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http://analysis.math.uni-kiel.de/mueller/

Abstract

Consider doubly characteristic differential operators of the form

L =
m∑

j,k=1

αjk(x)VjVk + lower order terms ,

where the Vj are smooth real vector fields and the αjk are smooth complex coeffi-
cients forming a symmetric matrix A(x) := {αjk(x)}j,k. We say that L is essentially
dissipative at x0, if there is some θ ∈ R such that eiθL is dissipative at x0, in the
sense that Re

(
eiθA(x0)

)
≥ 0. For a large class of doubly characteristic operators

L of this form, one can show that a necessary condition for local solvability at x0

is essential dissipativity of L at x0. By means of Hörmander’s classical necessary
condition for local solvability, the proof is reduced to the following question:

Suppose that QA and QB are two real quadratic forms on a finite dimensional
symplectic vector space, and let QC := {QA, QB} be given by the Poisson bracket
of QA and QB. Then QC is again a quadratic form, and we may ask: When can we
find a common zero of QA and QB at which QC does not vanish?

In view of these results, there essentially remains the problem of giving sufficient
conditions for local solvability of essential dissipative operators L. The lectures focus
on this problem for left-invariant operators of this type on Heisenberg groups, for
which a fairly complete answer to the question of local solvability can be given.

These latter results are based on tools from representation theory, in particu-
lar on Howe’s work on the oscillator semigroup, which in return is related to the
metaplectic representation of Shale and Weil. A major part of these tools has been
developped in long standing collaborations, in particular with Fulvio Ricci.
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1 Introduction: A necessary condition

Consider a second-order linear differential operator of order k with smooth coefficients

L =
∑

|α|≤k

cα(x)Dα

on an open subset Ω of Rn, where Dα :=

(
∂

2πi ∂x1

)α1

· · ·

(
∂

2πi ∂xn

)αn

.

L is said to be locally solvable at x0 ∈ Ω, if there exists an open neighborhood U of x0 such
that the equation Lu = f admits a distributional solution u ∈ D′(U) for every f ∈ C∞

0 (U)
(for a slightly more general definition, see [7]).

Around 1956, Malgrange and Ehrenpreis proved that every non-trivial linear differen-
tial operator with constant coefficients is locally solvable.

Shortly later H. Lewy produced the following example of a nowhere solvable operator
on R3:

Z = X − iY , where X :=
∂

∂x
−

y

2

∂

∂u
, Y :=

∂

∂y
+

x

2

∂

∂u
.

Not quite incidentally, Z is a left–invariant operator on a 2–step nilpotent Lie group, the
Heisenberg group H1.

This example gave rise to an intensive study of so-called principal type operators,
which eventually led, most notably through the work of Hörmander, Maslov, Egorov,
Nirenberg–Trèves and Beals–Fefferman, to a complete solution of the problem of local
solvability of such operators (see [7]).

Let us recall some notation. Denote by

pk(x, ξ) :=
∑

|α|=k

cα(x)ξα
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the principal symbol of L. We shall consider pk as an invariantly defined function on the
reduced cotangent bundle C := T ∗Ω \ 0 = Ω × (Rn \ {0}) of Ω.
Let us denotes by π1 the base projection π1 : T ∗Ω → Ω, (x, ξ) 7→ x. T ∗Ω carries a
canonical 1-form, which, in the usual coordinates, is given by α =

∑n
j=1 ξjdxj, so that

T ∗Ω has a canonical symplectic structure, given by the 2-form dα =
∑n

j=1 dξj ∧ dxj. In
particular, for any smooth real function a on Ω, its corresponding Hamiltonian vector field
Ha is well-defined, and explicitly given by

Ha :=
n∑

j=1

(
∂a

∂ξj

∂

∂xj

−
∂a

∂xj

∂

∂ξj

)
.

If γ is an integral curve of Ha, i.e., if d
dt

γ(t) = Ha(γ(t)), then a is constant along γ, and γ
is called a null bicharacteristic of a, if a vanishes along γ. Finally, the (canonical) Poisson
bracket of two smooth functions a and b on T ∗(Ω) is given by

{a, b} := dα(Ha, Hb) = Hab =
n∑

j=1

(
∂a

∂ξj

∂b

∂xj

−
∂a

∂xj

∂b

∂ξj

)
.

Let
Σ = {pk = 0} ⊂ C

denote the characteristic variety of L. L is said to be of principal type, if Dξp2 does not
vanish on Σ (or, more generally, if for every ζ ∈ Σ there is a real number θ such that
d(Re (eiθpk))(ζ) and α(ζ) are non–proportional).

In 1960, Hörmander proved the following fundamental result on non–existence of so-
lutions (see [9]):

Theorem 1.1 (Hörmander) Suppose there is some ξ0 ∈ Rn \ {0} such that

f(x0, ξ0) = g(x0, ξ0) = 0 and {f, g}(x0, ξ0) 6= 0,

where f := Re pk and g := Im pk. Then L is not locally solvable at x0.

For example, if L = Z is the Lewy operator, and if we choose coordinates ((x, y, u), (ξ, η, µ))
for the cotangent bundle of R3, then

f = i(ξ − 1
2
µy), g = i(η + 1

2
µx) and {f, g} = −µ.

Given (x0, y0, u0), choosing e.g. µ0 = 1, we can find ξ0, η0 such that Hörmander’s condition
is satisfied, so that Z is nowhere locally solvable. Hörmander’s theorem thus represents a
wide extension of Lewy’s result.

Remark 1.2 Notice that commutation relations play a crucial role here. In view of
this, it appears natural to study local solvability of invariant differential operators on Lie
groups, where commutation relations assume a particularly clear cut form. The results
obtained in these settings can then give at least some guidance as to what may rule local
solvability in more general situations. Moreover, on Lie groups, further tools are available
and have proved to be useful, such as representation theory. We shall see instances of
such ideas in the course of these lectures.
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A complete answer to the question of local solvability of principal type operators L
was eventually given in terms of the following condition (P) of Nirenberg and Trèves:

(P). The function Im (eiθpk) does not take both positive and negative values along a
null–bicharacteristic γθ(t) of Re (eiθpk), for any θ ∈ R.

In fact, L of principal type is locally solvable at x0 if and only if (P) holds over some
neighborhood of x0. Notice that this is a condition solely on the principal symbol of L.

In these lectures, which are largely based on the joint article [21] with F. Ricci, and
on [18], [19], we shall consider second order differential operators L with double charac-
teristics. Let

Σ2 := {(x, ξ) ∈ C : Dξp2(x, ξ) = 0} .

By Euler’s identity, Σ2 is contained in the characteristic variety Σ, and so Σ2 consists of
the doubly characteristic cotangent vectors of L.

If p2 is real, and if we assume that Σ2 is a submanifold of codimension m < n in C,
such that rank D2

ξp2 = m for every ξ ∈ Σ2 (notice that for our class, D2
ξp2 is in fact

independent of ξ), then the following has been shown in [29] :

Given any x0 ∈ π1(Σ2), there exist suitable linear coordinates near x0 such that, in
those new coordinates, p2 can be written in the form

(1.1) p2(x, ξ) = t(ξ′ + E(x) ξ′′)A(x)(ξ′ + E(x) ξ′′)

with respect to some splitting of coordinates ξ = (ξ′, ξ′′), ξ′ ∈ Rm, ξ′′ ∈ Rn−m. Here,
A(x) ∈ Sym (m, R) is non-degenerate and E(x) ∈ Mm×(n−m)(R), and both matrices vary
smoothly in x (as usually, Sym (n, K) denotes the space of all symmetric n × n matrices
over the field K, where K will be either R or C.)

Motivated by this result, let us assume here that L is a complex coefficient differen-
tial operator with smooth coefficients, whose principal symbol is given by (1.1) where,
however, now A(x) ∈ Sym (m, C) is a complex matrix. We then write

A(x) = A(x) + iB(x), x ∈ Ω ,

with A(x), B(x) ∈ Sym (m, R). Notice that (1.1) means that, up to a factor (2π)−2, L can
be written as

(1.2) L =
m∑

j,k=1

αjk(x)VjVk + lower order terms ,

where Vj is the real vector field

(1.3) Vj =
∂

∂xj

+
n∑

l=m+1

Ejl(x)
∂

∂xl

, j = 1, . . . , m ,

with A(x) = {αjk(x)}j,k, E(x) = {Ejl(x)}j,l.
It may be worth while mentioning that every second order differential operator L,

whose principal part is of the form

(1.4)
m∑

j,k=1

βjk(x)YjYk,
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with smooth real vector fields Yj which are linearly independent at x0, can be put into this
form, locally near x0. This can easily be seen by means of a suitable change of coordinates
and choice of a suitable new basis V1, . . . , Vm of the C∞-module spanned by Y1, . . . , Ym.

Moreover, by (1.1),

Σ2 ⊃ {(x, ξ) ∈ C : ξ′ + E(x) ξ′′ = 0} ⊂ {(x, ξ) ∈ C : dp2(x, ξ) = 0} ,

so that in particular π1(Σ2) = Ω, and equality holds in these relations, if, e.g., A(x) is
non-degenerate. Finally, denote by qj the symbol of Vj (up to a factor 2π), i.e.,

qj(x, ξ) := ξj +
n∑

l=m+1

Ejl(x)ξl , j = 1, . . . , m ,

and define the skew-symmetric matrix

J(x,ξ′′) :=
(
{qj, qk}(x, ξ)

)
j,k=1,...,m

(compare [29]). Here, {·, ·} denotes again the canonical Poisson bracket on T ∗Ω. Observe
that J(x,ξ′′) depends indeed only on x and the ξ′′-component of ξ. Notice also that if
A(x) is non-degenerate, then J(x0,ξ′′0 ) is non-degenerate if and only if Σ2 is symplectic in a
neigborhood of (x0, ξ0), where ξ′0 is chosen so that (x0, ξ0) ∈ Σ2 (see, e.g. [37], Proposition
3.1, Ch. VII).

Assume that J(x,ξ′′) is non-degenerate. Then we can associate to J(x,ξ′′) the skew form

σ(x,ξ′′)(v, w) := tv t(J(x,ξ′′))
−1 w, v, w ∈ Rm,

which defines a symplectic structure on Rm. In particular, m = 2d is even.
Recall that if σ is an arbitrary symplectic form on R2d, then we can associate to any

smooth function a on R2d the Hamiltonian vector field Hσ
a such that σ(Hσ

a , Y ) = da(Y )
for all vector fields Y on R2d, and define the associated Poisson bracket accordingly by

{a, b}σ := σ(Hσ
a , Hσ

b ) .

We can thus define a Poisson structure {·, ·}(x,ξ′′) on Rm (depending on the point
(x, ξ′′)) by putting {·, ·}(x,ξ′′) := {·, ·}σ(x,ξ′′)

.

In order to formulate our first main theorem, we need to introduce some further
notation concerning quadratic forms.

If A ∈ Sym (n, K), we shall denote by QA the associated quadratic form

QA(z) := tzAz, z ∈ Kn,

on Kn. For any non-empty subset M of a K- vector space V, span KM will denote its linear
span over K in V.

Let A,B ∈ Sym (m, R). We say that A,B form a non-dissipative pair, if 0 is the only
positive-semidefinite element in span R{A,B}. Moreover, we put

maxrank {A,B} := max{rank F : F ∈ span R{A,B}}

minrank {A,B} := min{rank F : F ∈ span R{A,B} , F 6= 0}.
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If A,B form a non-dissipative pair, then one can show ([18]) that there is some Q ∈
GL(m, R) such that

tr tQAQ = tr tQBQ = 0,

so that minrank {A,B} ≥ 2.
Observe finally that if QA and QB are quadratic forms on Rm, then {QA, QB}(x,ξ′′) is

again a quadratic form. We then have

Theorem 1.3 ([18]) Let L be given by (1.2), and let x0 ∈ Ω. Assume that

(a) A(x0), B(x0) forms a non-dissipative pair.

(b) There exists some ξ′′0 ∈ Rn−m \ {0} such that J(x0,ξ′′0 ) is non-degenerate, and the ma-
trices A(x0), B(x0) and C(x0, ξ

′′
0 ) are linearly independent over R, where C(x0, ξ

′′
0 ) ∈

Sym (m, R) is defined by

QC(x0,ξ′′0 ) := {QA(x0), QB(x0)}(x0,ξ′′0 ) .

(c) Either

(i) minrank {A(x0), B(x0)} ≥ 3 and maxrank {A(x0), B(x0)} ≥ 17, or

(ii) minrank {A(x0), B(x0)} = 2, maxrank {A(x0), B(x0)} ≥ 9, and the joint ker-
nel ker A(x0) ∩ ker B(x0) of A(x0) and B(x0) is either trivial, or a symplectic
subspace with respect to the symplectic form σ(x0,ξ′′0 ).

Then L is not locally solvable at x0.

Notice that, like condition (P), the condition in (a) is again a sign condition on the
principal symbol of L.

We also remark that the conditions in (c) are automatically satisfied, if A is non-
degenerate and m ≥ 18.

Theorem 1.3 shows that a ”generic” operator L of the form (1.2) can be locally solvable
at x0 only, if there is some θ ∈ R such that Re (eiθA(x0)) ≥ 0. A major task which remains
is thus to study local solvability of L under the assumption that ReA(x) ≥ 0 for every
x ∈ Ω. A stronger condition is the condition

(1.5) |ImA(x)| ≤ CReA(x), x ∈ Ω,

for some constant C ≥ 0. This condition is equivalent to Sjöstrand’s cone condition [36]
(see also [10]). It implies hypoellipticity with loss of one derivative of the transposed
operator tL, for ”generic” first order terms in (1.2), and thus local solvability of L at x0

(see [7], Ch. 22.4, for details and further references).
Since, however, local solvability of L is in general a much weaker condition than

hypoellipticity of tL, we are still rather far from understanding what rules local solvability
in general, even when the cone-condition is satisfied.

We should like to mention that, even if the cone-condition is satisfied, for instance
small perturbations of the coefficients of the first order terms preserving the values at
x0, may influence local solvability and lead to local solvability in situations where the
unperturbed operator is not locally solvable at x0 (see, e.g., [2]). Moreover, if, e.g.,
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maxrank {A(x0), B(x0)} = 4 or 6, then the conclusion in Theorem 1.3 may not be true
(see [12],[20]).

All these results indicate that there is rather little hope for a complete characterization
of local solvability for doubly characteristic operators in general, but that Theorem 1.3
in combination with the above mentioned results on hypoellipticity give at least rather
satisfactory answers in the ”generic” case.

Nevertheless, for the case of homogeneous, left-invariant second order differential op-
erators on the Heisenberg group Hn, a fairly comprehensive answer can be given.

In the sequel, we shall therefore entirely concentrate on the case of left-invariant op-
erators on the Heisenberg group.

Recall that the Heisenberg group Hd of dimension n = 2d+1 is R2d×R (as a manifold),
with the group law

(v, u) · (v′, u′) = (v + v′, u + u′ + 1
2

tvJv′ ),

for v, v′ ∈ R2d, u, u′ ∈ R, where J is the standard skew matrix

J :=

(
0 Id

−Id 0

)
.

Here, m = 2d and n = 2d + 1.
A basis of the Lie algebra hd of left-invariant vector fields is then given by

Vj :=
∂

∂vj

+ 1
2
( tv · J)j

∂

∂u
, j = 1, . . . ,m ,

U :=
∂

∂u
.

Consider an operator L on Hd of the form

(1.6) L =
m∑

j,k=1

αjkVjVk + lower order terms ,

where the coefficient matrix A = (αjk)j,k ∈ Sym (m, C) is symmetric. We put A := ReA,
B := ImA. The matrix {Ejl(x)}jl in (1.3) is then given by a vector, with components

Ej(v, u) =
1

2

m∑

k=1

Jkjvk ,

and, if we split a cotangent vector ξ = (ν, µ) ∈ Rm × R according to the coordinates
x = (v, u) ∈ hd, we have

qj((v, u), (ν, µ)) = νj + 1
2

∑

s

µJsj vs,

so that one easily computes that

J((v,u),µ) =
(
{qj, qk}((v, u), (ν, µ))

)
j,k=1,...,m

= µJ ,
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which is non-degenerate whenever µ 6= 0, and then the associated Poisson bracket on R2d

is given by
{a, b}((v,u),µ) = −µ (∇a)J t(∇b) .

Notice that this is the skew form associated to the matrix −µJ. This implies in particular
that

{QA, QB}((v,u),µ) = −2µ(AJB − BJA).

Putting
C := 2(AJB − BJA) ,

we thus obtain the following corollary to Theorem 1.3.

Corollary 1.4 Assume that A,B forms a non-dissipative pair, and that A,B and C are
linearly independent. Moreover, suppose that either

(i) minrank {A,B} ≥ 3 and maxrank {A,B} ≥ 17, or

(ii) minrank {A,B} = 2, maxrank {A,B} ≥ 9, and that the joint kernel ker A∩ker B of
QA and QB is either trivial, or a symplectic subspace with respect to the canonical
symplectic form on R2d (associated to −J).

Then the operator L in (1.6) on Hd is nowhere locally solvable.

Before we turn to sufficient conditions for local solvability of the operators L, let me
briefly comment on the proof of Corollary 1.4.

Denote by f and g the real and imaginary parts of the principal symbol of L. Writing
q := (q1, . . . , q2d), we have

f = QA(q(·)) and g = QB(q(·)),

and one easily computes that

{f, g}((v, u), (ν, µ)) = 4
∑

j,k

(AJ((v,u),µ)B)jk qj((v, u), (ν, µ)) qk((v, u), (ν, µ)),

hence
{f, g} = QC(q(·)).

Since
q((v, u), (ν, µ)) = ν − 1

2
µJv,

so that the mapping (ν, µ) 7→ q((v, u), (ν, µ)) is surjective for every (v, u), Corollary 1.4
can thus obviously be reduced by means of Hörmander’s Theorem 1.1 to the following
result concerning real quadrics, which represents the core of the work in [18] (the proof
of Theorem 1.3 is based on similar ideas, but more involved):

Theorem 1.5 Assume that Rn = R2d is endowed with the canonical symplectic form. Let
A,B ∈ Sym (n, R) be linearly independent, and assume that A,B forms a non-dissipative
pair. Define QC := {QA, QB} as the Poisson bracket of QA and QB, and assume that
A,B and C are linearly independent.

Then there exists a point x ∈ Rn such that

QA(x) = QB(x) = 0 and QC(x) 6= 0,

provided one of the following conditions are satisfied:
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(i) minrank {A,B} ≥ 3 and maxrank {A,B} ≥ 17;

(ii) minrank {A,B} = 2, maxrank {A,B} ≥ 9, and the joint radical ker A∩ker B of QA

and QB is either trivial, i.e., ker A ∩ ker B = {0}, or a symplectic subspace of Rn.

Put another way: If A and B are linearly independent and form a non-dissipative pair,
then under the rank conditions above, if the quadratic form QC vanishes on the set of
joint zeros of the forms QA and QB, there are α, β ∈ R such that C = αA + βB.

Corollary 1.4 shows that local solvability of L on Heisenberg groups can essentially only
arize if the operator eiθL is dissipative, for some θ ∈ R. This statement is true in the strict
sense, if, e.g., the matrix A, or if A+ iB, is non-degenerate so that maxrank {A,B} = 2d,
and d ≥ 9.

That the conclusion of the theorem cannot hold without any rank condition is demon-
strated by the following examples (compare also [18]).

Example 1.6 a) On R2, take

QA := x1x2, QB := x2
1 − x2

2.

b) A more sophisticated example on R4, with coordinates (x, y) = (x1, x2, y1, y2), is
given as follows:

QA := x1y2 + x2y1, QB := x1y1 − x2y2.

Here, one computes that A and B are non-degenerate, have vanishing traces (so that they
form a non-dissipative pair) and that

QC = {QA, QB} = 2(x1y2 − x2y1)

vanishes on the joint zeros of QA and QB. Nevertheless, A, B and C are linearly indepen-
dent.

In order to describe our sufficient conditions for local solvability, it is convenient to
slightly modify the notation. Let us first split coordinates z = (x, y), with x, y ∈ Rd. Then
the previous basis V1, . . . , V2d, U of the Lie algebra of Hd can be written more explicitly
as X1, . . . , Xd, Y1, . . . , Yd, U (in this order), where

Xj = ∂xj
− 1

2
yj∂u , j = 1, · · · , d ,

Yj = ∂yj
+ 1

2
xj∂u , j = 1, · · · , d ,(1.7)

U = ∂u.

Given a 2d × 2d complex symmetric matrix A = (ajk), set

(1.8) LA =
2d∑

j,k=1

ajkVjVk ,

and, for α ∈ C,

(1.9) LA,α = LA + iαU .

9



(notice that what used to be A has become A now).
These operators can be characterized as the second order left-invariant differential

operators on Hd which are homogeneous of degree 2 under the automorphic dilations
Dr : (v, u) 7→ (rv, r2u), r > 0.

Recall also that the real symplectic group Sp (d, R), i.e., the group of all 2d × 2d real
matrices g such that tgJg = J, acts by automorphisms on Hd fixing the center, namely
by (z, u) 7→ (gz, u), if g ∈ Sp (d, R).

Since we now assume that LA,α is essentially dissipative, after multiplying it with
a suitable complex number of modulus 1, we may assume that LA,α is dissipative, or,
equivalently, that

(1.10) Re A ≥ 0.

This condition is considerably weaker than Sjöstrand’s cone condition (1.5).
The operators LA,α have double characteristics, and for such operators it is known

that it is not only the principal symbol that governs local solvability, but that also the
subprincipal symbol in combination with the Hamiltonian mappings associated with dou-
bly characteristic points plays an important role. Due to the translation invariance of
our operators and the symplectic structure that is inherent in the Heisenberg group law,
these Hamiltonians are essentially encoded in the Hamiltonian S ∈ sp(n, C), associated
to the coefficient matrix A by the relation

S := −AJ

(see e.g. [29]).
In order to emphasize the central role played by S, we shall therefore also denote LA,α

by LS,α.
One of the main results in [19] (Theorem 2.2), states that, under a further, natural

condition, the question of local solvability of the operators LS,α can essentially be reduced
to the case where the Hamiltonian S has only real eigenvalues.

This is achieved by showing that an integration by parts technic, which had been
introduced by R. Beals and P.C. Greiner in [1], and since then been applied in modified
ways in various subsequent articles, e.g. in [21], when viewed in the right way, ultimately
allows to show that LS,α is locally solvable, provided that LSr,β is locally solvable for
particular values of β. Here, Sr is the ”part” of S comprising all Jordan blocks associated
with real eigenvalues.

For the case of real eigenvalues, one can prove partial results which, in combination
with Theorem 2.2 of [19], allow to widely extend all the results known to date for operators
LA,α with non-real coefficient matrices A (see Theorems 2.6, 2.7 in [19]).

However, these results are fairly involved and their proofs tend to be very technical.
Therefore we shall restrict ourselves for these lectures to the special case where A satisfies
the cone condition (1.5), and refer the interested reader for more general results to [19].

We should also like to mention that there is an abundance of literature on the question
of local solvability of various classes of invariant operators on Lie groups. It would be
impossible to list all the relevant articles, so that we restrict ourselves to pointing out just
a few references, and apologizing to all whom we haven’t done justice in doing so:
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The case of bi-invariant differential operators of arbitrary order has been studied in
particular by M. Rais [34],[35] (see also Helgason’s work [6] for a related context). Some
necessary and various sufficiant representation theoretic conditions for local solvability
of left-invariant differential operators of arbitrary order on nilpotent Lie groups can be
found in work of P. Lévy-Bruhl [17],[16], [15], [14], [13] (see also B. Helffer’s survey [5]).
Finally, a complete answer for a particular class of second order operators on nilpotent
Lie groups of step 3 and higher has been given in [30].

2 Sufficiant conditions: Statement of the main re-

sults

In order to emphasize the symplectic structure on R2d which is implicit in (1.7), and at
the same time to provide a coordinate-free approach, we shall work within the setting of
an arbitrary 2d-dimensional real vector space V, endowed with a symplectic form σ. The
extension of σ to a complex symplectic form on V C, the complexification of V , will also
be denoted by σ.

If Q is a complex-valued quadratic form on V , we shall often view it as a symmetric
bilinear form on V C, and shall denote by Q(v) the quadratic form Q(v, v). Q and σ
determine a linear endomorphism S of V C by imposing that

σ(v, Sw) = Q(v, w).

Then, S ∈ sp(V C, σ), i.e.,

(2.1) σ(Sv, w) + σ(v, Sw) = 0.

S is called the Hamilton map of Q. We shall then also write Q = QS. Clearly, S is real,
i.e., S ∈ sp(V, σ), if Q is real.

Let us endow V with the Poisson bracket associated to σ, and denote by Q(V ) the
space of all complex symmetric quadratic forms on V. One easily computes that

(2.2) {QS1 , QS2} = Q−2[S1,S2], S1, S2 ∈ sp(V C, σ),

which proves the well-known fact that
(
Q(V ), {·, ·}

)
is a Lie algebra, isomorphic to

sp(V C, σ) under the isomorphism QS 7→ −2S.
If T : U → W is a linear homomorphism of real or complex vector spaces, we shall

denote by tT : W ∗ → U∗ the transposed homomorphisms between the dual spaces W ∗

and U∗ of W and U , respectively, i.e.,

( tTw∗)(u) = w∗(Tu), u ∈ U,w∗ ∈ W ∗.

As usually, we shall identify the bi-dual W ∗∗ with W .
If Q is any bilinear form on V (respectively V C), there is a unique linear map Q : V →

V ∗ (respectively Q : V C → (V C)∗) such that

(2.3) (Qv)(w) = Q(v, w),
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and Q is a linear isomorphism if and only if Q is non-degenerate. In particular, the map
J : V C → (V C)∗, given by

(2.4) (J v)(w) = σ(w, v),

is a linear isomorphism, which restricts to a linear isomorphisms from V to V ∗, also
denoted by J . We have tJ = −J , so that (2.1) can be read as

(2.5) J S + tSJ = 0.

Moreover, if the form Q in (2.3) is symmetric, then tQ = Q and Q = J S.
By composition with J , bilinear forms on V can be transported to V ∗, e.g. we put

σ∗(J v,Jw) := σ(v, w), Q∗(J v,Jw) := Q(v, w).

In analogy with (2.3) and (2.4), we obtain maps from V ∗ to V (respectively from (V C)∗

to V C) which satisfy the following identities:

(2.6) J ∗ = −J −1, Q = tJQ∗J = −JQ∗J , S∗ = J SJ −1 = − tS.

The canonical model of a symplectic vector space is R2d, with symplectic form σ(v, w) =
tvJw, where

J :=

(
0 Id

−Id 0

)
.

Identifying also the dual space with R2d (via the canonical inner product on R2d), we
have J v = Jv. Moreover, of course (R2d)C = C2d. As usually, in this case we also write
sp(d, C) in place of sp(V C, σ).

If a general symmetric form Q is given by Q(v, w) = tvAw, where A is a symmetric
matrix, we have the following formulas:

(2.7) Qv = Av, Sv = −JAv, S∗v = −AJv.

These formulas apply whenever we introduce coordinates on V adapted to a symplectic
basis of V, i.e., to a basis X1, . . . , Xd, Y1, . . . , Yd such that

σ(Xj, Xk) = σ(Yj, Yk) = 0, σ(Xj, Yk) = δjk

for every j, k. Observe that in V ∗, the dual of a symplectic basis is symplectic with respect
to σ∗. The Heisenberg group HV built on V is V × R, endowed with the product

(v, u)(v′, u′) := (v + v′, u + u′ +
1

2
σ(v, v′)).

Its Lie algebra hV is generated by the left-invariant vector fields

Xv = ∂v + 1
2
σ(·, v)∂u, v ∈ V.

The Lie brackets are given by [Xv, Xw] = σ(v, w)U , with U := ∂u.
We regard the formal expression (1.8) defining the operator LA as an element of

the symmetric tensor product S2(V C) (with V C = C2d), hence as a complex symmetric
bilinear form Q∗ on (V C)∗. With this notation, the Hamilton map S∗ of Q∗ is

(2.8) S∗ = −JA,
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and the Hamilton map of the corresponding form Q on V C is

(2.9) S = −AJ.

Since the solvability of LA,α is closely connected to the spectral properties of the associated
Hamilton map S, we shall sometimes also write

LA =: LS, LA,α =: LS,α,

and shall call S the Hamiltonian associated to LA. We remark (compare (2.2)) that

(2.10) [LS1 , LS2 ] = −2 L[S1,S2]U.

Remark 2.1 Notice that the notation used here to parametrize the operators L slightly
deviates from that used in the introduction. Since in this part of my lectures, the sepa-
ration between the real- and the imaginary part of the complex matrix A will only play
a minor role, we have decided to use roman letters for A here. Moreover, what had been
called QA before is now called QS.

If Q(v, w) = Q1(v, w) + iQ2(v, w) is a complex-valued symmetric bilinear form on V,
we say that Q satisfies the cone condition if

(2.11) |Q2(v)| ≤ CQ1(v)

for some C > 0 and every v ∈ V . If Q = QS, then this is equivalent to the cone condition
(1.5) for the associated matrix A (possibly with a different constant C).

Denote by
Ω = ΩQ := conv {Q(v) : v ∈ V }

the convex hull of the set {Q(v) : v ∈ V } in the complex plane. Clearly Ω is contained in
the proper angle {ζ ∈ C : |Im ζ| ≤ CRe ζ}.

The cone condition is obviously satisfied if Q1 is positive definite. It is also evident
from (2.6) that Q and Q∗ satisfy the cone condition for the same values of C.

As we shall see in Section 3, the cone condition implies that the eigenvalues of S are
in iΩ∪−iΩ. Also, the non-zero eigenvalues come in pairs ±λ with the same multiplicity.

Theorem 2.2 Assume that Re A > 0, and let λ1, . . . , λd be the eigenvalues of S = −AJ
contained in iΩ, counted with multiplicities. Then LA,α is locally solvable if and only if

α 6∈ E :=

{
± i

d∑

j=1

(2kj + 1)λj : kj ∈ N

}
.

If Re A is only semi-definite and the cone condition is satisfied, then A itself is clearly
degenerate, so that 0 is an eigenvalue of S = −AJ . Let λ1, . . . , λm (with m < d) be the
non-zero eigenvalues of S contained in iΩ, counted with multiplicities.

We recall that a subspace V ′ of V (or a complex subspace of V C) is called symplectic
if the restriction of σ to V ′ × V ′ is non-degenerate.
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Theorem 2.3 Assume that A satisfies the cone condition (so that in particular Re A ≥
0), and that A is degenerate. If ker S ∩ V is symplectic (or, equivalently, if ker Re S is
symplectic in V ), then LA,α is locally solvable if and only if

α 6∈ E :=

{
± i

m∑

j=1

(2kj + 1)λj : kj ∈ N

}
.

If ker S ∩ V is not symplectic, then LA,α is locally solvable for every α.

For the sake of completeness, let me finally state a theorem which gives the answer in
the rather opposite case where C = 0. For further results complementing these theorems
see also [19], Theorem 2.8.

Theorem 2.4 ([19]) Let S = S1+iS2 ∈ sp(d, C), and assume that [S1, S2] = 0. Then L is
locally solvable, unless both S1 and S2 have purely imaginary spectrum and are semisimple.
In the latter case, one can find a suitable automorphism of Hd leaving the center fixed such
that, in the new coordinates given by this automorphism, L takes on the form

(2.12) L =

n1∑

j=1

iλj(X
2
j + Y 2

j ) + iαU,

with n1 ≤ d and λ1, . . . , λn1 ∈ C \ {0}. Then L is locally solvable if and only if there are
constants C,N > 0, such that

∣∣∣∣∣i
n1∑

j=1

(2kj + 1)λj ± α

∣∣∣∣∣ ≥ C (1 + k1 + · · · + kn1)
−N(2.13)

for all k1, . . . , kn1 ∈ N.

In particular cases, condition (2.13) can be considered as a problem of diophantine
approximation, see [32], Proposition 3.9.

Observe that in view of (2.2), {QS1 , QS2} = 0 in this theorem, whereas we had been
assuming in Corollary 1.4 that QS1 , QS2 and {QS1 , QS2} are linear independent. An im-
portant special case of Theorem 2.4 is the case where S1 = 0, (or S2 = 0; these two
cases are of course equivalent), i.e., the case of real coefficient operators. This case had
been dealt with in a complete way in [33], [32], and these results have been extended to
arbitrary two-step nilpotent Lie groups in [28]. For yet further results, we refer to the
References.

The proofs of the previous theorems will be based on the following formal identity for
”the inverse” to LA,α :

(LA,α)−1 = −

∫ ∞

0

etLA,α dt.

This formula is not completely unreasonable, since Re A ≥ 0, which just means that
the operator LA,α is dissipative on L2(Hd), so that it generates a contraction semigroup
{etLA,α}t≥0 on L2(Hd), by the Phillips-Lumer theorem. However, the operators etLA,α will
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in general have norm 1, so that the integral above will not make sense on L2(Hd). Indeed,
it turns out that a somewhat better approach is based on the related formal identity

(LA,α)−1 = −|U |−1

∫ ∞

0

et|U |−1LA,α dt

= −|U |−1

∫ ∞

0

et|U |−1LA+itαU/|U | dt.(2.14)

It turns out that, after suitable modifications, the integral expression in (2.14) can be
given meaning, in the distributional sense.

A first step will consist in taking the partial Fourier transform with respect to the
central variable u, say at the Fourier parameter µ. This will turn the operator LA into
the so-called µ-twisted operator Lµ

A.
In a second step, we shall have to identify the one-parameter semigroups generated by

the Lµ
A. This step involves a careful discussion of the spectral properties of S: location of

its eigenvalues in the complex plane, symplectic properties of its generalized eigenspaces
(as subspaces of C2n with the symplectic form induced by J). In this analysis, which will
be carried out in the next Section, we shall follow [8], [10],[21] and [19] (see also [36]).

3 On the algebraic structure of S

Complex conjugation in V C is meant with respect to the real form V , i.e., for z = v+iw ∈
V C, we set z̄ = v − iw.

Recall that the radical radB of a bilinear form B on a (real or complex) space V is
the space of the v ∈ V such that B(v, v′) = 0 for all v′ ∈ V .

Also recall that a subspace V ′ of a (real or complex) symplectic space is called isotropic
if the restriction of the symplectic form to V ′×V ′ is trivial. A maximal isotropic subspace
of V is called Lagrangian. If V ′ is Lagrangian, then dim V ′ = 1

2
dim V .

The following structure theory for elements S ∈ sp(V C, σ) will be important. Let
spec S ⊂ C denote the spectrum of S, and for λ ∈ spec S by Vλ the generalized eigenspace
of S belonging to the eigenvalue λ.

Lemma 3.1 If λ+µ 6= 0, then σ(Vλ, Vµ) = 0. Also, if λ 6= 0, then dim Vλ = dim V−λ and
Vλ ⊕ V−λ is a symplectic subspace in which each summand is Lagrangian.

Proof. The map S + µI is a bijection of Vλ onto itself, so every z ∈ Vλ can be written as
(S + µI)nzn, for arbitrary n, with zn ∈ Vλ.

If we now take z′ ∈ Vµ, we have, for n large,

σ(z, z′) = (−1)nσ
(
zn, (S − µI)nz′

)
= 0 .

Assume that v ∈ V−λ is such that σ(v, Vλ) = 0, where λ 6= 0. Then v = 0, since σ
would be degenerate otherwise. Hence Vλ ⊕ V−λ is symplectic. As both Vλ and V−λ are
isotropic, they must necessarily be Lagrangian. As such, they have the same dimension.

Q.E.D.
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The fact that dim Vλ = dim V−λ also follows from the fact that S and − tS are conjugate
under J .

In particular, Vλ and V−λ are isotropic subspaces with respect to the symplectic form
σ, and Vλ ⊕ V−λ is a symplectic subspace of V C, if λ 6= 0, while V0 is symplectic too.
We thus obtain a decomposition of V C as a direct sum of symplectic subspaces which are
σ-orthogonal:

(3.1) V C = V0 ⊕

⊕∑

λ6=0

Vλ ⊕ V−λ.

Here, the summation takes place over a suitable subset of spec S. Notice that the decom-
position above is also orthogonal with respect to the symmetric form Q(v, w) = σ(v, Sw),
since the spaces Vλ are S-invariant. (3.1) induces an orthogonal decomposition

(3.2) V C = Vr ⊕ Vi,

where Vr :=
∑

λ∈R∩spec S

Vλ and Vi :=
∑

µ∈(C\R)∩spec S

Vµ. Correspondingly, S decomposes as

(3.3) S = Sr + Si,

where we have put Sr(u + w) := S(u), Si(u + w) := S(w), if u ∈ Vr and w ∈ Vi. Then
also Sr and Si are in sp(V C, σ), and Sr respectively Si corresponds to the Jordan blocks
of S associated with real eigenvalues respectively non-real eigenvalues.

Lemma 3.2 Assume that Q satisfies the cone condition. Denote by S1 and S2 the real
and imaginary part of the Hamilton map S of Q, respectively, and let K1 = radQ1 =
ker S1 ⊂ V . Then, as subspaces of V C, radQ = ker S = KC

1 . Also, z ∈ radQ if and only
if Q(z, z̄) = 0.

Proof. Let z = v + iw ∈ radQ. Then

Q(z, z̄) = Q(v) + Q(w) = 0 .

As Q1 is positive semi-definite, this implies that Q1(v) = Q1(w) = 0, hence v, w ∈ K1.
This shows that radQ ⊂ KC

1 .
To prove the converse, take v ∈ K1, w ∈ V and t ∈ R. By the cone condition,

Q2(v) = 0 and

|2tQ2(v, w) + Q2(w)| = |Q2(tv + w)| ≤ CQ1(tv + w) = CQ1(w) ∀t ∈ R.

This implies that Q2(v, w) = 0, i.e., v ∈ radQ2 = ker S2. The rest of the proof is trivial.

Q.E.D.

Lemma 3.3 If λ is an eigenvalue of S, then λ ∈ (iΩ) ∪ (−iΩ), where Ω = ΩQ.
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Proof. If λ = 0, there is nothing to say. Let λ 6= 0 be an eigenvalue of S and let
z = v + iw ∈ V C be an associated eigenvector. Then

Q(z, z̄) = Q(v) + Q(w) ∈ Ω ,

and, by Lemma 3.2, Q(z, z̄) 6= 0.
On the other hand,

Q(z, z̄) = −σ(Sz, z̄)

= −λσ(v + iw, v − iw)

= 2iλσ(v, w) .

This implies that λ ∈ ±iΩ, depending on the signum of σ(v, w).

Q.E.D.

Lemma 3.4 Assume that Q1 is positive definite, and let

V ± :=
∑

λ∈±iΩ

Vλ.

Then V + and V − are S-invariant (complex) Lagrangian subspaces of V C,

V + ⊕ V − = V C, and V ± ∩ V = {0}.

Furthermore, the Hermitean form

B(z, z′) := −iσ(z, z̄′)

is positive definite on V + and negative definite on V −.
In particular, if Q = Q1 is real, we can find a symplectic basis X1, . . . , Xd, Y1, . . . , Yd

of V and ρj > 0, j = 1, . . . , d, such that in the coordinates x1, . . . , xd, y1, . . . , yd associated
to this basis, Q takes on the normal form

(3.4) Q =
d∑

j=1

ρj(x
2
j + y2

j ).

Proof. That V ± are Lagrangian subspaces follows immediately from Lemma 3.1, since
Ω is a proper cone, and since clearly V + ⊕ V − = V C (see Lemma 3.3).

Next, if v ∈ V ± ∩ V , then Q(v) = σ(v, Sv) = 0, since Sv is also in V ±. Hence v = 0.
In order to prove the statement concerning the Hermitean form B, assume first that

Q2 = 0. Then S = S1 is real,and by Lemma 3.3, its eigenvalues are purely imaginary.
Consider an eigenvalue iν with associated eigenvector z = v + iw, i.e., Sz = iνz; then,

as S is real, Sz̄ = −iνz̄. Let V ′ be the orthogonal complement in V of span R{v, w},
relative to the positive definite form Q = Q1. If u ∈ V ′, then

Q(Su, v ± iw) = σ
(
Su, S(v ± iw)

)

= ±iνσ(Su, v ± iw)

= ∓iνQ(u, v ± iw) = 0 .

Hence S maps V ′ into itself, which implies that S is diagonalizable on V C.
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So V ± is the linear span of the eigenvectors of S relative to the eigenvalues ±iν with
ν > 0. In order to see that B is positive (resp. negative) definite on V + (resp. V −), by
Lemma 3.1 it is sufficient to test it on eigenvectors. But, if Sz = iνz and z = v + iw,
then we have

νB(z, z) = −iνσ(z, z̄)

= −σ(Sz, z̄)

= Q(z̄, z)

= Q(v) + Q(w) > 0 .

Notice also that −iνσ(z, z̄) = −2νσ(v, w), so that the above inequality further implies
σ(v, w) < 0. After scaling, we may thus assume that σ(v, w) = −1. If we then put ρ1 := ν,
X1 := v and Y1 := −w, we obtain S(X1 − iY1) = iρ1(X1 − iY1), i.e., SX1 = ρ1Y1, SY1 =
−ρ1X1, so that X1, Y1, forms a symplectic basis of an S-invariant subspace of V. And, on
this space, we have

Q(x1X1 + y1Y1) = σ
(
(x1X1 + y1Y1, S((x1X1 + y1Y1)

)
= ρ1(x

2
1 + y2

1).

Applying the same reasoning to V ′, and proceeding by induction, we obtain (3.4).
Consider finally the case Q2 6= 0, and assume, by contradiction, that B is not positive

definite on V +. As the forms Q1 + itQ2 and the corresponding Lagrangian subspaces V +
t

depend continuously on t, there will be t0 > 0 such that B is positive semi-definite and
degenerate on V +

t0 . Without loss of generality, we can assume that t0 = 1.
Hence there is some z ∈ V + \ {0} such that σ(z′, z̄) = iB(z′, z) = 0 for every z′ ∈ V +.

As V + is Lagrangian, this implies that also z̄ ∈ V +. But this is in contradiction with the
fact that V + does not contain real vectors other than zero.

The same argument applies to V −.

Q.E.D.

Recall that if V ′ is a subspace of a symplectic space V , then its σ-orthogonal V ′⊥

consists of the elements v ∈ V such that σ(v, v′) = 0 for every v′ ∈ V ′. The subspace V ′

is symplectic if and only if V ′ ∩V ′⊥ is trivial (in which case V = V ′⊕V ′⊥), it is isotropic
if and only if V ′ ⊆ V ′⊥, and it is Lagrangian if and only if V ′ = V ′⊥. Any subspace V ′

decomposes as the direct sum of V ′ ∩ V ′⊥ (which is isotropic) and a symplectic subspace.
In fact, any complementary subspace of V ′ ∩ V ′⊥ in V ′ is symplectic.

Assuming now that Q satisfies the cone condition, but Q1 is only positive semi-definite,
we discuss the structure of the generalized eigenspace V0 of S, relative to the eigenvalue
0. It follows from Lemma 3.1 that V0 is a symplectic subspace of V C. In the following,
σ-orthogonality is referred to V0 as the ambient space.

It is important at this point to remark that the space V0 will in general not be invariant
under complex conjugation, so that we cannot reduce considerations to V0 ∩V in place of
V !

Let K := ker S ⊆ V0, and decompose K as the σ-orthogonal direct sum

K = K0 ⊕ W0

of the isotropic subspace K0 := K ∩ K⊥ and a symplectic subspace W0. Let W1 := W⊥
0 .

Then W1 is also symplectic, and K⊥ ⊂ W1, since W0 ⊂ K. Moreover,

V0 = W1 ⊕ W0.
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Observe that, since K = K (by Lemma 3.2), also K⊥ ∩ K is complex conjugate, i.e.
K0 = K0, and so we can choose W0 so that W0 = W0. In general, V0 is not self-conjugate,
so we cannot assume that also W1 is self-conjugate.

The following results complete the picture of the Jordan structure of S.

Lemma 3.5 Assume that Q satisfies the cone condition. Then K⊥ = K0, and K0 is a
Lagrangian subspace of W1. Moreover, SV0 = SW1 = K0, so that S2 = 0 on V0, so that
S2

r = 0. Finally, S = 0 on V0, i.e., Sr = 0, if and only if K = ker S is symplectic.

Proof. Notice first that, since S|V0 ∈ sp(V0, σ), the σ-orthogonal of an S-invariant
subspace of V0 is also S-invariant. This implies that

SV0 = K⊥,

because clearly K = (SV0)
⊥. Hence all the spaces K0, W0 and W1 are S-invariant.

So all conclusions will follow if we prove that K⊥ = K0 (the fact that K0 is Lagrangian
in W1 then follows from (K⊥)⊥ ∩ W1 = K ∩ W1 ⊂ K0).

To this end, consider the quotient space K⊥/K0. As K⊥ and K0 are S-invariant, S
projects to a linear map S̃ of K⊥/K0 into itself. The form σ also projects to a symplectic
form σ̃ on K⊥/K0, since K0 = K⊥ ∩ (K⊥)⊥ is just the radical of σ in K⊥. Also, S̃ ∈
sp(K⊥/K0, σ̃).

Consider therefore the symmetric bilinear form Q̃(ξ, η) := σ̃(ξ, S̃η) on the complex
space K⊥/K0. If ξ = z + K0 and η = w + K0, we have

Q̃(ξ, η) = σ(z, Sw) = Q(z, w) .

We show by means of Lemma 3.2 that Q̃ is non-degenerate. A technical problem is
that K⊥ may not be self-conjugate. Therefore, we consider K⊥ is a subspace of the
σ-orthogonal complement U = K⊥ + Vi of K in V C, which is self-conjugate.

Let ξ ∈ rad Q̃. Then Q(z, w) = σ(Sz, w) = 0 for every w ∈ K⊥, and the same is true
for every w ∈ Vi (since V0 and Vi are σ-orthogonal), hence for every w ∈ U. Since z ∈ U,
we thus find that Q(z, z) = 0, hence Sz = 0, by Lemma 3.2, and thus ξ = 0.

Since Q̃ is non-degenerate, S̃ is non-degenerate too. But S̃ is nilpotent, and hence
K⊥ = K0.

Q.E.D.

Observe finally that SV0 ⊂ K = K ⊂ V0. It is not difficult to show (see Lemma 3.3
in [19]) that this implies Re QSr

≥ 0, so that under the hypotheses of Lemma 3.5, we can
apply the following result from [19] (Proposition 7.2) to Sr.

Proposition 3.6 Assume that S2 = 0 and Re QS ≥ 0. Then we can select a symplectic
basis X1, . . . , Xn, Y1, . . . , Yn of V such that LS =

∑m
j,k=1 bjkYjYk for some m ≤ n and

bjk ∈ C. Since the vector fields Yj all commute among themselves, we see in particular
that LS is a constant coefficient operator, when written in suitable coordinates.

The proof is rather involved. If we assume, however, that V0 in Lemma 3.5 is self-
conjugate, we can give a short argument for Sr : If V0 = V0, we can choose a self-conjugate

Lagrangian subspace K1 of W1 complementary to K0, i.e. W1 = K1⊕K0. Then SK1 ⊂ K0.
Moreover, if we put W2 := W0 ⊕ Vi, then W2 is a self-conjugate symplectic subspace
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complementary to W1, which is annihilated by Sr. We decompose W2 as the direct sum
W2 = H1 ⊕ H0 of self-conjugate Lagrangian subspaces, so that

V C = (K1 ⊕ K0) ⊕ (H1 ⊕ H0).

In suitable blocks of symplectic coordinates adapted to this decomposition, we then
can represent Sr and J by block matrices of the form

Sr =




0 0 0 0
B 0 0 0
0 0 0 0
0 0 0 0


 , J =




0 I 0 0
−I 0 0 0
0 0 0 I
0 0 −I 0


 ,

hence QSr by the symmetric matrix Ar := SrJ =




0 0 0 0
0 B 0 0
0 0 0 0
0 0 0 0


.

This shows that LSr assumes the following form in these coordinates:

(3.5) LSr =
m∑

j,k=1

bjkYjYk,

with bjk ∈ C.

4 Non-solvability.

In this section we sketch how to prove the negative part of Theorem 2.2.
We shall make use of the Schrödinger representations of the Heisenberg group in the

following form: let {Xj, Yj}j=1,...,d be a real symplectic basis of V , and denote by the same
letters also the corresponding elements of the Lie algebra hV , regarded as left-invariant
vector fields on HV .

Given µ ∈ R× := R \ {0}, we denote by πµ the irreducible unitary representation of
HV on L2(Rd) such that

dπµ(Xj) =
∂

∂ξj

, dπµ(Yj) = 2πiµξj, j = 1, . . . , d.

Notice that then
dπµ(U) = 2πiµ.

Different choices of the symplectic basis produce equivalent representations for the same
value of µ. If f ∈ L1(HV ), we shall define

f̂(πµ) := πµ(f̌) =

∫

HV

f(g)πµ(g)∗ dg,

and correspondingly also P̂ (πµ) := P̂ δ0(πµ) for any left-invariant differential operator
P ∈ U(hV ) (compare Appendix 8.) Notice that then

X̂j(πµ) = −
∂

∂ξj

, Ŷj(πµ) = −2πiµξj, j = 1, . . . , d,
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and Û(πµ) = −2πiµ.
We shall make use of the following representation-theoretic condition for local solv-

ability, due to Corwin and Rothschild:

Theorem 4.1 If L is a homogeneous left-invariant differential operator on Hd, and if
t̂L(πµ0) annihilates some non-trivial Schwartz function for some µ0 6= 0, then L is not
locally solvable.

An analogue of this theorem holds indeed true on arbitrary homogeneous Lie groups
(see [3]). A wide extension based on a simplified proof has been given in [31]. For a direct
proof in case of the Heisenberg group, see Appendix 8 ( and also my ICMS-Lecture notes
[25] for more details and further information).

Theorem 4.2 Assume that Re A > 0, and let λ1, . . . , λd be the eigenvalues of S contained
in iΩ. If α = ±i

∑d
j=1(2kj + 1)λj, with kj ∈ N, then LA,α is not locally solvable.

Proof in an important special case. Let us assume for simplicity that A > 0. Then,
by Lemma 3.4 (more precisely (3.4)), one can find a suitable symplectic automorphism
of Hd such that, in the new coordinates given by this automorphism, L := LA,α takes on
the form

(4.1) L =
d∑

j=1

ρj(X
2
j + Y 2

j ) + iαU,

with ρ1, . . . , ρd > 0. One easily computes that the eigenvalues of the associated Hamilton
map S = −AJ contained in iΩ are then given by

λj = iρj.

For the image of tL under the Schrödinger representation π±1 we then obtain

t̂L(π(± 1
2π

)) =
d∑

j=1

ρj

(
∂2

ξj
− ξ2

j

)
∓ α.

Now, ∂2
x − x2 is just the Hermite operator, whose eigenfunctions are of the form

hn(x) := Hn(x)e−x2/2,

where Hn is a polynomial of degree n, namely the n-th order Hermite polynomial

Hn(x) = (−1)nex2 dn

dxn
e−x2

, n = 0, 1, 2, . . . .

The associated eigenvalue is given by

(∂2
x − x2)hn = −(2n + 1)hn.

Consequently, if we put hk(ξ) := hk1(ξ1) · · ·hkd
(ξd), for k = (k1, . . . , kd) ∈ Nd, then

hk ∈ S(Rd), and

t̂L(π(± 1
2π

))hk =

(
−

d∑

j=1

ρj(2kj + 1) ∓ α

)
hk = 0,(4.2)
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if α = ±i
∑d

j=1(2kj + 1)λj. This proves the claim.

The proof in the general case where Re A > 0, as well as that of Theorem 2.3, is based
on similar ideas (and the general case of Lemma 3.4), but more involved.

Q.E.D.

5 Twisted convolution and Gaussians generated by

the operators L̃µ
S.

Assume that S ∈ sp(d, C) is such that Re QS ≥ 0. It is our main goal in this section
to determine the semigroup generated by the operator |U |−1LS. Our results are directly
related to those in [8] by means of the Weyl transform. Instead of transferring the result
from [8], Theorem 4.3, by means of the inverse Weyl transform, we prefer, however, to
give a direct argument.

We shall work in the setting of an arbitrary real symplectic vector space (V, σ) of
dimension 2d. Given two suitable functions ϕ and ψ on V and µ ∈ R× := R \ {0}, we
define the µ-twisted convolution of ϕ and ψ as

ϕ ×µ ψ(v) :=

∫

V

ϕ(v − v′)ψ(v′)e−πiµσ(v,v′) dv′,

where dv′ stands for the volume form σ∧(d).
If f is a suitable function on HV , we denote by

fµ(v) :=

∫ ∞

−∞

f(v, u)e−2πiµudu

the partial Fourier transform of f in the central variable u at µ ∈ R.
For µ 6= 0, we have

(5.1) (f ⋆ g)µ(v) = fµ ×µ gµ(v).

Moreover, if L is any left-invariant differential operator on HV , then there exists a differ-
ential operator L̃µ on V such that

(5.2) (Lf)µ = L̃µfµ.

Explicitly, if (x, y) ∈ Rd × Rd are coordinates on V associated with a symplectic basis
{Xj, Yj}, then

X̃µ
j ϕ = (∂xj

− πiµyj)ϕ = ϕ ×µ (∂xj
δ0),

Ỹ µ
j ϕ = (∂yj

+ πiµxj)ϕ = ϕ ×µ (∂yj
δ0)(5.3)

Ũµϕ = 2πiµϕ,

and consequently, if Q∗ = QS,

(5.4) L̃µ
S = L̃µ

A =
∑

j,k

ajkṼ
µ
j Ṽ µ

k = fµ ×µ

(
Q∗(∂)δ0

)
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is obtained from LA by replacing each Vj in (1.8) by Ṽ µ
j . On V , we define the (adapted)

Fourier transform by

f̂(w) :=

∫

V

f(v)e−2πiσ(w,v)dv, w ∈ V.

Observe that then
ˆ̂
f = f and

∫
fg =

∫
f̂ ĝ, for suitable functions f and g on V .

Consider an arbitrary quadratic form Q on V C, with associated Hamilton map S ∈
sp(V C, σ). Once we have fixed a symplectic basis {Xj, Yj} of V , we may identify S with
a 2d × 2d-matrix. If ±λ1, . . . ,±λm are the non-zero eigenvalues of S, then det(cos S) =∏m

j=1 cos2 λj, so that the square root

(5.5)
√

det(cos S) :=
m∏

j=1

cos λj

is well-defined. Observe that this expression is invariant under all permutations of the
roots of the characteristic polynomial det(S − λI), hence an entire function of the ele-
mentary symmetric functions, which are polynomials in (the coefficients of) S.

Thus, as already observed in [8],
√

det(cos S), given by (5.5), is a well-defined analytic
function of S ∈ sp(V C, σ).

We shall always consider TS := L̃µ
S as the maximal operator defined by the differential

operator (5.4) on L2(V ); its domain dom(TS) consists of all functions f ∈ L2(V ) such
that L̃µ

Sf , defined in the distributional sense, is in L2(V ). One can show that L̃µ
S is a

closed operator, which is the closure of its restriction to S(V ).
Moreover, its adjoint operator is obviously given by (L̃µ

S)∗ = L̃µ

S
.

Lemma 5.1 Assume that Re QS ≥ 0. Then the operator L̃µ
A = L̃µ

S and its adjoint are
dissipative, so that it generates, by the Phillips-Lumer theorem, a contraction semigroup
{exp(tL̃µ

S)}t≥0 on L2(V ).

Proof. Clearly, for f ∈ S(V ), we have

Re (L̃µ
Af, f) = −Re

∑

j,k

ajk(Ṽ
µ
j f, Ṽ µ

k f)

= −Re

∫

V

ajkgj(v)gk(v) dv

= −

∫

V

Re QS(gj(v), gk(v)) dv ≤ 0,

if we set gj := Ṽ µ
j f . This inequality remains true for arbitrary f ∈ dom(L̃µ

A), since S(V )

is a core for L̃µ
S, hence L̃µ

S is dissipative, and the same is true of the adjoint operator L̃µ

S
,

since Re QS = Re QS.
Q.E.D.

For the case where Re QS > 0, an explicit formula for the semigroup exp( t
|µ|

L̃µ
S) has

been given in [21], Theorem 5.2 (for the correct determination of the square roots of the
determinants arizing in the subsequent formulas, see [21]).
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Theorem 5.2 If Re QS > 0, then for f ∈ L2(V )

(5.6) exp(
t

|µ|
L̃µ

S)f = f ×µ Γµ
t,S, t ≥ 0,

where, for t > 0, Γµ
t,S is a Schwartz function given by

(5.7) Γµ
t,S(v) =

|µ|d

(
det(2 sin 2πtS)

) 1
2

e
π
2
|µ|σ

(
v,(cot 2πtS)v

)
.

Moreover, the Fourier transform of Γµ
t,S is given by

(5.8) Γ̂µ
t,S(w) =

1√
det(cos 2πtS)

e−
2π
|µ|

σ(w,tan(2πtS)w).

We say that S ∈ sp+(V C, σ) if QS has positive definite real part. To every S ∈
sp+(V C, σ) we associate the Gaussian function e−πQS ∈ S(V ). Observe that Theorem
5.2 gives an explicit expression for the one-parameter semigroups contained in Howe’s
oscillator semigroup [11] (which, by definition, is just the semigroup of all Gaussians e−πQ

with Re Q > 0 and twisted convolution as product).
The proof is based on the following lemma on the twisted convolution of Gaussian

functions which can easily be verified by direct computations (compare also formulas
(8.1) - (8.3) in [11]). Notice the formal resemblance of these formulas with the addition
theorem

cot(α + β) + i =
(cot α + i)(cot β + i)

cot α + cot β

for the cotangent (if µ = 2), which strongly suggest the exponent of the exponential factor
in (5.7).

Lemma 5.3 Let S1, S2 ∈ sp+(V C, σ). Then

(5.9) e−πQS1 ×µ e−πQS2 = det(S1 + S2)
− 1

2 e−πQS3 ,

and

(5.10) S3 +
i

2
µ =

(
S2 +

i

2
µ

)
(S1 + S2)

−1

(
S1 +

i

2
µ

)
,

or, equivalently,

(5.11) S3 −
i

2
µ =

(
S1 −

i

2
µ

)
(S1 + S2)

−1

(
S2 −

i

2
µ

)
,

In particular, since the left-hand side of (5.9) is in S(V ), we have S3 ∈ sp+(V C, σ).

Proof of Theorem 5.2. Choosing a symplectic basis of V, we may assume that V = R2d,
and then also write sp+(d, C) in place of sp+(V C, σ).

Observe that if a symmetric matrix A has positive definite real part, the same is true
for A−1, and thus the matrix (JS)−1 = −S−1J has a positive definite real part. Hence the

24



same is true for its conjugate J(−S−1)J tJ = −JS−1. So −S−1 ∈ sp+(d, C). Moreover,
as t → 0, − cot tS = −(tS)−1 + O(t), so that there exists a t0 > 0 such that

− cot 2πtS ∈ sp+(d, C) ∀t ∈]0, t0[.

Let Qt denote the quadratic form

Qt(v) := −
π

2
|µ|σ

(
v, (cot 2πtS)v

)
= −

π

2
|µ| tvJ(cot 2πtS)v.

Clearly, Γµ
t,S ∈ S if and only if Re Qt > 0. We claim that, for every t, t′ > 0,

(5.12) Re Qt > 0

and

(5.13) Γµ
t,S ×µ Γµ

t′,S = Γµ
t+t′,S.

Indeed, it follows from Lemma 5.3 by direct computation that the semigroup property
(5.13) holds for every t, t′ satisfying (5.12), and (5.12) holds at least on the interval ]0, t0[.

Thus, if we assume that (5.12) holds on an interval ]0, 2mt0[, for some m ∈ N, then,
by (5.13), Γµ

t+t′,S will be in S for every t, t′ ∈]0, 2mt0[, and so (5.12) remains valid on the
interval ]0, 2m+1t0[. Our claim thus follows by induction.

Next, according to [11] (15.1), the operators f 7→ f ×±1

(
det(S + i/2)

) 1
2 e−πσ(v,Sv)

are contractions on L2(V ) when S ∈ sp+(d, C). By scaling, the same is true for f 7→

f ×µ |µ|n
(
det(S + i/2)

) 1
2 e−π|µ|σ(v,Sv), with µ 6= 0. Then, in order to see that Tt is a

contraction, we just have to observe that

−
1

2
cot 2πtS +

i

2
= −e−2πitS(2 sin 2πtS)−1 ,

and that det e−2πitS = 1 as tr S = 0.
The proof will be completed if we show that, for f ∈ S(R2d),

(5.14) lim
t→0

〈Γµ
t,S, f〉 = f(0) ,

d

dt |t=0

〈Γµ
t,S, f〉 =

1

|µ|
Q∗(∂)f(0) ,

where Q∗(ξ, η) = tξAη.
Now, from (5.7), one easily computes that the Fourier transform of Γµ

t,S is given by
formula (5.8). In particular, since Γµ

t,S ∈ S, we see that

tan tS ∈ sp+(d, C)

for every t > 0. By dominated convergence, it is now easy to check that, for a test function
g,

lim
t→0

〈Γ̂µ
t,S, g〉 =

∫
g(ξ) dξ = ĝ(0) ,

d

dt |t=0

〈Γ̂µ
t,S, g〉 =

1

|µ|

∫
t(2πiξ)JS(2πiξ)g(ξ) dξ =

1

|µ|
Q∗(∂)ĝ(0) .

This gives (5.14). Q.E.D.
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This result can be extended to the semi-definite case by means of a continuity argu-
ment, since sp+(V C, σ) is dense in the cone sp+(V C, σ) of all elements S ∈ sp(V C, σ) such
that Re QS ≥ 0 (see [19]). We remark that in the limiting case where Re QS = 0, one finds
the one-parameter (semi)-groups of the metaplectic representation of sp(V, σ) (compare
[11]).

Theorem 5.4 The mapping S 7→ exp(L̃µ
S)f is continuous from sp+(V C, σ) to L2(V ) (re-

spectively to S(V )), if f ∈ L2(V ) (respectively if f ∈ S(V )), and, for S ∈ sp+(V C, σ)

the mapping t 7→ exp(tL̃µ
S)f is smooth from R+ to S(V ), for every f ∈ S(V ). Moreover,

for t ≥ 0, the operator exp( t
|µ|

L̃µ
S) is given by (5.6), where Γµ

t,S is a tempered distribu-

tion depending continuously on S, whose Fourier transform is given by (5.8) whenever
det(cos(2πtS) 6= 0.

Observe that Theorem 5.4 implies that

(5.15) Re σ(w, tan(2πtS)w) ≥ 0 ∀w ∈ V, t ≥ 0,

whenever det(cos 2πtS) 6= 0.

For arbitrary S ∈ sp(V C, σ), and complex t ∈ C, w ∈ V C, let us define Γ̂µ
t,S(w) by

formula (5.8), whenever det(cos 2πtS) 6= 0. Observe that Γ̂µ
t,S may not be tempered, if

S 6∈ sp+(V C, σ) or t 6∈ R+.
For S ∈ sp(V C, σ), consider again the decomposition S = Sr+Si given by (3.3). Notice,

however, that in general we do not have that Si ∈ sp+(V C, σ), even if S ∈ sp+(V C, σ).
Nevertheless, since Si and Sr act on different blocks of complex coordinates, one can prove

Proposition 5.5 Assume that det cos(2πtS) 6= 0. Then

(5.16) Γ̂µ
t,S(w) = Γ̂µ

t,Sr
(w)Γ̂µ

t,Si
(w),

and

L̂µ
Sr

Γ̂µ
t,S(w) = (L̂µ

Sr
Γ̂µ

t,Sr
)(w)Γ̂µ

t,Si
(w) = |µ|(∂tΓ̂

µ
t,Sr

)(w)Γ̂µ
t,Si

(w),(5.17)

if t ∈ C, w ∈ V C, where L̂µ
Sr

is defined by L̂µ
Sr

f̂ = L̂µ
Sr

f.

6 Solvability for Re A > 0.

Let LA,α = LA + iαU be as in (1.9), and let S = −AJ . Our starting point is the formal
identity (compare (2.14))

(LA + iαU)−1δ0 =

∫ +∞

−∞

(L̃µ
A − 2παµ)−1δ0 e2πiuµ dµ

= −

∫ +∞

−∞

∫ ∞

0

et(L̃µ
A−2παµ)δ0e

2πiuµ dt dµ

= −

∫ +∞

−∞

∫ ∞

0

e
t

|µ|
L̃µ

A−2παt sgn µδ0e
2πiuµ dt

dµ

|µ|
,
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where we must remember that, according to Theorem 5.2, e
t

|µ|
L̃µ

A is the µ-twisted convo-

lution operator with kernel Γµ
t,S, so that e

t
|µ|

L̃µ
Aδ0 = Γµ

t,S.
Let λ1, · · · , λd be the eigenvalues of S in iΩ (i.e., with positive imaginary parts). For

1 ≤ j ≤ d, we set νj := Im λj > 0, and ν :=
∑

j νj.

Theorem 6.1 Let Re A > 0. For very f ∈ S(HV ), the integral

(6.1) 〈Kα, f〉 := −

∫ +∞

−∞

1

|µ|
dµ

∫ ∞

0

dt e−2παt sgn µ

∫

V

Γµ
t,S(v)f−µ(v) dv

converges absolutely for |Re α| < ν and it extends analytically to a meromorphic function
of α in the complex plane with poles at the points

α ∈ E =

{
± i

d∑

j=1

(2kj + 1)λj : kj ∈ N

}
.

Also, Kα is a tempered fundamental solution of LA,α for α 6∈ E .

From this we immediately derive the following conclusion.

Corollary 6.2 LA,α is locally solvable for α 6∈ E.

The proof of Theorem 6.1 will be preceded by a lemma, which we emphasize for future
reference.

Lemma 6.3 There are quadratic forms Qjk on V such that

σ
(
v, (cot tS)v) =

d∑

j=1

m∑

k=0

tk cot(k)(λjt)Qjk(v) ,

where cot(k) denotes the k-th derivative of the cotangent function and m+1 is the dimen-
sion of the largest Jordan block of S. Moreover limt→∞ cot tS exists and its real part is
an invertible operator.

Proof. If λ is an eigenvalue of S, let Vλ be its generalized eigenspace in V C. Then
S = λI + Nλ on Vλ, with Nm+1

λ = 0. Denoting by γ a small circle around λ, we have

(cot tS)|Vλ
=

1

2πi

∫

γ

(ζI − S)−1 cot tζ dζ

=
1

2πi

∫

γ

(
(ζ − λ)I − Nλ

)−1
cot tζ dζ

=
1

2πi

∫

γ

m∑

k=0

(ζ − λ)−k−1Nk
λ cot tζ dζ

=
m∑

k=0

1

k!

dk

dζk
|ζ=λ(cot tζ)Nk

λ

=
m∑

k=0

1

k!
tk cot(k)(λt)Nk

λ .
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Therefore, extending to all of V C and summing over the various eigenvalues ±λj,

cot tS =
d∑

j=1

m∑

k=0

1

k!
tk cot(k)(λjt)Mjk ,

for appropriate operators Mjk. This gives the first part of the statement. Observe now
that

(6.2) cot λt = −i − 2i
∞∑

m=0

e2imλt

if Im λ > 0 and

cot λt = i + 2i
∞∑

m=0

e−2imλt

if Im λ < 0, where the series are uniformly convergent for t ≥ 1 together with all their
derivatives. Therefore limt→∞ tk cot(k)(λjt) = 0 if k ≥ 1, and

lim
t→∞

(cot tS)|V ± = ∓iI ,

where V ± are as in Lemma 3.4.
Call T = limt→∞ cot tS. Given v ∈ V , decompose it as v = v+ + v−, with v± ∈ V ±.

Then Im v− = −Im v+, and Tv = −iv+ + iv−, so that Re Tv = 2Im v+. If Re Tv = 0,
then Im v+ = Im v− = 0. By Lemma 3.4, v± = 0, hence v = 0.

Q.E.D.

Proof of Theorem 6.1. In (6.1) we change 2πt into t, so that it becomes, apart from a
constant factor,

(6.3)

∫ +∞

−∞

|µ|d−1 dµ

∫ +∞

0

dt
e−αt sgn µ

(
det(sin tS)

) 1
2

∫

V

e
π
2
|µ|σ

(
v,(cot tS)v

)
f−µ(v) dv

We split the integral (6.3) into the sum of three terms, according to the following
limitations in the integrals in dµ and in dt:

(6.4)

∫ +∞

−∞

dµ

∫ 1

0

dt ,

∫ +∞

0

dµ

∫ +∞

1

dt ,

∫ 0

−∞

dµ

∫ +∞

1

dt .

The first integral in (6.4) is absolutely convergent for every α. In order to see this,
observe that, applying Hölder’s inequality and making use of well-known formulas for the
integral of a Gaussian, we have

(6.5)

∣∣∣∣
∫

V

e
π
2
|µ|σ

(
v,(cot tS)v

)
f−µ(v) dv

∣∣∣∣ ≤ Cδ,N(1 + |µ|)−N |µ|−δd
(
det(−Re (cot tS))

)− δ
2 ,

for every δ ≤ 1 and every N .

For t small, cot tS ∼ (tS)−1, so that det(−Re (cot tS)) ∼ t−2d; similarly,
∣∣ det(sin tS)

∣∣ 1
2 ∼

td. Matters are so reduced to discussing the convergence of

∫ +∞

−∞

|µ|(1−δ)d−1

(1 + |µ|)N
dµ

∫ 1

0

e|Re α|t

t(1−δ)d
dt ,
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for some δ; for every α it suffices to take 0 < 1 − δ < 1/d. It is also clear that the first
integral in (6.4) is analytic in α on the whole plane.

We pass now to the second integral in (6.4). We apply again (6.5), observing that

det(−Re (cot tS)) ∼ 1 by Lemma 6.3 and that
∣∣ det(sin tS)

∣∣ 1
2 ∼ eνt. By (6.5), we are so

led to discuss ∫ +∞

0

µ(1−δ)d−1

(1 + µ)N
dµ

∫ +∞

1

e−(Re α+ν)t dt ,

which converges for Re α > −ν, provided δ > 0. As before, the second integral in (6.4)
depends analytically on α for Re α > −ν.

If we set

ϕ(t) :=
e−αt

(
det(sin tS)

) 1
2

=
ide−αt

∏d
j=1 sin λjt

,

we must discuss the analytic continuation of

(6.6)

∫ +∞

0

dt µn−1 dµ

∫ ∞

1

ϕ(t)

∫

V

e
π
2
µσ

(
v,(cot tS)v

)
f−µ(v) dv .

Writing
1

sin λjt
=

−2ieiλjt

1 − e2iλjt
= −2i

∞∑

m=0

e(2m+1)iλjt ,

it follows that

(6.7) ϕ(t) = 2de−αt
∑

m∈Nd

eit
∑

j(2mj+1)λj

where the sum is absolutely convergent for t ≥ 1.
We fix r > ν, and we truncate the sum to those m for which

∑
j(2mj + 1)νj < r, so

that
ϕ(t) = 2de−αt

∑
∑

j(2mj+1)νj<r

eit
∑

j(2mj+1)λj + O
(
e−(Re α+r)t

)
.

Accordingly, we split (6.6) into the sum of a finite number of integrals. Repeating the
argument given above, the integral containing the remainder term is absolutely convergent
for Re α > −r and it depends analytically on α in this region.

We then discuss the other terms, each of them having the form

(6.8)

∫ +∞

0

µd−1 dµ

∫ ∞

1

dt e−(α+β)t

∫

V

e
π
2
µσ

(
v,(cot tS)v

)
f−µ(v) dv

with β = −i
∑

j(2mj + 1)λj and Re β =
∑

j(2mj + 1)νj < r. We set

Qt(v) := −σ
(
v, (cot tS)v

)
.

When Re α > −Re β, the integral (6.8) converges absolutely, so we can integrate by
parts in t first, to obtain two terms:

(6.9)
π

2
(α + β)−1

∫ +∞

0

µd dµ

∫ ∞

1

dt e−(α+β)t

∫

V

e−
π
2
µQt(v)dQt

dt
(v)f−µ(v) dv
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and the boundary term

(6.10) (α + β)−1e−α−β

∫ +∞

0

µd−1 dµ

∫

V

e−
π
2
µQ1(w)f−µ(v) dv .

By (6.5), the boundary term (6.10) extends analytically to all values of α 6= −β.
By Lemma 6.3, we have

dQt

dt
(v) =

d∑

j=1

m∑

k=0

tk cot(k+1)(λjt)Qjk(v) ,

for some other quadratic forms Qjk(v).
Then (6.9) decomposes as a finite sum of terms of the form

π

2
(α + β)−1

∫ +∞

0

µd dµ

∫ ∞

1

dt tk cot(k+1)(λjt)e
−(α+β)t(6.11)

×

∫

V

e−
π
2
µQt(v)Qjk(v)f−µ(v) dv .

We can at this point iterate the argument above. We expand cot(k+1)(λjt) on the
basis of (6.2) and truncate the sum to the values of m for which 2mνj < r − Re β. The
remainder term gives a contribution to the integral in (6.11) that is absolutely convergent
for Re α > −r. From this term we hence obtain an expression that is analytic on the
half-plane Re α > −r, except at α = −β, if this point lies in the half-plane.

The other terms have a form similar to (6.8), precisely

(6.12)
π

2
(α + β)−1

∫ +∞

0

µd dµ

∫ ∞

1

dt tke−(α+β′)t

∫

V

e−
π
2
µQt(v)Qjk(v)f−µ(v) dv ,

with β′ = β − 2imλj. It is important to observe that, as m ≥ 1, Re β′ > Re β.
If Re β′ ≥ r, then the integral (6.12) is absolutely convergent and analytic for Re α >

−r, except for α = −β. If, instead, Re β′ < r, we can perform a new integration by
parts, choosing tke−(α+β′) as the differential factor. At each step we obtain new exponents
α + β′, α + β′′ etc. (together with factors (α + β′)−1 etc.), where β′, β′′ etc. are all in
E , with positive and strictly increasing real parts. As the strip Re α > −r contains only
finitely many of such points −β, with β ∈ E and Re β > 0, after a finite number of steps
all the terms will be well-defined for Re α > −r, except for poles at −β′,−β′′ etc.

This takes care of the second integral in (6.4). The analysis of the third integral can
be reduced to the previous one by replacing µ with −µ and α with −α.

For |Re α| < ν we have

〈Kα, tLA,αf〉 = 〈Kα,LA,−αf〉

= −

∫ +∞

−∞

1

|µ|
dµ

∫ ∞

0

dt e−2παt sgn µ

∫

V

Γµ
t,S(v)(L̃−µ

A − 2παµ)f−µ(v) dv

= −

∫ +∞

−∞

1

|µ|
dµ

∫ ∞

0

dt e−2παt sgn µ

∫

V

(L̃µ
A − 2παµ)Γµ

t,S(v)f−µ(v) dv

= −

∫ +∞

−∞

1

|µ|
dµ

∫ ∞

0

dt e−2παt sgn µ

∫

V

(|µ|∂t − 2παµ)Γµ
t,S(v)f−µ(v) dv .
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Using the absolute convergence of the integral, we interchange the order of integration
in dt and dv to obtain

∫

V

f−µ(v) dv

∫ ∞

0

|µ|∂tΓ
µ
t,S(v)e−2παt sgn µ dt

= −|µ|f−µ(0) + 2παµ

∫

V

f−µ(v) dv

∫ ∞

0

Γµ
t,S(v)e−2παt sgn µ dt .

Therefore

(6.13) 〈Kα, tLA,αf〉 =

∫ +∞

−∞

dµf−µ(0) = f(0) ,

i.e. LA,αKα = δ0. By analytic continuation, (6.13) remains valid for α 6∈ E .
We finally remark that all constants arising in the estimates in the proof are majorized

by some continuous norm on S(HV ), which shows that Kα ∈ S ′(HV ).

Q.E.D.

7 Local solvability when Re A is semi-definite.

Assume that A satisfies the cone condition, and that Re A is positive semi-definite and
degenerate. Based on the factorization formula

(7.1) Γ̂µ
t,S(w) = Γ̂µ

t,Sr
(w)Γ̂µ

t,Si
(w)

in Proposition 5.5, we can then still apply a similar integration by parts method to the

factor Γ̂µ
t,Si

in place of Γ̂µ
t,S. In this way, we can then reduce the problem of local solvability

of LA,α for α outside the exceptional set E in Theorem 2.3 to the problem of local solvability
of the operators LSr,β (for particular values of β.) And, we had seen in Lemma 3.6 (see
also (3.5)) that the operators LSr,β turn out to be constant coefficient operators, when
written in suitable coordinates, so that all of them are indeed locally solvable, by the
Malgrange-Ehrenpreis theorem.

To be a bit more precise, observe that similar considerations as before and Theorem

5.4 show that Γ̂µ
t,Si

can be written as series of terms of the form e−βte−
2π
µ

Q̃i,t , with

Q̃i,t(w) := σ(w, (tan tSi)w)

(if, say, µ > 0 ). Oversimplifying, let us then assume that

Γ̂µ
t,Si

= e−βte−
2π
µ

Q̃i,t .

Then, by (7.1),

e−αt Γ̂µ
t,S =

[
e−(α+β)t Γ̂µ

t,Sr

]
e−

2π
µ

Q̃i,t .

And,

µ∂t

[
e−(α+β)t Γ̂µ

t,Sr

]
= L̂µ

Sr,α+β

[
e−(α+β)tΓ̂µ

t,Sr

]
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hence, at least formally,

(7.2) e−αt Γ̂µ
t,S =

(
L̂µ

Sr,α+β

)−1

µ∂t

[
e−(α+β)t Γ̂µ

t,Sr

]
e−

2π
µ

Q̃i,t .

If we then consider, e.g., the integral

∫ +∞

0

1

µ
dµ

∫ ∞

1

dt e−αt〈Γµ
t,S, f−µ〉 =

∫ +∞

0

1

µ
dµ

∫ ∞

1

dt 〈e−αtΓ̂µ
t,S, f̂−µ〉

=

∫ +∞

0

1

µ
dµ

∫ ∞

1

dt
〈[

e−(α+β)t Γ̂µ
t,Sr

]
e−

2π
µ

Q̃i,t , f̂−µ
〉
,

we may apply (7.2) to integrate by parts in t. Except for the boundary term, we are thus
led to terms of the form

−2π

∫ +∞

0

1

µ
dµ

∫ ∞

1

dt
〈(

L̂µ
Sr,α+β

)−1 [
e−(α+β)t Γ̂µ

t,Sr

]
∂tQ̃i,t e

− 2π
µ

Q̃i,t , f̂−µ
〉
.

And, arguing similarly as in the previous section, only with cotangent replaced by tangent,
in view of the obvious analogue of (6.2), in the expression for ∂tQ̃i,t we gain factors of the
form e−2imλjt, with m ≥ 1, compared to Q̃i,t.

Iterating this procedure, we can again extend in this way the family of distributions Kα

analytically to α ∈ C \ E , provided the operators
(
L̂µ

Sr,α+β

)−1

, respectively
(
LSr,α+β

)−1

,

that arize on the way can be given a meaning. However, this is the case, as we have seen
before.

For details and extensions of these result, we refer the interested reader to [19].

8 Appendix: A representation theoretic necessary

condition for local solvability

In this appendix, we provide a proof of the Corwin-Rothschild theorem 4.1 for the Heisen-
berg group. This proof is based on my approach in [31], which gives in fact a stronger
result than the one in the original paper by Corwin and Rothschild. This improvement
turned out to be crucial for the proof of results such as Theorem 2.4. I shall closely follow
my survey lecture [25], which is also recommended for further information.

Let me first briefly recall some basics of the representation theory of the Heisenberg
group. Consider for µ ∈ R× := R \ {0} the Schrödinger representation πµ of Hd acting
on the Hilbert space L2(Rd) as follows:

(8.1) [πµ(x, y, u)f ](ξ) := e2πiµ(u+y·ξ+ 1
2
x·y)f(ξ + x), f ∈ L2(Rd).

For f ∈ L1(Hd), we define the (group-) Fourier transform f̂(πµ) of f at the represen-
tation πµ as the bounded operator

f̂(πµ) :=

∫

Hd

f(g)πµ(g)∗ dg =

∫

Hd

f(g)πµ(g−1) dg = πµ(f̌)

32



on L2(Rd). Observe that

(f1 ⋆ f2)
∧(πµ) = f̂2(πµ) ◦ f̂1(πµ).(8.2)

Direct computations, based on formula (8.1), show that f̂(πµ) can be represented as
a kernel operator

(f̂(πµ)ϕ)(ξ) =

∫

Rd

Kµ
f (ξ, η)ϕ(η) dη, ϕ ∈ L2(Rd),(8.3)

with integral kernel

Kµ
f (ξ, η) =

∫ ∫
f(ξ − η, y, u)e−2πiµ(u+ y

2
(ξ+η)) dydu,(8.4)

= f(ξ − η,
̂µ

2
(ξ + η), µ̂).

As usually, we shall identify the elements P of the universal envelopping algebra u(hd)
with left-invariant differential operators by means of the formula

Pϕ = P (ϕ ⋆ δ0) = ϕ ⋆ (Pδ0), ϕ ∈ S,

i.e., P can be represented by convolution from the right with the compactly supported
distribution Pδ0. But from (8.4), one sees that Kµ

f is well-defined as a tempered distribu-

tion kernel Kµ
f ∈ S ′(Rd × Rd) supported near the diagonal ξ = η, for every distribution

f ∈ E ′(Hd) with compact support. This implies that the integral operator (8.4), defined
in the Schwartz-sense of distributions, is well-defined on S(Rd), and

f̂(πµ) : S(Rd) → S(Rd)

is continuous for every f ∈ E ′(Hd).
For P ∈ u(hd), we now define its Fourier transform by

P̂ (πµ) := P̂ δ0(πµ) := πµ((Pδ0)̌).

Approximating Pδ0 by Pδ0 ⋆ ϕε ∈ D, where {ϕε}ε>0 denotes a Dirac sequence in D, one
finds from (8.2) that

P̂ϕ(πµ) = P̂ (πµ) ◦ ϕ̂(πµ), ϕ ∈ S,(8.5)

and

ÂB(πµ) = Â(πµ) ◦ B̂(πµ), ∀A,B ∈ u(hd),(8.6)

since (AB)δ0 = A(Bδ0 ⋆ δ0) = Bδ0 ⋆ Aδ.
Since Xjδ0 = ∂

∂xj
δ0, Yjδ = ∂

∂yj
δ0, Uδ0 = ∂

∂u
δ0, we find from (8.4) that

(8.7) X̂j(πµ) =
∂

∂ξj

, Ŷj(πµ) = 2πiµξj, Û(πµ) = 2πiµ.

Also, from (8.4), one sees that

Kr2µ
f◦Dr

(ξ, η) = r−d−2Kµ
f (rξ, rη), r > 0.(8.8)
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If P ∈ u(hn) is homogeneous of degree q, i.e., if P (f ◦Dr) = rq(Pf) ◦Dr for every r > 0,
then f := Pδ0 satisfies f ◦Dr = r−Q−qf , where Q := 2d+2 is the homogeneous dimension
of Hd, hence (8.8) implies

Kr2µ
Pδ0

(ξ, η) = rq+dKµ
Pδ0

(rξ, rη).(8.9)

We can now turn to the problem of local solvability. The first, basic step consists
in turning the qualitative statement of an operator L ”to be locally solvable” into a
quantitative statement. This is achieved by means of the following criterion, due to
Hörmander.

Lemma 8.1 Let L be a linear differential operator with smooth coefficients in an open
subset Ω of Rn. The equation Lu = f can be solved for every f ∈ D(Ω) with u ∈ D′(Ω) if
and only if the following holds true:

For every relatively compact open subset Λ ⊂ Ω there exist constants C and k ∈ N,
such that for every f, v ∈ C∞

0 (Λ),

(8.10) |

∫
fv dx| ≤ C

∑

|α|≤k

||Dαf ||2
∑

|β|≤k

||Dβ tLv||2

Here, tL denotes the formal transposed of L, defined by

∫
v(Lu) dx =

∫
( tLv)u dx.

Proof. The sufficiency of (8.10) follows by the Hahn-Banach theorem (exercise).

Conversely, if Lu = f can be solved for every f ∈ D(Ω) by some u = uf ∈ D′(Ω), then

(8.11) 〈f, v〉 =

∫
fv dx = 〈uf ,

tLv〉 ∀v ∈ D(Λ).

Consider 〈f, v〉 as a bilinear form on C∞
0 (Λ)×C∞

0 (Λ), where C∞
0 (Λ) is a Fréchet space

with the topology induced by the semi-norms ||Dαf ||2, and where C∞
0 (Λ) is endowed with

the metrizable topology induced by the semi-norms ||Dβ tPv||2.
Obviously, f 7→ 〈f, v〉 is continuous for fixed v.
The continuity of v 7→ 〈f, v〉, for fixed f , follows on the other hand by (8.11).
Thus, (f, v) 7→ 〈f, v〉 is separately continuous, hence continuous, by the theorem of
Banach-Steinhaus. This proves (8.10).

Q.E.D.

Remark 8.2 Condition (8.10) is equivalent to

(8.12) ||v||(−k) ≤ C|| tLv||(k),

where ||f ||(α) = (
∫

(1 + |ξ|2)α|f̂(ξ)|2dξ)1/2 denotes the Sobolev-norm of order α.
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For homogeneous left-invariant differential operators on Hd, the following necessary
criterion for local solvability has proven extremely useful (analogues hold on general ho-
mogeneous groups).

Theorem 8.3 ([31]) Let P ∈ u(hd) be homogeneous. If P is locally solvable, then there
exist a Sobolev-norm || · ||(k) and a continuous “Schwartz-norm” || · ||S on S(Hd), such
that

(8.13) |f(0)| ≤ ||f ||
1/2
S || tPf ||

1/2
(k) ∀f ∈ S(Hd).

Proof. Let Q be an elliptic, right-invariant Laplacian on Hd, and let Ω be an open
neighborhood of 0, and let m > (d + 1)/2. Then, for ϕ ∈ D(Ω), by Poincaré’s inequality
and standard elliptic regularity theory,

|ϕ(0)| ≤ C ′||Qmϕ||2 ≤ C||Qm+k/2ϕ||(−k),

provided Ω is chosen sufficiently small. We choose k is as in (8.12), and assume k to be
even. Since Qm+k/2 commutes with the left-invariant operator tP , by (8.12) we have

||Qm+k/2ϕ||(−k) ≤ C||Qm+k/2 tPϕ||(k)

≤ C ′|| tPϕ||(2m+2k),

i.e., there exists a K ∈ N, C ≥ 0, such that

|ϕ(0)| ≤ C || tPϕ||(K) ∀ϕ ∈ D(Ω).(8.14)

Let us us denote by
|(v, u)| := (|v|4 + 16u2)1/4

the so-called Koranyi-norm on Hd. Then | · | is a homogeneous norm, which means in
particular that

|Drg| = r|g|, |gh| ≤ |g| + |h| and |g−1| = |g| ∀g, h ∈ Hd, r > 0.

Let Br := {g ∈ Hd : |g| < r} denote the corresponding ball of radius r > 0 centred at
the origin. Re-scaling, we may assume that Ω = B2. Let tP be homogeneous of degree q.
Choose χ ∈ D(B2) such that χ ≡ 1 on B1. Then, for f ∈ S, by (8.14),

(8.15) |f(0)| ≤ C || tP (χ(f ◦ Dr))||(K) ∀r > 0.

But,

tP (χ(f ◦ Dr)) = χ tP (f ◦ Dr) + R(f ◦ Dr)

= rqχ ( tPf) ◦ Dr + R(f ◦ Dr),

where R = [ tP, χ] is a PDO whose coefficients are supported in {1 ≤ |x| ≤ 2}. Thus, for
r ≥ 1,

|| tP (χ(f ◦ Dr))||(K)

≤ CrA{|| tPf ||(K) +
∑

|α|≤N

(

∫

1<|x|<2

|f (α)(Drx)|2dx)1/2},
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for some constants A > 0, N ≥ 0. Now,
∫

1<|x|<2

|f (α)(Drx)|2dx ≤ r−B

∫

1<|x|<2

|Drx|
B|f (α)(Drx)|2dx

≤ r−B−Q

∫
|x|B|f (α)(x)|2dx.

Choosing B such that A − 1
2
(B + Q) = −A, we find a Schwartz-norm || · ||S such that

|| tP (χ(f ◦ Dr))||(K) ≤ C(rA|| tPf ||(K) + r−A||f ||S).

Combining this with (8.15) and optimizing in r we obtain (8.13) (if we assume without
loss of generality that || tPf ||(K) ≤ ||f ||S).

Q.E.D.

Corollary 8.4 ([3]) Suppose there exists a non-trivial f ∈ S(Hd) such that

(8.16) tPf = 0.

Then P is not locally solvable.

Proof of Theorem 4.1: Assume that t̂P (πµ0) annihilates some non-trivial Schwartz
function φ ∈ S(Rd) for some µ0 6= 0, say for instance µ0 > 0. For µ > 0, put

φµ(ξ) := φ

((
µ

µ0

)1/2

ξ

)
.

Then, by (8.9), t̂P (πµ)φµ = 0 for every µ > 0. Let χ ∈ C∞
0 (R+), and put

Kµ(ξ, η) := χ(µ)φµ(ξ)φµ(η), (µ, ξ, η) ∈ R× × Rd × Rd.

¿From (8.4), it follows that Kµ = Kµ
f for some unique function f ∈ S(Hd). And, by (8.5),

( tPf)∧(πµ) = t̂P (πµ)f̂(πµ) = 0,

since f̂(πµ) is represented by the kernel Kµ. Thus, by Fourier inversion on Hd, we get
tPf = 0. Since f 6= 0, the proof follows now from Corollary 8.4.

Q.E.D.
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