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WAVE PROPAGATION IN HETEROGENEOUS MEDIA:
MATHEMATICAL AND NUMERICAL MODELING*

ANDRE NACHBINS

Abstract. These notes focus on water waves in heterogeneous media, namely pulse shaped
waves propagating over a region of highly variable depth. Through the mathematical modeling,
at the level of equations, we show how diferent types of waves can arise: hyperbolic, dispersive,
linear or nonlinear. The applications for these types of long waves are usually from Geophysics:
in particular oceanography and meteorology. Here the emphasis is on coastal waves related to
Physical Oceanography. The complete mathematical formulation is presented together with different
asymptotic simplifications at the level of the partial differential equations (PDEs). The asymptotic
analysis of solutions is also described for the regime where long waves propagate over rapidly varying
topographic heterogeneities, which are modeled through rapidly varying coefficients in the PDEs.
Finally numerical models are described together with scientific computing simulations related to the
asymptotic theory presented. In particular these experiments exhibit fascinating physical phenomena
such as the apparent diffusion and time-reversed refocusing for waves in a randomly varying
environment. We briefly indicate how probabilistic modeling comes into playing an important role.

Key words. Linear and nonlinear waves, inhomogeneous media, asymptotic theory, apparent
diffusion, time reversal.

AMS subject classifications. 76B15, 35Q99, 60F05.

1. MODELING: ASYMPTOTICS AT THE LEVEL OF EQUATIONS.

1.1. Introduction. These notes were assembled from several articles published
in the last few years [57, 51, 52, 53, 28, 29, 30, 2, 3]. It is a great pleasure to start
by acknowledging the collaboration of two former students W. Artiles (Institute of
Theoretical Physics, Sdo Paulo, Brazil), J.C. Mutioz (Dept. of Mathematics, Uni-
versidad del Valle, Cali, Colombia) and of two great friends J.P. Fouque (Dept. of
Mathematics, North Carolina State University, USA) and J. Garnier (Jussieu, Paris
VII, France).

Waves in heterogeneous media is a field of great mathematical interest and, not
surprisingly, applicable to many technological and environmental problems. If we keep
our attention to Geophysics we have applications in the atmosphere, hydroshpere and
lithosphere. In the lithosphere one may think of acoustic waves, regarding the seismic
probing of the Earth’s subsurface [11]. This is of interest to the oil industry. In the
atmosphere and hydrosphere we may take the heterogeneous medium as being the
topography. These physical applications, for long wave interactions with topography,
range from coastal surface waves [49] to atmospheric flows over mountain ranges
[5, 23].

In these lectures notes we will focus on surface coastal waves. Waves on the surface
of an ideal fluid, under the force of gravity are governed by the Euler equations.
Nevertheless in both engineering applications as well as laboratory scales, the full
Euler equations appears more complex than necessary. Very often this system, for
the entire fluid body, can be simplified to more tractable reduced surface models, when
restricted to specific physical regimes. Under this modeling strategy Boussinesq-type
equations, which include the lowest order terms regarding nonlinearity and dispersive
effects, have been shown to provide an accurate description for wave evolution in
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coastal regions. The first set of equations valid for variable depth was derived by
Peregrine [63] in 1967. The model is valid under the mild slope hypothesis.

Very recently there has been a great amount of research regarding additional
modeling issues, namely in improving Boussinesq-type models as for example in [40,
44, 45, 60, 67, 46]. But all of these consider flat or slowly varying topographies.
For very general topographies a terrain-following Boussinesq model was developed
by Nachbin [57] in 2003. The model allows for multiply-valued topography profiles.
This model was analyzed in [51, 52, 28, 30]. Existence and uniqueness for a variable
coefficient Boussinesq system of equations was first given by Quintero and Munoz in
2004 [65].

We also use ideas from Nwogu [60] and generalize the model given in [57]. We show
how small (higher order) changes in the linear dispersion relation (over a flat bottom)
become dramatically important in the presence of a highly-fluctuating topography.
We present a linear dispersion analysis and validate the corresponding results both
for a flat bottom and also in the presence of a variable propagation medium. In
order to fully validate dispersive properties of several possible truncations, that can
be made for these Boussinesq-type models, we compare them with the corresponding
complete (non-truncated) model, namely linear potential theory. For the numerical
validation we use a new, highly efficient numerical scheme developed by Artiles and
Nachbin [2, 3]. Discrepancies observed become even more important in the waveform
inversion problem [64], an application for determining (for example) a tsunami’s
initial profile. Here we adopt the time reversal technique for recompressing a long
fluctuating signal, representing a highly scattered wave that has propagated for very
long distances. Time reversed recompression means that, if properly backpropagated
(through a numerical model), the scattered signal will refocus into a smooth profile
representing the original waveform, namely that which would have been observed at
the onset of the ocean disturbance.

We also outline asymptotic solution techinques for obtaining an effective behavior
along the wavefront. In particular for observing the apparent diffusion due to
disordered multiple scattering.

These notes are organized as follows:

e Modeling: asymptotics at the level of equations
Introduction
Formulation and background of the problem
Improved Boussinesq systems
Linear dispersive properties
e Modeling: a fully dispersive system
Introduction
The inviscid and incompressible free boundary problem
The Dirichlet-to-Neumann (DtN) operator
The Dirichlet problem on a halfplane
The Dirichlet problem on a corrugated strip
Evolution equations for weakly nonlinear surface gravity waves
e Solution asymptotics: deterministic approach
Introduction
The linearized terrain-following Boussinesq model
The linear pulse-shaping theory
Numerical illustration of the generalized ODA theory
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e Solution asymptotics: random approach
The propagating modes of the homogeneous Boussinesq equation
Propagator formulation
Mode propagation in the fequency domain
Boundary values
Propagator
Probabilistic modeling and tools
Quantities of interest
Transmitted wavefront
e Numerical models
Numerical scheme for the Boussinesq models
Preconditioning through complex variables
Numerical schemes for the linear potential theory equations
Full versus reduced model
Waveform inversion by time reversal refocusing

1.2. Formulation and background of the problem. In this section we derive
the family of reduced governing equations analised in these lectures.

When the fluid, where surface waves are propagating, can be considered as being
inviscid the Navier-Stokes equations reduce to the Euler equations [49, 70]. When the
free surface flow can be taken as being incompressible and irrotational it is interesting
to recast the Euler equations into a potential theory framework [70]. For example in a
two-dimensional flow, we can study the evolution of the velocity potential (one object)
as opposed to the evolution of two objects, the horizontal e vertical velocities. As will
be seen below, we can also take advantage of many theoretical aspects of harmonic
functions as well as the associated complex analysis.

Let variables with physical dimensions be denoted with a tilde. Then the formu-
lation through the velocity potential ¢, where (u,v) = V¢ is the velocity vector, is
given as

subject to

Gty (2 +3)+ai=0
at the free surface § = 7(Z, ?).
Neumann condition.

We introduce the length scales ¢, (a typical pulse width or wavelength), ho (a
typical depth), a, (a typical wave amplitude), ¢ (the horizontal length scale for bottom
irregularities) and L (the total length of the rough region or the total propagation
distance). The acceleration due to gravity is denoted by g and the reference shallow

water speed is ¢y = v/ghg. Dimensionless variables are then defined in a standard
fashion [66, 70] by having

At the impermeable bottom topography we have a

T = ox y = hoy f—<—)t
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e e (=) ena(l)

The dimensionless form of the potential theory formulation for Euler’s equations
with a free surface and an impermeable bottom topography [70] is

(L1) B ¢pe+ ¢y, =0 for —H(z/v)<y<oan(zt), —oo<wz<o0,
subject to
1
(1.2) N+ g,y — Bcﬁy =0,
1
(1.3) n+ ¢, +% (sbi + Bsb;j) =0

at the free surface y = an(z,t). The function ¢(x,y,t) denotes the dimensionless
velocity potential, n(x,t) the dimensionless wave elevation measured with respect to
the undisturbed free surface y = 0. The dimensionless parameters o« = a,/h, and
B=h?/ Ef) measure the strength of nonlinear and dispersive effects, respectively, and
the parameter v = ¢/{, measures the ratio inhomogeneities/wavelength. We recall
that in the potential theory model the fluid is assumed to be inviscid, incompressible
and irrotational.
At the impermeable bottom the Neumann condition

g
(1.4) byt 2 H'(z/v)¢, =0
is satisfied. We assume that the boundary at the bottom is described by the function

y = —H(x/7) where

- 1+n(z/y) when 0<ax <L
(1.5) H(x/y) = { 1 when <0 or =z > L.

The bottom profile is described by the (possibly rapidly varying) function n(z/7).
We point out that the topography is rapidly varying when v < 1. The undisturbed
depth is given by y = —1 and the topography can be of large amplitude provided that
[n| < 1. The fluctuations n are not assumed to be small, nor continuous, nor slowly
varying.

Our main interest is to order the parameters «, § and v as powers of € and
analyse the solution in the limit € | 0. For example for a = 8 = O(e) < 1 we may
consider solitary waves. Moreover when also v = O(e) we have long waves interacting
with rapidly varying heterogeneities, in this case the topography. The problem in its
present form is extremely complicated. Hence simplifying the mathematical model
(namely the PDE) is of interest in order to perform an asymptotic (¢ — 0) analysis.
A key issue is not to oversimplify the model and eliminate phenomena of physical and
mathematical interest.

Thus in order to simplify the geometry of the problem and enable the asymptotic
analysis of equations (1.1)-(1.5), we define a symmetric flow domain by reflecting the
original one about the undisturbed free surface. In this symmetric domain (figure



Wave propagation in heterogeneous media 5

SYMMETRIC FLOW REGION
T

FIG. 1.1. The symmetric domain in the complex z-plane, where z = (&, 5)—}—@({, QZ) The lower
half (x € [=5,5], y € [—3,0]) is the physical channel with y = ¢ = 0 indicating the undisturbed
free surface. Superimposed in this complex z-plane domain are the (curvilinear) coordinate level
curves from the w-plane system £C. The polygonal line at the bottom of the figure is a schematic
representation of the topography (where f =+ /B). This figure was generated using SC-Toolbox

[21].

1.1) we use curvilinear coordinates defined through the conformal mapping of this
region. This strategy was already employed in [36] and [57]. For completeness we
summarize the main ingredients of the asymptotic analysis in curvilinear coordinates.
The symmetric domain is denoted by €, where z = x +141/By and it can be considered
as the conformal image of the strip Q,, where w = £ + i with |§~“| < +/B. Note that
the topography is defined along the curve 5 = —/B. Then z = z(¢, C~) +1iv/By(&, 5) =
2(&,C)+1 (€, ¢) where z and § are a pair of harmonic functions on €. In figure 1.2,
we present a scheme which explains the changes of variables to be introduced in the
sequel.

The scaled water wave equations in the fixed orthogonal curvilinear coordinates

(€,C) are:

(1.6) bee + bz = 0, — VB <{<aVBN(ED,
with free surface conditions
1
(1.7) |J|Nt+a¢gN£_ ﬁ(b‘f:
and
«
(1.8) ¢t+n+m(¢f+¢%)=0
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y _
T an(x,t) y avpn(x,t)
L . X X
—_—
1 J VB

Conformal Map l

Z
1+aN(E,t) £ aVBN(E,1)
o
1 vB
L

Fic. 1.2. Schematic plot which explains the changes of variables introduced in the derivation
of the extended Boussinesq equations. The conformal map transforming the rectangular coordinates
(z,9) onto the curvilinear coordinates (§,¢) is indicated in this plot.

at { = ay/BN(&,t). The bottom boundary condition (1.4) transforms into the trivial
condition

(1.9) 9:=0 at (=—/3.

The function N (&,t) denotes the position of the free surface in the new coordinate
system and |J| denotes the Jacobian of the change of coordinates:

|| = e — gexz = G2 + ¢

At this point, it is convenient to let the origin of the curvilinear coordinate system
be at the bottom and define ¢ = v/B(¢—1). See the last picture in the scaling sequence
given in figure 1.2. In the system of coordinates (&, ¢), equations (1.6)-(1.9) transform
into

with free surface conditions
1
(1.11) |J|N: + adeNe — B¢C =0,
(1.12) o+ (2 1g2) =0
' T\ T %) T

at ¢ =1+ aN( t) and

(1.13) ¢, =0 at =0.
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As in Whitham [70], consider a power series expansion near the bottom of the
channel in the form

(1.14) B(&, ¢ t) = ch fal(&,0).

Asymptotic analysis will be performed at the level of the equations in terms of the
small parameters a and (.

By substituting this expression in the scaled Laplace equation (1.10) and using
the Neumann condition (1.13) at the bottom we can express the potential as a power
expansion in

o) 2n
(1.15) (XOEDD (( 5; 42"6 égi 2
n=0

where, for simplicity, f(&,t) = fo(&,1). }
Now using that at the smooth free surface (rg = ay/BN(£,t) the Jacobian is

|J|(§ﬂ t) = g§(§7 EFS) + 53(57 EFS)u
and the Taylor polynomial formula leads to

(1.16) |J](€,1) = §2(€,0) + @* Ry (&, Cur) = M(€)* + O(a?), 0 < |Cur| < [Crs-

The metric term M (€) is defined below. Thus, the Jacobian can be well approximated
by an O(1) time independent coefficient. The time dependent correction term is O(a?)
due to the fact that the curvilinear coordinate system is symmetric about y = (N =0.
There are no O(«) terms. For the same reason, approximating 5(1‘7 grg) in g leads to

b
M(E)

and we establish a relation between the free surface representation in curvilinear
coordinates (N (&,t)) and in cartesian coordinates (n(z,t)).
At the undisturbed level we define the variable free surface coefficient [57]

M (&) = 9¢(£,0) = 1+ m(E)

(1.17) N( 1) = n(@(€),t) + a?BRN (& Gm), 0 < |Gm| < |Grs],

where

x(&o, — \/B)/V)
(118) m(&; /37 = 4f/ coshm@o—é)d

Recall that the square of the metric term M (&) is the leading order term of the
Jacobian. Note also that the coefficient M (&) is smooth even when the function
describing the bottom is discontinuous or non differentiable. Moreover the metric
coefficient is time independent and becomes identically one in the case of a constant
depth. These features are important when implementing a numerical solver for the
Boussinesq formulation.

Introducing the approximations (1.16), (1.17) in the equations (1.10)-(1.13), it
gives

S = (Kx(nox))(E)
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with free surface conditions

(1.20) My, + ag (%)E - %q&C —0,

(0%

(1.21) n+étom <¢§+ %qbf) =0

at ¢ =1+ a(n( t)/M(§) and
(1.22) ¢ =0 at (=0.

Using the power series expansion for the potential the free surface conditions (1.20)-
(1.21) can be further approximated as

(0%

(1.23) n+ft—§f§§t+mfg = 0(af, 5%),

020w | (14 gign) #] - Geece = Ot et

Remark that the variable coefficients in the system above are time independent and
depend only on 175(57 0). This is a consequence of equations 1.16-1.17. Moreover, the
transversal curvilinear coordinate ¢ does not appear in the equations above.

In [57] it is shown that equations (1.23)-(1.24) lead to the terrain-following
system

an B
(1.25) M(E)ne + {(14‘%) Uo:|£ =0,
U2
(1.26) Uoit +me + <2M;(5)>5_ gUofﬁt =0,

where U, is the depth averaged velocity

CFs

(1.27) U (6.t) = Ci be(£, G, 1)dC.
FS Jo

As pointed out in Nachbin [57] these are weighted averages along (§ =constant)-curves
connecting the undisturbed free surface to the topography (c.f. figure 1.3). It turns
out that the conformal mapping gives more weight near the free surface, than to the
regions in the deep valleys, where the topography is rapidly varying. The fact that
the ({ = constant) level curves accumulate more near the free surface has a very
positive impact. As mentioned above, physically this means that more emphasis is
given to the flow field near the free surface, exactly where the physical model is more
accurate. Recall that we are discarding viscous effects, and for example, vorticity
generated at the bottom. Also, as will be shown in the numerical modeling section,
the curvilinear coordinates precondition the system of PDEs leading to an underlying
eigenvalue representation more amenable for computer simulations.
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Fic. 1.3. Multiscale topography with the & — { curvilinear coordinate system.

1.3. Improved Boussinesq systems. Now instead of using the depth averaged
velocity, we will express the evolution equations in terms of the fluid velocity measured
at an intermediate depth, say at { = Zy(§), with u(€,t) = ¢¢(&, Zo(§),t), where
0 < Zp(§) < 1. This idea was already applied by Nwogu [60] to obtain a formally
equivalent Boussinesq approximation, in the case where the depth is slow-varying. The
purpose was to improve the dispersive characteristics of the resulting reduced model.
Recall that we are interested in the case where the topography dependent coefficient
M (&) is allowed to (also) vary on a fast scale denoted by ¢ [30, 28, 29, 34, 51, 52, 57].
In the sequel we will show how, by using curvilinear coordinates, we are able to extend
Nwogu’s strategy to more general topography profiles.

Differentiating equation (1.15) with respect to £ and evaluating at ¢ = Z(€), we
find that to leading order

B

5 Ziuge + O(6%),

(128) u(€.1) = 6e(6. Zo.t) = fe — 5 Z3fece + O() = i —

where for simplicity, we let @ = (£, t) = fe(§,t) be the “slip velocity” along the
bottom of the channel. As a consequence,

(1.20) i= (6 1) + 5 Zige + O(8°).

Substituting the expression for @ (given by the equation above) into equations
(1.23)-(1.24) and retaining only terms up to O(a), O(3), we arrive at the system

(1.30) M(E)m + [(14—%) U]E-i-g [(Z&—%) u55L:O,
(1.31) ue + e + <#§(§))g + §<zg — 1uger = 0.

An interesting observation is that the system above reduces to the terrain-following
system (1.25)-(1.26) when we set Zy = 1/1/3. Namely by monitoring the velocity at
this intermediate depth the system is exactly the same as using the (¢) depth-averaged
velocity.

Several Boussinesq formulations can be derived from equations (1.30)-(1.31) de-
pending on where the terrain-following velocity (¢¢) is monitored. In particular, by

letting Zy = 4/2/3, system (1.30)-(1.31) reads

(1.32) M(€)n, + {<1 + %) uL + %U{gg =0,
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u? 1)
1.33 —— - = =0.
133 “”””“(2M2<5>>5 G
Equation (1.32) implies in

(1.34) ug(§,t) = =M (E)n + O(a, B).

By putting this relationship into system (1.32)-(1.33), and retaining only terms of
order O(«, 3), we obtain the model

(135 oriom+ | (1+ 575 ) ¥~ GO =o.
(1.36) s + 1 + @ <#j@>£ - guw —0.

System (1.35)-(1.36) was presented by Quintero and Muftioz in [65]. The main property
of this particular Boussinesq formulation is the existence of a conserved energy-type
functional which enables the use of classical tools to demonstrate the global existence
of its solutions [65]. We remark that the existence of this conserved quantity is
unclear for the Boussinesq model (1.25)-(1.26). Of equal importance is the presence
of symmetric dispersive terms in both equations of the system (1.35)-(1.36), expressed
through the operator 9, — 3/60¢¢;. This operator can be inverted [65] and the system
cast into an integro-differential form, so that the fixed point principle can be applied
in order to establish local existence of solutions.

Note that the dispersive terms of the model above are modified when we change
the level at which the fluid velocity u is measured, i.e. the parameter Z,. We remark
that this degree of freedom (to select the parameter Z) allows us to match the linear
dispersion relation, corresponding to the Boussinesq approximation (1.30)-(1.31), with
that of the original potential theory equation (1.19)-(1.22) up to a higher order. This
will be explained in section 1.4.

Furthermore, recall that all variable coefficients in the model are smooth even
when the physical topography profile is described by a discontinuous or even a multi-
valued function. We point out that Nwogu [60] obtained a set of equations with
dispersive terms similar to those in system (1.30)-(1.31) However, the applicability
of Nwogu’s formulation is restricted to slowly-varying bottom profiles, which is a
common feature of other Boussinesg-type formulations, as for instance [63, 44, 45,
67, 71, 40]. The reason is that in cartesian coordinates the neglected terms of order
O(a?, a3, 3?) in the Boussinesq model turn out to be large when the detailed features
of the topography are small compared to the typical wavelength [36].

In contrast, in the present Boussinesq formulation (1.30)-(1.31), the neglected
terms of order O(a?, a3, 3?) remain small even when the topography is rapidly
varying. This is due to the use of terrain-following (curvilinear) coordinates [57].
Thus, we expect that the solutions of equations (1.19)-(1.22) and system (1.30)-(1.31)
coincide with good accuracy even when dispersion is significant. When the bottom
is described by a complicated function numerical experiments, to be presented in
subsequent sections, will provide strong numerical evidence on this regard within the
range 0 < 8 < 0.05, @ = 0.001. To be specific, in a laboratory scale this regime is such
that for example, if h, = 10m (characteristic depth), a, = 0.01m, (characteristic wave
amplitude) and the typical pulse width is ¢, ~ 44.7214m. In the ocean these are at
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least scaled by a factor of 100. For example a tsunami has a few meters of amplitude
and several kilometers of length. It can be generated in regions one thousand meters
deep.

1.4. Linear dispersive properties. To perform an analysis regarding the dis-
persive terms in equations (1.30)-(1.31) it is sufficient to consider the intermediate
depth Z; to be a constant.

It is important to remark what is expected from the asymptotically simplified
Boussinesq model (1.30)-(1.31). It would be desirable that its solution approximates,
in some sense, the solution of the original potential theory equations (1.19)-(1.22),
provided that 0 < @ < 1, 0 < f < 1. Within this regime the high-order terms
O(a?,aB, 3?) are expected to be negligible with respect to the first order terms re-
tained in the Boussinesq model (1.30)-(1.31).

The analytical, dispersion relation, consistency between the Boussinesq system
(1.30)-(1.31) and the potential formulation of the Euler equations (1.19)-(1.22) is a
necessary condition so that the new model is able to capture the same (long wave)
physical phenomena as the original fluid equations.

To start, consider the linear dispersion relation which leads to the phase velocity

W1 (8/2)(23 - DK

(0 TR T

for model (1.30)-(1.31). Also we have the (full model’s) phase velocity for Airy waves
given by

w2_1

Cf&iry =2 NG tanh(~\/Bk)

1 , 2 . 17 . .
(1.38) %1—5(\/5@ +ﬁ(\/5k) —E(\/Bk) +O((v/Bk)®),

corresponding to equations (1.19)-(1.22). The approximations above correspond to
the Taylor series expansions for \/Bk small. Observe that, according to equation
(1.37), the velocity of propagation of solutions to models (1.30)-(1.31) and (1.19)-
(1.22) depend on the wave number k, indicating their dispersive nature. Furthermore
the phase speed is affected by depth Zj selected in the Boussinesq model. We remark
that the dispersion relation (1.37) corresponds to a Padé approximation of the exact
dispersion relation (1.38).

As mentioned above, the interesting point here is that we can use this degree of
freedom (by selecting the parameter Zy) in order to match the Taylor series expansion
of the dispersion relation (1.38) up to terms of O((1/Bk)*). This will be shown below.
By using a particular value of the intermediate depth variable Zy we can decrease the
errors in the phase velocity introduced when the high-order terms O(a?, a3, 3?) are
neglected in the asymptotic analysis used to derive the equations (1.30)-(1.31).

In constant depth, this fact can be established rigorously by using the Fourier
transform technique [53]. We show that the difference in L?-norm of the solutions
of models (1.19)-(1.22) and the Boussinesq system (1.30)-(1.31) with o = 0 (linear
regime) and constant depth (M = 1) is smallest when Z; = /1/5 within a time
interval which tends to infinity when 3 — 0. The analysis extends that presented
in [9] which considered KdV-type models. For this value of the parameter Zj, the
dispersion relation (1.37) transforms into
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FI1G. 1.4. Relative error of the phase velocity as a function of \/Bk for the Boussinesq-type
system (1.30)-(1.81) with Zo = \/1/3 (the terrain-following system), Zo = 0.469 and Zo = /1/5.

w? 14 (B8/15)k?
k2 14 2(8/5)k2

1= S (VBR? + = (/AR = (VB + O((V/BRY).

This result is beyond expected since the Boussinesq model is only accurate up to
order O(a, #). Thus, we get a significant improvement in accuracy of the dispersion
relation of the Boussinesq approximation (1.30)-(1.31), in contrast to system (1.25)-
(1.26) which is based on the depth averaged velocity. We remark that the linear
dispersion corresponding to the terrain-following system (1.25)-(1.26) is only accurate
up to order O(f).

However, we can obtain an optimal value of the depth parameter Zy, by minimiz-
ing the relative error of the phase velocity for instance, over the waveband interval
0 < v/Bk < 5. The result of this process is the value Zy = 0.469 [60]. It gives a
maximum error of 6% for the entire range. In contrast, for the terrain-following sys-
tem (1.25)-(1.26), we obtain a maximum relative error in the same interval of 15%.
This is shown in figure 1.4 where we compare the dispersion relations for the terrain-
following system (1.25)-(1.26), with the one for formulation (1.30)-(1.31) having either
Zy = \/m or Zy = 0.469. The relative error is computed with respect to the linear
potential equations (1.19)-(1.22).

Q

(1.39)
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Fic. 2.1. Topography profile together with the level curves of the £C coordinate system.

2. MODELING: a FULLY DISPERSIVE MODEL.

2.1. Introduction. Now we will take a further step in our modeling, in such
a way that we will not need to truncate the dispersion relation. In a recent paper
Matsuno [46] derived a Boussinesg-type model that arises from an expansion in a
steepness parameter and not in the dispersion parameter corresponding to a long
wave regime as done above. Matsuno develops a method based on the theory of
complex functions and a systematic perturbation theory with respect to the steepness
parameter € = a,/¢, (a, is the amplitude scale and ¢, is a wavelength scale). We start
by using dimensionless parameters such as before: let & = a,/h, be the nonlinearity
parameter (with the typical, say average depth denoted by h,) and § = hZ2/(2 be
the dispersion parameter. As pointed out in [46] the formulation naturally suggests
combining these parameters as /3 = ¢. Hence the characteristic depth h, cancels
out and the free surface perturbations are controlled through . The starting point
for the asymptotic analysis are the dimensionless potential theory equations.

The novelty in the present formulation is that we can still accommodate the
asymptotic modeling to consider very general topographic profiles, as for example the
one presented in Fig. 2.1. As before we start from the nonlinear, dimensionless poten-
tial theory equations but follow an analytical route that is somewhat different from
Matsuno’s. Naturally some of the transforms used are similar, but they are “brought
into the picture” by different means. In particular the Fourier analysis presented nat-
urally suggests the use of FFT based methods to generate efficient numerical schemes.

We again use an orthogonal curvilinear coordinate system for the potential the-
ory equations. Within this frame we are able to write a Dirichlet-to-Neumann (DtN)
operator which automatically reduces the entire dynamics to the free surface. This
formulation is possible in the presence of complex multi-valued profiles, or even rapidly
varying topographies. Our transforms not only resemble, but are clearly related to,
those in Matsuno [46] and in Byatt-Smith [15]. Some of the differences are that we
work in Fourier space while Matsuno uses complex functions. In our formulation we
work in the physical domain, through the curvilinear coordinate system and we arrive
at Fourier-type transforms which are easily incorporated into a numerical method.
The final result is a, variable coefficient, weakly nonlinear evolution equation of the
Boussinesqg-type. Our generalization of Matsuno’s Boussinesq-type system has, as
its (weakly dispersive) leading order approximation the terrain-following system pre-
sented in Nachbin [57]. This is a nice consistency check since here we do not use
a power series expansion for the potential, but rather we do asymptotics with the
Fourier operators.

Other very recent work include that of Craig and Sulem [18] which formulated an
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Fic. 2.2. Setup for the Schwarz-Christoffel transformation where z = © + 1y and w = £ + i(.
The mapping is defined for the undisturbed configuration (i.e. with n =0).

efficient spectral method based on the DtN operator. Their analysis differs from ours
and Matsuno’s but some resulting transforms are similar, in particular the Hilbert
transform on a strip: namely equation (2.28) in the present paper, which appears as
(18) in Matsuno [46] and as (27) in Craig and Sulem [18]). We recall that Matsuno’s
[46] as well as Craig and Sulem’s analysis [18] are restricted to flat bottoms. Along
these lines Zakharov et al. [72] using a Hamiltonian structure deduced exact (nonlin-
ear) free surface equations in a fluid of infinite depth. The free surface is conformally
mapped and Hilbert-differential equations are obtained along the free surface. The
presence of Hilbert transforms has a clear connection with the three strategies men-
tioned above (including the present one). This is explicitly mentioned by Zakharov et
al. [72] in a reference to the work of Craig and Sulem [18]. In the presence of highly
variable topographies we point out the very recent work by Keller [39]. A shallow
water (hyperbolic) model is derived from the Euler equations by using curvilinear
coordinates. This curvilinear coordinate system is based on smooth topographies or a
smooth curve near the topography. We recall that in the present work our curvilinear
coordinate system arises from a conformal transformation and therefore is valid for
polygonal bottom profiles which need not be single-valued. Moreover the resulting
dispersive system can be reduced to a shallow water (hyperbolic) system by only
keeping O(v/3) terms (in the metric term M (£) to be defined in the next subsection).
This has been discussed in more detail in Nachbin [57].

This section is organized as follows. In subsection 2.2 we present a brief introduc-
tion to the free boundary problem formulated through the nonlinear potential theory.
In subsection 2.3 we recall Guidotti’s (time independent) formulation of the Dirichlet-
to-Neumann operator on a corrugated halfplane and apply it to a corrugated strip. Its
time dependent extension for nonlinear gravity waves is done in subsection 2.4 where
a new (variable coefficient) Boussinesqg-type system is derived. In the numerical sec-
tion we will briefly outline a numerical application of the DtN operator. Namely we
present a very efficient spectral method for the linear potential theory problem.

2.2. The inviscid and incompressible free boundary problem. As before,
using the Schwarz-Christoffel transformation [21, 22] we define a mapping from a uni-
form strip in the £¢-plane onto the undisturbed (1 = 0) corrugated strip in the physical
xy-plane (c.f. Fig. 2.2). In the mapped domain we have ( = S(§,t) = eN(&,t), while
in the physical domain it is defined by y(&,S(&,t)) = an(z(&,S(&,1)),t), with n de-
noting the surface gravity wave. When the free surface (FS) has a small steepness (as
indicated by eN above) the Jacobian can be approximated as |J| ~ yZ(&,0) + O(e?)
[57].

As presented earlier the nonlinear potential theory equations in curvilinear £¢
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Q

S(®)

Fic. 2.3. Upper halfplane bounded by a corrugated curve S(&).

coordinates, as presented in Nachbin [57] are

(2.1) dec + b = 0,—V/B < (< S(E 1),
where at the FS the free boundary conditions are
o 1
2.2 Ni+ —¢eNe — ——=¢¢ =
22 RN T T
@ 2 2
(2.3) ot + M(% +¢¢) +n=0.

We have a trivial Neumann condition along the impermeable topography ¢ = —+/f3:
¢¢ = 0. The scaling here corresponds to the third stage in the scaling sequence
presented in figure 1.2. No approximation has been made up to this point.

2.3. The Dirichlet-to-Neumann (DtN) operator. In this subsection we
start with a brief review on Guidotti’s time independent strategy [35] to formulate a
DtN operator for a halfplane configuration as in Fig. 2.3. Then we will adapt this
strategy to a time independent problem for a corrugated strip. Once this has been
achieved we will, in a following subsection, migrate this formulism to the nonlinear
wave evolution problem and reduce the entire dynamics to the free surface.

2.3.1. The Dirichlet problem on a halfplane. In this subsubsection, follow-
ing [35], attention is given to periodic problems (say of period one) such that

p(€); S(€) € Cper ([0, 1]).

The notation is such that Guidotti considers Laplace’s equation in the domain 2,
above the curve I' = (£, 5()), with Dirichlet data ¢(£) imposed along I'. By using
periodicity we are preparing our asymptotic models for FFT based numerical schemes.
Obviously there is no loss of generality when we normalize the period. Let (£,5(€))
be a parametrization of the halfplane’s (lower) boundary curve I'.  We adopt the
following notation along the boundary: the mapping that takes the Dirichlet data
onto its corresponding Neumann data we denote as

(2.4) DENp](€) = 9n6(&, S(€)),

where

On =11+ (0¢,0¢), ©=|T¢|™"(=S¢(€),1) and [Te|=,/1+S¢(S).



16 Cuernavaca, CIMPA School 2006: A. Nachbin, IMPA, Brazil

As in classical potential theory, Guidotti suggests an integral representation for
the potential, in the form

(2.5) (w) = /FG(w @) f(@)dT, @ € T

The unknown function f will be determined by the potential’s Dirichlet data along I'.
The kernel is chosen so that this representation satisfies Laplace’s equation and also
so that FFTs are applicable. This will lead to efficient numerical schemes with exact
dispersive properties for a wide class of initial data. As mentioned above, recently
this has been exploited numerically by other authors [18, 72]. By dI' we represent an
infinitesimal boundary element and by w = (&, () an interior point of our domain €.
The 1-periodic version of the integral representation (2.5) is

(2.6) ¢@@w1£cw—&<—ﬂémgmyﬁ.

The periodic kernel proposed by Guidotti [35] has logarithmic singularities, in the
form

1
(2.7 G(&, Q) = p In(1 4 e 4™ — 2¢72™¢ cos(2n€)),
and can also be represented by the Fourier series
1 —27|k TR, :
(2.8) G(g,g):—zme miklCe2ming i ¢ > .
K#0

Hence the kernel is a harmonic function in the halfplane &, ¢ > 0, and 1-periodic in
its first variable with the property that [35]

_9,—4n¢ —27¢ «
Jim 0cG(€,0) = lim os2m) _ ey — 1.

(=0t 1+ e=47¢ — 227 cos(27E)
The Dirac delta is denoted by (). Therefore one needs to be careful when deducing
the DtN operator since an interior point will approach a boundary curve. This result
is summarized in the following lemma proved in [35]:

Lemma: Let G be the Green’s functions given above. Suppose that S(¢) € C,.,.([0,1])
represents a corrugated curve along the boundary of 2. Then the following limit holds

as an interior point approaches this boundary:

lim 8n(w)G(’LU — ’LZ})f(’LI)) dl'y = —f(wo) + ﬁan(wo)G(wo — @)f(ﬁ)) dl';

w—wo Jp

when w — w, = (&, 5(&)) €T.

The limiting integral is given as a Cauchy Principal Value (indicated by a dash). The
interior point can not approach the boundary curve in the tangential direction. The
dummy variable of integration is indicated in the element dI'.

Clearly from the potential’s integral representation (2.5) along the boundary we
obtain

(2.9) wwazﬁa%—Mﬂmw@
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where w, is also along the boundary. Its periodic counterpart leads to the following
Fredholm equation of the first kind in the source density f:

(2.10) o(6) = / G(E— £,C— S(©) F(D)|Teldé.

Technical details on integral equations can be found in Taylor [68].

Once we find the singularity density f(£) we use (2.5) (or its periodic counterpart
(2.6)) and the lemma above to deduce an integral representation for the Dirichlet-to-
Neumann operator DtN(¢) = 0, ¢:

wW—We

DtN(SO) (wo) = lim an(w)G(w - 7I])f(ﬁ)) dl',
T

where w, € I'. In the periodic regime we have

1
(211) DtN((p)(go) = _f(go) + ]{;671(50)(;(50 - éa S(go) - S(é))f(é)|rf| dé

Formally this completes the calculation of the DN operator, assuming that at this
stage the density f is known.

Summarizing what we have presented up to this point: in order to find the (con-
sistent) Neumann condition for the periodic Dirichlet problem we use the integral
representation (2.6) for the potential. Then

1. we find f(§), the logarithmic singularity’s density distribution, by inverting
the integral equation (2.10), with the kernel (2.7) and
2. we evaluate equation (2.11) using the corresponding expression for f(¢).
Recall that the Dirichlet data was denoted as ¢(&, S(§)) = ¢(§) = ¢(w) according to
(2.9). In the next subsection we will see how to invert expression (2.10) for f(¢§) in
an exact fashion for the linear problem, and approximately in the weakly nonlinear
regime.

2.3.2. The Dirichlet problem on a corrugated strip. We now prepare the
formulation of the Dt N operator for the finite depth wave problem based on Guidotti’s
[35] work (for a time independent harmonic function on a corrugated half-plane) as
was presented above. To simplify the presentation we first analyze the harmonic
problem at a frozen instant of time:

(212) b+ o =0 in —/B<C<S(E)
(2.13) $(§,5() =) at the FS (= 5(¢)
(2.14) dc(€,—/B) =0 at the topography ¢ = —+/p.

Our goal is to express the Neumann data directly from its corresponding Dirichlet
data ¢(€). By reflecting our domain about the topographic level curve ¢ = —+/f (as
in Fig. 2.4) we convert the mixed Dirichlet-Neumann problem above into a (pure)
Dirichlet problem in the form

(2.15) bee +dec =0 in —2y/B—5(8) < <8

(2.16) ¢ =) at (=5(¢)
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JE— dBllZ N(E)

T g2 NG

Fic. 2.4. Reflected £C-domain in order to give rise to a Dirichlet problem. The FS, in the
water wave problem, is described by S(§) = eN(§); e = av/B. The dashed curve is the FS’s
reflected tmage.

(2.17) ¢ =€) at (=-S() —2yB.

Therefore, due to the symmetry about ¢ = —+/8 we will see that the Neumann
condition ¢¢ (&, —+/B) = 0 is automatically satisfied. We proceed in obtaining an
integral representation for the solution of problem (2.15)-(2.17). We again extend our
domain periodically and normalize it to having period one. The time independent
potential is cast into the integral representation

(2.18) 06.0) = [ K(6.6.6.5(6) S(@Irel

where now the kernel has the form K (¢, €,¢, S(€)) = G(s, —C+5)+G(s,+S+2vP).
We are basically using the Method of Images for the Green’s function’s logarithmic
singularity. In the curvilinear coordinate system this image reflection, about the

highly corrugated topography, can be easily written. Our notation is such that f(&)
is the symmetric source distribution over the top and bottom boundary curves, |T'¢|> =

1—}—552 €),s= ¢—fand S = S(é) One can then verify that the integral representation

satisfies ¢¢ (£, —v/B) = 0 and ¢(&,¢) = ¢(&, —¢ — 2/B) as expected. Thus we have
formally solved the potential problem (2.12)-(2.14) once we find the source distribution

f(&).

Before presenting an approximate strategy for finding the source distribution
f(€) we recall the setup for defining the DtN operator. The integral representation
in (2.18) can be written as

1 -~ ~ ~
6(6,0) = /0 K(6,£,0,0) f(6)[Tel dé +
(2.19) + / (K66, S(E) — K(6,60,0)} F(ETe] dé.

The first term, containing K (5,5,070), is the linear (singular) term corresponding
to infinitesimal perturbations about the undisturbed water surface. In this way the
nonlinear term arises as a desingularized correction term. Taking the normal derivative
of the potential in (2.19) and letting the interior point approach the top boundary we
obtain, in the limit, the Dirichlet-to-Neumann operator DN (p)(§) = 9¢/0n(&, S(£)),
which gives the Neumann data along the FS.
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Now we go back to calculating the source distribution f(§) along the FS. Moti-
vated by (2.19) we decompose the Dirichlet data into its linear and nonlinear parts:

(&) = or(§) + enr(§).

The linear contribution. Using the Fourier representation of the Green’s func-
tion G in the linear term of (2.19), and carefully computing the limit as we approach
the top boundary, we have that ¢, (§) = P[f|T¢|] where

-2

K#0

1+ 67271'\/{|2\/B

(2.20) Pf[T¢[] F[fTe|Je*m™e.

27 |K|

By F.lg] we denote the k-th Fourier coefficient of the one-periodic function g(¢).
The contribution from the linear part is easily computed through f|T¢| = P~1[p].
This is equivalent to the (linear) flat FS case, but recall that for weakly nonlinear
waves S(€) = O(e). Hence we will seek an O(g) approximation of f(£) from the full
representation (2.19).

The nonlinear contribution. The integral equation (2.19), evaluated along the
boundary curve ¢ = S(§), can be written in a more compact (operator) notation

(2.21) p(€) = Plf[Tel] + Qs[f[Te] .

The nonlinear (S-dependent) contribution is identified by the operator Qg[]. Apply-
ing P~! at both sides and assuming that (I + P~1Qg) has an inverse, we formally
arrive at

(2.22) fIlel = X+ P7'Qs) "' Py,

where I denotes the identity. Existence conditions for the solution of equations as
(2.21) are discussed in [68]. For example let ¢ be continuous with period one. We
observe that along the top boundary S(£) the second part of the kernel K, namely
G - é ,C+ S+ 24/f), is continuous and therefore the lemma above applies in the
exact same way as before.

The main difficulty resides on inverting (2.19) and computing the source distri-
bution f(&) along the nonlinear FS; in the presence of a kernel depending on S. This
was formally indicated in (2.22) but in reality we will perform an O(e) approximation
in (2.21) so that ¢(£,5) = ¢(&) = P[f|T¢|] + Rs[f|T¢|]. As will be shown below, the
operator Rg, which still depends on the FS profile S, is an O(e) approximation to
the full nonlinear operator Qg.

As presented in detail in [3], we can characterize the leading order approximation
R to the fully nonlinear operator Qg. Namely we have that

Rs[f|Te|] = SZ{—I + @*2“\K|2\/5}Fﬁ[f|FE| ]ezwmg_'_
k#0

+ > {14 e 2IFVELR S FITe|Je?mE
K#0
By using the approximate operator P~1(I — RgP~1), to leading order, we obtain

(2.23) FOITe| =P~ g] = PT'RsP ™ [g] + O(c?).
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Using the Fourier representation of Rg, and the inversion formula as we did above
for the linear analysis, we arrive at

RsP o] =S Z ok tanh (2mr/B)F . [0] €2 4
K#0
+Z{1 + e—2w\ﬁ|2\/B}FH[S P_l[(p]]e%rmf,
K#0

Then for the approximate (weakly nonlinear) inversion procedure (2.23), we have that

(2.24) f(O)|T¢| =P p] =P 1[S DtNyly] ] + Z 27|k |F . [SP L[] |€2FS + O(e2).
k#0

This approximation for the weakly nonlinear source distribution f(€£) is expressed
by a linear contribution (inverting (2.20)) composed with (S(&)-dependent) iterates
of linear objects: namely the linear (S = 0) Dirichlet-to-Neumann operator DtNy
and again P~![p]. In the sequel we will confirm this interpretation for the DtNj
operator, which is defined by the first sum in the expression for RgP~!. Thus we have
approximated the calculation of the source distribution by straightforward Fourier
transforms (namely FFTs) of smooth functions. We will now show how the nonlinear
DtN operator can be approximated by straightforward compositions of the linear
DtNy operator. This is achieved by using the approximation given in (2.24).

2.4. Evolution equations for weakly nonlinear surface gravity waves.
In the context of nonlinear surface gravity waves, the Neumann data is needed at
the second FS condition. Writing the norm (squared) of the velocity in terms of its
tangential and normal components, implies that we need to find the £ and ¢ derivatives
as in
(2.25) DEN[p](§) = 0nd(&, ) =

5 e + e

|F | |F£|

(£,5)
First we differentiate (2.19) with respect to ¢ and use (2.24) having ( = S. After a
lengthy calculation we obtain the compact expression

(2.26) éc = DtNolip — S DtNolg]] — Sipec + O(2).

When S =0, ¢ is the normal direction and (2.26) is exact, confirming the interpreta-
tion given to DtNy. There are other ways of representing the DtNy[y¢] = T[pe]:

(2.27) Tlpe] = —i Z tanh[2mk /B F . [0e]e?™E.

K#0

Note that the dispersion relation appears as the symbol of the linear DtN operator.
For example in Berger and Milewski [7] a Fourier-type integral transform, also having
the dispersion relation as its symbol, is used in studying surface gravity wave inter-
action and wave-turbulence. This also appears in the work by Craig and Sulem [18].
As mentioned in the Introduction, we point out that T is the periodic counterpart
of the (singular) integral operator used by Matsuno [46] and also referred to in Craig
and Sulem [18] as the Hilbert transform on the strip:

oz (")

Tlp] = 2\/_ o Sinh[ 7(:6 —a')]

(2.28) da’.
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Moreover it is important to notice that the operator acts on, slightly different, velocity
components. Here we have a terrain-following (¢¢) velocity component along the F'S,
which clearly is not tangent neither to the undisturbed, nor the perturbed FS. On the
other hand Matsuno uses the horizontal (¢, ) velocity component at the FS (see (18)
in [46]).

Recalling that the surface wave profile is denoted by S(&,t)=eN(,t) we put
together equations (2.25) and (2.26), and use the operator T, to write the asymptotic
expression

e[ DENTE)(E) = Tlpe] — e{TI(N Tlgel)e] - (Nope), } + O(2).
Define U=¢¢ as the “horizontal” terrain-following velocity component. Then
e = U + eNT[U] + O(e?)
and the normal derivative approximation reads as
(2.29) IT¢|0n¢ = T[U] — eT[N T[U]¢] — e(NU)e + O(?).

The kinematic condition, in terms of the normal derivative to (=eN, is written
as

Ny — Te|One/ (M (£)*V/B) = 0.

Substituting (2.29) and using the fact that n(z,t) = M ()N (&, t) + O(2) [57], we
obtain a fully dispersive evolution equation for the wave elevation:

(2.30) m = 375 TV + (G )e + TIF T} = O2)

For the dynamic FS condition we start by taking its -derivative. We should
keep in mind that ¢(&, S(€,t),t) = (&, t) is such that d¢/dt = ¢ = ¢y + ¢Sy and
O = @ — ¢¢Sy. Moreover d(¢r)/dE = pre — ¢eeSt — ¢¢cSie. Using approximations
given above, together with (2.26), we have

d
d_§¢t =U; + ENgtT[U] + é‘NgT[U]t — (ngSt — d)gstg +

+0(e?) = U + eNeT[U], — eT[Ule Ny + O(€2).

Going back to the dynamic condition and using the fact that we are working with
the velocity components ¢¢ = U and ¢ = T[U] 4 O(e), after some computation, we
arrive at

230 Uctre+e (5 ((5)e + (g)eTIOR) - (eTlael) = 06

Dropping the O(g?) terms in equations (2.30) and (2.31) we get a fully dispersive
terrain-following Boussinesq system. For a flat bottom (i.e. M(§) = 1) this system
reduces to system (19)-(20) in Matsuno [46]. Also by expanding in j3, for the weakly
dispersive regime, we can recover the terrain-following Boussinesq system as in [57],
when using the vertically averaged terrain-following velocity component (equation
(5.12) in [57]). Moreover for 8 > 0.25 it is known [19], from the linear potential
theory, that the surface wave does not feel the bottom anymore. Therefore beyond a
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certain value of 8 there is no point in generalizing Matsuno’s formulation. We should
also point out that linearizing system (2.30) and (2.31) (by setting ¢ = 0) we have
that

m = 75 {01 = 0

Eliminating n from this system and performing a Fourier transform of the resulting
second order equation (in the flat bottom case; M = 1) clearly leads to the full
dispersion relation. Hence we say that system (2.30)-(2.31) is fully dispersive.

Following Matsuno [46] system (2.30)-(2.31) can be transformed into a, variable
coeflicient, second order Boussinesq equation:

VM + Tlnel + & { -5 (U8), 4 VBT )+

—I—@T[nf + Til[MWt]Q%L — T[% T[Uf]]g} =0.

We point out that derivatives of the metric term M () produce O(3~/2) terms [57,
52]. For the flat bottom case (M = 1), using the identity T[T ~![f]?] = T[f?]+2T[f]f
given in [46], this equation reduces to Matsuno’s main result (namely equation (22);
c.f. definition of ¢ and k in [46] page 609). In the presence of the metric term the
simplification of the equation, through the above identity, does not apply.

3. SOLUTION ASYMPTOTICS: DETERMINISTIC APPROACH.

3.1. Introduction. Our focus now changes from the PDEs and concentrates on
the solutions. Namely we consider the regime of large propagation distances for pulse
shaped waves and the corresponding effect of small-scale orographic features, which
we call the microstructure. Mathematically we want to study (asymptotically) the
effective properties of solutions to PDEs having highly oscillatory (disordered) coef-
ficients. For example the PDEs’ coefficients may vary on the microscale, the initial
data is set on a (intermediate) mesoscale and the (entire) space/time solution domain
is the macroscale. A mathematical theory is described and its robustness validated
numerically. As surface gravity waves propagate from deep to shallow waters, they
are transformed due to shoaling, refraction, diffraction and reflection. In order to
concentrate on the main scattering mechanism connected with the pulse shaping phe-
nomenon to be described, we consider the normal incidence of surface pulse shaped
waves. These waves propagate over topographies containing a smooth slowly varying
profile together with disordered small-scale features. As pointed out, our goal is to
capture the wave-microstructure interaction.

The main result is that the disordered medium fluctuations cause the propagating
pulse to broaden as it travels. Due to multiple scattered energy, the pulse appears
to diffuse about a moving center. The amount of broadening and attenuation is
proportional to the traveling distance and depends on the disorder’s correlation func-
tion. In the sequel we refer to the transformation of the pulse, due to the medium’s
microscale fluctuations as pulse shaping.
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The theory for pulse shaping was originally derived in the context of acoustic wave
propagation in the earth’s crust [61]. It is known as the O’Doherty—Anstey (ODA)
approximation. In the acoustic wave applications several authors have analyzed the
spreading of a pulse due to the microscale variations in the medium parameters (c.f.
for example the work by Clouet and Fouque [16], Papanicolaou and Sglna [62] and
Lewicki et al. [41]). The motivation for modeling in terms of a random medium
(as briefly outlined in the next section) is that a detailed description of microscale
medium fluctuations are often not known. Using a stochastic model uncertainties
about a specific medium are translated into uncertainties about a transmitted pulse
shape in a systematic way [4].

In the interest of clarity we start with the deterministic approach and then, in
the next section, indicate how the stochastic modeling follows. The work presented in
these sections generalize the one-dimensional ODA theory for linear weakly dispersive
water waves, when forced by a disordered orography. The analysis is performed
through the terrain-following Boussinesq system [57]. This is achieved by applying the
invariant imbedding method. As a result dispersion alters the medium’s correlation
function which controls the apparent attenuation mechanism. On the other hand,
orography affects the dispersive mechanism for the Airy function-like formation. The
theoretical results presented here are in very good agreement with small amplitude
computer simulations. This amounts to solving the nonlinear Boussinesq system with
data on a small amplitude-to-depth ratio.

3.2. The linearized terrain-following Boussinesq model. The goal of this
section is to obtain the effective behavior along the wavefront when the long pulse
shaped wave interacts with rapidly varying disordered topographic features. By dis-
ordered we mean without a specific structure, in contrast for example, with the case
of a periodic medium. The term disorder also naturally suggests that a probabilistic
modeling may be useful. But the first goal through the deterministic modeling is to
show that this conservative system (which started with potential theory), to leading
order, appears to be under the effect of diffusion.

In order to do asymptotics at the level of solutions, we will rewrite our reduced
system in terms of right and left propagating modes and perform its Fourier transform.
A system of ODEs will arise and its solution characterized in an approximate fashion.
The approximate integral representation of the transmitted wave is given by the con-
volution of the initial pulse with a Gaussian (heat-like) kernel, hence characterizing
the apparent diffusion

Recall that by asymptotically reducing the full potential equations we arrived
at the weakly nonlinear, weakly dispersive terrain-following Boussinesq system, here
repeated in the form

M) + ((1 + %) u)g —0,

w e+ 5 - P =0
2\ M7 ), 3
When o = 0 the system above reduces to

(3.1) M(&)ne + ue =0,

B
us + Te — g’&ggt =0.
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Also recall that n = n(£,t) is the wave elevation and u = u(&,t) is the weigthed
depth-averaged terrain-following velocity [57].

We will analyse the linear (o« = 0) Boussinesq system for a large range of dispersive
effects, expressed through the parameter 3. It is very important to note that for
B > 0.25 we are in the deep water regime. The particle-orbits decay exponentially
with depth as shown in Dean and Dalrymple [19] (chapter 4; on linear potential
theory). Hence in this regime there is no wave-topography interaction. Thus the fact
that the Boussinesq system is an O(8) approximation to the potential theory is not
much of a limitation for dispersive wave-topography interaction. Moreover for large
time intervals dispersive effects will be strongly displayed in the solutions even for
small values of 8 (c.f. appendix A). Even though the theory we have developed is
linear, in our numerical experiments we will consider nontrivial values of o as will be
shown in the corresponding subsections.

3.3. The linear pulse-shaping theory. In this subsection we generalize the
O’Doherty-Anstey (ODA) approximation from linear acoustic waves to the linear
weakly dispersive system (3.1). The weakly dispersive Boussinesq system is forced
by a rapidly varying orography expressed through the variable coefficient M (£). We
consider a technique analogous to Berlyand and Burridge’s acoustic work [8], which
we apply successfully to dispersive waves due to two reasons. First, system (3.1) can
be written equivalently as two coupled KdV-type equations for the transmitted and
reflected fields. These linearized KdV-type equations can be viewed as a dispersive
perturbation to those obtained by Berlyand and Burridge. Namely a propagating
pulse will slowly disperse with a given (known) rate (c.f. appendix A, equation (A.4)).
Second, the pulse’s effective propagation velocity is bounded and all Fourier modes
have positive phase speeds bounded by 1. These two properties described allow us to
apply the invariant imbedding approach [50], taking the propagation distance as the
imbedding parameter. The key physical idea is that by having a finite propagation
speed the wave will not reach very deep into the medium in a finite time interval. For
acoustic waves the dimensionless phase speed is identical to one. For dispersive waves
the phase speed is bounded by one. Hence the invariant imbedding applies. This
means that we can imbed the disorded medium into a medium which is homogeneous,
to the right and the left, beyond a certain interval. This allows for appropriate
boundary conditions at the extremes of the interval of interest. Then this boundary
value ODE problem can be transformed into an initial value problem which can be
solved for the reflection kernel. This is an outline of the strategy adopted below.

In what follows solutions wu,n to (3.1) will be assumed to be smooth enough and
absolutely integrable. This requirement is necessary to justify the use of the Fourier
transform and the Fourier inversion formula.

We start by performing the change of variables

LL'—/ngS =t
0 CO(S) ’ ’

in system (3.1). Here C,(s) = \/1/M(s) is the local wave speed and x is the travel
time. Dropping the primes system (3.1) becomes

(3.2) CoYV2 4+ CH2 o, =0,

1 1
02/2 Ut + Co_l/2 77:5 _ ?)(jil/Q (ummt F + (FO) uwt) = O

o
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We adopt the wave mode splitting

(3.3) R=CY?u+C7Y2%,

(3.4) L=—C}y+ 5,

Differentiating (3.3) and (3.4) with respect to x and ¢, using (3.2) and the fact that
u=(R-— L)/(QC’;/2), leads to the coupled wave mode system

R—-L R—-L
(3.5) Rt =plo) (22) o) (B7) —riL
' 20;/2 xxt 20(}/2 xt
R—-L R—-L
L, — Ly = p(x) (WLH +q(z) (Wln —r(z)R,
where the variable coefficients are
ﬁ ﬁCo m(x) Co I(QC)
p(r) = ———, qz)=—-——%—=, and r(z)=—2
303/ (x) 3C3/2(:v) 2C(x)

The initial conditions for system (3.5) are
R(z,0) = Ry(z), L(z,0)=0.

Note that when the bottom is flat (r = 0) and 5 = 0 (no dispersion) equations
(3.5) identify R with a wave propagating to the right (transmitted wave) and L with
a wave propagating to the left (reflected wave). For variable depths we adopt the
same terminology. Moreover, this terminology is also consistent for system (3.5), in
the weakly dispersive regime (0 < 8 < 1) and r = 0, since the left propagating signal
L is negligible if the initial data corresponds to a rightgoing wave (see appendix A).
In the next section (for the random modeling) we will show how exact right and left
going modes can be generated.

Several decompositions of the Boussinesq equations into a pair of KdV equations
are introduced by Mattioli in [47] and [48]. We point out that system (3.5) has some
advantages with respect to those decompositions presented by Mattioli. First, unlike
system (3.5), the Boussinesq equations used by Mattioli are not valid as an asymptotic
approximation of the potential theory equations for arbitrary rapidly-varying or non-
differentiable orographies. Second, in contrast to system (3.5), the linear dispersion
relation for Mattioli’s model results in unstable short waves.

In order to set our forthcoming results in a wave propagating frame let us intro-
duce the change of variables

!
T=t—x, T =u,

where 7 is the time-delay variable. Again abandoning the primes, equations (3.5)

become
wor(im) -G, o+ G
6 o) rolage)

R—-L R—-L
—q —203/2 TT—HJ 20;/2 CET—TR.
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One of the advantages of this form is that the left hand, first order terms, are in
triangular form. This allows for making one dependent variable a passive variable
namely, passively depending on the other dependent variable. Once the dominant
variable has been solved for, the passive variabe is readily obtained.

~

Let f(w) denote the Fourier Transform of f(7) in the time-delay variable 7:
foy= [ emsmar

Take the Fourier Transform in 7 of equations (3.6). Manipulate the resulting system
in order to obtain first order equations for the travel time-evolution of the Fourier
modes. This goal is achieved by first subtracting the two equations giving

(3.7 Ry — Ly =rR — 2iwL — rL.
Moreover, by differentiating this equation with respect to x we find
(3.8) Ruw — Law = 7' (#)R — ' ()L — 2iwR, + 2iwr(z)R
+4w?L — diwr(x)L 4 r*(z)R — r(z)L.
This expression can be used to eliminate the second order z—derivatives in the first
Fourier transformed equation arising from (3.6). This is a crucial step in order to apply

the invariant imbedding approach, which requires a first order system of ordinary
differential equations (ODE). Using the fact that the time frequency range |w| <

Cy(x)+/3/0 (see appendix A) we solve for R, to obtain

(3.9) Ry = ((z,w)L + ~(z,w)R,
where
o) = id(x)w? + e(z)w? — 2r(x) row) = ;czv?((f) (w — dir(z))
o T )
d(z) = 3005(30) and e(z) = —%Co,m(x).

Putting equation (3.9) into equation (3.7) and solving for L, results in
(3.10) L, = (2iw + ¥(z,w))L + ((z,w)R,

where ((z,w) and #4(x,w) denote the complex conjugates of ((z,w) and ~(x,w),
respectively. As claimed above, equations (3.9) and (3.10) give the evolution in x
(travel time) of each Fourier mode, corresponding to the transmitted and reflected
fields.

Next, suppose that we want to calculate L(z,,7) = L(2,, 7;T) for 0 <7 < T. At
this step we apply the invariant imbedding approach [50] to system (3.9) and (3.10).
To do so we imbed the relevant inhomogeneous region inside a homogeneous medium
so that we can give appropriate boundary conditions at the border of the medium’s
slab [z,,x, + X], say
(3.

3.

1) E(ImW;T) = h(w),
( L

1
12) (o + X,w;T)=0.
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Boundary condition (3.12) means that no reflection is expected at the downstream
travel time location z,+X when 0 < 7 = t—x, < T. In other words, the signal did not
have enough time to arrive at this point and to produce a medium’s response. This is
true at least for some X > 0 large enough (depending on T') due to the pulse’s finite
(effective) velocity mentioned earlier. Linearity of ODE system (3.9)-(3.10) and the
invariant imbedding technique [50] guarantees the existence of a function K (z,w;T)
(called the reflection kernel) such that

(3.13) L(z,w;T) = K(2,w;T) R(z,w;T)
and satisfying the Ricatti-type equation
(3.14) K, = ((2,w) + 2iwl(z,w) K — ((z,w)K?,
with
2—-d 2
INz,w) = ()

2(1 —d(x)w?)

From equation (3.12) we obtain an appropriate initial condition for equation (3.14):

~

(3.15) Kz, + X,w;T)=0.

Notice that equation (3.13) allows us to solve for the reflected signal L(x,,7;T) in
terms of the reflection kernel K (x,,7;T) and the transmitted pulse R(z,,7;T) for
0 < 7 < T. This function K contains all the information about medium’s reflection
properties. We also remark that the boundary value problem (3.9)-(3.12) has been
reduced to solving the initial value problem (3.14)-(3.15) in reversed direction from
the travel time location x, + X up to the time of interest z,.

In general it is not possible to solve explicitly for K from equation (3.14) so we
adopt an approximation. To this end we present the following generalization to the
lemma given by Berlyand and Burridge [8].

LEMMA 3.1. Let y satisfy the Ricatti equation

(3.16) y'(s) = —A(s) — 2iwB(s)y(s) + A(s)y*(s), 0<s< s,

subject to the initial condition y(0) = 0. Here A(s) denotes the complex conjugate of
A(s). Hence the solution can be expressed as

(3.17) y(s0) = _/ o 2iw [° B(&)d&A(S/)dS/ + E(s,),
0
where the error term is

E(so) = /0 A(s')e 2 [ BOE2( )

Set
v(s,) = sup / 2w J§’ BOE A(s"ds'| and V(s) = / |A(s")] ds'.
0<s<s, 0 0
Ifv(so)V(s) < 1 then
2
(3.18) B(s) < V) g
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The proof is given in [51]. We now apply these results to our Ricatti equation. For
brevity the argument 7" will be omitted in what follows. We apply the lemma above
to the reflection kernel’s problem (3.14)-(3.15) by letting y(s) = K(z(s),w), A(s) =
C(x(s),w), B(s)=T(z(s),w)and s =1z, + X —x, s, = X. We deduce that

N r+X ) " B
(3.19) K(z,w) = —/ 2w [ o) ds e (o) Yda! + B(z,w),
with an error term given by
x+X ) . N
E(z,w) = / 2iw [ T(s,w) ds¢(2!,w)K? (2!, w)da'.
Also

ot X 2iw fm°+x T(s,w)dsF (.1 ’
v(xo,w) = sup et ot wasi(a!  w)de
x

To<x<To+X

and

zo+X
V(o) = / ¢ w)| d'.

Then in the cases where v(z,,w)V (z,,w) < 1 the error bound follows.

Now we solve for R(z,,w) at an arbitrary point z, by using equation (3.19) and
(3.13) in equation (3.9). It results that

~ z+X . z _ ~
Ry(z,w) = (C(m,w) <_/ 2 L Do) ds e (o ) da! —i—E(m,w)) +7> R(z,w).

o~

Solving this initial value problem with R(0,w) = f(w) then

N N Zo x+X ) . B

R(zo,w) = f(w) exp —/ / ((z,w)e?™ JoTE@)ds (o yda! + (2, w) da
0 T

(320)  -exp { /0 " e w) B(w,w) d:c} .

For general rapidly varying orographies and 3 < 1 the error function E(z,w)
is small [51], even though the error estimate (3.18) is not useful in this case. It is
sharp for instance when the function describing the medium properties (the metric
coefficient M (z) in system (3.1)) is taken to be piecewise constant on travel-time
intervals with equal length (called a Goupillaud medium) [54].

Therefore, equation (3.20) leads to the generalized O’Doherty-Anstey approxima-
tion

(3.21) E(CEO,M) ~ A(w)e—wo(aﬁ(mo,w)+b(wo,w))7
where
1 To x+X ) . B
(3,22) aﬁ(l'o,w) = - / / <($7w)e2w S5 D(s,w) dSC(‘r/7 w)dac’ d,
o JO x
1 [%
(3.23) b(xo,w) = —— ¥(z,w) dx.

Lo 0
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Using approximation (3.21) we can obtain an expression for R(z,,7) (the trans-
mitted field in our applications) by using the Fourier inversion formula. Thus for
0<r<T

1 [ .
(3.24) R(w,7) ~ / Flw)emmo@s@ew) oo ivr g,
™ J_

Note that the exponential factor in equation (3.24) accounts for the wave attenu-
ation at travel time x,. It can be shown that, to leading order, this exponential term
behaves like a Gaussian kernel, hence characterizing the apparent diffusion. As men-
tioned above not always the error estimate given above is sharp. For this reason the
error term E(xz,,w) is calculated numerically in [51]. Furthermore, for dispersion pa-
rameter 3 small enough and constant depth (r(x) = 0) we have that ag = O(3?) and
b = O(0). Hence for variable depths, it is reasonable to approximate the medium’s
dispersive correlation function ag(z,,w) by the medium’s hyperbolic correlation func-
tion ag(x,,w), that is,

(3.25)  ag(zo,w / / 2)e? (2 da! dx = ag(zo,w).
xo

This approximation, valid for small values of 3, is not a limitation of the theory
but enables numerical efficiency on the evaluation of the Fourier integrals. Note
that this hyperbolic version is easier to compute than the dispersive formula (3.22).
Note that in the latter the function { depends on the frequency w. Therefore the
Fourier-type integral in ag can not be computed rapidly by using the FFT (Fast
Fourier Transform). On the other hand, the integral in equation (3.25) can be easily
evaluated by the FFT algorithm because in this case the coefficient r(z) is frequency
independent. In appendix B we detail the numerical computation of the Fourier-type
integral in coefficient ag(z,,w). The accuracy of approximation (3.25) will be verified
in subsection 3.4 showing that the leading order dispersive effects are controlled by
coefficient b(z,,w).

The numerical experiments in subsection 3.4 will show that approximation (3.24)
captures very well not only the wave front but also part of the forward scattering
radiation. The parameter X in equation (3.22) (or (3.25)) regulates to what extent
the incoherent signal is recovered.

If 8 = 0 then b(z,,w) =0 and the approximation given by (3.21) reduces to

(3.26) ﬁ(:co,w) ~ f(w)efmoao(zo,w),

ao (o, w / / 2)e? @2 Yda! da,
T

as in Berlyand and Burridge’s work [8]. We recall that when 3 # 0 the hyperbolic
medium’s correlation function ag(z,, ) (which controls the attenuation mechanism) is
altered and an extra attenuation term b(x,,w) appears due to the model’s dispersion.

where

3.4. Numerical illustration of the generalized ODA theory. Consider the
nonlinear terrain-following Boussinesq system

(3.27) M) + ((1 + %) u>5 —0,

u2
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We recall that when o = 0 system (3.27) reduces to (3.1). Nevertheless for our
numerical validation experiments we will use the nonlinear Boussinesq system in a
small a regime. Two types of initial data are considered. We study the propagation
of Gaussian-shaped disturbances of the form

u(€,0) = 1(€,0) = e~ (€ /e,

where the parameter &, controls the pulse’s initial position and € > 0 its effective
width. Furthermore, we also consider solitary waves of the form

1(€,0) = A1 sech®(B(£ — &)) + Az sech(B(€ — &,)),
u(€,0) = A sech?(B(§ - &),

with A7, Ay, A and B constants (to be defined in experiment 2). These are approxi-
mate solutions to system (3.27) with M =1 (see [69]).

Except in some special cases (for instance when M =1, = 0 or § = 0), finding
the solution of system (3.27) is a nontrivial problem. To solve system (3.27) numer-
ically we will use a finite difference solver introduced by Wei and Kirby [69]. This
scheme will be used to perform numerical experiments in order to validate the the-
ory developed in the previous subsections. Details will be provided in the numerical
modeling section.

We now describe several experiments ilustrating the dispersive pulse-shaping ODA
theory.

Experiment set 1 (Flat channel and effectively linear regime): In these
experiments the pulse is assumed to propagate over a flat bottom (M = 1). In
appendix A (c.f. equations (A.6) and (A.7)) we show that if in addition a = 0 we can
solve explicitly system (3.27) by using the Fourier transform technique. Flat channel
solutions are employed to verify the numerical method’s accuracy regarding dispersive
and stability properties.

In figure 3.1 we see that the exact solution n (for @« = 0, § = 0.03) and the
numerical solution (for « = 0.001, 8 = 0.03) are in very good agreement at ¢ =
40. After 40 length-units into the flat channel the right propagating Gaussian has
developed an Airy-like oscillatory tail (c.f. appendix A). The dispersive properties of
the numerical scheme are very good.

For this experiment the numerical parameters are J = 4000 (spatial mesh points;
A& = 0.0125) and N = 5000 (time mesh points; At = 0.008). As mentioned above,
this test shows that the code is capturing very well the (effectively linear) dispersive
regime when « is small enough.

We repeat the experiment above for a = 0.001, 8 = 0.0005 and ¢ = 40. Disper-
sion has been decreased substantially. Now the effective hyperbolic regime is clearly
observed in figure 3.2.

Experiment 2 (Flat channel and a solitary wave):

We now study system (3.27) in the case that M =1, 0 < a < 1 (weakly nonlinear
regime), and 0 < f < 1 (weakly dispersive regime). Under these hypotheses it is
possible to obtain an approximate solution of system (3.27) which has the analytical
form

(3.28) n(&,t) = Ay sech?(B(§ — Ct — &,)) + Ag sech®(B(€ — Ct — &,)),
u(€,t) = A sech*(B(¢ — Ct — &,)),
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Fi1G. 3.1. Dashed line: initial pulse n(€,0) = u(&,0) = e—€2/93_ Solid line: numerical solution
for a« =0.001, B =0.03 and t = 40. Dotted line: Exact solution.
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F1c. 3.2. Dashed line: initial disturbance n(€,0) = u(§,0) = e=€%/9-3_ Solid line: numerical
solution for a = 0.001, B = 0.0005 and t = 40. Dotted line: Initial Gaussian pulse translated to
€ = 40.

where

21 1 (C2-1? 21 1
A==~ b="gm g C=Vite A=—rFm =05
and

c2_1 V2 o 1/2
B - — = B — .
(o)~ {ame)
Note that A3 + Az = 1. See Wei and Kirby [69] for details.

In figure 3.3 we show the analytical solution n given by equation (3.28) fora = 8 =
0.03 and t = 30. The initial soliton position is set to be £, = 0. The numerical solution
is also included in this plot. The numerical parameters are J = 2000, N = 2500,
A¢ = 0.025, At = 0.012. Note that we have the same dispersion level as in the first
of Experiment set 1. Now weak nonlinearity prevents the formation of an oscillatory
tail.

Observe that the pulse’s propagation velocity is C ~ 1.0149, in agreement with
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Fic. 3.3. Solitary wave propagating over a flat bottom. Dashed line: initial disturbance n(€,0) =
Ay sech?(BE€) + As sech*(B€). Solid line: numerical solution for a = 0.03, 8 = 0.03 and t = 30.
Dotted line: Analytical solution (3.28).

solution (3.28). The code reproduces very well the weakly dispersive, weakly nonlinear
evolution of the soliton.

Experiment set 3 (Disordered orography/Hyperbolic regime:) In exper-
iments 1 and 2, in which the channel’s bottom was assumed to be flat, the orography-
dependent coefficient M (§) was taken M = 1. For variable depths the computation
of function M () involves the solution of a change of variables problem (conformal
mapping) which is not an easy task. For this reason, in next experiments, the smooth
orography coefficient M (£) will be synthetized directly as a piecewise linear function,
ignoring (for the time being) its dependence on the original orography. In [52] we
describe in detail how a numerical conformal mapping tool [21] is used in order to
obtain a “non-synthetic” M (). Nevertheless, synthetic M (£) proves to be useful (i.e.
efficient) for observing the phenomena we are interested in and for validating the
theory. The synthetized orography coefficient is conceived as

M(§) = 14 6u(&/0),

where p is a mean-zero coefficient constructed using a random number generator.
The fluctuation level is indicated by ¢ and its correlation length by ¢. In the following
experiments we use § = 0.5 and £ = 0.1.

The numerical experiments are performed over a channel defined in the interval
[-15, 70]. The fluctuations of the synthetic coefficient M (§) cover the interval [5,
45]. The data for the right propagating Gaussian is such that £, = —5 and ¢ =
0.05. The numerical solution is plotted as a function of the time-delay variable 7
after propagating over 20 units of length and is presented in figure 3.4. Note the
wave attenuation due to the orographic forcing. The transmited signal has amplitude
1.5 (smaller than 2.0, the initial amplitude). The agreement between the numerical
solution of the full nonlinear equations (with small @) and the linear theory is very
good (figure 3.4(b)). We also point out an outstanding feature of the theory, not
noticed in previous work [8]. The linear hyperbolic ODA approximation is able to
capture the forward scattering radiation, which is the incoherent coda behind the
transmitted Gaussian. Theory and numerical experiment agree over the delay time
interval up to 7 = 10 approximately.

To verify the robustness of the theory we increase the size of the disordered
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Transmitted Signal R

Delay time T

F1G. 3.4. Pulse propagating over a synthetic disordered rapidly-varying topography. (a) Initial
disturbance R(0,7) = 2e—77/0.05 (b) Solid line: O’Doherty-Anstey approximation (3.26) for X = 5.
Dashed line: Numerical solution for o = 0.001, 8 =0 at £ =20. (c) Solid line: O’Doherty-Anstey
approzimation (8.26) for X = 20. Dashed line: Numerical solution at & = 20 and o, [ as in (b).

medium’s slab used in the invariant imbedding theory (namely the variable X). In
figure 3.4(c) we plot the same numerical solution as above but compared with a
theoretical result using an increased slab size (up to X = 20). The approximate
theory captures an even larger segment of the forward scattering radiation beyond
T =15.

Experiment set 4 (Disordered orography/Dispersive regime:) This set
of experiments is important for two reasons: (A): it shows that we are able to prop-
erly compute the interaction of dispersive water waves with rapidly varying orogra-
phies. With previously known Boussinesq models (such as [63]) this was not possible.
The classic Boussinesq equation [63] is not valid for orographies with large slopes.
Moreover, its variable coefficient multiplies the highest derivative term and this gen-
erates numerical noise as the orography’s slope increases. This has been shown for
a periodic topography in [52]. The same experiment was performed for the terrain-
following Boussinesq system where the metric term is positioned away from the third
order (dispersive) term. No numerical noise was observed. (B): it is also important
because we illustrate the theoretical results in the regime for which they were de-
duced. Hence these linear experiments validate the nonlinear numerical model for the
terrain-following Boussinesq equation in the presence of a random orography. This is
important also since the code will be used (as a scientific computing tool) beyond the
regime of validity of the linear theory.

In the first experiment we consider the dispersion to be very weak (8 = 0.0005).
Figure 3.5(a) clearly shows that a very short oscillatory tail develops when the pulse
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propagates in a flat channel. The final amplitude of the transmitted pulse is about 1.5.
The amplitude decay in this case is entirely due to dispersion as discussed in appendix
A through the Airy kernel. But in the presence of orographic forcing an additional
attenuation is observed (figure 3.5(b)). In this case the final amplitude is about 1.
Note that no Airy-like oscillatory tail develops. This was systematically observed in
several experiments and can be explained through the concept of localization [56].
The localization length of a Fourier mode is a characteristic propagation distance
after which the transmission coeficient is negligible. The bulk of the energy is in the
reflected signal. Moreover high frequency components have small localization lengths.
This means they are quickly filtered (back) by the disordered medium. In the context
of the ODA theory this was phrased in a slightly different way by Berlyand and
Burridge [8]. They called a layered random medium a stratigraphic Gaussian filter.
As presented here, the transmitted pulse can be written as the convolution of its
initial Fourier content with a Gaussian kernel. The Gaussian kernel is the leading
order approximation to the kernel in (3.24) with 8 = 0 (see [52, 54]). Applying this
notion to our current problem we have that disorder filters the higher part of the
Fourier content of the incoming pulse. Hence the oscillatory tail (which is of high
frequency content) has been converted into the incoherent part of the wave. Again
the agreement between the numerical solution and the ODA theory is very good.

In the next validation experiment the level of dispersion has been increased 4
times (8 = 0.002). In figure 3.6(a) we have the initial pulse profile and the numerical
solution after propagation over 40 units of a flat channel. We observe a long oscillatory
tail due to the higher dispersion level. Note that dispersion is not as small as the value
of # might indicate at first sight. After large propagation distances the (small) phase
lag (at higher frequencies) has accumulated in a nontrivial fashion.

To compute the theoretical ODA approximation we need the incoming pulse in
time at the origin. Actually we need its Fourier content f (w). To be consistent with
our mathematical theory we position the initial Gaussian profile (in space) to left of
the origin at time ¢,, allow it to propagate over a flat portion of the channel and record
it in time at the origin. The starting time ¢, is chosen so that the resulting pulse f(7)
be centered at 7 = 0. This gives us the correct incoming pulse (in time) for the
theoretical formula to be used. Hence the incoming pulse displays a mild oscillatory
tail as displayed by figure 3.6(a). In figure 3.6(b) we compare the numerical solution
with the generalized ODA approximation. The dispersive wave attenuation can again
be observed.

Experiment set 5 (Disordered orography/Solitary wave:) We are now
in a position to explore the (linear) generalized ODA theory beyond its regime of
validity. We consider a weakly nonlinear, weakly dispersive wave, namely a soliton.
Using equations (3.28) it is easy to see that we have

f(r) = (% + é) sech?(BT) + %sech‘%Bﬂ7

in order to evaluate the ODA approximation (3.24).

In order to slowly push away from the regime of validity of our theory we choose
small values for the respective parameters « = = 0.001. This amount of dispersion
is enough to produce an oscillatory coda as was observed in previous experiments. But
now, for the particular data considered, this coda will not appear due to the perfect
balance between the o and 3 terms. The oscillatory coda seen at figure 3.7(b) is due
entirely to forward scattering of energy generated by the interaction of the soliton with
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& =40. (b) Pulse propagating over a synthetic disordered rapidly-varying orography. Dashed line:
Numerical solution at & = 40. Solid line: Generalized O’Doherty-Anstey approzimation (3.24) for
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F1c. 3.6. (a) Dashed line: Initial disturbance. Solid line: Solution for M =1 (flat bottom) at
& =40. (b) Pulse propagating over a synthetic disordered rapidly-varying orography. Dashed line:
Numerical solution at & = 40. Solid line: Generalized O’Doherty-Anstey approzimation (3.24) for
X =20. In all experiments a = 0.001, 3 = 0.002.

the disordered medium. Because the soliton is wider than the Gaussian (used before)
we adopt £ = 0.6. This keeps the wave/inhomogeneities ratio equal to approximately
10 (v = 0.1) as in all other experiments. The orography coefficient covers the [5, 245]
interval and the amplitude of fluctuations is § = 0.5. In figure 3.7(b) we present the
excellent agreement between the theory and the numerical solution.

It is worthwhile recalling that the solitary wave (3.28) is an approximate solution
to the Boussinesq equations as presented by Wei and Kirby [69] in their appendix.
In [69] (page 255) they discuss solitary-wave propagation over a flat bottom and
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Fic. 3.7. Soliton propagating over a synthetic disordered rapidly-varying orography. (a) Initial
soliton f(7). (b) Dashed line: Numerical solution for oo = 0.001, B = 0.001 at £ = 150. Solid line:
Generalized O’Doherty-Anstey approximation (3.24) for X = 30.

analyse the effects, under the corresponding approximation, of increasing the soliton’s
amplitude (namely the nonlinearity parameter «; there denoted by ). They observed
that for o = 0.1 the initial profile specified by (3.28) undergoes a rapid adjustment to
a slightly higher solitary wave with a very small dispersive tail. This dispersive tail
is not noticeable in their experiment ([69] FIG. 2(a)) after the soliton has propagated
over 55 pulsewidths (450 length units). Nevertheless the amplitude of the tail and of
the rapid deviation from the initial solitary wave height both increase with increasing
a. As explained in [69] this is partially because the fourth-order ordinary differential
equation used to develop the analytical solution is only asymptotically equivalent to
the Boussinesq model used in the computations. In particular for & = 0.3 Wei and
Kirby show that the corresponding evolution for (3.28) is far from a travelling wave
solution.

As pointed out before the ODA theory developed is linear while these experi-
ments are performed beyond the linear regime. Hence in our experiments we will
gradually increase the values of o but we will be far from the “problematic regime”
indicated by Wei and Kirby [69]. In our second experiment with solitons, and to
further move away from the linear regime, we double the nonlinearity and dispersive
parameters accordingly. We will now investigate the effect of different realizations of
the medium. In figure 3.8 we present the results for 10 different realizations of the
disordered topography. We observe the stabilization of the transmitted pulse: the
pulse shaping of the front is independent of the specific realization. This has been
proved for the linear hyperbolic case [41]. Stabilization in the linear dispersive regime
has been recently proved in [28]. The present framework has been extended, through
a stochastic analysis, to include stabilization [28] for the time-reversed refocusing of
dispersive waves. No stabilization theory is yet available for solitons though.

As pointed out, the solitary wave profile (3.28) is not an exact travelling wave
solution to the corresponding, constant coefficient, Boussinesq system. Nevertheless
the balance between weak nonlinearity and weak dispersion is maintained for large
time intervals. If dispersion were not present a Burgers-type nonlinearity (n: +ann, =
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Fic. 3.8. Transmitted pulse stabilization observed at a fized medium’s station (§ = 150; 25
pulse widths). The same initial soliton (o = 3 = 0.002) propagated over ten different realizations of
the topography. The transmitted pulse shape is effectively deterministic while the coda is random.

0) would force the solitary wave profile (3.28) to eventually break. For an initial
profile denoted as n(x,0) = f(z) the critical time t. is known to be t. = —1/(af’),
for the maximum value of the negative slope of f(z). For f(z) given by (3.28), with
a = f§ = ¢, the maximum value of the negative slope is at Z such that tanh(BzZ) = —z,
where

(1Ot '
~ \343C + 10a ’

/- 3 1/2 1— 22 1 — 22 .
f(:c)_—(m> {Z—2<(1+C’)z+25( p, )ﬂ, with C=+1+¢
and t. = 1/(4¢). Hence if dispersion was switched off the solitary wave would break
after 50 length units (approximately 8.33 pulse widths), when e = o = 0.005 as will
be used in the following experiment.

In our last experiment we further increase nonlinearity and dispersion to be
o = # = 0.005. The result is presented in figure 3.9. As observed in Experiment
set 4, disorder attenuates the effect of dispersion. This is again confirmed in this
weakly nonlinear experiment. Note the soliton steepening at the wave front due to
the attenuation of the dispersive mechanism. The attenuated wave front predicted by
the linear theory does not match the nonlinear numerical front as before. Note also
that dispersion has not been fully switched off or else a shock would have formed in
finite time according to the discussion above. More experiments with solitary waves,
including time reversal and refocusing are presented in [52].

The study of solitary waves over disordered topography is of great interest. In
this work we have only presented scientific computing results. A complete theoretical
understanding is of interest. An article by Garnier, Munoz and Nachbin is in final
preparation. Theoretical results for nonlinear localization and soliton propagation
in random media is recent and more focused on the nonlinear Schrédinger (NLS)
equation. A very good source of references can be found through the work of Garnier
[32, 33].

We have formulated a generalization of the O’Doherty-Anstey theory for linear
weakly dispersive waves. The theory has been valited numerically and pushed beyond
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Fic. 3.9. Soliton propagating over a synthetic disordered rapidly-varying orography. (a) Initial
soliton f(7). (b) Dashed line: Numerical solution for o = 0.005, B = 0.005 at & = 150. Solid line:
Generalized O’Doherty-Anstey approximation (3.24) for X = 30.

its linear regime of validity. This work has stimulated new theoretical results in the
stochastic formulation for time-reversed dispersive wave refocusing [28] and also for
the ODA and time-reversed refocusing [29] of weakly nonlinear hyperbolic waves. The
authors in [29] have shown that, to leading order, the transmitted pulse is governed
by a viscous Burgers equation. The “apparent viscosity” depends on statistics of the
random medium. This important result reports on a weakly nonlinear ODA theory for
nondispersive waves. Therefore the regularizing effect is entirely due to the “apparent
viscosity” promoted by the disorederd orography. Details of the “apparently viscous”
theory, including additional nonlinear experiments are presented in [29)].

4. SOLUTION ASYMPTOTICS: RANDOM APPROACH. As before
we consider the linear Boussinesq equation that describes the evolution of surface
waves in shallow channels [57]: recall that 7 is the wave elevation and w is the depth-
averaged velocity, £ and t are the space and time coordinates, respectively. The spatial
variations of the coefficient M are imposed by the bottom profile

M(E) = 1+em(©)

where 1 stands for the constant mean depth, the dimensionless small parameter ¢
characterizes the size of the relative fluctuations of the bottom modeled by the zero-
mean stationary random process m(§). The process m is assumed to be bounded by a
deterministic constant, differentiable, and mixing in a sense that will be precised later
on. We may think for instance that m(§) = f(v(€)) where f is a smooth bounded
function and v is a stationary Gaussian process with Gaussian autocorrelation func-
tion and we assume that E[f(v(0))] = 0. Note that in that case the realizations of
the process v are of class C* almost surely. This hypothesis is consistent with the
terrain-following coordinate system adopted.

We consider the problem on the finite slab —L < ¢ < 0 where boundary conditions
will be imposed at —L and 0 corresponding to a pulse entering the slab from the right
at £ = 0. The quantities of interest, the transmitted and reflected waves, will be
observed in time at the extremities £ = —L and £ = 0, respectively.
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We consider a pulse whose support is comparable to the correlation length of the
random medium, that is of order 1. In order to see the effect of the small random
fluctuations, we consider a long distance of propagation. As we shall see the interesting
regime arises when the propagation distance is of order 1/¢2.

4.1. The propagating modes of the homogeneous Boussinesq equation.
As mentioned in the previous section we now show how exact right and left propa-
gating modes can be established in the case of a homogeneous medium. Consider the
homogeneous Boussinesq equation (with m = 0):

on  Ou

Oou  Jn Pu
(4.2) EJra_g —ﬂ@ =

with a smooth initial condition

u(t =0,8) =uo(§), 1t =0,8) =no(§)-

Taking the space Fourier transform

it 4) = 5 [ ult. € explike)dz, k) = oo [ 0t explike)dz

the Boussinesq equation (4.1-4.2) reduces to a set of ordinary differential equations:
(4.3) — = iku
(4.4) (14 Bk*) = = ik.

Introducing the pulsation corresponding to the wavenumber k through the dispersion
relation
k

V1+ k2

we get closed form expressions for the solutions:

(4.5) w(k) =

a(t, k) = 5 (10(k) + S0 (k)) explicr) + 5 (io(k) — (k) ) exp(~iwt)
1

0060 = 5 Zao(h) + (1)) expliot) = 5 (Zaalh) ~ mi) ) expl-iwt)

From these expressions we can conclude that any solution can be decomposed as
the superposition of left-propagating modes (u(l),n(l)) and right-propagating modes
(u), yD):

’U,(t, g) = u(r)(ta g) + u(l) (tv g)
n(t,€) =0, &) + 0V (t,¢)

where

w9 = [ 5 (a00k) + $i()) exp iw(k)e - ike) di
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w

n(6.€) = [ 50 (a0k) + $1i(k)) exp (iw(k)e - ike) i

ut,6) = [ 5 (k) — Lin(h)) exp (~iw(k)e - ike) di

k /. w . . .
nW(t,¢) = - / o (Uo(k) - Eﬁo(k)) exp (—iw(k)t — ik§) dk.

This decomposition will be used in the non-homogeneous case in the next subsection.
In the previous section a hyperbolic mode decomposition was used as an approxima-
tion for the right and left propagating modes. Here the mode decomposition is exact
for dispersive waves.

4.2. Propagator formulation. As in the previous section we first express the
scattering problem as a two point boundary value problem in the frequency domain,
and then rewrite it as an initial value problem in terms of the propagator. This is
the standard approach for acoustic equations [4] that we generalize to the dispersive
case using the decomposition introduced in the previous section. Note that here the
incident wave (denoted by inc) is coming from the right, rather than from the left as in
the deterministic modeling. This is only to show that the formulation is independent
from either choice.

4.3. Mode propagation in the frequency domain. The next two subsec-
tions are basically the same of what we presented in the deterministic case. Some
minor differences are observed but we repeat the mode decomposition formulation for
completeness.

We consider the linearBoussinesq system and take the time Fourier transform

i, = 5 [ultesp(-ivt)dt, w6 = 5 [ n(t.€)expl(-iwt)at

so that the system reduces to a set of ordinary differential equations:

(4.6) (1 — Bw?(1 +em(€))) ‘;—2’ + iwi — efwm’(€)f = 0
(4.7) g—z+iw(1+6m(§))ﬁ20

where m’ stands for the spatial derivative of m. We introduce the wavenumber k
corresponding to the pulsation w:

w

v/ 1 — Bw?

so that we can decompose the wave into right-going modes A® and left-going modes
B¢ over distances of propagation of order 1/e2. We show explicitly the dependence
in the small parameter e:

(1.9) =g (1w f)+ (0 5)),
o po0 - (1o ) - Ea(o5))

(4.8) k(w) =
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The modes (A®, B®) satisfy:

0A° ik ik Bk?

O = -~ Pm(e/en A + )+ S (/%) (47 + B)
-3 (e o) )

a5 ) (e ) 4
o = BB (/) (A7 + B + Sl (/%) (47 + )
-3 (e o) )

@ S ) (e ) )

We expand the last terms of the right-hand sides up to O(g3) terms

w

5
1—Bw?(1+em(E/e?)) 11— fw?

We now look at the waves along the frequency-dependent modified characteristics
defined by

(4.13) = eBkim(€/e?) + 232 k5m2 (€ /) + O(£3).

) 2 232 k4
(414) () = A O exp () exp (~ oSy - Hom 5 )
ik 2 £232 )4
(115) 10, = B, exp (-5 Jexp (- Bm(E) - © 54 (5P
which satisfy the linear equation
0 at af
(4'16) 8_5 ( be ) (w7§) = Qa(w7§) ( be ) (wag)'

The complex 2 x 2 matrix Q¢ is given by:

k€

£ Qi(wvg) QQ( 5) E_
4.17 w, )=\ — 2ike
D @ ( Qs(w, e == Q(w,8) )

with

@1 Qi =~ 1+ a)mS) - LEnr L)+ o)
Q5.0 =~ (- gy m5) + B )+ LS

(4.19) +522k4m(§2)m () +06)

The small terms of order & come from the O(g?) term in the expansion (4.13).
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0 (Uine, Nine) (t)
R [
(U’?W nfr)(t) (uie]“ nief)(t)
-~ —
—L/e? 0 2

F1c. 4.1. Scattering problem.

4.4. Boundary values. We assume that a left-going pulse is incoming from
the right and is scattered into a reflected wave at £ = 0 and a transmitted wave at
& = —L/e? (see Figure 4.1).

The incoming pulse shape is given by the elevation function f(t) where f is
assumed to be a L' function compactly supported in the Fourier domain:

w

Ui, € = 0) = — / rio7 ) exp(ict)

Nine(t,€ =0) = /f(w) exp(iwt)dw

with supp(f) € (—=1/v/B,1/v/B). We also impose a radiation condition at —L /&2
corresponding to the absence of right-going wave at the left hand-side of the slab
[—L/%,0]. The two-point boundary value problem consisting of the system (4.16) for
¢ €10, L] together with the conditions:

bg(w,§:0):f(w)7 a*(w,§=-L)=0

is then well-posed.

4.5. Propagator. It is convenient to transform the two-point boundary value
problem into an initial value problem by introducing the propagator Y¢(w,—L,£)
which is a complex 2 x 2 matrix solution of

oye
9¢

such that

(wv _ng) = Qs(w7§)ys(w7 _Lv€)7 Ys(wv —L,f = _L) = Idc2

el af(w,—L) \ [ a*(w,§)
Yn=L,9) ( b(w,~L) ) =\ pwe) )
By the form (4.17) of the matrix Q¢, if the column vector (a§,b5)T is solution of
equation (4.16) with the initial conditions:

(4.20) aj(w,-L)=1, bj(w,—L)=0,

then the column vector (b5,a5)7 is another solution linearly independent of the first

solution, so that the propagator matrix Y ¢ can be written as:

aj bj

ve-ng= (5 L) we.
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0 1 :
T°(~L.¢) RE(=L,¢) |
_L/g2 5/62 EO >

F1G. 4.2. Reflection and transmission coefficients.
Note also that the matrix Q¢ has zero trace, so that the determinant of Y¢ is conserved
and (af,b5) satisfies the relation:
(4.21) det Y€ = |a|* — [b5|* = 1.

We define the transmission and reflection coefficients — T¢(w,—L,§) and
R (w,—L, &), respectively, for a slab [—L, &] by (see also Figure 4.2):

N < Ta(w7O—L,€) > _ ( R L) ) .

In terms of the propagator entries they are given by:

b5 1
RE(W,—L7§): :i(wag)7 TS(W,—L7§): :5(("}75)
a a
1 1
and they satisfy the closed form nonlinear differential system:
6R5 __2ikE —— 2ike
(4'22) 3§ = 2@?(&)75)}%8 —e < QS(W=§)(RE)2 te < Q;(w=§)7
ore 2ike
(123) G =T (¢ F Q5. OF +Qi(.9),

with the initial conditions at & = —L:

R*(w,-L,6=-L)=0, 7T%(w,—-L,§=-L)=1.
Note that Eq. (4.21) implies the conservation of energy relation
(4.24) IR+ |T°* =1

and in turn the uniform boundedness of the transmission and reflection coefficients.
Note also that R° and T°¢ are the reflection and transmission coefficients for the
modified characteristics (4.14-4.15). In terms of the real characteristics the reflection
and transmission coefficients are R® and T° exp(—ikL/e?), respectively.

4.6. Probabilistic modeling and tools. In the previous subsection we formu-
lated the nonlinear evolution equations for the reflection and transmission coefficients
Rf(w,—L,¢) and T¢(w, —L,&). The corresponding vector fields depend on the ma-
trix Q¢ which has random coefficients. Hence under this probabilistic modeling
R (w,—L,&) and T¢(w, — L, £) are interpreted as stochastic processes. Their evolution
equations have been cast in a form such that Khasminskii’s theorem [38] is readily
applicable.
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Khasminskii’s theorem reads as follows: consider a system of ODEs, being an
initial value problem with a random forcing, where w represents an element (an event)
in state space (probability space): w € (Q,4,P). We are keeping Khasminskii’s
notation and this is not to be confused with the Fourier frequency denoted above.
Consider a random system in the form

d
Te _ eF(t, x5 w), z:(0) =z
dt
together with the system
dy —
-~ _F 0) =
dr (y)a y( ) Zo,

where F(t,-;w) is a stationary stochastic process, satisfying the ergodicity hypothesis
among a few other technical considerations [38], where

T
F(z) = lim %/0 E{F(t, z;w)}dt.

Then

sup E{|z.(t) — y(t)|} ~ V& on the time scale 1/e.
0<t

When several time scales are present Kohler and Papanicolaou (c.f. references within
[4, 11]) considered the system

dx 1 t t
dts :gF(IEatvgvg;w)a IE(O):SCO
where
t
F('7 ) 75_27“])

is a stochastic process with hypothesis similar to those in Khasminskii’s theorem.
Note that the process is on the fastest scale, which in the wave propagation problem
represents the random medium’s heterogeneities [4].

Through these theorems one is able to characterize for example E{T*(w, —L, )}
(at each Fourier frequency w) or E{T°T¢} as e | 0 [4, 11]. In these expressions we have
omitted the state space parameter w. From the conservation of energy relation these
results also provide E{R*R¢}. An excellent text with a detailed and comprehensive
presentation of the mathematical technology for Waves in Random Media is due by
the middle of 2006 and authored by Fouque, Garnier, Papanicolaou and Sglna [31].

4.7. Quantities of interest. The probabilistic results are then readily avail-
able to be used in an integral representations as follows. The transmitted wave at
time ¢, denoted by (u$,., n5,), is the left-going wave which admits the following integral
representation in terms of the transmission coefficients:

w

(429) w6 =~ 5) = = [ 1 FT =0y exp (it — k() ) s

(4.26) 75, (t,€ = —E—I;) = /f(w)TE(w, —L,0)exp <iwt - zk(w)g—i) dw.
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Similarly, the reflected wave (uZ, £o e f) can be expressed in terms of the reflection
coeflicients as:

(4.27) u;‘:ef(t,g:()):/ ) f(w)RE(w, —L,0) exp (iwt) dw,
(4.28) nief(t,g:()):/f( YR* (w, —L,0) exp (iwt) dw.

By linearity of the integrals, the mean values (ensemble averages) of these propagating
modes follow from the frequency-by-frequency analysis described above.

8. Transmitted wavefront. We give an integral representation for the co-
herent transmitted wave front observed at £ = —L/e? around the effective arrival time
L/e%. By (4.26), the transmitted elevation front is given by:

L L 2(Ww— w L
(129) (G tE=—5) = [ O E )T (o, ~L 0o,

Due to dispersion, k(w) is different from w (see (4.8)). As a consequence, if 8 = O(1),
then the rapid phase exp(i(w — k(w))L/e?) makes the integral vanish as ¢ — 0. This is
in dramatic contrast with the hyperbolic case (6 = 0) where the coherent transmitted
wave persists in this regime as a manifestation of the well known O’Doherty-Anstey
theory studied in [16, 42, 62] in various situations, and described earlier in the deter-
ministic modeling.

In the dispersive case, the front will be present if the dispersion parameter [ is
small enough. This has been characterized and observed numerically in [51, 52]. In
particular, in the regime where 3 = €23y, we can derive its precise shape resulting
from the interplay of randomness and dispersion. In that regime, by expanding the
dispersion relation w — k(w), we get that the front is given by:

L L ) . R
77;"(8_2 + tag = _§> = /elwte_ZBOW3Lf(w)Ta(wv _La O)dw + 0(62)'

The transmission coefficients are given by T¢(w, —L,0) = 1/a§(w, 0) where af satisfies
(4.16) with the initial conditions (4.20). In the case 3 = €23y, the entries of the matrix
Q¢ can be expanded as:

ik

Qi (Wa §)|B:3052 = —%m(é'/gz) + 0(8)7
ik

Qg(wa §)|B:3052 = —%m(é'/gz) + 0(8)7

so that we get the same system as in the hyperbolic case up to terms of order e.
The limit of 7;, has been derived for the hyperbolic case with small fluctuations
[4, 62]. In our case the derivation of the limit follows the same lines except for the
deterministic phase exp(—ifow*L) due to the small dispersion. The process (n, (% +
t, &= ))te( s0,+00) converges in the space of the continuous and bounded functions
to [28]

2
Mo (¢ / flw exp( Wit — VQ(O)BL)—%(“)L—WOJL) du,
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where By, is a standard Brownian motion and 7 is

(4.30) Y(w) = /OOO E[m(0)m(£)]e?*¢dz.

We immediately can interpret the first term in the exponential as a random time
of arrival for the wave. The time of arrival depends on the particular realization of
the medium, which is manifested by the Brownian motion term. The second term is
diffusive-like and universal in the sense that it does not depend on the particular real-
ization for the heterogeneities. Finally the third term is dispersive. Using convolution
operators the transmitted front can be written in a simpler form:

(1.31) Welt) = [+ K (t el BL> ,

which means that a random Gaussian centering appears through the Brownian motion
By, while the pulse shape spreads in a deterministic way through the convolution by
the kernel K

K(t) = K, x K4(t).
Here K is the scaled Airy function [1]

1 Aj t
(360L)73 <_ (3,60L>1/3>

and the Fourier transform of K, is
. 2 L
Rofw) = exp &%) ,

Note that the kernel K depends both on randomness (through the function «) and on
dispersion (through the parameter 3p). This stochastic formulation is in agreement
with the formulation presented in [51, 52] for small 5. Again, as expected, the theory
indicates the apparent diffusion of waves propagating in a random medium. Diffu-
sion is characterized by the Gaussian kernel K, (w). The diffusion coefficient depends
on 7.

Observe that a dispersion parameter 5 = O(1) or even O(eP) with p < 2 leaves
a fast phase in the integral representation of the transmitted front as can be seen
in (4.29). This implies a dramatic spreading of the pulse for a propagation distance
of order 1/£2, so that no coherent front pulse can be observed at the output ¢ =
—L/e2. The apparent diffusion experiments in this case are similar to those presented
earlier for the deterministic case. In [28, 52] we have several dispersive experiments
illustrating the expressions given above. One can then clearly see the effect of both
the diffusive and dispersive kernels.

5. NUMERICAL MODELS.

Kq(t) =

5.1. Numerical scheme for the Boussinesq models. We present the nu-
merical scheme employed in computing the solutions to the one parameter family of
Boussinesq systems (1.30)-(1.31). This scheme is basically the same as that developed
by Wei and Kirby [69] and which we adapted in [52]. For simplicity, let



Wave propagation in heterogeneous media 47

1

9(6) = 3(23(6) - D).

First we rewrite the Boussinesq system

(5.1) Mo+ [(1+4L) uL +2)(z-3) u&L o,
(5.2) 1”+%+“<ﬁ%éﬂg+§@3‘”W@‘Q

in a more convenient way, as
(53) U E(T]a U)7

where

50 P =7 (14 37 ), + g 000 + 1o

F(n,u) = —ne — % (ﬁ;zl

The intermediate (auxiliary) variable V is defined as

V =u— Bg(&)uge.

We now approximate the solution of system (5.3) by using a high-order predictor-
corrector solver. The space-time domain {¢ € [£1,&;] , t > 0} will be discretized by
=&+ -1DAE 1<j<Jandt, =(n—1)At, 1 <n < Ny, respectively. The
discretizations of the variables u,7,V will be denoted by u?,n}, V™. As mentioned
above this strategy is basically the same as that presented in [52], the difference being
that the Sturm-Liouville type problem, for inverting the change of variables from V'
back to u, has the new coefficient g(¢&).

As suggested in [69] we use a third-order explicit Adams-Bashforth solver to
produce a predicted value for (V,7n) and then a fourth-order implicit Adams-Moulton
scheme is applied to obtain a corrected solution. The predictor is given by

At
n+l _ n n n—1 n—2
= 4+ T (23B) — 16E7 7+ 5E7 ),
At
n+1l _ yn n n—1 n—2
(5.5) V; =V +E(23Fj —16F}"" + 5F; ).

The notation £ = E(n},u}) and FJ' = F(n},u?) is used. The first-order derivatives

in equation (5.4) and ugee are approximated by appropriate differences schemes [52].
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Recall that for evaluating the fluid velocity u}‘“ we must solve the (spatial) ordinary
differential equation

(5.6) u—Bg(§)uee =V,

which is forced by the known left handside Vj"'H. The second derivative in equation
(5.6) is discretized by a centered approximation giving rise to a tridiagonal system
of algebraic equations which is solved very efficiently. We remark that this system’s
matrix is constant in time and thus only one LU decomposition must be performed
at the starting point.

When the boundary values u}*! and u’}“ and n7* and n?“ are required, we
use the linear radiation conditions (B. Engquist and A. Majda [24])

(5.7) u—ug =0, at {=¢&,
Ut+UE:0, at €:€Ja

where & and £; denote the left and right ends of the computational domain. Anal-
ogous conditions are applied on the function 7. Conditions above play the role of
absorbing the waves arriving at the boundaries of the computational domain. This
allows us to perform numerical simulations without introducing a too long computa-
tional spatial domain. These conditions work well for small amplitude waves propa-
gating in the linear regime in the absence of a topography. Therefore at the extremes
of our computational domain the channel has a short flat bottom region.

nHun T are obtained we compute E?H, F;“rl from

Once the predicted values /™", u;
equations (5.4). The corrected values are calculated from

At
n+l _ . n n+1 n n—1 n—2
it =i g OB+ 19E7 —5EF T 4 B,
At
n+1l _ yn n+1 n n—1 n—2
(5.8) V; =V +Z(9Fj +19F}" = 5F;" " + F; ),
where the quantities at level n 4+ 1 are computed iteratively by using the predicted

approximation as the initial guess. The new u?“ is computed from an+1 as in the

predictor step. We stop the iteration process when the relative error between two
successive corrected values n™ !, w1 and n D" w(*tD" are smaller than a given
tolerance.

To verify the stability and the accuracy of this numerical scheme we perform a
simulation with constant depth, taking alternatively Zy = \/1/_57 Zy = 0.469.

As mentioned earlier, adapting the strategy described in [69] an approximate
solitary wave solution for system (1.30)-(1.31) can be written as

(5.9) n(&,t) = Aysech?(B(€ — Ct — &,)) + Agsech(B(€ — Ct — &,)),
u(é,t) = Asech?(B(€ — Ct — &,)),
where
C? -1 A — (C* =1)*(5(Z5 —1/3) + (%5 —1)C?)
2a(Z-1/3-(Z-1C%)" TF aCAZ - ) - (- 1)

2 1/2 2
20(Z8 —1/3 — (Z8 — 1)C?) aC

A =
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The parameter £, indicates the location of the solitary wave at t = 0. The
constant C' is the wave velocity and it is calculated from the equation

2 1 1
(5.10)2(Z5 — 1)C® — ((3 4 22)(Z5 — 1) + §>C4 +20(Z2 — g)02 + 272 - 5 =0.

Observe that the wave speed and the amplitude of the wave are connected. We
point out that (5.9) corresponds to an exact solitary wave for the Benney-Luke type
equation

Zi -1/

2
but — pee + (20 Pt + Pree) — B <T3¢5555 _Zd

¢ggtt) =0,

which is formally equivalent to system (1.30)-(1.31) (with u = ¢¢) up to order O(«, 3).

We now perfom a numerical experiment. When o = 8 = 0.03, and Zy = \/1/_5
or Zp = 0.469, the wave speed (computed from (5.10)) is approximately C' a 1.01485.
In the simulation the discretization parameters used were A& = 0.0333, At = 0.0267
and the computational domain is taken as [0,100]. In these experiments, we observe
that the solitary wave preserves its shape after propagating over a distance of ap-
proximately 13 times its effective width (¢, ~ 6). There is no indication of numerical
attenuation nor spurious dispersion. The solitary wave speed coincides with good
accuracy with the speed of the numerical solitary solution. This was systematically
observed in several numerical experiments with different values of the parameters «, 3
and of the intermediate depth Zj in system (1.30)-(1.31). We remark that the disper-
sion and nonlinearity values o = 3 = 0.03 are not negligible [51, 52] in this problem.
Thus, we conclude that the numerical scheme is describing very well both nonlin-
ear and dispersive effects present in the (one parameter family) Boussinesq models

(1.30)-(1.31).

n at t=80

) B)

Fi1c. 5.1. Propagation of the solitary wave for model (1.30)-(1.81) with « = 8 = 0.03. Conven-
tion: solid line indicates the numerical solution and the dots profile (5.9). (A) Boussinesq model
with depth parameter Zo = /1/5. (B) with Zo = 0.469.
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5.2. Preconditioning through complex variables. In this subsection we
show how the range of eigenvalues can be changed by reformulating the dispersive
system of partial differential equations. Namely by going from a cartesian to a curvi-
linear coordinate system [57]. In some sense this strategy has already been explored
successfully, as for example, by Hou, Lowengrub and Shelley [37]. Hou et al. used
an equal arclength spacing in their mathematical formulation for the evolution of La-
grangian particles along a fluid interface. Their clever change of variables (from a
nonuniform distribution to an equally spaced one) removed the problem’s stiffness by
eliminating high frequency components generated due to particle compression. Here
we use a disordered (conformal mapping) change of variables [57]. The new coordinate
system removes the stiffness promoted along the domain’s boundary due the presence
of the orography’s microscale. Namely in the new coordinate £ the mesh is equally
spaced while the smooth metric term M (&) incorporates the disorder, hence elimi-
nating (by averaging) some high frequency components. Another advantage is that
the variable coefficient, and its derivatives, move away from the equation’s highest
derivative (i.e. the third order dispersive term) and positions itself at the first order
transport term.

To put the above comments in a more quantitative framework we start with the
(cartesian) linear version of the dispersive model by Peregrine [63]:

G et (G W], =0,
2 T T
w8 (" = M 20 ) ) =

This system is valid when

(5.12) 9, (%) <.

Taking a Fourier transform in time we have that
(5-13)  (=iw)) + (h(x/y) @)z =0,

(miw)i + 1y = f [h(g/ 7) (—iwh(z/y)a),, — h@/v)

6

(—iw)ﬂm] .
Using the first equation we can rewrite it as a first order system
hy

G14) =)+ ()

R 1 , p Biao, (B 2 .
Ui 1—§w2h [2w< 6 +3 z)u+<3w Ui

where h, = h'/~. The characteristic polynomial for the variable coefficient matrix is

=0.

h

he  5whs 2|1 = Zhhay + 502
p()\):)\2_)\ __% w 6 3"
h 1-8 1—2w2n

The eigenvalues are

N (1 1/2 )i iw/h@/y) |

Ty _ B, 2
v L= 3wh l—wzgh(z/’y)
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_ ﬁ " ﬁ 2 _ h_l2 (1 _ (2/3)/6w2h)2
(5.15) . \/1 672hh - 372h 7 h(1-8w2h)

If h(xz/v) = 1 we recover the usual dispersion relation [70] for the wavenumber (k =
—iA) in terms of the frequency:

w

\/1-&)23

In practice (i.e., in our experiments) the initial data is generated in space so that the
frequencies are bounded by (3/3)%/2:

Ef(w) =+

k

——
1+ k25

On the other hand for the regime of long waves (8 < 1) propagating over to-
pographies of decreasing length scales (v |) we observe that

(5.16) AE(z) ~ 0 (%) +i 1“:/52(;7(1/7) J1-0 (%)

wE(k) ==+

The leading order imaginary part plays the role of a local wavenumber, in analogy
to the unforced case. Note that as v tends towards the microscale the spectrum will
broaden. But we should bear in mind that this system was not designed to capture
rapidly varying topographies. Nevertheless in [52] we saw the onset of numerical noise
even in the proper regime of validity.

In contrast now consider the linear terrain-following Boussinesq system

(5.17) M(E)m + ue =0,

Ut + 775 — gu&t = 07

which was designed for a broad range of topographies [57]. Taking a Fourier transform
in time we have that

(5.18) (—zw)M(S)ﬁ +ie =0,
(—iw)ﬁ + ﬁg — (—iw)gﬂgg =0.

By differentiating the first equation and substituting into the second we obtain the
following system of ordinary differential equations:

(5.19) g = iw M(E) 7,
fle = 7216 (iw o+ w2§M’(g) ﬁ) :
1—w §M(§) 3

The characteristic polynomial for the variable coefficient matrix of this system is

WS M'(€) WM (8)
1-w28M(€) 1—w2BM(E)

|
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The eigenvalues are

(6) £ 1y/ATE) (1~ 250 () — 2557

. AE() =
(5.20) ) 21— I (E))

If M(§) = 1 we recover the usual dispersion relation. Recall that the metric term
M (€) is controlled by two parameters and defined by

. [ (@, —VB)/Y)
M(&;B,7) = 1+4\/— o COSh?5T= (&0 — €)

¢y = O(1).

Moreover

E2f/

Since ¢ < 1 and |n| < 1, clearly for small 3, |[M’| scales as

M (¢ \F/ jj;};i__z)ds=% = M'(€) = O(1/\/B).

Using these results in the dispersion relation (for the eigenvalues) we have that

s —\/B)/v)wds, where §=

T
cosh3(s — §) mf

M(&: 8,7)
\/1—w2§M(§;,6’,7)

Again the leading order imaginary part plays the role of a local wavenumber, similar to
the unforced case. But now the spectrum’s range is not sensitive to the microscale as
v |. The metric term M (&; 3, ) takes care of it. Moreover, for long waves (5 < 1) the
spectrum for the multiscale problem remains near the “unforced spectrum”. The new
mathematical formulation has preconditioned the problem regarding multiscale
simulations.

We want to point out that the analysis presented above is not really in favor of the
actual solution method for the terrain-following equation. Note that we differentiate
M (&) in order to obtain the dispersion relation. This is not needed in the solution of
the linear equation. A more realistic linear stability analysis corresponds to analyzing
the (numerically motivated [69]) setup given through

(5.21) M) ~ OGP £ i 1+ 0(0).

ne = E(n,u),

Vi = F(n,u),
(5.22) u — §U55 = V

where

E(nu) = ——

W) = — 77 u¢,

K M) ¢
F(n,u) = —ne.

The third equation (5.22) gives rise to a Sturm-Liouville problem due to the usage of
an auxiliary function V(¢,t) in the evolution equations. This is typical in the analysis
of KdV-type equations [20] where the solution of (5.22) is given by

() = 2\/;/00 VB g
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On the other hand for the linear Boussinesq system in cartesian coordinates [69]

Tt E(n7 )a
Vi = F(n,u),

where

The associated Sturm-Liouville problem from (5.23) is nontrivial, containing rapidly
varying disordered coeflicients and its derivatives.

5.3. Numerical schemes for the linear potential theory equations. We
consider the scaled linear (a = 0) water wave equations:

6¢mz+¢yy:0 in
ot = —n

t =0

a“wy { N = %(bu

with the “impermeability” condition along the topography given by

o, + gH’(w/v) b0 — 0.

The harmonic part of this problem can be recast in the form of a Boundary Integral
Equation (BIE) through Green’s third identity [55]:

Vite of) = (0@ T~ 6@ p) dQ,

where (zg,yg) = Q € 09, p*> = (zp —2¢0)? + Blyp —yg)* and

T if P € smooth part of 02
Op = internal angle if P € corner of 02
2m ifP e Q.

The scaled normal derivative is defined as ¢z = (89;6,9y) - i. The BIE is solved
by using the Boundary Element Method (BEM). The functional relation between
the Dirichlet and Neumann data is approximated by finite elements along the BIE
[65]. This leads to numerical dispersion as will be indicated below. A linear system
arises when using the collocation method for the residual of the boundary element
approximation. This system is dense, nonsymmetric and ill-conditioned. In [56, 58, 55]
accurate results where obtained by using double precision on a supercomputer (about
28 digits of precision).

One of the advantages of the BEM, as opposed to the Finite Difference Method,
is that we may consider the normal derivative ¢5 as a nodal parameter, that is, as an
unknown of the algebraic system of equations. This is an advantage for boundaries of
complex shape as the ones considered here. Note also that this enables the linear free
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surface equations to be interpreted as a system of Ordinary Differential Equations
(ODE) in time:

92 5.1) =~ 1)
dn 1
E(‘ijt) = B]:[(b] (wjvt)

where F|¢] indicates symbolically that ¢, has a functional dependence on ¢. Hence
solving the BIE is like computing the vector field of these “ODEs” at each time step.

The evolution scheme in time is done through an implicit scheme. For the kine-
matic condition at t"*/2 we adopt the trapezoidal rule:

nn-i—l _ 77n - l¢2+1 +¢Z

- O(At?).
At 5= 2 T oan
For the dynamic condition, also at t"*+1/2, we use

n+1 n
Tt = - e g e+ -0 ap | + o),
where 6 is the implicit scheme’s parameter. In Nachbin and Papanicolaou [56] it was
shown that numerical dispersion is kept to a minimum if § = 1/6. This scheme was
proposed by Liu and Liggett [43] with an empirical value of § = 0.17, which is very
close to 1/6. We have only one numerical differentiation (in t) and the local truncation
error is O(At®) on both free surface conditions.

In contrast through the DtN formulation presented in curvilienar coordinates
& — ¢ we may write the linear free surface conditions in the form

d
B &1 = (e,

d 1
IGHE FDHN[8](51 1),

where Dt Ny denotes the linear Dirichlet-to-Neumann operator as before:

DtNylp] (&) = Z 2k tanh (27 k1 / B)F x [0] €27
K#0

This expression is exact. In contrast with the BEM this procedure has several advan-
tages:

(a) we only need to use two FFTs to calculate the normal derivative with great
efficiency; in the BEM a dense nonsymmetric system had to be solved at each
time step.

(b) the normal derivative of the potential is calculated with spectral accuracy
and, for a well resolved surface wave, numerical dispersion is absent.

(c) as a consequence of the previous comment we use an explicit (6 = 0) evolution
scheme along the free surface without observing any kind of numerical phase
lag.
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(d) the use of a curvilinear coordinate system in the presence of highly corrugated
boundaries improves numerical stability, namely acting as a preconditioner
[52, 59].
More details on this scheme will be provided in the next section. The following
numerical experiments corroborate with the comments above.
We consider a Gaussian pulse for the velocity potential’s initial profile:

(5.24) P(€) = e~ (EE0)* /6

where the parameter ¢, controls the pulse’s width and therefore how broadband its
Fourier content is. For the other initial condition along the FS, let ¢+(£,0,0) =
¥(€) and we choose 12(/{) = —iwp(k) so that the initial wave is rightgoing. The
corresponding free surface elevation is therefore the derivative of a Gaussian.

We consider four levels of dispersion (8 = 0.01,0.1,1, e 10) and compare the
numerical evolution with the exact solution. We take (5.24) with £, = /0.3 together
with the following discretization parameters: A¢ = 0.0625, for a total of J = 1024
nodes in space; At = 0.01 for a total of N = 4500 steps in time. As mentioned all
experiments where done with the explicit scheme (§ = 0) presented above.

The numerical experiments are presented in figures 5.2 and 5.3, where the solid
line represents the numerical solution and the dots the exact values. The agreement
is very good. In particular as we increase the dispersion level the Airy-like oscillatory
behavior is captured very accurately.

We are in the process of extending the numerical scheme for the nonlinear regime.
Muiioz Grajales and Nachbin [51, 52] have thoroughly tested a Boussinesq solver for
the terrain-following Boussinesq system [57]. In the next subsection the DtN-spectral
method presented here will be compared with the family of Boussinesq solvers, as for
example the one related to the system suggested by Quintero and Munoz Grajales
[65]. All these models are different Padé approximations to the full dispersion relation

k
(AJ2 = —= tan .
ik h[k+/B]

For example the Boussinesq model in [51, 52] is such that

k2
W= — 1
1+ 5 0k?

This is equivalent to the regularized Korteweg-de Vries equation, also known as the
BBM model [6]. Of particular interest, we have observed that in the presence of
a rapidly varying disordered topography, small differences on how the full dispersion
relation is truncated affect the dynamics of the wave’s rapidly fluctuating components.
This is considered below.

5.4. Full versus reduced model. Consider the linear equations from

(5.25) Boee + dec =0, for 0< (<1,
1

(5.27) n+¢:=0, at (=1,

(5.28) ¢oc=0, at (=0,
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F1G. 5.2. Snapshot for a propagating velocity potential: two weakly dispersive regimes.
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F1G. 5.3. Snapshot for a propagating velocity potential: dispersion fully developed.

subject to the initial conditions

¢(§a 170) = ¢0(§)7 U(fa 0) = 770(5)'

At the time stage (n + 1)At we discretize the equations at the free surface ¢ =1
by

R S 2
(5.29) A sane = 04,
¢n+1 - ¢n n At n 2
(530) T +n + 267 ] r(§)¢< = O(At )

This scheme in time is basically the same as used in [58, 55, 56] and given above for the
BEM. Having an expression for the Dt Ny operator enables writing a highly efficient
and highly accurate numerical scheme, without any truncation errors in space. By
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the construction of the DtNy operator presented the normal derivative at the free
surface can be computed through

(5.31) ¢<(§71,t):%/_ k/Btanh(\/Bk)(k, 1,t)e™ dk.

This expression is exact and automatically satisfies Laplace’s equation (5.25). More-
over it can be easily evaluated through the FFT algorithm as indicated above. Here
the hat denotes the Fourier transform with respect to the spatial coordinate £. In con-
clusion at any fixed time ¢ equation (5.31) transforms Dirichlet data (¢(&,1,¢)) into
the corresponding Neumann data along the (linear) free surface of the fluid (¢ = 1).

Now we will compare model (1.30)-(1.31) with Zy = 0.469 (the optimal value
of the depth parameter, c.f. section 1.4), the terrain-following Boussinesq system
(1.25)-(1.26), both with the linear (o« = 0) potential theory equations in curvilin-
ear coordinates (1.19)-(1.22). This will be performed through a suite of numerical
experiments performed by using the Boussinesq solvers described above. We only
consider the linear regime for the potential theory equations in order to fully focus on
the dispersion issues discussed earlier. Simulations with the full nonlinear potential
equations will appear in a future work.

Given a pair (f,g) of initial data for the potential theory equations (1.19)-(1.22)
we will explain how to compute the corresponding initial data for the Boussinesq
systems (1.30)-(1.31) and (1.25)-(1.26). This is the main difficulty in comparing the
solutions of these models because the dependent variables are not the same. Recall
that the Boussinesq models require monitoring the velocity at an intermediate depth.
We proceed as follows.

Let © denote the rectangle bounded by ( =0, (=1, =0and ¢ =L, L > 0.
Let us give the free surface data (¢, n) for equations (1.19)-(1.22). Then we compute
the corresponding initial potential profile ¢ (&, Zo,0) (at the depth ¢ = Zy and time
t = 0) by the contour integral

1
2mv/B Joa

We use the notation: P = (€, Zy), Q = (&,C), ¢n = (B¢, ¢¢)-it (7i denotes the outer
normal vector at the boundary 92), with the Green’s function

(63) 666D = (€~ & + B~ O + 3inl(€ ~ &+ B¢ +0P)

We recall that equation (5.32) is a consequence of Green’s third identity. Details can
be found in [58, 55, 56]. Note also that kernel G is such that G; = 0 at the channel
bottom ¢ = 0 and A G(P,Q) = ép(Q), where dp(Q) represents the Dirac delta
function. Now, since ¢ = 0 at the bottom ¢ = 0, and assuming that ¢, ¢5 tend to
zero when |€| — oo, we have that when L — oo, the contour integral in (5.32) needs
only to be evaluated along the free surface { = 1. Namely,

(5:30) 9(6.¢ = Z0.0) = 5 [ (6Q.00GH(P.Q) - 6:(Q.0G(P.Q) &,

where Q = (é, 1). By using the Method of Images (for the Green’s function) we
reduce the number of grid points along the contour by at least 50 percent.The bottom
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does not need to be discretized and its effect is built into the (smooth) free surface
coefficient M (£). Once the initial velocity potential is computed by the numerical
evaluation of the integral, the initial value for the velocity of the Boussinesq model
(1.30)-(1.31) is calculated as u(&,0) = uo(§) = ¢¢(§, Zo,0). We remark that the wave
elevation at t = 0, n(&,0) = ny(£) coincides in both models.

5.4.1. Constant depth experiments. The goal of our first experiment is to
give evidence of some results from the dispersion analysis performed for the Boussinesq
models considered, in respect to the potential theory equations (1.19)-(1.22). This is
done in the case where the depth is constant. We set 3 = 0.2 and a = 0.001, i.e. we
have nontrivial dispersion and the regime is effectively linear.

To keep our focus on the full dispersion relation we solve the linear potential theory
equations (5.25)-(5.28) on the computational domain [0, 207], with At = 0.0063 and
8192 FFT points in the spatial mesh (where A = 0.00767). The boundary conditions
are periodic but no activity will be observed at the extremes of the interval [0, 207].
The initial conditions are

D(£,1,0) = Dy(¢) = \/gef’)(fzo)?,
77(570) = 770(5) = —10\/17?(5 _ 20)675(5720)2'

These conditions produce right and left going waves when 3 # 0. Nevertheless the
left going wave tends to zero as 3 | 0 [55, 70]. Remark that once the solution to the
equations (5.25)-(5.28) are known, then the initial fluid velocity for the Boussinesq
models is computed through the equation (5.34) as explained above. The parameters
for solving the system (1.25)-(1.26) are At = 0.0063, A{ = 0.0077. In figure 5.4 we
superimpose the solutions of models (5.25)-(5.28) and (1.25)-(1.26) at time ¢ = 25. We
observe that they coincide with good accuracy in the interval [36,50] corresponding
to the wavefront, namely of low wavenumber content [70]. As expected, the signals
in the interval [5,35] differ due to the analytical (not numerical!) truncation errors
introduced by neglecting the terms of order O(3?) in the Boussinesq model (1.30)-
(1.31).

In figure 5.5 the solution of system (1.30)-(1.31) with the optimal value of the
depth parameter Zy = 0.469 is compared with the original equations (5.25)- (5.28).
The numerical parameters are the same as before. In contrast to the previous ex-
periment, the solutions match with good accuracy in the whole interval [5,50]. The
Boussinesq system (1.30)-(1.31) captures well the dispersive details of the oscillatory
coda of the propagating signal. In figure 5.4 the mismatch along the coda is due to
the large phase errors as depicted in figure 1.4.

These experiments are in agreement with the linear dispersion analysis performed.

5.4.2. Highly variable topography. We have tested the different models over
a flat bottom and now we are in a position to perform experiments in the presence
of an irregular bottom. We will consider two levels of dispersion in the models. The
variable coefficient is taken to be of the form

M (&) =14 6n(&/),

where n(£/v) is a mean-zero piecewise linear function constructed by using a ran-
dom number generator in the interval [-1,1] and 6 measures the amplitude of the
fluctuations. The constant v measures the relative scale of variation of the bottom
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Fic. 5.4. A rightgoing wavetrain to the right and a small leftgoing wavetrain to the left. Dashed
line: Numerical solution of the terrain-following system (1.25)-(1.26). Solid line: Numerical solu-
tion of the equations (5.25)-(5.28). Model parameters: o =0, = 0.2.
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F1a. 5.5. Dashed line: Numerical solution of system (1.30)-(1.31) with Zo = 0.469. Solid line:
Numerical solution of the equations (1.19)-(1.22). Model parameters: a =0, 8 = 0.2.

irregularities. We consider v to be small. This type of synthesized function has been
employed by several researchers in order to validate pulse shaping theory in random
media [8, 13, 27, 12]. Maintaining our focus on the linear regime we will examine how
the reduced Boussinesq model captures the fine features of the topography in contrast
with the potential theory model.

We start by fixing a very small dispersion parameter value 8 = 0.002. In figure 5.7
we compare the solution (i.e. a multiply scattered segment of the wave) of equations
(5.25)-(5.28) with the solution of the model (1.25)-(1.26). The numerical parameters
for equations (5.25)-(5.28) are At = 0.01, 22 FFT points in space where the compu-
tational domain is [0,150]. The numerical parameters for solving system (1.25)-(1.26)
are A = 0.024, At = 0.0125 and the computational domain is [0,120]. The irregular-
ities of the coefficient M (&) covers the interval [67,107] and the fluctuations are such
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that 6 = 0.5 and ¢ = 0.1. The initial conditions for equations (1.19)-(1.22) are
(b(g? 13 0) = @0(5) = 6720(5*60)27
1(€,0) = 0o (&) = —40(€ — 60)e~20(6=60)

Here we are considering a shorter pulse (hence having a broader band in wavenumber
space) to show the broad range of applicability of the numerical method and also of
the dispersion analysis presented. The corresponding initial velocity at Zg = /1/3
for the system (1.25)-(1.26) is calculated from equation (5.34). Observe in figure 5.7
that the solutions of the original potential theory equations and the approximated
Boussinesq model agree well. We are graphing the region where we measured the
maximum value of the error. Over the rest of the computational domain the solutions
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Fic. 5.6. An example of the entire wave profile, computed from the potential theory equations
(5.25)-(5.28).

agree even better. In figure 5.8 we compare the solution of equations (5.25)-(5.28) to
the solution of the model (1.30)-(1.31) for the optimal value of the depth parameter
Zy = 0.469. The numerical parameters for the model equations are the same as in
the previous experiment. The corresponding solutions of the two models agree with
even better accuracy.

An additional experiment (figure 5.9) is performed for Z, = \/2/_37 keeping a =
0.001, 8 = 0.002. This is the best value for the depth parameter in order to prove
theorems regarding solution properties in function space [10, 65]. Nevertheless the
comparison with potential theory is not as good as for Zy = 0.469.

Now we increase the dispersion parameter to § = 0.05. In figure 5.10 we contrast
the solution for equations (5.25)-(5.28) with the solution of model (1.25)-(1.26). We
use the same numerical parameters as in the preceding experiments. We take a differ-
ent realization of the metric coefficient M (€) in this set of experiments to show that
the results are generic. In this case, the error introduced when the dispersive terms
are truncated in the Boussinesq model (1.30)-(1.31) (with Zy = 4/1/3) is appreciable.

To contrast with the preceding experiment, in figure 5.11 we compare the solutions
for equations (5.25)-(5.28) with those for system (1.30)-(1.31) with Zy = 0.469. For
this particular value of the depth parameter Zj, the smaller relative error in phase
velocity for the models considered makes the difference. Now, the solutions agree
well inside the region [67,107] where the fluctuations of the topography are located.
This experiment provides strong evidence that the new Boussinesq formulation (1.30)-
(1.31) (with Zy = 0.469) enables an improved prediction for the pulse reflection with
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B=0.002 n at t=50
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Fi1G. 5.7. Dashed line: Numerical solution of the terrain-following system (1.25)-(1.26). Model
parameters: o = 0.001, 8 = 0.002. Solid line: Numerical solution of the equations (5.25)-(5.28).
Model parameters: a =0, 8 = 0.002.
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55 60 65 70 75 80

Fic. 5.8. Dashed line: Numerical solution of the Boussinesq system (1.30)-(1.81). Model
parameters: « = 0.001, 8 = 0.002, Zo = 0.469. Solid line: Numerical solution of the equations
(5.25)-(5.28). Model parameters: o =0, 8 = 0.002.

respect to the terrain-following system (1.25)-(1.26). This behaviour was observed
systematically in several numerical experiments performed for different levels of the
dispersion parameter (3.

Finally consider the (optimal L? norm) value Z, = 1/1/5 = 0.447. This value is
no that different from 0.469. Nevertheless some differences in the highly fluctuating
part of the scattered signal can be noticed (c.f. figure 5.12).

5.5. Waveform inversion by time reversal refocusing. Time-reversal ex-
periments can be performed for the transmitted (TRT) or for the reflected (TRR)
signal as schematically indicated in figure 5.13. The transmitted (or reflected signal)
is recorded at the corresponding extreme of the inhomogeneous medium. The data
is time reversed and sent back into the same medium through the exact same model.
By time reversion it is meant that information recorded last is sent out first. In other
words the recorded signal is used as a new initial data, for the same system of partial
differential equations, but it is propagated backwards into the (same) inhomogeneous
medium, as indicated in figure 5.13. Much mathematical and experimental work has
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p=0.002

FiGc. 5.9. Dashed line: Numerical solution of the system (1.35)-(1.86). Model parameters:

a = 0.001, 8 = 0.002, Z, = +/2/3. Solid line: Numerical solution of the equations (5.25)-(5.28).
Model parameters: a =0, 8 = 0.002.
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F1a. 5.10. Dashed line: Numerical solution of the terrain-following system (1.25)-(1.26). Model
parameters: o = 0.001, B = 0.05. Model parameters: o = 0.001, 8 = 0.05. Solid line: Numerical
solution of the equations (5.25)-(5.28). Model parameters: o =0, 8 = 0.05.

been done showing that this process leads to the recompression of the noisy signal into
the original pulse shape. In particular laboratory experiments were done for acoustic
waves [25]. For mathematical details please consult [52, 28, 31] and the references
therein, which include several leading work by Papanicolaou and collaborators. One
of our recent goals has been to study the time-reversal refocusing for solitary waves. In
previous work, we have mathematically analysed the effect of dispersion [28] and the
effect of nonlinearity [29] separately. Nevertheless only recently Garnier, Muioz and
Nachbin (manuscript) have derived a theory for the time-reversed refocusing of soli-
tary waves. Numerical simulations with solitary waves have been presented in [52, 30]
and are further explored in the present paper through the improved Boussinesq model.

Regarding applications in water waves, the problem of waveform inversion has
been studied by adjoint methods as in Pires and Miranda [64] and the references
within. Their goal is to characterize the initial sea surface displacement due to
tsunamigenic earthquakes. In other words one would like to recover (numerically)
relevant details of a tsunami source from tidal gauge observations. In our case, in-
stead of performing the backward numerical integration for the corresponding adjoint
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Fic. 5.11. Dashed line: Numerical solution of system (1.80)-(1.31) with Zy = 0.469. Model
parameters: a = 0.001, 8 = 0.05. Solid line: Numerical solution of the equations (5.25)-(5.28) .
Model parameters: a =0, 8 = 0.05.
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Fi1G. 5.12. Dashed line: Numerical solution of the system (1.30)-(1.81) with Zo = \/1/5. Model
parameters: o = 0.001, B = 0.05. Solid line: Numerical solution of the equations (1.19)-(1.22).
Model parameters: a =0, 8 = 0.05.

equations, we use the (same) forward numerical model but with the time-reversed
data as explained above. Waveform inversion is obtained through the time-reversed
refocusing effect. The advantage regarding time-reversal methods is for nonlinear
problems. For adjoint methods there are technical difficulties involved with nonlin-
earity as reported by Pires and Miranda [64].

The purpose of this section is to illustrate the refocusing phenomenon, now in the
case of the system (1.30)-(1.31) with the optimal depth Z; = 0.469. We also present
time reversal simulations with the potential theory equation. We note that this has
never been done before until recently in [53]. The goal is to observe the improved
waveform inversion procedure in comparison with earlier experiments. Namely, up to
now, all the dispersive time reversal refocusing experiments were performed for the
depth-averaged Boussinesq system, which amounts to Zg = \/1/_3 [52, 28, 30]. In
addition, we will further explore the refocusing of solitary waves, for different values
of the amplitude of the topography fluctuations and of the correlation length of the
irregularities.

Throughout this section, the numerical parameters for equations (5.25)-(5.28) are
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Fic. 5.13. Schematic figure for time reversal simulations.

At = 0.01, 2!2 FFT points in space and the computational domain is [0,150]. The
numerical parameters for systems (1.25)-(1.26) and (1.30)-(1.31) are A¢ = 0.024, At =
0.0125 and the computational domain is [0,120].The irregularities of the coefficient
M (&) are located in the interval [67,107] and again § = 0.5 and ¢ = 0.1.

5.5.1. TRR refocusing of Gaussian pulses. The first experiment uses 3 =
0.002 and o = 0.001 indicating a weakly dispersive, effectively linear regime. The
pulses are the same as before, namely

@(57 1, 0) = 4’0(5) = 6720(5760)27
77(5, 0) = 770(5) = —40(5 _ 60)6*20(5*60)

2

Note that for a time-reversal in reflection (TRR) experiment we only record the
reflected signal, recorded to the left of the topography (c.f. figure 5.13). Hence
this fluctuating signal has no indication whatsoever of the original pulse shape, say as
opposed to the transmitted wave. These fluctuating signals (for  and u) are sent back
into the inhomogeneous medium and by the refocusing phenomenon they recompress
into a (reduced) copy of their initial pulse shapes.

We emphasize that the pulse shape is exactly the same [28]: in the present ex-
periment it is the derivative of a Gaussian as shown in figure 5.14. In figure 5.14
the refocused pulse obtained from model (5.25)-(5.28) is superimposed to the one
obtained from system (1.25)-(1.26). Observe that the refocused pulses obtained from
both models agree with very good accuracy and that they are derivatives of a Gaus-
sian (as expected) of a reduced amplitude. The reduction in amplitude is intuitive
since there is a nontrivial amount of energy being transmitted to the other side of the
topography. Hence TRR recompresses only a fraction of the initial energy [30].

In an analogous way, in figure 5.15 we observe that the refocused pulse obtained
with the model (1.19)-(1.22) coincides to that of system (1.30)-(1.31) with Zy = 0.469.
This is expected since the dispersion level is low (5 = 0.002).
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Fi1G. 5.14. In solid line: TRR refocusing for system (5.25)-(5.28). Model parameters: o = 0,
B =0.002. In dashed line: TRR refocusing for system (1.25)-(1.26). Model parameters: o = 0.001,
8 = 0.002.
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Fic. 5.15. In solid line: TRR refocusing for system (5.25)-(5.28). Model parameters: o = 0,
8 =0.002. In dashed line: TRR refocusing for system (1.30)-(1.81). Model parameters: o = 0.001,
B =0.002, Zo = 0.469.

In the second experiment we increase the level of dispersion by a factor of 25 (8 =
0.05). Again we adopt a different realization of the coefficient M (£) in this experiment
to show that the results are generic. In figure 5.16 we compare the refocused pulse
obtained with model (5.25)-(5.28) with that of system (1.25)-(1.26). Now observe
that the corresponding solutions are quit different. In particular, the relative error in
the pulses’ peaks is roughly 40 percent.

In figure 5.17 we compare the refocused pulse obtained with the model (5.25)-
(5.28) to that of system (1.30)-(1.31) with Zy = 0.469. In contrast with the previous
experiment, observe that the Boussinesq prediction agrees very well at the pulses’ peak
and even along the fluctuating part of the signal. The TRR refocusing phenomenon
highlights, in a quite dramatic fashion, the improvements of the Boussinesq system:
waveform inversion with another Boussinesq system (as the one we used in [28, 30])
can underestimate, say, the initial amplitude of a tsunami [64]. It is important
to say that the theory and computations in [28, 30] were correct but, as shown here
and in [53], done with a restrictive model. The TRR refocusing phenomenon also
works well for Zy = 4/1/5.
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F1G. 5.16. In solid line: TRR refocusing for system (1.19)-(1.22). Model parameters: o = 0,

B =0.05. In dashed line: TRR refocusing for system (1.25)-(1.26). Model parameters: o = 0.001,
8 = 0.05.
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Fi1G. 5.17. In solid line: TRR refocusing for system (1.19)-(1.22). Model parameters: o = 0,
B =10.05. In dashed line: TRR refocusing for system (1.80)-(1.31). Model parameters: o = 0.001,
B =0.05, Zo = 0.469.

5.5.2. TRT refocusing of Gaussian pulses. We now perform TRT as
schematically indicated in figure 5.13. In this case usually we observe a leading wave-
front followed by a fluctuating coda. The fluctuating coda consists of a dispersive
tail as well as of a disordered component, generated due to the forward scattering.
This can be clearly seen in figure 5.6 where the smooth (Airy-like) wavefront is about
to leave the region where the topography is located. The wavefront, the dispersive
tail and the disordered coda are all recorded to the right of the topography. We set
£ = 0.05. The numerical parameters for the potential theory equations(5.25)-(5.28)
are At = 0.01, 2!3 FFT points in space and the computational domain is [0,290].
The numerical parameters for systems (1.25)-(1.26) and (1.30)-(1.31) are At = 0.013,
A = 0.029 and the computational domain is [0,290]. The initial conditions for equa-
tions (1.19)-(1.22) are

B(£,1,0) = Dy (€) = e 20(E-150)°
n(€,0) = no(€) = —40(& — 150)e~20(6~150)%,
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Observe that the initial pulses are located at the position & = 150. We recall that the
corresponding initial velocity at the level Zj for systems (1.25)-(1.26) and (1.30)-(1.31)
is calculated from equation (5.34).

In figure 5.18 we compare the refocused pulse obtained with the model (5.25)-
(5.28) to the one obtained with system (1.25)-(1.26). In figure 5.19 we compare the
refocused pulse obtained with potential theory to that of system (1.30)-(1.31) with
Zy = 0.469. One can see some improvement. The improvement for TRT is not
so dramatic as for TRT. The reason is that for TRT the bulk of the energy is still
contained in the leading wavefront. In other words most of energy resides on low
wavenumbers and therefore the dispersive effects are less noticeable.
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Fic. 5.18. In solid line: TRT refocusing for system (5.25)-(5.28). Model parameters: o = 0,

8 =0.05. In dashed line: TRT refocusing for system (1.25)-(1.26). Model parameters: o = 0.001,
£ =0.05.
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F1G. 5.19. In solid line: TRT refocusing for system (5.25)-(5.28). Model parameters: o = 0,
B =0.05. In dashed line: TRT refocusing for system (1.30)-(1.81). Model parameters: o = 0.001,
B =0.05, Zp = 0.469.

5.5.3. TRR refocusing for solitary waves. In this section we analyze the
refocusing property for solitary waves of system (1.30)-(1.31). Recall that equation
(5.9) furnishes a solitary wave solution for a second order Boussinesq-type equation
formally equivalent to equations (1.30)-(1.31). The length scale for the irregularities
of the coefficient M () is £ = 0.6 because the effective support of the solitary wave
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(5.9) is ¢, = 6. Thus, we preserve the ratio v = £/¢, = 1/10. The initial solitary
wave is located at the position £ = —5. The amplitude of the irregularities is 6 = 0.5.
The irregularities of the metric coefficient M (£) are in the interval [5,305]. In this set
of experiments, the numerical parameters are At = 0.0375, A¢ = 0.04266, and the
computational domain is [-320,320].

In the first experiment we adopt o = 8 = 0.01. Just as for the Gaussian pulse
we record the reflected signal to the left of the topography. We time reverse the data
and use it as the initial condition for the exact same problem. This time reversed
fluctuating data travels towards the rough region and, after interacting with the to-
pography, it recompresses into the smooth pulse shown at the center of figure 5.20.
There is no theory to tell us what kind of pulse we are seeing after refocusing. It is
not clear that we have a reduced copy of the solitary wave.
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Fi1a. 5.20. TRR refocusing of the solitary wave (5.9) of the system (1.80)-(1.31) with Zy =
0.469. Numerical parameters: o = 3 = 0.01.

In the second experiment we repeat the previous experiment but now we set
a = # = 0.03. This experiment is more dispersive and nonlinear than the previous
one. The refocused pulse is presented in figure 5.21 and very much resembles the
previous case. The phenomenon is robust regarding the dispersion and nonlinearity
levels.
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Fic. 5.21. TRR refocusing of the solitary wave (5.9) of the system (1.80)-(1.81) with Zy =
0.469. Numerical parameters: o = 3 = 0.03.
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Now we vary some other parameters related to the propagation medium (i.e.
topography) rather than the wave. We repeat the previous experiment (keeping Z, =
0.469) but now with a smaller fluctuation level: § = 0.25. This implies in a weaker
reflected signal. A plausible question is to whether the weak reflected signal will
contain enough energy to produce a well defined refocused pulse. The answer is
clearly seen in figure 5.22 where we have a clean refocused pulse, but of a smaller
amplitude (since it contains less energy).
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Fi1G. 5.22. TRR refocusing of the solitary wave (5.9) of system (1.30)-(1.81) with Z, = 0.469.
Model’s parameters: o = 8 = 0.01, fluctuation level § = 0.25.

Next we change the correlation length adopted to be ¢ = 0.3, which is half of
that in the previous experiments. Now the topography is even more rapidly varying
and long waves can not feel it in detail. The amplitude of fluctuations is back to
0 = 0.5. Observe that the amplitude of the refocused pulse is approximately 30% of
the initial solitary wave (5.9). Compare with figure 5.20 where (¢ = 0.6, § = 0.5) and
the refocused pulse amplitude was at the 40% level. As mentioned above, here the
topography is on an even finner scale, so that the solitary wave feels less the details
and therefore sheds less reflection.

The important fact about all these experiments is that the refocusing phenomenon
is very robust for solitary waves.
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Fi1G. 5.23. TRR refocusing of the solitary wave (5.9) of system (1.30)-(1.81) with Z, = 0.469.
Model’s parameters: o = 3 = 0.01.
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Appendix A. Solutions for the linear KdV equation and the linear
Boussinesq model.

The linear KdV equation

Consider the initial value problem

(A1) U + Uy + YUgzr = 0,
(A.2) u(z,0) = f(x),

where 7 is a nonzero constant. Using Fourier transform in x the solution for equations

(A.1) and (A.2) is given by
1 oo o0 . 3
(A.3) u(zw,t) = %/ (/ pilk(z—t—y)+yk t)dk) f(y)dy.

Making a convenient change of variables, the inner integral in equation (A.3) can be
expressed in terms of the Airy function to give

1 xS —t—
(A.4) u(z,t) = W/ Ai (@T)l/?’y) F(y)dy.

— 00

The Airy-kernel gives the rate in time at which a pulse f(x) will spread due to
dispersion. This is an useful information for the invariant imbedding technique used
in the O’Doherty-Anstey theory.

The linear Boussinesq model

Now we study the linearization of system (3.27) for constant depth:
(A.5) e +ug =0,
B —
Ur e — JUeer = 0,
with the initial conditions
n(&,0) =u(&,0) = f(£)-

Analogously to the KdV equation we can apply the Fourier transform technique to
obtain the Fourier coefficients

(A.6) ik, 1) = @ (1~ VIT (R Vo +

(1 +4/1+ (,6’/3)k2) e 1+Zk/t3k2} ,

N %&)/3)]@2 [(1 +V1+ (5/3)k2) e 11;7:%2

- (1= VI+ (3/3R2) ex/ljgt/?’kz} .

(A.7) ik, t)
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We point out that in the hyperbolic case (8 = 0) the above initial data gives rise
to (only) a right propagating mode. In the dispersive case a negligible left propagating
mode is always present in this type of data. Notice that because of (A.6), (A.7) and

1

NEORE =1—(K*/6)8+ O(5%),

we have that

~

L(t.k) = At k) — a(t,k) = O(B) ~ 0,

provided that g is small enough. For the hyperbolic case the left propagating mode
is identically zero.
The dispersion relation for system (A.5) is

k

1+ 5k2

where wy and w_ represent Fourier modes propagating to the right and left, respec-
tively. In opposition to the KdV equation the phase velocity is

(A.8) wy =wg(k) ==

1
1+ B2
which does not switch signs and is bounded by one. Furthermore, w; = wy (k)

coincides up to O(k®) with the dispersion relation for the KdV equation above with
v = (/6. Note also that, for waves generated in space, the range of possible time
frequencies is bounded by (3/3)Y/? for all k. As a consequence, solutions u,n of
system (A.5) are band-limited functions in ¢. This fact justifies why frequencies w
higher than /3/8 are not considered in the analysis presented in section 3.3.

Appendix B. Computation of coeflicients ag(z,,w) and b(z,,w). As men-
tioned in section 3.3, the numerical computation of the dispersive coefficient ag(z,,w)
is expensive. To override this difficulty we approximated it by the hyperbolic medium’s
correlation function ag(z,,w), which corresponds to the leading order term of a Tay-
lor series expansion of ag around 3 = 0. The numerical experiments in section 3.4
showed the high accuracy of this approximation.

To compute coefficient ag(x,,w) as in equation (3.25) we rewrite it as

X
(B.1) %umm=A B ()2 dn,
where
w() = [ r@rte + e,

We know by the correlation theorem that
| rorte+ e = P,

where the hat denotes the Fourier transform, F~! the inverse Fourier transform and
the bar indicates complex conjugation. Therefore function ® defined above can be
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computed by using the FFT algorithm letting the coefficient r(z) be zero outside the
interval [0, xz,]. This is consistent with the invariant imbedding approach. We must
append enough zeros to the tail of the sampled coefficient r(x) (zero padding) in order
to eliminate the overlapping phenomenon that appears due to the fact that r(z) is
not a periodic function. The Fast Fourier transform (FFT) assumes periodicity in
both physical and frequency domains (see Brigham [14]). The cost of computing the
discrete correlation function results in only three FFT evaluations which is faster than
an ordinary computation of the integral defining ® for each value of . The numerical
code to perform the discrete correlation can be found in [14].

Once the function ® is known, the windowed Fourier transform in equation (B.1)
is evaluated by using only one FFT. Analogously to the discrete correlation zero
padding outside the inverval [0, X] is required on the sampling of function ®.

To evaluate the generalized O’Doherty-Anstey approximation presented in section
3.3 we also need the dispersive coefficient b(z,,w). To make its computation faster
we rewrite it in the more compact form

_i &(zo) —iw3M3/2(§) —‘y—Ml(f)wQ
62, Jo 1—(8/3)M(§)w?

where the upper limit £(x,) denotes the spatial position in the medium corresponding
to the travel time 2,. Thus we must compute only once the coefficients M (¢), M3/2(¢)
and M’'(§) which can be stored at the beginning. The integral in (B.2) is approximated
by the trapezoidal method for roughly 214 frequencies in the range |w| < C,(,)+/3/0.

Since b(x,, —w) = b(x,,w) only positive frequencies must be evaluated.

(B.2) b(xo,w) = dg,
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