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V

A Crash Course in Geometric Mechanics

T.S. Ratiu, R. Tudoran, L. Sbano, E. Sousa Dias & G. Terra

Notes of the courses given by Tudor Ratiu

1 Introduction

These lecture notes are the direct result of presentations held in two consec-
utive years (2000 and 2001) at the Peyresq Conference Center, in the Alpes
de Haute Provence, North of Nice. These summer schools were organized
in conjunction with the Research Training Network MASIE (Mechanics and
Symmetry in Europe) of the Fifth Framework Program of the European Com-
mission and were intended for graduate students and postdocs who needed a
crash course in geometric mechanics. They were also tailored to link with
the other lectures and provide the necessary background for them. There are
already many books on this subject and its links to symplectic and Poisson
geometry (see, e.g. [AbMa78], [Arnold79], [GuSt84], [JoSa98], [LiMa87],
[MaRa94], [McDSal95]) and the literature on this subject is overwhelming.
So the goal of these two one-week intensive lectures was to find a quick way
through this subject and give the young researchers enough tools to be able to
sift and sort through the books and papers necessary for their own work. This
is why these lectures present occasionally detailed proofs and sometimes only
quick surveys of more extensive subjects that are, however, explained with
care. The examples, on the other hand, are all carried out with detailed com-
putations in order to show how one applies the theory in concrete cases. There
are, essentially, four main examples that reappear throughout the lectures: par-
ticle dynamics, the free and heavy tops, the motion of a charged particle in a
magnetic field, and ideal incompressible fluid flow as well as related systems
such as the Korteweg-de Vries and the Camassa-Holm equations. Each exam-
ple illustrates several different constructions prevalent in geometric mechanics
and is at the root of many developments and generalizations.
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2 V A Crash Course in Geometric Mechanics

There is nothing original in these lectures and they are entirely based on
three main sources: [MaRa94], the yet unfinished book [MaRa03], and some
unpublished notes [MaRa95] on the geometric theory of fluid dynamics. When
carrying out reduction, several strong regularity hypotheses will be made. The
singular case is considerably more involved and we refer to [OR04] for an in-
depth analysis of this case. All the missing proofs of results quoted here can
be found in these works as well as the books referred to before.

The reader is assumed to be familiar with calculus on manifolds and the ele-
mentary theory of Lie groups and Lie algebras, as found in e.g. [AbMa78],
[AMR88], [DFN95], [Jost], [Lang], [MaRa94], [Sp79], [Serre], or [W83].
[Bou71, Bou89] is always helpful when a quick recall of the statement of a
theorem is needed.

1.1 Lagrangian and Hamiltonian Formalism

Let us start with Newton’s equations for N particles q := (q1, . . . ,qN ) ∈
R3N with masses m1, . . . , mN ∈ R. If F = (F1, ..., FN ) are the forces acting
on these particles then Newton’s equations are

ma = F, (1.1)

where a = q̈ is the acceleration of the system. Assuming that the forces are
induced by a potential V : R3N → R, that is,

F(q) = −∇V (q), (1.2)

equations (1.1) become

miq̈i = − ∂V

∂qi
, i = 1, . . . , N, (1.3)

where ∂V/∂qi denotes the gradient relative to the variable qi.
A straightforward verification shows that if one defines the Lagrangian

function L : R6N = {(q, q̇) | q, q̇ ∈ R3N} → R by

L(q, q̇) :=
1
2

N∑
i=1

mi‖q̇i‖2 − V (q). (1.4)

and assumes that q̇ = dq/dt, then Newton’s equations (1.2) are equivalent to
Lagrange’s equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , N, (1.5)
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where ∂L/∂q̇i, ∂L/∂qi ∈ R3 denote the gradients in R3 of L relative to
q̇i,qi ∈ R3.

On other hand, the Lagrange equations (1.5) are equivalent with the varia-
tional principle of Hamilton: the solutions of (1.5) are critical points of the
action functional defined on the space of smooth paths with fixed endpoints.
More precisely, let Λ([a, b], R3N ) be the space of all possible smooth trajecto-
ries q : [a, b] → R3N with fixed endpoints qa = γ(a), qb = γ(b). The action
functional is defined by:

A[q(·)] :=
∫ b

a

L(q(t), q̇(t)) dt, (1.6)

where q̇ = dq(t)/dt. In Λ([a, b], R3N ) consider a deformation q(t, s), s ∈
(−ε, ε), ε > 0, with fixed endpoints qa, qb, of a curve q0(t), that is, q(t, 0) =
q0(t) for all t ∈ [a, b] and q(a, s) = q0(a) = qa, q(b, s) = q0(b) = qb for
all s ∈ (−ε, ε). Define a variation of the curve q0(·) in Λ([a, b], R3N ) by

δq(·) :=
d

ds

∣∣∣∣
s=0

q(·, s) ∈ Tq0(·)Λ([a, b], R3N ),

and the first variation of A at q0(t) to be the following derivative:

DA[q0(·)](δq(·)) :=
d

ds

∣∣∣∣
s=0

A[q(·, s)]. (1.7)

Note that δq(a) = δq(b) = 0. With these notations, the variational principle
of Hamilton states that the curve q0(t) satisfies the Lagrange equations (1.5) if
and only if q0(·) is a critical point of the action functional, that is, DA[q0(·)] =
0. Indeed, using the equality of mixed partials, integrating by parts, and taking
into account that δq(a) = δq(b) = 0, we get

DA[q0(·)](δq(·)) =
d

ds

∣∣∣∣
s=0

A[q(·, s)] =
d

ds

∣∣∣∣
s=0

∫ b

a

L(q(t, s), q̇(t, s)) dt

=
∫ b

a

[
∂L

∂qi
δq(t, s) +

∂L

∂q̇i
δq̇i

]
dt

= −
∫ b

a

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqidt = 0

for all smooth δqi(t) satisfying δqi(a) = δqi(b) = 0, which proves the claim.
Next, introduce the conjugate momenta

pi :=
∂L

∂q̇i
= miq̇i ∈ R

3, i = 1, . . . , N. (1.8)
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Define the change of variables (q, q̇) �→ (q,p), called the Legendre trans-
form, and the Hamiltonian

H(q,p) : = p · q̇(q,p) − L(q, q̇(q,p))

=
1
2

N∑
i=1

mi‖q̇i‖2 + V (q)

=
1
2

N∑
i=1

1
mi

‖pi‖2 + V (q) (1.9)

which is the total energy of the system, expressed in the variables (q,p). Then
one has

∂H

∂pi
=

1
mi

pi = q̇i =
dqi

dt

and

∂H

∂qi
=

∂V

∂qi
= − ∂L

∂qi
.

Therefore, by the Lagrange equations (1.5) we have

ṗi =
dpi

dt
=

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
= −∂H

∂qi
.

This shows that Lagrange’s equations (1.5) are equivalent to Hamilton’s equa-
tions

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
, (1.10)

where, as before, ∂H/∂qi, ∂H/∂pi ∈ R3 are the gradients of H relative to
qi,pi ∈ R3.

Note that, whereas Lagrange’s equations are of second order and concern
curves in the configuration space (the space of q’s), Hamilton’s equations are
of first order and describe the dynamics of curves belonging to phase space,
a space of dimension twice the dimension of the configuration space whose
points are pairs formed by configurations q and conjugate momenta p.

An easy verification shows that Hamilton’s equations (1.10) can be equiva-
lently written as

Ḟ = {F, H} for all F ∈ F(P ), (1.11)

where F(P ) denotes the smooth functions on the phase space P := R6N , and
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the Poisson bracket is defined by

{G, K} :=
N∑

i=1

(
∂G

∂qi
· ∂K

∂pi
− ∂G

∂pi
· ∂K

∂qi

)
for all G, K ∈ F(P ).

(1.12)
Indeed, from (1.12) and (1.10) we have, for any F ∈ F(P ),

N∑
i=1

(
∂F

∂qi
· q̇i +

∂F

∂pi
· ṗi

)
=

dF

dt

= {F, H} =
N∑

i=1

(
∂F

∂qi
· ∂H

∂pi
− ∂F

∂pi
· ∂H

∂qi

)
which is equivalent to (1.10) since F ∈ F(P ) is arbitrary.

Summarizing, for classical mechanical systems in Euclidean space describ-
ing particle motion, whose total energy is given by kinetic plus potential en-
ergy, we have shown that Newton’s equations are equivalent to:

• Lagrange’s equations
• Hamilton’s variational principle
• Hamilton’s equations of motion
• Hamilton’s equations in Poisson bracket formulation.

In the course of these lectures we shall focus on each one of these four
pictures and shall explain the geometric structure underlying them when the
configuration space is a general manifold. It turns out that, in general, they
are not equivalent and, moreover, some of these formulations have very useful
generalizations, particularly appropriate for systems with symmetry, the case
we shall consider next by means of an example.

1.2 The Heavy Top

In these lectures we shall discuss the equivalences just described in the context
of systems with symmetry when one can eliminate variables. To see what is
involved in this case, let us consider in detail an example, namely the motion
of a heavy top moving about a fixed point; the exposition below is mostly
based on [MaRa94, MaRaWe84a, MaRaWe84b, HMR98]. In this case, all
computations can be easily carried out explicitly. We shall describe this system
both in the Lagrangian and Hamiltonian picture and shall find two additional
equivalent formulations that take into account the symmetries of this system.
This example will serve then as model for the reduction theory presented in
these lectures.
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The Lie algebra so(3) and its dual. To be efficient in the computations that
follow we briefly recall the main formulas regarding the special orthogonal
group SO(3) := {A | A a 3 × 3 orthogonal matrix ,det(A) = 1}, its Lie al-
gebra so(3) formed by 3×3 skew symmetric matrices, and its dual so(3)∗. All
these formulas will be proved in §5.1 and §6.3. The Lie algebra (so(3), [·, ·]),
where [·, ·] is the commutator bracket of matrices, is isomorphic to the Lie al-
gebra (R3,×), where × denotes the vector product in R3, by the isomorphism

u := (u1, u2, u3) ∈ R
3 �→ û :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ so(3). (1.13)

Equivalently, this isomorphism is given by

ûv = u × v for all u,v ∈ R
3. (1.14)

The following properties for u,v,w ∈ R3 are easily checked:

(u × v)ˆ = [û, v̂] (1.15)

[û, v̂]w = (u × v) × w (1.16)

u · v = −1
2

trace(ûv̂). (1.17)

If A ∈ SO(3) and û ∈ so(3) denote, as usual, by AdA û := AûA−1 the
adjoint action of SO(3) on its Lie algebra so(3). Then

(Au)ˆ = AdA û := AûAT (1.18)

since A−1 = AT , the transpose of A. Also

A(u × v) = Au × Av (1.19)

for any u,v ∈ R3 and A ∈ SO(3). It should be noted that this relation is
not valid if A is just an orthogonal matrix; if A is not in the component of the
identity matrix, then one gets a minus sign on the right hand side.

The dual so(3)∗ is identified with R3 by the isomorphism Π ∈ R3 �→ Π̃ ∈
so(3)∗ given by Π̃(û) := Π · u for any u ∈ R3. Then the coadjoint action of
SO(3) on so(3)∗ is given by (see §5.1 for the explicit computation)

Ad∗
A−1 Π̃ = (AΠ)˜ . (1.20)

The coadjoint action of so(3) on so(3)∗ is given by (see §6.3 for the detailed
computation)

ad∗
û Π̃ = (Π × u)˜. (1.21)
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Euler angles. The Lie group SO(3) is diffeomorphic to the real three dimen-
sional projective space RP(3). The Euler angles that we shall review below
provide a very convenient chart for SO(3).

Let E1,E2,E3 be an orthonormal basis of R3 thought of as the reference
configuration. Points in the reference configuration, called material or La-
grangian points, are denoted by X and their components, called material or
Lagrangian coordinates by (X1, X2, X3). Another copy of R3 is thought
of as the spatial or Eulerian configuration; its points, called spatial or Eu-
lerian points are denoted by x whose components (x1, x2, x3) relative to an
orthonormal basis e1, e2, e3 are called spatial or Eulerian coordinates. A
configuration is a map from the reference to the spatial configuration that will
be assumed to be an orientation preserving diffeomorphism. If the config-
uration is defined only on a subset of R3 with certain good properties such
as being a submanifold, as will be the case for the heavy top, then it is as-
sumed that the configuration is a diffeomorphism onto its image. A motion
x(X, t) is a time dependent family of configurations. In what follows we
shall only consider motions that are given by rotations, that is, we shall as-
sume that x(X, t) = A(t)X with A(t) an orthogonal matrix. Since the motion
is assumed to be smooth and equal to the identity at t = 0, it follows that
A(t) ∈ SO(3).

Define the time dependent orthonormal basis ξ1, ξ2, ξ3 by ξi := A(t)Ei,
for i = 1, 2, 3. This basis is anchored in the body and moves together with
it. The body or convected coordinates are the coordinates of a point relative
to the basis ξ1, ξ2, ξ3. Note that the components of a vector V relative to the
basis E1,E2,E3 are the same as the components of the vector A(t)V relative
to the basis ξ1, ξ2, ξ3. In particular, the body coordinates of x(X, t) = A(t)X
are X1, X2, X3.

The Euler angles encode the passage from the spatial basis e1, e2, e3 to the
body basis ξ1, ξ2, ξ3 by means of three consecutive counterclockwise rotations
performed in a specific order: first rotate around the axis e3 by the angle ϕ and
denote the resulting position of e1 by ON (line of nodes), then rotate about
ON by the angle θ and denote the resulting position of e3 by ξ3, and finally
rotate about ξ3 by the angle ψ. Note that, by construction, 0 ≤ ϕ, ψ < 2π

and 0 ≤ θ < π and that the method just described provides a bijective map
between (ϕ, ψ, θ) variables and the group SO(3). However, this bijective map
is not a chart since its differential vanishes at ϕ = ψ = θ = 0. So for 0 <

ϕ, ψ < 2π, 0 < θ < π the Euler angles (ϕ, ψ, θ) form a chart. If one carries
out explicitly the rotation just described the resulting linear map performing
the motion x(X, t) = A(t)X has the matrix relative to the bases ξ1, ξ2, ξ3
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and e1, e2, e3 equal to

A =[
cos ψ cos ϕ − cos θ sin ϕ sin ψ cos ψ sin ϕ + cos θ cos ϕ sin ψ sin θ sin ψ

− sin ψ cos ϕ − cos θ sin ϕ cos ψ − sin ψ sin ϕ + cos θ cos ϕ cos ψ sin θ cos ψ
sin θ sin ϕ − sin θ cos ϕ cos θ

]
;

(1.22)

this computation is carried out in practically any mechanics book such as
[Arnold79] or [MaRa94].

The total energy of the heavy top. A heavy top is by definition a rigid body
moving about a fixed point in R3. Let B be an open bounded set whose closure
is a reference configuration. Points on the reference configuration are denoted,
as before, by X = (X1, X2, X3), with X1, X2, X3 the material coordinates
relative to a fixed orthonormal frame E1,E2,E3. The map η : B → R3,
with enough smoothness properties so that all computations below make sense,
which is, in addition, orientation preserving and invertible on its image, is a
configuration of the top. The spatial points x := η(X) ∈ η(B) have coordi-
nates x1, x2, x3 relative to an orthonormal basis e1, e2, e3. Since the body is
rigid and has a fixed point, its motion ηt : B → R3 is necessarily of the form

ηt(X) := x(X, t) = A(t)X

with A(t) ∈ SO(3); this is a 1932 theorem of Mazur and Ulam which states
that any isometry of R3 that leaves the origin fixed is necessarily a rotation.
If ξ1, ξ2, ξ3 is the orthonormal basis of R3 defined by ξi := A(t)Ei, for i =
1, 2, 3, then the body coordinates of a vector are its components relative to this
basis anchored in the body an moving together with it.

The material or Lagrangian velocity is defined by

V(X, t) :=
∂x(X, t)

∂t
= Ȧ(t)X. (1.23)

The spatial or Eulerian velocity is defined by

v(x, t) := V(X, t) = Ȧ(t)X = Ȧ(t)A(t)−1x. (1.24)

The body or convective velocity is defined by

V(X, t) : = −∂X(x, t)
∂t

= A(t)−1Ȧ(t)A(t)−1x

= A(t)−1V(X, t) = A(t)−1v(x, t). (1.25)

Denote by ρ0 the density of the top in the reference configuration. Then the
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kinetic energy at time t in material, spatial, and convective representation is
given by

K(t) =
1
2

∫
B

ρ0(X)‖V(X, t)‖2d3X (1.26)

=
1
2

∫
A(t)B

ρ0(A(t)−1x)‖v(x, t)‖2d3x (1.27)

=
1
2

∫
B

ρ0(X)‖V(X, t)‖2d3X (1.28)

If we denote

ω̂S(t) := Ȧ(t)A(t)−1 (1.29)

ω̂B(t) := A(t)−1Ȧ(t) (1.30)

and take into account (1.24), (1.25), and (1.14), we conclude that

v(x, t) = ωS(t) × x

V(X, t) = ωB(t) × X

which shows that ωS and ωB are the spatial and body angular velocities re-
spectively. Using the Euler angles representation (1.22), the expressions for
ωS and ωB are

ωS =

 θ̇ cos ϕ + ψ̇ sinϕ sin θ

θ̇ sinϕ − ψ̇ cos ϕ sin θ

ϕ̇ + ψ̇ cos θ

 (1.31)

ωB =

 θ̇ cos ψ + ϕ̇ sinψ sin θ

−θ̇ sinψ + ϕ̇ cos ψ sin θ

ϕ̇ cos θ + ψ̇

 . (1.32)

Thus, by (1.28), the kinetic energy in convective representation has the ex-
pression

K(t) =
1
2

∫
B

ρ0(X)‖ωB(t) × X‖2d3X =:
1
2
〈〈ωB(t), ωB(t)〉〉. (1.33)

This is the quadratic form associated to the bilinear symmetric form on R3

〈〈a,b〉〉 :=
∫
B

ρ0(X)(a × X) · (b × X)d3X = Ia · b, (1.34)

where I : R3 → R3 is the symmetric isomorphism (relative to the dot product)
whose components are given by Iij := IEj · Ei = 〈〈Ej ,Ei〉〉, that is,

Iij = −
∫
B

ρ0(X)XiXjd3X if i 	= j
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and

Iii =
∫
B

ρ0(X)
(
‖X‖2 − (Xi)2

)
d3X.

These are the expressions of the moment of inertia tensor in classical mechan-
ics, that is, I is the moment of inertia tensor. Since I is symmetric, it can be
diagonalized. The basis in which it is diagonal is called in classical mechanics
the principal axis body frame and the diagonal elements I1, I2, I3 of I in this
basis are called the principal moments of inertia of the top. From now on, we
choose the basis E1,E2,E3 to be a principal axis body frame.

Identify in what follows the linear functional 〈〈ωB , ·〉〉 on R3 with the vector
Π := IωB ∈ R3. In Euler angles this equals

Π =

 I1(ϕ̇ sinψ sin θ + θ̇ cos ψ)
I2(ϕ̇ cos ψ sin θ − θ̇ sinψ)

I3(ϕ̇ cos θ + ψ̇)

 . (1.35)

Using (1.33) and (1.34), and noting that ωB = I−1Π, the expression of the
kinetic energy on the dual of so(3)∗ identified with R3, is

K(Π) =
1
2
Π · I−1Π =

1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
. (1.36)

The kinetic energy on R3 given by (1.33) can be expressed as a function on
so(3) using (1.17), namely

K(ωB) =
1
2
ωB · IωB = −1

4
trace (ω̂B(IωB)ˆ)

= −1
4

trace (ω̂B(ω̂BJ + Jω̂B)) , (1.37)

where J is a diagonal matrix whose entries are given by the relations I1 =
J2 + J3, I2 = J3 + J1, and I3 = J1 + J2, that is, J1 = (−I1 + I2 + I3)/2,
J2 = (I1 − I2 + I3)/2, and J3 = (I1 + I2 − I3)/2. The last equality in
(1.37) follows from the identity (IωB)ˆ = ω̂BJ + Jω̂B , proved by a direct
verification. Formulas (1.37) and (1.30) immediately yield the expression of
the kinetic energy on the tangent bundle TSO(3):

K(A, Ȧ) = −1
4

trace((JA−1Ȧ + A−1ȦJ)A−1Ȧ). (1.38)

Since left translation of SO(3) on itself lifts to the left action B · (A, Ȧ) :=
(BA, BȦ) on TSO(3), the expression (1.38) of K(A, Ȧ) immediately implies
that K is invariant relative to this action. Thus, the kinetic energy of the heavy
top is left invariant.

Left translating the inner product 〈〈·, ·〉〉 from the tangent space to the identity
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to the tangent space at an arbitrary point of SO(3), defines a left invariant
Riemannian metric on SO(3) whose kinetic energy is (1.38). Relative to this
metric, the Legendre transformation gives the canonically conjugate variables

pϕ :=
∂K

∂ϕ̇
, pψ :=

∂K

∂ψ̇
, pθ :=

∂K

∂θ̇
.

We shall summarize at the end of this discussion various formulas in terms
of the Euler angles, including this one. Expressing now the kinetic energy
in the variables (ϕ, ψ, θ, pϕ, pψ, pθ) will give thus a left invariant function on
T ∗SO(3).

Next we turn to the expression of the potential energy. It is given by the
height of the center of mass over the horizontal plane perpendicular to the
direction of gravity. Let � denote the length of the segment between the fixed
point and the center of mass and let χ be the unit vector supported by this line
segment. Let M =

∫
B ρ0(X)d3X be the total mass of the top, g the value of

the gravitational acceleration, and k the spatial unit vector pointing in opposite
direction to gravity. Then the potential energy at time t equals

V (t) = Mgk · A�χ = Mg�k · λ = Mg�Γ · χ (1.39)

where λ := Aχ and Γ := A−1k. The three expressions represent the potential
energy in material, spatial, and body representation, respectively. It is clear that
the potential energy is invariant only with respect to rotations about the axis of
gravity, which shows that the total energy

H(A, Ȧ) = −1
4

trace((JA−1Ȧ + A−1ȦJ)A−1Ȧ) + Mg�k · Aχ (1.40)

is also invariant only under this circle subgroup of SO(3). In Euler angles and
their conjugate momenta, (1.40) becomes

H =
1
2

[
[(pϕ − pψ cos θ) sinψ + pθ sin θ cos ψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cos ψ − pθ sin θ sinψ]2

I2 sin2 θ
+

p2
ψ

I3

]
+ Mg� cos θ, (1.41)

where, without loss of generality, we assumed that χ in body coordinates is
equal to (0, 0, 1).

Since ṗϕ = −∂H/∂ϕ = 0, it follows that pϕ = Π · Γ is conserved.
On R3 × R3 the expression of the total energy is hence

H(Π,Γ) =
1
2
Π · I−1Π + Mg�Γ · χ. (1.42)
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In addition to the conservation of Π · Γ, we also have ‖Γ‖ = 1. The signif-
icance of these two conserved quantities in body representation will become
clear only after understanding the Poisson geometry underlying the motion
given by (1.42).

For completeness we summarize in Table 1.1 the relationship between the
variables introduced till now.

Π1 = [(pϕ − pψ cos θ) sin ψ + pθ sin θ cos ψ]/ sin θ

= I1(ϕ̇ sin θ sin ψ + θ̇ cos ψ)

Π2 = [(pϕ − pψ cos θ) cos ψ − pθ sin θ sin ψ]/ sin θ

= I2(ϕ̇ sin θ cos ψ − θ̇ sin ψ)

Π3 = pψ = I3(ϕ̇ cos θ + ψ̇)

Γ1 = sin θ sin ψ

Γ2 = sin θ cos ψ

Γ3 = cos θ

pϕ = Π · Γ
= I1(ϕ̇ sin θ sin ψ + θ̇ cos ψ) sin θ sin ψ

+ I2(ϕ̇ sin θ cos ψ − θ̇ sin ψ) sin θ cos ψ

+ I3(ϕ̇ cos θ + ψ̇) cos θ

pψ = Π3 = I3(ϕ̇ cos θ + ψ̇)

pθ = (Γ2Π1 − Γ1Π2)/
√

1 − Γ2
3

= I1(ϕ̇ sin θ sin ψ + θ̇ cos ψ) cos ψ

− I2(ϕ̇ sin θ cos ψ − θ̇ sin ψ) sin ψ

ϕ̇ =
1

I1

Π1Γ1

1 − Γ2
3

+
1

I2

Π2Γ2

1 − Γ2
3

ψ̇ =
Π3

I3
− Π1Γ1Γ3

I1(1 − Γ2
3)

− Π2Γ2Γ3

I2(1 − Γ2
3)

θ̇ =
Π1Γ2

I1

√
1 − Γ2

3

− Π2Γ1

I2

√
1 − Γ2

3

Table 1.1. Summary of the variables for the heavy top

The equations of motion of the heavy top. In a chart on T ∗SO(3) given by
the Euler angles and their conjugate momenta, the equations of motion are

ϕ̇ = ∂H
∂pϕ

, ψ̇ = ∂H
∂pψ

, θ̇ = ∂H
∂pθ

ṗϕ = −∂H
∂ϕ , ṗψ = −∂H

∂ψ , ṗθ = −∂H
∂θ
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with H given by (1.41).
Consider now the map

J : (ϕ, ψ, θ, pϕ, pψ, pθ) �→ (Π,Γ) (1.43)

given by the formulas above. This is not a change of variables because ‖Γ‖ =
1. A lengthy direct computation, using the formulas above, shows that these
equations imply the Euler-Poisson equations

Π̇ = Π × Ω + Mg�Γ × χ, Γ̇ = Γ × Ω (1.44)

where Ω := ωB = I−1Π.

These equations can be obtained in two ways.

(i) The canonical Poisson bracket of two functions f, h : T ∗SO(3) → R in
a chart given by the Euler angles and their conjugate momenta is

{f, h} =
∂f

∂ϕ

∂h

∂pϕ
− ∂f

∂pϕ

∂h

∂ϕ
+

∂f

∂ψ

∂h

∂pψ
− ∂f

∂pψ

∂h

∂ψ
+

∂f

∂θ

∂h

∂pθ
− ∂f

∂pθ

∂h

∂θ
.

A direct long computation shows that if F, H : R3 × R3 → R, then

{F ◦ J, H ◦ J} = {F, H}− ◦ J,

where J is given by (1.43) and

{F, H}−(Π,Γ) = − Π · (∇ΠF ×∇ΠH)

− Γ · (∇ΠF ×∇ΓH + ∇ΓF ×∇ΠH); (1.45)

∇ΠF and ∇ΓF denote the partial gradients relative to the variables Π and Γ
respectively. An additional long computation shows that this defines a Poisson
bracket, that is, it is bilinear, skew symmetric, and satisfies both the Jacobi and
the Leibniz identities. Finally, if H is given by (1.42), it is easy to see that
the equation Ḟ = {F, H} for any F : R3 × R3 → R is equivalent to the
Euler-Poisson equations (1.44).

Note that the bracket of any function with an arbitrary function of ‖Γ‖2 and
Π · Γ is zero. The functions ‖Γ‖2 and Π · Γ are the Casimir functions of the
bracket (1.45).

(ii) Equations (1.44) can also be obtained from a variational principle. Given
is the Lagrangian

L(Ω,Γ) :=
1
2

IΩ · Ω − Mg�Γ · χ (1.46)
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and the second Euler-Poisson equation Γ̇ = Γ × Ω whose solution is Γ(t) =
A(t)−1k, where Ω(t) = A(t)−1Ȧ(t). Consider the variational principle for L

δ

∫ b

a

L(Ω,Γ)dt = 0

but only subject to the restricted variations of the form

δΩ := Σ̇ + Ω × Σ δΓ := Γ × Σ (1.47)

where Σ(t) is an arbitrary curve vanishing at the endpoints a and b, i.e

Σ(a) = Σ(b) = 0. (1.48)

Using integration by parts together with the vanishing conditions at the end-
points, ∇ΩL(Ω,Γ) = IΩ = Π, and ∇ΓL(Ω,Γ) = −Mg�χ, we get

0 = δ

∫ b

a

L(Ω,Γ)dt =
∫ b

a

∇ΩL(Ω,Γ) · δΩdt +
∫ b

a

∇ΓL(Ω,Γ) · δΓdt

=
∫ b

a

Π · δΩdt − Mg�

∫ b

a

χ · δΓdt

=
∫ b

a

Π · (Σ̇ + Ω × Σ)dt − Mg�

∫ b

a

χ · (Γ × Σ)dt

= −
∫ b

a

Π̇ · Σdt +
∫ b

a

Π · (Ω × Σ)dt − Mg�

∫ b

a

Σ · (χ × Γ)dt

=
∫ b

a

(
−Π̇ + Π × Ω + Mg�Γ × χ

)
· Σdt.

The arbitrariness of Σ yields the first of the Euler-Poisson equations (1.44).

Remark. If g� = 0, then the heavy top becomes a free rigid body. In this case
there is only one equation, namely the Euler equation Π̇ = Π×Ω, the Poisson
bracket of two smooth functions F, H : R3 → R is given by {F, H}(Π) =
−Π · (∇F ×∇H), and the variational principle is δ

∫ b

a
L(Ω)dt = 0 for vari-

ations δΩ = Σ̇ + Ω × Σ where Σ(a) = Σ(b) = 0. The Poisson bracket
of any function with an arbitrary smooth function of ‖Π‖2 vanishes and thus
the motion of the rigid body takes place on Π-spheres of constant radius. For
the free rigid body, both the Lagrangian and the total energy coincide with the
kinetic energy L(Ω) = H(Π) = Π · Ω/2, where Π = IΩ, and thus the
solutions of the free rigid body motion are geodesics on SO(3) relative to the
left invariant metric whose value at the identity is (1.34). The solutions of the
Euler equation Π̇ = Π × Ω are therefore obtained by intersecting concentric
spheres {Π | ‖Π‖ = R} with the family of ellipsoids {Π | Π · I−1Π = C}
for any constants R, C ≥ 0. In this way one immediately sees that there are
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six equilibria, four of them stable and two of them unstable. The stable ones
correspond to rotations about the short and long axes of the moment of inertia
and the unstable one corresponds to rotations about the middle axis.

One of the goals of these lectures is to explain the geometry behind all these
phenomena that have appeared here as computational accidents. As we shall
see, none of them are arbitrary occurrences and they all have a symplectic
geometrical underpinning.

2 Hamiltonian Formalism

In this lecture we recall the fundamental concepts on symplectic manifolds and
canonical transformations, as found, for example in, [Arnold79], [AbMa78],
[MaRa94], [LiMa87], or [McDSal95].

2.1 Symplectic Manifolds

Definition 2.1 A symplectic manifold is a pair (P,Ω) where P is a Banach
manifold and Ω is a closed (weakly) nondegenerate two-form on P . If Ω is
strongly nondegenerate, (P,Ω) is called a strong symplectic manifold.

Recall that Ω is weakly, respectively strongly, nondegenerate if the smooth
vector bundle map covering the identity  : TP → T ∗P given by v �→ v� :=
Ω(v, ·) is injective, respectively bijective, on each fiber. If P is finite dimen-
sional, there is no distinction between these concepts and nondegeneracy im-
plies that P is even dimensional.

If the manifold is a Banach space V and the two-form is constant on V , then
(V, Ω) is called a symplectic Banach space. For example, R2n endowed with
the canonical symplectic structure

Ω((u,v), (u′,v′)) = u · v′ − u′ · v,

for u,v,u′,v′ ∈ Rn, is a symplectic finite dimensional vector space. Another
standard example is a complex Hilbert space with the symplectic form given
by the negative of the imaginary part of the Hermitian inner product. For
example, Cn has Hermitian inner product given by z·w :=

∑n
j=1 zjwj , where

z = (z1, . . . , zn),w = (w1, . . . , wn) ∈ Cn. The symplectic form is thus given
by Ω(z,w) := − Im(z · w) and it is identical to the one given before on R2n

by identifying z = u + iv ∈ Cn with (u,v) ∈ R2n and w = u′ + iv′ ∈ Cn

with (u′,v′) ∈ R2n.

The local structure of strong symplectic manifolds is given by the following
basic result.
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Theorem 2.2 (Darboux) If (P,Ω) is a strong symplectic manifold then each
point of P admits a chart in which Ω is constant. If P is finite dimensional
then around each point there are coordinates (q1, . . . , qn, p1, . . . , pn), where
2n = dimP , such that Ω = dqi ∧dpi (with the usual summation convention).

The Darboux theorem for 2n-dimensional symplectic manifolds hence states
that, locally, the two-form Ω is given by the matrix

J =
[

0 I
− I 0

]
where I denotes the n × n identity matrix, that is, locally the symplectic form
is the one given above on R2n.

Remark 2.3 (i) The Darboux theorem is false for weak symplectic manifolds.
For a counterexample, see Exercise 5.1-3 in [MaRa94].

(ii) There is a relative version of the Darboux theorem, namely, if S is a sub-
manifold of P and Ω0, Ω1 are two strong symplectic forms on P that coincide
when evaluated at points of S, then there is an open neighborhood V of S and
a diffeomorphism ϕ : V → ϕ(V ) such that ϕ|S = id and ϕ∗Ω1 = Ω0.

(iii) There is a generalization of the Darboux theorem for G-equivariant
forms if G is a compact Lie group. It is still true that every point admits a G-
invariant neighborhood on which the symplectic form is constant. However,
the constant symplectic forms are no longer equivalent under G-equivariant
changes of coordinates and the number of inequivalent symplectic forms de-
pends on the representation type of the compact Lie group G, i.e., if it is real,
complex, or quaternionic; see [DeMe93] and [MD93] for details.

Denote by X(P ) the set of vector fields on P and by Ωk(P ) the set of k-
forms on P . The map  induces a similar map between X(P ) and Ω1(P ),
namely

X(P )  X �→ iXΩ := Ω(X, ·) =: X� ∈ Ω1(P ).

If Ω is strongly nondegenerate, this map is an isomorphism, so for any smooth
map H : P → R there exists a vector field XH , called the Hamiltonian vector
field defined by H , such that

iXH
Ω = dH,

where d : Ωk(P ) → Ωk+1(P ) denotes the exterior differential. If P is only
weakly nondegenerate, the uniqueness but not the existence of the Hamilto-
nian vector field is guaranteed. So for weak symplectic manifolds, not every
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function defines a Hamiltonian vector field. See [ChMa74] for an approach to
infinite dimensional Hamiltonian systems.

If P is 2n-dimensional, the local expression of XH in Darboux coordinates
is

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

and Hamilton’s equations ż = XH(z) are given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
i = 1, . . . , n.

The two-form Ω induces the volume Liouville form

Λ :=
(−1)n(n−1)/2

n!
(Ω ∧ · · · ∧ Ω)︸ ︷︷ ︸

n times

, (2.1)

where 2n = dimP , which has the local expression

Λ = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

In particular, any symplectic manifold is oriented.

2.2 Symplectic Transformations

Given two symplectic manifolds (P1,Ω1), (P2,Ω2), a C∞ mapping

φ : (P1,Ω1) → (P2,Ω2)

is said to be a symplectic transformation if φ∗Ω2 = Ω1, that is,

Ω2(φ(z))(Tzφ(v1), Tzφ(v2)) = Ω1(z)(v1, v2)

for all z ∈ P1 and v1, v2 ∈ TzP1, where Tzφ : TzP1 → TzP2 is the tangent
map of φ at z ∈ P1. Any symplectic map has injective derivative due to the
weak nondegeneracy of the symplectic forms.

Proposition 2.4 Let (P,Ω) be a symplectic manifold. The flow φt of X ∈
X(P ) consists of symplectic transformations if and only if it is locally Hamil-
tonian, that is, £XΩ = 0, where £X denotes the Lie derivative operator
defined by X .

Remark 2.5 There is a general formula relating the Lie derivative and the
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dynamics of a vector field. If T is an arbitrary (time independent) tensor field
on P and Ft the flow of the (time independent) vector field X , then

d

dt
F ∗

t T = F ∗
t £XT (2.2)

where £XT denotes the Lie derivative of T along X . We shall use this for-
mula in the proof below.

Proof Note that

φ∗
t (Ω) = Ω ⇐⇒ d

dt
φ∗

t (Ω) = 0,

which by (2.2) is equivalent to

φ∗
t£XΩ = 0 ⇐⇒ £XΩ = 0

since φ∗
t is an isomorphism. �

The name “locally Hamiltonian vector field” is justified by the following
fact. Since £XΩ = iXdΩ + diXΩ and dΩ = 0, the condition £XΩ = 0 is
equivalent to diXΩ = 0, that is, iXΩ is closed. The Poincaré lemma implies
the existence of a local function H such that iXΩ = dH .

Proposition 2.6 (Energy conservation) Let φt be the flow of the Hamiltonian
vector field XH . Then H ◦ φt = H .

Proof Since

d

dt
φt(z) = XH (φt(z))

and

Ω(z)(XH(z), u) = 〈dH(z), u〉 for all z ∈ P and u ∈ TzP,

where 〈·, ·〉 is the pairing between one-forms and vectors, we have by the chain
rule

d

dt
H(φt(z)) =

〈
dH(φt(z)),

dφt(z)
dt

〉
= 〈dH(φt(z)), XH(φt(z))〉

= Ω (φt(z))(XH(φt(z)), XH(φt(z))) = 0,

which means that H ◦ φt is constant relative to t. Since φ0(z) = z for any
z ∈ P , the result follows. �
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Proposition 2.7 A diffeomorphism φ : P1 → P2 between strong symplectic
manifolds is symplectic if and only if φ∗XH = XH◦φ for any H : U → R,
where U is an arbitrary open subset of P2.

Proof For a strong symplectic manifold (P,Ω), the tangent space TzP equals
the collection of all vectors of the form XK(z), for all smooth functions K :
U → R and all open neighborhoods U of z.

With this observation in mind and using the fact that φ is a diffeomorphism
and the symplectic form Ω2 strong, we have for all V open in P1, z ∈ V ,
v ∈ TzP1, and all H : φ(V ) → R the following equivalence

φ∗Ω2 = Ω1 ⇐⇒Ω2(φ(z)) (Tzφ(XH◦φ(z)), Tzφ(v))

= Ω1(z) (XH◦φ(z), v) (2.3)

However,

Ω1(z) (XH◦φ(z), v) = 〈d(H ◦ φ)(z), v〉
= 〈dH(φ(z)), Tzφ(v)〉
= Ω2(φ(z)) (XH(φ(z)), Tzφ(v)) . (2.4)

By (2.3) and (2.4) the relation φ∗Ω2 = Ω1 is thus equivalent to

Ω2(φ(z)) (Tzφ(XH◦φ(z)), Tzφ(v)) = Ω2(φ(z)) (XH(φ(z)), Tzφ(v))

for any smooth function H : U → R, U ⊂ P2 open, φ(z) ∈ U , and v ∈ TzP1.
By nondegeneracy of Ω2 this is equivalent to

Tzφ ◦ XH◦φ = XH ◦ φ ⇐⇒ φ∗XH = XH◦φ

which proves the statement. �

2.3 Poisson Brackets

Given a strong symplectic manifold (P,Ω), define the Poisson bracket of two
smooth functions F, G : P → R by

{F, G} := Ω(XF , XG). (2.5)

In this section all symplectic manifolds are assumed to be strong. As a
consequence of Proposition 2.7 and of the Poisson bracket definition we have
the following.
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Proposition 2.8 A diffeomorphism φ : P1 → P2 is symplectic if and only if

{F, G}2 ◦ φ = {F ◦ φ, G ◦ φ}1

for all smooth functions F, G : U → R, where U is any open subset of P2.

Combined with Proposition 2.4 this yields the following statement.

Corollary 2.9 The flow φt is that of a locally Hamiltonian vector field if and
only if

φ∗
t {F, G} = {φ∗

t F, φ∗
t G}

for all smooth functions F, G : U → R, where U is an arbitrary open subset
of P2.

Proposition 2.10 The vector space of smooth functions on the strong symplec-
tic manifold (P,Ω) is a Lie algebra under the Poisson bracket.

Proof The definition of {F, G} immediately implies that it is bilinear, skew-
symmetric, and it satisfies the Leibniz identity in each factor. To prove the
Jacobi identity, note that

{F, G} = 〈iXF
Ω, XG〉 = 〈dF, XG〉 = XG[F ]

and so

{{F, G} , H} = XH [{F, G}] .

Thus the Jacobi identity is equivalent to

XH [{F, G}] = {XH [F ] , G} + {F , XH [G]} (2.6)

which is obtained by differentiating in t at t = 0 the identity

φ∗
t {F, G} = {φ∗

t F, φ∗
t G},

where φt is the flow of XH (see Corollary 2.9). Indeed,

XH [{F, G}] =
d

dt

∣∣∣∣
t=0

φ∗
t {F, G} =

d

dt

∣∣∣∣
t=0

{φ∗
t F, φ∗

t G}

=
d

dt

∣∣∣∣
t=0

Ω
(
Xφ∗

t F , Xφ∗
t G

)
= Ω

(
XXH [F ] , XG

)
+ Ω

(
XF , XXH [G]

)
= {XH [F ] , G} + {F , XH [G]}

which proves the derivation identity (2.6). �
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Corollary 2.11 The set of Hamiltonian vector fields on P is a Lie subalgebra
of the set of the vector fields on P because

[XF , XG] = X−{F,G}.

Proof As derivations,

[XF , XG][H] = XF [XG[H]] − XG[XF [H]] = XF [{H, G}] − XG [{H, F}]
= {{H, G}, F} − {{H, F}, G} = −{H, {F, G}}
= −X{F,G}[H],

where we have applied the Jacobi identity in the fourth equality. �
The next corollary gives Hamilton’s equations in Poisson bracket form.

Corollary 2.12 If φt is the flow of XH and F : U → R is an arbitrary smooth
function defined on the open subset U of P then

d

dt
(F ◦ φt) = {F ◦ φt, H} = {F, H} ◦ φt. (2.7)

Proof We have

d

dt
(F ◦ φt)(z) =

〈
dF (φt(z)),

dφt(z)
dt

〉
= 〈dF (φt(z)), XH(φt(z))〉

= {F, H}(φt(z)).

As φt is symplectic, this is just {F ◦ φt, H ◦ φt}(z). Conservation of energy
gives {F ◦ φt, H ◦ φt}(z) = {F ◦ φt, H}(z) which proves (2.7). �

Equation (2.7) is often written in the compact form

Ḟ = {F, H}.

Corollary 2.13 The smooth function F is a constant of motion for XH if and
only if {F, H} = 0.

2.4 Cotangent Bundles

In mechanics, the phase space is very often the cotangent bundle T ∗Q of a
configuration space Q. A cotangent bundle has a weak canonical symplectic
structure and so any cotangent bundle is symplectic. The canonical two-form
Ω on T ∗Q is constructed from the canonical one-form Θ in the following way.
Define Ω = −dΘ where Θ is the one-form given by

Θαq

(
wαq

)
:= 〈αq, Tαqπ(wαq )〉, (2.8)
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where αq ∈ T ∗
q Q, wαq ∈ Tαq (T

∗Q), π : T ∗Q → Q is the projection, and
Tπ : T (T ∗Q) → TQ is the tangent map of π. The structure is called “canoni-
cal” because all the elements occurring in the definition are naturally associated
to any cotangent bundle.

In local coordinates (qi, pi) on T ∗Q the expressions of the canonical one-
and two-forms are

Θ = pidqi, Ω = −dΘ = dqi ∧ dpi.

Thus the natural cotangent bundle coordinates are Darboux coordinates for the
canonical symplectic form.

Given a diffeomorphism f : Q → S define the cotangent lift of f as the
map T ∗f : T ∗S → T ∗Q given by

T ∗f(αs)
(
vf−1(s)

)
:= αs

(
Tf(vf−1(s))

)
, (2.9)

where αs ∈ T ∗
s S and vf−1(s) ∈ Tf−1(s)Q.

Theorem 2.14 The cotangent lift T ∗f of a diffeomorphism f : Q → S pre-
serves the canonical one-form Θ.

Proof For simplicity, we give the proof in finite dimensions. Denote by
(q1, . . . , qn, p1, . . . , pn) and (s1, . . . , sn, r1, . . . , rn) canonical coordinates on
T ∗Q and T ∗S, respectively. If (s1, ..., sn) = f(q1, ..., qn), the cotangent lift
T ∗f is given by

(s1, . . . , sn, r1, . . . , rn) �→ (q1, . . . , qn, p1, . . . , pn), (2.10)

where

pj =
∂si

∂qj
ri. (2.11)

To see that the lift (2.10) of f preserves the one-form is only a matter of using
the chain rule and (2.11), that is,

ridsi = ri
∂si

∂qj
dqj = pjdqj .

Therefore (T ∗f)∗ΘQ = ΘS where ΘQ and ΘS are the canonical one-forms
on Q and S respectively. �

The converse of theorem 2.14 is also true, that is, if ϕ : T ∗S → T ∗Q is
a diffeomorphism such that ϕ∗ΘQ = ΘS then there exists a diffeomorphism
f : Q → S such that φ = T ∗f . The proof of this fact is more involved; see
Proposition 6.3.2 in [MaRa94].
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2.5 Magnetic Terms

If A ∈ Ω1(Q) define the fiber translation map tA : T ∗Q → T ∗Q by

tA(αq) := αq + A(q) αq ∈ T ∗
q Q.

Proposition 2.15 Let Θ be the canonical one-form on T ∗Q and tA : T ∗Q →
T ∗Q the fiber translation by A ∈ Ω1(Q). Then

t∗A(Θ) = Θ + π∗A

where π : T ∗Q → Q is the canonical projection. Hence

t∗AΩ = Ω − π∗dA,

where Ω = −dΘ is the canonical symplectic form on T ∗Q. Thus tA is a
symplectic transformation if and only if dA = 0.

Proof We do the proof in finite dimensions. In local coordinates we have

tA(qi, pj) = (qi, pj + Aj(q))

so

t∗AΘ = t∗A(pidqi) = (pi + Ai(q))dqi = pidqi + Ai(q)dqi,

which is the coordinate expression of Θ + π∗A. �

Let Ω be the canonical two-form on T ∗Q. If B ∈ Ω2(Q) is closed (i.e
dB = 0) then

ΩB := Ω − π∗B

is a (weak) symplectic form on T ∗Q. Indeed, the matrix form of ΩB is[
−B I
−I 0

]
, (2.12)

which shows that ΩB is nondegenerate since (2.12) is nonsingular. The extra
term −B in the symplectic form ΩB is called a magnetic term.

Proposition 2.16 Let B and B
′

be closed two-forms on Q such that B−B
′
=

dA. Then the map

tA : (T ∗Q,ΩB) → (T ∗Q,ΩB′)

is a symplectic diffeomorphism of (T ∗Q,ΩB) with (T ∗Q,ΩB′).
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Proof As

t∗AΩ = Ω − π∗dA = Ω − π∗B + π∗B
′

and π ◦ tA = π we have

t∗A(Ω − π∗B
′
) = Ω − π∗B

which proves the statement. �

Example: A particle in a magnetic field. Consider the motion of a charged
particle in a given time independent magnetic field B := Bxi + Byj + Bzk,
where i, j,k is the usual orthonormal basis of R3. As customary in electro-
magnetism, we assume that div B = 0. The divergence free vector field B
uniquely defines a closed two-form B on R3 by

B := iB(dx ∧ dy ∧ dz) = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy.

The Lorentz force law for a particle with charge e and mass m is

m
dv
dt

=
e

c
v × B, (2.13)

where q = (x, y, z) is the position of the particle, v = (ẋ, ẏ, ż) its velocity, e

its charge, m its mass, and c the speed of light. What is the Hamiltonian for-
mulation of these equations? As we shall see, there are two different answers.

First, let (px, py, pz) := p := mv, consider on (q,p)-space, that is, T ∗R3,
the magnetic symplectic form

ΩB = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz −
e

c
B

= m(dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż) − e

c
B,

and the Hamiltonian given by the kinetic energy of the particle

H =
1

2m
‖p‖2 =

m

2
(ẋ2 + ż2 + ẏ2).

Let us show that (2.13) is given by the Hamiltonian vector field XH deter-
mined by the equation

dH = iXH
ΩB . (2.14)

If XH(q,p) = (u, v, w, u̇, v̇, ẇ), then (2.14) is equivalent to

m(ẋdẋ + ẏdẏ + żdż) = m(udẋ − u̇dx + vdẏ − v̇dy + wdż − ẇdz)

−e

c
[Bxvdz − Bxwdy − Byudz + Bywdx + Bzudy − Bzvdx].
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Comparing coefficients we get

u = ẋ

v = ẏ

w = ż

mu̇ = e
c (Bzv − Byw)

mv̇ = e
c (Bxw − Bzu)

mẇ = e
c (Byu − Bxv),

which are equivalent to (2.13). Thus Hamilton’s equations for the Lorentz force
law need to be taken relative to the magnetic symplectic form and the kinetic
energy of the particle.

Second, write B = dA (always possible on R3), or equivalently, B =
∇×A, where A� = A, that is A = Axi+Ayj+Azk and A = Axdx+Aydy+
Azdz. Then the map tA : (x,p) �→ (x,p+ e

cA), pulls back the canonical two-
form Ω of T ∗R3 to ΩB by Proposition 2.15. So, the Lorentz equations are also
Hamiltonian relative to the canonical two-form Ω and Hamilton’s function

HA(x,p) =
1

2m

∥∥∥p − e

c
A

∥∥∥2

.

(See also [MaRa94] and [Jost]). It is not always possible to write B = dA if
the domain on which one considers these equations is not simply connected,
the magnetic monopole being such a case. We shall return to this example in
the context of the Lagrangian formalism in §3.3.

3 Lagrangian Formalism

This lecture describes the local geometry of the Lagrangian formalism and
ends with some remarks on global Lagrangian variational principles. The ref-
erences for this material continue to be [Arnold79], [AbMa78], [MaRa94],
[LiMa87].

3.1 Lagrangian Systems

The Legendre transformation. A smooth function L : TQ → R is called a
Lagrangian. The Legendre transformation FL : TQ → T ∗Q is the smooth
vector bundle map covering the identity defined by

〈FL(vq), wq〉 :=
d

dε

∣∣∣∣
ε=0

L(vq + εwq).
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In the finite dimensional case, the local expression of FL is

FL(qi, q̇i) =
(

qi,
∂L

∂q̇i

)
= (qi, pi).

Given a Lagrangian L, the action of L is the map A : TQ → R given by

A(v) := 〈FL(v), v〉, (3.1)

and the energy of L is

E(v) := A(v) − L(v). (3.2)

Let Θ and Ω be the canonical one and two-forms on T ∗Q, respectively. The
Legendre transformation FL induces a one-form ΘL and a closed two-form
ΩL on TQ by

ΘL = (FL)∗Θ

ΩL = −dΘL = (FL)∗Ω.

In finite dimensions, the local expressions are

ΘL :=
∂L

∂q̇i
dqi

ΩL :=
∂2L

∂q̇i∂qj
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dqi ∧ dq̇j .

The closed two-form ΩL can be written as the 2n×2n skew-symmetric matrix

ΩL =

(
A ∂2L

∂q̇i∂q̇j

− ∂2L
∂q̇i∂q̇j 0

)
(3.3)

where A is the skew-symmetrization of the n × n matrix
(

∂2L
∂q̇i∂qj

)
. The non-

degeneracy of ΩL is equivalent to the invertibility of the matrix
(

∂2L
∂q̇i∂q̇j

)
. If

(3.3) is invertible, the Lagrangian L is said to be regular. In this case, by the
implicit function theorem, FL is locally invertible. If FL is a diffeomorphism,
L is called hyperregular.

Lagrangian systems. Lagrangian systems are special vector fields on the tan-
gent bundle that are naturally associated to a function L : TQ → R.

Definition 3.1 A vector field Z on TQ is called a Lagrangian vector field if

ΩL(v)(Z(v), w) = 〈dE(v), w〉,

for all v ∈ TqQ, w ∈ Tv(TQ).
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Proposition 3.2 The energy is conserved along the flow of a Lagrangian vec-
tor field Z.

Proof Let v(t) ∈ TQ be an integral curve of Z. Skew-symmetry of ΩL

implies

d

dt
E(v(t)) = 〈dE(v(t)), v̇(t)〉 = 〈dE(v(t)), Z(v(t))〉

= ΩL(v(t)) (Z(v(t)), Z(v(t))) = 0.

Thus E(v(t)) is constant in t. �

Second order equations. Lagrangian vector fields are intimately tied to sec-
ond order equations.

Definition 3.3 Let τQ : TQ → Q be the canonical projection. A vector field
Z ∈ X(TQ) is called a second order equation if

TτQ ◦ Z = idTQ .

If c(t) is an integral curve of Z, the curve τQ(c(t)) on Q is called a base
integral curve of Z.

Let V be the model of Q. In a canonical tangent bundle chart U × V of TQ,
U open in V, the vector field Z can be written as

Z(q, q̇) = (q, q̇, Z1(q, q̇), Z2(q, q̇)),

for some smooth maps Z1, Z2 : U × V → V. Thus,

TτQ(Z(q, q̇)) = (q, Z1(q, q̇))).

Since Z is a second order equation, this implies that Z1(q, q̇) = q̇. That is, in
a local chart, the vector field is given by

Z(q, q̇) = (q, q̇, q̇, Z2(q, q̇)).

So the dynamics is determined by

dq
dt

= Z1(q, q̇) = q̇

dq̇
dt

= Z2(q, q̇)

which is equivalent to the usual second order equation

d2q
dt2

= Z2(q, q̇).
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The relationship between second order equations and Lagrangian vector fields
is given by the following statement, whose proof is a straightforward (but
somewhat lengthy) computation.

Theorem 3.4 Let Z be the Lagrangian vector field on Q defined by L and
suppose that Z is a second order equation. Then, in a canonical chart U ×
V of TQ, an integral curve (q(t), q̇(t)) of Z satisfies the Euler-Lagrange
equations

dqi

dt
= q̇i

d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, . . . , n.

Furthermore, if L is regular then Z is always second order.

3.2 Geodesics

An important example of a Lagrangian vector field is the geodesic spray of a
pseudo-Riemannian metric. Recall that a pseudo-Riemannian manifold is a
smooth manifold Q endowed with a symmetric nondegenerate covariant tensor
g. Thus, on each tangent space TqQ there is a nondegenerate (but indefinite,
in general) inner product g(q). If g is positive definite, then the pair (Q, g) is
called a Riemannian manifold.

If (Q, g) is a pseudo-Riemannian manifold, there is a natural Lagrangian on
it given by the kinetic energy K of the metric g, namely,

K(v) :=
1
2
g(q)(vq, vq),

for q ∈ Q and vq ∈ TqQ. In finite dimensions, in a local chart,

K(qk, q̇l) =
1
2
gij(qk)q̇iq̇j .

The Legendre transformation is in this case FK(vq) = g(q)(vq, ·), for vq ∈
TqQ. The Euler-Lagrange equations become the geodesic equations for the
metric g, given (for finite dimensional Q in a local chart) by

q̈i + Γi
jk q̇j q̇k = 0, i = 1, . . . n,

where

Γh
jk =

1
2
ghl

(
∂gjl

∂qk
+

∂gkl

∂qj
− ∂gjk

∂ql

)
are the Christoffel symbols. The Lagrangian vector field associated to K is
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called the geodesic spray. Since the Legendre transformation is a diffeomor-
phism (in finite dimensions or in infinite dimensions if the metric is assumed
to be strong), the geodesic spray is always a second order equation.

Let us link this approach to geodesics to the classical formulation using
covariant derivatives. The covariant derivative ∇ : X(Q) × X(Q) → X(Q),
(X, Y ) �→ ∇X(Y ), of the Levi-Civita connection on (Q, g) is given in local
charts by

∇X(Y ) = XiY jΓk
ij

∂

∂qk
+ Xi ∂Y j

∂qi

∂

∂qj
.

If c(t) is a curve on Q and X ∈ X(Q), the covariant derivative of X along c(t)
is defined by

DX

Dt
:= ∇ċX,

or locally, (
DX

Dt

)i

= Γi
jk(c(t))ċj(t)Xk(c(t)) +

d

dt
Xi(c(t)).

A vector field is said to be parallel transported along c(t) if DX
Dt = 0. Thus

ċ(t) is parallel transported along c(t) if and only if

c̈i + Γi
jk ċj ċk = 0.

In classical differential geometry a geodesic is defined to be a curve c(t) in Q

whose tangent vector ċ(t) is parallel transported along c(t). As the expression
above shows, geodesics are base integral curves of the Lagrangian vector field
defined by the kinetic energy of g.

A classical mechanical system is given by a Lagrangian of the form L(vq) =
K(vq) − V (q), for vq ∈ TqQ. The smooth function V : Q → R is called the
potential energy. The total energy of this system is given by E = K + V and
the Euler-Lagrange equations (which are always second order) are

q̈i + Γi
jk q̇j q̇k + gil ∂V

∂ql
= 0, i = 1, . . . n,

where gij are the entries of the inverse matrix of (gij). If Q = R3 and the
metric is given by gij = δij , these equations are Newton’s equations of motion
(1.3) of a particle in a potential field with which we began our discussion in
the Introduction.
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3.3 Hyperregular Lagrangians

We shall summarize here the precise equivalence between the Lagrangian and
Hamiltonian formulation for hyperregular Lagrangians and Hamiltonians. The
proofs are easy lengthy verifications; see [AbMa78] or [MaRa94].

(a) Let L be a hyperregular Lagrangian on TQ and H = E ◦ (FL)−1,
where E is the energy of L. Then the Lagrangian vector field Z on TQ

and the Hamiltonian vector field XH on T ∗Q are related by the identity

(FL)∗XH = Z.

Furthermore, if c(t) is an integral curve of Z and d(t) an integral curve
of XH with FL(c(0)) = d(0), then FL(c(t)) = d(t) and their base
integral curves coincide, that is, τQ(c(t)) = πQ(d(t)) = γ(t), where
τQ : TQ → Q and πQ : T ∗Q → Q are the canonical bundle projec-
tions.

(b) A Hamiltonian H : T ∗Q → R is said to be hyperregular if the smooth
vector bundle map covering the identity, FH : T ∗Q → TQ, defined
by

〈FH(αq), βq〉 :=
d

dε

∣∣∣∣
ε=0

H(αq + εβq), αq, βq ∈ T ∗
q Q,

is a diffeomorphism. Define the action of H by G := 〈Θ , XH〉. If
H is a hyperregular Hamiltonian then the energies of L and H and the
actions of L and H are related by

E = H ◦ (FH)−1, A = G ◦ (FH)−1.

In addition, the Lagrangian L = A − E is hyperregular and FL =
FH−1.

(c) The constructions above define a bijective correspondence between hy-
perregular Lagrangians and Hamiltonians.

Example. Let us return to the example in §2.5 of a particle of charge e and
mass m moving in a magnetic field B. Recall that if B = ∇ × A is a given
magnetic field on R3, then with respect to the canonical variables (q,p) on
T ∗R3, the canonical symplectic form dq ∧ dp, and the Hamiltonian

H(q,p) =
1

2m

∥∥∥p − e

c
A

∥∥∥2

, (3.4)

Hamilton’s equations coincide with Newton’s equations for the Lorentz force
law (2.13). It is obvious that H is hyperregular since

q̇ = FH(q,p) =
1
m

(
p − e

c
A

)
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has the inverse

p = mq̇ +
e

c
A.

The Lagrangian is given by

L(q, q̇) = p · q̇ − H(q,p)

=
(
mq̇ +

e

c
A

)
· q̇ − 1

2m

∥∥∥p − e

c
A

∥∥∥2

= m‖q̇‖2 +
e

c
A · q̇ − 1

2m
‖mq̇‖2

=
m

2
‖q̇‖2 +

e

c
A · q̇. (3.5)

Lagrange’s equations for this L can be directly verified to yield mq̈ = e
c q̇×B,

that is, Newton’s equations for the Lorentz force (2.13).
These equations are not geodesic because the Lagrangian is not given by the

kinetic energy of a metric. Can one enlarge the space such that these equations
are induced by some geodesic equations on a higher dimensional space? The
answer is positive and is given by the Kaluza-Klein construction. We shall
return once more to this example after we have presented the basic elements
of reduction theory. The direct construction proceeds as follows. Define the
manifold QKK := R3×S1 with variables (q, θ). On QKK introduce the one-
form A+dθ (a connection one-form on the trivial circle bundle R3×S1 → R3)
and define the Kaluza-Klein Lagrangian

LKK(q, θ, q̇, θ̇) =
1
2
m‖q̇‖2 +

1
2

∥∥∥〈
A + dθ, (q, q̇, θ, θ̇)

〉∥∥∥2

=
1
2
m‖q̇‖2 +

1
2

(
A · q̇ + θ̇

)2

. (3.6)

Note that LKK is positive definite in (q̇, θ̇) so it is the kinetic energy of a
metric, the Kaluza-Klein metric on QKK . Thus the Euler-Lagrange equations
for LKK are the geodesic equations of this metric on R3×S1. (For the readers
who know a little about connections and Lie algebras, it is obvious that this
construction can be generalized to a principal bundle with compact structure
group endowed with a connection; one gets in this way Yang-Mills theory.)
The Legendre transformation for LKK gives the momenta

p = mq̇ + (A · q̇ + θ̇)A and π = A · q̇ + θ̇. (3.7)

Since LKK does not depend on θ, the Euler-Lagrange equation

d

dt

∂LKK

∂θ̇
=

∂LKK

∂θ
= 0
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shows that π = ∂LKK/∂θ̇ is conserved. The charge is now defined by e :=
cπ. The Hamiltonian HKK associated to LKK by the Legendre transformation
(3.7) is

HKK(q, θ,p, π) = p · q̇ + πθ̇ − LKK(q, q̇, θ, θ̇)

= p · 1
m

(p − πA) + π(π − A · q̇)

− 1
2
m‖q̇‖2 − 1

2
π2

= p · 1
m

(p − πA) +
1
2
π2

− πA · 1
m

(p − πA) − 1
2m

‖p − πA‖2

=
1

2m
‖p − πA‖2 +

1
2
π2. (3.8)

Since π = e/c is a constant, this Hamiltonian, regarded as a function of only
the variables (q,p), is up to a constant equal to the Lorentz force Hamiltonian
(3.4). This fact is not an accident and is due to the geometry of reduction. This
example will be redone in §7.3 from the point of view of reduction theory.

3.4 Variational Principles

We now sketch the variational approach to mechanics.

Theorem 3.5 (Variational Principle of Hamilton) Let L be a Lagrangian on
TQ. A C2 curve c : [a, b] → Q joining q1 = c(a) to q2 = c(b) satisfies the
Euler-Lagrange equations if and only if

δ

∫ b

a

L(c(t), ċ(t))dt = 0.

Proof The meaning of the variational derivative in the statement is the follow-
ing. Consider a family of C2 curves cλ(t) for |λ| < ε satisfying c0(t) = c(t),
cλ(a) = q1, and cλ(b) = q2 for all λ ∈ (−ε, ε). Then

δ

∫ b

a

L(c(t), ċ(t))dt :=
d

dλ

∣∣∣∣
λ=0

∫ b

a

L(cλ(t), ċλ(t))dt.

Differentiating under the integral sign, working in local coordinates (covering
the curve c(t) by a finite number of coordinate charts), integrating by parts,
denoting

v(t) :=
d

dλ

∣∣∣∣
λ=0

cλ(t),
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and taking into account that v(a) = v(b) = 0, yields∫ b

a

(
∂L

∂qi
vi +

∂L

∂q̇i
v̇i

)
dt =

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
vidt.

This vanishes for any C1 function v(t) if and only if the Euler-Lagrange equa-
tions hold. �

The integral appearing in this theorem

A(c(·)) :=
∫ b

a

L(c(t), ċ(t))dt

is called the action integral. It is defined on C2 curves c : [a, b] → Q with
fixed endpoints, c(a) = q1 and c(b) = q2.

The next theorem emphasizes the role of the Lagrangian one- and two-forms
in the variational principle. It is a direct corollary of the previous theorem.

Theorem 3.6 Given a Ck Lagrangian L : TQ → R for k ≥ 2, there exists a
unique Ck−2 map EL(L) : Q̈ → T ∗Q, where

Q̈ :=
{

d2q

dt2
(0) ∈ T (TQ)

∣∣∣ q(t) is a C2 curve in Q

}
is a submanifold of T (TQ) (second order submanifold), and a unique Ck−1

one-form ΘL ∈ Ω1(TQ), such that for all C2 variations qε(t) (defined on a
fixed t-interval) of q0(t) := q(t), we have

dA[q(·)] · δq(·) =
∫ b

a

EL(L)
(

d2q

dt2

)
· δq dt + ΘL

(
dq

dt

)
δ̂q

∣∣∣∣b
a

where

δq(t) =
d

dε

∣∣∣∣
ε=0

qε(t), δ̂q(t) =
d

dε

∣∣∣∣
ε=0

dqε(t)
dt

.

The map EL : Q̈ → T ∗Q is called the Euler-Lagrange operator and its
expression in local coordinates is

EL(qj , q̇j , q̈j)i =
∂L

∂qi
− d

dt

∂L

∂q̇i
,

where it is understood that the formal time derivative is taken in the second
summand and everything is expressed as a function of (qj , q̇j , q̈j). The one-
form ΘL, whose existence and uniqueness is guaranteed by this theorem, ap-
pears as the boundary term of the derivative of the action integral if the end-
points of the curves on the configuration manifold are free; it coincides with
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(FL)∗Θ, where Θ is the canonical one-form on T ∗Q, defined in §3.1 as an
easy verification in coordinates shows.

Remark. From the variational principle one can recover well-known results
for regular Lagrangians; for proofs of these statements see e.g. [MaRa94],
§8.2.

(i) If Ft is the flow of the Lagrangian vector field, then F ∗
t ΩL = ΩL,

where ΩL = −dΘL.
(ii) If L is time dependent, for |t − t0| small, and qi(s) the solution of

the Euler-Lagrange equation subject to the condition qi(t0) = q̄i, the
convex neighborhood theorem guarantees that the action integral

S(qi, q̄i, t) =
∫ t

t0

L(qi(s), q̇i(s), s) ds,

satisfies the Hamilton-Jacobi equation

∂S

∂t
+ H

(
q,

∂S

∂q
, t

)
= 0. (3.9)

There is another classical variational principle involving the Hamiltonian,
known under the name of Hamilton’s phase space principle. Denote in what
follows by πQ : T ∗Q → Q the cotangent bundle projection.

Theorem 3.7 Let H : T ∗Q → R a smooth Hamiltonian. A C1 curve z :
[a, b] → T ∗Q joining z(a) to z(b) satisfies Hamilton’s equations if and only if

δ

∫ b

a

(
〈Θ, ż(t)〉 − H(z(t))

)
dt = 0,

where the variations δz satisfy TπQ(δα(a)) = TπQ(δα(b)) = 0.

Proof One follows the method of proof of Theorem 3.5. The meaning of the
variational derivative is the following. Consider a family of C1 curves zλ(t)
for |λ| < ε satisfying z0(t) = z(t), zλ(a) = z1, and zλ(b) = z2 for all
λ ∈ (−ε, ε). Then

δ

∫ b

a

(
〈Θ, ż(t)〉 − H(z(t))

)
dt :=

d

dλ

∣∣∣∣
λ=0

∫ b

a

(
〈Θ, żλ(t)〉 − H(zλ(t))

)
dt.

Differentiating under the integral sign, working in local coordinates (covering
the curve z(t) by a finite number of coordinate charts), integrating by parts,
denoting

δz(t) :=
d

dλ

∣∣∣∣
λ=0

zλ(t),
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writing in coordinates δz(t) = (δqi(t), δpi(t)), and taking into account that
δqi(a) = δqi(b) = 0, yields

d

dλ

∣∣∣∣
λ=0

∫ b

a

(
(pλ)i(t)(q̇λ)i − H((qλ)i(t), (pλ)i(t))

)
dt

=
∫ b

a

(
(δp)i(t)q̇i(t) + pi(t)(δq̇)i(t) − ∂H(qi(t), pi(t))

∂qi
(δq)i(t)

−∂H(qi(t), pi(t))
∂pi

(δp)i(t)
)

dt

=
∫ b

a

[(
q̇i(t) − ∂H(qi(t), pi(t))

∂pi

)
(δp)i(t)

−
(

ṗi +
∂H(qi(t), pi(t))

∂qi

)
(δq)i(t)

]
dt.

This vanishes for any functions δqi, δpi if and only if Hamilton’s equations
hold. �

Critical point theory. We have seen that under appropriate regularity assump-
tions, the vanishing of the first variation of the action integral is equivalent to
the Euler-Lagrange equations. That is, critical points of the action integral
are solutions of the equations of motion. Now, critical points of a function
are connected to the topology of its level sets and are described by Morse
and Ljusternik-Schnirelman theory. For functions on finite dimensional spaces
see e.g. [DFN95] or [Milnor] for an exposition of this theory. For the action
integral, which is defined on the infinite dimensional manifold of admissible
motions, see e.g. [MawWil989] for the development of the relevant Morse and
Ljusternik-Schnirelman theory.

Here is an example of a strategy for the search of periodic orbits in La-
grangian systems. Let Q be a n-dimensional configuration manifold. We
search a trajectory γ(t) ∈ Q, such that γ(t) = γ(T + t) for a certain number
T > 0 (the period), where γ(t) is a solution of the Euler-Lagrange equations.
To do this, we study the action integral A, where

A[q] =
∫ T

0

L(q̇(t), q(t)) dt,

is defined on a space of T -periodic trajectories lying in Q of a certain differ-
entiability class.

Since we want to consider continuous paths, by the Sobolev Embedding
Theorem, we take

H1([0, T ];Q) := {q(·) : [0, T ] → Q | q(·) of class H1, q(0) = q(T )}
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which is an infinite dimensional Hilbert manifold; it is a simple example of
a manifold of maps from a compact manifold with boundary to an arbitrary
smooth paracompact manifold (see [Palais68] or [EbMa70] for example). How-
ever, in this case, there is simpler more direct construction (see e.g. [Ben86]).
Embed Q into some RN and consider the space of loops H1([0, T ]; RN ) of pe-
riod T with values in RN , obtained as the completion of the space of smooth
loops C∞([0, T ]; Rn) relative to the norm

‖q‖2
1 :=

∫ T

0

‖q̇(t)‖2dt +
∫ T

0

‖q(t)‖2dt.

Therefore, q(·) ∈ H1([0, T ]; Rn) is an absolutely continuous loop with L2

derivative; H1([0, T ]; RN ) is compactly immersed in C0([0, T ]; RN ) (see e.g.
[BlBr92]). Then H1([0, T ];Q) is the submanifold of H1([0, T ]; RN ) consist-
ing of all loops with values in Q.

Critical points of the action integral A are trajectories where the homology
of the level sets of A changes. For the sake of simplicity we can consider them
to be minimal. Therefore, given a subset M ⊂ H1([0, T ];Q) we could look
for γ∗(·) ∈ M subject to the condition

γ∗ = min
γ∈M

A[γ].

Typical conditions that guarantee the existence of a minimum γ∗ for A are:

(i) M is weakly closed in H1([0, T ];Q),
(ii) A is C1 on M and bounded from below,

(iii) the set {γ ∈ H1([0, T ];Q) | A[γ] < ∞,dA[γ] = 0} is compact in
H1([0, T ];Q).

Points (i) and (iii) imply that γ∗ solves the equations of motion, that is,

dA[γ∗](u) = 0,

for all u(·) ∈ Tγ∗H1([0, T ];Q). We refer, as general references, to [BlBr92],
[Jost], and [MawWil989], and for applications of this theory to the N -body
problem to [AmCZ96].

The judicious choice of the domain M, where one searches for critical
points of A, involves a lot of geometrical, analytical, and physical informa-
tion, intimately tied to the problem under consideration. In fact, the form of
the potential provides severe restrictions; for example, in the N -body problem
one has to take into account all the trajectories leading to collisions of two
or more bodies. Also, when a system is symmetric then the symmetry group
gives additional structure to M and leads to topological constraints; for exam-
ple, restrictions on the homotopy type for the trajectories enter in this case.
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Regarding the connection between global variational methods and geome-
try we want to mention an interesting problem. We have seen that the Euler
equations Π̇ = Π × Ω for the free rigid body motion can be formulated in
a variational setting assuming a particular class of variations. This construc-
tion can be generalized to any Lie group, as we shall see in Theorem 6.6. It
would be very interesting to exploit the geometrical structure and to extend the
powerful methods of the calculus of variations to formulate results about the
existence of critical points of such types of restricted variational principles.

4 Poisson Manifolds

This lecture quickly reviews the basic theory of Poisson manifolds. Very little
will be proved here and we refer to standard books (such as [GuSt84, LiMa87,
Marsden92, MaRa94, McDSal95, V96]) and [W] for the detailed discussion
of the topics below. Unless otherwise specified, all manifolds in this chapter
are finite dimensional. Whenever infinite dimensional manifolds will be used
the results presented here are formal. A theory for infinite dimensional Pois-
son manifolds generalizing that of strong symplectic manifolds can be found
in [OdzRa03] (for more examples see [OdzRa004] and [BelRa04]). No gen-
eral satisfactory theory for infinite dimensional general Poisson manifolds has
been developed yet, even though there are many significant examples, some
of which will be presented in these lectures. Remarks regarding the infinite
dimensional situation will be made throughout the text.

4.1 Fundamental Concepts

Definition 4.1 A Poisson bracket on a manifold P is a bilinear operation { , }
on the space F(P ) := {F : P → R | F is smooth} verifying the following
conditions:

(i) (F(P ), { , }) is a Lie algebra, and

(ii) { , } satisfies the Leibniz identity on each factor.

A manifold endowed with a Poisson bracket is called a Poisson manifold and
is denoted by (P, { , }). The elements of the center C(P ) of the Poisson algebra
are called Casimir functions.

A smooth map ϕ : (P1, { , }1) → (P2, { , }2) between the Poisson man-
ifolds (P1, { , }1) and (P2, { , }2) is called a canonical or Poisson map, if
ϕ∗{F, H}2 = {ϕ∗F, ϕ∗H}1 for any F, H ∈ F(P2).
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Note that (i) is equivalent to the statement that the Poisson bracket is real, bi-
linear, antisymmetric, and satisfies the Jacobi identity. Furthermore, (ii) states
that the linear map F �→ {F, H} (and H �→ {F, H}) is a derivation, that is,

{FK, H} = {F, H}K + F {K, H}

for all F, H, K ∈ F(P ).
As in the case of strong symplectic manifolds, we can define Hamiltonian

vector fields on a finite dimensional Poisson manifold.

Definition 4.2 Let (P, { , }) be a finite dimensional Poisson manifold and H ∈
F(P ). The unique vector field XH on P that satisfies XH [F ] = {F, H}
for all F ∈ F(P ), is called the Hamiltonian vector field associated to the
Hamiltonian function H .

Note that the Jacobi identity is equivalent to

[XF , XH ] = −X{F,H}

for all F, H ∈ F(P ).

Any symplectic manifold (P,Ω) is Poisson. First, recall that there is a
Poisson bracket naturally defined on P , namely, {F, H} = Ω(XF , XH),
where XH is defined by the identity dH = Ω(XH , ·). Second, the relation
XH [F ] = 〈dF, XH〉 = Ω(XF , XH), shows that the Hamiltonian vector field
defined via the symplectic form coincides with the Hamiltonian vector field
defined using the Poisson bracket.

If P is a Poisson manifold, note that F ∈ C(P ) if and only if XF = 0.

If φt is the flow of XH , then H ◦ φt = H , that is, H is conserved. Indeed,

d

dt
(H ◦ φt) =

〈
dH,

d

dt
φt

〉
= 〈dH, XH〉 = {H, H} = 0.

Thus H ◦φt is constant in t and since φ0 is the identity, it follows that H ◦φt =
H , for all t.

Hamilton’s equations ż = XH(z) for the function H ∈ F(P ) can be equiv-
alently written as

d

dt
(F ◦ φt) = {F, H} ◦ φt or, in shorthand notation, Ḟ = {F, H}

for any F ∈ F(P ). To see this, note first that if φt is the flow of XH , we have
φ∗

t XH = XH , or, equivalently, Tφt ◦ XH = XH ◦ φt. Thus, for any z ∈ P
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we have

d

dt
(F ◦ φt)(z) =

〈
dF (φt(z)),

d

dt
φt(z)

〉
= 〈dF (φt(z)), XH(φt(z))〉

= 〈dF (φt(z)), Tzφt(XH(z))〉 = 〈d(F ◦ φt)(z), XH(z)〉
= {F ◦ φt, H}(z).

Since H ◦ φt = H we conclude that Hamilton’s equations on a Poisson mani-
fold can be written as

d

dt
(F ◦ φt) = {F, H} ◦ φt = {F ◦ φt, H} = {F ◦ φt, H ◦ φt}. (4.1)

Proposition 4.3 The flows of Hamiltonian vector fields are Poisson diffeomor-
phisms.

Proof Let φt be the flow of the Hamiltonian vector field XH , that is, d
dtφt =

XH ◦ φt. We need to prove {F, K} ◦ φt = {F ◦ φt, K ◦ φt} for any F, K ∈
F(P ). To see this, note that for any z ∈ P ,

d

dt
{F, K}(φt(z)) =

〈
d{F, K}(φt(z)),

d

dt
φt(z)

〉
= 〈d{F, K}(φt(z)), XH(φt(z))〉 = {{F, K}, H}(φt(z)),

that is,

d

dt
({F, K} ◦ φt) = {{F, K}, H} ◦ φt = {{F, K} ◦ φt, H} (4.2)

by (4.1). On the other hand, the bilinearity of the Poisson bracket gives

d

dt
{F ◦ φt, K ◦ φt} =

{
d

dt
(F ◦ φt) , K ◦ φt

}
+

{
F ◦ φt,

d

dt
(K ◦ φt)

}
.

This equality, the Jacobi identity, and (4.1) imply that

d

dt
{F ◦ φt, K ◦ φt} = {{F ◦ φt, H} , K ◦ φt} + {F ◦ φt, {K ◦ φt, H}}

= {{F ◦ φt, K ◦ φt} , H} . (4.3)

Comparing (4.2) and (4.3) one sees that both {F, K}◦φt and {F ◦φt, K ◦φt}
satisfy the same equation, namely, L̇ = {L, H}. Since for t = 0, the functions
{F, K} ◦ φt and {F ◦ φt, K ◦ φt} are both equal to {F, K}, it follows that
{F, K} ◦ φt = {F ◦ φt, K ◦ φt} for all t. �

The same strategy of proof is used to show the following statement.
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Proposition 4.4 A smooth map φ : (P1, { , }1) → (P2, { , }2) is Poisson if and
only if for any H ∈ F(V ), V open in P2, we have Tφ ◦ XH◦φ = XH ◦ φ on
φ−1(V ).

Canonical maps are the key ingredient in the definition of the notion of a
Poisson submanifold.

Definition 4.5 Let (P1, {·, ·}1) and (P2, {·, ·}2) be two Poisson manifolds,
P1 ⊂ P2, such that the inclusion i : P1 ↪→ P2 is an immersion. The Pois-
son manifold (P1, {·, ·}1) is called a Poisson submanifold of (P2, {·, ·}2) if i

is a canonical map.
An immersed submanifold P1 of P2 is called a quasi Poisson submanifold

of (P2, {·, ·}2) if for any p ∈ P1, any open neighborhood U of p in P2, and
any F ∈ C∞(U) we have

XF (i(p)) ∈ Tpi(TpP1),

where XF is the Hamiltonian vector field of F on U with respect to the Poisson
bracket {·, ·}2 restricted to smooth functions defined on U .

The proofs of the following statements can be found in, e.g., [OR04], §4.1.

• If (P1, {·, ·}1) is a Poisson submanifold of (P2, {·, ·}2) then there is no other
bracket {·, ·}′ on P1 making the inclusion i : P1 ↪→ P2 into a canonical map.

• If P1 is a quasi Poisson submanifold of (P2, {·, ·}2) then there exists a
unique Poisson bracket on P1 making it into a Poisson submanifold of P2.

• Proposition 4.4 implies that any Poisson submanifold is quasi Poisson. How-
ever, a quasi Poisson submanifold P1 of (P2, {·, ·}2) could carry a Poisson
structure that has nothing to do with the one induced from P2, so it won’t be
a Poisson submanifold of P2 relative to this a priori given structure.

• If (P1,Ω1) and (P2,Ω2) are two symplectic manifolds such that P1 ⊂ P2,
then P1 is said to be a symplectic submanifold of P2 if i∗Ω2 = Ω1, where
i : P1 ↪→ P2 is the inclusion. In this case, the inclusion is necessarily an
immersion (P1 and P2 are assumed finite dimensional).

• Symplectic submanifolds of a symplectic manifold are, in general, neither
Poisson nor quasi Poisson submanifolds.

• The only quasi Poisson submanifolds of a symplectic manifold are its open
sets which are, in fact, Poisson submanifolds.

4.2 Structure Theorems

The derivation property of a Poisson bracket { , } implies that the value XF (z)
of the Hamiltonian vector field of F at z ∈ P depends on F only through
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dF (z). Thus there is a contravariant antisymmetric two-tensor Λ on P , called
the Poisson tensor, defined by

Λ(z)(dF (z),dH(z)) = {F, H} (z)

for any F, H ∈ F(U), U open in P , z ∈ U .
In finite dimensions, if (z1, z2, . . . , zn) are local coordinates, Λ is deter-

mined by the matrix
[
Λij

]
, where Λij = {zi, zj}, and hence the expression of

the Poisson bracket of the two functions F, H ∈ F(P ) is given in terms of Λ
by

{F, H} = Λij ∂F

∂zi

∂H

∂zj
.

The rank of the Poisson structure at a point z ∈ P is defined to be the rank of
the matrix

[
Λij

]
.

The Poisson tensor defines a vector bundle map Λ� : T ∗P → TP by

Λ(z)(αz, βz) = 〈αz,Λ�(βz)〉, αz, βz ∈ T ∗
z P.

Since

{F, H} (z) = Λ(z)(dF (z),dH(z)) = 〈dF (z),Λ�
z(dH(z))〉,

it follows that the Hamiltonian vector field XH is given by

XH(z) = Λ�
z(dH(z)),

that is, Λ�
z : dH(z) �→ XH(z). Thus the image of Λ�

z is the set of all Hamilto-
nian vector fields evaluated at z.

Note that if the Poisson tensor is nondegenerate, that is Λ� : T ∗
z P → TzP

is a isomorphism for all z ∈ P , then P is symplectic with the symplectic
form Ω(XF , XH) := {F, H} for all locally defined Hamiltonian vector fields
XF , XH (the closeness of Ω is equivalent to the Jacobi identity of the Poisson
bracket).

The image Im(Λ�) ⊂ TP of Λ� defines a smooth generalized distribution
on P , i.e., Im(Λ�

z) ⊂ TzP is a vector subspace for each z ∈ P and for every
point z0 ∈ P and every vector v ∈ Im(Λ�

z0
), there exists an open neighborhood

U of z0 and smooth vector field X ∈ X(U) such that X(u) ∈ Im(Λ�
u) for all

u ∈ U and X(z0) = v.
If the rank of the Poisson tensor is constant then Im(Λ�) is a smooth vec-

tor subbundle of TP . Furthermore, the Jacobi identity gives [XF , XH ] =
X−{F,H} which shows that the distribution Im(Λ�) is involutive. The Frobe-
nius theorem guarantees then its integrability.

If Im(Λ�) is not a subbundle then integrability and involutivity (as used in
the Frobenius theorem) are not equivalent. Recall that if D ⊂ TP is a smooth
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generalized distribution, an immersed connected submanifold S of P , S ⊂ P ,
is said to be an integral manifold of D if for every z ∈ S, Tzi(TzS) ⊂
D(z), where i : S → P is the inclusion. The integral submanifold S is said
to be of maximal dimension at a point z ∈ S if Tzi(TzS) = D(z). The
smooth generalized distribution D is integrable if for every point z ∈ P there
is an integral manifold of D everywhere of maximal dimension containing z.
The smooth generalized distribution D is involutive if it is invariant under the
(local) flows associated to differentiable sections of D. Note that this definition
of involutivity is weaker than the one used in the Frobenius theorem and that it
only coincides with it when the dimension of D(z) is the same for any z ∈ P .

Theorem 4.6 (Stefan-Sussmann) The smooth generalized distribution D on
a finite dimensional manifold P is integrable if and only if it is involutive.

Thus P carries a generalized foliation, all of whose integral manifolds are
injectively immersed.

If P is a Poisson manifold, Im(Λ�) is an involutive smooth generalized dis-
tribution so each of its integral submanifolds has its tangent space at every
point equal to the vector space of all Hamiltonian vector fields evaluated at
that point. Thus, these integral submanifolds are symplectic and the Poisson
bracket defined by their symplectic structure coincides with the original Pois-
son bracket on P . These integral manifolds are called the symplectic leaves
of P . It turns out that the symplectic leaves are the equivalence classes of
the following equivalence relation: z1Rz2 if and only if there is a piecewise
smooth curve in P joining z1 and z2 each segment of which is an integral
curve of some Hamiltonian vector field. The following theorem summarizes
this discussion.

Theorem 4.7 (Symplectic Stratification Theorem) Let P be a finite dimen-
sional Poisson manifold. Then P is the disjoint union of its symplectic leaves.
Each symplectic leaf in P is an injectively immersed Poisson submanifold and
the induced Poisson structure on the leaf is symplectic. The dimension of a leaf
through a point z equals the rank of the Poisson structure at that point.

Note that if C is a Casimir function, then Λ�(dC) = 0, which shows that
Casimir functions are constant on symplectic leaves. However, one should not
conclude that the symplectic leaves are level sets of Casimir functions. This
is not even true for the maximal dimensional ones, which are generic. For
example, symplectic leaves may be open or they may all have a common ac-
cumulation point. Worse, there are Poisson manifolds with no global Casimir



V. 4 Poisson Manifolds 43

functions. Locally, Casimir functions always exist generically as the next local
structure theorem shows.

Theorem 4.8 (Weinstein) Let P be a finite dimensional Poisson manifold and
z ∈ P . There exists a neighborhood U of z and an isomorphism φ = φS×φN :
U → S × N where S is symplectic, N is Poisson and the rank of N at φN (z)
is zero. The factors S, N are unique up to a local isomorphism.

In this theorem S can be chosen to be an open set in the symplectic leaf
through z and N any submanifold of P transverse to it such that S∩N = {z}.
While there is no canonical choice of N in general, the Poisson structure on it
is uniquely determined up to a Poisson isomorphism. This Poisson structure is
called the transverse Poisson structure at z.

Assume that the Poisson structure has rank 0 ≤ 2k ≤ dim(P ) = 2k + l at
the point z ∈ P . Then there are coordinates (q1, . . . , qk, p1, . . . , pk, y1, . . . , yl)
in a chart around z such that

{qi, qj} = {pi, pj} = {qi, yj} = {pi, y
j} = 0, {qi, pj} = δi

j

and the brackets {yi, yj} depend only on y1, . . . , yl and vanish at the point z.
In this chart, the transverse Poisson structure is given by the subspace defining
these coordinates y1, . . . , yl. If, in addition, there is a neighborhood of z such
that the rank of the Poisson structure is constant on it then, shrinking if nec-
essary the above chart such that it lies in this neighborhood, the coordinates
y1, . . . , yl can be chosen such that {yi, yj} = 0 for all i, j = 1, . . . , l. In this
case, the yi are the local Casimir functions in a chart about z.

Comments on Banach Poisson manifolds. Definition 4.1 presents several
problems in the infinite dimensional case that will be briefly reviewed here. Let
(P, { , }) be a Banach Poisson manifold. The Leibniz property insures, as in
finite dimensions, that the value of the Poisson bracket at z ∈ P depends only
on the differentials dF (z), dH(z) ∈ T ∗

z P which implies that there is a smooth
section Λ of the vector bundle

∧2
T ∗∗P satisfying {F, H} = Λ(dFdH).

If the Poisson tensor is strongly nondegenerate, that is Λ� : T ∗
z P → TzP

is a isomorphism of Banach spaces for all z ∈ P , then P is strong symplec-
tic with the symplectic form Ω(XF , XH) := {F, H} for all locally defined
Hamiltonian vector fields XF , XH (the closedness of Ω is equivalent to the
Jacobi identity of the Poisson bracket). However if Λ� is one-to-one but not
surjective, that is, the Poisson tensor is weakly nondegenerate, then P is not,
in general, symplectic (see example of page 344 of [MaRa94]). Worse, a weak
symplectic manifold is not a Poisson manifold since not every locally defined
function defines a Hamiltonian vector field.
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On a Banach Poisson manifold the rule XF := Λ�(dF ) defines a smooth
section of T ∗∗P and hence is not, in general, a vector field on P . In anal-
ogy with the finite dimensional and the strong symplectic case, we need to
require that XF be a Hamiltonian vector field. In order to achieve this, we
are forced to make the assumption that the Poisson bracket on P satisfies the
condition Λ�(T ∗P ) ⊂ TP ⊂ T ∗∗P . The study of such Banach Poisson mani-
folds was begun in [OdzRa03] with special emphasis on the Lie-Poisson case.
See [OdzRa004] and [BelRa04] for further examples of such Banach Poisson
manifolds.

While these manifolds are important in quantum mechanics, most infinite
dimensional examples in classical continuum mechanics do not satisfy this
hypothesis on Λ�; in fact, most of them have weak symplectic phase spaces.
In this case, the beginning of a systematic theory of weak symplectic man-
ifolds and the associated Hamiltonian dynamics can be found in [ChMa74].
For (weak) Poisson manifolds, not even a proposal of a theory is available to-
day and the rigorous study of several examples coming from fluid dynamics,
elasticity theory, and plasma physics should shed light on the general abstract
case.

4.3 Examples of Poisson Brackets

1. Symplectic Bracket. As we mentioned before, a strong symplectic form Ω
on a manifold P gives the Poisson bracket

{F, H} := Ω(XF , XH).

If C is a Casimir function on a connected strong symplectic manifold P ,
i.e., {C, F} = 0 for all F ∈ F(P ), then XC = 0. Strong nondegeneracy of
Ω implies then that dC = 0, which in turn shows that C is constant on the
connected manifold P . Thus, on a connected strong symplectic manifold
the Casimir functions are the constants, i.e., the center of F(P ) is R.

2. Lie-Poisson Bracket. Let g be a Lie algebra with Lie bracket [ , ] and g∗ its
dual. Define the functional derivative of the smooth function F : g∗ → R at
µ ∈ g∗ to be the unique element δF

δµ ∈ g given by

DF (µ) · δµ = lim
ε→0

F (µ + εδµ) − F (µ)
ε

=
〈

δµ,
δF

δµ

〉
where 〈 , 〉 denotes the duality pairing between g∗ and g. Note that DF (µ)
is the usual Fréchet derivative , i.e., DF (µ) ∈ L(g∗, R) = g∗∗. If g is finite
dimensional, then g∗∗ ∼= g naturally and δF/δµ ∈ g is the element of g

representing the functional DF (µ) ∈ g∗∗ on g∗.
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The Banach space g∗ is a Poisson manifold for each of the Lie-Poisson
brackets { , }+ and { , }− defined by

{F, H}± (µ) = ±
〈

µ ,

[
δF

δµ
,
δH

δµ

]〉
(4.4)

for all µ ∈ g∗ and F, H ∈ F(g∗). The bilinearity and skew-symmetry
are obvious from the definition. The derivation property follows from the
Leibniz rule for functional derivatives. For the direct proof of the Jacobi
identity see [MaRa94], pg. 329.

In general, if g is a Banach Lie algebra, g∗ is not a Banach Poisson man-
ifold that satisfies the condition Λ�(T ∗g∗) ⊂ Tg∗ discussed at the end of
§4.2. It was shown in [OdzRa03] that a Banach space b is a Banach Lie-
Poisson space (b, { , }) if and only if its dual b∗ is a Banach Lie algebra
(b∗, [ , ]) satisfying

ad∗
x b ⊂ b ⊂ b

∗∗ for all x ∈ b
∗, (4.5)

where adx : b∗ → b∗ is the adjoint representation adx y := [x, y] for any
x, y ∈ b∗. Of course, the Poisson bracket of F, H ∈ F(b) is given in this
case by

{F, H}(b) = 〈[DF (b),DH(b)], b〉, (4.6)

where b ∈ b and D denotes the Fréchet derivative. If H is a smooth function
on b, the associated Hamiltonian vector field is given by

XH(b) = − ad∗
DH(b) b. (4.7)

Note that if the condition ad∗
x b ⊂ b does not hold for every x ∈ b∗, then

(4.7) does not make sense, in general. We shall encounter below such sit-
uations, in which case formulas (4.6) and (4.7) will be taken formally, or
subject to the condition that only functions for which (4.7) makes sense will
be used.

3. Rigid body bracket. As a particular case of the previous example, consider
the Lie algebra g = so(3) of the rotation group consisting of 3 × 3 skew-
symmetric matrices. This Lie algebra is isomorphic to (R3,×), where × is
the cross product of vectors, via the isomorphism (1.13), that is (u×v)ˆ =
[û, v̂] for any u,v ∈ R3.

We identify so(3)∗ with R3 using as pairing the Euclidean inner product.
The Fréchet derivative and the functional derivative of a function defined on
R3 coincide and are both equal to the usual gradient of the function. Thus
the Lie-Poisson bracket (4.4) or (4.6) take the form

{F, H}± (µ) = ±µ · (∇F ×∇H) .
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Let us show that C(µ) = Φ
(

1
2‖µ‖2

)
is a Casimir function, where Φ :

R → R is an arbitrary differentiable function. Indeed, since ∇C(µ) =
Φ′ ( 1

2‖µ‖2
)
µ, for any F ∈ F(R3) we have

{C, F}± (µ) = ±µ · (∇C ×∇F ) = ±Φ′
(

1
2
‖µ‖2

)
µ · (µ ×∇F ) = 0.

4. Frozen Lie-Poisson Bracket. Let g be a finite dimensional Lie algebra. For
ν ∈ g∗ define for any F, H ∈ F(g∗) the brackets

{F, H}ν
g∗ (µ) = ±

〈
ν ,

[
δF

δµ
,
δH

δµ

]〉
. (4.8)

A computation almost identical to the one needed to prove the Jacobi iden-
tity for the Lie-Poisson bracket shows that (4.8) also satisfies the Jacobi
identity. This Poisson bracket on g∗ is called the frozen Lie-Poisson bracket
at ν ∈ g∗. A discussion similar to that at the end of the second example leads
to a condition on (4.8) (like (4.5)) that makes it into a rigorous functional
analytic Poisson bracket for any smooth functions F and H .

It is worth noting that { , } + s{ , }ν is also a Poisson bracket on g∗ for
any ν ∈ g∗ and any s ∈ R. One says that these two Poisson brackets are
compatible. The verification of this statement is direct, using the previously
alluded proofs of the Jacobi identity for the Lie-Poisson and frozen Lie-
Poisson brackets.

5. Ideal Fluid Bracket in Velocity Representation. In this infinite dimen-
sional example we shall work formally or with the understanding that we
restrict the class of functions to those admitting functional derivatives.

Let Xdiv(D) be the Lie algebra of smooth divergence free vector fields
tangent to the boundary ∂D defined on an oriented Riemannian manifold D

with Riemannian metric g and Riemannian volume form µ. Consider the
weakly nondegenerate pairing 〈 , 〉 : Xdiv(D) × Xdiv(D) → R given by the
L2 pairing

〈u, v〉 =
∫

D

g(u, v)µ.

Thus, we formally regard Xdiv(D)∗ as being Xdiv(D) and apply the formu-
las from the general theory. The plus Lie-Poisson bracket is

{F, H} (v) = −
∫

D

g

(
v,

[
δF

δv
,
δH

δv

])
µ, (4.9)

where the functional derivative δF
δv is the element of Xdiv(D) defined by

lim
ε→0

F (v + εδv) − F (v)
ε

=
∫

D

g

(
δF

δv
, v

)
µ.
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The minus sign in front of the right hand side of (4.9) appears because
the usual Lie bracket of vector fields is the negative of the left Lie alge-
bra bracket of the diffeomorphism group, whose Lie algebra has underlying
vector space X(D); this will be shown explicitly in Section 5.1, Example 2.

6. Ideal Fluid Bracket in Vorticity Representation. We continue the previ-
ous example realizing the dual of Xdiv(D) in a different manner; this ap-
proach is due to [MaWei83]. The natural dual of X(D) is the space of one-
forms Ω1(D) via the weak pairing (u, α) ∈ X(D)×Ω1(D) �→

∫
D

α(u)µ ∈
R. However, restricted to Xdiv(D) this pairing is degenerate. By the Hodge
decomposition theorem, the kernel of the linear map sending α ∈ Ω1(D) to
the element of X(D)∗ given by u ∈ X(D) �→

∫
D

α(u)µ ∈ R is dF(D) and
thus we can identify, formally, X(D)∗ with Ω1(D)/dF(D).

Next, note that the linear map [α] ∈ Ω1(D)/dF(D) �→ dα ∈ dΩ1(D)
is well defined and has kernel the first de Rham cohomology group of D.
Assuming that this first cohomology group is zero, the above map becomes
an isomorphism. Thus, under this topological assumption on D, we can
formally identify X(D)∗ with dΩ1(D). Summarizing, the weak pairing
between Xdiv(D) and dΩ1(D) is given by

(u, ω) ∈ Xdiv(D) × dΩ1(D) �→
∫

D

α(u)µ ∈ R, for ω := dα.

Therefore, the functional derivative δF/δω ∈ Xdiv(D) of F : X(D)∗ =
dΩ1(D) → R is defined by the identity

DF (ω) · δω =
∫

D

δα

(
δF

δω

)
µ, for δω := d(δα).

Thus, the plus Lie-Poisson bracket of F, H : dΩ1(D) → R has the expres-
sion

{F, H}(ω) = −
∫

D

α

([
δF

δω
,
δH

δω

])
µ, where ω = dα.

However, since dα(u, v) = u[α(v)] − v[α(u)] − α([u, v]), this formula
becomes

{F, H}(ω) =
∫

D

ω

(
δF

δω
,
δH

δω

)
µ −

∫
D

δF

δω

[
α

(
δH

δω

)]
µ

+
∫

D

δH

δω

[
α

(
δF

δω

)]
µ.

The following argument shows that the last two terms vanish. For u ∈



48 V A Crash Course in Geometric Mechanics

Xdiv(D) and f ∈ F(D) we have by the Stokes theorem∫
D

u[f ]µ =
∫

D

£u(fµ) =
∫

D

diu(fµ) =
∫

∂D

iu(fµ) =
∫

∂D

f iuµ.

The definition of the boundary volume form µ∂D induced by the volume
form µ implies that iuµ = g(u, n)µ∂D, where n is the outward unit nor-
mal to the boundary ∂D (see e.g. [AMR88] §7.2). Since u is tangent to
the boundary, this term is zero. Thus the plus Lie-Poisson bracket has the
expression

{F, H}(ω) =
∫

D

ω

(
δF

δω
,
δH

δω

)
µ.

The term “vorticity representation” appears because of the following in-
terpretation of the variable ω. Define the vorticity of a vector field u by
ωu := du�, where u� := g(u, ·) ∈ Ω1(D). Regard now u �→ ωu as a change
of variables to be implemented in the velocity representation of the Lie-
Poisson bracket. To this end, if F : dΩ1(D) → R, define F̃ : Xdiv(D) → R

by F̃ (u) := F (ωu). Then, if δω := d(δu�) , we get by the chain rule∫
D

g

(
δF̃

δu
, δu

)
µ = DF̃ (u) · δu = DF (ω) · δω

=
∫

D

δu�

(
δF

δω

)
µ =

∫
D

g

(
δu,

δF

δω

)
µ

and thus δF̃ /δu = δF/δω which shows that the vorticity representation of
the Lie-Poisson bracket is obtained from the velocity representation of the
Lie-Poisson bracket by the linear change of variables u �→ ωu.

7. Poisson-Vlasov Bracket. For a Poisson manifold (P, { , }P ) endowed with
a volume form µ, the algebra F(P ) is also a Lie algebra with Lie bracket the
Poisson bracket. Consider the weak pairing between F(P ) and the smooth
densities F(P )∗ on P given by

〈ϕ, f〉 =
∫

P

ϕf̄µ, where f̄µ := f ∈ F(P )∗, f̄ ∈ F(P ).

The plus Lie-Poisson bracket in F(P )∗ is thus given by

{F, G} (f) =
∫

P

f

{
δF

δf
,

δG

δf

}
P

.

This formal Poisson bracket is known as the Poisson-Vlasov bracket since
the Poisson-Vlasov equations form a Hamiltonian system for it if P = T ∗R3
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and the Hamiltonian is given by

H(f) =
1
2

∫∫
‖v‖2f(x, v, t)d3x d3v +

1
2m

∫
‖∇φf‖2d3x.

This system describes the motion of a collisionless plasma consisting of a
single species of particles with mass m and charge e in the electrostatic
limit (that is, one lets the speed of light c → ∞). The physical significance
of f ≥ 0 is the plasma density that depends on the position x ∈ R3, the
velocity v ∈ R3, and evolves in time t ∈ R. The charge density is given
by ρf (x) := e

∫
f(x, v)d3v and the electric potential φf (x) by the Poisson

equation −∆φf = ρf .
Let us carry out a formal computation to determine δH/δf assuming that

correct decay at infinity conditions are put on the relevant functions so that
all integration by parts below are justified. We have〈

δH

δf
, δf

〉
=

∫∫
‖v‖2δf(x, v)d3x d3v +

1
m

∫
∇φf (x) · ∇φδf (x)d3x

=
∫∫

‖v‖2δf(x, v)d3x d3v − 1
m

∫
(∆φδf (x))φf (x)d3x

=
∫∫

‖v‖2δf(x, v)d3x d3v +
1
m

∫
ρδf (x)φf (x)d3x

=
∫∫

‖v‖2δf(x, v)d3x d3v +
e

m

∫∫
δf(x, v)φf (x)d3x d3v,

which shows that
δH

δf
= ‖v‖2 +

e

m
φf .

Thus Hamilton’s equations Ḟ = {F, H} for an arbitrary functional F of
f become ḟ + {f, δH

δf } = 0 (where the Poisson bracket is now the one
on T ∗R3). Replacing here the formula for δH/δf just found yields the
Poisson-Vlasov equations

∂f

∂t
+ v · ∇xf − e

m
∇xφf · ∇vf = 0.

8. Korteweg-de Vries Bracket. Let F(R) be a space of smooth functions on
R that satisfy together with their derivatives all necessary decay conditions
at infinity guaranteeing that all integrals as well as the integrations by parts
that will be carried out below make sense and the boundary terms appearing
in these computations vanish.

The KdV bracket on F(R) is given by

{F, G} (u) =
∫ +∞

−∞

δF

δu

d

dx

(
δG

δu

)
dx,
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where the functional derivatives are taken relative to the L2 product on real
valued functions. Let us work out Hamilton’s equations Ḟ = {F, H} for
this bracket. We have∫ +∞

−∞

δF

δu
u̇ dx = DF (u(t)) · u̇(t) =

d

dt
F (u(t)) = {F, H}(u(t))

=
∫ +∞

−∞

δF

δu

d

dx

δH

δu
dx,

so Hamilton’s equation are

ut =
d

dx

(
δH

δu

)
=

(
δH

δu

)
x

,

where ut := ∂u
∂t and ux := ∂u

∂x .

In particular, if we take the Hamiltonian function

H1 = −1
6

∫ ∞

−∞
u3dx,

Hamilton’s equations for the KdV bracket become the one dimensional trans-
port equation ut + uux = 0. Indeed, since∫ +∞

−∞

δH1

δu
δu dx = DH1(u) · δu = −1

2

∫ +∞

−∞
u2δudx,

it follows that δH1
δu = − 1

2 u2 and so the equation of motion is

ut =
∂

∂x

(
−1

2
u2

)
= −u ux.

If one takes the Hamiltonian equal to

H2(u) =
∫ ∞

−∞

(
1
2
u2

x − u3

)
dx

then δH2
δu = −uxx − 3u2 and Hamilton’s equation is the Korteweg-de Vries

(KdV) equation

ut + 6u ux + uxxx = 0. (4.10)

The KdV equation has infinitely many independent integrals Fi in involu-
tion (that is, {Fi Fj} = 0) and is a completely integrable system in infinite
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dimensions. Here are the first integrals:

F0(u) =
∫ +∞
−∞ u(x) dx

F1(u) = 1
2

∫ +∞
−∞ u2(x) dx

F2(u) = H2(x) =
∫ +∞
−∞

(
−u3(x) + 1

2 u2
x(x)

)
dx

F3(u) =
∫ +∞
−∞

(
1
2u2

xxx(x) − 5u(x)u2
x(x) + 5

2 u4
x(x)

)
dx.

The existence of such integrals is believed to be closely related to the pres-
ence of solitons, that is, “solitary waves which interact pairwise by passing
through each other without changing shape” (see e.g. [AbMa78] and refer-
ences therein).

Let us look for traveling wave solutions of the KdV equation (4.10), that
is, solutions of the form u(t, x) = φ(x − ct), for c > 0 and φ ≥ 0. Substi-
tuting into (4.10) we get

cφ′ − 6φφ′ − φ′′′ = 0.

Integrating once this equation gives

cφ − 3φ2 − φ′′ = C, (4.11)

where C ∈ R is a constant. This equation is equivalent to{
dφ
dx = φ′ = ∂h

∂φ′

dφ′

dx = φ′′ = cφ − 3φ2 − C = −∂h
∂φ

(4.12)

where

h(φ, φ′) =
1
2
(φ′)2 − c

2
φ2 + φ3 + Cφ. (4.13)

Thus (4.12) is Hamiltonian in the variables (φ, φ′) ∈ R2 with Hamiltonian
function (4.13). In particular, h can be viewed to be of the form kinetic
energy K(φ, φ′) = 1

2 (φ′)2 plus potential energy V (φ) = −c
2 φ2 + φ3 + Cφ.

Since energy is conserved, we have h(φ, φ′) = D, for some constant D ∈ R,
which implies

φ′ = ±
√

cφ2 − 2φ3 + 2Cφ + 2D.

Integrating we have

s = ±
∫

dφ√
cφ2 − 2φ3 + 2Cφ + 2D

where s = x − ct.
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We seek solutions which together with their derivatives vanish at ±∞.
Then D = 0 by (4.13) and C = 0 by (4.11). Thus we get

s = ±
∫

dφ√
cφ2 − φ3

= ± 1√
c

log
∣∣∣∣√c − 2φ −

√
c√

c − 2φ +
√

c

∣∣∣∣ + K. (4.14)

The Hamiltonian system (4.12) has two equilibria when C = D = 0,
namely (φe, φ

′
e) = (0, 0) and (φe, φ

′
e) = (c/3, 0). The matrix of the lin-

earized system at (φe, φ
′
e) = (0, 0) and (φe, φ

′
e) = (c/3, 0) is[

0 1
c 0

]
and

[
0 1
−c 0

]
,

respectively. So (0, 0) is a saddle point while (c/3, 0) is spectrally stable
(the eigenvalues are on the imaginary axis). To see if (c/3, 0) is stable or
not we can use the second variation of the potential energy criterion. Since

δ2V

δφ2
(c/3, 0) = c > 0

it follows that (c/3, 0) is a Lyapunov stable point.

Consider (φ(s), φ′(s)) to be a homoclinic orbit emanating and ending at
(0, 0) to which (c/3, 0) belongs. Both equilibria belong to the zero level set
of the energy and the homoclinic orbit is given by (4.14). Furthermore when
C = 0 we have h(c/2, 0) = 0 that is (c/2, 0) belongs also to this homoclinic
orbit. Let us take (c/2, 0) as initial condition (φ(0), φ′(0)). Then by (4.14)
we get K = 0 and the homoclinic orbit is given

±
√

cs = log

∣∣∣∣∣
√

c − 2φ(s) −
√

c√
c − 2φ(s) +

√
c

∣∣∣∣∣ .

As φ > 0 the value inside the modulus is negative and the homoclinic orbit
has the expression

e±
√

cs = −
√

c−2φ(s)−
√

c√
c−2φ(s)+

√
c

⇐⇒ φ(s) = 2ce±√
cs

(1+e±√
cs)2

= c
2 sech2(

√
cs/2),

which gives the soliton: u(x, t) = φ(x − ct) = c
2 sech2(

√
c

2 (x − ct)).
9. Operator Algebra Brackets. This example is taken from the papers [Bo00]

and [OdzRa03]. Let H be a complex Hilbert space. Denote by S(H),
HS(H), and B(H) the involutive Banach algebras of the trace class op-
erators, the Hilbert-Schmidt operators, and the bounded operators on H,



V. 4 Poisson Manifolds 53

respectively. Recall that S(H) and HS(H) are self adjoint ideals in B(H).
Let K(H) ⊂ B(H) denote the ideal of all compact operators on H. Then

S(H) ⊂ HS(H) ⊂ K(H) ⊂ B(H)

and the following remarkable dualities hold:

K(H)∗ ∼= S(H), HS(H)∗ ∼= HS(H), and S(H)∗ ∼= B(H);

the right hand sides are all Banach Lie algebras. These dualities are imple-
mented by the strongly nondegenerate pairing

〈x, ρ〉 = trace (xρ)

where x ∈ S(H), ρ ∈ K(H) for the first isomorphism, ρ, x ∈ HS(H)
for the second isomorphism, and x ∈ B(H), ρ ∈ S(H) for the third iso-
morphism. Thus condition (4.5) holds and hence the Banach spaces S(H),
HS(H), and K(H) are Banach Lie-Poisson spaces in a rigorous functional
analytic sense (see the discussion at the end of §4.2). The Lie-Poisson
bracket (4.6) becomes in this case

{F, H}(ρ) = ± trace ([DF (ρ),DH(ρ)]ρ) (4.15)

where ρ is an element of S(H), HS(H), or K(H), respectively. The bracket
[DF (ρ),DH(ρ)] denotes the commutator bracket of operators. The Hamil-
tonian vector field associated to H is given by

XH(ρ) = ±[DH(ρ), ρ]. (4.16)

4.4 Generalities on Lie-Poisson Structures

We shall collect here some of the most important properties of Lie-Poisson
structures. Let g∗ be the dual of the finite dimensional Lie algebra g of a Lie
group G, adξη := [ξ, η] for ξ, η ∈ g, and [ , ] the Lie bracket on g.

Proposition 4.9 The equations of motion for the Hamiltonian H : g∗ → R

with respect to the (±) Lie-Poisson bracket on g∗ are

dµ

dt
= XH(µ) = ∓ ad∗

δH/δµµ. (4.17)

Proof For an arbitrary function F ∈ F(g∗) and µ ∈ g∗ we have:

dF

dt
= DF (µ) · µ̇ =

〈
δF

δµ
, µ̇

〉
. (4.18)
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On the other hand,

{F, H}± (µ) = ±
〈
µ ,

[
δF
δµ , δH

δµ

]〉
= ±

〈
µ , − ad δH/δµ

δF
δµ

〉
= ∓

〈
ad ∗

δH/δµ µ , δF
δµ

〉
.

This last equality and (4.18) gives the result. �

Let {ξa}, a = 1, 2, . . . , n, be a basis of g and {ξa} its dual basis. The

structure constants Cd
ab of g are defined by [ξa, ξb] =

∑
d

Cd
abξd.

For µ =
∑

a

µaξa the Lie-Poisson brackets become

{F, G}± = ±µd
δF

δµa

δG

δµb
Cd

ab,

where summation on repeated indices is understood. In particular,

{µa, µb}± = ±µdC
d
ab.

So the equations of motion for H are

µ̇a = ∓µdC
d
ab

δH

δµb
.

Next we study linear Poisson maps.

Proposition 4.10 Let g and h be Lie algebras and α : g → h a linear map.
Then α is a homomorphism of Lie algebras if and only if its dual α∗ : h∗

± → g∗±
is a Poisson map.

Proof By definition of the Lie-Poisson bracket on h∗ we have

{F ◦ α∗ , H ◦ α∗}± (µ) = ±
〈

µ ,

[
δ(F ◦ α∗)

δµ
,

δ(H ◦ α∗)
δµ

]〉
(4.19)

for any F, H ∈ F(g∗), µ ∈ h.
By definition of the functional derivative, the chain rule, and the definition

of the dual map one has〈
δ(F ◦ α∗)

δµ
, δµ

〉
= D (F ◦ α∗) · δµ = DF (α∗(µ)) · α∗(δµ)

=
〈

δF

δν
, α∗(δµ)

〉
=

〈
α

(
δF

δν

)
, δµ

〉
,
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where ν := α∗(µ) ∈ g∗. Thus equation (4.19) becomes

{F ◦ α∗, H ◦ α∗}± (µ) = ±
〈

µ,

[
δ(F ◦ α∗)

δµ
,
δ(H ◦ α∗)

δµ

]〉
= ±

〈
µ,

[
α

(
δF

δν

)
, α

(
δH

δν

)]〉
. (4.20)

If α is a Lie algebra homomorphism then (4.20) is equal to

±
〈

µ , α

([
δF

δν
,

δH

δν

])〉
= ±

〈
α∗(µ) ,

[
δF

δν
,

δH

δν

]〉
= {F, H}±(α∗(µ)),

which shows that α∗ is a Poisson map.
Conversely, if α∗ is a Poisson map, by (4.20) we get

±
〈

µ ,

[
α

(
δF

δν

)
, α

(
δH

δν

)]〉
= {F, H}±(α∗(µ))

= ±
〈

α∗(µ) ,

[
δF

δν
,

δH

δν

]〉
= ±

〈
µ , α

([
δF

δν
,

δH

δν

])〉
for any F, H ∈ F(g∗). In particular, taking F (ρ) := 〈ρ, ξ〉 and H(ρ) :=
〈ρ, η〉 for arbitrary ξ, η ∈ g, we get 〈µ, [α(ξ), α(η)]〉 = 〈µ, α([ξ, η])〉 for any
µ ∈ h, which implies [α(ξ), α(η)] = α([ξ, η]), that is, α is a Lie algebra
homomorphism. �

The last key property of Lie-Poisson brackets is that they are the only linear
ones in the following sense. Consider a finite dimensional vector space V , V ∗

its dual, and let 〈 , 〉 be the duality pairing between V ∗ and V . One can then
think of elements of V to be the linear functionals on V ∗. A Poisson bracket
in V ∗ is said to be linear if the bracket of two any linear functionals on V ∗ is
a linear functional. Thus, if X ′, Y ′ are functionals on V ∗ then, as the pairing
〈 , 〉 is nondegenerate, there exist unique elements X, Y ∈ V such that

X ′(µ) = 〈µ, X〉 and Y ′(µ) = 〈µ, Y 〉.

The linearity assumption on the Poisson bracket in V ∗ implies the existence of
a unique element of V , say [X, Y ], such that

{X ′ , Y ′} (µ) = [X , Y ]′ (µ) = 〈µ , [X , Y ]〉 .

It is easy to prove that [ , ] so defined on V is a Lie algebra bracket and so the
given linear Poisson bracket is the Lie-Poisson bracket for the Lie algebra V .

In the infinite dimensional case the same proof works if 〈 , 〉 : V ∗ × V → R

is a weak pairing between Banach spaces and one makes the extra hypothesis
that the Poisson bracket of any two linear functionals on V ∗ belongs to the
range of the Poisson tensor Λ(µ) : V → V ∗ for all µ ∈ V ∗.
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Proposition 4.11 Let V and V ∗ be two Banach spaces, 〈 , 〉 a weak nondegen-
erate pairing of V ∗ with V , and assume that V ∗ has a linear Poisson bracket.
If the Poisson bracket of any two linear functionals in V ∗ belongs to the range
of 〈µ, ·〉 for all µ ∈ V ∗, then V is a Banach Lie algebra and the Poisson
bracket on V ∗ is the corresponding Lie-Poisson bracket.

5 Momentum Maps

In this lecture we shall introduce the concept of momentum map and study
its properties. We shall address the issue of existence and equivariance of
momentum maps, give an explicit formula for the case of a cotangent bundle,
and present several basic examples. The full power of the momentum map will
appear only in the next chapter when dealing with reduction.

5.1 Actions and Infinitesimal Generators

Let Φ : G×P → P be a smooth left action of the Lie group G on the Poisson
manifold P . The action is canonical if the map Φg : z �→ Φ(g, z) = Φg(z) is
a Poisson map for all g ∈ P , that is

{F ◦ Φg, G ◦ Φg} = {F, G} ◦ Φg for all F, G ∈ F(P ). (5.1)

Denote by g the Lie algebra of G. Let us recall the following standard facts.

(i) ADg : G → G given for each g ∈ G by

ADg(h) = ghg−1 = (Lg ◦ Rg−1)(h) (5.2)

is an inner automorphism. Lg and Rg denote, respectively, the left and
right translations of G on itself.

(ii) Differentiating ADg with respect to h at h = e we get the adjoint
representation Adg = Tg−1Lg ◦ TeRg−1 : g → g of G on g. The
inverse of the dual map defines the coadjoint representation Ad∗

g−1 of
G on g∗.

(iii) Differentiating Adg with respect to g at e in the direction ξ yields

TeAd(ξ) =
d

dt

∣∣∣∣
t=0

Adexp tξ = [ξ, ·] =: adξ : g → g, (5.3)

the adjoint representation of g on g.
(iv) In these lectures, all Lie algebras are left Lie algebras. This means

that g = TeG as a vector space and the Lie bracket on g is given by
the identity [ξ, η] = [Xξ, Xη](e), where Xξ, Xη ∈ X(G) are the left
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invariant vector fields whose values at the identity are ξ and η, respec-
tively, that is, Xξ(g) = TeLg(ξ) and Xη(g) = TeLg(η) for any g ∈ G.
The vector fields Xξ are complete, that is, each integral curve exists for
all time.

(v) If ξ ∈ g, there is a unique integral curve γξ(t) of Xξ with initial con-
dition γξ(0) = e. Then γξ(s + t) = γξ(s)γξ(t) for any s, t ∈ R,
that is, γξ : R → G is a one-parameter subgroup of G. Conversely,
any Lie group homomorphism γ : R → G is of the form γξ, where
ξ = γ′(0). The exponential map is defined by exp(ξ) := γξ(1). Then
exp(tξ) = γξ(t) and the flow of Xξ is given by (t, g) �→ g exp(tξ).

(vi) If F : G → H is a homomorphism of Lie groups then TeF : g → h is
a Lie algebra homomorphism, that is,

TeF ([ξ , η]) = [TeF (ξ) , TeF (η)] . (5.4)

In particular, Adg : g → g is a Lie algebra isomorphism for every
g ∈ G. In addition,

expH ◦TeF = F ◦ expG, (5.5)

where expG : g → G and expH : h → H are the exponential maps. If
one takes G = H and F = ADg , this identity becomes

exp(Adgξ) = ADg(exp ξ) = g exp(ξ)g−1. (5.6)

If one takes H = Iso(g), the Lie group of Lie algebra isomorphisms of
g, then its Lie algebra is the Lie algebra Der(g) of derivations relative
to the bracket [·, ·]. Choosing in (5.5) F = Ad : G → H = Iso(g), we
get for any ξ ∈ g

eadξ = Adexp ξ . (5.7)

(vii) Given a Lie algebra element ξ ∈ g, exp(tξ) defines a one-parameter
subgroup in G and hence t �→ Φexp tξ is a flow on the manifold P .
The vector field defined by this flow is denoted by ξP and is called the
infinitesimal generator of the action determined by ξ. Thus we have

ξP (z) =
d

dt

∣∣∣∣
t=0

Φexp(tξ)(z).

The infinitesimal generator has the following properties

(Adgξ)P = Φ∗
g−1ξP and [ξP , ηP ] = − [ξ , η]P (5.8)

for any g ∈ G and ξ, η ∈ g.
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Examples 1. We deduce the formulas stated in §1.2. Let G = SO(3) acting
on R3 by matrix multiplication. The Lie algebra so(3) is the set of 3 × 3
skew symmetric matrices with Lie bracket the commutator. It is isomorphic to(
R3 , ×

)
via the map u ∈ R �→ û ∈ so(3) given by (1.13). The adjoint action

is hence

AdAû = AûA−1 = (Au)̂ .

Therefore,

[û, v̂] = adû v̂ =
d

dt

∣∣∣∣
t=0

(
etûv

)̂
= (ûv)ˆ = (u × v)ˆ .

The dual so(3)∗ is identified with R3 by the isomorphism Π ∈ R3 �→ Π̃ ∈
so(3)∗ given by Π̃(û) := Π · u for any u ∈ R3. Then the coadjoint action of
SO(3) on so(3)∗ is given by(

Ad∗
A−1 Π̃

)
(û) = Π̃ · AdA−1 û = Π̃ · (A−1u)̂ = Π · AT u

= AΠ · u = (AΠ)˜(û),

that is, Ad∗
A−1 Π̃ = (AΠ)˜ , thereby recovering formula (1.20) in §1.2.

The infinitesimal generator corresponding to u ∈ R3 has the expression

uR3(x) =
d

dt

∣∣∣∣
t=0

etûx = û x = u × x. (5.9)

2. Let G = Diffvol(D) be the group of volume preserving diffeomorphisms
of the oriented Riemannian manifold (D, g). On D there is a unique volume
form µ which equals 1 on all positively oriented g-orthonormal bases of tan-
gent vectors at all points of D; this volume form µ is called the Riemannian
volume of (D, g) and we shall assume from now on that the orientation of D

is given by µ.
Let us show formally that the Lie algebra of Diffvol(D) is Xdiv(D) endowed

with the negative of the bracket of vector fields. First, as a vector space, the
Lie algebra of the group Diff(D) equals the space X(D) of vector fields on D.
Indeed, the flow of an arbitrary vector field is a smooth path in Diff(D) whose
tangent vector at time equal to zero is the given vector field.

Second, if ηt ∈ Diffvol(D) is the flow of the vector field v, then η∗
t µ = µ,

so taking the derivative of this identity at t = 0 yields (div v)µ = £vµ = 0,
that is, v ∈ Xdiv(D).
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Third, since ADη ϕ = η ◦ ϕ ◦ η−1, letting ϕt be the flow of v, we get

Adη v = Te ADη(v) =
d

dt

∣∣∣∣
t=0

ADη ϕt =
d

dt

∣∣∣∣
t=0

(η ◦ ϕt ◦ η−1)

= Tη ◦ v ◦ η−1 = η∗v.

Fourth, if u, v ∈ Diffvol(D) and ϕt is the flow of u, the Lie algebra bracket
of u and v in Xdiv(D) is given by

d

dt

∣∣∣∣
t=0

Adϕt v =
d

dt

∣∣∣∣
t=0

(ϕt)∗v =
d

dt

∣∣∣∣
t=0

(ϕ−t)∗v = −£uv = −[u, v].

Thus the left Lie algebra bracket on the space of vector fields equals the nega-
tive of the usual Jacobi-Lie bracket of vector fields.

Identify the dual Xdiv(D)∗ with dΩ1(D) (assuming that the first cohomol-
ogy group of D is zero). The coadjoint action of Diffvol(D) on dΩ1(D) is
computed in the following way. Let ω = dα ∈ dΩ1(D) and u ∈ Xdiv(D).
Then〈

u, Ad∗
η−1 ω

〉
=

〈
Adη−1 u, ω

〉
=

∫
D

α(η∗u)µ =
∫

D

(η∗α)(u)µ = 〈u, η∗ω〉

by the change of variables formula, taking into account that the Jacobian of η

is one, and noting that dη∗α = η∗ω. Therefore Ad∗
η−1 ω = η∗ω.

5.2 Momentum Maps

Let the Lie group G with Lie algebra g act on the Poisson manifold P in a
canonical way, that is, (5.1) holds. Differentiating (5.1) with respect to g at the
identity in the direction of ξ ∈ g shows that the infinitesimal generator ξP is
an infinitesimal Poisson automorphism, i.e.,

ξP [{F1 , F2}] = {ξP [F1] , F2} + {F1 , ξP [F2]}

for any F1, F2 ∈ F(P ). Denote by P(P ) the set of all vector fields satisfying
this relation and call this Lie subalgebra of X(P ) the Lie algebra of Poisson
bracket derivations or of infinitesimal Poisson automorphisms.

If ξ ∈ g we ask if the infinitesimal generator ξP is globally Hamiltonian.
That is, we seek a Hamiltonian function Jξ ∈ F(P ) such that XJξ = ξP for
every ξ ∈ g. Since the right hand side of this equation is linear in ξ, we shall
require that the map ξ ∈ g �→ Jξ ∈ F(P ) be also linear.

Definition 5.1 Let G be a Lie group acting canonically on the Poisson mani-
fold P . Suppose that there is a linear map J : g → F(P ) such that

XJξ = ξP , (5.10)
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for all ξ ∈ g, where ξP is the infinitesimal generator corresponding to ξ for
then G-action on P . Then the map J : P → g∗ defined by

〈J(z), ξ〉 = Jξ(z),

for all ξ ∈ g and z ∈ P , is called a momentum map of the G-action.

One of the first questions that arise is whether or not equation (5.10) deter-
mines J. Note that if J1 and J2 are functions verifying (5.10) then XJξ

1−Jξ
2

=

0, which is equivalent with the statement that Jξ
1 − Jξ

2 is a Casimir function.
If P is symplectic and connected then the Casimirs are the constants and so
equation (5.10) determines J only up to an element of g∗.

From the definition of J it follows that there is an isomorphism between
the set of maps P → g∗ and the set of maps g → F(P ). The collection of
functions Jξ as ξ varies on g are the components of the momentum map.

To give a momentum map is therefore equivalent to specifying a linear map
J : g → F(P ) making the following diagram

F(P )
F �→XF �� P(P )

g

ξ �→ξP

��

J

������������

commutative. Two natural questions arise:

(A) What are the obstructions to the existence of a momentum map?
(B) If the G-action admits a momentum map, under what conditions is it a Lie

algebra homomorphism?

Let us give some answers to these questions.

(A) The map H : F(P ) → P(P ) given by F �→ XF is a Lie algebra anti-
homomorphism. Denote by H(P ) the Lie algebra of globally Hamiltonian
vector fields. The existence of a momentum map is equivalent to be able to lift
the anti-homomorphism of Lie algebras ρ : ξ ∈ g �→ ξP ∈ P(P ) through H
to a linear map J : g → F(P ). So consider the following diagram where i is
the inclusion and π the projection

0 �� C(P ) i �� F(P ) H �� P(P ) π �� P(P )/H(P ) �� 0

g

ρ

��

J

������������

If the linear map J : g → F(P ) is such that H ◦ J = ρ, then π ◦ ρ =
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π ◦ H ◦ J = 0 by the exactness of the sequence. Conversely, if π ◦ ρ = 0,
then ρ(g) ⊂ H(P ), that is, each ξP is globally Hamiltonian, so there exists a
function Jξ ∈ F(P ) such that ξP = XJξ . Requiring that ξ �→ Jξ be linear,
yields the existence of a momentum map. So under what conditions do we
have that π ◦ ρ = 0?

(i) If P is symplectic then P(P ) coincides with the Lie algebra of locally
Hamiltonian vector fields and P(P )/H(P ) is isomorphic to the first
cohomology group H1(P ), which is an Abelian Lie algebra. Thus,
in the symplectic case, π ◦ ρ = 0 if and only if the induced map
g/[g , g] → H1(P ) vanishes. This happens, for instance, if g is a
semisimple Lie algebra because in that case, [g, g] = g.

(ii) If P(P )/H(P ) = 0 then clearly π ◦ ρ = 0. If P is symplectic this is
equivalent to the vanishing of the first cohomology group H1(P ).

(iii) If P is exact symplectic, i.e., the symplectic form is Ω = −dΘ, and Θ
is a g-invariant one-form, which means that £ξP

Θ = 0 for all ξ ∈ g.
Indeed, diξP

Θ + iξP
dΘ = 0, implies that iξP

Ω = d (iξP
Θ), that is,

the momentum map is given by Jξ = iξP
Θ.

(iv) An important special case of the previous situation is P = T ∗Q and
the G-action on P is lifted from a G-action on Q, that is,

g · αq = T ∗
g·qΦg−1 (αq),

for αq ∈ T ∗
q Q, g ∈ G, and Φ : G×Q → Q an action. By theorem 2.14

a cotangent lift preserves the canonical one-form Θ on T ∗Q. There-
fore, by the previous case, this action admits a momentum map which
is given by 〈J, ξ〉 = iξP

Θ. This expression can be further simplified
using (2.8) and the equivariance of the projection π : T ∗Q → Q, that
is, π◦T ∗Φg−1 = Φg◦π for all g ∈ G. The derivative of this relation rel-
ative to g at the identity in the direction ξ ∈ g yields Tπ ◦ ξP = ξQ ◦π.
Therefore

〈J(αq), ξ〉 = iξP
Θ(αq) = 〈Θ(αq), ξP (αq)〉 = 〈αq, (Tπ ◦ ξP )(αq)〉

= 〈αq, (ξQ ◦ π)(αq)〉 = 〈αq, ξQ(q)〉 . (5.11)

(B) To say that J : g → F(P ) is a Lie algebra homomorphism is equivalent
to the identity

J [ξ , η] =
{
Jξ, Jη

}
(5.12)
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for all ξ, η ∈ g. How far are we from such a relation? To see this, note that

XJ [ξ,η] = [ξ, η]P (by definition of J)
= − [ξP , ηP ] (by (5.8))
= − [XJξ , XJη ] (by definition of J)
= X{Jξ,Jη} (H is an antihomorphism ).

(5.13)

Equation (5.13) shows that J [ξ,η] −
{
Jξ, Jη

}
is a Casimir function, which we

shall denote by Σ(ξ, η). Thus J : g → F(P ) is a Lie algebra homomorphism
if and only if Σ(ξ, η) = 0 for all ξ, η ∈ g.

The map Σ : g× g → C(P ) has remarkable properties, easily deduced from
the definition: it is bilinear, antisymmetric, and satisfies the cocycle identity,

Σ(ξ , [η , ζ]) + Σ(η , [ζ , ξ]) + Σ(ζ , [ξ , η]) = 0

for all ξ, η, ζ ∈ g, that is, Σ is a C(P )-valued 2-cocycle of g. So J is a Lie
algebra homomorphism if and only if [Σ] = 0 in H2(g, C(P )), the second
C(P )-valued Lie algebra cohomology group of g.

When J verifies (5.12) we say that it is infinitesimally equivariant. This
terminology is justified in the following way. The momentum map J : P → g∗

is said to be equivariant, if

Ad∗
g−1 ◦ J = J ◦ Φg

for all g ∈ G. Pairing this relation with η ∈ g, putting g = exp tξ, and
taking the derivative of the resulting relation at t = 0, yields (5.12). Thus
equivariance implies infinitesimal equivariance. The converse is also true if G

is connected (see [MaRa94], Theorem 12.3.2).
Here are two classes of equivariant momentum maps that appear often in

applications.

(i) The momentum map in point (A)(iii) is equivariant. Thus momentum
maps of cotangent lifted actions (see (5.11)) are always equivariant. To
see this, use (5.8) and G-invariance of Θ to get

〈J(g · z), ξ〉 = iξP
Θ(g · z) = Θ(g · z) (ξP (g · z))

= Θ(g · z)
(
TzΦg(Φ∗

gξP )(z)
)

= (Φ∗
gΘ)(z)

(
(Adg−1 ξ)P (z)

)
= Θ(z)

(
(Adg−1 ξ)P (z)

)
= 〈J(z),Adg−1 ξ〉

= 〈Ad∗
g−1 J(z), ξ〉,

which shows that J(g · z) = Ad∗
g−1 J(z).
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(ii) For compact groups one can always choose the momentum map to be
equivariant. More precisely, if the canonical G-action on the Poisson
manifold P admits a momentum map J : P → g∗ and G is a com-
pact Lie group, then J can be changed by the addition of an element
in L(g, C(P )) such that the resulting map is an equivariant momentum
map for the same action. In particular, if P is symplectic, J can be
changed by the addition of an element of g∗ on each connected compo-
nent of P so that the resulting map is an equivariant momentum map.

To prove this statement, define for each g ∈ G

Jg(z) := Ad∗
g−1 J(g−1 · z)

or equivalently,

(Jg)ξ := JAdg−1 ξ ◦ Φg−1 .

Then Jg is also a momentum map for the G-action on P . Indeed, if
z ∈ P , ξ ∈ g, and F : P → R, we have by (5.8)

{F, (Jg)ξ}(z) = −d(Jg)ξ(z) · XF (z)

= −dJAdg−1 ξ(g−1 · z) · TzΦg−1 · XF (z)

= −dJAdg−1 ξ(g−1 · z) · (Φ∗
gXF )(g−1 · z)

= −dJAdg−1 ξ(g−1 · z) · XΦ∗
gF (g−1 · z)

= {Φ∗
gF, JAdg−1 ξ}(g−1 · z)

= X
J

Ad
g−1 ξ [Φ∗

gF ](g−1 · z)

= (Adg−1ξ)P [Φ∗
gF ](g−1 · z)

= (Φ∗
gξP )[Φ∗

gF ](g−1 · z)

= dF (z) · ξP (z)

= {F, Jξ}(z).

Therefore, {F, (Jg)ξ −Jξ} = 0 for every F : P → R, that is, (Jg)ξ −
Jξ is a Casimir function on P for every g ∈ G and every ξ ∈ g.
Therefore, since J is a momentum map, so is Jg for every g ∈ G. Now
define

〈J〉 :=
∫

G

Jgdg

where dg denotes the normalized Haar measure on G, that is, the vol-
ume of G is one. Equivalently, this definition states that

〈J〉ξ :=
∫

G

(Jg)ξdg
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for every ξ ∈ g. By linearity of the Poisson bracket in each factor, it
follows that

{F, 〈J〉ξ} =
∫

G

{F, (Jg)ξ}dg =
∫

G

{F, Jξ}dg = {F, Jξ}

for every F ∈ F(P ). Thus 〈J〉ξ−Jξ is a Casimir on P for every ξ ∈ g

which shows that 〈J〉 − J ∈ L(g, C(P ) and that 〈J〉 : P → g∗ is also
a momentum map for the G-action.

Finally we show that the momentum map 〈J〉 is equivariant. Indeed,
begin by noting that

Jg(h · z) = Ad∗
h−1 Jh−1g(z)

for every g, h ∈ G. Using invariance of the Haar measure on G under
translations and inversion, we have for any h ∈ G

〈J〉(h · z) =
∫

G

Ad∗
h−1 Jh−1g(z)dg = Ad∗

h−1

∫
G

Jh−1g(z)dg

= Ad∗
h−1

∫
G

Jk(z)dk = Ad∗
h−1〈J〉(z),

where in the third equality we made the change of variables g = hk.

A crucial property of infinitesimally equivariant momentum maps is given
in the following statement.

Theorem 5.2 If J is an infinitesimally equivariant momentum map for the
canonical G-action on the Poisson manifold P then J is a Poisson map, that
is,

J∗ {F1 , F2}+ = {J∗F1 , J∗F2}

for all F1, F2 ∈ F(g∗), where { , }+ denotes the + Lie-Poisson bracket on g∗.

Proof For F1, F2 : g∗ → R, z ∈ P , and µ = J(z) ∈ g∗, let ξ := δF1
δµ and

η := δF2
δµ . Then

J∗ {F1, F2}+ (z) = {F1, F2}+ (J(z)) =
〈
µ ,

[
δF1
δµ , δF2

δµ

]〉
= 〈J(z) , [ξ, η]〉 = J [ξ,η](z)
=

{
Jξ, Jη

}
,

where the last equality follows by infinitesimal equivariance.
But, for z ∈ P and vz ∈ TzP , we have

d (F1 ◦ J) (z)(vz) = dF1(µ) (TzJ(vz)) =
〈
TzJ(vz) , δF1

δµ

〉
= 〈TzJ(vz) , ξ〉 = dJξ(z)(vz).
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Thus d (F1 ◦ J) (z) = dJξ(z). So, as the Poisson bracket on P depends only
on the point values of the first derivatives, we have

{F1 ◦ J , F2 ◦ J} (z) =
{
Jξ, Jη

}
(z)

which proves the theorem. �

Remark 5.3 The same result holds if G acts on the right, provided that we
consider on g∗ the minus Lie-Poisson structure.

Theorem 5.4 (Noether’s Theorem) Let P be a Poisson manifold, G a Lie
group acting canonically on P admitting a momentum map J and H : P → R

a G-invariant function. Then J is a constant of motion for H . That is, if φt is
the flow of XH then J ◦ φt = J.

Proof If H is G-invariant then ξP [H] = 0 which implies

0 = ξP [H] = XJξ [H] =
{
H, Jξ

}
= −XH [Jξ].

So Jξ is constant on the flow of XH for every ξ ∈ g. �

5.3 Examples of Momentum Maps

1. The Hamiltonian
The flow φt of a complete vector field on a manifold P defines an R-action

on P given by φ(t, z) := φt(z).
Consider the R-action on a Poisson manifold P given by the flow of a com-

plete Hamiltonian vector field XH . Since the flow of XH is canonical, this
action preserves the Poisson bracket. Let us show that H : P → R is an
equivariant momentum map for this action. Indeed, if s ∈ R, its infinitesimal
generator is

sP (z) =
d

dε

∣∣∣∣
ε=0

φεs(z) = sXH(z) = XsH(z)

which shows that Js = sH . Identifying R with R∗ using the product of el-
ements in R, we get hence J = H . Invariance of H is equivalent to the
conservation of energy.

2. Linear momentum
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Let N ∈ N and consider the N -particle system, with configuration space
Q = R3N . Let R3 act on Q by translations, i.e., Φ : R3 × Q → Q is given by(

x, (q1, . . . ,qN )
)
�→ (q1 + x, . . . ,qN + x).

The infinitesimal generator corresponding to ξ ∈ R3 is:

ξQ(q1, . . . ,qN ) =
d

dt

∣∣∣∣
t=0

Φ(tξ, (q1, . . . ,qN ))

=
d

dt

∣∣∣∣
t=0

(q1 + tξ, . . . ,qN + tξ)

= (ξ, . . . , ξ) ∈ T(q1,...,qN )R
3N .

Thus, by (5.11), the lifted R3N -action to T ∗R3N admits an invariant momen-
tum map given by〈

J(q1, . . .qN ,p1, . . . ,pN ), ξ
〉

=
〈
(p1, . . .pN ), ξQ(q1, . . . ,qN )

〉
= p1 · ξ + · · · + pN · ξ = (p1 + . . .pN ) · ξ,

that is, J(q1, . . .qN ,p1, . . . ,pN ) = p1 + . . .pN , which is the classical linear
momentum.

3. Angular momentum
Let Q = R3 and Φ : SO(3) × R3 → R3 be the standard action Φ(A,q) :=

Aq. Using the isomorphism of the Lie algebras (R3,×) and (so(3) , [ , ])
given by (1.13) and the expression (5.9) of the infinitesimal generator, the
equivariant momentum map (5.11) for the lifted action of SO(3) to T ∗Q is
given by

〈J(q,p), ξ〉 = 〈(q,p), ξQ(q)〉 = p · (ξ × q) = (q × p) · ξ,

where ξ ∈ R3. Thus J(q,p) = q × p which is the classical angular momen-
tum.

4. Momentum map for matrix groups
Denote by GL(n, R) the group of linear isomorphisms of Rn to Rn, that

is the general linear group. Let G be a Lie subgroup of GL(n, R), with Lie
algebra g ⊂ gl(n, R). Consider the action of G on Q := Rn to be by matrix
multiplication on the left, that is, Φ : (A,q) ∈ G × Rn �→ Aq ∈ Rn. For
ξ ∈ g the corresponding infinitesimal generator is given by:

ξQ(q) =
d

dt

∣∣∣∣
t=0

exp(tξ)q = ξq.

Identify gl(n, R)∗ with gl(n, R) via the positive definite inner product on gl(n, R)
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given by

〈a, b〉 = trace (aT b), (5.14)

where aT is the transpose of a. By (5.11), the momentum map for the cotan-
gent lifted action is given by:

〈J(q,p), ξ〉 = p · ξQ(q) = p · ξq = trace (pT ξq)

= trace (qpT ξ) =
〈
pqT , ξ

〉
.

for any ξ ∈ g. Now write gl(n, R) = g ⊕ g⊥, where the perpendicular is
taken relative to the inner product (5.14) and let Πg : gl(n, R) → g be the
corresponding orthogonal projection. Then g is identified with g∗ and we get,
J(q,p) = Πg(pqT ).

5. Canonical momentum map on g∗

The Lie group G acts on the dual g∗ of its Lie algebra g by the coadjoint
action. Since Adg : g → g is a Lie algebra isomorphism for every g ∈ G,
Proposition 4.10 insures that the coadjoint action is canonical relative to the
Lie-Poisson bracket on g∗. The infinitesimal generator corresponding to ξ ∈ g

for the coadjoint action is, for µ ∈ g∗ and η ∈ g, given by:

〈ξg∗(µ), η〉 =
d

dt

∣∣∣∣
t=0

〈
Ad∗

exp(−tξ) µ, η
〉

=
d

dt

∣∣∣∣
t=0

〈
µ,Adexp(−tξ) η

〉
= 〈µ, [−ξ, η]〉 = 〈µ,− adξ η〉 =

〈
− ad∗

ξ µ, η
〉
, (5.15)

so ξg∗ = − ad∗
ξ for every ξ ∈ g.

By Proposition 4.9, the Hamiltonian vector field for H ∈ F(g∗) has the
expression

XH(µ) = ∓ ad∗
δH/δµ µ.

Therefore, the momentum map for the coadjoint action, if it exists, must satisfy

∓ ad∗
δJξ/δµ µ = − ad∗

ξ µ for all ξ ∈ g, and µ ∈ g
∗,

which shows that the momentum map for the coadjoint action exists and is
given by 〈J(µ), ξ〉 = ±〈µ, ξ〉. Therefore J = ± idg∗ .

6. Momentum map for products
Let P1 and P2 be Poisson manifolds and P1 × P2 be their product endowed

with the product Poisson structure, that is, if F, H : P1 × P2 → R, then

{F, H}P1×P2(z1, z2) = {Fz2 , Hz2}P1(z1) + {Fz1 , Hz1}P2(z2),

where Fz1 := F (z1, ·) : P2 → R and similarly for Fz2 := F (·, z2) : P1 → R.
Let Φ : G × P1 → P1 and Ψ : G × P2 → P2 be canonical G-actions
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admitting (equivariant) momentum maps J1 : P1 → g∗1 and J2 : P2 → g∗2
respectively. Then the product action Π : G × P1 × P2 → P1 × P2 given
by Π(g, (z1, z2)) := (Φ(g, z1),Ψ(g, z2)) admits an (equivariant) momentum
map J : P1 × P2 → g∗ given by J(z1, z2) = J1(z1) + J2(z2).

To prove this statement, we begin by showing that the action Π is canonical.
Indeed, for every g ∈ G we get

{F, H}P1×P2 (Πg(z1, z2)) = {F, H}P1×P2(Φ(g, z1),Ψ(g, z2))

= {Fg·z2 , Hg·z2}P1(Φ(g, z1)) + {Fg·z1 , Hg·z1}P2(Ψ(g, z2))

= {Fg·z2 ◦ Φg, Hg·z2 ◦ Φg}P1(z1) + {Fg·z1 ◦ Ψg, Hg·z1 ◦ ψg}P2(z2)

= {(F ◦ Πg)z2 , (H ◦ Πg)z2}P1(z1) + {(F ◦ Πg)z1 , (H ◦ Πg)z1}P2(z2)

= {F ◦ Πg, H ◦ Πg}P1×P2(z1, z2).

For ξ ∈ g, the infinitesimal generator of Π corresponding to ξ is given by

ξP1×P2(z1, z2) =
d

dt

∣∣∣∣
t=0

Π (exp(tξ), (z1, z2))

=
d

dt

∣∣∣∣
t=0

(Φ(exp(tξ), z1),Ψ(exp(tξ), z2))

= (ξP1(z1), ξP2(z2)) =
(
XJξ

1
(z1), XJξ

2
(z2)

)
= X(Jξ

1 ,Jξ
2 )(z1, z2),

where the Hamiltonian vector field in the last line is on P1×P2 for the function
(Jξ

1 , Jξ
2 )(z1, z2) := (Jξ

1 (z1), J
ξ
2 (z2)) = 〈J1(z1) + J2(z2), ξ〉. This shows

that a momentum map for the product action is given indeed by J(z1, z2) =
J1(z1) + J2(z2), as stated.

If J1 and J2 are equivariant so is J, as an easy computation shows.

7. Momentum maps for the cotangent lift of the left and right translations
of G to T ∗G

Let G be a Lie group and denote by Lg(h) := gh and Rg(h) := hg the left
and right translations of G on itself. Denote by JL and JR the corresponding
equivariant momentum maps of the lifts of these actions to T ∗G. To compute
these momentum maps we use (5.11) to get for any αg ∈ T ∗

g G and ξ ∈ g

〈JL(αg), ξ〉 =
〈

αg,
d

dt

∣∣∣∣
t=0

Lexp(tξ)g

〉
= 〈αg, TeRgξ〉 = 〈T ∗

e Rgαg, ξ〉

〈JR(αg), ξ〉 =
〈

αg,
d

dt

∣∣∣∣
t=0

Rexp(tξ)g

〉
= 〈αg, TeLg · ξ〉 = 〈T ∗

e Lgαg, ξ〉 ,
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which shows that

JL(αg) = T ∗
e Rgαg and JR(αg) = T ∗

e Lgαg. (5.16)

8. Momentum map in Maxwell’s equations
Let A be the space of vector potentials A on R3, that is, smooth functions

A : R3 → R3. Let P := T ∗A, whose elements are denoted (A,−E) with A
and E vector fields on R3. Let G = F(R3) act on A by

φ · A = A + gradφ.

The Lie algebra g of G coincides with F(R3) and we formally think of g∗ as g

via the weakly nondegenerate L2 pairing. Thus given ξ ∈ g, the corresponding
infinitesimal generator is:

ξA(A) = grad ξ.

Assuming that all computations below are justified by imposing the relevant
decay conditions at infinity, the momentum map (5.11) becomes in this case〈

J(A,−E), ξ
〉

=
∫

−E · grad ξ d3x =
∫

(div E) ξ d3x.

Thus the invariant momentum map J : T ∗A → F(R3) is J(A,−E) = div E.

9. Clairaut’s Theorem
Let Q be a surface of revolution obtained by rotating the graph of the smooth

function r = f(z) about the z-axis. Pull back the usual Riemannian metric
given by the Euclidean inner product on R3 to Q and identify T ∗Q with TQ

using this induced metric. The circle S1 acts on Q and the Riemannian metric
on Q is obviously invariant under this action. Consider the geodesic flow on
Q, so the Hamiltonian of this vector field on TQ is given by the kinetic energy
of the metric; thus it is also S1 invariant. The infinitesimal generator of ξ ∈ R,
the Lie algebra of S1, is given by

ξQ(q) =
d

dt

∣∣∣∣
t=0

 cos tξ − sin tξ 0
sin tξ cos tξ 0

0 0 1

q = ξk̂q = ξk × q.

Therefore, the momentum map J : TQ → R, given by (5.11), has the expres-
sion

J(q,v) = v · ξk × q = ξr‖v‖ cos θ

since r is the distance of q to the z-axis and where θ is the angle between v
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and the horizontal plane. Recall that ‖v‖ is conserved since the kinetic energy
is constant on the geodesic flow. By Noether’s theorem it follows that J is
conserved which then implies that r cos θ is conserved along any geodesic on
Q. This is the statement of the classical Clairaut’s theorem.

10. Momentum map for symplectic representations
Let (V, Ω) be a symplectic vector space and let G be a Lie group acting lin-

early and symplectically on V . This action admits an equivariant momentum
map J : V → g given by

Jξ(v) = 〈J(v), ξ〉 =
1
2
Ω(ξ · v, v),

where ξ · v denotes the Lie algebra representation of the element ξ ∈ g on the
vector v ∈ V . To verify this, note that the infinitesimal generator ξV (v) = ξ ·v,
by the definition of the Lie algebra representation induced by the given Lie
group representation, and that Ω(ξ · u, v) = −Ω(u, ξ · v) for all u, v ∈ V .
Therefore

dJξ(u)(v) =
1
2
Ω(ξ · u, v) +

1
2
Ω(ξ · v, u) = Ω(ξ · u, v).

Equivariance of J follows from the obvious relation g−1 ·ξ ·g·v = (Adg−1 ξ)·v
for any g ∈ G, ξ ∈ g, and v ∈ V .

11. Cayley-Klein parameters and the Hopf fibration
Consider the natural action of SU(2) on C2. Since this action is by isome-

tries of the Hermitian metric, it is automatically symplectic and therefore has
a momentum map J : C2 → su(2)∗ given in example 10, that is,

〈J(z, w), ξ〉 =
1
2
Ω(ξ · (z, w), (z, w)),

where z, w ∈ C and ξ ∈ su(2). Now recall from §2.1 that the symplectic form
on C2 is given by minus the imaginary part of the Hermitian inner product.
The Lie algebra su(2) of SU(2) consists of 2 × 2 skew Hermitian matrices of
trace zero. This Lie algebra is isomorphic to so(3) and therefore to (R3,×) by
the isomorphism given by

x = (x1, x2, x3) ∈ R
3 �→ x̃ :=

1
2

[
−ix3 −ix1 − x2

−ix1 + x2 ix3

]
∈ su(2).

Thus we have [x̃, ỹ] = (x × y)˜ for any x,y ∈ R3. Other useful relations are
det(2x̃) = ‖x‖2 and trace(x̃ỹ) = − 1

2x · y. Identify su(2)∗ with R3 by the
map µ ∈ su(2)∗ �→ µ̌ ∈ R3 defined by

µ̌ · x := −2〈µ, x̃〉
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for any x ∈ R3. With these notations, the momentum map J̌ : C2 → R3 can
be explicitly computed in coordinates: for any x ∈ R3 we have

J̌(z, w) · x = −2〈J(z, w), x̃〉

=
1
2

Im
([

−ix3 −ix1 − x2

−ix1 + x2 ix3

] [
z

w

]
·
[

z

w

])
= −1

2
(2 Re(wz), 2 Im(wz), |z|2 − |w|2) · x.

Therefore

J̌(z, w) = −1
2
(2wz, |z|2 − |w|2) ∈ R

3.

By Theorem 5.2, J̌ is a Poisson map from C2, endowed with the canonical
symplectic structure, to R3, endowed with the + Lie Poisson structure. There-
fore, −J̌ : C2 → R3 is a canonical map, if R3 has the − Lie-Poisson bracket
relative to which the free rigid body equations are Hamiltonian. Pulling back
the Hamiltonian H(Π) = Π · I−1Π/2 to C2 gives a Hamiltonian function
(called collective) on C2. The classical Hamilton equations for this function
are therefore projected by −J̌ to the rigid body equations Π̇ = Π× I−1Π. In
this context, the variables (z, w) are called the Cayley-Klein parameters. They
represent a first attempt to understand the rigid body equations as a Hamilto-
nian system, before the introduction of Poisson manifolds. In quantum me-
chanics, the same variables are called the Kustaanheimo-Stiefel coordinates.
A similar construction was carried out in fluid dynamics making the Euler
equations a Hamiltonian system relative to the so-called Clebsch variables.

Now notice that if (z, w) ∈ S3 := {(z, w) ∈ C2 | |z|2 + |w|2 = 1}, then
‖ − J̌(z, w)‖ = 1/2, so that −J̌|S3 : S3 → S2

1/2, where S2
1/2 is the sphere in

R3 of radius 1/2. It is also easy to see that −J̌|S3 is surjective and that its fibers
are circles. Indeed, given (x1, x2, x3) = (x1 + ix2, x3) = (reiψ, x3) ∈ S2

1/2,
the inverse image of this point is

− J̌−1(reiψ, x3) ={(
eiθ

√
1
2

+ x3, eiϕ

√
1
2
− x3

)
∈ S3 | ei(θ−ϕ+ψ) = 1

}
.

One recognizes now that −J̌|S3 : S3 → S2 is the Hopf fibration. In other
words, the momentum map of the SU(2)-action on C2, the Cayley-Klein pa-
rameters, the Kustaanheimo-Stiefel coordinates, and the family of Hopf fibra-
tions on concentric three-spheres in C2 are the same map.
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6 Lie-Poisson and Euler-Poincaré Reduction

In this lecture we shall present the simplest case of reduction, namely the Lie-
Poisson reduction theorem. It states that the quotient of a cotangent bundle
of a Lie group by the lift of the left or right translation is Poisson isomorphic
to the dual of the Lie algebra endowed with the ± Lie-Poisson bracket. The
symplectic leaves of this Poisson structure are the connected components of the
coadjoint orbits. The Lagrangian version of this result is a reduced constrained
variational principle that is equivalent to first order equations on the dual of
the Lie algebra, called Euler-Poincaré equations. We shall carry out in detail
several examples both in finite and in infinite dimensions.

6.1 Lie-Poisson Reduction

One way to construct new Poisson manifolds out of known ones is by symme-
try reduction.

Let G be a Lie group acting canonically on a Poisson manifold P . Assume
that the orbit space P/G is a smooth manifold and the quotient projection
π : P → P/G a surjective submersion. This is the case, for example, if the
G-action is proper and free, or proper with all isotropy groups conjugate. Then
there exists a unique Poisson bracket {·, ·}P/G on P/G relative to which π is
a Poisson map. The Poisson bracket on P/G is given in the following way. If
F̂ , Ĥ ∈ F(P/G), then F̂ ◦π, Ĥ◦π ∈ F(P ) are G-invariant functions and, due
to the fact that the action is canonical, their Poisson bracket {F̂ ◦ π, Ĥ ◦ π} is
also G-invariant. Therefore, this function descends to a smooth function on the
quotient P/G; this is, by definition, {F̂ , Ĥ}P/G and we have, by construction,

{F̂ ◦ π, Ĥ ◦ π} = {F̂ , Ĥ}P/G ◦ π. It is easy to see that {·, ·}P/G so defined
satisfies all the axioms of a Poisson bracket. This proves in a constructive
way the existence of the Poisson bracket on the quotient. In addition, because
π : P → P/G is a surjective Poisson submersion, the bracket on the quotient
is necessarily unique with the requirement that π is a Poisson map.

When the manifold P is the cotangent bundle T ∗G of a Lie group G and
the action of G on T ∗G is by cotangent lift of the left (or right) translation
of G on itself, the reduced space (T ∗G)/G is naturally diffeomorphic to the
dual g∗ of the Lie algebra g of G. The goal of this section is to show that the
quotient Poisson bracket is the minus (or plus) Lie-Poisson bracket. To do this,
we follow the presentation in [MaRa94], §13, and we will give two proofs.

First Proof. The left and right translations by g ∈ G are denoted by Lg(h) :=
gh and Rg(h) = hg. Let FL(T ∗G) be the space of smooth left-invariant
functions on T ∗G, that is, FL ∈ FL(T ∗G) if and only if FL ◦ T ∗Lg = FL
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for all g ∈ G, where T ∗Lg is the cotangent lift of Lg . Similarly, a right-
invariant function FR verifies FR ◦ T ∗Rg = FR and the space of all smooth
right invariant functions on T ∗G is denoted by FR(T ∗G). Note that FL(T ∗G)
and FR(T ∗G) are closed under Poisson bracket.

Any F ∈ F(g∗) can be uniquely extended to a left (respectively right) in-
variant function FL (respectively FR) on T ∗G by setting

FL(αg) := F (T ∗
e Lgαg) = (F ◦ JR)(αg)

(respectively FR(αg) := F (T ∗
e Rgαg) = (F ◦ JL)(αg)). Here JL and JR are

the momentum maps for the left and right translations given by (5.16).
So, composition with JR (respectively with JL) defines, by Theorem 5.2, an

isomorphism of Poisson algebras F(g∗−) → FL(T ∗G) (respectively, F(g∗+) →
FR(T ∗G)) whose inverse is the restriction to the fiber T ∗

e G = g∗:

{F, H}− ◦ JR = {F ◦ JR, H ◦ JR} = {FL, HL} ,

{F, H}+ ◦ JL = {F ◦ JL, H ◦ JL} = {FR, HR} ,

{F, H}− = {FL, HL} |g∗ , and {F, H}+ = {FR, HR} |g∗ ,

where {·, ·}± are the Lie-Poisson brackets on g∗ and {·, ·} is the Poisson
bracket on T ∗G. �

While mathematically correct, this proof is unsatisfactory for it requires to
know a priori that g∗ is a Poisson manifold. This is why we shall give below
a second proof in which the Lie-Poisson bracket is discovered by carrying out
the identification of (T ∗G)/G with g∗ explicitly.

Second Proof. This is done in several steps. We begin by noting that the map
P : X ∈ X(Q) �→ 〈·, X〉 ∈ L(T ∗Q), where

L(T ∗Q) := {f ∈ F(T ∗Q) | f linear on the fibers }

is a Poisson subalgebra of F(T ∗Q), is a Lie algebra anti-isomorphism. To
see this, work in coordinates and note that F, H ∈ L(T ∗Q) if and only if
F (q, p) = Xi(q)pi, H(q, p) = Y i(q)pi and hence

{F, H} (q, p) =
∂F

∂qj

∂H

∂pj
− ∂H

∂qj

∂F

∂pj
=

(
∂Xi

∂qj
Y i − ∂Y i

∂qj
Xi

)
pi.

Thus, {P(X),P(Y )} = −P ([X, Y ]). This immediately implies that the lin-
ear isomorphism Y ∈ X(Q) �→ XP(Y ) ∈ {XF | F ∈ L(T ∗Q)} preserves the
Lie brackets. Indeed,

[X, Y ] �→ XP([X,Y ]) = −X{P(X),P(Y )} = [XP(X), XP(Y )]
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for any X, Y ∈ X(Q). Thus Y ∈ X(Q) �→ XP(Y ) ∈ {XF | F ∈ L(T ∗Q)} is
a Lie algebra isomorphism.

Next we prove that if the flow of X ∈ X(Q) is φt then its cotangent lift
T ∗φ−t is the flow of XP(X).

To see this, let π : T ∗Q → Q be the canonical projection. Differentiating at
t = 0 the equation π ◦ T ∗φ−t = φt ◦ τQ, we get

Tπ ◦ Y = X ◦ π where Y (αq) =
d

dt

∣∣∣∣
t=0

T ∗φ−t(αq).

So T ∗φ−t is the flow of Y . As T ∗φ−t preserves the canonical one-form, it
follows that £Y Θ = 0 and hence iY Ω = d(iY Θ). This shows that Y is
Hamiltonian with energy iY Θ(αq) = 〈αq, (Tπ ◦ Y )(αq)〉 = 〈αq, X(q)〉 =
P(X)(αq), that is, Y = XP(X), which proves the statement.

Finally we shall implement the diffeomorphism between (T ∗G)/G and g∗

given by dropping to the quotient the left invariant map JR : T ∗G → g∗.
Concretely, we shall prove that the push-forward by this diffeomorphism of
the quotient Poisson bracket on (T ∗G)/G gives the known formula

{F, H}− (µ) = −
〈

µ ,

[
δF

δµ
,
δH

δµ

]〉
.

To achieve this, we shall show that if F, H ∈ F(g∗), we get the identity
{FL, HL}|g∗ = {F, H}−.

This is done in the following way. Since the Poisson bracket of any F, H ∈
F(g∗) depends only on the differentials of F and H , it is enough to prove the
statement for linear functions on g∗. So we can replace the general smooth
function F : g∗ → R with its linear part

F �(µ) :=
〈

µ,
δF

δµ

〉
.

Then, denoting by ξL the left invariant vector field on G whose value at the
identity is ξ ∈ g, that is, ξL(g) := TeLgξ, we get

F �
L(αg) = F �

(
TeL

∗
g(αg)

)
=

〈
TeL

∗
g(αg),

δF

δµ

〉
=

〈
αg, TeLg

(
δF

δµ

)〉
=

〈
αg,

(
δF

δµ

)
L

(g)
〉

= P
((

δF

δµ

)
L

)
(αg).
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Therefore if µ ∈ g∗ we have{
F �

L, H�
L

}
|g∗(µ) =

{
F �

L, H�
L

}
(µ) =

{
P

((
δF

δµ

)
L

)
,P

((
δH

δµ

)
L

)}
(µ)

= −P
([(

δF

δµ

)
L

,

(
δH

δµ

)
L

])
(µ)

= −P
([

δF

δµ
,
δH

δµ

]
L

)
(µ) = −

〈
µ,

[
δF

δµ
,
δH

δµ

]
L

(e)
〉

= −
〈

µ ,

[
δF

δµ
,

δH

δµ

]〉
= {F, H}− (µ) =

{
F �, H�

}
(µ),

which ends the proof. �
Thus, the identification of the set of real-valued functions on g∗ with the

left (respectively, right) invariant functions on T ∗G endows g∗ with the minus
(respectively the plus) Lie-Poisson bracket.

6.2 Lie-Poisson Reduction of Dynamics

In this section we shall discuss the Lie-Poisson reduction of dynamics. Since
the momentum maps JR : T ∗G → g∗− and JL : T ∗G → g∗+ are Poisson maps,
they will map integral curves of left and right invariant Hamiltonian vector
fields to integral curves of Lie-Poisson Hamiltonian systems. This immediately
yields the following theorem.

Theorem 6.1 (Lie-Poisson reduction of dynamics) If H : T ∗G → R is a
left (respectively, right) G-invariant function its restriction H− := H|g∗ (re-
spectively, H+ := H|g∗ ) to g∗ satisfies

H = H− ◦ JR (respectively H+ = H ◦ JL),

where JR = T ∗Lgαg and JL = T ∗Rgαg for all αg ∈ T ∗
g G.

The flow Ft of XH on T ∗G and the flow, F−
t of XH− on g∗− (respectively,

F+
t of XH+ on g∗+) are related by JR ◦Ft = F−

t ◦JR (respectively, JL ◦Ft =
F+

t ◦ JL.

As the original Hamiltonian and the reduced Hamiltonian are related by a
momentum map we can get some additional information using the fact that the
momentum map is a conserved quantity.

Proposition 6.2 Let H : T ∗G → R be left-invariant, H− = H|g∗ , α(t) ∈
T ∗

g(t)G an integral curve of XH , µ(t) = JR(α(t)), and ν = JL(α(t)). Then

ν = Ad∗
g(t)−1 µ(t).
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Proof The curve ν(t) := JL(α(t)) = T ∗
e Rg(t)α(t) is constant by the Noether

theorem, say equal to ν. As µ(t) = JR(α(t)) = T ∗
e Lg(t)α(t), we get

ν = T ∗
e Rg(t)α(t) =

(
T ∗

e Rg(t) ◦ T ∗
g(t)Lg−1(t)

)
µ(t) = Ad∗

g−1(t) µ(t)

which proves the statement. �

It is interesting to relate the reduced dynamics to its left (right) trivializa-
tion. Explicitly, T ∗G is diffeomorphic to G × g∗ via the left trivialization
diffeomorphism

λ : T ∗G → G × g
∗, λ(αg) := (g, T ∗

e Lg(αg)) = (g,JR(αg)) .

Since JR is equivariant, λ is an equivariant diffeomorphism for the cotangent
lift of the left translation and the following action of G on G × g∗

g · (h , µ) := (gh, µ).

Thus (T ∗G)/G is diffeomorphic to (G × g∗)/G. As G does not act on g∗,
it follows that (G × g∗)/G is equal to g∗ and we see again that (T ∗G)/G is
diffeomorphic to g∗.

If XH is the Hamiltonian vector field on T ∗G for a left invariant Hamilto-
nian H , a lengthy but elementary computation (see, e.g. [MaRa94], Proposi-
tion 13.4.3) shows that the left trivialization λ∗XH equals

(λ∗XH) =
(

TeLg
δH−

δµ
, µ, ad∗

δH−/δµ µ

)
∈ TgG × Tµg

∗, (6.1)

which says that Hamilton’s equations on G × g∗ for the push forward Hamil-
tonian function λ∗H and the push forward symplectic form λ∗Ω are

µ̇ = ad∗
δH−/δµ µ, ġ = TeLg

δH−

δµ
. (6.2)

Note that the first equation is just the Lie-Poisson reduced Hamiltonian vector
field and hence does not depend on g ∈ G. Once the first equation is solved,
the second one yields a linear equation with time dependent coefficients, that
is, the second equation is what one usually calls a “quadrature”. We summarize
these remarks in the following Reconstruction Theorem.

Theorem 6.3 Let H : T ∗G → R be a left-invariant Hamiltonian, H− :=
H|g∗ , and µ(t) the integral curve of the Lie-Poisson equations

dµ

dt
= ad∗

δH−/δµ µ
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with initial condition µ(0) = T ∗
e Lg0(αg0). Then the integral curve α(t) ∈

T ∗
g(t)G of XH with initial condition α(0) := αg0 is given by

α(t) = T ∗
g(t)Lg(t)−1µ(t),

where g(t) is the solution of the equation

dg(t)
dt

= TeLg(t)
δH−

δµ
,

with initial condition g(0) = g0.

Proof A curve α(t) is the unique integral curve of XH with initial condition
α(0) = αg0 if and only if

λ(α(t)) = (g(t) , T ∗
e Lg(t)α(t)) = (g(t), JR(α(t))) = (g(t) , µ(t))

is the unique integral curve of λ∗XH with initial condition

λ(α(0)) = (g0 , T ∗
e Lg0αg0).

So, the result follows from equation (6.1). �

A similar statement holds for right invariant Hamiltonians by replacing ev-
erywhere “left” by “right” and − by + in the Lie-Poisson equations.

6.3 Coadjoint Orbits

In §4.2 we studied the internal structure of a Poisson manifold, namely, its
stratification into a disjoint union of symplectic leaves. In this section we shall
see that the symplectic leaves of the Poisson manifold g∗ endowed with the
Lie-Poisson bracket are the connected components of the coadjoint orbits.

The coadjoint orbit O(µ) through µ ∈ g∗ is the subset of g∗ defined by

O(µ) := G · µ :=
{
Ad∗

g−1(µ) : g ∈ G
}

.

Like the orbit of any Lie group, O(µ) is an immersed submanifold of g∗ but
is not, in general, a submanifold of g∗. If G is compact then O(µ) is a closed
embedded submanifold of g∗. This is, in general, not true for an arbitrary Lie
group. Coadjoint orbits of algebraic groups are also embedded submanifolds.

For any smooth Lie group action Φ : G × M → M on a manifold M , the
orbit through a point m ∈ M is the set

Om = {Φ(g, m) | g ∈ G} ⊂ M.
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For m ∈ M , the isotropy subgroup of Φ at m is

Gm = {g ∈ G | Φ(g, m) = m ∈ G} ⊂ G.

Since the map Φm : G → M , given by Φm(g) := Φ(g, m), is smooth, Gm =
(Φm)−1(m) is a closed subgroup and hence a Lie subgroup of G. The bijective
map [g] ∈ G/Gm �→ Φ(g, m) ∈ Om induces a manifold structure on Om that
makes it diffeomorphic to the smooth homogeneous manifold G/Gm.

Recall that for ξ ∈ g the family of diffeomorphisms t �→ Φexp (tξ) on M de-
fines a flow and the corresponding vector field ξM ∈ X(M) is the infinitesimal
generator of the action. Thus

ξM (m) :=
d

dt

∣∣∣∣
t=0

Φexp (tξ)(m).

This definition shows that the tangent space to the orbit Om is given by

TmOm = {ξM (m) | ξ ∈ g} .

We apply these general considerations to M = g∗ and the G-action the
coadjoint action. Then the orbit through µ ∈ g∗ is diffeomorphic to G/Gµ,
where Gµ is the isotropy subgroup of µ

Gµ =
{
g ∈ G | Ad∗

g µ = µ
}

.

We recall that for ξ ∈ g, the infinitesimal generator for the coadjoint action
corresponding to ξ is given by (5.15), that is,

ξg∗(µ) = − ad∗
ξ µ.

Therefore

TµOµ =
{
− ad∗

ξ µ | ξ ∈ g
}

= g
◦
µ,

where g◦µ := {ν ∈ g∗ | 〈ν, η〉 = 0 for all η ∈ gµ}, gµ = {ξ ∈ g | ad∗
ξ µ = 0},

and 〈·, ·〉 : g∗ × g → R is a strongly nondegenerate pairing (see [MaRa94],
Proposition 14.2.1).

The next theorems show that the symplectic leaves of the Poisson manifold
g∗ are the connected components of the coadjoint orbits and give explicitly the
symplectic form. The proofs can be found in [MaRa94].

Theorem 6.4 Let G be a Lie group and let O ⊂ g∗ be a coadjoint orbit. Then
O is a symplectic manifold relative to the orbit symplectic form

ω±(µ)
(
ξg∗(µ), ηg∗(µ)

)
:= ±〈µ, [ξ, η]〉 (6.3)

for all µ ∈ O and ξ, η ∈ g.



V. 6 Lie-Poisson and Euler-Poincaré Reduction 79

The symplectic form (6.3) is also known as the Kostant-Kirillov-Souriau
symplectic form.

Theorem 6.5 The Lie-Poisson bracket and the coadjoint orbit symplectic struc-
ture are consistent in the following sense: for F, H : g∗ → R and O a coad-
joint orbit in g∗, we have

{F, H}+|O = {F |O, H|O}+,

where, {·, ·}+ is the + Lie-Poisson bracket, while {·, ·}+ is the Poisson bracket
defined by the + coadjoint symplectic orbit structure ω+ on O. Similarly,

{F, H}−|O = {F |O, H|O}−.

We summarize below some results for coadjoint orbits:

• For µ, ν ∈ g∗− and H : g∗ → R, the Hamiltonian vector field for H is
XH(ν) = ad∗

δH/δν(ν). Therefore, if ν ∈ O then XH(ν) is tangent to O.
So the trajectory of XH starting at µ ∈ O ⊂ g∗ stays in O.

• Recall that a function C ∈ F(g∗) is a Casimir if and only if 0 = XC(µ) =
ad∗

δC/δµ µ. Thus if C is a Casimir of g∗ then δC/δµ ∈ gµ for all µ ∈ g∗.
• (Duflo-Vergne Theorem) Let g be a finite-dimensional Lie algebra with

dual g∗ and let r := min{dim gµ | µ ∈ g∗}. The set {µ ∈ g∗ | dim gµ = r}
is Zariski open and thus open and dense in the usual topology of g∗. If
dim gµ = r, then gµ is Abelian.

• If C ∈ F(g∗) is Ad∗-invariant, i.e C(Ad∗
g−1 µ) = C(µ), then the differen-

tiation of this equality with respect to g at g = e shows that C is a Casimir
function. Thus, a function that is constant on coadjoint orbits is necessarily
a Casimir function.

In general Ad∗-invariance of C is a stronger condition than C being a
Casimir. A theorem of Kostant gives a characterization of which Ad∗-
invariant functions are Casimirs. Namely, an Ad∗-invariant function C is
a Casimir if and only if δC/δµ lies in the center of gµ for all µ ∈ g∗ (see
[MaRa94], Proposition 14.4.4).

The rest of this section is dedicated to working out a few examples.

(1) Rotation group. Recall from §5.1 that the coadjoint action of SO(3) on
so(3)∗ has the expression Ad∗

A−1 Π̃ = (AΠ)˜, where the isomorphism ˜ :
R3 → so(3)∗ is given by Π̃(û) := Π · u for any u ∈ R3 and ˆ : (R3,×) →
(so(3), [·, ·]) is the Lie algebra isomorphism (1.13). Therefore, the coadjoint
orbit O = {AΠ | A ∈ SO(3)} ⊂ R3 of SO(3) through Π ∈ R3 is a 2-sphere
of radius ‖Π‖.
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To compute the coadjoint action of so(3) on its dual, let u,v ∈ R3 and note
that 〈

ad∗
û Π̃, v̂

〉
=

〈
Π̃, [û, v̂]

〉
=

〈
Π̃, (u × v)ˆ

〉
= Π · (u × v)

= (Π × u) · v = 〈Π × u)˜, v̂〉 ,

which shows that ad∗
û Π̃ = (Π × u)˜, proving (1.21). Therefore, TΠO ={

Π × u | u ∈ R3
}

as expected, since the plane perpendicular to Π, that is,
the tangent space to the sphere centered at the origin of radius ‖Π‖, is indeed
given by

{
Π × u | u ∈ R3

}
.

The minus orbit symplectic structure on O is given hence by

ω−(Π)(Π × u,Π × v) = −Π · (u × v).

How does this exactly relate to the area form on the sphere O? To see this,
recall that the oriented area of a planar parallelogram spanned by two vectors
a,b (in this order) is given by a×b. Thus, the oriented area spanned by Π×u
and Π × v is

(Π × u) × (Π × v) = (Π · (u × v))Π.

The area element dS on the sphere assigns to each ordered pair of tangent
vectors a,b the number dS(a,b) = n · (a × b), where n is the outward unit
normal. Therefore

dS(Π × u,Π × v) =
Π
‖Π‖ · ((Π × u) × (Π × v)) = ‖Π‖Π · (u × v).

This shows that

ω−(Π) = − 1
‖Π‖dS.

We have computed in §1.2 the kinetic energy of a heavy top. If the center of
mass is the point of suspension of the top, that is � = 0, then one obtains the
free rigid body and the total energy is the kinetic energy given by (1.38)

K(A, Ȧ) = −1
4

trace((JA−1Ȧ + A−1ȦJ)A−1Ȧ).

This expression is on TSO(3) but using the Riemannian metric on SO(3)
obtained by left translating the inner product (1.34) on so(3) one obtains a
bundle metric on T ∗SO(3) whose kinetic energy is the Hamiltonian of the
free rigid body. Its restriction to so(3)∗ ∼= R3 is given by

H(Π) =
1
2
Π · I−1Π.
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By (6.2) the geodesic equations in left trivialization are

Π̇ = Π × I
−1Π and Ȧ = AI

−1Π

since ∇H(Π) = I−1Π. The first equation is the Lie-Poisson equation on R3

and the second one is a linear equation with time dependent coefficients and
gives the attitude matrix of the body. Since the concentric spheres centered
at the origin are the coadjoint orbits, the integral curves of the first equation
necessarily lie on them. In addition, the first equation is Hamiltonian on these
spheres relative to the orbit symplectic form and the Hamiltonian H . Thus
the solutions of the Lie-Poisson equation Π̇ = Π × I−1Π are obtained by
intersecting each sphere with the ellipsoids H(Π) = constant. This shows
that there are six equilibria four of which are stable (rotation about the long
and short axes) and two of which are saddles (rotation about the middle axis).

(2) Affine group on R. Consider the Lie group G of the transformations T :
R → R, T (x) = ax + b with a 	= 0. We can identify G with the set of pairs
(a, b). As

(T2 ◦ T1)(x) = T2(a1x + b1) = (a2a1x + a2b1 + b2),

then the group multiplication on G = {(a, b) ∈ R2 | a 	= 0} is given by

(a2, b2)(a1, b1) = (a2a1 , a2b1 + b2).

The identity element of G is e = (1, 0) and the inverse of (a, b) is (a, b)−1 =
(1/a,−b/a). The inner conjugation automorphism AD(a,b) is given by

AD(a,b)(c, d) = (a, b)(c, d)(a, b)−1 = (a, b)(c, d)
(

1
a
,
−b

a

)
= (c,−cb + ad + b).

The adjoint action is obtained differentiating AD(a,b)(c, d) with respect to
(c, d) at the identity e = (1, 0) in the direction to (u, v) which gives

Ad(a,b)(u, v) =
d

dt

∣∣∣∣
t=0

AD(a,b)(c + tu, d + tv)

=
d

dt

∣∣∣∣
t=0

(c + tu,−(c + tu)b + a(d + tv) + b)

= (u, av − bu).

Thus, the adjoint orbit through (u, v) is {u} × R if (u, v) 	= (0, 0) and is the
origin if (u, v) = (0, 0). We shall see below that the coadjoint orbits are very
different.
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The underlying vector space of the Lie algebra g of G is R2 since G is obvi-
ously open in R2. The Lie bracket is obtained by differentiating Ad(a,b)(u, v)
with respect to (a, b) at the identity in the direction of (r, s) which gives

d

dt

∣∣∣∣
t=0

(u, (a + tr)v − (b + ts)u) = (0, rv − su) = [(r, s), (u, v)] , (6.4)

for (r, s), (u, v) ∈ g = R2.
Consider the pairing between g∗ and g to be the standard inner product in

R2, that is, g∗ = R2. So, for (α, β) ∈ g∗ and (u, v) ∈ g, we have〈
Ad∗

(a,b)(α, β), (u, v)
〉

=
〈
(α, β),Ad(a,b)(u, v)

〉
= 〈(α, β), (u, av − bu)〉 = (α − βb)u + βav,

which shows that

Ad∗
(a,b)(α, β) = (α − βb, βa).

So, if β = 0, the coadjoint orbit through (α, β) is the single point (α, 0), while
if β 	= 0, the coadjoint orbit through (α, β) is R2 minus the α-axis; this latter
orbit is open in g∗. This example shows that the dimensions of the adjoint and
coadjoint orbits can be different.

To compute the coadjoint action of g on g∗ we use (6.4) and the Euclidean
inner product for the duality pairing to get〈

ad∗
(u,v)(α, β), (r, s)

〉
= 〈(α, β), [(u, v), (r, s)]〉 = 〈(α, β), (0, su − rv)〉

= suβ − rvβ = 〈(−vβ, uβ), (r, s)〉 ,

that is,

ad∗
(u,v)(α, β) = (−vβ, uβ).

This shows that T(α,β)O(α,β) equals is {(0,0)} if β = 0 or R2 if β 	= 0, as
expected.

The minus Lie-Poisson bracket of F, H : g∗ → R is hence given by

{F, H}−(α, β) = −β

(
∂F

∂α

∂H

∂β
− ∂F

∂β

∂H

∂α

)
.

The orbit symplectic structure (6.3) for the open orbit O, that is, the orbit
passing through (α, β) with β 	= 0, equals

ω−(α, β)
(
(ad∗

(r,s)(α, β), ad∗
(u,v)(α, β)

)
= −〈(α, β), [(r, s), (u, v)]〉

= −β(rv − su),
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or, in canonical coordinates (α, β) on O(α,β),

ω− = − 1
β
dα ∧ dβ.

Given a smooth function H : g∗ = R2 → R, the Hamiltonian vector field
relative to the minus Lie-Poisson bracket is given by

XH(α, β) = β(−∂H/∂β, ∂H/∂α).

As is obvious from this expression, an integral curve whose initial condition
(α0, β0) satisfies β0 > 0 (respectively β0 < 0) will satisfy the same condition
for all time. This verifies the standard fact that the open symplectic leaves
are invariant under the flow. In addition, all points on the line β = 0 are
equilibria, that is, the zero dimensional orbits are also invariant under the flow,
as expected.

(3) The group Diffvol(D), vorticity representation. Let G = Diffvol(D) be
the group of volume preserving diffeomorphisms of a k-dimensional oriented
Riemannian manifold (D, g) with smooth boundary ∂D. The Riemannian vol-
ume form µ on D is the unique volume form on D which is equal to 1 on all
positively oriented g-orthonormal bases of tangent vectors at all points of D.

The Riemannian volume µ naturally induces a Riemannian volume form
on the boundary ∂D (relative to the induced metric) given in the following
way. Let i : ∂D → D be the inclusion. If v1 . . . , vk−1 ∈ Tx(∂D) is a
basis such that µ(x)(n, v1, . . . , vk−1) > 0 for n the outward pointing unit
normal, define µ∂D(x)(v1, . . . , vk−1) := µ(x)(n, v1, . . . , vk−1) and extend it
by skew symmetry and multilinearity to any other k-tuple of tangent vectors
in Tx∂D. Recall that the normal n is pointing outward if, in a (and hence
any) chart on D intersecting ∂D whose image lies in the upper half space
{(x1, . . . , xk) ∈ Rk | xk ≥ 0}, the vector n is collinear with −∂/∂xk. The
key relation that relates g, µ, and µ∂D is

i∗(ivµ) = g(v, n)µ∂D (6.5)

for any v ∈ X(D).
As we have seen in §5.1, formally, the Lie algebra of G is the Lie algebra

Xdiv(D) of divergence free vector fields tangent to the boundary ∂D, endowed
with minus the usual bracket of vector fields. We have identified the dual
Xdiv(D)∗ with dΩ1(D), assuming that the first cohomology group of D is
zero. The weak pairing (see §4.3) between Xdiv(D) and dΩ1(D) was given
by

(u, ω) ∈ Xdiv(D) × dΩ1(D) �→
∫

D

α(u)µ ∈ R, for ω := dα (6.6)
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and the plus Lie-Poisson bracket by

{F, H}(ω) =
∫

D

ω

(
δF

δω
,
δH

δω

)
µ, (6.7)

for any F, H ∈ F(Xdiv(D)).
The coadjoint action of the diffeomorphism η ∈ Diffvol(D) on ω ∈ dΩ1(D)

is given by Ad∗
η−1 ω = η∗ω (see §5.1). Therefore, the coadjoint orbit passing

through ω equals O = {η∗ω | η ∈ Diffvol(D)}. The coadjoint action of
Xdiv(D) on dΩ1(D) ∼= Xdiv(D)∗ is hence given by

− ad∗
v ω = −£vω. (6.8)

Note the − sign on the right hand side. Normally, one should expect a + sign
since

d

dt

∣∣∣∣
t=0

(ηt)∗ω = −£vω,

where ηt is the flow of v. However, all formulas derived abstractly use the
left Lie algebra and, as we have seen in Section 5.1, Example 2, the left Lie
algebra bracket on vector fields is minus the usual Lie bracket. This is why one
needs to change the sign in (6.8). One can easily derive (6.8) directly: for any
u, v ∈ Xdiv(D) and ω = dα ∈ dΩ1(D), the identities adv u = −[v, u] (note
the minus sign), £v(α(u)) = (£vα)(u) + α([v, u]), (6.5), and the Stokes
theorem give

〈ad∗
v ω, u〉 = 〈ω, adv u〉 = 〈ω,−[v, u]〉 = −

∫
D

α([v, u])µ

=
∫

D

(£vα)(u)µ −
∫

D

£v(α(u))µ

=
∫

D

(£vα)(u)µ −
∫

D

£v(α(u)µ)

=
∫

D

(£vα)(u)µ −
∫

∂D

α(u)ivµ

= 〈d£vα, u〉 = 〈£vω, u〉 ,

which, by weak non-degeneracy of the pairing, proves (6.8).
Thus, the tangent space to the orbit O is

TωO = {£vω = divω | v ∈ Xdiv(D)}.

The orbit symplectic structure (6.3) has therefore the expression

ω+(ω)(£uω,£vω) = −
∫

D

〈α, [u, v]〉µ for ω = dα.
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However, if ω = dα, for any u, v ∈ Xdiv(D) we have

〈α, [u, v]〉 + ω(u, v) = u[〈α, v〉] − v[〈α, u〉]

so that by the Stokes theorem and (6.5)∫
D

(
〈α, [u, v]〉 + ω(u, v)

)
µ =

∫
D

u[〈α, v〉]µ −
∫

D

v[〈α, u〉]µ

=
∫

D

£u

(
〈α, v〉µ

)
−

∫
D

£v

(
〈α, u〉µ

)
=

∫
D

diu
(
〈α, v〉µ

)
−

∫
D

div
(
〈α, u〉µ

)
=

∫
∂D

i∗
(
iu〈α, v〉µ

)
−

∫
∂D

i∗
(
iv〈α, u〉µ

)
=

∫
∂D

(i∗〈α, v〉)i∗(iuµ) −
∫

∂D

(i∗〈α, u〉)i∗(ivµ)

=
∫

∂D

(i∗〈α, v〉)g(u, n)µ∂D −
∫

∂D

(i∗〈α, u〉)g(v, n)µ∂D = 0

since, by hypothesis, g(u, n) = g(v, n) = 0 on ∂D. Therefore, the orbit
symplectic structure is given by

ω+(ω)(£uω,£vω) =
∫

D

ω(u, v)µ. (6.9)

Let us compute the plus Lie-Poisson equations for the geodesic flow, that is,
the equations Ḟ = {F, H} for any F ∈ F(Diffvol(D)), where

H(ω) =
1
2

∫
D

‖v‖2µ =
1
2

∫
D

v�(v)µ =
1
2

〈
dv�, v

〉
(6.10)

by (6.6). Define the vorticity associated to the spatial velocity vector field v

of the incompressible perfect fluid by ω := dv�. Note that the pairing (6.6)
satisfies 〈du�, v〉 = 〈dv�, u〉 for any u, v ∈ Xdiv(D), so that letting δω :=
d(δv)� we get 〈

δω,
δH

δω

〉
= DH(ω) · δω = 〈δω, v〉 ,

that is, δH/δω = v. Thus, the plus Lie-Poisson equations (4.17) become

∂ω

∂t
+ £vω = 0, where ω := dv�, (6.11)

which are the Euler equations for an incompressible homogeneous perfect fluid
in vorticity formulation. Therefore the geodesic ηt ∈ Diffvol(D) is given by
solving the equation ∂ηt/∂t = vt ◦ ηt with the velocity vt found after solving
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for ω equation (6.11) and then inverting the relation ω = dv� with boundary
condition v · n = 0, where n is the outward unit normal to the boundary ∂D.

Equation (6.11) is equivalent to any of the following statements:

(i) The vorticity ωt is transported by the flow. Indeed, if ω0 is an initial
condition at t = 0 of (6.11), then

d

dt

∣∣∣∣
t=0

(ηt)∗ω0 = −(ηt)∗£vω0 = −£v(ηt)∗ω0,

which shows that ωt = (ηt)∗ω0 solves (6.11). By uniqueness, this is
the only solution of (6.11) with ω0 as initial condition.

(ii) Solution curves of the vorticity equation (6.11) remain on coadjoint
orbits in X∗

div(D). Indeed, since the solution of (6.11) is ωt = (ηt)∗ω0,
where ηt is the flow of v, it follows that ωt necessarily lies on the
coadjoint orbit containing ω0.

(iii) Kelvin’s circulation theorem: For any loop C in D bounding a surface
S, the circulation ∫

Ct

v�
t = constant,

where Ct := ηt(C) and ηt is the flow of v. Indeed, by change of
variables and Stokes’ theorem, for St := ηt(S), we have∫

Ct

v�
t =

∫
St

dv�
t =

∫
St

ωt =
∫

St

(ηt)∗ω0 =
∫

S

ω0 = constant.

(4) The group Diffvol(D), velocity representation. In §4.3 we have also iden-
tified Xdiv(D) with itself by the weak L2 pairing 〈 , 〉 : Xdiv(D)×Xdiv(D) →
R given by

〈u, v〉 =
∫

D

g(u, v)µ.

The plus Lie-Poisson bracket is given by (4.9), namely

{F, H} (v) = −
∫

D

g

(
v,

[
δF

δv
,
δH

δv

])
µ,

for F, H ∈ F(Diffvol(D)). Using the change of variables formula and the fact
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that η is volume preserving, the coadjoint action is computed to be

〈Ad∗
η−1 u, v〉 = 〈u, Adη−1 v〉 = 〈u, η∗v〉 =

∫
D

g(u, η∗v)µ

=
∫

D

g(u, Tη−1 ◦ v ◦ η)µ

=
∫

D

g((Tη−1)† ◦ u ◦ η−1, v)µ = 〈P
(
(Tη−1)† ◦ u ◦ η−1

)
, v〉,

where (Tη)† is the pointwise adjoint relative to the metric g of the fiberwise
linear map Tη : TD → TD and P : X(D) → Xdiv(D) is the Helmholtz pro-
jector. In defining P we used the Helmholtz decomposition which is the Hodge
decomposition on forms for the special case of one-forms and formulated in
terms of vector fields: every vector field on D can be uniquely decomposed as
an L2 orthogonal sum of a divergence free vector field tangent to the boundary
and the gradient of a function. Thus, since the L2 pairing is weakly nondegen-
erate on Xdiv(D), we conclude

Ad∗
η−1 u = P

(
(Tη−1)† ◦ u ◦ η−1

)
for any u ∈ Xdiv(D) ∼= Xdiv(D)∗. Therefore, the coadjoint orbit O passing
through w ∈ Xdiv(D) equals O = {P

(
(Tη)† ◦ w ◦ η

)
| η ∈ Diffvol(D)}.

Compared to the vorticity representation, the expression of the coadjoint ac-
tion and of the coadjoint orbit are more complicated. This also shows that
different identifications of the dual can give rise to different expressions for
the coadjoint orbits. We shall remark below why it is important to work with
both representations when considering the Euler equations.

The orbit symplectic structure (6.3) has hence the expression

ω+(w)(uO(w), vO(w)) = −
∫

D

g(w, [u, v])µ (6.12)

for any w ∈ O and any u, v ∈ Xdiv(D).
It is interesting to give the expression of the value of the infinitesimal gen-

erator vO(w) at w ∈ O. If ηt is the flow of w, we have (see [MaRa95])

d

dt

∣∣∣∣
t=0

[
(Tηt)

† ◦ v ◦ ηt

]
= ∇wv + (v · ∇w)�,

where v · ∇w is the contraction of v with the upper index of ∇w, that is, if

(∇w)j
k =

∂wj

∂xk
+ Γj

k�w
�

then

(v · (∇w))k = gmjv
m(∇w)j

k.
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Thus v · ∇w ∈ Ω1(D) and its associated vector field using the metric is (v ·
∇w)� ∈ X(D). This shows that

vO(w) = − ad∗
v w = −P

(
∇wv + (v · ∇w)�

)
. (6.13)

We shall not compute here the plus Lie-Poisson equations for the Hamilto-
nian (6.10) because we shall carry out an identical computation in Section 6.4,
Example 4, when dealing with the Euler-Poincaré equations. We mention only
that they are the classical Euler equations for an incompressible homogeneous
perfect fluid 

∂v
∂t + ∇vv = −∇p

div v = 0, v · n = 0,

(6.14)

where p is the pressure and n is the outward unit normal to the boundary ∂D.
The pressure p exists and is determined up to a constant since it is a solution
of the following Neumann problem

∆p = div∇vv in D, with
∂p

∂n
= (∇vv) · n on ∂D

obtained by taking the divergence and the inner product with n on the boundary
of the Euler equation; here ∆ := −div ◦ grad is the Laplacian on functions.
Thus p is a nonlinear functional of the Eulerian velocity v.

Since the solutions of Lie-Poisson equations always lie on coadjoint orbits,
we can conclude that the solution of the Euler equations with initial condition
v0 ∈ Xdiv(D) necessarily lies on the coadjoint orbit {P

(
(Tη)† ◦ v0 ◦ η

)
| η ∈

Diffvol(D)}.

6.4 Euler-Poincaré Reduction

A Hamiltonian H on T ∗Q often arises from a Lagrangian L on TQ. Namely,
as seen in section 3.3, the two formalisms are equivalent when the Legendre
transform FL : TQ → T ∗Q is a diffeomorphism. In the previous sections
we saw how to reduce a Poisson bracket on T ∗G to one on g∗ via Lie-Poisson
reduction and how Hamiltonian dynamics on T ∗G induces Lie-Poisson dy-
namics on g∗. In this section we study the passage from TG to g in a context
appropriate for the Lagrangian formalism. As Lagrangian mechanics is based
on variational principles, it is natural that the basic objects to be reduced here
are the variational principles rather than the Poisson bracket or symplectic form
as was the case in Lie-Poisson reduction.
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Euler-Poincaré Reduction starts with a left (respectively right) invariant La-
grangian L : TG → R on the tangent bundle of a Lie group G. Recall that
this means that L(TgLh(v)) = L(v), respectively L(TgRh(v)) = L(v), for
all g, h ∈ G and all v ∈ TgG.

Theorem 6.6 Let G be a Lie group, L : TG → R a left-invariant Lagrangian,
and l := L|g : g → R be its restriction to g. For a curve g(t) ∈ G, let ξ(t) =
g(t)−1 · ġ(t) := Tg(t)Lg(t)−1 ġ(t) ∈ g. Then the following are equivalent:

(i) g(t) satisfies the Euler-Lagrange equations for L on G.
(ii) The variational principle

δ

∫ b

a

L(g(t), ġ(t))dt = 0

holds, for variations with fixed endpoints.
(iii) The Euler-Poincaré equations hold:

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
.

(iv) The variational principle

δ

∫ b

a

l(ξ(t))dt = 0

holds on g, using variations of the form δξ = η̇+[ξ, η], where η(t) is an
arbitrary path in g that vanishes at the endpoints, i.e η(a) = η(b) = 0.

Proof The equivalence (i) ⇐⇒ (ii) is the variational principle of Hamilton
(see Theorem 3.5). To show that (ii) ⇐⇒ (iv) we need to compute variations
δξ induced by δg. We will do it for matrix groups to simplify the exposition.

Let ξ = g−1ġ and gε a family of curves in G such that g0(t) = g(t) and
denote δg := (dgε(t)/dε)|ε=0. Then we have

δξ =
d

dε

∣∣∣∣
ε=0

(g−1
ε ġε) = −g−1(δg)g−1ġ + g−1 d2g

dtdε

∣∣∣∣
ε=0

. (6.15)

Let η := g−1δg, that is, η(t) is an arbitrary curve in g with the only restriction
that it vanishes at the endpoints. Then we get

dη

dt
=

d

dt

(
g−1 d

dε

∣∣∣∣
ε=0

gε

)
= −g−1ġg−1(δg) + g−1 d2g

dtdε

∣∣∣∣
ε=0

. (6.16)

Taking the difference of (6.15) and (6.16) we get

δξ − η̇ = −g−1(δg)g−1ġ + g−1ġg−1(δg) = ξη − ηξ = [ξ, η],
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that is, δξ = η̇ + [ξ, η].
Left invariance of L together with the formula just deduced prove the equiv-

alence of (ii) and (iv).
To avoid the assumption that G is a matrix group and to do the general case

for any Lie group, the same proof works using the following lemma.

Lemma 6.7 Let g : U ⊂ R2 → G be a smooth map and denote its partial
derivatives by

ξ(t, ε) := Tg(t,ε)Lg(t,ε)−1
∂g(t, ε)

∂t
, η(t, ε) := Tg(t,ε)Lg(t,ε)−1

∂g(t, ε)
∂ε

.

(6.17)
Then

∂ξ

∂ε
− ∂η

∂t
= [ξ, η]. (6.18)

Conversely, if U ⊂ R2 is simply connected and ξ, η : U → g are smooth
functions satisfying (6.18), then there exists a smooth function g : U → G

such that (6.17) holds.

Let us show that (iii) ⇐⇒ (iv). We have

δ

∫ b

a

l(ξ(t))dt =
∫ b

a

〈
δl

δξ
, δξ

〉
dt =

∫ b

a

〈
δl

δξ
, η̇ + adξη

〉
dt

=
∫ b

a

〈
δl

δξ
, η̇

〉
dt +

∫ b

a

〈
δl

δξ
, adξη

〉
dt

=
∫ b

a

〈
− d

dt

δl

δξ
+ ad∗

ξ

δl

δξ
, η

〉
dt,

where the last equality follows from integration by parts and because the curve
η(t) vanishes at the endpoints. Thus, δ

∫ b

a
l(ξ(t))dt = 0 if and only if the right

hand side of the previous equality vanishes for any η(t) that vanishes at the
endpoints, which proves that this is equivalent to

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
.

which are the Euler-Poincaré equations. �

In case of right invariant Lagrangians on TG the same theorem holds with
the changes that the Euler-Poincaré equations are

d

dt

δl

δξ
= −ad∗

ξ

δl

δξ

and the variations are taken of the form δξ = η̇ − [ξ, η].
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As was the case for Lie-Poisson dynamics, there is a reconstruction proce-
dure in this case. The goal is to find the solution v(t) ∈ Tg(t)G of the Euler-
Lagrange equations with initial conditions g(0) = g0 and ġ(0) = v0 knowing
the solution of the Euler-Poincaré equations. To do this, first solve the initial
value problem for the Euler-Poincaré equations:

d
dt

δl
δξ = ad∗

ξ
δl
δξ

ξ(0) = ξ0 := g−1
0 v0

and then solve the “linear differential equation with time-dependent coeffi-
cients” 

ġ(t) = g(t)ξ(t)

g(0) = g0.

The Euler-Poincaré reduction theorem guarantees then that v(t) = ġ(t) =
g(t) · ξ(t) is a solution of the Euler-Lagrange equations with initial condition
v0 = g0ξ0.

A similar statement holds, with obvious changes for right invariant La-
grangian systems on TG.

The relationship between Lie-Poisson and Euler-Poincaré reduction, similar
to the link between the Hamiltonian and Lagrangian formulations discussed in
Section 3.3, is the following. Define the Legendre transformation Fl : g → g∗

by

Fl(ξ) =
δl

δξ
= µ,

and let h(µ) := 〈µ, ξ〉 − l(ξ). Assuming that Fl is a diffeomorphism, we get

δh

δµ
= ξ +

〈
µ ,

δξ

δµ

〉
−

〈
δl

δξ
,

δξ

δµ

〉
= ξ.

So the Euler-Poincaré equations for l are equivalent to the Lie-Poisson equa-
tions for h:

d

dt

(
δl

δξ

)
= ad∗

ξ

δl

δξ
⇐⇒ µ̇ = ad∗

δh
δµ

µ.

There is one more element to be discussed: the reduction of Hamilton’s
phase space principle due to [Cendra et al.], called Hamilton-Poincaré reduc-
tion.

Theorem 6.8 Let G be a Lie group, H : T ∗G → R a left-invariant Hamil-
tonian, and h := H|g∗ : g∗ → R be its restriction to g∗. For a curve
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α(t) ∈ T ∗G, let g(t) = π(α(t)) ∈ G, where π : T ∗G → G is the cotangent
bundle projection, and define µ(t) = g(t)−1 · α(t) := TeLg(t)α(t) ∈ g∗, and
ξ(t) = g(t)−1 · ġ(t) := Tg(t)Lg(t)−1 ġ(t) ∈ g. The following are equivalent:

(i) Hamilton’s Phase Space Principle. The curve α(t) ∈ T ∗G is a criti-
cal point of the action∫ t1

t0

(
〈Θ, α̇(t)〉 − H(α(t))

)
dt,

where the variations δα satisfy TπG(δα(ti)) = 0, for i = 0, 1.
(ii) Hamilton’s equations hold on T ∗G.

(iii) The Hamilton-Poincaré Variational Principle. The curve (µ(t), ξ(t)) ∈
g∗ × g is a critical point of the action∫ t1

t0

(
〈µ(t), ξ(t)〉 − h(µ(t))

)
dt,

with variations δξ(t) = η̇(t) + [ξ(t), η(t)] ∈ g, where η(t) is an ar-
bitrary curve satisfying η(ti) = 0, for i = 0, 1, and δµ(t) ∈ g∗ is
arbitrary.

(iv) The Lie-Poisson equations hold:

µ̇ = − ad∗
δh
δµ

µ.

There is, of course, a similar statement for right invariant systems where one
has the change the sign in front of the Lie-Poisson equation and in front of the
bracket defining δξ.

Proof The equivalence (i) ⇐⇒ (ii) is Hamilton’s phase space variational prin-
ciple which holds on any cotangent bundle (see Theorem 3.7). The equivalence
(ii) ⇐⇒ (iv) is the Lie-Poisson reduction and reconstruction of dynamics (see
Theorems 6.1 and 6.3). We now show that (iii) ⇐⇒ (iv). The variation

δ

∫ t1

t0

(
〈µ(t), ξ(t)〉 − h(µ(t))

)
dt

=
∫ t1

t0

(
〈δµ, ξ〉 + 〈µ, δξ〉 −

〈
δµ,

δh

δµ

〉)
dt

=
∫ t1

t0

(〈
δµ, ξ − δh

δµ

〉
+ 〈µ, η̇ + adξη〉

)
dt

=
∫ t1

t0

(〈
δµ, ξ − δh

δµ

〉
+

〈
−µ̇ + ad∗

ξµ, η
〉)

dt

vanishes for any functions δµ(t) ∈ g∗ and η(t) ∈ g (vanishing at the endpoints
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t0 and t1) if and only if ξ = δh/δµ and µ̇ = − ad∗
ξ µ, that is, when the Lie

Poisson equations in (iv) hold. �

If the Lagrangian L is hyperregular then any of the statements in Theorem
6.8 are equivalent to any of the statements in Theorem 6.6. The link between
the reduced Lagrangian l and the reduced Hamiltonian h is given by h(µ) =
〈µ, ξ〉 − l(ξ), where µ = δl/δξ, as was already remarked earlier.

Let us work out a few examples in detail.

(1) Free rigid body. As we saw in Example 1 of Section 6.3, the restriction of
the Lagrangian of the free rigid body to R3 ∼= so(3) is L(Ω) = Ω · IΩ/2 (see
(1.36) with Π = IΩ) and hence, using the identity ad∗

û Π̃ = (Π × u)˜ and
Theorem 6.6, we get the Euler-Poincaré equations

IΩ̇ = IΩ × Ω

and we recognize the Euler equations, this time formulated in terms of the body
angular velocity Ω as opposed to the body angular momentum Π. The Leg-
endre transformation is Π = IΩ. Looking back at the computations involving
the variational principle carried out at the end of Section 1.2 and setting in
those computations � = 0, one recognizes the variational principle on so(3)
for the free rigid body Lagrangian.

(2) Lagrangian systems on the affine algebra. Consider the affine Lie al-
gebra introduced in example 2 of Section 6.3 and let L : TG → R be a left
invariant Lagrangian. The Euler-Poincaré equations for l : R2 → R are

d

dt

∂l

∂u
= −v

∂l

∂v
,

d

dt

∂l

∂v
= u

∂l

∂v
.

(3) Incompressible homogeneous fluids, vorticity representation. In Sec-
tion 6.3, Example 3, we have studied the motion of an incompressible homo-
geneous fluid in vorticity representation as a Lie-Poisson system. Now we
shall derive the same equations (6.11) as Euler-Poincaré equations. We recall
that ad∗

v ω = £vω (see (6.8)) and

l(v) =
1
2

∫
D

‖v‖2µ =
1
2
〈ω, v〉 ,

where dv� = ω (see (6.10)). Therefore, δl/δv = ω and hence the Euler-
Poincaré equations (for a right invariant system on the tangent bundle of a Lie
group) are given by

∂ω

∂t
+ £vω = 0.
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(4) Incompressible homogeneous fluids, velocity representation. In Section
6.3, Example 4, we have presented in Lie-Poisson setting the equations of mo-
tion of an ideal incompressible homogeneous fluid in velocity representation.
These are the Euler equations (6.14) which were not explicitly derived there
because this will be done now. To do this, one could proceed by using the
general expression for the Euler-Poincaré equations and formula (6.13) for the
coadjoint action. Even though (6.13) was not proved in these notes, let us do it
first this way. Since

l(v) =
1
2

∫
D

‖v‖2µ

is the kinetic energy of the fluid and we use the L2 weak pairing to identify
Xdiv(D) with itself, we have δl/δv = v and so the Euler-Poincaré equations
are

∂v

∂t
= − ad∗

v v = −P
(
∇vv + (v · ∇v)�

)
.

Write, according to the Helmholtz decomposition,

∇vv + (v · ∇v)� = P
(
∇vv + (v · ∇v)�

)
−∇q

for some smooth function q : D → R and note that (v · ∇v)� = ∇(‖v‖2/2).
The Euler-Poincaré equations become hence

∂v

∂t
+ ∇vv = −∇

(
1
2
‖v‖2 + q

)
which are the Euler equations for the pressure q+‖v‖2/2. Therefore, the Euler
equations for an ideal incompressible homogeneous fluid are the spatial rep-
resentation of the geodesic spray on Diffvol(D) for the right invariant metric
whose value on Xdiv(D) is the L2 inner product. This proves that the solutions
of the Euler equations are geodesics on Diffvol(D).

Even though the computation above proves the claim that the Euler-Poincaré
equations are the Euler equations for an ideal incompressible homogeneous
fluid, it is unsatisfactory since it relies on the unproven formula (6.13). Due to
its importance we shall derive it once more directly.

We begin by recalling that δl/δv = v and hence for any w ∈ Xdiv(D) we
have 〈

−ad∗
v

δl

δv
, w

〉
=

〈
δl

δv
,−advw

〉
= 〈v, [v, w]〉 . (6.19)

In order to isolate w in 〈v, [v, w]〉, let us compute the Lie derivative of v�(w)µ
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along the vector field v in two different ways. We have

£v

(
v�(w)µ

)
= ivd

(
v�(w)µ

)
+ div

(
v�(w)µ

)
= d

(
v�(w)ivµ

)
. (6.20)

On the other hand, since £vµ = (div v)µ = 0, we get

£v

(
v�(w)µ

)
=

(
£vv�

)
(w)µ + v� (£vw) µ + v�(w)£vµ

=
(
£vv�

)
(w)µ + v�([v, w])µ. (6.21)

Then, from equations (6.20) and (6.21), we get

d
(
v�(w)ivµ

)
=

(
£vv�

)
(w)µ + v�([v, w])µ

and hence by integration∫
D

d
(
v�(w)ivµ

)
=

∫
D

(
£vv�

)
(w)µ +

∫
D

v�([v, w])µ.

The left hand side is zero by Stokes’ theorem and (6.5) and so

〈v, [v, w]〉 =
∫

D

g(v, [v, w])µ =
∫

D

v�([v, w])µ

= −
∫

D

(
£vv�

)
(w)µ = −

∫
D

g

((
£vv�

)�

, w

)
µ

= −
∫

D

g

(
P

((
£vv�

)�
)

, w

)
µ = −

〈
P

((
£vv�

)�
)

, w

〉
which, using (6.19), shows that

ad∗
v

δl

δv
= P

((
£vv�

)�
)

by weak non-degeneracy of the L2 pairing on divergence free vector fields
tangent to the boundary. Thus the Euler-Poincaré equations are

∂v

∂t
+ P

((
£vv�

)�
)

= 0.

Since (£vv�)� = ∇vv + 1
2∇‖v‖2, writing ∇vv = P(∇vv) − ∇p, for some

smooth function p : D → R, the above equation becomes

0 =
∂v

∂t
+ P

(
∇vv +

1
2
∇‖v‖2

)
=

∂v

∂t
+ P

(
P(∇vv) −∇p +

1
2
∇‖v‖2

)
=

∂v

∂t
+ P(∇vv) =

∂v

∂t
+ ∇vv + ∇p
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which are the Euler equations (6.14).

(5) KdV equation and the Virasoro algebra. Here we show, following
[OKh87], that the periodic KdV equation is the Euler-Poincaré equation on
the Virasoro algebra v corresponding to the geodesic flow of the L2 right in-
variant metric on the Virasoro group.

The Lie algebra X(S1) of vector fields on the circle, identified with the
periodic functions of period 1, with Lie bracket given by [u, v] = uv′−u′v, has
a unique central extension by R. This unique central extension is the Virasoro
algebra

v :=
{
(u, a) ∈ X(S1) × R

}
,

with Lie bracket

[(u, a), (v, b)] :=
(
−uv′ + u′v, γ

∫ 1

0

u′(x)v′′(x) dx

)
,

where the first argument is the (left) Lie bracket on X(S1), the second is the
Gelfand-Fuchs cocycle, and γ ∈ R is a constant.

We identify v∗ with v using the weak L2 pairing

〈(u, a) , (v, b)〉 = ab +
∫ 1

0

u(x)v(x) dx.

We also consider the right invariant weak Riemannian metric whose value on
v is the expression above. We are interested in the geodesic equations for this
metric. To see who they are, we compute the Euler-Poincaré equations for the
kinetic energy of this metric.

We begin by computing the coadjoint action of v on v∗:〈
ad∗

(u,a)(v, b), (w, c)
〉

= 〈(v, b), [(u, a) , (w, c)]〉

=
〈

(v, b),
(
−uw′ + u′w, γ

∫ 1

0

u′(x)w′′(x) dx

)〉
= bγ

∫ 1

0

u′w′′dx −
∫ 1

0

vuw′dx +
∫ 1

0

vu′wdx

=
∫ 1

0

(bγu′′′ + 2u′v + uv′)wdx

= 〈(bγu′′′ + 2u′v + uv′, 0), (w, c)〉 ,

where from the third to the fourth equality we have used integration by parts,
twice for the first term and once for the second term, as well as the null condi-
tions on the boundary. So,

ad∗
(u,a)(v, b) = (bγu′′′ + 2u′v + uv′, 0) (6.22)
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and the Euler-Poincaré equations (for a right invariant system) determined by
l : v → R are

d

dt

(
δl

δu
,

δl

δa

)
= −ad∗

(u,a)

(
δl

δu
,

δl

δa

)
= −

(
γ

δl

δa
u′′′ + 2u′ δl

δu
+ u

(
δl

δu

)′
, 0

)
,

that is,

d

dt

δl

δa
= 0,

d

dt

δl

δu
= −

(
γ

δl

δa
u′′′ + 2u′ δl

δu
+ u

(
δl

δu

)′
)

. (6.23)

If we are interested in the L2 geodesic flow, then we take

l(u, a) =
1
2

(
a2 +

∫ 1

0

u2(x)dx

)
so that δl

δa = a and δl
δu = u. Thus the corresponding Euler-Poincaré equations

are:

da

dt
= 0,

du

dt
= −γau′′′ − 3u′u.

Hence a is constant and we get

ut + 3uxu + γauxxx = 0,

which is one of the forms of the KdV equation (for example by choosing a =
γ = 1). To get the expression (4.10), that is,

ut + 6uxu + uxxx = 0

one needs to rescale time (τ(t) = t/2) and make an appropriate choice of the
constants (a = 1/(2γ)). This shows that the solutions of the KdV equation are
geodesics of the L2 right invariant metric on the Virasoro group.

(6) Camassa-Holm equation and the Virasoro algebra. Let us compute the
Euler-Poincaré equations for the kinetic energy of the H1 metric

〈(u, a), (v, b)〉 := ab +
∫ 1

0

(u(x)v(x) + u′(x)v′(x))dx

on the Virasoro algebra. As before, we identify v∗ with v using the L2 inner
product. Thus δl/δa = a and δl/δu = u − u′′. The Euler-Poincaré equations
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(6.23) are given by a = constant and

d

dt
(u − u′′) = −

(
γau′′′ + 2u′(u − u′′) + u (u − u′′)′

)
= −3uu′ + 2u′u′′ + uu′′′ − γau′′′.

This is the Camassa-Holm equation:

ut − utxx = −3uux + 2uxuxx + uuxxx − γauxxx.

Shifting u �→ u + γa brings the Camassa-Holm equation into yet another
form, often used in the literature

ut − utxx = −3uux + 2uxuxx + uuxxx − 3γaux.

Thus, the solutions of the Camassa-Holm equation are geodesics of the H1

right invariant metric on the Virasoro group, a result due to [Mis02].
An identical computation shows that the solutions of Hunter-Saxon equation

utxx = −2uxuxx − uuxxx

are geodesics of the right invariant degenerate metric on the Virasoro group
whose value on v is

〈(u, a), (v, b)〉 = ab +
∫ 1

0

u′(x)v′(x)dx,

a result due to [KhMis03]. Eliminating the degeneracy of the metric means
looking at the Hunter-Saxon equation on the homogeneous space which is the
quotient of the Virasoro group by rotations of the circle.

To see this, note first that if l is the kinetic energy of this degenerate metric
then δl/δu = −u′′, so again by (6.23) we get

−utxx = −2uxuxx − uuxxx − γauxxx.

Reversing time and shifting u �→ u − γa yields the Hunter-Saxon equation.

7 Symplectic Reduction

In previous lectures we focussed our attention to the particular cases of reduc-
tion of Hamiltonian and Lagrangian systems where the phase space is either
the cotangent space or the tangent space of a given Lie group. In this lec-
ture we shall present the general case of symplectic reduction as formulated
by [MaWei74]. All the hypotheses will require regularity assumptions. The
singular case is considerably more involved and its complete treatment can be
found in [OR04]. We shall present with detailed proofs the Marsden-Weinstein
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theorem, nowadays often called “point reduction”. This will be done at geo-
metric and dynamic level. Then we shall present three important examples
of reduced manifolds with all computations done in detail. The orbit reduc-
tion method and the so-called “shifting trick” will then be presented without
proofs. This chapter ends with a discussion of the semidirect product reduc-
tion theorem and its application to the motion of the heavy top presented in the
Introduction.

7.1 Point Reduction

In this section we shall review the symplectic point reduction theorem and
give its formulation and classical proof due to [MaWei74]. This procedure is
of paramount importance in symplectic geometry and geometric mechanics. It
underlies all the other reduction methods that one can find now in the litera-
ture as well as all the various generalizations that have proved their usefulness
in areas as varied as algebraic geometry and topology, differential and sym-
plectic topology, classical, continuum, and quantum mechanics, field theory,
dynamical systems, bifurcation theory, and control theory.

The setup of the problem is the following. Let (P,Ω) be a symplectic man-
ifold on which a Lie group G with Lie algebra g acts in a Hamiltonian fashion
with associated equivariant momentum map J : P → g∗. If µ ∈ J(P ) ⊂ g∗

denote by Gµ := {g ∈ G | Ad∗
g µ = µ} the coadjoint isotropy subgroup of µ.

The Marsden-Weinstein reduction theorem is the following.

Theorem 7.1 (Symplectic point reduction) Assume that µ is a regular value
of J and that the coadjoint isotropy subgroup Gµ acts freely and properly on
J−1(µ). Then the quotient manifold Pµ := J−1(µ)/Gµ has a unique symplec-
tic form Ωµ characterized by the identity ι∗µΩ = π∗

µΩµ, where ιµ : J−1(µ) ↪→
P is the inclusion and πµ : J−1(µ) → Pµ the projection. The symplectic
manifold (Pµ,Ωµ) is called the symplectic point reduced space at µ.

In what follows we shall need the following notations. If (V, Ω) is a finite di-
mensional symplectic vector space and W ⊂ V a subspace, define its symplec-
tic orthogonal by WΩ = {v ∈ V | Ω(v, w) = 0 for all w ∈ W}. An elemen-
tary linear algebra argument, using the identity dimW + dimWΩ = dimV ,
shows that (WΩ)Ω = W . If z ∈ P , denote by G · z and Gµ · z the G- and
Gµ-orbits through z respectively. It is important to note that the set J−1(µ) is
G- invariant if and only if Gµ = G. In general, J−1(µ) is only Gµ-invariant.
The key ingredient in the proof of the reduction theorem is the following result
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that we shall state in the setting of Poisson manifolds because of its usefulness
in that general situation (not covered in these lectures).

Lemma 7.2 (Reduction Lemma) Let P be a Poisson manifold and let J :
P → g∗ an equivariant momentum map of the canonical G-action on P . Let
G · µ denote the coadjoint orbit through a regular value µ ∈ g∗ of J. Then

(i) J−1(G · µ) = G · J−1(µ) := {g · z | g ∈ G and J(z) = µ};

(ii) Gµ · z = (G · z) ∩ J−1(µ);
(iii) J−1(µ) and G · z intersect cleanly, i.e.,

Tz(Gµ · z) = Tz(G · z) ∩ Tz(J−1(µ));

(iv) if (P,Ω) is symplectic, then Tz(J−1(µ)) = (Tz(G · z))Ω.

Proof (i) Since J−1(G · µ) is a G-invariant set by equivariance of J and
J−1(µ) ⊂ J−1(G · µ), it follows that G · J−1(µ) ⊂ J−1(G · µ). Conversely,
z ∈ J−1(G · µ) if and only if J(z) = Ad∗

g−1µ for some g ∈ G, which is
equivalent to µ = Ad∗

g−1J(z) = J(g−1 · z), i.e., g−1 · z ∈ J−1(µ) and hence
z = g · (g−1 · z) ∈ G · J−1(µ).

(ii) g · z ∈ J−1(µ) ⇔ µ = J(g · z) = Ad∗
g−1J(z) = Ad∗

g−1µ ⇔ g ∈ Gµ.
(iii) First suppose that vz ∈ Tz(G · z) ∩ Tz(J−1(µ)). Then vz = ξP (z) for

some ξ ∈ g and TzJ(vz) = 0 which, by infinitesimal equivariance (written
in the form TzJ(ξP (z)) = − ad∗

ξ J(z)) gives ad∗
ξµ = 0; i.e., ξ ∈ gµ. If

vz = ξP (z) for ξ ∈ gµ then vz ∈ Tz(Gµ · z). The reverse inclusion is
immediate since, by (ii), Gµ · z is included in both G · z and J−1(µ).

(iv) The condition vz ∈ (Tz(G · z))Ω means that Ω(z)(ξP (z), vz) = 0 for
all ξ ∈ g. This is equivalent to 〈TzJ(vz), ξ〉 = dJξ(z)(vz) = 0 for all ξ ∈ g

by definition of the momentum map. Thus, vz ∈ (Tz(G · z))Ω if and only if
vz ∈ ker TzJ = Tz(J−1(µ)). �

We are now ready to prove the Symplectic Point Reduction Theorem.

Proof Since πµ is a surjective submersion, if Ωµ exists, it is uniquely de-
termined by the condition π∗

µΩµ = ι∗µΩ. This relation also defines Ωµ in
the following way. For v ∈ TzJ−1(µ), let [v] = Tzπµ(v) ∈ T[z]Pµ, where
[z] = πµ(z). Then π∗

µΩµ = ι∗µΩ is equivalent to

Ωµ([z])([v], [w]) = Ω(z)(v, w)

for all v, w ∈ TzJ−1(µ). To see that this relation defines Ωµ, that is, it is
independent of the choices made to define it, let y = Φg(z), v′ = TzΦg(v),
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and w′ = TzΦg(w), where g ∈ Gµ. If, in addition [v′′] = [v′] and [w′′] = [w′],
then v′′ − v′, w′′ − w′ ∈ ker Tg·zπµ = Tg·z(Gµ · z) and thus

Ω(y)(v′′, w′′) = Ω(y)((v′′ − v′) + v′, (w′′ − w′) + w′)

= Ω(y)(v′′ − v′, w′′ − w′) + Ω(y)(v′′ − v′, w′)

+ Ω(y)(v′, w′′ − w′) + Ω(y)(v′, w′).

The second and third terms vanish by Lemma 7.2 (iv). The first term vanishes
by Lemma 7.2 (iii) and (iv). Thus we have

Ω(y)(v′′, w′′) = Ω(y)(v′, w′)

and we conclude

Ω(y)(v′′, w′′) = Ω(y)(v′, w′) = Ω(Φg(z))(TzΦg(v), TzΦg(w))

= (Φ∗
gΩ)(z)(v, w) = Ω(z)(v, w)

since the action is symplectic. This proves that Ωµ([z])([v], [w]) is well defined
and satisfies the relation in the statement of the theorem. It is smooth since
π∗

µΩµ = ι∗µΩ is smooth. Thus we have a well defined smooth two-form Ωµ on
Pµ.

Since dΩ = 0, we get

π∗
µdΩµ = dπ∗

µΩµ = dι∗µΩ = ι∗µdΩ = 0.

Since πµ is a surjective submersion, the pull-back map π∗
µ on forms is injective,

so we can conclude that dΩµ = 0.
Finally, we prove that Ωµ is non-degenerate. Suppose that Ωµ([z])([v], [w]) =

0 for all w ∈ Tz(J−1(µ)). This means that Ω(z)(v, w) = 0 for all w ∈
Tz(J−1(µ)), which is equivalent to v ∈ (Tz(J−1(µ)))Ω = Tz(G · z) by
Lemma 7.2 (iv). Hence v ∈ Tz(J−1(µ))∩ Tz(G · z) = Tz(Gµ · z) by Lemma
7.2 (iii) so that [v] = 0, thus proving the weak non-degeneracy of Ωµ. �

There are several important comments related to the Symplectic Point Re-
duction Theorem which will be addressed below.

(1) Define the symmetry algebra at z ∈ P by gz := {ξ ∈ g | ξP (z) = 0}. An
element µ ∈ g∗ is a regular value of J if and only if gz = 0 for all z ∈ J−1(µ).

To prove this, recall that z is a regular point if and only if TzJ is surjective
which is equivalent to {0} = {ξ ∈ g | 〈ξ, TzJ(v)〉 = 0, for all v ∈ TzP}.
Since 〈ξ, TzJ(v)〉 = Ω(z)(ξP (z), v) by the definition of the momentum map,
it thus follows that z is a regular point of J if and only if {0} = {ξ ∈ g |
Ω(z)(ξP (z), v) = 0 for all v ∈ TzP}. As Ω(z) is nondegenerate, this is in
turn equivalent to gz = {0}.
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(2) The previous statement affirms that only points with trivial symmetry al-
gebra are regular points of J. This is important in concrete examples because
it isolates the singular points easily. Another way to look at this statement is
to interpret it as saying that points with symmetry are bifurcation points of
J. This simple observation turns out to have many important consequences,
for example in the convexity theorems for momentum maps. Another conse-
quence of statement (1) is that if µ ∈ J(P ) ⊂ g∗ is a regular value of J then
the action is locally free, which means, by definition, that the symmetry alge-
bras of all the points in J−1(µ) vanish. In this case the reduction construction
can be carried out locally.

(3) Even if Ω = −dΘ and the action of G leaves Θ invariant, Ωµ need not be
exact. We shall prove in the next section that coadjoint orbits with their orbit
symplectic form are reduced spaces. This immediately gives an example of
a situation where the original symplectic form is exact but the reduced one is
not. The sphere is the reduced space of T ∗SO(3). The canonical symplectic
form on T ∗SO(3) is clearly exact whereas the area form on S2 is not.

(4) If one looks at the proof of the theorem carefully, one notices that the hy-
pothesis that µ is a regular value of J was not really used. What was necessary
is that µ is a clean value of J which means, by definition, that J−1(µ) is a
manifold and Tz(J−1(µ)) = kerTzJ.

(5) The freeness and properness of the Gµ action on J−1(µ) are used only to
guarantee that Pµ is a manifold. So these hypotheses can be replaced by the
requirement that Pµ is a manifold and that πµ : J−1(µ) → Pµ a submersion.

(6) A point in g∗ is said to be generic if its coadjoint orbit is of maximal
dimension. Duflo and Vergne have shown that the set of generic points is
Zariski open in g∗ and that the coadjoint isotropy algebra of a generic point
is necessarily Abelian. Regarding the momentum map, one should be warned
that if µ is a regular value of J, it need not be a generic point in g∗. As we
shall see in the next section, the cotangent lift of the left (or right) translation
of a Lie group G has all its values regular. However, among those, there are
points that are not generic, such as the origin, in g∗.

(7) The connected components of the point reduced spaces Pµ can be viewed in
a natural way as symplectic leaves of the Poisson manifold (P/G, {·, ·}P/G),
provided that G acts freely and properly on P . Indeed, the smooth map κµ :
Pµ → P/G naturally defined by the commutative diagram
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J−1 (µ) P

Pµ P/G

� �

�

�

πµ π

ιµ

κµ

is a Poisson injective immersion. Moreover, the κµ-images in P/G of the
connected components of the symplectic manifolds (Pµ,Ωµ) are its symplec-
tic leaves (see e.g. [OR04]). We will return to this in §7.4, where we will
summarize the orbit reduction process and link it with these observations.

Note that, in general, κµ is only an injective immersion. So the topology
of the image of κµ, homeomorphic to the topology of Pµ, is stronger than the
subspace topology induced by the ambient space P/G. For example, we can
have a subset of κµ(Pµ) which is compact in the induced topology from P/G

and not compact in the intrinsic topology of κµ(Pµ) (relative to which it is
homeomorphic to Pµ endowed with the quotient topology).

(8) We describe how reduction can be carried out for a non-equivariant momen-
tum map J : P → g∗. If P is connected, the expression J(g · z)−Ad∗

g−1 J(z)
turns out to be independent of z ∈ P . Setting σ(g) := J(g · z) − Ad∗

g−1 J(z)
one obtains a group one-cocycle with values in g∗, that is, σ satisfies the cocy-
cle identity σ(gh) = σ(g) + Adg−1 σ(h) (see, e.g. [MaRa94]). If this cocycle
is a coboundary, that is, there is some λ ∈ g∗ such that σ(g) = λ − Ad∗

g−1 λ,
then the momentum map can be modified by the addition of −λ to become
equivariant. If σ is not a coboundary then there is no way one can modify J to
make it equivariant. This g∗-valued group one-cocycle σ : G → g∗ is called
the nonequivariance group one-cocycle defined by J.

To carry out reduction, modify the coadjoint action of G on g∗ in the follow-
ing way: g ·µ := Ad∗

g−1 µ+σ(g). Relative to this affine action the momentum
map J is equivariant and the reduction procedure works by dividing the level
set J−1(µ) by the µ-isotropy subgroup for this affine action.

(9) If the regularity assumptions in the Symplectic Point Reduction Theorem
do not hold, then Pµ is a stratified space, all of whose strata are symplectic
manifolds. This result is considerably more difficult to prove and we refer
to [OR04] and references therein for an exposition of this theory. One could
even further relax the requirements, namely, do not even assume that there
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is a momentum map for a given canonical Lie group action on (P,Ω). In
this case there is a generalization of the momentum map due to Condevaux,
Dazord, and Molino, the so-called cylinder valued momentum map, for which
the reduction procedure can be implemented. We refer again to [OR04] and
references therein for a treatment of this subject.

7.2 Reduction and Reconstruction of Dynamics

The geometric theorem presented in the previous section has a dynamic coun-
terpart that will be discussed now. We keep the same conventions and notations
as in §7.1.

Theorem 7.3 (Point reduction of dynamics) Let Φ : G × P → P be a free
proper canonical action of the Lie group G on the connected symplectic man-
ifold (P,Ω). Assume that this action has an associated momentum map J :
P → g∗, with nonequivariance one-cocycle σ : G → g∗. Let µ ∈ g∗ be a
value of J and denote by Gµ the isotropy subgroup of µ under the affine action
of G on g∗.

(i) Let H : P → R be a smooth G-invariant function. The flow Ft of
the Hamiltonian vector field XH leaves the connected components of
J−1(µ) invariant and commutes with the G-action, so it induces a flow
Fµ

t on the reduced space Pµ = J−1(µ)/Gµ defined by

πµ ◦ Ft ◦ ιµ = Fµ
t ◦ πµ.

The vector field generated by the flow Fµ
t on (Pµ, Ωµ) is Hamiltonian

with associated reduced Hamiltonian function Hµ : Pµ → R defined
by

Hµ ◦ πµ = H ◦ ιµ.

The vector fields XH and XHµ
are πµ-related.

(ii) Let F : P → R be another smooth G-invariant function. Then {F, H}
is also G-invariant and {F, H}µ = {Fµ, Hµ}Pµ , where {·, ·}Pµ de-
notes the Poisson bracket associated to the reduced symplectic form
Ωµ on Pµ.

Proof (i) By Noether’s Theorem 5.4, the flow Ft leaves the connected compo-
nents of J−1(µ) invariant. Since H is G-invariant and the G-action is canon-
ical, it follows by Proposition 2.7 that Ft commutes with the G-action. Thus
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Ft induces a flow Fµ
t on Pµ that makes the following diagram commutative:

J−1(µ)
Ft◦ιµ−−−−→ J−1(µ)

πµ

6 6πµ

Pµ
F µ

t−−−−→ Pµ.

The G-invariance of H implies the existence of a smooth function Hµ :
Pµ → R uniquely determined by the identity Hµ ◦ πµ = H ◦ ιµ. Let Y ∈
X(Pµ) be the vector field on Pµ whose flow is Fµ

t . By construction, Y is πµ-
related to XH . Indeed, differentiating the relation given by the diagram above
relative to t at t = 0, we obtain

Tπµ ◦ XH ◦ ιµ = Y ◦ πµ.

Let us check that Y = XHµ
. For z ∈ J−1(µ) and v ∈ TzJ−1(µ) we have

Ωµ(πµ(z)) (Y (πµ(z)), Tzπµ(v)) = Ωµ(πµ(z)) (Tzπµ(XH(z)), Tzπµ(v))

= Ω(z)(XH(z), v) = dH(z)(v) = d(Hµ ◦ πµ)(z)(v)

= dHµ(πµ(z)) (Tzπµ(v)) = Ωµ(πµ(z))
(
XHµ

(πµ(z)), Tzπµ(v)
)
,

which, by nondegeneracy of Ωµ, shows that Y = XHµ
.

(ii) The G-invariance of {F, H} is a straightforward corollary of Proposition
2.8. Recall that the function {F, H}µ is uniquely characterized by the identity
{F, H}µ ◦ πµ = {F, H} ◦ ιµ. By the definition of the Poisson bracket on
(Pµ,Ωµ), πµ-relatedness of the relevant Hamiltonian vector fields, and the
identity ι∗µΩ = π∗

µΩµ, we have for any z ∈ J−1(µ) denoting [z]µ := πµ(z),

{Fµ,Hµ}Pµ
([z]µ) = Ωµ([z]µ)

(
XFµ

([z]µ), XHµ
([z]µ)

)
= Ωµ([z]µ) (Tzπµ(XF (z)), Tzπµ(XH(z)))

= (π∗
µΩµ)(z) (XF (z), XH(z)) = (ι∗µΩ)(z) (XF (z), XH(z))

= Ω(z) (XF (z), XH(z)) = {F, H}(z),

that is, the function {Fµ, Hµ}Pµ also satisfies the relation {Fµ, Hµ}Pµ ◦πµ =
{F, H} ◦ ιµ, which proves the desired equality {Fµ, Hµ}Pµ = {F, H}µ. �

This theorem shows how dynamics on P descends to dynamics on all re-
duced manifolds Pµ for any µ ∈ g∗, if the group action is free and proper. For
the singular case see [OR04].

Let us now pose the converse question. Assume that an integral curve cµ(t)
of the reduced Hamiltonian system XHµ on (Pµ,Ωµ) is known. Let z0 ∈
J−1(µ) be given. Can one determine from this data the integral curve of the
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Hamiltonian system XH with initial condition z0? The answer to this question
is affirmative as we shall see below.

The general method of reconstruction of dynamics is the following ([AbMa78]
§4.3, [MaMoRa90], [MaRa03]). Pick a smooth curve d(t) in J−1(µ) such that
d(0) = z0 and πµ(d(t)) = cµ(t). We shall give later concrete choices for such
curves in terms of connections. Then, if c(t) denotes the integral curve of XH

with c(0) = z0, we can write c(t) = g(t) · d(t) for some smooth curve g(t) in
Gµ. We shall determine now g(t) and therefore c(t). Below, Φ : G × P → P

denotes the left action of G on P and Φg : P → P is the diffeomorphism of
P given by the group element g ∈ G. We have

XH(c(t)) = ċ(t) = Td(t)Φg(t)ḋ(t) + Td(t)Φg(t)

(
Tg(t)Lg(t)−1 ġ(t)

)
P

(d(t))

= Td(t)Φg(t)

(
ḋ(t) + (Tg(t)Lg(t)−1 ġ(t))P (d(t))

)
which implies

ḋ(t) + (Tg(t)Lg(t)−1 ġ(t))P (d(t)) = Tg(t)·d(t)Φg(t)−1XH(c(t))

= Tg(t)·d(t)Φg(t)−1XH(g(t) · d(t))

=
(
Φ∗

g(t)XH

)
(d(t)) = XH(d(t))

since, by hypothesis, H = Φ∗
gH and thus, by Proposition 2.7, XH = XΦ∗

gH =
Φ∗

gXH for any g ∈ G. This equation is solved in two steps as follows:

• Step 1: Find a smooth curve ξ(t) in gµ such that

ξ(t)P (d(t)) = XH(d(t)) − ḋ(t). (7.1)

• Step 2: With ξ(t) ∈ gµ determined above, solve the nonautonomous differ-
ential equation on Gµ

ġ(t) = TeLg(t)ξ(t), with g(0) = e. (7.2)

Here are some useful remarks regarding the solution of each step.

(1) The first step is of algebraic nature. For example, if G is a matrix Lie
group, (7.1) is just a matrix equation. If one is willing to work with more
geometric structure, this equation can be solved explicitly. Typically, one en-
dows the left principal Gµ-bundle πµ : J−1(µ) → Pµ with a connection.
Recall that a (left) connection on this bundle is given by a gµ-valued one-form
A ∈ Ω1(J−1(µ); gµ) satisfying for all z ∈ J−1(µ) the relations

A(z)
(
ξJ−1(µ)(z)

)
= ξ, for all ξ ∈ gµ
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and

A(g · z)(TzΦg(vz)) = Adg(A(z)(vz)), for all g ∈ Gµ, vz ∈ TzJ−1(µ).

Let Gµ act on P by restriction so that ξP = ξJ−1(µ) for any ξ ∈ gµ. Choose
in Step 1 of the reconstruction method the curve d(t) to be the horizontal lift
of cµ(t) through z0, that is, d(t) is uniquely characterized by the conditions
A(d(t))(ḋ(t)) = 0, πµ(d(t)) = cµ(t), for all t, and d(0) = z0. Then the
solution of (7.1) is given by

ξ(t) = A(d(t))
(
XH(d(t))

)
.

(2) The second step is the main difficulty in finding a complete answer to the
reconstruction problem; equation (7.2) cannot be solved explicitly, in general.
For matrix groups this is a linear system with time dependent coefficients.
However, if G is Abelian, this equation can be solved by quadratures. To see
how this works, we need the formula of the derivative of the exponential map
at any point in the Lie algebra.

If G is a Lie group and exp : g → G the exponential map then

Tξ exp = TeLexp ξ ◦
∞∑

n=0

(−1)n

(n + 1!
adn

ξ

for any ξ ∈ g. If G is Abelian, then adξ = 0 and so Tξ exp = TeLexp ξ, a
formula that we shall use below.

So let us return to the second step in the reconstruction method for an
Abelian group G. Since the connected component of the p-dimensional Lie
group G is a cylinder Rk × Tp−k, the exponential map exp(ξ1, . . . , ξp) =
(ξ1, . . . , ξk, ξk+1(mod 2π), . . . , ξp(mod 2π)) is onto, so we can write g(t) =
exp η(t) for some smooth curve η(t) ∈ g satisfying η(0) = 0. Equation (7.2)
gives then ξ(t) = Tg(t)Lg(t)−1 ġ(t) = η̇(t) since ġ(t) = Tη(t) exp η̇(t) =
TeLexp η(t)η̇(t) by the comments above. Therefore, in this case, the solution
of (7.2) is given by

g(t) = exp
(∫ t

0

ξ(s)ds

)
.

This reconstruction method is crucial in the determination of various geo-
metric phases in mechanical problems; see [MaMoRa90] for details.

7.3 Examples of Reduced Manifolds

The projective space. Consider C2n = R4n = T ∗R2n endowed with the
canonical symplectic structure dq ∧ dp for (q,p) ∈ T ∗R2n. The flow of
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the Hamiltonian vector field given by the harmonic oscillator Hamiltonian
H(q,p) := (‖q‖2+‖p‖2)/2 is 2π-periodic and hence defines the circle action
θ · (q,p) �→ (q cos θ + p sin θ,−q sin θ + p cos θ) on R2n or θ · (q + ip) :=
e−iθ(q + ip) on Cn. Since the circle is compact this action is necessarily
proper and it is obvious that it is free away from the origin. The infinitesimal
generator of this action is XH , which shows that H : T ∗Rn → R is an invari-
ant momentum map for this circle action. All hypotheses of the Symplectic
Point Reduction Theorem hold and therefore H−1(1/2) is a symplectic man-
ifold. However, since H−1(1/2) is diffeomorphic to the unit sphere S2n−1,
we can immediately conclude that H−1(1/2)/S1 ∼= S2n−1/S1 This suggests
that this reduced manifold is in fact symplectically diffeomorphic to complex
projective space CP

n−1. We shall prove this below.
Recall that CP

n−1 is the space of complex lines through the origin in Cn.
Let π : Cn \ {0} → CP

n−1 be the tautological projection that sends the
vector z 	= 0 to the complex line it spans, denoted by [z] when thought of as
an element of CP

n−1. Consider the inclusion ι1/2 : H−1(1/2) = S2n−1 ↪→
Cn \ {0} and note that it preserves the equivalence relations, that is, the span
of e−iθz equals the span of z 	= 0. Therefore, ι1/2 induces a smooth map
ι̂1/2 : S2n−1/S1 → CP

n−1, uniquely characterized by the relation π ◦ ι1/2 =
ι̂1/2 ◦π1/2, which is easily seen to be bijective. Since the inverse of this map is
the quotient of the smooth map z ∈ Cn \{0} �→ S1 · (z/‖z‖) ∈ S2n−1/S1 by
the equivalence relation defining projective space, it follows that this inverse
is also smooth and therefore ι̂1/2 : S2n−1/S1 → CP

n−1 is a diffeomorphism.
In what follows it is convenient to define the map ϕ : S2n−1 → CP

n−1 by
ϕ := π ◦ ι1/2 = ι̂1/2 ◦ π1/2. Let us record all of these maps in the following
commutative diagram:

S2n−1 Cn \ {0}

S2n−1/S1
CP

n−1

� �

�

�

����������

π1/2 π

ι1/2

ι̂1/2

ϕ

Finally, we recall the symplectic form on projective space (see e.g. [MaRa94],
§5.3). Let [z] ∈ CP

n−1 be such that ‖z‖ = 1 and let w1,w2 ∈ (Cz)⊥. Then
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the symplectic form ΩFS on CP
n−1 is given by

ΩFS([z]) (Tzπ(w1), Tzπ(w2)) = − Im(w1 · w2).

This symplectic form is associated to the Fubini-Study Kähler metric on CP
n−1,

a subject not discussed in these lectures; it is the negative of its imaginary part.
We need to prove that ι̂∗1/2ΩFS = Ω1/2. By the characterization of the re-

duced symplectic form Ω1/2, this is equivalent to ι∗1/2(dq∧dp) = π∗
1/2Ω1/2 =

π∗
1/2ι̂

∗
1/2ΩFS = (ι̂1/2 ◦ π1/2)∗ΩFS = ϕ∗ΩFS , which is the identity that shall

be verified below. Since ϕ = π ◦ ι1/2, we have for any z ∈ S2n−1 and any
w1,w2 ∈ TzS

2n−1 = (Cz)⊥ the identity Tzϕ(wj) = Tzπ(wj) for j = 1, 2,
and hence

(ϕ∗ΩFS)(z) (w1,w2) = ΩFS([z]) (Tzϕ(w1), Tzϕ(w2))

= ΩFS([z]) (Tzπ(w1), Tzπ(w2))

= − Im(w1 · w2) = ι∗1/2(dq ∧ dp) (w1,w2)

as was remarked at the beginning of §2.1. This proves that the symplectic
reduced space (H−1(1/2)/S1,Ω1/2) is symplectically diffeomorphic to the
complex projective space (CP

n−1,ΩFS).

Kaluza-Klein construction in electromagnetism. Let us revisit the motion
of a particle with charge e and mass m moving in a given time independent
divergence free magnetic field B := Bxi + Byj + Bzk, where i, j,k is the
usual orthonormal basis of R3. In §2.5 we have shown that Newton’s equations
(2.13) for the Lorentz force law

m
dv
dt

=
e

c
v × B,

where v := q̇ is the velocity of the particle, are equivalent to Hamilton’s
equations in T ∗R3 := {(q,p) | x = (x, y, z),p := mv = (mẋ, mẏ, mż) =
(px, py, pz) ∈ R3} endowed with the magnetic symplectic form

ΩB = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz −
e

c
B

and the Hamiltonian given by the kinetic energy of the particle

H =
1

2m
‖p‖2 =

m

2
(ẋ2 + ż2 + ẏ2);

B denotes the closed two-form on R3 associated to the divergence free vector
field B, that is,

B := iB(dx ∧ dy ∧ dz) = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy.
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In addition, we have shown that writing B = dA, or equivalently, B = ∇×A,
where A� = A, that is, A = Axi+Ayj+Azk and A = Axdx+Aydy+Azdz,
the same Lorentz force law equations are Hamiltonian on T ∗R3 endowed with
the canonical symplectic structure but the momentum shifted Hamiltonian

HA(q,p) =
1

2m

∥∥∥p − e

c
A

∥∥∥2

.

In §3.3, writing these equations in Lagrangian form, we remarked that they
are not geodesic, essentially because of the magnetic symplectic form. Then
we used the Kaluza-Klein construction to find a new Lagrangian LKK (see
(3.6)) on the enlarged configuration space QKK := R3 × S1 = {(q, θ) | q ∈
R3, θ ∈ S1} which turned out to be the quadratic form of an A-dependent
Riemannian metric on QKK , called the Kaluza-Klein metric. Thus the Euler-
Lagrange equations for LKK are the geodesic equations of this metric on R3×
S1. Furthermore, we Legendre transformed LKK to get a Hamiltonian (see
(3.8)) on T ∗R3 = {q, θ,p, π) | q,p ∈ R3, θ ∈ S1, π ∈ R} given by

HKK(q,p, θ, π) =
1

2m
‖p − πA‖2 +

1
2
π2.

Relative to the canonical symplectic form, Hamilton’s equations for HKK are
the geodesic equations for the Kaluza-Klein metric (expressed in Hamiltonian
form). Since HKK does not depend on θ, π is conserved and setting π = e/c,
we noted that HKK , regarded as a function of only the variables (q,p), is
up to a constant (namely π2/2), equal to the momentum shifted Lorentz force
Hamiltonian HA (see (3.4)). These were just observations obtained by direct
calculations.

Now we shall show how all of this is obtained from reduction theory. We
start from the Hamiltonian system on T ∗QKK = T ∗(R3×S1) and note that S1

acts on QKK by ψ · (q, θ) := (q, θ+ψ) where θ+ψ is taken modulo 1 (so we
normalize the length of the circle to be 1). The infinitesimal generator defined
by ξ ∈ R for this action is ξQKK

(q, θ) = (q, θ;0, ξ). The Hamiltonian HKK

is obviously invariant under this action. The momentum map for this action,
given by (5.11), is in this case

〈J(q, θ,p, π), ξ〉 = (pdq + πdθ)ξ
∂

∂θ
= ξπ,

that is, J(q, θ,p, π) = π, thus recovering the direct observation that π is a
conserved quantity. Moreover, any value of J in R is a regular value and we
have J−1(e/c) = T ∗R3 ×S1 ×{e/c} on which S1 acts on the S1-factor only.
Thus the reduced space is (T ∗QKK)e/c = T ∗R3. The reduced Hamiltonian is
obviously HA + e2/2c2, so the reduced dynamics is given by HA. Finally we
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need to compute the reduced symplectic form Ωred. We have

(π∗
e/cΩred)(q, θ,p, π)

(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p
,X′ ∂

∂q
+ a′ ∂

∂θ
+ Y′ ∂

∂p

)
= ι∗e/c(dq ∧ dp + dθ ∧ dπ)

(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p
,

X′ ∂

∂q
+ a′ ∂

∂θ
+ Y′ ∂

∂p

)
= X · Y′ − X′ · Y.

Since

T(q,θ,p,e/c)πe/c

(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p

)
= X

∂

∂q
+ Y

∂

∂p

this identity shows that Ωred is the canonical symplectic form on the reduced
space T ∗R3, thus recovering the second result in §2.5: the Lorentz force law
equations are Hamiltonian on T ∗R3 relative to the canonical symplectic form
and the Hamiltonian function HA.

Let us carry out the reduction in a different manner, by insisting that we get
on the reduced space the kinetic energy Hamiltonian ‖p‖2/2m. To do this,
requires that we project J−1(e/c) → T ∗R3 by the S1-invariant smooth map

ϕ
(
q, θ,p,

e

c

)
:=

(
q,p − e

c
A

)
.

It is clear from the computation above that the reduced symplectic form will
not be the canonical one anymore, since we are using a different map to iden-
tify (T ∗QKK)e/c with T ∗R3. So what is the symplectic form now?

We compute it by using ϕ as the projection from the reduction theorem and
get as before

(ϕ∗Ωe/c)(q, θ,p, π)
(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p
,X′ ∂

∂q
+ a′ ∂

∂θ
+ Y′ ∂

∂p

)
= ι∗e/c(dq ∧ dp + dθ ∧ dπ)

(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p
,

X′ ∂

∂q
+ a′ ∂

∂θ
+ Y′ ∂

∂p

)
= X · Y′ − X′ · Y.

However,

T(q,θ,p,e/c)ϕ

(
X

∂

∂q
+ a

∂

∂θ
+ Y

∂

∂p

)
= X

∂

∂q
+

(
Y − e

c
(X · ∇)A

) ∂

∂p
,
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so the previous equality yields

Ωe/c

(
q,p − e

c
A

) (
X

∂

∂q
+

(
Y − e

c
(X · ∇)A

) ∂

∂p
,

X′ ∂

∂q
+

(
Y′ − e

c
(X′ · ∇)A

) ∂

∂p

)
= X · Y′ − X′ · Y.

Replacing now p by p + e
cA, noting that the right hand side of this equality

does not depend on p, replacing Y by Y+ e
c (X ·∇)A, and Y′ by Y′+ e

c (X′ ·
∇)A, yields

Ωe/c(q,p)
(
X

∂

∂q
+ Y

∂

∂p
,X′ ∂

∂q
+ Y′ ∂

∂p

)
= X ·

(
Y′ +

e

c
(X′ · ∇)A

)
− X′ ·

(
Y +

e

c
(X · ∇)A

)
= X · Y′ − X′ · Y − e

c
(X′ · ((X · ∇)A) − X · ((X′ · ∇)A))

=
(
dq ∧ dp − e

c
B

) (
X

∂

∂q
+ Y

∂

∂p
,X′ ∂

∂q
+ Y′ ∂

∂p

)
since

B

(
X

∂

∂q
,X′ ∂

∂q

)
= X′ · ((X · ∇)A) − X · ((X′ · ∇)A)

as a straightforward computation in coordinates shows. Thus

Ωe/c = dq ∧ dp − e

c
B = ΩB .

which proves the first assertion in the example of §2.5 and explains the appear-
ance of the magnetic term B in the symplectic form: the Lorentz force law
equations are Hamiltonian on T ∗R3 relative to the symplectic form ΩB and
the kinetic energy ‖p‖2/2m as Hamiltonian function.

The phenomenon occurring here is very general and has to do with cotangent
bundle reduction, a topic not covered in these lectures. What is happening here
is the following: one has a principal bundle with a connection and searches for
explicit realizations of the reduced spaces of the cotangent bundle of the total
space by the structure group. It turns out that there are two natural ways to
carry out this reduction, both at Poisson and at symplectic level. For details of
this theory see [MaRa03] and [PR04]; for a quick summary without proofs see
[OR04].
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Coadjoint Orbits. For the Lie group G denote by Lg, Rg : G → G the left
and right translations on G by g ∈ G. The lifts of these actions to T ∗G,
denoted by L̄, R̄ : G × T ∗G → T ∗G respectively, are proper, free, and have
equivariant momentum maps JL,JR : T ∗G → g∗ given by (see (5.16))

JL(αg) = T ∗
e Rg(αg), JR(αg) = T ∗

e Lg(αg).

Recall that

L̄h(αg) = T ∗
hgLh−1(αg), R̄h(αg) = T ∗

ghRh−1(αg)

for any h ∈ G and αg ∈ T ∗G.
Let us compute the point reduced space (T ∗G)µ for any µ ∈ g∗ relative

to the left action L̄. Notice that we do not require µ to be a generic point in
g∗; that is, arbitrarily nearby coadjoint orbits may have a different dimensions.
Since the action L̄ is free, the symmetry algebra of every point in T ∗G is zero
and thus every µ ∈ g∗ is a regular value of JL. Thus, the hypotheses of the
Symplectic Point Reduction Theorem hold.

The submanifold J−1
L (µ) = {αg ∈ T ∗G | T ∗

e Rg(αg) = µ} = {T ∗
g Rg−1µ |

g ∈ G} is the graph of the right invariant one-form αµ on G whose value at
the identity is µ. Thus αµ : G → J−1

L (µ) is a diffeomorphism. Let us show
that it is Gµ-equivariant, that is,

αµ ◦ Lh = L̄h ◦ αµ for all h ∈ Gµ.

Indeed, for any g ∈ G we have

(L̄h ◦ αµ)(g) = λh(T ∗
g Rg−1µ) = T ∗

hgLh−1T ∗
g Rg−1µ = T ∗

hgRg−1T ∗
hLh−1µ

= T ∗
hgRg−1T ∗

hRh−1T ∗
e RhT ∗

hLh−1µ = T ∗
hgR(hg)−1 Ad∗

h−1 µ

= T ∗
hgR(hg)−1µ = αµ(hg).

Therefore αµ : G → J−1
L (µ) induces a diffeomorphism αµ : G/Gµ →

(T ∗G)µ, where G/Gµ := {Gµg | g ∈ G}. Recall now that the map εµ :
G/Gµ → Oµ given by εµ(Gµg) = Ad∗

g µ is the diffeomorphism that defines
the smooth manifold structure of the orbit Oµ. Define the diffeomorphism
ϕ : (T ∗G)µ = J−1

L (µ)/Gµ → Oµ by ϕ := εµ ◦ (αµ)−1 and note that
ϕ := ϕ ◦πµ = JR|J−1

L (µ) : J−1
L (µ) → Oµ has the expression ϕ(T ∗

g Rg−1µ) =
Ad∗

g µ.
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J−1
L (µ) G

(T ∗G)µ G/Gµ Oµ

� �

�

� �

πµ

αµ

αµ εµ

We claim that ϕ∗Ωµ = ω−, where Ωµ is the reduced symplectic form and
ω− is the minus orbit symplectic form on Oµ. Since Ωµ is characterized by
the identity πµΩµ = ι∗µΩ = −ι∗µdΘ, where Θ is the canonical one-form on
T ∗G, this relation is equivalent to ϕ∗ω− = −ι∗µdΘ. We shall now prove this
identity. In what follows we shall denote by ADg : G → G the conjugation
automorphism ADg(h) := ghg−1, for any h ∈ G. Thus Te ADg = Adg :
g → g is the adjoint representation of G on g.

Let

αξ(t) = T ∗
g exp(tξ)Rexp(−tξ)g−1µ

be an arbitrary smooth curve in J−1
L (µ) passing through αξ(0) = T ∗

g Rg−1µ,
where ξ ∈ g. Since Rexp(−tξ)g−1 = ADg ◦Rexp(−tξ) ◦ Lg−1 , we get

Tg exp(tξ)Rexp(−tξ)g−1 = Adg ◦Texp(tξ)Rexp(−tξ) ◦ Tg exp(tξ)Lg−1 ,

so letting ν = Ad∗
gµ, we have

αξ(t) = T ∗
g exp(tξ)Lg−1T ∗

exp(tξ)Rexp(−tξ)ν = L̄gR̄exp(tξ)ν.

Therefore, an arbitrary tangent vector at T ∗
g Rg−1µ ∈ J−1

L (µ) to the submani-
fold J−1

L (µ) has the expression

α′
ξ(0) = TνL̄g(ξR

T∗G(ν)), (7.3)

where ξR
T∗G is the infinitesimal generator of the right action R̄ on T ∗G.

Now note that ϕ(αξ(t)) = Ad∗
g exp(tξ)µ = Ad∗

exp(tξ)Ad∗
gµ = Ad∗

exp(tξ)ν

so that

Tαξ(0)ϕ(α′
ξ(0)) =

d

dt

∣∣∣∣
t=0

ϕ(αξ(t)) =
d

dt

∣∣∣∣
t=0

Ad∗
exp(tξ)ν = ad∗

ξ ν. (7.4)
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By (7.4), we have for any ξ, η ∈ g and ν = Ad∗
g µ,

(ϕ∗ω−)(T ∗
g Rg−1µ)(α′

ξ(0), α′
η(0))

= ω−(ν)
(
Tαξ(0)ϕ(α′

ξ(0)), Tαη(0)ϕ(α′
η(0))

)
= ω−(ν)

(
ad∗

ξ ν, ad∗
η ν

)
= −〈ν, [ξ, η]〉

= −J
[ξ,η]
R (ν) = {Jξ

R, Jη
R}(ν), (7.5)

since for right actions we have J
[ξ,η]
R = −{Jξ

R, Jη
R} (see (5.12) for left ac-

tions).
On the other hand, since T ∗

g Rg−1µ = L̄gν, the expression (7.3) and left
invariance of Θ give

(ι∗dΘ)(T ∗
g Rg−1µ)(α′

ξ(0), α′
η(0))

= dΘ(L̄gν)
(
TνL̄g(ξR

T∗G(ν)), TνL̄g(ηR
T∗G(ν))

)
= dΘ(ν)

(
ξR
T∗G(ν), ηR

T∗G(ν)
)

= ξR
T∗G[Θ(ηR

T∗G)](ν) − ηR
T∗G[Θ(ξR

T∗G)](ν) − Θ([ξR
T∗G, ηR

T∗G])(ν).

If π : T ∗G → G is the cotangent bundle projection, the definition (2.8) of Θ
gives for any αg ∈ T ∗G,

Θ(ηR
T∗G)(αg) =

〈
αg, Tαgπ(ηR

T∗G)
〉

=
〈
αg, η

R
G(g))

〉
= Jη

R(αg)

since ηR
T∗G and ηR

G are π-related. Thus, using the identity [ξR
T∗G, ηR

T∗G] =
[ξ, η]RT∗G valid for right actions (see (5.8) for left actions), as well as the def-
inition of the momentum map, we can continue the computation above and
write

ξR
T∗G[Θ(ηR

T∗G)](ν) − ηR
T∗G[Θ(ξR

T∗G)](ν) − Θ([ξ, η]RT∗G)(ν)

= XJξ
R
[Jη

R](ν) − XJη
R
[Jξ

R](ν) − J
[ξ,η]
R (ν)

= {Jη
R, Jξ

R}(ν) − {Jξ
R, Jη

R}(ν) + {Jξ
R, Jη

R}(ν) = −{Jξ
R, Jη

R}(ν).

Thus we have proved the identity

−(ι∗µdΘ)(T ∗
g Rg−1µ)(α′

ξ(0), α′
η(0)) = {Jξ

R, Jη
R}(ν). (7.6)

Equations (7.5) and (7.6) prove that ϕ∗ω− = −ι∗µdΘ.

7.4 Orbit Reduction

Let us return to Remark (7) in §7.1 where we have commented on the fact
that the inclusion ιµ : J−1(µ) ↪→ P induces a Poisson injective immersion
κµ : Pµ → P/G. So, the κµ-images in P/G of the connected components
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of the point reduced symplectic manifolds (Pµ,Ωµ) are the symplectic leaves
of P/G. In this section we shall present, without proofs, how this is actually
carried out concretely.

We begin with the easy observation that, as sets, κµ(Pµ) = J−1(Oµ)/G,
where Oµ is the coadjoint orbit through µ ∈ g∗. If the momentum map J :
P → g∗ is not equivariant then instead of the coadjoint orbit through µ one
considers the orbit of the affine action g ·µ := Ad∗

g−1 µ+σ(g), where σ is the
g∗-valued nonequivariance group one-cocycle defined by J; we need to assume
here that P is connected (see Remark (8) in §7.1). Recall that σ(g) := J(g ·
z)−Ad∗

g−1 J(z) and that if P is connected the right hand side of this equation
is independent of z ∈ P . The group one-cocycle σ induces by derivation a
real valued Lie algebra two-cocycle Σ : g × g → R which can be shown to
equal Σ(ξ, η) = J [ξ,η](z)−{Jξ, Jη}(z) for every z ∈ P and ξ, η ∈ g. Denote
by ξg∗(ν) := −ad∗

ξν + Σ(ξ, ·) the infinitesimal generator of the affine action
of G on g∗, where ν ∈ g∗. The affine action orbit Oµ carries two symplectic
forms given by

ω±
Oµ

(ν)(ξg∗(ν), ηg∗(ν)) = ±〈ν, [ξ, η]〉 ∓ Σ(ξ, η), (7.7)

for any ξ, η ∈ g. They are the natural modifications of the usual orbit sym-
plectic forms on coadjoint orbits. For the proofs of the statements above see
[AbMa78], [LiMa87], or [OR04]. From now on we shall not make any equiv-
ariance hypotheses on J and shall work with the affine orbit Oµ ⊂ g∗ through
µ. The set POµ

:= J−1 (Oµ) /G is called the orbit reduced space associated
to the orbit Oµ. The smooth manifold structure (and hence the topology) on
POµ

is the one that makes the bijective map κµ : Pµ → POµ
into a diffeomor-

phism.
The next theorem characterizes the symplectic form and the Hamiltonian

dynamics on POµ
.

Theorem 7.4 (Symplectic orbit reduction) Assume that the free proper sym-
plectic action of the Lie group G on the symplectic manifold (P,Ω) admits an
associated momentum map J : P → g∗.

(i) On J−1 (Oµ) there is a unique immersed smooth manifold structure
such that the projection πOµ

: J−1 (Oµ) → POµ
is a surjective sub-

mersion, where POµ is endowed with the manifold structure making κµ

into a diffeomorphism. This smooth manifold structure does not depend
on the choice of µ in the orbit Oµ. If J−1 (Oµ) is a submanifold of P

in its own right, then the immersed topology by κµ and the induced
topology on POµ coincide.
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(ii) POµ is a symplectic manifold with the symplectic form Ω�
Oµ uniquely

characterized by the relation

ι∗Oµ
Ω = π∗

Oµ
Ω�

Oµ + J∗
Oµ

ω+
Oµ

,

where JOµ
is the restriction of J to J−1 (Oµ), ιOµ

: J−1 (Oµ) ↪→ P

is the inclusion, and ω+
Oµ

is the +orbit symplectic form on Oµ given
by (7.7). The symplectic manifolds Pµ and POµ

are symplectically
diffeomorphic by κµ.

(iii) Let H be a G-invariant function on P and define H̃ : P/G → R

by H = H̃ ◦ π. Then the Hamiltonian vector field XH is also G-
invariant and hence induces a vector field on P/G which coincides
with the Hamiltonian vector field XH̃ . Moreover, the flow of XH̃ leaves
the symplectic leaves POµ of P/G invariant. This flow restricted to the
symplectic leaves is again Hamiltonian relative to the symplectic form
Ω�

Oµ and the Hamiltonian function HOµ
given by

HOµ ◦ πOµ = H ◦ iOµ or HOµ = H̃|Oµ .

Moreover, if F : P → R is another smooth G-invariant function, then
{F, H} is also G-invariant and {F, H}Oµ = {FOµ , HOµ}POµ

, where
{·, ·}Oµ

is the Poisson bracket on the symplectic manifold POµ
=

J−1(Oµ)/G.

The proof of this theorem in the regular case and when Oµ is an embedded
submanifold of g∗ can be found in [Marle76], [KaKoSt78], and [Marsden81].
For the general case, when Oµ is not a submanifold of g∗ see [OR04]. Here
is the main idea of the proof. Consider for each value µ ∈ g∗ of J the G-
equivariant bijection

s : [g, z] ∈ G ×Gµ
J−1(µ) �→ g · z ∈ J−1(Oµ),

where G×Gµ J−1(µ) := (G×J−1(µ))/Gµ, the Gµ-action being the diagonal
action. Endow J−1(Oµ) with the smooth manifold structure that makes the
bijection s into a diffeomorphism. Then J−1(Oµ) with this smooth structure
is an immersed submanifold of P . This is the manifold structure on J−1(Oµ)
used in the statement of Theorem 7.4.

In the particular case when J−1(Oµ) is a smooth submanifold of P in its
own right, this manifold structure coincides with the one induced by the map-
ping s described above since in this situation the bijection s becomes a diffeo-
morphism relative to the a priori given smooth manifold structure on J−1(Oµ).

If µ is a regular value of J and Oµ is an embedded submanifold of g∗,
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then J is transverse to Oµ and hence J−1(Oµ) is automatically an embedded
submanifold of P .

The orbit Oµ can be used to transform point reduction at an arbitrary µ ∈ g∗

to point reduction at zero for a larger manifold. Suppose that we are in the
hypotheses of the Symplectic Point Reduction Theorem 7.1. Form the point
reduced space Pµ and consider the G-orbit through µ in g∗ (in general the
orbit under the affine action) endowed with the + orbit symplectic form. The
group G acts canonically on the left on Oµ with momentum map given by the
inclusion i : Oµ ↪→ g∗. Let P �Oµ denote the symplectic manifold P ×Oµ

endowed with the symplectic structure Ω − ω+
Oµ

:= π∗
1Ω − π∗

2ω+
Oµ

, where
π1 : P × Oµ → P and π2 : P × Oµ → Oµ are the projections on the first
and second factors respectively. The Lie group G acts canonically on P �Oµ

by g · (z, ν) := (g · z,Ad∗
g−1 ν). As discussed in §5.3, example (6), this action

has the momentum map J − i : P � Oµ → g∗. This momentum map is
equivariant if J is, in which case, Oµ is taken to be the coadjoint orbit. With
these notations we have the following result.

Theorem 7.5 (Shifting theorem) The reduced symplectic manifolds Pµ and
(P �Oµ)0 are symplectically diffeomorphic.

One should not read into this theorem more than it states. It is tempting to
quote it in order to dismiss the reduction procedure at all points µ 	= 0. This
would be an error, for the price one pays to reduce only at zero is heavy: the
original phase space is enlarged by multiplication with the orbit Oµ whose
topology can be quite involved and who is, in general, not an embedded sub-
manifold of g∗. Specifically, when dealing with singular reduction it is im-
portant to study reduction at non-zero values of the momentum map carefully.
The Shifting Theorem 7.5 only hides the differential topological difficulties by
burying them into Oµ.

7.5 Semidirect Product Reduction

In this section we present the general Semidirect Product Reduction Theorem
as found in [MaRaWe84a, MaRaWe84b]. We do not attempt to give a his-
tory of the subject here since it can be found in many other papers and books.
To avoid any technical complications, all of this section deals only with finite
dimensional objects, even though the range of applicability of the theorems
presented here goes far beyond that to many continuum and quantum mechan-
ical systems.
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Let V be a vector space and assume that σ : G → Aut(V ) is a repre-
sentation of the Lie group G on V ; Aut(V ) denotes the Lie group of linear
isomorphisms of V onto itself whose Lie algebra is End(V ), the space of all
linear maps of V to itself. Denote by σ′ : g → End(V ) the induced Lie
algebra representation, that is,

ξ · v := ξV (v) := σ′(ξ)v :=
d

dt

∣∣∣∣
t=0

σ(exp tξ)v

Given G, V , and ρ define the semidirect product S := G�V as the Lie
group whose underlying manifold is G × V and multiplication

(g1, v1)(g2, v2) := (g1g2, v1 + σ(g1)v2)

for g1, g2 ∈ G and v1, v2 ∈ V . The identity element is (e, 0) and (g, v)−1 =
(g−1,−σ(g−1)v). Note that V is a normal subgroup of S and that S/V = G.

Let g be the Lie algebra of G and let s := g�V be the Lie algebra of S;
it is the semidirect product of g with V using the representation σ′ and its
underlying vector space is g × V . The Lie bracket on s is given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], σ′(ξ1)v2 − σ′(ξ2)v1)

for ξ1, ξ2 ∈ g and v1, v2 ∈ V . Identify s∗ with g∗ × V ∗ by using the du-
ality pairing on each factor. The following formulas are useful for our next
considerations. They are obtained by straightforward (and sometimes lengthy)
computations:

• the adjoint action of S on s:

Ad(g,u)(ξ, v) = (Adg ξ, σ(g)v − σ′(Adg ξ)u) , for (g, u) ∈ S, (ξ, v) ∈ s;

• the coadjoint action of S on s∗:

Ad∗
(g,u)−1(ν, a) =

(
Ad∗

g−1 ν + (σ′
u)∗σ∗(g)a, σ∗(g)a

)
,

for (g, u) ∈ S, (ν, a) ∈ s∗, where σ∗(g) := σ(g−1)∗ ∈ Aut(V ∗), σ′
u : g →

V is the linear map given by σ′
u(ξ) := σ′(ξ)u and (σ′

u)∗ : V ∗ → g∗ is its
dual;

• the lift λ of left translation of S on T ∗S:

λ((g, u), (αh, v, a)) =
(
T ∗

ghLg−1αh, u + σ(g)v, σ∗(g)a
)

for (g, u) ∈ S, and (αh, v, a) ∈ T ∗
(h,v)S = T ∗

hG × {v} × V ∗; λ induces a
canonical S-action on the product Poisson manifold T ∗G× V ∗ by ignoring
the third factor (V ∗ has the trivial Poisson bracket);
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• the lift ρ of right translation of S on T ∗S:

ρ((g, u), (αh, v, a)) =
(
T ∗

ghRg−1αh − dfa
σ(g−1)u(hg), v + σ(h)u, a

)
for (g, u) ∈ S, and (αh, v, a) ∈ T ∗

(h,v)S = T ∗
hG × {v} × V ∗, and where

fa
u : G → R is the “matrix element function” fa

u (g) := 〈a, σ(g)u〉; ρ

induces a canonical S-action on T ∗G× V ∗ by ignoring the third factor (V ∗

has the trivial Poisson bracket);

• the momentum map JL : T ∗S → s∗+ for the left translation λ:

JL(αg, v, a) = T ∗
(e,0)R(g,v)(αg, v, a) = (T ∗

e Rgαg + (σ′
v)∗a, a) ; (7.8)

• the momentum map JR : T ∗S → s∗− for the right translation ρ:

JR(αg, v, a) = T ∗
(e,0)R(g,v)(αg, v, a) = (T ∗

e Lgαg, σ(g)∗a) ; (7.9)

• the ± Lie-Poisson bracket of F, H : s∗ → R:

{F, H}±(µ, a) = ±
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
±

〈
a, σ′

(
δF

δµ

)
δH

δa

〉
∓

〈
a, σ′

(
δH

δµ

)
δF

δa

〉
for µ ∈ g

∗, a ∈ V ∗; (7.10)

• the Hamiltonian vector field determined by H : s∗ → R:

XH(µ, a) = ∓
(

ad∗
δH
δµ

µ −
(
σ′

δH
δa

)∗
a, σ′

(
δH

δµ

)∗
a

)
. (7.11)

Now we shall reduce in two steps. We start with the left action of S on T ∗S.
As we already know from general theory, the momentum map JR is invariant
under λ. The normal subgroup V of S acts on S by left translations and the
lift of this action admits an equivariant momentum map (in this case invariant
since V is Abelian), given by the second component (αg, v, a) �→ a of JL. In
addition, the projection T ∗S → T ∗G is clearly canonical so that the map

PL : (αg, v, a) ∈ T ∗S �→ (αg, a) ∈ T ∗G × V ∗

is also canonical; T ∗G×V ∗ has the product Poisson structure (see §5.3, exam-
ple (6)). It is easy to see that JR factors through PL, that is, there is a smooth
map

J̃R : (αg, a) ∈ T ∗G × V ∗ �→ (T ∗
e Lgαg, σ(g)∗a) ∈ s

∗
−

such that the following diagram is commutative:
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T ∗S

T ∗G × V ∗ s∗−.�

�
�

�
���

�
�

�
��	

PL JR

J̃R

Since JR = J̃R ◦ PL, all three maps are canonical, and PL is onto, it follows
that J̃R is also canonical.

The same phenomenon occurs when working with the right action ρ. Since
there is a lot a asymmetry in the expression of all the maps involved, we shall
repeat the argument. The momentum map JL is right invariant. The normal
subgroup V of S acts on the right on T ∗S with momentum map (αg, v, a) �→
σ(g)∗a given by the second component of JR. This map is therefore canonical.
Moreover, the map

(αg, u, a) �→ αg + dfa
σ(g−1)u(g) = αg + T ∗

g Rg−1(σ′
u)∗a

is a projection followed by a translation with an exact differential on the fibers
and is hence a canonical map from T ∗S to T ∗G (see Proposition 2.15). There-
fore

PR : (αg, u, a) ∈ T ∗S �→ (αg + T ∗
g Rg−1(σ′

u)∗a, σ(g)∗a) ∈ T ∗G × V ∗

is a canonical map. Now notice that JL factors through PR, that is, there is a
smooth map

J̃L : (αg, a) ∈ T ∗G × V ∗ �→ (T ∗
e Rgαg, σ(g−1)∗a) ∈ s

∗
+

such that the following diagram is commutative:

T ∗S

T ∗G × V ∗ s∗+.�

�
�

�
���

�
�

�
��	

PR JL

J̃L
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As before, this implies that J̃L is a canonical map.
The origin of the maps PL and PR is also transparent. The space T ∗G×V ∗

is diffeomorphic to the orbit space of T ∗S by the left or right V -action. The
diffeomorphisms that implement this identification are easily seen to be

[αg, u, a] �→ (αg, a)

for the left V -action and

[αg, u, a] �→ (αg + dfa
σ(g−1)u(g), σ(g)∗a)

for the right V -action, where [αg, u, a] denotes the left or right V -orbit through
(αg, u, a). Using these diffeomorphisms, the projections onto the orbit spaces
become PL and PR respectively.

We summarize these considerations in the following theorem.

Theorem 7.6 The maps J̃L, J̃R : T ∗G × V ∗ → s∗± given by

J̃L(αg, a) =
(
T ∗

e Rgαg, σ(g−1)∗a
)

J̃R(αg, a) = ((T ∗
e Lgαg, σ(g)∗a)

are canonical. These maps are reductions of momentum maps by the action
of the normal subgroup V and are themselves momentum maps for the left,
respectively right, actions of S on the product Poisson manifold T ∗G × V ∗,
where V ∗ carries the trivial Poisson bracket.

The procedure used here to reduce in two steps is very general and can
be applied to many other situations, such as central extensions of groups, for
example. We refer to [Marsden et. al.] and references therein for the general
theory of reduction by stages and many other examples.

Let us study the reduction of dynamics implied by this theorem. So, consider
a Hamiltonian H : T ∗G × V ∗ → R and assume that it is invariant under the
left action of S on T ∗G × V ∗. In particular, for each a ∈ V ∗ the function
Ha : T ∗G → R given by Ha(αg) := H(αg, a) is invariant under the lift to
T ∗G of the left action of the stabilizer Ga := {g ∈ G | σ(g)∗a = a} on
G. Then it follows that H induces a smooth function HL : s∗− → R defined

by HL ◦ J̃R = H , that is, HL(T ∗
e Lgαg, σ(g)∗a) = H(αg, a). For right

invariant systems, one interchanges, as usual, “left” by “right” and “−” by
“+”. However, in this case, because the maps involved are different we record
HR separately: HR ◦ J̃L = H , that is, HR(T ∗

e Rgαg, σ(g−1)∗a) = H(αg, a).
It turns out that the evolution of a ∈ V ∗ is particularly simple. We begin

with the left action and work on s∗−. Let ca(t) ∈ T ∗G denote an integral
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curve of the Hamiltonian system for Ha and let ga(t) be its projection on G.
Then t �→ (ca(t), a) is an integral curve of H on T ∗G × V ∗ so that the curve
t �→ J̃R(ca(t), a) is an integral curve of HL on s∗−. Thus, t �→ σ(ga(t))∗a is
the evolution of the initial condition a ∈ V ∗ in s∗−.

For right actions the situation is identical, but we shall find another formula.
If ca(t) and ga(t) are as before, the curve t �→ J̃L(ca(t), a) is an integral curve
of HR on s∗+. Hence t �→ σ(ga(t)−1)∗a is the evolution of a ∈ V ∗ in s∗+. This
proves the following theorem.

Theorem 7.7 Let H : T ∗G × V ∗ → R be a left invariant function relative to
the S-action on T ∗G × V ∗. Then H induces a Hamiltonian HL : s∗− → R

defined by HL(T ∗
e Lgαg, σ(g)∗a) = H(αg, a) which then yields Lie-Poisson

equations on s∗−. The curve (ca(t), a) ∈ T ∗G×V ∗ is a solution of Hamilton’s
equations defined by H on the product Poisson manifold T ∗G × V ∗, where
V ∗ is endowed with the trivial Poisson bracket, if and only if J̃R(ca(t), a) is
a solution of the Lie-Poisson system on s∗− defined by HL. In particular, the
evolution of a ∈ V ∗ is given by σ(ga(t))∗a, where ga(t) is the projection of
ca(t) on G. For right invariant systems one interchanges “left” by “right”,
“−” by “ +”, and defines HR : s∗+ → R by HR(T ∗

e Rgαg, σ(g−1)∗a) =
H(αg, a). In this case, the evolution of a ∈ V ∗ is given by σ(ga(t)−1)∗a.

The combination of these two theorems is quite powerful in examples. Of-
ten, a physical system is given by a Hamiltonian on T ∗G × V ∗, where V ∗

is usually a space of parameters of the system. This Hamiltonian is left or
right invariant under the G�V -action on T ∗G × V ∗. Then, the theorems just
proved, guarantee that one can reduce the given system to Lie-Poisson equa-
tions on (g�V )∗ and one knows already that the second equation has as so-
lution the “dragging along by the action” of the initial condition. For systems
in continuum mechanics, this appears usually as a “Lie transport” equation,
such as the conservation of mass, of entropy, or the frozen magnetic lines in
the fluid in the magneto-hydrodynamics approximation.

We close these considerations by presenting a symplectic counterpart of
Theorem 7.6. We shall use the Symplectic Orbit Reduction Theorem 7.4 to
determine, up to connected components, the symplectic leaves of (T ∗G)/Ga

for any a ∈ V ∗. Fix in all that follows an a ∈ V ∗ and let ga := {ξ ∈ g |
σ′(ξ)∗a = 0} be the Lie algebra of Ga. The lift to T ∗G of left translation
of Ga on G has the equivariant momentum map Ja

L : T ∗G → g∗a given by
restriction Ja

L(αg) = (T ∗
e Rgαg)|ga . The map iaL : T ∗G → T ∗S given by

iaL(αg) := (αg, 0, a) is a Poisson embedding which is equivariant relative to
the left action of Ga on T ∗G and the lifted left action λ of S on its cotan-
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gent bundle T ∗S. Therefore iaL induces a Poisson embedding on the quotients
i
a
L : (T ∗G)/Ga → T ∗S/S ∼= s∗−. From the Symplectic Orbit Reduction

Theorem we know that

(Ja
L)−1(µ|ga

)/(Ga)µ|ga

∼= (Ja
L)−1(Oµ|ga

)/Ga ↪→ (T ∗G)/Ga

i
a
L−→ (T ∗S)/S

JR−→ s
∗
−

where the first diffeomorphism is symplectic and given by the Orbit Symplectic
Reduction Theorem and JR is the quotient of JR : T ∗S → s∗− implementing
the Lie-Poisson reduction theorem (see §6.1). Where does the reduced space
(Ja

L)−1(Oµ|ga
)/Ga land by this sequence of symplectic and Poisson diffeo-

morphisms and embeddings? To see this, we compute

(JR ◦ i
a
L)

(
(Ja

L)−1(Oµ|ga
)/Ga

)
= (JR ◦ iaL)

(
(Ja

L)−1(Oµ|ga

)
= {(ν, b) ∈ s

∗ | there exists g ∈ G such that σ∗(g)a = b, Ad∗
g ν ∈ Oµ|ga

}

=
⋃

χ|ga=µ|ga

S · (χ, a),

where S · (χ, a) denotes the S-coadjoint orbit through (χ, a) in s∗−. However,
the identity

{(σ′
u)∗a | u ∈ V } = {ν ∈ g

∗ | ν|ga
= 0}

shows that S · (χ, a) = S · (µ, a) for all χ ∈ g∗ satisfying χ|ga
= µ|ga

.
Therefore the union above is actually one single orbit, namely S · (µ, a), and
we have shown that the reduced space (Ja

L)−1(Oµ|ga
)/Ga lands in S · (µ, a).

For right actions the same thing happens but we need the map iaR : T ∗G →
T ∗S given by iaR(αg) := (αg, 0, σ∗(g)a) to embed right (Ga, S)-equivariantly
T ∗G into T ∗S. We shall also need another notation for the quotients relative to
right actions and we shall adopt here S\T ∗S and Ga\T ∗G. Similarly, a sign
on a coadjoint orbit signifies the sign in front of the orbit symplectic structure.
We have proved the following theorem.

Theorem 7.8 The map JR ◦ i
a
L : (Ja

L)−1(Oµ|ga
)/Ga → S · (µ, a)− is a

symplectic diffeomorphism thereby realizing this reduced space as a coadjoint
orbit in s∗−. The map JL ◦ i

a
R : Ga\(Ja

R)−1(Oµ|ga
) → S · (µ, a)+ is a

symplectic diffeomorphism thereby realizing this reduced space as a coadjoint
orbit in s∗+.

In other words, forgetting about the precise maps involved and the orbit
reduction formulation of this result, this theorem states that there is a sym-
plectic diffeomorphism between the coadjoint orbit S · (µ, a) ⊂ (g�V )∗ and
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the reduced space obtained by reducing T ∗G by the subgroup Ga at the point
µ|ga

∈ g∗a.

There is a Lagrangian version of this theorem, that is, a formulation in
terms of Euler-Poincaré type equations. It is not true that the Euler-Poincaré
equations that we shall deduce below for g�V are simply the general Euler-
Poincaré equations explicitly written out for a semidirect product. The reduced
Lagrangian formulation in the case of semidirect products is more subtle and
was done in [HMR98]. We present only the situation of left representations and
left invariant Lagrangians. There are clearly three other versions and, unfor-
tunately, they are important because of various relative sign differences in the
equations and the constrained variations. Since in these lectures we shall only
deal with the heavy top, we refer to the above mentioned paper for additional
details and examples.

The set-up of the problem is the following. Given are:

• a left representation σ : G → Aut(V ) of a Lie group G on a vector space
V which induces the left action of G on TG × V ∗ given by h · (vg, a) :=
(TgLh(vg), σ∗(g)a), for vg ∈ TgG and a ∈ V ∗;

• a smooth left invariant function L : TG × V ∗ → R relative to this action;

• in particular, if a0 ∈ V ∗ the function La0 : TG → R given by La0(vg) :=
L(vg, a0) is invariant under the lift to TG of left translation of Ga0 on G;

• by left G-invariance of L the formula

l(TgLg−1vg, σ(g)∗a) = L(vg, a)

defines a smooth function l : g×V ∗ → R and conversely any such function
l : g × V ∗ → R determines a left invariant function L : TG × V ∗ → R;

• for a curve g(t) ∈ G with g(0) = e, let ξ(t) := Tg(t)Lg(t)−1 ġ(t) ∈ g and
define the curve a(t) ∈ V ∗ by

a(t) := σ(g(t))∗a0 (7.12)

for some given a0 ∈ V ∗; the unique solution of the linear differential equa-
tion with time dependent coefficients

ȧ(t) = σ′(ξ(t))∗a(t) (7.13)

with initial condition a0 is this curve a(t).

With these notations we have the following.

Theorem 7.9 The following statements are equivalent:
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(i) With a0 ∈ V ∗ fixed, Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) The curve g(t) satisfies the Euler-Lagrange equations for La0 on G.

(iii) The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0

holds on g × V ∗, using variations of the form

δξ = η̇ + [ξ, η], δa = σ′(η)∗a,

where η(t) ∈ g is any curve vanishing at the endpoints.
(iv) The semidirect Euler-Poincaré equations

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+

(
σ′

δl
δa

)∗
a (7.14)

hold on g × V ∗.

Proof The proof follows the same pattern as that of Theorem 6.6. The equiv-
alence of (i) and (ii) is Hamilton’s classical variational principle that holds
for any manifold (see Theorem 3.5). To prove that (iii) and (iv) are equiva-
lent, we compute the variation of l, integrate by parts, and use the conditions
η(t1) = η(t2) = 0 to get

δ

∫ t2

t1

l(ξ(t), a(t))dt =
∫ t2

t1

(〈
δl

δξ
, δξ

〉
+

〈
δa,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
δl

δξ
, η̇ + [ξ, η]

〉
+

〈
σ′(η)∗a,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
− d

dt

δl

δξ
+ ad∗

ξ

δl

δξ
, η

〉
+

〈(
σ′

δl
δa

)∗
a, η

〉)
dt

=
∫ t2

t1

〈
− d

dt

δl

δξ
+ ad∗

ξ

δl

δξ
+

(
σ′

δl
δa

)∗
a, η

〉
dt.

Since this is valid for any smooth path η(t) vanishing at the endpoints, the
variation of the integral of l vanishes subject to the constrained variations of ξ

and a if and only if the semidirect Euler-Poincaré equations hold.
It remains to be shown that (i) and (iii) are equivalent. We begin by notic-

ing that due to the G-invariance of L and the relation a(t) = σ′(g(t))∗a0

the integrands in the two variational principles are equal. Now let, η(t) :=
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Tg(t)Lg(t)−1δg(t) ∈ g. At this point one could proceed with the proof exactly
as was done in the one for Theorem 6.6 by assuming that we work only with
matrix groups, or use Lemma 6.7 to do the general case. Let us work abstractly
this time around. So, by Lemma 6.7, all variations δg(t) ∈ TG of g(t) with
fixed endpoints induce and are induced by variations δξ(t) ∈ g of ξ(t) of the
form δξ = η̇ + [ξ, η] with η(t) a smooth curve vanishing at the endpoints.

Thus if (i) holds, define η(t) := Tg(t)Lg(t)−1δg(t) ∈ g for a variation δg(t)
vanishing at the endpoints and set δξ(t) = Tg(t)ġ(t). By Lemma 6.7 we have
δξ = η̇+[ξ, η] with η(t) a smooth curve vanishing at the endpoints. In addition,
the variation of a(t) = σ′(g(t))∗a0 is δa(t) = σ′(η(t))a(t). Thus (iii) holds.

Conversely, assume that (iii) holds. So if δξ = η̇ + [ξ, η] with η(t) a smooth
curve vanishing at the endpoints, define δg(t) = TeLg(t)η(t) ∈ TG. Lemma
6.7 guarantees then that this δg(t) is the general variation of g(t) vanishing
at the endpoints. Finally, the relation δa(t) = σ′(η(t))∗a(t) shows that the
variation of σ∗(g(t))a(t) = a0 vanishes, which is consistent with the fact that
La0 depends only on g(t) and ġ(t). Thus (i) holds. �

We close this section by showing how the heavy top equations fit into the
semidirect Lie-Poisson and Euler-Poincaré framework. In the process, many of
the remarkable statements in §1.2 that appeared as computational coincidences
will be explained through the theory that was just presented in this section. To
do this, we shall use all the explicit formulas deduced in §1.2. The configu-
ration space is G = SO(3) and it represents the attitude of the heavy top. In
coordinates it is given by Euler angles, as explained in §1.2. The parameter
of the problem is Mg�χ, where M ∈ R is the mass of the heavy top, g ∈ R

is the value of the gravitational acceleration, � ∈ R is the distance from the
fixed point (that is, the point of suspension of the rigid body) to the center
of mass of the body, and χ ∈ R3 is the unit vector pointing from the fixed
point to the center of mass. Therefore, the parameter space of this problem
is V ∗ := R3. Identifying R3 with itself using the usual inner product, gives
V := R3. The representation σ : SO(3) → Aut(R3) is usual matrix multi-
plication on vectors, that is, σ(A)v := Av, for any A ∈ SO(3) and v ∈ R3.
Dualizing we get σ(A)∗Γ = A∗Γ = A−1Γ, for any Γ ∈ V ∗ ∼= R3. The
induced Lie algebra representation σ′ : R3 ∼= so(3) → End(R3) is given by
σ′(Ω)v = σ′

vΩ = Ω×v, for any Ω,v ∈ R3. Therefore, (σ′
v)∗ Γ = v×Γ and

σ′(Ω)∗Γ = Γ×Ω, for any v ∈ V ∼= R3, Ω ∈ R3 ∼= so(3), and Γ ∈ V ∗ ∼= R3.
Recall also that ad∗

Ω Π = Π×Ω by using the isomorphism (1.14); see (1.21).

The expressions of the Hamiltonian and Lagrangian functions on se(3)∗ ∼=
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R3 × R3 and se(3) ∼= R3 × R3 respectively (see (1.42) and (1.46)),

H(Π,Γ) =
1
2
Π · I−1Π + Mg�Γ · χ

L(Ω,Γ) =
1
2

IΩ · Ω − Mg�Γ · χ

yield δH/δΠ = I−1Π = Ω, δH/δΓ = Mg�χ, δL/δΩ = IΩ = Π, and
δL/δΓ = −Mg�χ, where, in this case, due to the dot product pairing, the
partial functional derivatives are given by δ/δΠ = ∇Π and δ/δΓ = ∇Γ. So
we can immediately write both the semidirect product Lie-Poisson (7.11) and
Euler-Poincaré equations (7.14), (7.13) to get

Π̇ = Π × Ω + Mg�Γ × χ, Γ̇ = Γ × Ω

which are the Euler-Poisson equations (1.44). The solution (7.12) of the second
Euler-Poisson equation with initial condition Γ(0) = k is Γ = A−1k which
was the definition of Γ used in the expression (1.39) of the potential energy.
The minus Lie-Poisson bracket (7.10) becomes in this case

{F, H}(Π,Γ) = −Π·(∇ΠF ×∇ΠH)−Γ·(∇ΠF ×∇ΓH+∇ΓF ×∇ΠH),

which is formula (1.45). One recognizes in the computations at the end of
§1.2 part of the proof of Theorem 7.9. The remarkable map (1.43) that sends
the Euler angles and their conjugate momenta to the variables (Π,Γ) is none
other than the momentum map JR (see (7.9)) expressed in the chart given by
the Euler angles. So, of course, it will map Hamilton’s equations on T ∗SO(3)
to minus Lie-Poisson equations on se(3)∗, as the general theory presented in
these lectures stipulates.

Since the Euler-Poisson equations are of Lie-Poisson type, their solutions
must lie on coadjoint orbits. The generic ones are given by the surfaces de-
fined by ‖Γ‖ = constant and Π · Γ = constant. Any function of ‖Γ‖ and
Π · Γ is a Casimir function for the Lie-Poisson bracket, as an easy verifica-
tion shows. In particular, the Euler-Poisson equations always have these two
functions as conserved quantities. Restricted to such a generic coadjoint orbit,
the Euler-Poisson equations are Hamiltonian relative to the orbit symplectic
form and have the total energy H conserved. To be completely integrable, one
needs therefore one more conserved quantity, independent of H and commut-
ing with it. It is known that this is possible only in three cases: the Euler case
characterized by � = 0, that is, the center of mass coincides with the point of
suspension of the rigid body, or equivalently, no forces act on the body and one
has fixed its center of mass, the Lagrange case characterized by χ = (0, 0, 1)
and I1 = I2, that is, the body has an additional S1-symmetry around the line
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connecting the point of suspension of the body with its center of mass, and
the Kowalewski case, characterized by the conditions I1 = I2 = 2I3 and the
center of mass lies in the plane of the equal moments of inertia, so it can be
assumed to be χ = (1, 0, 0) by simply adjusting the frame of reference. The
last two cases have an additional integral. In the Lagrange top case, this is the
momentum map of the S1-action. In the Kowalewski case, the origin of this
additional integral remains to this day a mystery from the point of view of mo-
mentum maps, that is, it is not known a priori (that is, without solving explicitly
the system) what one-dimensional Lie group action has as its momentum map
this additional quartic integral.

To completely describe the kinematics of this system we shall record here
the coadjoint orbits of the special Euclidean group SE(3); for the proofs of
all the formulas below see [MaRa94], §14.7. Let {e1, e2, e3, f1, f2, f3} be an
orthonormal basis of se(3) ∼= R3 × R3 such that ei = fi, i = 1, 2, 3. The dual
basis of se(3)∗ via the dot product is again {e1, e2, e3, f1, f2, f3}. There is a
single zero dimensional coadjoint orbit, namely the origin. The other orbits are
two and four dimensional. There is no six dimensional coadjoint orbit since the
Poisson bracket is degenerate having the two Casimir functions given above.
There are three types of coadjoint orbits.

Type I: The orbit O through (e,0) equals

SE(3) · (e,0) = { (Ae,0) | A ∈ SO(3) } = S2
‖e‖ × {0}, (7.15)

the two-sphere of radius ‖e‖. The tangent space to O at (e,0) is the tangent
space to the sphere of radius ‖e‖ at the point e in the first factor. The minus
orbit symplectic form is

ω−(e,0)(ad∗
(x,y)(e,0), ad∗

(x′,y′)(e,0)) = −e · (x × x′)

which equals −1/‖e‖ times the area element of the sphere of radius ‖e‖ (see
§6.3, example 1).

Type II: The orbit O through (0, f) is given by

SE(3) · (0, f) = { (a × Af ,Af) | A ∈ SO(3), a ∈ R
3 }

= { (u,Af) | A ∈ SO(3), u ⊥ Af } = TS2
‖f‖, (7.16)

the tangent bundle of the two-sphere of radius ‖f‖; note that the vector part is
the first component. The tangent space to O at (0, f) equals f⊥ × f⊥, where
f⊥ denotes the plane perpendicular to f . Let (u,v) ∈ O, that is, ‖v‖ = ‖f‖
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and u ⊥ v. The symplectic form in this case is

ω−(u,v)(ad∗
(x,y)(u,v), ad∗

(x′,y′)(u,v))

= −u · (x × x′) − v · (x × y′ − x′ × y). (7.17)

It can be shown that this form is exact, namely, ω− = −dθ, where

θ(u,v)
(
ad∗

(x,y)(u,v)
)

= u · x.

Thus O is symplectically diffeomorphic to T ∗S2 endowed with the canonical
cotangent bundle symplectic structure (we identify T ∗S2 with TS2 using the
natural Riemannian metric on the sphere S2).

Type III: The orbit O through (e, f), where e 	= 0, f 	= 0, equals

SE(3) · (e, f) = { (Ae + a × Af ,Af) | A ∈ SO(3), a ∈ R
3 }. (7.18)

To get a better description of this orbit, consider the smooth map

ϕ : (A,a) ∈ SE(3) �→
(
Ae + a × Af − e · f

‖f‖2
Af ,Af

)
∈ TS2

‖f‖,

which is right invariant under the isotropy group

SE(3)(e,f) = { (B,b) | Be + b × f = e, Bf = f }

and induces hence a diffeomorphism ϕ̄ : SE(3)/ SE(3)(e,f) → TS2
‖f‖. The

orbit O through (e, f) is diffeomorphic to SE(3)/ SE(3)(e,f) by the diffeomor-
phism

(A,a) �→ Ad∗
(A,a)−1(e, f).

Composing these two maps and identifying TS2 and T ∗S2 by the natural Rie-
mannian metric on S2, we get the diffeomorphism Φ : O → T ∗S2

‖f‖ given
by

Φ(Ad∗
(A,a)−1(e, f)) =

(
Ae + a × Af − e · f

‖f‖2
Af ,Af

)
.

Thus this orbit is also diffeomorphic to T ∗S2
‖f‖. The tangent space at (e, f) to

O is {(u,v) | u · f + v · e = 0 and v · f = 0}. If (u,v) ∈ O, the orbit
symplectic structure is given by formula (7.17), where u = Ae + a×Af and
v = Af , for some A ∈ SO(3), a ∈ R3. Let

u = Ae + a × Af − e · f
‖f‖2

Af = u − e · f
‖f‖2

v, v = Af = v,

be a pair of vectors (u,v) representing an element of TS2
‖f‖. Note that ‖v‖ =

‖f‖ and u ·v = 0. Then a tangent vector to TS2
‖f‖ at (u,v) can be represented
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as ad∗
(x,y)(u,v) = (u × x + v × y,v × x). The push-forward of the orbit

symplectic form ω− to TS2
‖f‖ is computed then to be

(Φ∗ω
−)(u,v)(ad∗

(x,y)(u,v), ad∗
(x′,y′)(u,v))

= −u · (x × x′) − v · (x × y′ − x′ × y) − e · f
‖f‖2

v · (x × x′).

A comparison with (7.17) shows that the first two terms represent the canonical
cotangent bundle symplectic form on T ∗S2

‖f‖. The last term is the following

closed two-form on TS2
‖f‖:

β(u,v)
(
ad∗

(x,y)(u,v), ad∗
(x′,y′)(u,v)

)
= − e · f

‖f‖2
v · (x × x′).

This two-form β is a magnetic term as in §2.5. Therefore O is the cotangent
bundle of the two-sphere of radius ‖f‖ endowed with a magnetic symplectic
form. The type II and III coadjoint orbits are diffeomorphic but not symplec-
tomorphic.

The motion of the heavy top always lies on these coadjoint orbits and is
a Hamiltonian system relative to the total energy H and the orbit symplectic
structures presented here.
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