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Notes on Deformation Theory

Nitin Nitsure
Guanajuato 2006

Abstract

These expository notes give an introduction to the elements of deformation
theory, which is meant for graduate students interested in the theory of vector
bundles and their moduli.
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1 Introduction

There are two basic examples, which motivate the subject of deformation theory. In
each example, we have a natural notion of a family of deformations of a given type
of geometric structure. This has a functorial formulation, which we now explain.

Let Schemes∗ be the category of pointed schemes over a chosen base field k
(which may be assumed to be algebraically closed for simplicity), whose objects
are defined to be pairs (S, s) where S is a scheme over k and s : Spec k → S is a
k-valued point, called the base point. Morphisms in this category are morphisms
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of k-schemes which preserve the chosen base point. When considering deformations
of various objects or structures, there naturally arise contravariant functors ϕ :
Schemes∗ → Sets∗ where Sets∗ is the category of pointed sets. We now give the
two archetypal examples of such functors ϕ.

Deformations of a variety X. If X is a complete variety over k, and (S, s) is
a pointed scheme, a deformation of X parametrised by (S, s) is a pair (X, i) where
X → S is a flat proper morphism of schemes and i : X → Xs is an isomorphism of
X with the fiber of X over s ∈ S. We say that two deformations (X, i) and (Y, j)
parametrised by (S, s) are equivalent if there exists an isomorphism α : X→ Y over
S which takes i to j. We call the projection X × S → S, together with the identity
isomorphism of X with its fiber over s, as a trivial deformation. The set ϕ(S, s) of all
equivalence classes of deformations over (S, s) becomes a pointed set with base point
the class of the trivial deformation. Given any morphism (T, t)→ (S, s) of pointed
scheme, the pull-back of a deformation is a deformation, and as pull-backs preserve
equivalences, this defines a contravariant functor DefX : Schemes∗ → Sets∗.

Deformations of a vector bundle on X. Let X be a variety over k, and let E be
a vector bundle on X. We fix X and will vary E. Given any pointed scheme (S, s),
we consider all pairs (E , i) where E is a vector bundle on X × S, and i : E → Es is
an isomorphism of E with the restriction Es of E to Xs (which is naturally identified
with X). We say that two deformations (E , i) and (F , j) parametrised by (S, s) are
equivalent if there exists an isomorphism α : E → F which takes i to j. We call
the pullback of E to X × S, together with the identity isomorphism of E with its
restriction to Xs, as a trivial deformation. The set ϕ(S, s) of all equivalence classes
of deformations over (S, s) becomes a pointed set with base point the class of the
trivial deformation. Given any morphism (T, t) → (S, s) of pointed scheme, the
pull-back of a deformation is a deformation, and again this defines a contravariant
functor DE : Schemes∗ → Sets∗.

Relation with moduli problems. Thus, so far one may say that we are looking
at moduli problems of certain structures, with a chosen base point on the moduli.
If a fine module space M exists, and if a point m0 of it corresponds to the starting
structure (variety X or bundle E in the above examples), then ϕ(S, s0) is just the
set of all morphisms f : S → M with f(s0) = m0. However, we will not assume
that a fine moduli exists, and indeed it will not exist in the majority of examples
where deformation theory can still give us interesting and important insights. But
for that, we have to put a certain condition on the parameter space S, as follows.

Local deformations. We now introduce a condition on our parameter scheme
(S, s0) of deformations, which amounts to focussing attention on ‘infinitesimal’ de-
formations of the starting structure. We will assume that S is of the form Spec A
where A is a finite local k-algebra with residue field k (equivalently, A is an Artin
local k-algebra with residue field k). The unique k-valued point of Spec A will be
the base point s0, and so there is no need to specify the base point. This means we
will look at covariant functors D from the category Artk of Artin local k-algebras
with residue field k to the category Sets∗ of pointed sets.
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Local structure of moduli. If a fine moduli space M exists, then studying all
possible deformations parametrised by objects of Artk is enough to recover the
completion of the local ring of M at the point m0. In this way, studying deforma-
tion theory sheds light on the local structure of moduli. In particular, we get to
know what is the dimension of M at m0, and whether M is non-singular at m0 via
deformation theory done over Artk.

The plan of these lecture notes. These notes give an introduction to the elemen-
tary aspects of deformation theory, focussing on the deformation of vector bundles.
The approach is algebraic, based on functors of Artin rings. In section 2 we begin
with some basic definitions, and then focus on first order deformations, giving im-
portant basic examples. Section 3 gives the proofs of the theorems of Grothendieck
and Schlessinger on pro-representability of a deformation functor and existence of
versal families of deformations. This is applied to some important basic examples.
In section 4, the obstruction space for prolongation of a deformation is calculated
for some examples.

All the above material is standard, with no originality on my part except in minor
points of arguments.

Literature. There is a vast amount of literature on deformation theory. What fol-
lows is a short (and very incomplete) list of some reading material, to start with. For
quick look at the theory, a beginner can see the chapter 6 by Fantechi and Göttsche,
followed by chapter 8 by Illusie of the multi-author book ‘Fundamental Algebraic
Geometry: Grothendieck’s FGA Explained’. An quick introduction, focusing on
applications to vector bundles, in given in the book of Huybrechts and Lehn ‘The
geometry of moduli spaces of sheaves’. A very readable elementary introduction in
lecture-note format is given by the notes of Ravi Vakil (MIT lecture course, available
on the web). For a more complete treatment, one can see the recent book by Sernesi
titled ‘Deformation of Schemes’.

There are also other approaches to deformation theory. A good account of the
classical results of Kodaira-Spencer, with which the modern subject of deformation
theory started, is in Kodaira’s book ‘Complex Manifolds and Deformation of Com-
plex Structures’. A more advanced algebraic approach, via the cotangent complex,
is due to Illusie, as expounded in his book ‘Complexe Cotangent et Déformations’
parts I and II. Yet another modern approach, based on differential graded lie al-
gebras, can be read in the lecture notes of Kontsevich which are widely circulated
(available on web).
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2 First order deformations and tangent spaces to

functors

For simplicity, we will work over a fixed base field k which we assume to be alge-
braically closed. All schemes and morphisms between them will be assumed to be
over the base k, unless otherwise indicated. We denote by Ringsk the category of
all commutative k-algebras with unity, by Schemes the category of all schemes over
k, by Schemes∗ the category of all pointed schemes over k, Sets the category of all
sets, and by Sets∗ the category of all pointed sets.

2.1 Functor of points

To any scheme X, we associate a covariant functor hX from Ringsk to Sets called
the functor of points of X. By definition, given any k-algebra R, hX(R) is the
set of all morphisms of k-schemes from Spec R to X. The set hX(R) is called the
set of R-valued points of X.

Example If X is a variety over k (or more generally, a scheme of locally finite type
over k), then a k-valued point of X is the same as a closed point x ∈ X. (Recall
that we have assumed k to be algebraically closed.)

Any scheme X can be recovered from its functor of points hX . The set of all
morphisms X → Y between two schemes is naturally bijective with the set of all
natural transformations hX → hY . Note that these statements are stronger than
just the purely categorical Yoneda lemma, as we have confined ourselves to points
with values in affine schemes.

We say that a functor X : Ringsk → Sets is representable if X is naturally iso-
morphic to the functor of points hX of some scheme X over k. If X is a scheme over
k and α : hX → X is a natural isomorphism, then we say that the pair (X,α) rep-
resents the functor X. The scheme X is called a representing scheme or moduli
scheme for X, and the natural isomorphism α is called a universal family or a
Poincaré family over X. The pair (X,α) is unique up to a unique isomorphism.

A scheme X can be recovered from its functor of points hX , therefore in principle all
possible data concerning X can be read off from hX . In order to see how to recover
the tangent space TxX at a k-valued point x ∈ X, we need some elementary facts
involving linear algebra and Artin local rings.

2.2 Linear algebraic preliminaries

Lemma 1 Let Vectk be the category of all vector spaces over k, with k-linear maps
as morphisms, and let FinVectk be its full subcategory consisting of all finite di-
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mensional vector spaces. Let

f : FinVectk → Sets

be a functor which satisfies the following:

(1) For the zero vector space 0, the set f(0) is a singleton set.

(2) The natural map βV,W : f(V ×W )→ f(V )× f(W ) induced by applying f to the
projections V ×W → V and V ×W → W is bijective.

Then for each V in FinVectk, there exists a unique structure of a k vector space
on the set f(V ) which gives a lift of f to a k-linear functor

F : FinVectk → Vectk.

Let T = F (k). Then there exists an isomorphism

ΨF,V : F (V )→ T ⊗k V

which is functorial in both V and F . If f and g are two functors from FinVectk

to Sets which satisfy the conditions (1) and (2), and if α : f → g is a morphism of
functors, then for each V in FinVectk, the map αV : f(V ) → g(V ) is linear with
respect to the vector space structure on f(V ) and g(V ), consequently α induces a
natural transformation between the lifts of the functors f and g to Vectk.

Proof A functor φ : FinVectk → Vectk is called k-linear if the induced map
Hom(U, V )→ Hom(φ(U), φ(V )) is k-linear for any two U, V in FinVectk.

The requirement of k-linearity of the functor F forces us to define the addition map
f(V )× f(V )→ f(V ) to be the composite map

f(V )× f(V )
β−1

V,V

→ f(V × V )
f(+)
→ f(V )

where β−1
V,V is the inverse of the natural isomorphism given by the assumption on f ,

and f(+) is obtained by applying f to the addition map + : V × V → V . Also, for
any λ ∈ k, the requirement of k-linearity of the functor F forces us to define the
scalar multiplication map λf(V ) : f(V ) → f(V ) to be the map f(λV ), as we must
have λf(V ) = λ1f(V ) = λf(1V ) = f(λ1V ) = f(λV ). It can be verified directly that
these operations indeed give a vector space structure on f(V ).

The rest is a simple exercise. ¤

Lemma 2 Let T be a finite-dimensional vector space. Then the k-linear functor
F : FinVectk → FinVectk defined by V 7→ T ⊗k V is representable. Let 1T ∈
F (T ∗) = T ⊗ T ∗ = Endk(T ) be the identity map on T . Then the pair (T ∗,1T )
represents F . ¤
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2.3 Artin local algebras

Let k be a field. Let Artk be the category of all artin local k-algebras, with residue
field k. The morphisms in this category are all k-algebra homomorphisms, and it can
be seen that these are automatically local (take the maximal ideal into the maximal
ideal). Any such k-algebra is finite over k.

Note that k is both an initial and a final object of Artk. In particular, any functor
F : Artk → Sets has a natural lift to the category Sets∗ of pointed sets.

If f : B → A and g : C → A are homomorphisms in Artk, the fibred product

B ×A C = {(b, c)|f(b) = g(c) ∈ A}

with component-wise operations is again an object in Artk (Exercise). Also, for
homomorphisms A → B and A → C in Artk, the tensor product B ⊗A C is again
an object in Artk (Exercise). Thus, Artk admits both fibred products (pullbacks)
B ×A C and tensor products (pushouts) B ⊗A C.

As k is the final object in Artk, the fibered product A ×k B serves as the direct
product in the category Artk, and as k is the initial object in Artk, the tensor
product B ⊗A C serves as the coproduct in the category Artk.

The monics in Artk are clearly the same as the injections and the epics in Artk

are the same as the surjections as can be seen by applying the Nakayama lemma
(Exercise).

An important full subcategory of Artk consists all objects A in Artk whose maximal
ideal mA satisfies m2

A = 0. This subcategory is equivalent to the category FinVectk

of all finite dimensional k-vector spaces as follows. For a k-vector space V , let
k〈V 〉 = k⊕V with ring multiplication defined by putting (a, v)(b, w) = (ab, aw+bv),
and obvious k-algebra structure. Note that k〈V 〉 is artinian if and only if V is
finite dimensional. It can be seen that V 7→ k〈V 〉 defines a fully faithful functor
FinVectk → Artk, and any A in Artk with m2

A = 0 is naturally isomorphic to
k〈mA〉. The functor V 7→ k〈V 〉 takes the zero vector space (which is both an initial
and final object of FinVectk) to the algebra k (which is both an initial and final
object of Artk). If V → U and W → U are morphisms in FinVectk, then it can
be seen that the natural map

k〈V ×U W 〉 → k〈V 〉 ×k〈U〉 k〈W 〉

(which is induced by the projections from V ×U W to V and W ) is an isomorphism.
Therefore the functor FinVectk → Artk preserves all finite limits, in particular, it
preserves equalisers.

Caution The functor FinVectk → Artk : V 7→ k〈V 〉 does not preserve co-
products.
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2.4 Tangent space of a functor

Let ϕ : Artk → Sets be any functor such that

(1) ϕ(k) is a singleton set,

(2) For any objects A,B in Artk, the induced map ϕ(A×k B)→ ϕ(A)×ϕ(B) is a
bijection.

Then the composite functor FinVectk → Artk → Sets sending V 7→ ϕ(k〈V 〉)
satisfies hypothesis of Lemma 1. Let T (ϕ) denote the vector space

T (ϕ) = ϕ(k〈k1〉) = ϕ(k[ε]/(ε2)),

so that the composite functor FinVectk → Artk → Sets is isomorphic to the
functor which maps V 7→ T (ϕ)⊗k V . We call T (ϕ) the tangent vector space to
the functor ϕ. We denote it simply by T if ϕ is understood.

Example Let R be a local k-algebra with residue field k. Then the functor ϕ =
Homk−alg(R,−) : Artk → Sets satisfies the above conditions. We determine the
corresponding T . Note that a k-homomorphism R→ ϕ(k〈V 〉) is determined by the
induced linear map mR → V , which must map m2

R to 0. Conversely, any linear map
mR → V which map m2

R to 0, prolongs to a unique k-algebra homomorphism R →
k〈V 〉. This defines a natural isomorphism of the composite functor FinVectk →
Artk → Sets with the functor V 7→ HomV ectk(mR/m2

R, V ) = (mR/m2
R)∗⊗kV , where

(mR/m2
R)∗ denotes the dual vector space of mR/m2

R. Hence we get

T = (mR/m2
R)∗.

Application to the tangent space of a scheme

Let X be a scheme over k, and x ∈ X a k-valued point (such a point is necessarily
closed in X, and all closed points of X are of this form if X is of locally finite type
over the algebraically closed field k). Let hX,x : Artk → Sets∗ be the functor defined
by putting hX,x(A) to be the pointed set consisting of all morphisms Spec A → X
such that the composite morphism

Spec k → Spec A→ X

is the k-valued point x. The distinguished element of the pointed set hX,x(A) is
defined to be the composite morphism

Spec A→ Spec k
x
→ X.

Proposition 3 The functor hX,x : Artk → Sets∗ preserves the (initial and) final
object, equalisers, and direct products, and so it preserves all finite inverse limits
including fibered products.
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Proof Let OX,x be the local ring of X at x. If A is in Artk, then a morphism
Spec A→ X has image x if and only if it factors through the inclusion SpecOX,x →
X, and such a factorization (when it exists) is unique. Thus, hX,x is naturally
isomorphic to the functor Homk−alg(OX,x,−), and so the result follows from the
general fact that in any category a functor of the form Hom(X,−) preserves finite
inverse limits. ¤

Let X be a scheme over k, and x ∈ X a k-valued point. Let mx ⊂ OX,x be the
maximal ideal in its local ring. The above discussion shows that the functor functor
hX,x : Artk → Sets∗ has as its tangent space the vector space (mx/m

2
x)
∗, which

is just the usual tangent space to X at x, defined as the vector space of k-valued
derivations on the k-algebra OX,x. This shows the definition of the tangent space to
a functor generalizes the usual definition of tangent space to a scheme.

2.5 Examples: tangent spaces to various functors

1. Tangent space to Grassmannian.

This is the most basic and well-known example, and we sketch it in brief. If W
is a finite dimensional vector space over k and 0 ≤ r ≤ dim W an integer, the
Grassmannian X = Grass(W, r) of r-dimensional quotients of V is a scheme which
represents the functor hX defined as follows. For any scheme S, the set hX(S)
consists of all equivalence classes of pairs (E , q) where E is a locally free OS-module
of constant rank r, and q : V ⊗k OS → E is a surjective OS-linear homomorphism.
Two such pairs (E, q) and (E ′, q′) are defined to be equivalent if there exists an
OS-linear isomorphism g : E → E ′ with q′ = g ◦ q.

Let E be a k-vector space of dimension r and let p : W → E be a k-linear surjection.
Then x = (E, p) is a k-valued point of X = Grass(V, r). We now describe the
tangent space TxX.

As any vector bundle on Spec k〈V 〉 is trivial, any element of hX,x(k〈V 〉) can be
represented by a pair (E⊗k k〈V 〉, q) such that q|Spec k = g0 ◦p for some g0 ∈ GLE(k).
Note that

Homk〈V 〉(W ⊗k k〈V 〉, E ⊗k k〈V 〉) = Homk(W,E)⊗k k〈V 〉 = Homk(W,E)⊕Homk(W,E)⊗k V.

In terms of the above decomposition, let q = q0 + q1 (the ‘Taylor series’ of q), where
q0 = q|Spec k ∈ Homk(W,E) and q1 ∈ Homk(W,E)⊗kV . Every possible q1 can occur
in the above decomposition for any given value of q0. Let F ⊂ W be the kernel of
p. Then restricting q1 to F gives an element

q1|F ∈ Homk(F,E)⊗k V.

Two elements q, q′ ∈ Homk(W,E)⊗k k〈V 〉 are equivalent if and only if there exists
g ∈ GLE(k〈V 〉) such that q′ = g ◦ q. Let g = g0 + g1 be the Taylor series of g,
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where g0 ∈ GLE(k) and g1 ∈ End(E)⊗ V . As V · V = 0, a simple argument using
elementary linear algebra shows that any two elements q and q ′ are equivalent if and
only if (q1)|F = (q′1)|F for the corresponding elements q1, q

′
1. This shows that

hX,x(k〈V 〉) = Homk(F,E)⊗ V.

From this we conclude that

TxX = Homk(F,E).

2. Tangent space to PicX/k.

Let X be a projective variety over k (or more generally a projective scheme over k),
where k is algebraically closed. In particular, if such an X is non-empty then it has
a k-rational point. Any projective module on an Artin local ring is free. Therefore,
restricted to Artk, the functor PicX/k is described as

PicX/k(A) = Pic(XA) = H1(XA,O×XA
)

where XA = X⊗k A, and O×XA
⊂ OXA

is the sheaf of invertible elements. (Note that
a global description of the functor PicX/k is more complicated.) For any line bundle
L on X, we have a functor DL (deformations of L, defined in the introduction) for
which DL(A) is the subset of Pic(XA) consisting of isomorphism classes of all line
bundles L on XA such that L|X ∼= L. It will follow from a more general result below
for deformations of a vector bundle or of a coherent sheaf, that

T (DL) = Ext1(L,L) = H1(X,OX).

3. Tangent space to deformation functor of coherent sheaves.

Let X be a proper scheme over a field k, and let E be a coherent sheaf of OX-
modules. The deformation functor DE of E is the covariant functor Artk → Sets
defined as follows. For any A in Artk, we take DE(A) to be the set of all equivalence
classes of pairs (F, θ) where F is a coherent sheaf on XA = X⊗k A which is flat over
A, and θ : i∗F → E is an isomorphism where i : X ↪→ XA is the closed embedding
induced by A→ k, with (F, θ) and (F ′, θ′) to be regarded as equivalent when there
exists some isomorphism η : F → F ′ such that θ′ ◦ i∗(η) = θ. It can be seen that
DE(A) is indeed a set. Given any morphism f : Spec B → Spec A in (Artk)

op and
an equivalence class (F, θ) in DE(A), we define f ∗(F, θ) in DE(B) to be obtained by
pull-back under the morphism f : XB → XA. This operation preserves equivalences,
and thus it gives us a functor DE : Artk → Sets.

Theorem 4 Let X be a proper scheme over a field k. Let E be a coherent sheaf on
X. Then the deformation functor DE : Artk → Sets of E as defined above satisfies

DE(k〈V 〉 ×k k〈W 〉) = DE(k〈V ×W 〉)

and its tangent space is Ext1(E,E).
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We first prove this result for the special case where E is a vector bundle (that is, E
is locally free), though this also follows from the general case which is proved later.

Special case of vector bundles: Let (F, θ) ∈ DE(k[ε]/(ε2)). Then F is a vector
bundle on X[ε] = X⊗k k[ε]/(ε2). Any open subscheme V of X[ε] is of the form U [ε],
where U is an open subscheme of X. Let Vi = Ui[ε] be an affine open cover of X[ε]
and let fi,α be a free basis for F |Vi

. The transition functions for F have the form
gi,j+εhi,j . The gi,j will be the transition functions for E for the basis ei,α = θ(fi,α|Ui

).
Note that (hi,j) defines a 1-cocycle for End(E) with respect to the trivialization
(Ui, ei,α), which gives us an element of H1(X,End(E)). Converse is similar. This
shows that DE(k[ε]/(ε2)) has a bijection with H1(X,End(E)). We leave it to the
reader to see that an obvious generalisation of the above argument in fact gives a
functorial bijection from DE(k〈V 〉) to H1(X,End(E))⊗k V on the category of finite
dimensional vector spaces. Hence TDE

= H1(X,End(E)). As by assumption X is
proper over k, the vector space H1(X,End(E)) is finite dimensional.

This completes the proof of the Theorem 4 in the special case of vector bundles.

General case of coherent sheaves: Next, we give a proof that for a general E, the
tangent space is Ext1(E,E). This proof is very different in spirit, and in particular
it gives another proof in the vector bundle case. For any finite dimensional vector
space V over k, we define a map

fV : V ⊗k Ext1(E,E) = Ext1(V ⊗k E,E)→ DE(k〈V 〉)

as follows, where k〈V 〉 is the Artin local k-algebra generated by V with V 2 = 0.
An element of Ext1(V ⊗k E,E) is represented by a short exact sequence S of OX-
modules

S = (0→ V ⊗k E
i
→ F

j
→ E → 0)

We give F the structure of an OX〈V 〉-module (where X〈V 〉 = X⊗k k〈V 〉) by defining
the scalar-multiplication map V ⊗k F → F as the composite

V ⊗k F
(idV ,j)
→ V ⊗k E

i
→ F

We denote the resultingOX〈V 〉-module by FS. Note that the induced homomorphism

V ⊗k
FS

V FS

→ V FS

is an isomorphism, as it is just the identity map on V ⊗k E. Hence by Lemma
25 below, it follows that FS is flat over k〈V 〉. Hence we indeed get an element
of DE(k〈V 〉), which completes the definition of the map fV : V ⊗k Ext1(E,E) →
DE(k〈V 〉).

Next, we check its linearity. The fact that fV preserves addition follows from the
definition of addition on DE(k〈V 〉) together with the exercise below:
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Exercise 5 Let M and N be objects of an abelian category C which has enough
injectives. Let αN : N ⊕N → N be the addition morphism. Then composite map

Ext1(M,N)⊕ Ext1(M,N) = Ext1(M,N ⊕N)
αN→ Ext1(M,N)

is the addition map on the abelian group Ext1(M,N). ¤

Next, we give an inverse gV : DE(k〈V 〉)→ V ⊗k Ext1(E,E) to fV as follows. Given
any (F , θ) ∈ DE(k〈V 〉), let

F = π∗(F)

where π : X〈V 〉 → X is the projection induced by the ring homomorphism k ↪→
k〈V 〉. Let

j : F → E

be the OX-linear map which is obtained from the OX〈V 〉-linear map F → F|X
θ
→ E

by forgetting scalar multiplication by V . By flatness of F over k〈V 〉, the sequence
0 → V ⊗k〈V 〉 F → F → F|X → 0 obtained by applying − ⊗k〈V 〉 F to 0 → V →
k〈V 〉 → k → 0 is again exact. As V ⊗k〈V 〉 F = V ⊗k (F/V F), by composing with
θ (and its inverse) this gives an exact sequence

S = (0→ V ⊗k E
i
→ F

j
→ E → 0)

We define gV : DE(k〈V 〉)→ V ⊗k Ext1(E,E) by putting gV (F , θ) = S.

It can be seen that fV is functorial in V and gV is the inverse of fV . Hence, we
have given a natural isomorphism f from the functor V 7→ V ⊗k Ext1(E,E) to
the functor V 7→ DE(k〈V 〉) on the category of finite dimensional vector spaces V .
Even though we have only checked this as an isomorphism of set-valued functor, it
is automatically a k-linear isomorphism by Lemma 1. This completes the proof of
the Theorem 28 in the general case of coherent sheaves. ¤

4. Tangent space to deformation functor of Higgs bundles flat connec-
tions, logarithmic connections.

We refer the reader to the papers [BR], [N1] and [N2] where the tangent space is
calculated to be a certain hypercohomology.

5. Tangent space to Hilbert and Quot functors.

Let X be a proper scheme over k. Let Eo be a coherent OX-module over X, and let
qo : Eo → Fo be a coherent quotient OX-module. For any object A of Artk, let EA

denote the pullback of Eo to XA = X ⊗k A. Let i : X ↪→ XA be the special fiber of
XA. Consider pairs (q : EA → F, θ : i∗F → Fo) where q is an OXA

-linear surjection
on a coherent OXA

-module F which is flat over A, and θ is an isomorphism such
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that the following square commutes.

i∗EA = Eo

i∗q ↓ ↓ qo

i∗F
θ
→ Fo

We say that two such pairs (q : EA → F, θ : i∗F → Fo) and (q′ : EA → F ′, θ′ :
i∗F ′ → Fo) are equivalent if there exists an isomorphism f : F → F ′ with f ◦ q = q′

and θ′ ◦ (i∗f) = θ. For any object A of Artk, let Q(A) be the set of all equivalence
classes of such pairs (it can be seen that Q(A) is indeed a set). For any morphism
A → B in Artk, we get by pull-back (applying − ⊗A B) a set map Q(A) → Q(B),
so we have a functor Q : Artk → Sets.

The following result is due to Grothendieck.

Theorem 6 Let k be any field, X proper over k, and Eo → Fo a surjective mor-
phism of coherent OX-modules. Let Q : Artk → Sets be the functor defined above
on the category Artk of artin local k-algebras with residue field k. This functor pre-
serves fibered products in Artk, and the tangent vector space to this functor is the
k-vector space HomX(Go, Fo) where Go = ker(qo).

This result is proven later in these notes.

8. Tangent space to deformation functor of smooth proper varieties.

The following is proved later in the notes.

Theorem 7 Let k be a field, and let X be a smooth proper variety over k. Then the
deformation functor DefX of X satisfies DE(k〈V 〉×k k〈W 〉) = DE(k〈V ×W 〉), and
the tangent space to the deformation functor DefX is the k-vector space H1(X,TX)
where TX = (Ω1

X/k)
∗ is the tangent bundle to X.

3 Existence theorems for universal and miniversal

families

3.1 Universal, versal and miniversal families (hulls)

Pro-families and the limit Yoneda lemma

Let F : Artk → Sets be a covariant functor. This functor can be naturally prolonged

to the larger category Ârtk (which contains Artk as a full subcategory) as follows.

For any complete local noetherian k-algebra R with residue field k, let F̂ (R) be the
set defined by

F̂ (R) = lim
←

F (R/mn)

12



Given a k-homomorphism θ : R → S of complete local noetherian k-algebra with
residue field k, let F̂ (θ) : F̂ (R) → F̂ (S) be the set map induced in the obvious

way. Then F̂ : Ârtk → Sets is a covariant functor, which restricts to F on the

subcategory Artk ⊂ Ârtk.

The prolongation F̂ is natural in the following sense: if F and G are functors from
Artk to Sets and f : F → G is a morphism of functors, then f prolongs to a
morphism f̂ : F̂ → Ĝ.

Remark 8 (How formal schemes and sheaves arise from F̂ ): Let LocAlgk

be the category of local algebras R over k with residue field k. Sometimes, there
may already be a functor F : LocAlgk → Sets already given to us, for example,
for a finite type k-scheme X and a coherent sheaf E on X, we can define F (R) to
be the set of equivalence classes of flat deformations (E , η) of E, where E is a
coherent sheaf on X ⊗ R that is flat over R, and η : E|X → E is an isomorphism.

The functor F̂ : Ârtk → Sets defined by F̂ (R) = lim← F (R/mn) on Ârtk then does

not in general coincide with F : Ârtk → Sets. In the above example, elements of
F̂ (R) are pairs ((En), (ηn)) where (En) will be a formal sheaf on a certain formal
scheme X, and (ηn) will be an isomorphism (En)|X → E.

A pro-family for a covariant functor F : Artk → Sets is a pair (R, r) where R is

a complete local noetherian k-algebra with residue field k, and r ∈ F̂ (R) where by
definition

F̂ (R) = lim
←

F (R/mn)

where m ⊂ R is the maximal ideal. By the following lemma, this is same as a
morphism of functors

r : hR → F

Lemma 9 (‘Limit Yoneda Lemma’)

Let F : Artk → Sets be a covariant functor, and let F̂ : Ârtk → Sets be its pro-
longation as constructed above, where F̂ (R) = lim← F (R/mn) for any complete local

noetherian k-algebra R with residue field k. Let αR : Hom(hR, F ) → F̂ (R) (where
hR = Homk−alg(R,−)) be the map of sets defined as follows. Given f : hR → F , for
any n ≥ 1 we get a map f(R/mn) : Homk−alg(R,R/mn)→ F (R/mn), under which
the quotient map qn ∈ Homk−alg(R,R/mn) maps to f(R/mn)(qn), which defines an

inverse system as n varies, so gives an element (f(R/mn)(qn))n∈N ∈ F̂ (R).

Then the above map αR : Hom(hR, F ) → F̂ (R) is a natural bijection, functorial in
both R and F . ¤

Definition of versal, miniversal, universal families

For a quick review of basic notions about smoothness and formal smoothness, the
reader can consult, for example, the first chapter of Milne’s ‘Etale Cohomology’.
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Let F : Artk → Sets and G : Artk → Sets be functors. Recall that a morphism of
functors φ : F → G is called formally smooth if given any surjection q : B → A
in Artk and any elements α ∈ F (A) and β ∈ G(B) such that

φA(α) = G(q)(β) ∈ F (A),

there exists an element γ ∈ F (B) such that

φB(γ) = β ∈ G(B) and F (q)(γ) = α ∈ F (A)

In other words, the following diagram of functors commutes, where the diagonal
arrow hB → F is defined by γ.

hA
α
→ F

q ↓ ↗ ↓ φ

hB
β
→ G

The morphism φ : F → G is called formally étale if it is formally smooth, and
moreover the element γ ∈ F (B) is unique.

Caution If the functors F and G are of the form hR and hS for rings R and S,
then φ is formally étale if and only if it is formally smooth and the tangent map
TR → TS is an isomorphism. However, if F and G are not both of the above form,
then a functor can φ be formally smooth, and moreover the map TF → TG can be an
isomorphism, yet φ need not be formally étale. It is because of this subtle difference
that a miniversal family can fail to be universal, as we will see in examples later.

A versal family for a covariant functor F : Artk → Sets is a pro-family (R, r)

(where R is a complete local noetherian k-algebra with residue field k, and r ∈ F̂ (R))
such that the morphism of functors r : hR → F is formally smooth.

Remark 10 If (R, r) is a versal family, then for any A in Artk, the induced set
map r(A) : hR(A)→ F (A) is surjective. For, given any v ∈ F (A), we can regard it
as a morphism v : hA → F . Now consider the following commutative square.

hk −→ hR

↓ ↓

hA
v
−→ F

By formal smoothness of hR → F , there exists a morphism u : hA → hR which makes
the above diagram commute. But such a morphism is just an element of hR(A) which
maps to v ∈ F (A), which proves that r(A) : hR(A)→ F (A) is surjective.

For any covariant functor F : Artk → Sets, the pointed set

TF = F (k[ε]/(ε2))

14



is called the tangent set to F , or the set of first order deformations under F .

A minimal versal (‘miniversal’) family (also called as a hull) for a covariant
functor F : Artk → Sets is a versal family for which the set map

dr : TR = hR(k[ε]/(ε2))→ F (k[ε]/(ε2)) = TF

is a bijection.

A universal family for a covariant functor F : Artk → Sets is a pro-family (R, r)
such that r : hR → F is a natural bijection. If a universal family exists, it is clearly
unique up to a unique isomorphism. A covariant functor F : Artk → Sets is called
pro-representable if a universal family exists. (The reason for the prefix ‘pro-’ is

that R need not be in the subcategory Artk of Ârtk.)

Remark 11 A pro-family (R, r) is universal if and only if the morphism of functors
r : hR → F is formally étale.

Example 12 A miniversal family that is not universal. Let F : Artk → Sets
be the functor

A 7→ mA/m2
A

It can be verified that F satisfies the Schlessinger conditions (H1), (H2), (H3) so
admits a hull. It can be seen that it does not satisfy Schlessinger conditions (H4)
by taking A = k[x]/(x2) and B = k[x]/(x3) with quotient map B → A : x 7→ x.
Then we have F (B ×A B) = k2, while F (B) ×F (A) F (B) = k1 with map given by
first projection k2 → k1, which is not injective, violating (H4).

In fact, a hull (R, r) for F is given by R = k[[t]] with r given by dt ∈ mR/m2
R = F̂ (R).

Note that the hull is not unique up to unique isomorphism, as it admits non-trivial
automorphisms f : R → R defined by f(t) = t + t2g(t) for arbitrary g(t) ∈ k[[t]]
(so that (df/dt)0 = 1, which means f preserves dt). This again shows that F is
not pro-representable, for whenever a functor G is pro-representable, any hull is
universal, so is unique up to unique isomorphism.

Also note that the functor pro-represented by R = k[[t]] is given by hR(A) = mA.

Exercise 13 If F : Artk → Sets admits a hull and moreover if TF = 0 then
F (A) = F (k) for all A in Artk.

3.2 Grothendieck’s theorem on pro-representability

Theorem 14 Let F : Artk → Sets be a functor such that F (k) is a singleton set.
Then F is pro-representable if and only if the following two conditions (lim) and
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(fin) are satisfied.

(lim) F preserves fibered products: for any pair of homomrphisms B → A and
C → A in Artk, the induced map F (B ×A C)→ F (B)×F (A) F (C) is bijective.1

(As a consequence of (lim), note that the set TF = F (k[ε]/(ε2)) acquires a natural
k-vector space structure.)

(fin) The k-vector space TF is finite dimensional.

Proof Consider the category Fam whose objects are all families (A,α) for the
functor F , consisting of an Artin local k-algebra A with residue field k together
with an element α ∈ F (A). A morphism (B, β) → (A,α) in Fam is a k-algebra
homomorphism f : B → A such that f∗(β) = α. Consider the induced natural map
hf : hA → hB, and the resulting direct system (hA, hf ) in Fun(Artk,Sets) indexed
by the category Fam. The morphisms α : hA → F induce a morphism of functors

Φ : colimFam hA → F

where the colimit (that is, direct limit) is taken over the category Fam. (The set-
theoretic difficulties involved in this limit – and later such limits – can be easily
bypassed by replacing Fam by a suitable small category.)

Note that the category Fam has a final element, namely (k, ∗). Moreover, as Artk

admits fibered products, and these are preserved by F , so the category Fam has
fibered products. In particular, the category Fam is cofiltered.

We now show that Φ is an isomorphism, that is, for each C in Artk the map ΦC :
colimhA(C)→ F (C) is bijective. If γ ∈ F (C), then the element idC of hC indexed
by (C, γ is an element of colimhA(C) which maps to γ ∈ F (C), showing ΦC is
surjective. As Fam is cofiltered, each element x of colimhA(C) is represented by a
homomorphism u : A→ C for some (A,α) in Fam, and any two x, y ∈ colimhA(C)
are represented by homomorphisms u, v : A → C where (A,α) is common. Let
E ⊂ A be the equalizer of u and v, that is, E = {a ∈ A|u(a) = v(a) ∈ C}. As F
preserves fibered products, it also preserves equalizers, hence F (E) is the equalizer
of F (u), F (v) : F (A) → F (C). Note that ΦC(x) = F (u)α, and Φ(y) = F (v)α,
so if Φ(x) = Φ(y) then α comes from an element γ ∈ F (E) under the inculsion
E ↪→ A. This defines an object (E, γ) of Fam, with a morphism (A,α) → (E, γ)
defined by the inclusion E ↪→ A. Then x and y are represented by the composite
homomorphisms E ↪→ A

u
→ C and E ↪→ A

v
→ C. As these are equal, we have x = y,

showing ΦC is injective. Thus we have proved that Φ is an isomorphism.

Given any (A,α) in Fam, as A is a finite dimensional vector space over k, the
intersection A′ ⊂ A of the images of all f : (B, β) → (A,α) is a finite intersection,
and as Fam has fibered products, A′ equals the image of some (D, δ)→ (A,α). Let

1As Artk has a final object and admits fibered products, this is equivalent to the statement
that F preserves all finite inverse limits, hence the name (lim).
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α′ be the restriction of δ to A′. Hence, replacing each (A,α) by the corresponding
(A′, α′), we get a full subcategory Fam′ of Fam in which every homomorphism is
surjective at the level of the underlying rings, and which is cofinal in Fam (since
given any (A,α) in Fam we have the corresponding (A′, α′) in Fam together with
a morphism (A′, α′)→ (A,α) in Fam induced by the inclusion A′ ↪→ A). Hence we
get an isomorphism

colimFam′hA → colimFamhA.

Composing with Φ, we get an isomorphism

Φ′ : colimFam′ hA → F.

Let Fam′′ be the full subcategory of Fam′ which consists of objects (A,α) for which
the induced map

α(k[ε]/(ε2) : TA → TF

is an isomorphism, where TA = hA(k[ε]/(ε2) is the tangent space to A and TF =
F (k[ε]/(ε2) is the tangent space to F . Note that when B → A is a surjective
homomorphism in Artk, the induced tangent map TA → TB is injective. As the
k-vector space F (k[ε]/(ε2) is the direct limit

colimFam′ hA(k[ε]/(ε2) = colimFam′ TA

as this direct system consists of injective k-linear maps, and as F (k[ε]/(ε2) is finite
dimensional by (fin), it follows that Fam′′ is cofinal in Fam′. Therefore to prove
the theorem, we just have to show that colimFam′′ hA is isomorphic to the functor
hR for some noetherian complete local k-algebra R with residue field k.

For each integer i ≥ 1, let Fam(i) be the full subcategory of Fam′′ formed by
the families (A,α) where mi+1

A = 0. This category is co-filtered, for if (A,α) and
(B, β) are families in Fam(i), and (C, γ) is a family in Fam′′ with morphisms
f : (C, γ) → (A,α) and g : (C, γ) → (B, β), then (C/mi+1

C , γ/mi+1
C ) is a family

in Fam(i) with morphisms f/mi+1
C and g/mi+1

C to the two families. Note that if
dimk(TF ) = n, then for any (A,α) in Fam(i) we must have

dimk(A) ≤ dimk(k[[x1, . . . , xn]]/(x1, . . . , xn)i+1

as A must be a quotient of k[[x1, . . . , xn]]. An object X in a category C is called a
co-final object if given any other object Y , there exists a morphism X → Y . As each
homomorphism in Fam(i) is by assumption surjective, and as Fam(i) is co-filtered,
the above bound on dimension shows that Fam(i) has a co-final element (Ri, αi),
which we can choose to be any family with dimk(Ri) the maximum possible.

Note that we have a homomorphism fi+1 : (Ri+1, αi+1) → (Ri, αi) in Fam′′, which
is surjective. Recall that the induced map TRi

→ TRi+1
is an isomorphism. Consider

the following inverse system in Artk.

R1
f2
← R2

f3
← R3 . . .

17



As the fi are surjective maps which are tangent-level isomorphisms, the inverse limit
ring

R = lim (Ri, fi)

is a complete noetherian local k-algebra with residue field k. As the collection
(Ri, αi) is cofinal in Fam′′, we get

hR = colimihRi
= colimFam′′ hA

and thereby the theorem is proved. ¤

3.3 Schlessinger’s theorem on hull and pro-representability

15 Let G be a group, and p : E → B a map of sets, and let there be given an
action E ×G→ E over B (means p(x · g) = p(x) for all x ∈ E and g ∈ G). We say
that this data defines a relative principal G-set over B if the resulting map

E ×G→ E ×B E : (x, g) 7→ (x, x · g)

is bijective. In particular, this means that the non-empty fibers of p (if any) have a
bijection with G which is well-defined up to left translations on G.

Example 16 Let ∅ be the empty set. Then for any set B and any group G, the
unique map p : ∅ → B defines a relative principal G-set over B.

Theorem 17 (Schlessinger)

Existence of a hull : Let F : Artk → Sets be a covariant functor such that F (k)
is a singleton set. Then F admits a hull if and only if the following three conditions
(H1), (H2), (H3) are satisfied.

(H1) Given any three objects A, B, and C of Artk, with morphisms B → A and
C → A such that C → A is surjective with kernel a principal ideal I which satisfies
mCI = 0, consider the diagram

B ×A C −→ C
↓ ↓
B −→ A

Then the induced map F (B ×A C)→ F (B)×F (A) F (C) is surjective.

(H2) Let B be any object in Artk. Consider the diagram

B ×k k[ε]/(ε2) −→ k[ε]/(ε2)
↓ ↓
B −→ k

18



Then the induced map F (B ×k k[ε]/(ε2)) → F (B) ×F (k) F (k[ε]/(ε2)) = F (B) ×
F (k[ε]/(ε2)) is bijective.

(As a consequence, the tangent set TF = F (k[ε]/(ε2)) gets the structure of a k-vector
space, with the base point of TF as the zero vector, such that given any family (R, r),
the map TR → TF becomes linear.)

(H3) With the above k-linear structure, the k-vector space TF is finite dimensional.

Pro-representability : A covariant functor F : Artk → Sets, for which F (k) is a
singleton set, is pro-representable if and only if it satisfies conditions (H1), (H2),
(H3) (as above) and (H4):

(H4) If B → A is a surjection in Artk with kernel I such that mBI = 0 where
mB ⊂ B is the maximal ideal of B, then the following map of sets is bijective.

F (B ×A B)→ F (B)×F (A) F (B)

Proof Equivalent versions: (H1) ⇔ (H1’) and (H2) ⇔ (H2’)

(H1’) Given any three objects A, B, and C of Artk, with morphisms B → A and
C → A such that C → A is surjective, consider the diagram

B ×A C −→ C
↓ ↓
B −→ A

Then the induced map F (B ×A C)→ F (B)×F (A) F (C) is surjective.

Clearly, (H1’) ⇒ (H1). We now show implication (H1) ⇒ (H1’). If dimk(C) =
dimk(A) as k-vector space, then the surjection C → A is an isomorphism, and we
are done. Otherwise, we can reduce to the case where dimk(C) = dimk(A) + 1 (the
case of a small extension) as follows. The surjective homomorphism p : C → A can
be factored in Artk as the composite of a finite sequence of surjections

C = Cn → Cn−1 → . . .→ C1 → C0 = A

where N ≥ 1 is an integer such that mn
C = 0, and Cj = C/mjI where I is the kernel

of C → A. We can construct an element of F (B ×A C) above a given element of
F (B)×F (A)F (C) by step-by-step constructing elements of F (B×AC1), F (B×AC2),
etc. Therefore without loss of generality we can assume that mCI = 0. This means
I is just a finite dimensional k-vector space. Next, we can filter I by subspaces
I1 ⊂ I2 ⊂ . . . Id = I where d = dimk(I) and dim(Ij) = j. The Ij are automatically
ideals in C. The surjection C → A factors as the composite

C → C/I1 → . . .→ C/Id = A

So again can construct an element of F (B×AC) above a given element of F (B)×F (A)

F (C) by step-by-step constructing elements of F (B ×A C/I1), F (B ×A C/I2), etc.
This completes the proof that (H1)⇒ (H1’).
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(H2’) The set F (k) is a singleton set. Moreover the following holds. Let B be any
object in Artk, and let C = k〈V 〉 where V is a finite dimensional k-vector space.
Consider the diagram

B ×k C −→ C
↓ ↓
B −→ k

Then the induced map F (B×k C)→ F (B)×F (k) F (C) = F (B)×F (C) is bijective.

Clearly, (H2’) ⇒ (H2) by taking V = k1. To show the converse, we choose a basis
(v1, . . . , vn) for V , which gives an isomorphism

k[ε1, . . . , εn]

(ε1, . . . , εn)2
→ k〈V 〉 : εi 7→ vi

Then by repeated application of (H2), it follows that (H2) ⇒ (H2’).

Versal implies (H1) : Let (R, r) be a versal family for F , where R is a noetherian

complete local k-algebra with residue field k, and r ∈ F̂ (R) = Hom(hR, F ) is such
that r : hR → F is formally smooth. We wish to show that F (B×AC)→ F (B)×F (A)

F (C) is surjective when C → A is surjective. For this, let (b, c) ∈ F (B)×F (A) F (C),
with both b and c mapping to the same element a ∈ F (A). We will construct an
element d ∈ F (B ×A C) which lies above (b, c), by constructing a suitable element

δ ∈ hR(B ×A C) = hR(B)×hR(A) hR(C)

and then defining d as the image of δ under hR → F .

By Remark 10, the induced map r(B) : hR(B) → F (B) is surjective for any B
in Artk. Therefore given any element (b, c) ∈ F (B) ×F (A) F (C), we can choose
β ∈ hR(B) which maps to b ∈ F (B). Let β 7→ α ∈ hR(A) under the map induced
by the homomorphism B → A. In particular, α 7→ a ∈ F (A) under hR → F .

Now consider the commutative square

hA
α
−→ hR

↓ ↓

hC
c
−→ F

By surjectivity of C → A and formal smoothness of hR → F , there exists a morphism
γ : hC → hR which makes the above diagramme commute. We regard γ as an
element of hR(C). So we get an element δ = (β, γ) ∈ hR(B)×hR(A) hR(C). It can be
seen that this element is what we were looking for. This completes the proof that
versal implies (H1).

Miniversal implies (H2) : We wish to show that

F (B ×k k[ε]/(ε2))→ F (B)× TF
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is bijective, where TF = F (k[ε]/(ε2)). As surjectivity is already proved above, we
just have to check injectivity. For this, let e1, e2 ∈ F (B ×k k[ε]/(ε2)) such that both
map to the same element (b, u) ∈ F (B) × TF . As r : hR → F induces a surjection
hR(B) → F (B), there exists an element β ∈ hR(B) (that is, a morphism β :
Spec B → Spec R over Spec k) such that β 7→ b. Consider the following commutative
square where C denotes k[ε]/(ε2).

hB
β
−→ hR

↓ ↓

hB×kC
ei−→ F

By surjectivity of B ×k C → B and formal smoothness of hR → F , there exists
fi : hB×kC → hR (that is, a morphism fi : Spec B ×k C → Spec R over Spec k)
which makes the above diagram commute. We can regard fi to be an element of
hR(B ×k C) = hR(B) × hR(C). As such, by commutativity of the diagram we
must have fi = (β,wi) for wi ∈ hR(C). As both w1, w2 must map to u under
hR(C) → F (C), and as by assumption, hR(C) → F (C) is bijective, we must have
w1 = w2. Therefore e1 = e2, proving (H2).

Linear structure on TF given by (H2) : We have a functor FinV ectk → Artk
which sends V 7→ k〈V 〉 = k ⊕ V with obvious k-algebra structure. Given functor
F : Artk → Sets, by composition we get f : FinV ectk → Sets, under which
V 7→ f(V ) = F (k〈V 〉). The condition (H2) means that we can apply Lemma 1 to
this functor f , which gives us a structure of a vector space on the set TF . The zero
vector is the distinguished point of the set TF , as the zero vector space in FinV ectk

maps to the k-algebra k〈0〉 = k. The linearity of the map TR → TF for any family
(R, r) is clear.

Miniversal implies (H3) : As (H2) holds, TF acquires a natural structure of a
k-vector space as described above, such that TR → TF becomes a linear map for
any family (R, r). If moreover (R, r) is miniversal, the map TR → TF is bijective
by definition of miniversality. Therefore, TR → TF is a linear isomorphism for any
miniversal family (R, r), hence as TR is finite dimensional, so is TF .

This completes the proof that existence of a hull implies that the conditions (H1),
(H2), (H3) are satisfied.

Pro-representability implies (H1), (H2), (H3), (H4) : Obvious.

Existence of hull together with (H4) implies pro-representability : We will
show that any hull (R, r) is in fact a universal family. Let B → A be a surjection
in Artk with kernel I such that mBI = 0 where mB ⊂ B is the maximal ideal of B.
Then we have an isomorphism of k-algebras

B ×A B → B ×k k〈I〉 : (x, y) 7→ (x, (x, x− y))

where k〈I〉 = k ⊕ I with I2 = 0 and x ∈ k denotes the image of x ∈ B under
B → B/mB = k. (The fact that the above map preserves ring multiplication follows

21



from mBI = 0). As we have shown that existence of hull implies (H2), the above
isomorphism gives a bijection

F (B ×A B)
∼
→ F (B)× F (k〈I〉)

Now, repeated application of (H2) gives for any finite dimensional k-vector space
V a bijection

F (k〈V 〉) = TF ⊗ V

so the above bijection becomes

F (B ×A B)
∼
→ F (B)× (TF ⊗ I)

If F (p1) : F (B ×A B) → F (B) is induced by the first projection p1 : B ×A B → B
and if F (B)× (TF ⊗ I)→ F (B) is the first projection, then the following diagram
commutes.

F (B ×A B) → F (B)× (TF ⊗ I)
F (p1) ↓ ↓

F (B) = F (B)

The map F (B ×A B)→ F (B)×F (A) F (B) therefore becomes a map

α : F (B)× (TF ⊗ I)→ F (B)×F (A) F (B)

which commutes with the first projections on F (B).

It can be verified that the second projection on F (B) in the above map in fact
defines an action of the group TF ⊗ I on the set F (B).

By (H1) the map α is surjective, which shows that the group TF⊗I acts transitively
on each fibre of F (B)→ F (A).

If (H4) holds, then the following map of sets is bijective.

F (B ×A B)→ F (B)×F (A) F (B)

Therefore, the map

α : F (B)× (TF ⊗ I)→ F (B)×F (A) F (B)

is a bijection, which means that each fibre of F (B) → F (A) is a principal set
(possibly empty) under the group TF ⊗ I.

Now we assume that there exists a miniversal family (R, r) for F . We will show that
(R, r) is universal. For this, we must show that the map r(B) : hR(B) → F (B) is
a bijection for each object B of Artk. This is clear for B = k. So now we proceed
by induction on the smallest positive integer n(B) for which m

n(B)
B = 0 (for B = k

we have n = 1). For a given B, suppose n(B) ≥ 2. Let I = m
n(B)−1
B so that

mBI = 0. Let A = B/I, so that n(A) = n(B) − 1, which by induction gives a
bijection r(A) : hR(A)→ F (A). Consider the commutative square

hR(B) → F (B)
↓ ↓

hR(A) = F (A)

22



Note that hR(B)→ hR(A) is a relative principal TR⊗I-set over hR(A) (see definition
15), and the map r(B) : hR(B) → F (B) is TF ⊗ I-equivariant, where we identify
TR with TF via r : hR → F . It follows that r(B) : hR(B) → F (B) is injective. As
r(B) : hR(B) → F (B) is already known to be surjective by versality, this shows
that r(B) is bijective, thus (R, r) pro-represents F .

Construction of a universal first order family assuming (H2) and (H3) :
By (H2), the set TF has a natural structure of a k-vector space, and by (H3) it is
finite dimensional. Let T ∗F be its dual vector space, and let A = k〈T ∗F 〉 ∈ Artk. Note
that TA = TF . The identity endomorphism θ ∈ End(TF ) = TF ⊗T ∗F = F (A) defines
a family (A, θ), which can be seen to have the following properties.

(i) The map θ : hA → F induces the identity isomorphism TF → TF .

(ii) Let (R, r) be any family for F parametrised by R ∈ Ârtk. Let R1 = R/m2
R

and let r1 = r|R1
. Then there exists a unique k-homomorphism A → R1 such that

r1 ∈ F (R1) is the image of θ ∈ F (A).

(H1), (H2), (H3) imply the existence of a hull : The proof will go in two
stages. First, we will construct a family (R, r), which will be our candidate for a
hull. Next, we prove that the family (R, r) is indeed a hull.

Construction of a family (R, r) : Let S be the completion of the local ring at
the origin of the affine space Spec Symk(T

∗
F ). If x1, . . . , xd is a linear basis for T ∗F ,

then S = k[[x1, . . . , xd]]. Let n = (x1, . . . , xd) ⊂ S denote the maximal ideal of S.
We will construct a versal family (R, r) where R = S/J for some ideal J . The ideal
J will be constructed as the intersection of a decreasing chain of ideals

n2 = J2 ⊃ J3 ⊃ J4 ⊃ . . . ⊃ ∩∞q=2 Jq = J

such that at each stage we will have

Jq ⊃ Jq+1 ⊃ nJq

Consequently, we will have Jq ⊃ nq which in particular means R/Jq ∈ Artk, and
Jq/J is a fundamental system of open neighbourhoods in R = S/J for the m-adic
topology on R, where m = n/J is the maximal ideal of R. Note that R is complete
for the m-adic topology.

In fact, if S is any noetherian local ring with maximal ideal n, then any ideal J ⊂ S is automatically

closed in the n-adic topology as ∩i≥1 (J + ni) = J (which follows from Krull’s theorem that

∩i≥1 ni = 0). If S is complete, then the quotient R is again a complete local ring which means

complete for m-adic topology where m = J/n is the maximal ideal of R.

Starting with q = 2, we will define for each q an ideal Jq and a family (Rq, rq)
parametrised by Rq = S/Jq, such that rq+1|Rq

= rq. We take J2 = n2. On R2 =
S/n2 = k〈T ∗F 〉 we take q2 to be the ‘universal first order family’ θ constructed earlier.
Having already constructed (Rq, rq), we next take Jq+1 to be the unique smallest
ideal in the set Ψ of all ideals I ⊂ S which satisfy the following two conditions:
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(1) We have inclusions Jq ⊃ I ⊃ nJq.

(2) There exists a family α (need not be unique) parametrised by R/I which prolongs
rq, that is, α|Rq

= rq.

Note that Ψ is non-empty as Jq ∈ Ψ. Also, as S/nJq is artinian (being a quotient
of S/nq+1), the set Ψ has at least one minimal element.

We will now show that Ψ has a unique minimal element, by showing that if I1, I2 ∈ Ψ
then I0 = I1 ∩ I2 ∈ Ψ.

Consider the vector space Jq/nJq and its subspaces I1/nJq, I2/nJq, and I0/nJq. Let

u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, z1, . . . , zd ∈ Jq

be elements such that

(i) u1, . . . , ua (mod nJq) is a linear basis of I0/nJq,

(ii) u1, . . . , ua, v1, . . . , vb (mod nJq) is a linear basis of I1/nJq,

(iii) u1, . . . , ua, w1, . . . , wc (mod nJq) is a linear basis of I2/nJq, and

(iv) u1, . . . , ua, v1, . . . , vb, w1, . . . , wc, z1, . . . , zd (mod nJq) is a linear basis of Jq/nJq.

Let I3 = (u1, . . . , ua, w1, . . . , wc, z1, . . . , zd)+nJq. Then we have I2 ⊂ I3, I1∩ I3 = I0

and I1 + I3 = Jq. Note that we have

S

I1

×“ S
I1+I3

”

S

I3

=
S

I1 ∩ I3

As I1 + I3 = Jq and I1 ∩ I3 = I0, this reads

S

I1

×“ S
nJq

”

S

I3

=
S

I0

As (H1) is satisfied, this gives surjection

F

(
S

I0

)
= F

(
S

I1

×“ S
Jq

”

S

I3

)
→ F

(
S

I1

)
×

F
“

S
Jq

” F

(
S

I3

)

Let α1 ∈ F (S/I1) and α2 ∈ F (S/I2) be any prolongation of rq ∈ F (S/Jq), which
exist as I1, I2 ∈ Ψ. Let α3 = α2|S/I3 . This defines an element

(α1, α3) ∈ F

(
S

I1

)
×

F
“

S
Jq

” F

(
S

I3

)

Therefore by (H1) there exists α0 ∈ F (S/I0) which prolongs both α1 and α3 (it
might not prolong α2). This means α0 prolongs rq, so I0 ∈ Ψ as was to be shown.

Therefore Ψ has a unique minimal element Jq+1, and we choose rq+1 ∈ F (S/Jq+1)
to be an arbitrary prolongation of rq (not claimed to be unique).

Now let J be the intersection of all the Jn, and let R = S/J . We want to define an

element r ∈ F̂ (R) which restricts to rq on S/Jq for each q. This makes sense and is
indeed possible, as we will show using the following lemma.

24



Lemma 18 Let R be a complete noetherian local ring with with maximal ideal m.
Let I1 ⊃ I2 ⊃ . . . be a decreasing sequence of ideals such that (i) the intersection
∩n≥1In is 0, and (ii) for each n ≥ 1, we have In ⊃ mn. Then the natural map
f : R → lim←R/In is an isomorphism. Moreover, for any n ≥ 1 there exists an
q ≥ n such that mn ⊃ Iq.

Proof Recall that an inverse system (En) indexed by natural numbers is said to
satisfies the Mittag-Leffler condition if for each n the decreasing filtration

En ⊃ im(En+1) ⊃ im(En+2) ⊃ im(En+3) ⊃ . . .

stabilises in finitely many steps. Whenever 0 → (En) → (Fn) → (Gn) → 0 is a
short exact sequence of inverse systems such that (En) satisfies the Mittag-Leffler
condition, then the resulting limit sequence

0→ lim
←

En → lim
←

Fn → lim
←

Gn → 0

is again short exact.

As In ⊃ mn by assumption, we get the following short exact sequence of inverse
systems:

0→ (In/m
n)→ (R/mn)→ (R/In)→ 0

The inverse system (In/m
n) satisfies the Mittag-Leffler condition, as it consists of

finite dimensional k-vector spaces and k-linear maps. This gives a short exact se-
quence

0→ lim
←

In/m
n → R

f
→ lim

←
R/In → 0

where we have put R = lim←R/mn by assumption of completeness of R. In other
words, f is surjective.

As ∩n≥1In = 0, it follows directly from its definition that f : R → lim←R/In is
injective. Therefore f is an isomorphism.

As f is injective, it follows that lim← In/m
n = 0, which means that the decreasing

filtration In/m
n ⊃ im(In+1/m

n+1) ⊃ im(In+2/m
n+2) ⊃ . . . stabilises to zero. As we

have already argued (the Mittag-Leffler condition), the decreasing filtration must
stabilise in finitely many steps. Therefore there is some q ≥ n for which the map
Iq/m

q → In/m
n is zero. This means for each n there exists an q ≥ n such that

mn ⊃ Iq as desired.

This completes the proof of the Lemma 18. ¤

Construction of the family (R, r) (continued) : We will apply Lemma 18 to
the following. Let R = S/J , which is a complete noetherian local ring with with
maximal ideal m = n/J , and let Iq = Jq/J for q ≥ 2. (It does not matter, but
can take J1 = n and I1 = m for the sake of notation). By construction, we have
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Jq ⊃ Jq+1 ⊃ nJq, which means Iq ⊃ Iq+1 ⊃ mIq. In particular, this means Iq ⊃ mq.
As J = ∩Jq, we get ∩Iq = 0. Therefore by Lemma 18, for each n ≥ 1 there exists a
q ≥ n with

In ⊃ mn ⊃ Iq

and in particular the natural map R→ lim←R/In is an isomorphism.

Note that S/Jq = R/Iq. Recall that we have already chosen an inverse system of
elements rq ∈ F (R/Iq). For each n choose the smallest qn ≥ n such that mn ⊃ Iqn

.
We have a natural surjection R/Iqn

→ R/mn. Let

θn = rqn
|R/mn

Then from its definition it follows that under R/mn+1 → R/mn, we have

θn = θn+1|R/mn

Therefore (θn) defines an element

r = (θn) ∈ lim
←

F (R/mn) = F̂ (R)

Verification that (R, r) is a hull for F : By its construction, the map TR → TF

is an isomorphism. So all that remains is to show that hR → F is formally smooth.
This means given any surjection p : B → A in Artk and a commutative square

hA
u∗

→ hR

p∗ ↓ ↓ r

hB
b
→ F

there exists a diagonal morphism v∗ : hB → hR which makes the above square
commute. (Here we have used the following notation: u∗ : hA → hR corresponds to
a homomorphism u : R → A, p∗ : hA → hB corresponds to p : B → A, b : hB → F
corresponds to b ∈ F (B) by Yoneda, r : hR → F corresponds to r ∈ F̂ (R) by ‘limit
Yoneda’, and what we are seeking is a homomorphism v : R → B such that the
above diagram commutes.

Reduction to a small extension : If dimk(B) = dimk(A) as k-vector space, then
the surjection B → A is an isomorphism, and we are done. Otherwise, we can
reduce to the case where dimk(B) = dimk(A) + 1 (the case of a small extension) as
follows. The surjective homomorphism p : B → A can be factored in Artk as the
composite of a finite sequence of surjections

B = Bn → Bn−1 → . . .→ B1 → B0 = A

where N ≥ 1 is an integer such that mn
B = 0, and Bj = B/mjI where I is the kernel

of B → A. We can construct the desired homomorphism v : R→ B by step-by-step
constructing v1 : R→ B1, v2 : R→ B2, etc. Therefore without loss of generality we
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can assume that mBI = 0. This means I is just a finite dimensional k-vector space.
Next, we can filter I by subspaces I1 ⊂ I2 ⊂ . . . Id = I where d = dimk(I) and
dim(Ij) = j. The Ij are automatically ideals in B. The surjection B → A factors
as the composite

B → B/I1 → . . .→ B/Id = A

Therefore, without loss of generality we can assume that the following:

19 The surjection p : B → A in Artk satisfies mBI = 0 and dimk(I) = 1 where
I = ker(p). Equivalently, dimk(B) = dimk(A) + 1.

It is enough to find some w : R → B which lifts u : Suppose there exists a
homomorphism w : R→ B such that

u = p ◦ w : R→ B → A

Using such a w, we will construct a homomorphism v : R → B as needed in the
proof of formal smoothness of hR → F , which satisfies both

u = p ◦ v : R→ B → A and r ◦ v∗ = b : hB → F (B)→ F (A)

(In short, using a diagonal w∗ which makes only the upper triangle commute, we will construct a

new diagonal v∗ which makes both triangles commute, giving the desired commutative diagram.)

Consider the following commutative square:

hR(B)
r(B)
→ F (B)

hR(p) ↓ ↓ F (p)

hR(A)
r(A)
→ F (A)

As the kernel I of p : B → A satisfies mBI = 0, and as the functor hR satisfies (H1),
there is a natural transitive action of the additive group G = TR ⊗ I on each fibre
of the set map hR(B)→ hR(A). (In fact, as hR also satisfies (H4), hR(B)→ hR(A)
is a principal TR ⊗ I-set, but we do not need this here.) As by hypothesis the
functor F satisfies (H1), there is a natural transitive action of the additive group
G = TF ⊗ I on each fibre of the set map F (B) → F (A). Under the isomorphism
TR → TF , the top map r(B) : hR(B)→ F (B) in the above square is G-equivariant.
As u = p ◦w, the elements r(B)w and b both lie in the same fibre of F (B)→ F (A),
over r(A)u ∈ F (A). Therefore, there exists some α ∈ G (not necessarily unique)
such that

b = r(B)w + α

Let v = w + α ∈ hR(B). By G-equivariance of r(B), we get

r(B)v = r(B)(w + α) = r(B)w + α = b

Also, as the action of G preserves the fibers of hR(B)→ hR(A), we have

p ◦ v = p ◦ (w + α) = p ◦ w = u

Therefore v has the desired property.
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Remark 20 Let B → A be a surjection in Artk such that dimk(B) = dimk(A)+1
(equivalently, the kernel I of the surjection satisfies mBI = 0 and dimk(I) = 1).
Suppose that B → A does not admit a section A → B. Then for any k-algebra
homomorphism S → B, the composite S → B → A is surjective (if and) only if
S → B is surjective.

Existence of w : R → B with p ◦ w = u : The homomorphism u : R → A must
factor via Rq = R/mq for some q ≥ 1, giving a homomorphism uq : Rq → A.

As before, let S = k[[x1, . . . , xd]] be the complete local ring at the origin of the affine
space Spec Symk(T

∗
F ), with R = S/J . We are given a diagram

Spec A
u∗

q

→ Spec Rq → Spec R ↪→ Spec S
↓ ↓

Spec B → Spec k

The morphism Spec S → Spec k is formally smooth, therefore, there exists a diagonal
homomorphism f ∗ : Spec B → Spec S which makes the above diagram commute.
Equivalently, there exists a k-algebra homomorphism f : S → B such that p ◦ f =
u ◦ π : S → A where π : S → R = S/J is the quotient map. Therefore, we get a
commutative square

S
f
→ B

↓ ↓

Rq
uq

→ A

where the vertical maps are the quotient maps πq : S → S/Jq = Rq, and p : B → A.
This defines a k-homomorphism

ϕ = (πq, f) : S → Rq ×A B

The composite S → Rq ×A B → Rq is πq which is surjective. As by assumption
dimk(B) = dimk(A) + 1, it follows that

dimk(Rq ×A B) = dimk(Rq) + 1

Therefore by Remark 20, at least one of the following holds:

(1) The projection Rq ×A B → Rq admits a section (id, s) : Rq → Rq ×A B, in other
words, there exists some s : Rq → B such that p ◦ s = uq : Rq → A.

(2) The homomorphism ϕ : S → Rq ×A B is surjective.

If (1) holds, then we immediately get a lift

v : R→ Rq
s
→ B

of u : R→ A, completing the proof.
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If (2) holds, then we claim that ϕ : S → Rq ×A B factors through S → S/Jq+1 =
Rq+1, thereby giving a homomorphism s′ : Rq+1 → B such that p ◦ s′ = uq+1 :
Rq+1 → A. This immediately gives a lift

v : R→ Rq+1
s′
→ B

of u : R→ A, again completing the proof.

Therefore, all that remains is to show that if ϕ : S → Rq ×A B is surjective, then it
must factor through S → S/Jq+1 = Rq+1.

Let K = ker(ϕ) ⊂ S, so that Rq ×A B gets identified with S/K by surjectivity of
ϕ. We have the families rq ∈ F (Rq), a ∈ F (A) and b ∈ F (B) such that both rq and
b map to a under Rq → A and B → A. By (H1) the map

F (Rq ×A B)→ F (Rq)×F (A) F (B)

is surjective, so there exists a family µ ∈ F (Rq ×A B) = F (S/K) which restricts
to rq ∈ F (Rq). This means the ideal K is in the set of ideals Ψ defined earlier
while constructing the nested sequence J2 ⊃ J3 ⊃ . . . of ideals in S. By minimality
of Jq+1, we have K ⊃ Jq+1. Therefore ϕ : S → Rq ×A B = S/K factors through
S → S/Jq+1 = Rq+1 as desired.

This completes the proof of Schlessinger’s theorem. ¤

3.4 Application to examples

Preliminaries: Some lemmas on flatness

Remark 21 (Nilpotent Nakayama) Let A be a ring and J ⊂ A a nilpotent
ideal (there exists some n ≥ 1 such that Jn = 0). If M is any A-module with
M = JM then M = 0. For, we have the chain of equalities M = JM = J 2M =
. . . = JnM = 0. This simple remark is generalised by the following lemma.

Lemma 22 (Schlessinger Lemma 3.3) Let A be a ring and J ⊂ A a nilpotent ideal
(there exists some n ≥ 1 such that Jn = 0). Let u : M → N be a homomorphism
of A-modules where N is flat over A. If u : M/JM → N/JN is an isomorphism,
then u is an isomorphism.

Proof If C is the cokernel of u, then it follows by surjectivity of u and right-
exactness of − ⊗A (A/J) that C/JC = 0. Therefore C = JC. By iteration,
C = JC = J2C = . . . = JnC = 0 · C = 0. So we have a short exact sequence
0 → K → M → N → 0, where K = ker(u). By flatness of N , we get the short
exact sequence 0→ K/JK →M/JM → N/JN → 0. As u is injective, K/JK = 0.
Therefore as above, K = 0. ¤

Corollary 23 Flat modules over an artin local ring are free.
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Proof Let M be flat over an artin local ring A. Let (vi)i∈I be a k-linear basis of
M⊗Ak, where k denotes the residue field of A. (The indexing set I could be infinite.)
Let N = ⊕IA be the direct sum of I copies of A, which is a free A-module, with
standard basis denoted by (ei)i∈I . Let u : N →M be the surjective homomorphism
defined by ei 7→ vi. Then u : M/mM → N/mN is an isomorphism, where m ⊂ A is
the maximal ideal. As A is artinian, m is nilpotent, so the desired conclusion follows
from the above lemma. ¤

Lemma 24 Let A be an artin local ring, and M an A-module (not-necessarily
finitely generated). Then M is flat if and only if TorA

1 (A/m, M) = 0.

Proof If M is flat, then TorA
1 (N, M) = 0 for each A-module N , in particular, for

N = A/m. For the converse, choose a basis (xi)i∈I for the vector space M/mM over
the residue field A/m. Let (ei)i∈I be the standard basis for the direct sum F = A⊕I .
Consider the A-linear map ϕ : F → M : ei 7→ xi. Then going modulo m, we have
an isomorphism ϕ : F/mF →M/mM , which shows that

ϕ(F ) + mM = M

This means m(M/ϕ(F )) = M/ϕ(F ), so by the Remark 21, we get ϕ(F ) = M , so
ϕ is surjective. Let N = ker(ϕ) so that we have a short exact sequence 0 → N →
F → M → 0 by surjectivity of ϕ. Applying (A/m) ⊗A − to this we get the exact
sequence

0→ TorA
1 (A/m, M)→ N/mN → F/mF →M/mM → 0

As TorA
1 (A/m, M) = 0 and as F/mF → M/mM is an isomorphism, we get

N/mN = 0. Therefore again by Remark 21, we get N = 0, which shows ϕ : F →M
is an isomorphism. ¤

Lemma 25 Let k be a field and V a finite dimensional k-vector space. Let M a
module over k〈V 〉, not necessarily finitely generated. Then M is flat over k〈V 〉 if
and only if the map

V ⊗k
M

V M
→ V M

induced by scalar multiplication is an isomorphism.

Proof Note that we have a natural isomorphism

V ⊗k〈V 〉 M
∼
→ V ⊗k (M/V M) : v ⊗k〈V 〉 x 7→ v ⊗k x

Consider the following short exact sequence of k〈V 〉-modules:

0→ V → k〈V 〉 → k → 0
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On applying the functor −⊗k〈V 〉 M , this gives the following exact sequence:

0→ Tor
k〈V 〉
1 (k,M)→ V ⊗k (M/V M)→M →M/V M → 0

By Lemma 24, M is flat if and only if Tor
k〈V 〉
1 (k,M) = 0. Therefore, the lemma

follows. ¤

The following lemma is an example of non-flat descent: even though Spec(A′)→
Spec(B) and Spec(A′′)→ Spec(B) is not necessarily a flat cover of Spec(B), we get
a flat module N on B from flat modules M ′ and M ′′ on A′ and A′′.

Lemma 26 (Schlessinger Lemma 3.4) Let A′ → A and A′′ → A be ring homomor-
phisms, such that A′′ → A is surjective with its kernel a nilpotent ideal J ⊂ A′′. Let
B = A′ ×A A′′, with B → A′ and B → A′′ the projections. Let M , M ′ and M ′′ be
modules over A, A′, A′′, together with A′-linear homomorphism u′ : M ′ → M and
A′′-linear homomorphism u′′ : M ′′ → M which give isomorphisms M ′ ⊗A′ A → M
and M ′′ ⊗A′′ A→M . Let N be the B-module

N = M ′ ×M M ′′ = {(x′, x′′) ∈M ′ ×M ′′ |u′(x′) = u′′(x′′) ∈M}

where scalar multiplication by elements (a′, a′′) ∈ B is defined by (a′, a′′) · (x′, x′′) =
(a′x′, a′′x′′). If M ′ and M ′′ are flat modules over A′ and A′′ respectively, then N
is flat over B. Moreover, the projection maps N → M ′ and N → M ′′ induce
isomorphisms N ⊗B A′

∼
→M ′ and N ⊗B A′′

∼
→M ′′.

Proof (Only in the case where M ′ is a free A′-module) : Note that if A′ is

artin local, then we are automatically in this case by Corollary 23. This is therefore the

only case which we need in these notes.

Let (x′i)i∈I be a free basis for M ′ over A′. As M ′ ⊗A′ A → M is an isomorphism,
this gives a free basis u′(x′i) of M over A.

As A′′ → A is surjective, any element
∑

y′′j ⊗a′′j of M ′′⊗A′′ A equals x′′⊗ 1 for some
(not necessarily uniquely determined) element x′′ ∈ M ′′. Therefore the assumption
of surjectivity of M ′′ ⊗A′′ A→M tells us that u′′ : M ′′ →M must be surjective.

Therefore, we can choose elements x′′i ∈ M ′′ such that u′′(x′′i ) = u′(x′i). Let N =
⊕IA

′′ be the free A′′-module on the set I, with standard basis denoted by (ei)i∈I ,
and let u : N → M ′′ be defined by ei 7→ x′′i . Then u : N/JN → M ′′/JM ′′ = M is
an isomorphism. Therefore by Lemma 22, u is an isomorphism, which shows M ′′ is
free with basis (x′′i )i∈I . It follows that N is free over B, with basis (x′i, x

′′
i )i∈I . It is

now immediate that the projections N → M ′ and N → M ′′ induce isomorphisms
N ⊗B A′

∼
→M ′ and N ⊗B A′′

∼
→M ′′. ¤
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Corollary 27 (Schlessinger Corollary 3.6) With hypothesis and notation as in the
above lemma, let L be a B module, and q′ : L → M ′ and q′′ : L → M ′′ B-linear
homomorphisms, such that the following diagram commutes:

L
q′′

→ M ′′

q′ ↓ ↓ u′′

M ′ u′

→ M

Suppose that q′ induces an isomorphism L ⊗B A′ → M ′. Then the map (q′, q′′) :
L→ N = M ′ ×M M ′′ is an isomorphism of B-modules.

Proof The kernel of the projection B → A′ is the ideal

I = 0× J ⊂ A′ ×A A′′ = B

The ideal I is nilpotent as by assumption J is nilpotent. The desired result follows by
applying Lemma 22 to the B-homomorphism u = (q′, q′′) : L → N , which becomes
the given isomorphism L ⊗B A′ → M ′ on going modulo the nilpotent ideal I ⊂ B.
¤

Hull for coherent sheaves

Let X be a proper scheme over a field k, and let E be a coherent sheaf of OX-
modules. The deformation functor DE of E is the covariant functor Artk → Sets
defined as follows. For any A in Artk, we take DE(A) to be the set of all equivalence
classes of pairs (F, θ) where F is a coherent sheaf on XA = X⊗k A which is flat over
A, and θ : i∗F → E is an isomorphism where i : X ↪→ XA is the closed embedding
induced by A→ k, with (F, θ) and (F ′, θ′) to be regarded as equivalent when there
exists some isomorphism η : F → F ′ such that θ′ ◦ i∗(η) = θ. It can be seen that
DE(A) is indeed a set. Given any morphism f : Spec B → Spec A in (Artk)

op and
an equivalence class (F, θ) in DE(A), we define f ∗(F, θ) in DE(B) to be obtained by
pull-back under the morphism f : XB → XA. This operation preserves equivalences,
and thus it gives us a functor DE : Artk → Sets.

Theorem 28 Let X be a proper scheme over a field k. Let E be a coherent sheaf on
X. Then the deformation functor DE : Artk → Sets of E as defined above admits
a hull, with tangent space Ext1(E,E).

Proof We will show that the conditions (H1), (H2), (H3) in the Schlessinger
Theorem 17 are satisfied by our functor DE.

Verification of (H1): An element of DE(A′) ×DE(A) DE(A′′) is an ordered tuple
(F ′, θ′, F ′′, θ′′) where (F ′, θ′) ∈ DE(A′) and (F ′′, θ′′) ∈ DE(A′′), such that there exists
an isomorphism η : F ′|A → F ′′|A which makes the following diagram commutes:

F ′|X
i∗(η)
→ F ′′|X

θ′ ↓ ↓ θ′′

E = E
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Caution: We do not have a particular choice of η given to us. We will now arbi-
trarily choose one such η and fix it for the rest of the proof.

Let F = F ′′|A, let u′′ : F ′′ → F be the quotient and let u′ : F ′ → F be induced by
η. Let B = A′ ×A A′′, and let G be the sheaf of OXB

-modules defined by

G = F ′ ×u′,F,u′′ F ′′

This is clearly coherent, as the construction can be done on each affine open and
glued. By Lemma 26 applied stalk-wise, the sheaf G is flat over B. By Lemma 27
applied stalk-wise, this is up to isomorphism the only coherent sheaf on XB, flat
over B, which comes with homomorphisms p′ : G → F ′ and p′′ : G → F ′′ which
make the following square commute:

G
p′′

→ F ′′

p′ ↓ ↓ u′′

F ′
u′

→ F

This shows that DE(B) → DE(A′) ×DE(A) DE(A′′) is surjective, as desired. Thus,
Schlessinger condition (H1) is satisfied.

Caution: If we choose another η, we might get a different G, and so the map
DE(B)→ DE(A′)×DE(A) DE(A′′) may not be injective.

Verification of (H2): If we take A to be k in the above verification of the condition
(H1), then η would be unique, and so we will get a bijection DE(A′ ×k A′′) →
DE(A′)×DE(k) DE(A′′). In particular, this implies that (H2) is satisfied.

Verification of (H3): We have already seen that the finite dimensional vector space
Ext1(E,E) is the tangent space to DE, and hence (H3) holds. This completes the
proof of the Theorem 28 in the general case of coherent sheaves. ¤

Prorepresentability for a ‘simple’ sheaf

Theorem 29 Let X be a proper scheme over a field k, and let F be a coherent
sheaf on X. Assume that there exists an exact sequence E1 → E0 → F → 0 of OX-
modules, where E1 and E0 are locally free (note that this condition is automatically
satisfied when F itself is locally free, or when X is projective over k). If the ring
homomorphism k → End(F ) (under which k acts on F by scalar multiplication) is
an isomorphism, then the deformation functor DF is pro-representable.

Proof Let A be artin local, and let I be a proper ideal. Let (F , θ) ∈ DF (A), and
let (F ′, θ′) denote its restriction to A/I. By Lemma 44, the natural ring homomor-
phisms A→ EndX⊗A/I(F) and A/I → EndX⊗A/I(F

′), under which A and A/I act
respectively on F and F ′ by scalar multiplication, are isomorphisms. In particular,
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we get induced group isomorphisms A× → Aut(F) and (A/I)× → Aut(F ′). The
subgroups 1 + mA ⊂ A× and 1 + mA/I ⊂ (A/I)× therefore map isomorphically onto
Aut(F , θ) and Aut(F ′, θ′) respectively. As the homomorphism 1 + mA → 1 + mA/I

is surjective, the restriction map Aut(F , θ)→ Aut(F ′, θ′) is again surjective. From
this, it follows that the Schlessinger condition (H4) is satisfied, and so the functor
DF is pro-representable by Theorem 17. ¤

Hull for deformations of a proper smooth variety

Given a scheme C of finite type over a field k, let the deformation functor DefC :
Artk → Sets be defined as follows. For any A ∈ Artk, consider pairs (p : X →
Spec A, i : C → X0) where p is a flat morphism, and i is an isomorphism over k of
the given scheme C with the special fibre of p. Denoting again by i the composite
C → X0 ↪→ X, this means the following square is cartesian.

C
i
→ X

↓ ¤ ↓ p

Spec k → Spec A

We say that two such pairs (p, i) and (p′, i′) are equivalent if there exists an A-
isomorphism between X and X ′ which takes i to i′. We take DefC(A) to be the set
of all equivalence classes of pairs (p, i). It can be seen that this is indeed a set, and
moreover it is clear that a morphism A→ B in Artk gives by pull-back a well-defined
set map DefC(A)→ DefC(B) which indeed gives a functor DefC : Artk → Sets.

Note that an automorphism of a pair (p : X → Spec A, i : C → X0) will mean
an isomorphism f : X → X over A, such that f restricts to identity on the special
fibre X0.

Lemma 30 Let A be a noetherian ring, and I ⊂ A an ideal such that In = 0
for some n ≥ 1. Then the following properties hold for any morphism of schemes
X → Spec A.

(i) If X ⊗A A/I is affine, then X is affine.

(ii) If X ⊗A A/I is of finite type over A/I, then X is of finite type over A.

(iii) If X ⊗A A/I is separated, then X → Spec A is separated.

(iv) If X ⊗A A/I is proper, then X → Spec A is proper.

Proof This is left as an exercise. ¤

Remark 31 Let B be a ring, and I ⊂ B an ideal with I2 = 0. Let q : B → A =
B/I be the the quotient homomorphism. Let A〈I〉 be the A-module A ⊕ I, with
ring structure defined by (a, x) · (a′, x′) = (aa′, ax′ + a′x). Suppose there exists a
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ring homomorphism s : A→ B which is a section of q : B → A, that is, q ◦ s = idA.
Then the additive map

φs : A〈I〉 → B : (a, x) 7→ s(a) + x

is a ring isomorphism. Next, suppose that s1, s2 : A → B are two ring homomor-
phism sections of q : B → A. Then we get ring isomorphisms φs1

: A〈I〉 → B and
φs2

: A〈I〉 → B as above, so we get a ring automorphism

φ−1
s2
◦ φs1

: A〈I〉 → B → A〈I〉 : (a, x) 7→ s1(a) + x 7→ (a, x + (s1 − s2)a)

In particular, (0, x) 7→ (0, x), and so note that the above map is identity when
restricted to I ⊂ A〈I〉.

This leads us to consider the map

v = s1 − s2 : A→ I

As φ−1
s2
◦ φs1

is multiplicative, we get

v(aa′) = av(a′) + a′v(a)

This means v is a derivation on the ring A, taking values in the A-module I. Con-
versely, given any ring homomorphism s : A → B which is a section of q : B → A,
and any derivation v : A → I, we get another ring homomorphism s + v : A → B
which is again section of q : B → A. Therefore, the set of sections of B → A is a
principal set under the additive group HomA(ΩA, I) of all derivations on A taking
values in I.

Definition 32 Let a scheme C be separated and of finite over k, and let F be
a coherent sheaf on C. An extension of C by F will mean a triple (OX , p, u)
consisting of sheaf of k-algebras OX on the underlying topological space C top of the
scheme C, such that X = (C top,OX) is a scheme over k, together with a surjective
morphism p : OX → OC of sheaves of k-algebras such that ker(p)2 = 0, and an OC-
linear isomorphism u of the resulting OC-module ker(p) with F . We will say that
two extensions (OX , p, u) and (OY , q, v) of C by F are equivalent if there exists an
isomorphism of k-algebras f : OX → OY such that the following diagram commutes.

0→ F
u
→ OX

p
→ OC → 0

‖ ↓ f ‖

0→ F
v
→ OY

q
→ OC → 0

We say that an extension (OX , p, u) of C by F is locally split if C has an open cover
Ui such that each p|Ui

admits a section (k-algebra homomorphism) si : OC |Ui →
OX |Ui

with p|Ui
◦ si = idOC |Ui

. Note that this condition is preserved under equiva-
lence. Moreover, note that a local splitting si defines an isomorphism of sheaves of
rings of k-algebras

fi : OC〈F〉|Ui
→ OX |Ui

: (a, x) 7→ si(a) + x
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where OC〈F〉 = OC ⊕ F with ring structure given by F 2 = 0, and where we
have identified ker(p) with F using u. Note further that p ◦ fi is the projection
OC〈F〉|Ui

→ OC |Ui
on the first factor, and the inclusion F|Ui

↪→ OC〈F〉|Ui
is taken

to u|Ui
.

Lemma 33 The set of all equivalence classes of locally-split extensions of C by F
(which is indeed a set) has a canonical bijection (which is described in the proof)
with the set H1(C,Hom(Ω1

C/k,F)).

Proof Let η ∈ H1(C,Hom(Ω1
C/k,F)). Let Ui be an affine open cover of C,

with respect to which η is described by a 1-cocycle (ηi,j) where ηi,j ∈ Γ(Ui ∩
Uj, Hom(Ω1

C/k,F)). Over Ui, consider the sheaf of algebras Ri = OC〈F〉|Ui
where

OC〈F〉 = OC ⊕ F with ring structure given by F 2 = 0. This comes with a projec-
tion pi : Ri → OC |Ui

: (a, x) 7→ a which has a section si : OC |Ui
→ Ri : a 7→ (a, 0).

Consider the homomorphism

gi,j : Rj|Ui∩Uj
→ Ri|Ui∩Uj

: (a, x) 7→ (a, x + ηi,j(da))

Clearly, gi,j is a k-algebra automorphism, which commutes with the projections pi

and pj to OC |Ui∩Uj
, and which restricts to identity on F . Moreover, the cocycle

condition is satisfied by (gi,j). Therefore, we can glue together the Ri using (gi,j),
to get a locally split extension of C by F . It can be seen that the equivalence class
of this extension is independent of the choice of the 1-cocycle (ηi,j) for η. This
defines the map from H1(C,Hom(Ω1

C/k,F)) to the set of all equivalence classes of
locally-split extensions of C by F . The verification that this is indeed a bijection
now follows from the arguments made in Remark 31. ¤

Example 34 Let C = Spec k, and let F = k1. Then Spec k[ε]/(ε2) together with
the natural projection k[ε]/(ε2) → k is an extension of C by F . It is split, and
admits the self-equivalences ε 7→ λε where λ ∈ k× (and no other). Any extension of
C by F is equivalent to the above. The set H1(C,Hom(Ω1

C/k,F)) is a singleton.

Theorem 35 (Schlessinger Proposition 3.10) Let k be a field, and let C be a scheme
of finite type over k. Suppose that

(a) C is proper over k, or

(b) C is affine with isolated singularities.

Then the deformation functor DefC admits a hull.

If C is a local complete intersection, then the tangent space to the functor DefC is
the k-vector space Ext1C(Ω1

C/k, OC).

Assume that (a) or (b) holds. Then moreover DefC is pro-representable, if and only
if the following condition holds:
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(c) For each small extension A′ → A and each (p′ : X ′ → Spec A′, i′ : C ↪→ X ′)
representing an element of DefC(A), every automorphism of the restriction (p, i) =
(p′, i′)|Spec A is the restriction to Spec A of some automorphism of (p′, i′).

Proof Verification of (H1) : Given any three objects A, A′, and A′′ of Artk,
with morphisms A′ → A and A′′ → A such that A′′ → A is surjective, we want to
show that the induced map

DefC(A′ ×A A′′)→ DefC(A′)×DefC(A) DefC(A′′)

is surjective. Consider an element

((X ′, i′), (X ′′, i′′)) ∈ DefC(A′)×DefC(A) DefC(A′′)

where X ′ → Spec A′ and X ′′ → Spec A′′ are flat morphisms, and i′ : C → X ′0 and
i′′ : C → X ′′0 are k-isomorphisms, such that there exists an isomorphism

f : (X ′, i′)|Spec A
∼
→ (Y, i) = (X ′′, i′′)|Spec A

of pairs over A.

Note that by Lemma 30, the schemes Y , X ′, and X ′′ are respectively of finite type
over A, A′, and A′′. Also, topologically, all these are just C. On the same underlying
topological space C, we have the various different structure sheaves OC , OY , OX′

and OX′′ (where we have made identifications using i, i′, i′′), and homomorphisms
of sheaves of rings OX′ → OY and OX′′ → OY . The homomorphism OX′′ → OY

is surjective as A′′ → A is surjective. Let OZ be the fibred product OX′ ×OY
OX′′ .

This means the following diagram is cartesian, where the maps from OZ are the
projections.

OZ −→ OX′′

↓ ↓
OX′ −→ OY

If U = Spec R is an affine open set in C, then it follows from Lemma 30 that the
open subschemes supported on the open set U in Y , X ′ and X ′′ are all affine. Note in
general that if Z is any topological space, and E ′ → E and E ′′ → E are morphisms
of sheaves on Z then the fibred product F = E ′ ×E E ′′ exists, and for any open
set U ⊂ Z we have F (U) = E ′(U) ×E(U) E ′′(U), and at the level of stalks we have
Fz = E ′z ×Ez

E ′′z at any z ∈ Z. Therefore, in the given situation we have

Γ(U,OZ) = Γ(U,OX′)×Γ(U,OY ) Γ(U,OX′′)

It can be seen that the ringed space (U,OZ |U) is an affine scheme. Hence the sheaf
of rings OZ defines yet another structure of a scheme on the topological space C,
which we denote by Z, symbolically,

Z = (C,OZ)
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The sheaf homomorphisms (projections) OZ → OX′ and OZ → OX′′ correspond to
morphisms of schemes X ′ ↪→ Z and X ′′ ↪→ Z, which makes the following a push-out
(co-cartesian diagramme) in the category of schemes:

Y −→ X ′′

↓ ↓
X ′ −→ Z

Note that we have a natural morphism Z → Spec B. It follows from Lemma 26 that
OZ is flat over OSpec B, which means the morphism Z → Spec B is flat. By Lemma
30, it therefore follows that we get a pair (Z → Spec B, iZ), where iZ : C → Z is the
composite C → Y → X ′ → Z (same as the composite C → Y → X ′′ → Z) which
shows that the functor DefC satisfies (H1).

Verification of (H2) : Let A ∈ Artk. We want to show that the map

DefC(A×k k[ε]/(ε2))→ DefC(A)×DefC(k[ε]/(ε2))

is bijective. Let (X ′, i′) define an element ξ ∈ DefC(A), and let (X ′′, i′′) define
an element η ∈ DefC(k[ε]/(ε2)). By verifying (H1), we have already seen that
there exists a pair (Z, iZ) which defines an element of DefC(A ×k k[ε]/(ε2)) which
maps to (ξ, η) ∈ DefC(A)×DefC(k[ε]/(ε2)). Suppose there was another element of
DefC(A×k k[ε]/(ε2)) over (ξ, η), say represented by a pair (W, iW ). We can identify
the underlying topological space of W with that of C, using iW : C → W . Therefore
we get the following commutative diagram of sheaves on C

OW −→ OX′′

↓ ↓
OX′ −→ OC

By assumption, OW → OX′ is given by going modulo ε. Hence by Corollary 27, the
induced map OW → OX′ ×OC

OX′′ is an isomorphism, which proves (H2).

Verification of (H3) : I will only consider the case where C is smooth over k. In
this case, the tangent space will turn out to be H1(C, TC) where TC = (Ω1

C/k)
∨ is the

tangent sheaf. Let (X, i) represent an element of DefC(k[ε]/(ε2)). Let OX be the
structure sheaf of X. The morphism i : C ↪→ X gives a surjection i∗ : OX → OC . As
by assumption OX is flat over Spec(k[ε]/(ε2)), by Lemma 25, we have the following
short exact sequence of OX-modules.

0→ OC
ε
→ OX

i∗
→ OC → 0

Therefore, (OX , i∗, ε) is an extension of C by OC in the sense of the Definition
32. Given any affine open U in C, the scheme (U,OX |U) is again affine as already
remarked. Consider the following commutative diagram, where the top row is the
open inclusion, and the first column is the closed embedding.

(U,OC |U) −→ C
↓ ↓

(U,OX |U) −→ Spec k
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By formal smoothness of C → Spec k, there exists a diagonal morphism of schemes
fU : (U,OX |U) → C which makes the above diagram commute. Such an fU is the
same as a homomorphism of sheaves of k-algebras f ∗U : OC |U → OX |U such that the
composite

OC |U
f∗

U→ OX |U
i∗
→ OC |U

is identity. Therefore, the extension (OX , i∗, ε) of C by OC is locally split in the
sense of Definition 32. Therefore, by Lemma 33, this defines an element of the set
H1(C,Hom(Ω1

C/k,OC)). As Hom(Ω1
C/k,OC) = TC the tangent sheaf, this gives an

element of H1(C, TC). The rest is a simple exercise.

Prolongability of automorphisms is equivalent to (H4) : This is now clear.
The process is similar to getting new bundles on X ′∪X ′′ by gluing given bundles E ′

on X ′ and E ′′ on X ′′ along X ′∩X ′′. If there exists an isomorphism of the restrictions
to X ′∩X ′′, then this can be done. If any automorphism g of the restriction E ′|X′∩X′′

can be expressed as a product g′g′′ where g′ prolongs to X ′ and g′′ prolongs to X ′′

then the bundle on X ′ ∪X ′′ is unique (up to isomorphism). When X ′ and X ′′ are
two copies of the same space U , and X ′ ∩X ′′ is the same subspace V inside both,
with identification given by identity on V , then the above condition is equivalent to
the condition that g should prolong from V to U . This completes our exposition of
the proof of the theorem, in the case where C is proper and smooth over k. ¤

4 Formal smoothness

Formal smoothness for deformations of a vector bundle

Lemma 36 Let Y be a noetherian scheme, and let I ⊂ OY be a coherent ideal sheaf
with I2 = 0. Let Z ⊂ Y be the closed subscheme defined by I. (Note that as I2 = 0,
I becomes naturally an OZ-module.) Let F be a vector bundle on Z, such that

H2(Z, I ⊗OZ
End(F)) = 0

Then there exists a vector bundle on Y whose restriction to Z is isomorphic to F .

Proof (Taken from the lecture notes [I] of Illusie) Note that the underlying topo-
logical space of Z is the same as that of Y. We associate a category CV to each
open subscheme V ⊂ Z as follows. When V is non-empty, the objects of CV are
pairs (E , θ) where E is a vector bundle on the open subscheme U of Y defined by
the set V , and θ is an OV -linear isomorphism E|V → F|V . In other words, (E , θ) is a
prolongation of F|V to U . The morphisms in CV from (E , θ) to (E ′, θ′) are OU -linear
isomorphisms η : E → E ′ which take θ to θ′. The category CV is clearly a groupoid.
When V is empty, we define CV to be the trivial groupoid, which has a single object
and a single morphism.
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When V1 ⊂ V2, we have an obvious restriction functor from CV2
to CV1

. This gives a
presheaf of groupoids on Z, which we denote by C. This presheaf is clearly a sheaf
in the Zariski topology. Hence we have a sheaf of groupoids C on the scheme Z (in
the small Zariski site of Z).

We claim that the groupoid C is a gerb, as it is both locally non-empty and
locally connected. To see C is locally non-empty, note that any point z ∈ Z has
an open neighbourhood V on which F is trivial, so F has a trivial prolongation to
the corresponding open subscheme U of Y showing CV is non-empty. To see C is
locally connected, note that given any two objects (E , θ) and (E ′, θ′) of CV , there
is an open cover Vi of V for which both E|Ui

and E ′|Ui
are trivial where Ui are the

corresponding open subschemes of Y, and so (E , θ) and (E ′, θ′) become isomorphic
on passing to the cover (Vi).

Given any non-empty open subscheme V ⊂ Z and an object (E , θ) of CV , note that

AutCV ((E , θ)) = H0(V, I ⊗OZ
End(F))

Thus the gerb C has as its band (‘lien’) the sheaf I ⊗OZ
End(F)). Hence the

obstruction to the existence of a global element (means an object of CZ) lies in the
cohomology H2(Z, I ⊗OZ

End(F)). In particular when H2(Z, I ⊗OZ
End(F)) = 0,

we get the desired result, proving the lemma. ¤

Theorem 37 Let X be a proper scheme over a field k. Let E be a vector bundle on
X, with deformation functor DE : Artk → Sets. Suppose that H2(X,End(E)) = 0.
Then the functor DE is smooth, that is, for any A in Artk and a proper ideal I ⊂ A,
the restriction map DE(A)→ DE(A/I) is surjective.

Proof Let mnI = 0 where n ≥ 1. If n ≥ 2, then by factoring A → A/I as a
composite

A = A/mnI → A/mn−1I → . . .→ A/mI → A/I,

we can assume without loss of generality that mI = 0, where m denotes the maximal
ideal of A. Let (F , θ) ∈ DE(A/I). We put Y = XA and I = OX ⊗k I ⊂ OX ⊗k A =
OY. Then I is a coherent ideal sheaf with I2 = 0. The subscheme Z defined by I
is XA/I ⊂ XA. In particular, F is a vector bundle on Z. Therefore we have

H2(Z, I ⊗OZ
End(F))

= H2(XA/I , I ⊗A/I End(F))

= H2(XA/I , I ⊗k End(E)) as mI = 0 and as End(F)|X = End(E).

= H2(X, I ⊗k End(E))

= I ⊗k H2(X,End(E)) by the projection formula for X → Spec(k).

= 0, as by assumption H2(X,End(E)) = 0.

Hence by Lemma 36, F prolongs to Y = XA as desired. ¤
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Remark 38 (Converse of Theorem 37 is false!) The deformation functor DE

can be smooth without vanishing of H2(X,End(E)). For example, let X be an irre-
ducible projective variety over an algebraically closed field k of characteristic zero.
Then PicX/k is a group scheme locally of finite type over k. As k has characteristic
zero, PicX/k is smooth over k. From this it can be seen that for any line bundle L on
X, the deformation functor DL is smooth. However, we may have H2(X,OX) 6= 0,
for example, take X to be an abelian surface.

Formal smoothness for deformations of a coherent sheaf

Theorem 39 Let X be a proper scheme over a field k. Let F be a coherent sheaf
on X, with deformation functor DE : Artk → Sets. Suppose that Ext2(F, F ) = 0.
Then the functor DF is smooth, that is, for any A in Artk and a proper ideal I ⊂ A,
the restriction map DF (A)→ DF (A/I) is surjective.

Proof (In the projective case) If X is projective over k, let OX(1) be very ample.
Then by evaluating global sections we get a surjection

q : H0(X,F (n))⊗k OX(−n)→ F

whenever n is large enough.

Let E be the vector bundle E = H0(X,F (n)) ⊗k OX(−n). Let G be the kernel of
the above surjection q : E → F . We get a long exact sequence

Hom(G,F )→ Ext1(F, F )→ Ext1(E,F )→ Ext1(G,F )→ Ext2(F, F )

Note that Ext1(E,F ) = H1(X,E∨ ⊗OX
F ) = H0(X,F (n))⊗k H1(X,F (n)) = 0 for

a large enough n. Therefore, we get the vanishing of Ext1(G,F ) and surjectivity of
Hom(G,F ) → Ext1(F, F ). The Quot functor Q which keeps E fixed and deforms
the quotient q is pro-representable, as proved in a later chapter. The vanishing of
Ext1(G,F ) implies that the Quot functor Q is formally smooth. The tangent to Q
is Hom(G,F ) and the tangent to DF is Ext1(F, F ). The above map Hom(G,F )→
Ext1(F, F ) is the tangent map of the forgetful morphism Q→ DF . Its surjectivity,
together with formal smoothness of Q give us formal smoothness of DF , as follows.

Let (R, r : hR → DF ) be a hull for DF . Let (R′, r′ : hR′ → Q) pro-represent Q. By
formal smoothness of r : hR → DF , the composite morphism hR′ → Q→ DF admits
a lift f : hR′ → hR, that is, we have a morphism f : Spec R′ → Spec R. The map
dr : TR → TDF

= Ext1(F, F ) is an isomorphism by definition of a hull, while dr′ :
TR′ → TQ = Hom(G,F ) is an isomorphism as (R′, r′) is a pro-representing family
(in particular, a hull) for Q. Hence the surjectivity of Hom(G,F ) → Ext1(F, F )
shows that the morphism f : Spec R′ → Spec R is tangent-level surjective.

Note that by smoothness, R′ is a formal power series ring over k in finitely many
variables. On the other hand, R is the quotient of one such. Let R′ = k[[x′1, . . . , x

′
m]]

and let R = S/J where S = k[[x1, . . . , xn]] and J ⊂ S is a proper ideal, such that n =
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dimk Ext1(F, F ), and therefore the quotient map q : S → R induces an isomorphism
TR

∼
→ TS. Let f# : R→ R′ denote the induced k-algebra homomorphism. Then we

get a composite homomorphism

g# : k[[x1, . . . , xn]]
q
→ k[[x1, . . . , xn]]/J = R

f#

→ R′ = k[[x′1, . . . , x
′
m]]

The tangent level map TR′ → TS is a surjection, and therefore by implicit function
theorem for formal power series rings over a field, we can choose new variables
y1, . . . , ym for R′ such that yi = g#(xi) for 1 ≤ i ≤ n. In particular, g# : S → R′

is injective, and so f# is also injective, which means J = 0, which shows that
R = k[[x1, . . . , xn]]. Hence hR is a formally smooth functor. As r : hR → DF is
formally smooth (being a versal family), it follows that DF is formally smooth (see
the following exercise). ¤

Exercise 40 Let ϕ : Artk → Sets have a versal family (R, r : hR → ϕ), such that
hR is formally smooth. Then ϕ is formally smooth. Conversely, if ϕ is formally
smooth, then each versal family is formally smooth.

Formal smoothness for deformations of a complete smooth variety

Theorem 41 Let X be a complete smooth variety over a field k. Suppose that
H2(X,TX) = 0. Then the functor DefX is smooth, that is, for any A in Artk and
a proper ideal I ⊂ A, the restriction map DefX(A)→ DefX(A/I) is surjective.

The proof is very similar to that of Theorem 37. See the lectures of Illusie [I] fro
details.

5 Appendix on base-change

In this appendix, I begin with a small simplification in the proofs of the Base-change
Theorem as in [EGA] or [H].

Lemma 42 Let A be a noetherian local ring with residue field A/m = k, and let

C = (E ′
f
→ E

g
→ E ′′)

be a complex of finite A-modules (g◦f = 0) such that E and E ′′ are free. We denote
ker(g)/ im(f) by H(C). Let

C ⊗A k = (E ′
f
→ E

g
→ E ′′)

42



be the complex obtained by tensoring C with k. Suppose that the induced map

H(C)⊗A k → H(C ⊗A k)

is surjective. Then ker(g) is a direct summand of E, and im(g) is a direct summand
of E ′′. Consequently, for any A-module M the induced map

H(C)⊗A M → H(C ⊗A M)

is an isomorphism.

In particular, if H(C ⊗A k) = 0 then H(C) = 0.

Proof Consider the following commutative diagram with exact rows.

im(f)⊗A k → ker(g)⊗A k → H(C)⊗A k → 0
↓ ↓ ↓

0→ im(f) → ker(g) → H(C ⊗A k) → 0

The first vertical map im(f)⊗Ak → im(f) is clearly surjective, and the third vertical
map H(C) ⊗A k → H(C ⊗A k) is surjective by hypothesis. It follows by the snake
lemma that the middle vertical map ker(g) ⊗A k → ker(g) is surjective. Therefore
there exist elements u1, . . . , up ∈ ker(g) such that the elements ui ⊗ 1 ∈ E form a
k-linear basis for ker(g).

In particular, the elements ui⊗1 ∈ E are linearly independent over k. Consequently,
there exist elements w1, . . . , wr ∈ E such that u1, . . . , up, w1, . . . , wr is a free basis
for E over A.

Note that as ui⊗ 1, wj ⊗ 1 is a basis of E and ui⊗ 1 is a basis of ker(g), the images
of wj ⊗ 1 under g are linearly independent in E ′′. As E ′′ is finite free as an A-
module, this means the sequence of elements g(wi) ∈ E ′′ can be prolonged to a basis
g(wi), vk ∈ E ′′. As E is spanned by ui, wj and as ui ∈ ker(g), it follows that im(g) is
spanned by the g(wi), and so it follows that im(g) is a direct summand of E ′′. We
claim that as a submodule of E, ker(g) is the span of the elements ui. To see this,
let x =

∑
aiui +

∑
bjwj ∈ ker(g). Then 0 = g(x) =

∑
bjg(wj), and hence each bj

is zero by the linear independence of g(wj) over A. This completes the proof of the
lemma. ¤

Applying the above to the Grothendieck semi-continuity complex, we get the fol-
lowing:

Theorem 43 Let S = Spec(A) where A is a noetherian local ring. Let π : X → S
be a proper morphism and F a coherent OX-module which is flat over S. Let s ∈ S
be the closed point with residue field denoted by k. Let Xs be the fiber over s and let
Fs = F|Xs

denote the restriction of F to Xs. Let i an integer, such that the natural
map

H i(X,F)⊗A k → H i(Xs,Fs)
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is surjective. Then for any A-module M , the induced map

H i(X,F)⊗A M → H i(X,F ⊗OX
π∗M)

is an isomorphism. In particular if H i(Xs,Fs) = 0 then H i(X,F) = 0.

Remark In the absence of our elementary Lemma 42, both [EGA] and [H] give
rather complicated proofs of Theorem 43, involving inverse limits over modules of
finite length (which in [H] is done by invoking the theorem on formal functions).

The following lemma is used in the deformation theory for a coherent sheaf E which
is ‘simple’, to prove the theorem that the deformation functor DE of such a sheaf is
pro-representable.

Lemma 44 Let A be a noetherian local ring, let S = Spec A, and let π : X → S
be a proper morphism. Let X denote the schematic fiber of π over the closed point
Spec k, where k is the residue field of A. Let E be a coherent sheaf on X such that E
is flat over S. Assume that there exists an exact sequence F1 → F0 → E → 0 of OX-
modules, where F1 and F0 are locally free (note that this condition is automatically
satisfied when E itself is locally free, or when π : X→ S is a projective morphism).
Let E = E|X be the restriction of E to X. If the ring homomorphism k → EndX(E)
(under which k acts on E by scalar multiplication) is an isomorphism, then for any
morphism f : T → S, the natural ring homomorphism

H0(T,OT )→ EndXT
((id×f)∗E)

(under which H0(T,OT ) acts on (id×f)∗E by scalar multiplication) is an isomor-
phism.

Proof Consider the contravariant functor End(E) from S-schemes to sets, which
associates to any S-scheme f : T → S the set

End(E)(T ) = EndXT
((id×f)∗E)

Then by a fundamental theorem of Grothendieck (EGA III 7.7.8, 7.7.9), there exists
a coherent sheaf Q on S and a functorial H0(T,OT )-module isomorphism

αT : EndXT
((id×f)∗E)→ HomT (f ∗Q,OT )

Note that as S = Spec A, the coherent sheaf Q corresponds to the finite A-module
Q = H0(S,Q). Consider the isomorphism αS : EndX(E) → HomS(Q,OS) =
HomA(Q,A). Let θ : Q → A be the image of 1E under αS. By functoriality, the
restriction θk : Q⊗A k → k of θ to Spec k is the image of 1E under the isomorphism
αk : EndX(E)→ Homk(Q⊗A k, k) = HomA(Q,A).

As by assumption k → EndX(E) is an isomorphism, by composing with αk we get
an isomorphism k 7→ Homk(Q⊗Ak, k) under which 1 7→ θk. Hence Homk(Q⊗Ak, k)
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is 1-dimensional as a k-vector space with basis θk. Therefore θk is surjective, and
so by Nakayama it follows that θ : Q → A is surjective. Hence we have a splitting
Q = A ⊕ N where N = ker(θ), under which the map θ : Q → A becomes the
projection p1 : A⊕N → A on the first factor. But as θk is an isomorphism, it again
follows by Nakayama that N = 0. This shows that θ : Q→ A is an isomorphism.

Identifying Q with OS under θ, for any f : T → S we have HomT (f ∗Q,OT ) =
H0(T,OT ), and so we get a functorial H0(T,OT )-module isomorphism
αT : EndXT

((id×f)∗E)→ H0(T,OT ) which maps 1 7→ 1. The composite map

H0(T,OT )→ EndXT
((id×f)∗E)→ H0(T,OT )

is identity, so it follows that H0(T,OT )→ EndXT
((id×f)∗E) is an isomorphism. ¤
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