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GEOMETRIC INVARIANT THEORY

P. E. NEWSTEAD
CIMAT, GUANAJUATO, MEXICO, 27/28 NOVEMBER, 2006

In these lectures we will describe a method of constructing quotients in algebraic
geometry. The natural context for the construction is that of schemes, but for simplicity
we will work always with varieties defined over an algebraically closed field k; this field
can have any characteristic. These notes are intended to be reasonably self-contained,
although some proofs are omitted; further details, if needed, can be found in my Tata
Institute notes

• P. E. Newstead, Introduction to moduli problems and orbit spaces, TIFR,
Bombay, 1978 (out of print but many people have copies).

Other references are

• D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, 3rd. edi-
tion, Ergebnisse Math. 34, Springer-Verlag, Berlin, 1994 (the 1st. edition,
published in 1965, is the “bible” on the subject)

• I. Dolgachev, Lectures on invariant theory, LMS Lecture Notes Series, 296,
CUP, 2003

• R. P. Thomas, Notes on GIT and symplectic reduction for bundles and vari-
eties, arXiv:math.AG/0512411 v3, 2006 (this is mainly useful for explaining
the link between GIT and symplectic reduction, a topic which we shall not
cover)

• P. E. Newstead, Vector bundles on algebraic curves (my “Polish” notes, avail-
able from http://www.mimuw.edu.pl/˜jarekw/EAGER/lukecin02.html) (Lec-
ture 1 in this series is similar to lecture 1 in the Polish notes and to a lecture
given in the Boston/Tufts Algebraic Geometry Seminar, October 2006)

• S. Mukai, An introduction to invariants and moduli (translated by W. M. Oxbury),
CUP 2003 (includes classical invariant theory as well as GIT and moduli of
vector bundles on curves)

• J. Le Potier, Lectures on vector bundles (translated by A. Maciocia), CUP
1997 (includes a chapter on GIT)
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1. Lecture 1 – Quotients

1.1. Types of quotient. Let G be an algebraic group acting rationally on a variety
X (that is, through a morphism G×X → X : (g, x) 7→ g.x). Our object is to construct
a good quotient for this action; what could this mean?

(i) Orbit space. It may happen that the set of orbits X/G has a natural structure
of variety. In fact this rarely happens, although there is always a dense Zariski-
open G-invariant subset U of X for which U/G exists [Rosenlicht 1963] (a
fact which is not as well known as it might be). However we are looking for
something more global. Examples 1.1–1.3 below illustrate some of the problems
with the orbit space approach.

(ii) Categorical quotient. We say that φ : X → Y (or just Y ) is a categorical
quotient of X by G if every morphism X → Z which is constant on orbits
factors uniquely through φ. This is uniquely determined if it exists and has
good functorial properties, but not necessarily good geometric ones (see the
examples below). The ultimate in this approach is the use of stacks; these
allow quotients to exist by definition, but geometrical properties may not be
obvious.

Example 1.1. k∗ acts on k2 by λ.(x, y) = (λx, λ−1y). The orbits are

• for each α ∈ k∗, the conic {(x, y) : xy = α}
• the punctured x-axis {(x, 0) : x ∈ k∗}
• the punctured y-axis {(0, y) : y ∈ k∗}
• the origin {(0, 0)}.

In order to get a separated quotient, one has to combine the three last orbits listed and
indeed one then gets a categorical quotient isomorphic to k, the quotient morphism
being given by (x, y) 7→ xy. One cannot obtain a separated orbit space (that is, as
a variety), even if one deletes the orbit {(0, 0)}, which has lower dimension than the
others, since both punctured axes are limits of the other orbits as α → 0.

Example 1.2. k∗ acts on kn (n ≥ 2) by λ.(x1, . . . , xn) = (λx1, . . . , λxn). The origin lies
in the closure of every orbit, so any morphism which is constant on orbits is constant.
Thus there is no orbit space but there is a categorical quotient consisting of a single
point.

Example 1.3. k∗ acts on kn \ {(0, 0)} by the same formula. This time the projective
space P

n−1 is a categorical quotient and also an orbit space.

Our aim is to construct categorical quotients with good geometrical properties. Our
method of doing this is Geometric Invariant Theory (GIT). There are other methods
using stacks or algebraic spaces or by direct construction (Example 1.3 above, for
instance) etc. Here we shall concentrate on GIT, which has proved extremely useful
and, when k is the complex numbers, has important and surprising connections with
symplectic geometry. Proofs are not included; we will comment on these in Lecture 3.

We shall always write G.x for the orbit {y ∈ X : y = g.x for some g ∈ G} of x.
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1.2. Rings of invariants. For any variety X, let A(X) denote the algebra of mor-
phisms X → k. The action of G on X determines an action of G on A(X). We write
A(X)G for the algebra of elements of A(X) which are G-invariant. If X → Z is constant
on orbits, the natural homomorphism A(Z) → A(X) has image contained in A(X)G.
In particular, if Y is a categorical quotient, the homomorphism A(Y ) → A(X)G is an
isomorphism.

Example 1.4. In Examples 1.1, 1.2, 1.3, we have G = k∗ and A(X)G = k[α], k, k
respectively. In Examples 1.1, 1.2, this gives good geometric answers, in Example 1.3,
it does not. In fact, in Example 1.3, we have a very well behaved quotient Y = P

n−1

and A(Y ) is isomorphic to A(X)G = k, but this in no way represents the geometry of
the quotient.

Example 1.5. G = GL(n) acts on X = M(n) (n × n matrices) by conjugation. It
is not hard to see that A(X)G is the polynomial algebra on the coefficients of the
characteristic polynomial. These coefficients determine a morphism M(n) → kn, which
is a categorical quotient, but not an orbit space since all matrices with the same
eigenvalues map to the same point of k, but not all such matrices are in the same orbit
(cf. Jordan normal forms).

1.3. Affine Quotients. Now suppose that X is an affine variety and that we look
for a quotient which is also an affine variety (this rules out Example 1.3, but includes
Examples 1.1, 1.2 and 1.5). In this case A(X) is just the affine coordinate ring of X,
and, by Hilbert’s Nullstellensatz, we can recover X from A(X). Moreover, a k-algebra
has the form A(Z) for some affine variety Z if and only if it is finitely generated and
has no nilpotent elements. The second property is necessarily true of A(X)G, so one
question to be answered is

Question. Is A(X)G finitely generated?

This is a version of Hilbert’s 14th problem and the answer in general is NO [Nagata
1958]. However the answer is always YES if G is reductive. The meaning of reductive
will be discussed in Lecture 3; for the time being, it is enough to remark that many
important examples, including GL(n), SL(n) and PGL(n), are reductive. It turns out
that this is sufficient for us to construct well behaved quotients in the affine case.

Theorem 1.6. Let G be a reductive group acting on an affine variety X. Then there
exists an affine variety Y and a morphism φ : X → Y such that

(i) φ is constant on orbits;
(ii) φ is surjective;
(iii) if U is a Zariski-open subset of Y , the induced homomorphism

φ∗ : A(U) → A(φ−1(U))G

is an isomorphism;
(iv) if W is a Zariski-closed G-invariant subset of X, then φ(W ) is closed in Y ;
(v) if W1, W2 are Zariski-closed G-invariant subsets of X and W1 ∩W2 = ∅, then

φ(W1) ∩ φ(W2) = ∅.



4 P. E. NEWSTEAD CIMAT, GUANAJUATO, MEXICO, 27/28 NOVEMBER, 2006

Corollary 1.7. For any Zariski-open subset U of Y , U is a categorical quotient of
φ−1(U) by G.

Corollary 1.8. If φ(x1) = φ(x2), then G.x1 ∩ G.x2 6= ∅.

Corollary 1.9. If G acts on φ−1(U) with closed orbits, then U = φ−1(U)/G (i.e. U
is an orbit space).

Note that Corollary 1.8 states that φ separates orbits to the greatest extent possible,
consistent with Y being a variety. This is perhaps more significant than the simple
fact that A(X)G is finitely generated.

1.4. Projective quotients. The case in which we are most interested is when X is
projective; this is because we would like our quotients to be complete (compact) or
at least to have natural compactifications. To apply the previous section, we need to
consider affine open subsets of X which are invariant under G. We suppose X ⊂ P

n

and that G acts linearly, that is through a representation of G in GL(n + 1). Then
G acts on the polynomial ring k[X0, . . . , Xn]. If f is any non-constant G-invariant
homogeneous polynomial for this action, then Xf = {x ∈ X : f(x) 6= 0} is a G-
invariant affine open subset of X.

Definition. A point x ∈ X is

• semistable for the action of G if there exists f such that x ∈ Xf ;
• stable for the action of G if x has finite stabiliser (or equivalently dim G.x =

dim G) and there exists f as above such that G acts on Xf with closed orbits.
(In GIT, this is called “properly stable”.)

Lemma 1.10. The subsets Xss, Xs of X of semistable (resp. stable) points of X are
G-invariant Zariski-open subsets of X.

Exercise. Prove Lemma 1.10.

Definition. φ : X → Y is

• a good quotient of X by G if φ is an affine morphism (that is, the inverse image
of every affine Zariski-open set in Y is affine) and (i)–(v) of Theorem 1.6 hold;

• a geometric quotient if it is a good quotient and also an orbit space.

It is conventional to write Y = X//G when Y is a good quotient and Y = X/G when Y
is a geometric quotient. The concept of “good quotient” given here is due to Seshadri;
the idea originates in GIT, but the definition given there is not identical with ours.
Our “geometric quotient” differs from that in GIT by the insistence that φ be an affine
morphism.

The properties of the corollaries to Theorem 1.6 carry over to good quotients.

Proposition 1.11. Let φ : X → Y be a good quotient of X by G. Then

(i) Y is a categorical quotient of X by G;
(ii) φ(x1) = φ(x2) ⇔ G.x1 ∩ G.x2 6= ∅;
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(iii) if the action of G on X is closed, then Y = X/G is a geometric quotient of X
by G.

We come now to the main theorem of this lecture.

Theorem 1.12. Let G be a reductive group acting linearly on a projective variety X.
Then

(i) there exists a good quotient φ : Xss → Y and Y = Xss//G is projective;
(ii) there exists a Zariski-open subset Y s of Y such that φ−1(Y s) = Xs and Y s =

Xs/G is a geometric quotient of Xs;
(iii) for x1, x2 ∈ Xss, φ(x1) = φ(x2) ⇔ G.x1 ∩ G.x2 ∩ Xss 6= ∅;
(iv) for x ∈ Xss, x is stable if and only if x has finite stabiliser and G.x is closed

in Xss.

Remark 1.13. In some ways the most significant point of this theorem is that Y is
projective. This means both that it is complete and that it can be embedded in
projective space.

Remark 1.14. For G not necessarily reductive, Rosenlicht’s result gives a dense
Zariski-open subset U of X such that U/G exists with all the properties of a geo-
metric quotient except that the morphism φ need not be affine.
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2. Lecture 2 – The Hilbert-Mumford criterion

It is in general a very difficult problem to calculate a ring of invariants. However,
if we are simply interested in calculating basic properties of a projective quotient, it
is often sufficient to compute the stable and semistable points for the action. In this
lecture we will describe a usable criterion for doing this, due originally to Hilbert for
semistability for G = SL(n) and extended by Mumford to stability and arbitrary G.
We begin with a definition of stability not involving projective space. We suppose
throughout that G is a reductive group.

2.1. Affine definition of stability.

Proposition 2.1. Let X be a projective variety in P
n and G a reductive group acting

linearly on X. Let x ∈ X and x̂ ∈ kn+1 be a point lying over x. Then

(i) x is semistable if and only if 0 6∈ G.x̂;
(ii) x is stable if and only if the stabiliser of x̂ is finite and G.x̂ is closed in kn+1.

Proof. (i) Suppose first that x is semistable, and let f be a G-invariant homogeneous
polynomial of degree ≥ 1 such that f(x) 6= 0. We have clearly f(x̂) 6= 0, so f(y) is
equal to a non-zero constant for y ∈ G.x̂. Hence 0 6∈ G.x̂.

Conversely, if 0 6∈ G.x̂, it is a simple consequence of geometric reductivity (see
Lemma 3.3 in my Tata Institute notes) that there exists an invariant polynomial f
such that

f(0) = 0, f
(

G.x̂
)

= 1.

But then f has constant term 0; so some homogeneous part of f must be non-zero at
x̂. Hence x is semistable.

(ii) Suppose that x is stable. Then x has finite stabiliser and there exists a G-
invariant homogeneous polynomial f of degree ≥ 1 such that f(x) 6= 0 and G.x is
closed in Xf . It is obvious that x̂ has finite stabiliser. Now put α = f(x̂) 6= 0 and let

Zα =
{

y ∈ kn+1 : f(y) = α
}

.

Clearly Zα is closed in kn+1 and it is easy to see that the morphism Zα → P
n
f is

surjective and finite. Moreover the inverse image of G.x is closed in Zα and is the
union of a finite number of orbits of G acting on Zα. Since all these orbits have the
same dimension, each of them, in particular G.x̂, is closed in Zα and therefore in kn+1.

Conversely suppose that x̂ has finite stabiliser and G.x̂ is closed in kn+1. By (i), x is
semistable, so there exists a G-invariant homogeneous polynomial f of degree ≥ 1 such
that f(x) 6= 0. As above Zα → P

n
f is surjective and finite. This morphism maps G.x̂

surjectively to G.x; it follows that x has finite stabiliser and G.x is closed in P
n
f . This

holds for all f such that f(x) 6= 0, so G.x is closed in Xss. It follows from Theorem
1.12(iv) that x is stable. ¤

2.2. Actions of k∗. Suppose first that G = k∗. We identify k∗ with a subset of P
1 in

the obvious way. In fact, for any α ∈ k, we identify α with (1, α) ∈ P
1 and write ∞

for the extra point (0, 1). Note that any morphism k∗ → P
n extends to a morphism
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P
1 → P

n, but the corresponding statement is not true for a morphism k∗ → kn+1. In
fact, if φ is such a morphism and is non-constant,

(a) any point of φ(k∗)\φ(k∗) must be equal to one of limt→0 φ(t) and limt→∞ φ(t);
(b) φ(k∗) is closed in kn+1 if and only if neither limit exists.

Now suppose G = k∗ acts linearly on a projective variety X in P
n. The induced

linear action on kn+1 can be diagonalised. In other words there exists a basis e0, . . . , en

of kn+1 such that
t.ei = triei

for some integers ri. Now choose x̂ ∈ kn+1 lying over x and write x̂ =
∑

x̂iei, so that

t.x̂ =
∑

trix̂iei,

and define
µ(x) = max{−ri : xi 6= 0}.

Thus µ(x) is the unique integer µ such that limt→0 tµ(t.x̂) exists and 6= 0. (It is easy to
see that µ(x) is independent of the choice of x̂ and of the basis e0, . . . , en.) Note that

µ(x) > 0 ⇔ lim
t→0

t.x̂ does not exist,

µ(x) = 0 ⇔ lim
t→0

t.x̂ exists and 6= 0.

Similarly we define
µ−(x) = max{ri : xi 6= 0}.

Then
µ−(x) > 0 ⇔ lim

t→∞

t.x̂ does not exist,

µ−(x) = 0 ⇔ lim
t→∞

t.x̂ exists and 6= 0.

The following proposition now follows immediately from Proposition 2.1, (a) and
(b).

Proposition 2.2. Let G = k∗ act linearly on a projective variety X in P
n. Then, for

any x ∈ X,

(i) x is semistable if and only if µ(x) ≥ 0 and µ−(x) ≥ 0;
(ii) x is stable if and only if µ(x) > 0 and µ−(x) > 0.

2.3. The criterion. We now consider an arbitrary linear action of a reductive group
G on a projective variety X.

Definition A 1-parameter subgroup (1-PS) of G is a non-trivial homomorphism of
algebraic groups λ : k∗ → G.

It is a standard fact that the image of any homomorphism of algebraic groups is
closed. It now follows easily from Proposition 2.1 that a stable (semistable) point of
X for the action of G is necessarily stable (semistable) for the action of k∗ induced by
any 1-PS.

For any 1-PS λ, we write µ(x, λ) for the value of µ(x) for the action of k∗ on X
induced by λ. (It is not necessary to define µ−(x, λ) because this is just µ(x, λ−1)
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where λ−1 is the 1-PS defined by λ−1(t) = λ(t−1).) It now follows from Proposition 2.2
that

• x semistable ⇒ µ(x, λ) ≥ 0 for every 1-PS λ of G;
• x stable ⇒ µ(x, λ) > 0 for every 1-PS λ of G.

We can now state the Hilbert-Mumford Criterion.

Theorem 2.3. Let G be a reductive group acting linearly on a projective variety X in
P

n. Then the two ⇒ above can be replaced by ⇔.

In order to prove this theorem, one has to prove the following assertions.

• x non-stable ⇒ ∃λ such that µ(x, λ) ≤ 0,
• x non-semistable ⇒ ∃λ such that µ(x, λ) < 0.

In view of Proposition 2.2, this is equivalent to showing that, if x is non-stable (non-
semistable), then there is a 1-PS λ such that x is still non-stable (non-semistable) for
the induced action of k∗. These statements are at least plausible if G has a plentiful
supply of 1-PS; this is the significance of the hypothesis that G is reductive.

A proof for the semistable case when G = SL(m) and k = C was given by Hilbert
using convergent power series. Mumford and Seshadri obtained a proof valid for all k
and all reductive G using formal power series and a theorem of Iwahori. A proof for
all k but restricted to the case G = SL(m) is given in my Tata Institute notes and also
in Mukai’s book.

2.4. An observation. The following remark can simplify computations.

Remark 2.4. It follows at once from the definition that

µ(g.x, λ) = µ(x, g−1λg)

for any g ∈ G. This allows us to replace λ by a convenient conjugate in making
calculations. In particular, for g = SL(n), it is well known that every 1-PS is conjugate
to a diagonal matrix of the form

(1) λ(t) =









tr0 0 · · · 0
0 tr1 · · · 0
...

...
. . .

...
0 · · · · · · trn−1









,

with
∑

ri = 0, r0 ≥ r1 ≥ · · · ≥ rn−1, not all ri = 0.

(This follows almost at once from the fact (already used) that any linear action of k∗

is diagonalisable.) We deduce

Proposition 2.5. Let SL(n) act linearly on a projective variety X. A point x of X is
stable (semistable) for this action if and only if µ(g.x, λ) > 0 (≥ 0) for every g ∈ SL(n)
and every 1-PS λ of SL(n) of the form (1).
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3. Lecture 3 - Further details

3.1. Reductivity and finite generation. The key to the proofs of the results in
Lecture 1 is the concept of a reductive group.

Note first that any linear algebraic group G possesses a unique maximal connected
normal solvable subgroup, called its radical.

Definition. Let G be a linear algebraic group. Then G is

• reductive if its radical is isomorphic to a direct product of copies of k∗;
• linearly reductive if, for every linear action of G on kn, and every invariant

point v of kn, v 6= 0, there exists a G-invariant homogeneous polynomial f of
degree 1 such that f(v) 6= 0;

• geometrically reductive if, for every linear action of G on kn, and every invariant
point v of kn, v 6= 0, there exists a G-invariant homogeneous polynomial f of
degree ≥ 1 such that f(v) 6= 0.

Warning. Although these terms are now widely accepted, many different terms have
been used in the past.

It is easy to see that the groups GL(n), SL(n) and PGL(n) are all reductive, also
(k∗)m for any positive integer m, but not k as an additive group. It is not difficult to
see that every geometrically reductive group is reductive; and, in characteristic 0, it
is a theorem of Weyl that every reductive group is linearly reductive (so in this case
all three conditions coincide). In characteristic p, however, there are very few linearly
reductive groups; certainly GL(n), SL(n) and PGL(n) are not linearly reductive for
n ≥ 2.

The link between reductivity and finite generation is provided by

Nagata’s Theorem. Let G be a geometrically reductive group acting rationally on a
finitely generated k-algebra R. Then RG is finitely generated.

In order to justify our assertions in Lecture 1, we need also

Mumford’s Conjecture. Every reductive group is geometrically reductive.

This was conjectured by Mumford in the 1st. edition of GIT and proved by Haboush
in 1974. In fact, geometric reductivity is the key not only to finite generation but also
to establishing the geometric properties in Theorem 1.6.

Remark 3.1. (i) It is possible for A(X)G to be finitely generated even when G is not
reductive. Much work has been done on the extension of GIT to non-reductive groups.

(ii) It is possible for a categorical quotient to exist even if A(X)G is not finitely
generated.

(iii) As already noted (Example 1.3), the finite generation of A(X)G does not imply
that the corresponding affine variety is even a categorical quotient.

3.2. Proof of Theorem 1.6. The hypotheses of Theorem 1.6 imply, by Nagata’s
Theorem, that A(X)G is a finitely generated k-algebra; moreover it is a subalgebra
of A(X) and therefore has no nilpotent elements. Let Y be the corresponding affine
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variety, and φ the morphism corresponding to the inclusion A(X) = A(X)G ⊂ A(X).
We prove that Y and φ have the required properties.

(i) Suppose that there exist g ∈ G, x ∈ X with φ(g.x) 6= φ(x). Then, since Y is
affine, there exists f ∈ A(Y ) such that

f(φ(g.x)) 6= f(φ(x)).

This contradicts the fact that f ∈ A(X)G.

(ii) Let y ∈ Y and let f1, . . . , fr generate the maximal ideal in A(Y ) = A(X)G

corresponding to the point y. It is not difficult to prove that
∑

fiA(X) 6= A(X)

(see my Tata Institute notes Lemma 3.4.2). Hence there exists a maximal ideal of A(X)
containing

∑

fiA(X). If x is the point of X corresponding to this maximal ideal, then
we have fi(x) = 0 for all i; so φ(x) = y.

(iii) First note that it is sufficient to prove (iii) for the open sets U of any fixed basis.
Hence we can suppose that U = Yf for some non-zero f ∈ A(Y ) = A(X)G. In this
case, φ−1(U) = Xf ; so we require to prove that

(

A(X)G
)

f
= (A(X)f )

G

for any f ∈ A(X)G, where

A(X)f = A(Xf ) = {h/f r : r ≥ 0, h ∈ A(X)}.

This is easy to verify directly.

(iv) and (v). For any two disjoint closed G-invariant subsets W1, W2 of X, there
exists (Lemma 3.3 in my Tata Institute notes) an element f ∈ A(X)G such that

f(W1) = 0, f(W2) = 1.

Regarding f as an element of A(Y ), we obtain from this

f (φ(W1)) = 0, f (φ(W2)) = 1;

hence

φ(W1) ∩ φ(W2) = ∅.

This proves (v); moreover, if W is a closed G-invariant subset of X and y ∈ φ(W ) \
φ(W ), we can apply the above result with W1 = W , W2 = φ−1(y) to get a contradiction.

3.3. Proof of Corollaries 1.7, 1.8, 1.9, Proposition 1.11. The proofs of the corol-
laries use only the results of Theorem 1.6, hence also give proofs of Proposition 1.11.
The only difficult proof is that of Corollary 1.7, the basic reason being that, even for
U = Y , one has to prove the universal property for morphisms into any variety, not just
into an affine variety. A detailed proof is contained in my Tata Institute notes (pp64,
65). The fact that the result extends to any open set U of Y requires the following
lemma, which is a useful extension of Theorem 1.6(v).
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Lemma 3.2. Let X,G, Y, φ be as in Theorem 1.6, and let U be an open subset of Y .
If W1,W2 are disjoint G-invariant subsets of φ−1(U) and are closed in φ−1(U), then

φ(W1) ∩ φ(W2) = ∅.

Proof. Let Wi denote the closure of Wi in X, and suppose that y ∈ φ(W1) ∩ φ(W2).
Then φ−1(y) ∩ W1 and W2 are closed G-invariant subsets of X whose images under φ
both contain y. Hence by Theorem 1.6(v)

φ−1(y) ∩ W1 ∩ W2 6= ∅.

But W1 and W2 are closed in φ−1(U); so

φ−1(U) ∩ W1 ∩ W2 = W1 ∩ W2 = ∅.

This gives the required contradiction. ¤

The other two proofs are straightforward.

Proof of Corollary 1.8. Take Wi = G.xi in Theorem 1.6(v). ¤

Proof of Corollary 1.9. We need to show that, if x1, x2 ∈ φ−1(U) do not belong to the
same orbit, then φ(x1) 6= φ(x2). This follows at once by taking Wi = G.xi in Lemma
3.2. ¤

3.4. Proof of Theorem 1.12. (i) We begin by recalling some general facts about
projective varieties and graded k-algebras.

Let X̂ denote the affine variety in kn+1 lying over X; for each homogeneous element
f of A(X̂) of degree ≥ 1 we have an affine open subset Xf = {x ∈ X : f(x) 6= 0} of X.

Let R be a finitely generated homogeneous subalgebra of A(X̂) and write XR for the
union of those Xf for which f ∈ R. Then there exists a projective variety Y (usually
denoted by Proj R) and a morphism φ : XR → Y such that

(a) Y is covered by affine open sets Yf , one for each homogeneous element f of R of
degree ≥ 1, and A(Yf ) is isomorphic to the algebra

(Rf )0 = {h/f r : r ≥ 0, h ∈ R homogeneous of degree r(deg f)};

(b) φ−1(Yf ) = Xf and φ : Xf → Yf is the morphism corresponding to the inclusion

of (Rf )0 in A(Xf ) =
(

A(X̂)f

)

0
.

In our situation, note that the linear action of G on X induces an action on A(X̂)

which preserves the degree of every homogeneous element. Hence R = A(X̂)G is a ho-

mogeneous subalgebra of A(X̂), and it is also finitely generated by Nagata’s Theorem.
Let Y and φ be as constructed above, and note that XR = Xss. By Theorem 1.6 and

(b) above, together with the fact that

(

(

A(X̂)G
)

f

)

0

=
((

A(X̂)f

)

0

)G

, it follows that

(Yf , φ) is a good quotient of Xf for every homogeneous element f of A(X̂)G of degree
≥ 1. It follows easily that (Y, φ) is a good quotient of Xss.
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(ii) Put Y s = φ(Xs) and let Y 0 be the union of those Yf for which the action of G
on Xf is closed. Clearly Xs ⊂ φ−1(Y 0) and so Y s ⊂ Y 0. Now by Proposition 1.11,
(Y 0, φ) is a geometric quotient of X0 = φ−1(Y 0). It follows that Xs = φ−1(Y s) and

Y 0 \ Y s = φ(X0 \ Xs).

Hence Y 0 \ Y s is closed in Y 0 by condition (iv) for a good quotient, and so Y s is open
in Y 0 and therefore also in Y . It follows that (Y s, φ) is a good quotient of Xs and
hence a geometric quotient.

(iii) follows at once from Proposition 1.11(ii).

(iv) If x ∈ Xs, then
φ−1 (φ(x)) ⊂ φ−1(Y s) = Xs.

Since φ−1 (φ(x)) is closed in Xss, it follows that

G.x ∩ Xss ⊂ Xs.

But the action of G on Xs is closed by (ii); hence G.x is closed in Xs and therefore
also in Xss.

For the converse, note that, since x ∈ Xss, there exists a G-invariant homogeneous
polynomial f of degree ≥ 1 such that x ∈ Xf . If G.x is closed in Xss, then certainly
G.x is closed in Xf . It follows easily from this, and the fact that x has finite stabiliser,
that x is stable (see Lemma 3.15 of my Tata Institute notes for details).

3.5. Linearisation. The ideas of Lecture 1 can be slightly generalised and the defini-
tions of stability and semistability placed in a more natural context. The point is that,
if we are given an action of an algebraic group G on a variety X, there may be many
ways of embedding X in a projective space and linearising the action of G.

So let X be any variety, G an algebraic group acting rationally on X, and L a line
bundle over X; we denote by p : L → X the natural projection. A linearisation of the
action of G with respect to L is an action of G on L such that

(i) for all y ∈ L, g ∈ G,
p(g.y) = g.p(y);

(ii) for all x ∈ X, g ∈ G, the map

Lx → Lg.x : y 7→ g.y

is linear.

An L-linear action of G on X is an action of G together with a linearisation of this
action with respect to L.

This concept allows us to generalise the definitions of stable and semistable. Note
first that an L-linear action of G on X determines an action on the space of sections
of any tensor power Lr of L. Moreover, for any G-invariant section f of Lr,

Xf = {x ∈ X : f(x) 6= 0}

is an open set of X, invariant under G.

Definitions. Let X be a variety and L a line bundle over X. For any L-linear action
of a reductive group G on X, a point x is called
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• semistable if, for some positive integer r, there exists a G-invariant section f
of Lr such that f(x) 6= 0 and Xf is affine;

• stable if x has finite stabiliser and, for some positive integer r, there exists a
G-invariant section f of Lr such that f(x) 6= 0, Xf is affine and the action of
G on Xf is closed.

We write Xss (Xs) for the set of semistable (stable) points, the dependence on the
linearisation of the action of G being understood.

Example 3.3. Let X be a projective variety in P
n and L the restriction to X of the

hyperplane bundle O(1). Any linear action of G on X then induces an L-linear action,
so both sets of definitions make sense. Fortunately, it is easy to prove that, in this
situation,

Xss(L) = Xss and Xs(L) = Xs.

Theorem 1.12 extends to our new situation and gives

Theorem 3.4. Let X be a variety and L a line bundle over X. Then, for any L-linear
action of a reductive group G on X,

(i) there exists a good quotient φ : Xss(L) → Y and Y = Xss(L)//G is quasi-
projective;

(ii) there exists a Zariski-open subset Y s of Y such that φ−1(Y s) = Xs(L) and
Y s = Xs(L)/G is a geometric quotient of Xs(L);

(iii) for x1, x2 ∈ Xss(L), φ(x1) = φ(x2) ⇔ G.x1 ∩ G.x2 ∩ Xss(L) 6= ∅;
(iv) for x ∈ Xss(L), x is stable if and only if x has finite stabiliser and G.x is

closed in Xss(L).

Note that no assumption of projectivity (or quasi-projectivity) is made on X. The
fact that Y is quasi-projective depends on the fact that Xss(L) is quasi-projective. This
in turn depends on the concept of an ample line bundle (one for which some power Lr

determines an embedding in a projective space) and the fact that the restriction of L
to Xss(L) is always ample.
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4. Lecture 4 – Examples

4.1. An elementary example.

Example 4.1. Let k∗ act on P
n (n ≥ 2) by

λ.(x0 : . . . : xn) = (λx0 : . . . , λxn−1 : λ−nxn).

Writing x = (x0 : . . . : xn), we have

µ(x) =

{

n if xn 6= 0
−1 if xn = 0

and

µ−(x) =

{

1 if x0, . . . , xn−1 are not all 0
−n if x0 = . . . = xn−1 = 0.

So, by Proposition 2.2,

• x is stable if xn 6= 0 and x0, . . . , xn−1 are not all 0;
• x is not semistable if x = (x1 : . . . : xn−1 : 0) or x = (0 : . . . : 0 : 1).
• there are no strictly semistable points.

Thus (Pn)s = (Pn)ss can be identified with kn \ {0} and the action of k∗ becomes

λ.(x0, . . . , xn−1) = (λn+1x0, . . . , λ
n+1xn−1).

So
(Pn)s/k∗ = (Pn)ss//k∗ = P

n−1.

(Of course the action on kn \ {0} is not quite the standard one but the quotient is the
same. In the full theory the description above corresponds to constructing the quotient
along with an ample line bundle, which in this case is O(n).)
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4.2. Binary forms.

Example 4.2. We consider the vector space Vn+1 of homogeneous polynomials in x0, x1

of degree n, i. e.

Vn+1 =
{

f =
∑

aix
n−i
0 xi

1 : ai ∈ k
}

.

A binary form of degree n is an element of P(Vn+1).

Any binary form can be represented by a non-zero f ∈ Vn+1, which can be factorised
into linear factors and so determines a set of n points (counted with multiplicities) in
P

1. Conversely a set of n points (with multiplicities) in P
1 determines a binary form. It

follows that the natural action of SL(2) on P
1 induces an action on P(Vn+1). We wish to

determine the stable and semistable points for this action using the Hilbert-Mumford
criterion.

Any 1-PS of SL(2) is conjugate to one of the form λr for some r ≥ 0, where

λr(t) =

(

tr 0
0 t−r

)

.

By Proposition 2.2, a binary form is non-stable (non-semistable) if and only if it is
equivalent under the action of SL(2) to one for which µ(f, λr) ≤ 0(< 0) for some r.
Now we see by direct computation that

λr(t)
(

∑

aix
n−i
0 xi

1

)

=
∑

tr(2i−n)aix
n−i
0 xi

1.

So the action of λr is diagonal with respect to the obvious basis of Vn+1, and

µ = µ
(

∑

aix
n−i
0 xi

1, λr

)

= r(n − 2i0),

where i0 is the smallest value of i for which ai 6= 0. Thus µ ≤ 0(< 0) if and only if
ai = 0 whenever i < n

2
(i ≤ n

2
), i.e. if and only if the point (1 : 0) occurs as a point of

multiplicity ≥ n
2

(> n
2
) for the given form. Taking account of the action of SL(2), we

deduce that a binary form is

• stable if and only if no point of P
1 occurs as a point of multiplicity ≥ n

2
;

• semistable if and only if no point of P
1 occurs as a point of multiplicity > n

2
.

Note that, when n is odd, the stable and semistable points coincide, and there is a
projective geometric quotient. When n is even, there exist strictly semistable points
and the geometric quotient of the stable points is not projective.
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4.3. Cubic curves.

Example 4.3. A cubic curve in P
2 is defined by a non-zero polynomial

f =
∑

aijx
3−i−j
0 xi

1x
j
2,

the summation being taken over all i, j with i ≥ 0, j ≥ 0, i + j ≤ 3. The curve
determines f up to a scalar multiple, so the set of cubic curves has a natural structure
of a projective space P

9 with coordinates given by the aij. The group SL(3) acts
naturally through its action on P

2.

Before starting on the analysis of stability, we shall summarise information about
singular points of the curve defined by f . We concentrate on a singular point at
(1 : 0 : 0), since we can translate this information to other points through the action
of SL(3).

• (1 : 0 : 0) is singular if and only if a00 = a10 = a01 = 0;
• (1 : 0 : 0) is a triple point if and only if a00 = a10 = a01 = a20 = a11 = a02 = 0;
• if (1 : 0 : 0) is a double point, then the tangents at (1 : 0 : 0) are the lines

defined by the equation

a20x
2
1 + a11x1x2 + a02x

2
2;

• in particular, (1 : 0 : 0) is a double point with a unique tangent x2 = 0 if and
only if a00 = a10 = a01 = a20 = a11 = 0.

Any 1-PS of SL(3) is conjugate to one of the form λ, where

λ(t) =





tr0 0 0
0 tr1 0
0 0 tr2



 ,

with r0 ≥ r1 ≥ r2 and r0 + r1 + r2 = 0. In a similar way to that of Example 4.2, we
have

λ(t).f =
∑

t(i+j−3)r0−ir1−jr2aijx
3−i−j
0 xi

1x
j
2

and hence

µ(f, λ) = max{(3 − i − j)r0 + ir1 + jr2 : aij 6= 0}.

By Proposition 2.2, we know that a cubic curve is non-stable (non-semistable) if and
only if it is equivalent under the action of SL(3) to one for which µ(f, λ) ≤ 0(< 0) for
some λ of the above form.

We consider first the condition for semistability. It is easy to check that, if µ(f, λ) <
0, then

a00 = a10 = a01 = a20 = a11 = 0.

Conversely, if these conditions hold, and we take r0 = 3, r1 = −1, r2 = −2, then
µ(f, λ) < 0. Hence µ(f, λ) < 0 for some λ of the above form if and only if the cubic
curve has either a triple point at (1 : 0 : 0) or a double point at (1 : 0 : 0) with unique
tangent x2 = 0. By Proposition 2.2, we deduce that a cubic curve is semistable if and
only if it has no triple point and no double point with a unique tangent.
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Next, suppose that f has a singular point; we can assume this to be the point
(1 : 0 : 0), so that a00 = a10 = a01 = 0. If we take r0 = 2, r1 = −1, r2 = −1, we get
µ(f, λ) ≤ 0; so f is non-stable.

Conversely, suppose that µ(f, λ) ≤ 0 for some λ. Then certainly a00 = a10 = 0. If
a01 6= 0, then

µ(f, λ) ≤ 0 ⇒ 2r0 + r2 ≤ 0 ⇒ r1 = r0, r2 = −2r0.

For these values of the ri, we have

µ(f, λ) = max{(3 − 3j)r0 : aij 6= 0};

so µ(f, λ) ≤ 0 if and only if ai0 = 0 for all i. This implies that f = x2f
′ for some f ′

of degree 2; hence f is singular at every point for which x2 = f = 0. Thus in all cases
f has a singular point, and we conclude that a cubic curve is stable if and only it is
non-singular.

To summarise, the stable cubic curves are the non-singular ones, while the strictly
semistable ones have one or more double points with distinct tangents. In fact, there
are just three types of strictly semistable cubic curves, each forming a single orbit.

• nodal cubics, i. e. irreducible cubics possessing a double point with distinct
tangents;

• cubics which degenerate into a conic and a line not tangent to it;
• cubics which degenerate into three non-concurrent lines.


