1+δ]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′
2
Lp ω̃(tk, y) dy.
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Now, if y ∈ Ei then [y1− δ, y1 + δ] ⊂ [αi− 2δ, αi +2δ], so that [y1− δ, y1 + δ]×R+ ⊂ Fi.
Hence∫∫
|x−y|<δ

x∈H,y∈Ei

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy ≤ D1,p

(∫
Fi

ω̃(tk, x) dx
)1− p′

2
tk‖ω0‖

p′
2
Lp

(∫
Ei

ω̃(tk, y) dy

)

≤ tkD1,p

[
mi(1 + ε)

]2− p′
2 ‖ω0‖

p′
2
Lp ,

where we have used (4.9) and (4.17). We conclude that

|Bk1| ≤
C

δtk
+ C1

N∑
i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2 , (4.21)

with C1 = D1,p‖ω0‖
p′
2
Lpπ−1.

Estimate of Bk2. We estimate directly, similarly to what was done with Bk1:

|Bk2| ≤
C

δtk
+

∫∫
|x−y|<δ/3
x∈H,y∈Ec

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dx dy

≤ C

δtk
+
‖ψ‖L∞
πtk

∫∫
|x−y|<δ/3
x∈H,y∈Ec

1

|x− y|
ω̃(tk, x)ω̃(tk, y) dx dy.

Lemma 2.2.2 implies in the same way that

|Bk2| ≤
C

δtk
+
D1,p

πtk
‖ψ‖L∞

∫
Ec

( ∫
[y1− δ

3
,y1+ δ

3
]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′
2
Lp ω̃(tk, y) dy

≤ C

δtk
+
D1,p

π
‖ψ‖L∞‖ω0‖

p′
2
Lp‖ω0‖L1 sup

y∈Ec

( ∫
[y1− δ

3
,y1+ δ

3
]×R+

ω̃(tk, x) dx
)1− p′

2
.

For y ∈ Ec, the interval [y1 − δ
3
, y1 + δ

3
] is of length less than δ and included in R \

N⋃
i=1

(αi − δ
2
, αi + δ

2
). We deduce from (4.20) that∫

[y1− δ
3
,y1+ δ

3
]×R+

ω̃(tk, x) dx < ε.

which implies that

|Bk2| ≤
C

δtk
+ C2ε

1− p′
2 , (4.22)
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with C2 = C1‖ψ‖L∞‖ω0‖L1 .

Collecting the estimates forBk1 andBk2 (relations (4.21) and (4.22)) yields the following
bound for Bk:

|Bk| ≤
C

δtk
+ C1

{
‖ψ‖L∞‖ω0‖L1ε1− p′

2 +
N∑

i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2

}
. (4.23)

Take the lim sup as k →∞ above to obtain:

lim sup
k→∞

|Bk| ≤ C1

{
‖ψ‖L∞‖ω0‖L1ε1− p′

2 +
∞∑
i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′
2

}
.

Next, send ε→ 0 in order to reach the desired conclusion. �

4.2.3 Large time asymptotics

We will now make use of the equation for ω̃ given in relation (4.8) together with Propo-
sition 4.2.5 to deduce an inequality for the limit measure µ, given by (4.27). Surprisingly,
this estimate alone will be sufficient to deduce the main result of this part, Theorem 4.2.8.
Let us begin with an outline of the proof of (4.27). One begins with the equation for
the evolution for ω̃ (4.8), taking the product with a fixed test function and integrating in
space. The resulting equation has three terms. The first one, when integrated from 0 to
t, is uniformly bounded in t. Now, if div

[
y ω̃(t, y)

]
is weakly convergent as t → ∞, then

the integral in time of the second term will, in principle, diverge like log t as t → ∞. As
for the third term, it is not difficult to see that it is O(1/t). The dominant part of the
third term must balance the logarithmic blow-up in time of the second term. The aim of
Proposition 4.2.5 is precisely to estimate this dominant part of the third term.

We will begin with a lemma, relating asymptotics on the linear part of the evolution
equation for ω̃ (4.8) to the nonlinear part. To this end fix ψ ∈ C0(R) and define the
quantities

A[t;ψ] ≡
∫

H
ψ(y1)y1ω̃(t, y) dy, and (4.24)

B[t;ψ] ≡
∫

H
ψ(y1)

ũ1(t, y)

t
ω̃(t, y) dy. (4.25)

Note that, as the support of ω̃ is contained in a compact set independent of t, it will not
matter whether the support of ψ is compact.

Lemma 4.2.6 The following estimate holds:

lim sup
t→∞

(B[t;ψ]− A[t;ψ]) ≥ 0. (4.26)
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Proof. Let ϕ ∈ C1(R) be a primitive of ψ so that ϕ′ = ψ. Define

f(t) ≡
∫

H
ϕ(y1) ω̃(t, y) dy,

a bounded function, since ω̃(t, ·) is bounded in L1. Differentiating f with respect to t and
using the equation (4.8) for ω̃ we get, after integration by parts,

f ′(t) =

∫
ϕ(y1)∂t ω̃(t, y) dy =

1

t

∫
ϕ(y1) div(y ω̃) dy − 1

t2

∫
ϕ(y1) div(ũ ω̃) dy

=
1

t

∫
ψ(y1)

ũ1

t
ω̃ dy − 1

t

∫
ψ(y1)y1 ω̃ dy ≡ 1

t
B[t;ψ]− 1

t
A[t;ψ].

Integrating from t to t2 we obtain:

f(t2)− f(t) =

∫ t2

t

B[s;ψ]− A[s;ψ]

s
ds.

Let L = lim sups→∞(B[s;ψ] − A[s;ψ]). Recall that ‖ũ(t, ·)/t‖L∞ and ‖ ω̃(t, ·)‖L1 are
bounded independently of t, and ω̃(t, ·) has compact support uniformly in t, so that L <∞.
Then, for any ε > 0, there exists M > 0 such that, if s > M then B[s;ψ]−A[s;ψ] < L+ε.
In particular, if t > M above then

f(t2)− f(t) < (L+ ε) log t,

so that

0 = lim
t→∞

f(t2)− f(t)

log t
≤ L+ ε.

The result follows by taking ε→ 0. �

Remark 4.2.7 Note that, exchanging ψ by −ψ above gives the estimate:

lim inf
t→∞

(B[t;ψ]− A[t;ψ]) ≤ 0.

We will not use this inequality in what follows.

Let us now impose a major hypothesis on the flow, namely that there exists a unique
asymptotic velocity density, so that

ω̃(t, ·) ⇀ µ⊗ δ(x2),

as t→∞. We use Lemma 4.2.3 to write

µ = ν +
∞∑
i=1

miδαi
.
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Then, for any ψ ∈ C0(R), it follows that

A[t;ψ]→
〈
y1µ, ψ(y1)

〉
,

as t→∞. Next use Proposition 4.2.5 to deduce that

lim sup
t→∞

|B(t;ψ]| ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

We therefore deduce from Lemma 4.2.6 that:

〈
y1µ, ψ(y1)

〉
≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|.

Exchanging ψ for −ψ yields:

∣∣〈y1µ, ψ(y1)
〉∣∣ ≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |ψ(αi)|. (4.27)

The relevant fact is that the exponent 2− p′

2
> 1.

Let δP denote the Dirac delta measure at position P . We are now ready to re-state our
main result, giving a more precise formulation of Theorem 4.2.1.

Theorem 4.2.8 Suppose that the nonnegative initial vorticity ω0 ∈ Lp
c(H) is such that

there exists a unique asymptotic velocity density µ associated to ω0. Then µ must be of
the form:

µ =
∞∑
i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i→∞;

(b) the masses mi are nonnegative and verify
∑∞

i=1mi = ‖ω0‖L1;

(c) for all i, αi ∈ [0,M ], where M = ‖u‖L∞([0,∞)×H);

(d) there exists a constant D > 0, depending solely on p, such that, for all i with mi 6= 0
we have

αi ≤ D‖ω0‖
p′
2
Lp m

1− p′
2

i .

Furthermore, there exists i0 such that αi0 6= 0 and mi0 6= 0.

We will need two lemmas before we give the proof of Theorem 4.2.8.
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Lemma 4.2.9 Let miδαi
be a Dirac from the discrete part of µ. The following inequality

holds true:

αi ≤ D‖ω0‖
p′
2
Lpm

1− p′
2

i .

Proof. Eventually changing the order in the summation of the Diracs, we can assume that
i = 1. Furthermore, the conclusion is trivial if α1 = 0, so we can assume that α1 > 0 as
well. Let ε > 0 be fixed. We follow the same construction as in the beginning of the proof
of Proposition 4.2.5, using Lemma 4.2.3, to conclude that there exists δ ∈ (0, α1) such that
the following inequality holds:

µ([α1 − δ, α1 + δ]) ≤ m1 + ε.

If αi ∈ [α1 − δ, α1 + δ], i ≥ 2, then m1δα1 +miδαi
≤ µ on [α1 − δ, α1 + δ], so we must

have that mi ≤ ε.
Let ψ ∈ C0(R) be a nonnegative function supported in (α1 − δ, α1 + δ) ⊂ R+ which

attains its maximum at α1. By (4.27) and using the nonnegativity of µ and y1ψ(y1) we
find

m1α1ψ(α1) ≤
〈
µ, y1ψ(y1)

〉
≤ D‖ω0‖

p′
2
Lp

[
ψ(α1)m

2− p′
2

1 +
∞∑
i=2

ψ(αi)m
2− p′

2
i

]
.

We observed that if αi ∈ (α1 − δ, α1 + δ), i ≥ 2, then mi ≤ ε. If αi 6∈ (α1 − δ, α1 + δ)
then ψ(αi) = 0. In both cases

ψ(αi)m
2− p′

2
i ≤ ψ(αi)ε

1− p′
2 mi ≤ ψ(α1)ε

1− p′
2 mi.

We infer that

m1α1ψ(α1) ≤ D‖ω0‖
p′
2
Lpψ(α1)

[
m

2− p′
2

1 + ε1− p′
2

∞∑
i=2

mi

]
,

that is

m1α1 ≤ D‖ω0‖
p′
2
Lp

[
m

2− p′
2

1 + ε1− p′
2

∞∑
i=2

mi

]
.

Letting ε→ 0 we get that

m1α1 ≤ D‖ω0‖
p′
2
Lpm

2− p′
2

1

which implies the desired result. �

Lemma 4.2.10 Suppose that µ has no discrete part in some interval (a, b) ⊂ R \ {0}.
Then µ

∣∣
(a,b)

= 0.

Proof. Let ψ ∈ C0(R) with support in (a, b). According to the hypothesis,

suppψ ∩ {α1, α2, . . . } = ∅
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so that, for this choice of ψ, the right-hand side of (4.27) vanishes. Therefore (4.27) implies〈
µ(y1), y1ψ(y1)

〉
= 0

that is

y1µ
∣∣
(a,b)

= 0

which implies the desired conclusion by recalling that 0 6∈ (a, b). �

Proof of Theorem 4.2.8.. We begin by noting that Lemma 4.2.9 implies that αi
i→∞−−−→ 0.

Indeed,
∑∞

i=1mi < ∞ implies that mi
i→∞−−−→ 0. According to the conclusion of Lemma

4.2.9 this immediately implies that αi
i→∞−−−→ 0.

Next, observe that Lemma 4.2.10 implies that the continuous part ν vanishes. Indeed,
supp ν ⊂ [0,∞) since suppµ ⊂ [0,M ]. If α > 0, as α is not an accumulation point of the
set {α1, α2, . . . }, there exists δ ∈ (0, α) such that {α1, α2, . . . } ∩

[
(α− δ, α+ δ) \ {α}

]
= ∅.

According to Lemma 4.2.10, the measure µ vanishes in (α − δ, α) and (α, α + δ), so the
same is true for ν. Since ν is continuous we deduce that ν must vanish in (α − δ, α + δ).
We proved that ν vanishes in the neighborhood of each point of (0,∞). This implies that
ν vanishes on (0,∞). Therefore, ν vanishes on R \ {0} and is continuous. We conclude
that ν = 0.

We have just proved that

µ =
∞∑
i=1

mi δαi
⊗ δ0

and also assertion (a) of Theorem 4.2.8. Assertion (b) follows from the positivity of µ (as
limit of positive measures) and from the fact that the total mass of µ is ‖ω0‖L1 . Assertion
(c) is a consequence of the support of µ being included in [0,M ] and (d) is proved in
Lemma 4.2.9. Finally, as previously noted, it was shown in [23] that

∫
x1ω(t, x) dx ≥ Ct

for some positive constant C. This implies that
∫
x1ω̃(t, x) dx ≥ C, which in turn yields∑

imiαi =
〈
µ, x1

〉
≥ C. This completes the proof of Theorem 4.2.8. �

4.2.4 Another discrete example: separation of two vortices above
a flat wall

Steady vortex pairs provide smooth examples of vorticities for which the corresponding
asymptotic velocity densities consist of a single Dirac mass. We would like to give such an
example with at least two different Dirac masses in the asymptotic velocity density. As we
already pointed out, the existence of multibump solutions in this situation is an interesting
open problem, but we can offer a discrete example in order to illustrate this issue. In
this section we will give a sufficient condition for linear separation of two vortices above
a flat wall which will in turn give us an example of unique asymptotic velocity density
concentrating at two distinct Dirac masses.
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Let z1 = (x1, y1) and z2 = (x2, y2) be two vortices above the wall {y = 0} of positive
masses m1, resp. m2. For notational convenience we will assume that we start at time
t = 1 instead of t = 0. Let L be defined by

L = m1y1 +m2y2, (4.28)

a quantity which is conserved by the motion of the vortices. We will prove the following
proposition.

Proposition 4.2.11 Suppose there exists a positive constant M such that the following
relations hold true:

x2(1)− x1(1) > M, (4.29)

L > m2y2(1) +
L2

πM3
(4.30)

and

m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M
> 2πM. (4.31)

Then, the two vortices z1 and z2 linearly separate. More precisely,

x2(t)− x1(t) > Mt (4.32)

for all times t ≥ 1.

Remark 4.2.12 Let m1, m2 and L be some fixed arbitrary positive constants. Then we
can always find x1(1), y1(1), x2(1), y2(1) and M such that relations (4.28), (4.29), (4.30)
and (4.31) are satisfied. Indeed, we first choose x1(1) and x2(1) such that (4.29) holds. We
next note that (4.30) and (4.31) are satisfied for large enough M and small enough y2(1).
For example, if y2(1) = 0, then (4.31) has a left-hand side of order M3 so it is verified for
M large enough; and since, for that choice of M , it is satisfied for y2(1) = 0, it will be
satisfied for small enough y2(1), too. Once y2(1) and M are chosen, it remains to choose
y1(1) such that (4.28) is satisfied for t = 1.

Proof of Proposition 4.2.11. It is sufficient to prove that, as long as (4.32) holds, then

(x2 − x1)
′(t) ≥M. (4.33)

Indeed, the result then follows by a contradiction argument: if T is the first time when
x2(T )− x1(T ) = MT , then necessarily T > 1 and

MT = (x2 − x1)(T ) = x2(1)− x1(1) +

∫ T

1

(x2 − x1)
′ > M +M(T − 1) = MT



4.2. ASYMPTOTICS OF NONNEGATIVE VORTICITY IN THE HALF-PLANE 61

which is a contradiction.

We will therefore assume in the following that (4.32) holds and try to prove (4.33).

It follows from the method of images that the motion of these vortices can be computed
from the full plane flow due to these two vortices together with their images:

z3 = z1 = (x1,−y1) and z4 = z2 = (x2,−y2)

with masses m3 = −m1, resp. m4 = −m2. Therefore, the equations of motion are given
by:

2πz′1 =
(z1 − z2)

⊥

|z1 − z2|2
m2 +

(z1 − z3)
⊥

|z1 − z3|2
m3 +

(z1 − z4)
⊥

|z1 − z4|2
m4,

i.e.,

2πz′1 = 2π(x′1, y
′
1)

=
(m1

2y1

, 0
)

+
m2

|z1 − z2|2
(y2 − y1, x1 − x2) +

m2

|z1 − z2|2
(y1 + y2, x2 − x1).

(4.34)

Interchanging the indexes 1 and 2 we also get

2πz′2 = 2π(x′2, y
′
2)

=
(m2

2y2

, 0
)

+
m1

|z1 − z2|2
(y1 − y2, x2 − x1) +

m1

|z1 − z2|2
(y1 + y2, x1 − x2).

(4.35)

Let us now estimate y2. From relation (4.35) it follows that

2πy′2 = m1(x2 − x1)
( 1

|z1 − z2|2
− 1

|z1 − z2|2
)

=
m1(x2 − x1)4y1y2

|z1 − z2|2|z1 − z2|2
.

In view of (4.28), we can bound m1y1 ≤ L and y2 ≤ L/m2 so that, using also relation
(4.32),

|y′2| ≤
2L2

πm2|x1 − x2|3
≤ 2L2

πm2M3t3
. (4.36)

We deduce that

|y2(t)− y2(1)| =
∣∣∣∫ t

1

y′2

∣∣∣ ≤ L2

πm2M3

∫ t

1

2

s3
ds =

L2

πm2M3

(
1− 1

t2
)
≤ L2

πm2M3
,

which implies that

y2(t) ≤ y2(1) +
L2

πm2M3
. (4.37)

Next, from (4.34), (4.35) and (4.28) we have that

(x2 − x1)
′ =

1

2π

[m2

2y2

− m1

2y1

+
(m1 +m2)(y1 − y2)

|z1 − z2|2
+

(m1 −m2)(y1 + y2)

|z1 − z2|2
]

≥ 1

2π

[m2

2y2

− m2
1

2(L−m2y2)
− (m1 +m2)

|z1 − z2|
− |m1 −m2|
|z1 − z2|

]
.
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Both |z1− z2| and |z1− z2| are bounded from below by |x1−x2| > Mt ≥M . Furthermore,
the first two terms of the right-hand side of the last relation are decreasing with respect
to y2. We therefore deduce from (4.37) that

(x2 − x1)
′ ≥ 1

2π

[ m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − (m1 +m2)

M
− |m1 −m2|

M

]
=

1

2π

[ m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M

]
≥M,

where we have used (4.31). This completes the proof. �

Remark 4.2.13 The conclusion that x2(t)−x1(t) ≥Mt, for some M > 0, always implies
the existence of a unique asymptotic velocity density which concentrates on a pair of Dirac
masses. In order to see this, first note that, from (4.36), we have that |y′2| = O(1/t3),
which implies that y2(t) converges as t → ∞ and similarly for y1. From the conservation
of energy we have that

2m1m2 log
|z1 − z2|
|z1 − z2|

−m2
1 log(2y1)−m2

2 log(2y2)

is constant in time. Since x2(t) − x1(t) ≥ Mt we also know that |z1−z2|
|z1−z2| → 1 as t → ∞.

We deduce that lim
t→∞

y2(t) 6= 0 and lim
t→∞

y1(t) 6= 0. Now, from relations (4.34) and (4.35)

we immediately obtain that both x′1 and x′2 converge to a finite limit given by

α1 ≡ lim
t→∞

x′1(t) =
m1

4π lim
t→∞

y1(t)
and α2 ≡ lim

t→∞
x′2(t) =

m2

4π lim
t→∞

y2(t)
.

Observe next that lim
t→∞

x1(t)
t

= lim
t→∞

x′1(t) = α1 and similarly for x2(t)
t

. Finally, let us remark

that the rescaled vorticity is given in this case by m1δz1/t+m2δz2/t so that it clearly converges
weakly to

(
m1δα1+m2δα2

)
⊗δ0. Moreover, x2(t)−x1(t) ≥Mt implies that α2−α1 ≥M > 0.

4.2.5 Extensions and Conclusions

We end this section with some comments regarding the results obtained here.

(a) The only instance of use of the energy estimate in this work is the observation that,
for any asymptotic velocity density µ we have

〈
µ, x1

〉
> C > 0, which appears when

proving the last part of Theorem 4.2.8. The constant C depends on the kinetic energy
of the initial data, as was derived in [23]. It would be interesting to know whether
kinetic energy partitions itself in a way that is consistent with the partitioning of
vorticity, but we were not able to prove that, at least using only the hypothesis of
uniqueness of the asymptotic velocity density.
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(b) We only used the hypothesis of uniqueness of the asymptotic velocity density when
we derived (4.27). The estimate on the behavior of the nonlinear term given in Propo-
sition 4.2.5 always holds, which raises the possibility of it being exploited further.

(c) The hypothesis that the initial vorticity be p-integrable, with p > 2 is used to ensure
that the velocity is globally bounded. In principle, with vorticity in Lp, p ≤ 2, we
loose control over the loss of vorticity to infinity, and Lemma 2.2.2 is no longer true.
In fact, we do not even know the correct scaling to analyze in this case.

We would like to add a remark on the choice of the scaling x = ty. If the scaling
x1 ≡ ty1 in the horizontal direction is motivated by the fact that the first component
of the center of vorticity behaves exactly like O(t), the scaling x2 ≡ ty2 is not justified
because the second component of the center of vorticity is constant. Ideally we should
not make any rescaling in the vertical direction but then we would have to assume that
tω(tx1, x2) converges weakly, which we found excessive because of the oscillations that
may appear in the vertical direction. We could also consider an intermediate scaling of
the form x2 ≡ f(t)y2 where f(t) → ∞ as t → ∞. This last problem is in fact equivalent
to the one we consider in this section. If f is such a function, then the weak limits of
ω̃f (t, y) = tf(t)ω

(
t, ty1, f(t)y2

)
are independent of f . Indeed, let νf be the weak limit of

ω̃f (t, y) as t→∞ and choose a test function h ∈ C∞
0 (H). Then〈

νf , h
〉

= lim
t→∞

∫
H
ω̃f (t, y)h(y) dy

= lim
t→∞

∫
H
ω(t, x)h

(x1

t
,
x2

f(t)

)
dx

= lim
t→∞

(∫
H
ω(t, x)h

(x1

t
, 0

)
dx+O

(‖∂2h‖L∞
f(t)

) ∫
H
x2ω(t, x) dx

)
= lim

t→∞

∫
H
ω(t, x)h

(x1

t
, 0

)
dx

since we know that
∫

H x2ω(t, x) dx = cst. and f(t) → ∞ as t → ∞. The last term does
not depend on f anymore. Here, we have made the choice f(t) = t only for the sake of
simplicity. This means that we study the asymptotic behavior of solutions in horizontal
direction but not in the vertical one.

We would like to comment on a few problems that arise naturally from the work pre-
sented here. The first is to remove the hypothesis of uniqueness of the asymptotic velocity
profile, perhaps with weaker conclusions. Also, we can try to extend this line of reasoning
to other fluid dynamical situations with similar geometry, such as flow on an infinite flat
channel, axisymmetric flow (smoke ring dynamics), and water wave problems. We may also
ask the same questions with respect to full two-dimensional scattering, allowing for vortex
pairs moving off to infinity in different directions. Finally, one might try to examine the
issue of actually proving the uniqueness of asymptotic velocity densities in special cases,
for example, for point vortex dynamics. The case of three point vortices on the half-plane
is still open.
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4.3 Vortex scattering

Let us now return to the case of an unsigned vorticity in the full plane. Let ω = ω(x, t)
be a solution of the incompressible 2D Euler equations (4.1) with initial vorticity ω0 ∈
Lp

c(R2), for some p > 2. The simplest picture consistent with what is known regarding
large-time vortex dynamics would have ω0 scattering into a confined part, which would
remain near the center of motion for all time, plus a number of soliton-like vortex pairs,
traveling with roughly constant speed. Denoting

ω̃ = ω̃(x, t) ≡ ω̃1(x, t) = t2ω(tx, t),

the result in Section 4.1 implies that ω̃ ⇀ mδ0 when t → ∞, but the weak convergence
completely ignores the scattering of vortex pairs, due to their linear-scale self-cancellation.
The large-time behavior of |ω̃| provides a useful rough picture of vortex scattering.

First note that |ω̃(·, t)| is a bounded one-parameter family in L1(R2). Since the velocity
K ∗ω is a priori globally bounded, the family |ω̃(·, t)| has its support contained in a single
disk D. One can therefore extract a sequence of times tk → ∞ such that |ω̃(·, tk)| ⇀ µ,
for some measure µ ∈ BM+(D). It follows from Theorem 4.1.1 that µ ≥ |m|δ0, where
m =

∫
ω0. Indeed, if ϕ is a nonnegative test function,

〈|m|δ0, ϕ〉 = lim
k→∞

∣∣∣∣∫ ϕ(x)ω̃(x, tk)dx

∣∣∣∣ ≤ lim
k→∞

∫
ϕ(x)|ω̃(x, tk)|dx = 〈µ, ϕ〉.

Our purpose is to obtain more information about the measure µ. The result we will
present is a generalization of the previous result in the half-plane, which described the
structure of the measure µ in the situation of half-plane vortex scattering, and under an
important restriction, which we will have to impose in the present context as well. We
introduced above the terminology asymptotic velocity density for any measure µ which is a
limit of |ω̃(·, tk)| for some sequence tk →∞. In fact, due to a sign restriction, the explicit
use of the absolute value in the definition of asymptotic velocity densities was not needed in
the previous section, and because scattering in the half-plane is a one-dimensional affair, the
density µ in the previous section was a measure on the real line, describing the asymptotic
density only of the relevant component of velocity. Our result about the structure of µ
proved above and the result we will present here only applies to initial vorticities which
have a unique asymptotic velocity density, i.e. those initial vorticities for which |ω̃|(·, t)
converges weakly to a measure µ, rather than being merely weakly compact.

Theorem 4.3.1 Suppose that the initial vorticity ω0 ∈ Lp
c(R2), p > 2 has a unique asymp-

totic velocity density µ. Then µ must be of the form:

µ =
∞∑
i=1

mi δαi

where:
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(a) αi 6= αj if i 6= j and αi → 0 as i→∞;

(b) the masses mi are nonnegative and verify
∑∞

i=1mi = ‖ω0‖L1;

(c) for all i, |αi| ∈ [0,M ], where M = ‖u‖L∞([0,∞)×R2);

(d) there exists a constant D > 0, depending solely on p, such that, for all i with mi 6= 0
we have

|αi| ≤ D‖ω0‖
p′
2
Lp m

1− p′
2

i .

Remark 4.3.2 In the statement above, the masses mi are allowed to vanish only to in-
clude the case when the limit measure contains a finite number of Diracs. For notational
convenience, in the case when there are only a finite number of Dirac masses, we artificially
added a countable number of Dirac masses with zero masses and positions converging to 0.

Proof. The proof we will present here has much in common with the special case done in
Section 4.2, so that we will concentrate on the aspects of the proof which differ from the
original case, briefly outlining the remainder.

We first note that, since ω is transported by the velocity u, the same holds for |ω|. This
means that |ω| satisfies, in the weak sense, the equation

∂t|ω|+ div(u|ω|) = 0.

The equation for the absolute value of the rescaled vorticity is then given by

∂t| ω̃(y, t)| − 1

t
div

[
y| ω̃(t, y)|

]
+

1

t2
div

[
ũ(y, t)| ω̃(t, y)|

]
= 0,

where ũ(y, t) denotes the rescaled velocity ũ(y, t) = tu(ty, t).
Let us take the product with a test function ϕ ∈ C1(R2) and integrate in space:

∂t

∫
| ω̃(y, t)|ϕ(y) dy = −1

t

∫
| ω̃(y, t)| y · ∇ϕ(y) dy

+
1

t2

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy. (4.38)

We now recall the following argument that was used above. The left-hand side of (4.38),
when integrated from 1 to t, is uniformly bounded in t. By hypothesis, we know that

lim
t→∞

∫
| ω̃(y, t)| y · ∇ϕ(y) dy =

〈
yµ,∇ϕ

〉
,

so that the integral from 1 to t of the first term on the right-hand side of (4.38) behaves
like

〈
yµ,∇ϕ

〉
log t. As for the third term, it is not difficult to see that it is O(1/t). The

dominant part of the third term must balance the logarithmic blow-up in time of the
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second term. This argument implies, adapting Lemma 4.2.6 to the present situation, that
the following inequality must hold:

lim sup
t→∞

(1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

)
≥

〈
yµ,∇ϕ

〉
. (4.39)

A straightforward adaptation of Lemma 4.2.3 to compactly supported nonnegative finite
measures on the plane yields a decomposition of µ into the sum of a discrete part plus a
continuous part, i.e.:

µ = ν +
∞∑
i=1

miδαi
. (4.40)

On the other hand, it was also proved in Proposition 4.2.5 a key estimate that in the
present case reads

lim sup
t→∞

∣∣∣1
t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

∣∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)| (4.41)

where
∑∞

i=1miδαi
is the discrete part in the decomposition (4.40). The proof of Proposition

4.2.5 valid in the case of the half-plane can be adapted in a straightforward manner to the
full plane context due to the fact that the key estimate in the original proof is the inequality
below, which relates the rescaled velocity to the rescaled vorticity:

|ũ(x, t)| ≤
∫

C

|x− y|
| ω̃(y, t)| dy,

and this inequality holds in the case of the full space as well.
It follows from (4.39) and (4.41) that

〈
yµ,∇ϕ

〉
≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)|.

Substituting ϕ by −ϕ we obtain

|
〈
yµ,∇ϕ

〉
| ≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)|. (4.42)

Next we will use (4.42) to deduce that

|αi| ≤ D‖ω0‖
p′
2
Lpm

1− p′
2

i . (4.43)

To this end, let us fix i0 ∈ N and choose ϕ ∈ C∞
c (R2) such that ∇ϕ(0) = αi0 . Define

ϕε(x) = εϕ
(x−αi0

ε

)
and use it as test function in (4.42) to obtain

∣∣〈yµ,∇ϕ(y − αi0

ε

)〉∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i

∣∣∇ϕ(αi − αi0

ε

)∣∣. (4.44)
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The series on the right-hand side converges uniformly for ε > 0 and hence, when ε→ 0,
it converges to

D‖ω0‖
p′
2
Lpm

2− p′
2

i0
|αi0 |.

As for the left-hand side, first we note that the functions ∇ϕ
(y−αi0

ε

)
converge pointwise

to αi0χ{αi0
} (which does not vanish µ-almost everywhere, since µ attaches positive mass

to αi0). Also, these functions are bounded uniformly with respect to ε and have supports
contained in a single disk. The Lebesgue Dominated Convergence Theorem therefore
implies that 〈

yµ,∇ϕ
(y − αi0

ε

)〉
→

〈
yµ, αi0χ{αi0

}
〉
= |αi0|2mi0

as ε→ 0. Putting these arguments together yields (4.43) in the limit, as ε→ 0.

We just proved part (d) of Theorem 4.3.1. Part (a) also follows at once by remarking
that we havemi → 0 so, by (4.43), αi → 0 as i→∞ too. Part (c) is a trivial consequence of
the fact that the support of the vorticity is transported by the flow of u. Finally, part (b) is
a direct consequence of the nonnegativity of the measure µ and also from the conservation
of the L1 norm of | ω̃|, once we established that the continuous part of µ vanishes.

We now go to the last part of the argument, i.e. the proof that the continuous part
of the measure µ vanishes. Here is where the present proof requires a more substantial
modification of the original one.

Let D be a strip of the form D = {c ≤ ay1 + by2 ≤ d} disjoint with the set A ≡
{0}

⋃
i≥1{αi}. We prove that the measure µ must necessarily vanish in the interior of

such a strip. First, since 0 /∈ D we must have that cd > 0. We assume without loss of
generality that c, d > 0. Let [c′, d′] a subinterval of (c, d) and choose a smooth function
h ∈ C∞(R) such that h′ ∈ C∞

c (c, d), h′ ≥ 0 and h′(s) = 1/s for all s ∈ [c′, d′]. Choose
now ϕ(y1, y2) = h(ay1 + by2) as test function in (4.42). Since supp∇ϕ ⊂ D we have that
supp∇ϕ∩A = ∅, which implies in turn that the right-hand side of (4.42) vanishes for this
choice of test function. Therefore the left-hand side must vanish too:

0 =
〈
yµ,∇

(
h(ay1 + by2)

)〉
=

〈
µ, (ay1 + by2)h

′(ay1 + by2)
〉
. (4.45)

The function y 7→ (ay1 + by2)h
′(ay1 + by2) is nonnegative and it is equal to 1 on the strip

{c′ ≤ ay1 + by2 ≤ d′}. Since the measure µ is nonnegative too, we deduce from (4.45)
that µ vanishes on the strip {c′ ≤ ay1 + by2 ≤ d′}. Also, since [c′, d′] was an arbitrary
subinterval of (c, d), we finally deduce that µ vanishes in the interior of the strip D.

In order to conclude the proof of Theorem 4.3.1, we only need to show that the measure
µ vanishes in the neighborhood of each point of Ac. Let y0 ∈ Ac. Since the only possible
accumulation point of the set A is 0, there exists a line {ay1 + by2 = c} passing through
y0 and which does not cross A. A continuity argument using again that the points αi can
only accumulate at {0} shows that there exists a strip {c− ε ≤ ay1 + by2 ≤ c+ ε} disjoint
of A. But we proved that the measure µ must vanish on such a strip. This implies that µ
vanishes in the neighborhood of y0 and this completes the proof of Theorem 4.3.1.

�
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4.4 Conclusions

First we observe that Theorem 4.1.1 does not require that the initial vorticity ω0 belong
to Lp. The argument works just as well if the initial vorticity is a bounded (signed) Radon
measure, as long as the existence of a (global in time) weak solution is provided. The
estimate itself only depends on the total mass of the initial vorticity.

We note also that Theorem 4.3.1 draws a much stronger conclusion than Theorem 4.1.1,
but it relies on the hypothesis that the initial vorticity ω0 ∈ Lp

c , with p > 2 have a unique
asymptotic velocity density. This hypothesis clearly deserves further scrutiny.

One natural question arising from this work is the role of the critical exponent α = 1/2
in Theorem 4.1.1. This exponent is far from the known critical exponent α = 1/4 for the
vorticity confinement in the distinguished sign case. In the vortex confinement literature,
the critical exponent α = 1/2 appears naturally when one does not have a priori control
over moments of vorticity, see [32], whereas the sharper estimates are obtained when using
the conserved moments of vorticity. Using just the moment of inertia one obtains critical
exponent α = 1/3, in the case of the full plane, see [31], and in the case of the exterior of
a disk, see [32]. Using both the moment of inertia and the center of vorticity, we obtain,
in the case of the full plane, the critical exponent α = 1/4, see Section 3.1. It is therefore
reasonable to expect that we might improve the condition on α in Theorem 4.1.1 by using
the conserved moments of vorticity, but this would require a new approach.
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