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The theory of
Vector Bundles on Algebraic curves

with some applications

S. Ramanan

CHAPTER I
LINE BUNDLES ON A COMPACT RIEMANN SURFACE

1 A historical introduction

The theory of vector bundles has many ramifications. One can study it
from number theoretic, algebraic geometric and differential geometric points
of view. It has also proved useful to mathematical physicists interested in
Conformal Field theory, String theory, etc. In this account, I will mainly deal
with the geometric aspects, both algebraic and differential, and will confine
myself to just a few remarks on the number theoretic point of view.

The classical theory of abelian class fields seeks to understand Galois
extensions of a number field in terms of the number theoretic behaviour of the
corresponding integral extensions of the ring of integers in the number field.
This has a geometric analogy. Consider any compact Riemann surface. Any
covering of the surface gives a (finite) extension of the field of meromorphic
functions on it. One may try to understand abelian extensions in terms of
geometric data on the Riemann surface. This leads to the theory of Jacobians
of Riemann surfaces.

A. Weil initiated the theory of vector bundles over an algebraic curve
motivated by the desire to develop a ‘non-abelian class field theory’ for func-
tion fields. The number theoretic analogues are more pertinent when the
function field have finite field of constants, but the study makes sense and
is interesting when the function field in question is the field of meromorphic
functions on a compact Riemann surface in the traditional sense.
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The study of Jacobians is complex analytic or algebraic and can be under-
stood purely geometrically. Jacobi’s work in this respect may be interpreted,
as establishing in particular a correspondence between the fundamental group
and the Jacobian, that is to say, the variety of divisor classes.

We will start with a brief survey of basic concepts centering around divi-
sors and explain the origins of this aspect and later lead up to the theme of
vector bundles.

1.1 Periods of holomorphic differentials.

Let X be a compact Riemann surface, that is to say, a compact, con-
nected, complex manifold of dimension 1. Its topological type is determined
by a non-negative integer g, called its genus. The genus of the Riemann
sphere is 0. The quotient of CI by a discrete subgroup of rank 2, is topo-
logically a two-dimensional torus, but it also inherits a complex structure
from CI. Riemann surfaces so obtained are called elliptic curves and have
genus 1. Since it is homeomrphic to S1 × S1, its fundamental group is free
abelian of rank 2. In general, the first homology group H1(X) of any Rie-
mann surface is free of even rank and one way to define g is to say that this
rank is 2g. One can actually write out explicitly its fundamental group π(X)
in terms of the genus. It is isomorphic to a group on 2g generators ai, bi,
i = 1, · · · , g with a single relation

∏
aibia

−1
i b−1

i = 1. Of course this implies
that its abelianisation, namely H1(X,ZZ), is free of rank 2g.

One has also an analytic interpretation of the invariant g. If g is the genus
of X, the space Ω of all holomorphic differentials on X is a vector space of
dimension g. The origin of the theory of line bundles from the present point
of view is the attempt to integrate a holomorphic differential on X. Let ω
be a holomorphic differential on X. We fix a point x0 and seek to compute
the indefinite integral

∫ x

x0
ω as a function of x. In order for this to make

sense, we have to integrate the differential along a path c connecting x0 and
x. (For purposes of integration we will assume the path to be a smooth,
or piecewise smooth, map [0, 1] → X.) One may think of the integral over
c as a linear form on Ω, by varying ω. The integral of course depends on
the path c, but the monodromy theorem says that the integral is the same
if we replace c by a homotopically equivalent path. In other words, the
integral depends only on the homotopy class of the path c. In general, if c
and c′ are any two paths connecting x0 and x, the two integrals differ by the
integral of ω along the loop c′.c−1. Therefore we are led to consider the linear
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forms on Ω obtained by integrating holomorphic forms on loops based at x0.
These special linear forms are called periods of holomorphic differentials. We
have thus given a homomorphism of the fundamental group π(X, x0) into Ω∗.
This obviously goes down to a homomorphism of the abelianised fundamental
group H1(X, ZZ) into Ω∗. It also follows that this homomorphism does not
depend on the choice of x0. The first important result is the following fact.

1.2 Theorem. The above homomorphism of H1(X) into Ω∗ is injective
and the image is a discrete subgroup.

We will call the image the period group. Our remarks above amount to
saying that integration of holomorphic differentials leads to a map of X into
the quotient of Ω∗ by the period group. This map is called the period map.
Here we will denote it by σ.

1.3 The Albanese variety.

Consider now the following situation. Let V be a complex vector space
of dimension g and Γ a discrete subgroup of rank 2g. The quotient A = V/Γ
has a lot of structure. First of all, it is compact and connected. Topologically
it is actually a torus of dimension 2g. Secondly the natural map V → A is a
local homeomorphism. Using this we can equip A with a complex structure,
making it a compact complex manifold of dimension g. On the other hand, it
is also an abelian group. The complex structure and the group structure are
obviously compatible in the sense that the group operations are holomorphic
maps. In other words, it is a complex Lie group. Now we have the following
fact.

1.4 Theorem. Any compact connected complex Lie group is isomorphic
to the quotient of CIg by a discrete subgroup.

Proof. Consider the adjoint representation of the group G in question in
its Lie algebra. It is a holomorphic map of the group into the group of linear
automorphisms of the Lie algebra. Since any holomorphic function on a com-
pact, connected, complex manifold is a constant, the adjoint representation
is the trivial one. It follows that the group G is abelian. The exponential
map of the Lie algebra into the Lie group is then a surjective homomorphism
of the additive group underlying the Lie algebra into G, and the kernel is a
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subgroup Γ of CIg such that CIg/Γ is compact. It is easily seen that this means
that Γ is a lattice in CIg.

The complex Lie groups obtained as above are called complex tori.
In our case, V is Ω∗ and Γ is the period subgroup. The map X → A that

we have defined above is easily seen to be holomorphic, and we have actually
the following universal property.

1.5 Theorem. Any holomorphic map of X into a complex torus T taking
x0 to 0 factors through a unique holomorphic homomorphism of A into T .

Proof. Note first that the space of holomorphic 1-differentials on T is
canonically identified with t∗, where t is its Lie algebra. The given map
of X into T gives rise to a linear map t∗ → Ω, by simply pulling back holo-
morphic differentials. Its transpose is a linear map Ω∗ → t. This takes Γ
into L and induces a map of Ω∗/Γ → A/L where L is the discrete subgroup
of t which is the kernel of the exponential map t → T .

This is called the Albanese property of the period map. Using the group
structure of A, we may analyse the period map a little further. As we ob-
served above, the period group does not depend on the base point x0 that we
chose. But the map σ does depend on the choice. We wish to do away with
this dependence. We take, instead of a single point, any finite set of points
xi. In order to allow repetitions, we will assign multiplicities mi to each xi.
We do not insist that these integers mi be positive. Such a datum is called a
divisor in X. (The name has its origin in Number theory. Any nonzero ra-
tional number can be thought of as assigning some multiplicities to primes).
If indeed all the mi are non-negative, we call it an effective divisor. A concise
way of saying this is that a divisor is an element of the free abelian group
Div(X) with the underlying set X as basis. Given a divisor D =

∑
mixi,

we can define an element of A as follows. Take
∑

miσ(xi) in the sense of
the group addition in A. The point is that this map is independent of x0

if
∑

mi = 0. The integer
∑

mi is called the degree of the divisor
∑

mixi.
Degree is then obviously a homomorphism of Div(X) into ZZ. What we
asserted above is that we have a canonical homomorphism of the group of
divisors of degree 0 into A. We will denote this map by α. Actually this
homomorphism is surjective. One would like to understand the kernel of this
map.
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1.6 Theorem The kernel of α consists of those divisors
∑

mxx which
have the property that there exists a nonzero meromorphic function f on X
with ordx(f) = mx for all x ∈ X.

We do not prove this theorem here. See [?].

1.7 Divisor Classes.

Any nonzero meromorphic function f gives rise to a divisor as follows.
For any x ∈ X associate the integer ordx(f), namely the integer i such
that f = ti.g where g is a nonzero holomorphic function in a neigbourhood
of x and t is a local coordinate. Since the zeros and poles of f are finite
in number,

∑
x∈X ordx(f)x is actually a divisor div(f). This is called the

divisor associated to f . Divisors of meromorphic functions are called principal
divisors. This in fact gives a homomorphism of the multiplicative group of
nonzero meromorphic functions into the group of divisors. It is an easy
consequence of the integral formula that the degree of any principal divisor
is zero. If two divisors are considered equivalent whenever their difference
is a principal divisor, then the equivalence classes are called divisor classes.
Since principal divisors obviusly form a subgroup of the divisor group, divisor
classes form a group. What the above theorem asserts therefore is that the
the map α induces an isomorphism of the group of divisor classes of degree
0, onto the Albanese variety Ω∗/Γ.

1.8 Invertible sheaves and Line bundles.

Suppose D =
∑

mxx is a divisor. To every open set U in X, we associate
the vector space of all meromorphic functions f in U such that div(f) + D
is effective. In long hand, this means that the order of the function at any
point x is at least −mx. For example, if the divisor is simply a for some
point a ∈ X, then the above space consists of all meromorphic functions in
U , which have at most a simple pole at a. This assignment gives a sheaf on
X. Indeed it is a sheaf of O-Modules, since multiplication by a holomorphic
function preserves the above property. We denote this sheaf by O(D). Note
that if U is a coordinate neighbourhood of a point x, with the coordinate t,
then any function with the above property has the Laurent expansion at x of
the form t−mx .g where g is a holomorphic function. Thus locally this sheaf
is isomorphic to O. However globally it is not in general isomorphic to O.
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1.9 Definition. A sheaf of O-Modules which is locally isomorphic to O
is called an invertible sheaf on X. The invertible sheaf O on X is said to be
trivial.

The set of all invertible sheaves on X is an abelian group under tensor
product as group operation, the trivial sheaf O being the identity element.
We have observed above that every divisor gives rise to an invertible sheaf.
This yields an isomorphism of the group of divisor classes onto the group of
invertible sheaves. An important invertible sheaf is the sheaf of holomorphic
differentials on X. We will generally denote this by KX or ωX .

The notion of invertible sheaves is entirely equivalent to that of line bun-
dles. A line bundle consists of a variety L and a holomorphic map onto X,
with fibres equipped with the structure of a vector space of rank 1. It is
supposed to be locally trivial in the sense that every point of X has an open
neighbourhood U over which it is isomorphic to the product U×CI. The sheaf
of sections of this gives an invertible sheaf, and this assignment of invertible
sheaves to line bundles makes the two notions interchangeable.

1.10 Cohomological interpretation.

If we trivialise a line bundle on an open set U in two different ways, they
‘differ’ by an automorphism of the trivial bundle on this open set. Since
an automorphism of a one-dimensional vector space consists only of nonzero
scalars, we conclude that the two trivialisations differ (multiplicatively) by a
function on U with values in CI∗. If we cover the manifold with open sets Ui

with trivialisations of the line bundle over each of these, we obtain on pairs
of intersections Ui∩Uj, functions mi,j : Ui∩Uj → CI∗ as above. These satisfy
the compatibility requirement

mi,jmj,k = mi,k

for all triples i, j, k. These can be interpreted as cocycles in the Cech sense
with respect to the given covering. Hence one gets an element of H1(X,O∗),
whereO∗ is the sheaf of nonzero holomorphic functions. Assuming the theory
of cohomology of sheaves, one can check that this gives an isomorphism of
the divisor class group with H1(X,O∗).

1.11 Linear systems.

6



To an invertible sheaf L (and indeed to any sheaf of abelian groups) is
associated cohomology groups H i(X, L). If L is the invertible sheaf associated
to a divisor D, the vector space H0(X, L) is simply the space of (global)
holomorphic functions f with div(f)+D effective. When X is a curve, these
groups vanish for i ≥ 2. Towards the computation of H0 and H1, which are
finite dimensional vector spaces, we have the following famous result, called
the Riemann-Roch theorem.

1.12 Theorem. dimH0(X, L)− dimH1(X, L) = deg(L) + 1− g.

Ideally we would have liked a formula for computing dim H0(X,L), but
this number can vary when L is perturbed a little. So we cannot have a
formula which computes dimH0(X, L) in terms of discrete invariants of L
and X. On the other hand, the left side of the above formula is indeed a
deformation invariant. It is called the Euler characteristic of L and is usually
denoted by χ(X, L).

The Riemann-Roch theorem and the following duality theorem are im-
portant tools in the study of curves.

1.13 Theorem. H0(X, L) and H1(X, K ⊗ L−1) are canonically dual.

If a line bundle admits a nonzero section, then its degree is non-negative.
For if L is represented by a divisor D and f a meromorphic function on X
with div(f) + D effective, then since degree of div(f) is zero, we ought to
have deg(L) > 0. Thus if deg (L) < 0, then H0(X, L) = 0. By duality we
have, as a corollary, H1(X, L) = 0 if deg(L) > deg(K).

If we take L is the trivial bundle, then H0(X, L) is the space of holomor-
phic functions on X and is therefore one dimensional. Hence H1(X, K) is
also one dimensional. On the other hand, if we take L = K and use the fact
that Ω = H0(X, K) has rank g, we get deg(K) = 2g − 2. In other words,
any holomorphic differential vanishes on a divisor of degree 2g − 2. Also we
can restate the vanishing theorem as follows.

If deg(L) > 2g − 2, then H1(X, L) = 0.
Thus the Riemann Roch theorem computes dim(H0(X, L)) if the degree

is greater than 2g − 2.
Using these facts, one can show for example that the complex manifold

X is indeed isomorphic to a submanifold of some complex projective space
CIIP n. This is accomplished as follows. Let L be a line bundle which has
‘lots of sections’. Let s0, · · · , sn be a basis for H0(X, L). Locally these can
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be regarded as functions. Then the assignment x 7→ (s0(x), · · · , sn(x)) gives
a holomorphic map into CIIP n locally. It is easy to see that indeed this
map is global, and gives an imbedding under our assumption that there
are sufficiently many sections. Canonically speaking, the projective space
CIIP n is the projective space associated to the vector space of linear forms
on H0(X, L), and to each x we associate the one dimensional subspace of
sections vanishing at x.

¿ From the Riemann Roch formula we can deduce that any line bundle
L of large degree (for example > 2g), serves this purpose. This is because
for any two x, y ∈ X, we can compute the dimension of H0(L), H0(X, L ⊗
O(−x)) and H0(L⊗O(−x−y)) by the Riemann Roch theorem to be deg(L)+
1−g, (deg(L)−1)+1−g and (deg(L)−2)+1−g, respectively. Since these are
respectively the space of sections of L, the space of sections of L vanishing at
x, and the space of sections vanishing at both x and y, it follows that for any
two points x and y, there is a section of L vanishing at x but not at y. This
proves that the map we defined above is injecive and taking y to be x in the
above computation, one can show that the differential of the map at x is also
injective. In other words, X can be imbedded in a complex projective space
as a submanifold. Indeed, it can be shown that any such submanifold can
also be defined by the vanishing of homogeneous polynomials, thus showing
that X is a projective algebraic curve.

What we explained above is a general procedure, applicable to higher
dimensional manifolds as well. If a compact manifold admits a line bun-
dle with a lot of sections, then the manifold is actually a projective algebraic
manifold. This is almost tautologous, but it concentrates the effort of imbed-
ding a manifold in a projective space to finding such line bundles, which we
accomplished above in the case of compact Riemann surfaces.

1.14 Polarisation.

Let us now go back to our starting point. We gave an isomorphism of
group of divisors classes of degree 0 onto Ω∗/Γ. We noticed that the divisor
class group can be identified with the group of line bundles. We have also
seen that the latter group can be identified in turn with the cohomology
group H1(X,O∗). Consider the exact sequence of sheaves:

0 → ZZ → O → O∗ → 0

The connecting homomorphism H1(X,O∗) → H2(X, ZZ) associates to each
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line bundle its degree. The image is the Chern class of the line bundle. So
the kernel, namely the group of divisor classes of degree 0, is isomorphic to
H1(X,O)/H1(X, ZZ). This is thus again the quotient of a complex vector
space by a lattice. As a matter of fact, there is a duality between H1(X,O)
and H0(X, K) = Ω. Thus the two spaces H1(X,O) and Ω∗ are canonically
isomorphic. The lattice H1(X, ZZ) goes into the period subgroup under this
isomorphism, thereby yielding an isomorphism of these complex tori.

Now Hodge theory gives a decomposition

H1(X, CI) = H1(X,O)⊕ Ω

and an anti-isomorphism of H1(X,O) with Ω given by complex conjugation
on 1-forms. Using these, we get a positive definite hermitian form on the
vector space H1(X,O). Its imaginary part restricts to H1(X, ZZ) as the
Poincaré pairing H1(X,ZZ)×H1(X, ZZ) → H2(X,ZZ) = ZZ.

Let us turn to the abstract situation of the quotient of a complex vector
space V by a lattice Γ. We have already remarked that it is a complex
torus. Suppose in addition that there is a positive definite hermitian form
on V with imaginary part α. Assume that the restriction e of α to Γ is
integral and nondegenerate (in the sense that e(x, y) = 0 for all y ∈ Γ if and
only if x = 0). Then one can actually show that A = V/Γ is a projective
variety, i.e. a submanifold of CIIP n for some n, given by the vanishing of
some homogeneous polynomials. In such a case, we call A = V/Γ an Abelian
variety.

We will now elaborate on this a little bit. The Chern class of any line
bundle is an element of H2(A, ZZ). For a torus A this can be identified with
the space of alternating forms on H1(A, ZZ) = Γ. Thus the imaginary part
of the hermitian form we hypothesized above, can be interpreted to be an
element of H2(A, ZZ). One can show that it is actually the Chern class of
a holomorphic line bundle on A. Some poaitive tensor power of this line
bundle possesses enough sections to imbed A in a suitable projective space.
We will collect all these remarks in the following statement.

1.15 Theorem. The complex torus V/Γ is isomorphic to a projective
variety if and only if there exists a positive definite hermitian form on V
whose imaginary part is integral on Γ.
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1.16 Definition. When V/Γ is a projective variety, it is called an Abelian
variety. The Abelian variety Ω/Γ associated to X is called the Jacobian of
X.

1.17 Theta functions.

We have remarked above that there is a line bundle L whose Chern class
is the alternating form e, namely, the imaginary part of the given positive
definite hermitian form h. This line bundle is not unique, but is determined
up to a translation. The classical proof of the theorem quoted above is via
the theory of theta functions.

In fact, the line bundle when pulled up to V itself is trivial. Let us choose
a trivialization. Sections of L when pulled up to V become holomorphic
functions. The fact that the line bundle came from A would impose some
conditions on these functions, under translation by elements of Γ. Explicitly,
these are functions that satisfy the functional equation:

f(v + γ) = α(γ)exp(πh(v, γ) +
π

2
h(γ, γ))f(v)

for all v ∈ V and γ ∈ Γ. Here, α is a fixed map of Γ into S1 = {z ∈ CI : |z| =
1}, satisfying

α(γ1 + γ2) = exp(iπe(γ1, γ2))α(γ1)α(γ2)

for all γ1.γ2 ∈ Γ. Note that α is not uniquely determined by e, but can
only be altered multiplicatively by a unitary character on Γ. This of course
depends on the particular line bundle L we take with e as its Chern class.

By explicit analysis of these equations, one can actually write down a
basis for these. These are called theta functions. The choice of the hermitian
form (and therefore e) is referred to as a polarisation. It can be shown that
some positive power of L – indeed Lefschetz showed that L3 would do – has
enough sections to imbed A in a projective space.

1.18 Poincaré Bundle.

We have seen above that the group of divisor classes of degree 0 on X
is naturally bijective with points of H1(X,O) modulo the period group. In
particular this group has been provided with the structure of an Abelian
variety. This is called the Jacobian of X and denoted by J(X) or simply J .
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In what sense is this structure natural? In order to answer this, one needs
to understand what is meant by classification of line bundles.

Let T be any (parameter) variety. A family of line bundles on X, parametrised
by T , should be a line bundle L on T ×X. For each point t ∈ T , we may re-
strict L to {t}×X and obtain a line bundle Lt on X. We would like to think
of the family to be the collection {Lt}t∈T . But then two non-isomorphic line
bundles L and L′ on X×T can give rise to the same family in this sense. For
example, one can take a line bundle ξ on T and take L′ = L ⊗ p∗T ξ. Fortu-
nately, this is is only thing that can go wrong! In any case, we will consider
such families to be equivalent. Given any such family L of line bundles of
degree 0, one gets a map of T into J(X) which associates to each t ∈ T , the
isomorphism class of Lt considered as a point of J . We call it the classifying
map ϕL : T → J . We require that this map be holomorphic. In fact, this
nails down the structure of J as a complex manifold. Since both X and J are
actually algebraic varieties we may equally well work with algebraic varieties,
or even schemes.

We may actually wish to construct a (universal) family of line bundles on
X parametrised by J . In other words, we seek to construct a line bundle P
on X × J such that for any ξ ∈ J , the equivalence class of the line bundle
Pξ, considered as a point of J is ξ. Such a family does exist and is called
the Poincaré bundle P . Given any family L parametrised by T we have the
classifying map θL : T → J . We can thus use the map IdX × θL : T ×X →
J ×X to pull back P . This and L are obviously equivalent families.

We have explained the construction of a variety structure on the set of
divisor classes of degree 0. We could also do the same for the set of divisor
classes of any fixed degree d. This is of course not a group, but a coset of
J in the divisor class group. As such, the group J acts simply transitively
on it and so we can transfer the strucure of a projective variety on it. An
appropriate notation for this variety would be Jd(X).

1.19 Algebraic Geometric point of view.

Any compact Riemann surface is a projective variety, and its Jacobian
also turned out to be a projective variety, but all our constructions have been
transcendental. It is a natural question therefore whether all these can be
carried out in the context of algebraic geometry. Indeed the Riemann-Roch
theorem assures us that any line bundle of degree at least g has at least
one nonzero section. In other words, any such line bundle is isomorphic to
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O(D) where D is an effective divisor. Clearly the set of effective divisors of
a given degree d can be identified with the d-fold symmetric power Sd(X)
of the curve. Hence there is a morphism from Sd(X) into Jd which takes D
to O(D). The Riemann-Roch theorem implies that when d ≥ g this map is
surjective, for any line bundle L of degree d would then have nonzero H0.
The divisor of zeros of a nonzero section is then an effective divisor D such
that O(D) ' L. If d = g, this is in fact a birational morphism and André
Weil used this to give a purely algebraic construction of the Jacobian.

If d = g− 1, we get a morphism of Sg−1 into Jg−1 and one can check that
the image is a divisor θ in Jg−1 and consequently defines a line bundle on it.
Its Chern class is the hermitian form which we explained purely in analytic
terms. Thus we might redefine theta functions to be sections of powers of
the line bundle O(θ).

When g = 1, this gives an isomorphism of X with J1. In other words, X
is itself an abelian variety of dimension 1. One-dimensional abelian varieties
are called elliptic curves.

The theory of line bundles, Jacobians and theta functions has a long
history and has been developed intensely from the geometric, arithmetic and
analytic points of view. We have given above a short account of those aspects
which are relevant to the following lectures.
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CHAPTER II
VECTOR BUNDLES

2 Locally free sheaves and Vector Bundles

The notion of locally free sheaves (resp. line bundles) is entirely similar to
that of invertible sheaves (resp. vector bundles). We will run through some of
the easily proved facts on vector bundles which are proved either by reducing
them to, or imitating the proofs of, analogous theorems on line bundles.

2.1 Definition. A sheaf of O-Modules which is locally isomorphic to ⊕nO
is called a locally free sheaf on X.

Similarly, let E be a complex manifold (or a variety) with a morphism
π : E → X with the structure of vector spaces of rank n on all fibres
π−1(x), x ∈ X satisfying the following condition. Every point x ∈ X has a
neighbourhood U such that π−1(U) is isomorphic to the product U × Cn,
the isomorphism being linear on all the fibres. Then we say E is a vector
bundle of rank n over X. The sheaf of sections of E is a locally free sheaf
and this gives a bijection between the sets of isomorphism classes of vector
bundles and those of locally free sheaves. We generally make no distinction
between the two.

2.2 Duality and Riemann-Roch theorems.

All the linear algebraic operations that one performs on a vector space may
be performed on vector bundles as well. For example, if E1 and E2 are two
vector bundles, then one can form its direct sum E1⊕E2, by taking the fibre
product of E1 → X and E2 → X and equipping the fibres with the direct
sum structure. We may also construct the tensor product of two bundles
and hence also the tensor power ⊗nE of any bundle E. Also, the symmetric
power and the exterior power of a vector bundle are defined similarly. Clearly
the rank of E1 ⊕ E2 (resp. E1 ⊗ E2)is rk(E1) + rk(E2) (resp. rkE1.rkE2)
and so on. In particular, if n is the rank of E, then the n-th exterior power
of E, which we call the determinant of E and denote by det(E), is of rank 1,
that is to say, a line bundle. As such one can talk of its Chern class, or over
curves, of its degree.
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2.3 Definition. The degree of a vector bundle E is the degree of the line
bundle det(E).

We can now state the vector bundle analogues of the results on line bun-
dles. Firstly it is true that H i(X, E) are 0 for all i/geq2. Secondly we have
the duality theorem for vector bundles exactly as for line bundles.

2.4 Theorem. There is a natural duality between H0(X, E) and H1(X,K⊗
E∗).

We also have the following more general Riemann-roch theorem.

2.5 Theorem. dim H0(X,E)− dim H1(E) = deg(E) + rk(E)(1− g)

2.6 Extensions.

The above operations give methods of construction of other vector bun-
dles, starting with one. But we have not given thus far examples of vector
bundles, other than those obtained by taking direct sums of line bundles. We
wish now to discuss more interesting constructions of vector bundles.

Consider short exact sequences of sheaves of O-Modules of the form

0 → E ′ → E → E ′′ → 0

with E ′, E ′′ locally free. Then one can deduce that E is also locally free. So,
starting with E ′ and E ′′, if we can construct an exact sequence as above,
then we obtain a new vector bundleE, which is said to be an extension of
E ′′ by E ′. The direct sum E ′ ⊕ E ′′ is then a particular case of this. The set
of all such extensions can be put in bijective correspondence with the vector
space Ext1(E ′′, E ′) = H1(X,E ′′∗ ⊗ E ′). By taking nonzero elements of this
space, we may construct new vector bundles.

In fact, we will show that starting with line bundles, by successively taking
extensions, we may obtain all vector bundles. Indeed, let E be any vector
bundle. One may tensor it with a line bundle L of large degree and ensure
that H0(E ⊗ L) 6= 0. Take a nonzero section s. Suppose it vanishes at some
point x ∈ X. This means that it is actually a section of Mx ⊗E ⊗L, where
Mx is the ideal sheaf of functions vanishing at the point x. But Mx is an
invertible sheaf and is indeed isomorphic to O(−x). Thus, ultimately s may
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be regarded as an everywhere nonzero section of O(−D) ⊗ E ⊗ L where D
is the divisor of zeros of s. Thus we get an exact sequence

0 → O → E ⊗M → F → 0

of locally free sheaves, denoting by M the line bundle O(−D)⊗L. Tensoring
this with M−1 we see that E is obtained as an extension of a vector bundle
of rank n− 1 by a line bundle. Iterating it, one concludes that every vector
bundle is obtained as successive extension of line bundles. Incidentally the
Riemann-Roch theorem for vector bundles, stated above can be reduced to
the same for line bundles from this fact.

2.7 Remarks. If we take elements v, λv ∈ H1(E ′′∗⊗E) = V (with λ ∈ CI∗),
the extensions obtained are distinct, but the vector bundles obtained as ex-
tensions are isomorphic. Now one can easily construct a family of vector
bundles on X parametrised by the affine space V , namely Ev is the extension
corresponding to v ∈ V . By restricting this family to the one-dimensional
subspace CIv, we get a subfamily. Note that every nonzero vector in this sub-
space corresponds to the ‘same’ vector bundle (i.e. upto isomorphism) while
the zero vector corresponds to the direct sum of E ′ and E ′′, which is gener-
ally speaking not isomorphic to the non-trivial extension. This strange fact
(called the ‘jump’ phenomenon) gives the following negative result. There
cannot be a variety structure on the set of isomorphic classes of vector bun-
dles of rank ≥ 2 with even the minimal naturality assumptions, such as we
explained in our discussion of the Poincaré bundle. For if there were such a
structure, there would be a morphism from CIv into that space which would
take the open set of nonzero vectors into a single point and the zero vector
to some other point.

2.8 Elementary transformations.

Here we start with a vector bundle and ‘alter’ it at a point to get a
new vector bundle of the same rank. For example, one may start with the
trivial line bundle O and alter it at a point x ∈ X to obtain the line bundle
O(−x). Since the latter consists of functions which vanish at x, the way to
go about this construction is to take a surjection O → Ox where the latter
is the structure sheaf of the single point x. The kernel is O(−x). The same
procedure can be adopted in general. Take a locally free sheaf E and take
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any surjection to Ox. It is clear that the kernel is locally free. Since the sheaf
Ox is concentrated at x, in order to give a surjection of E onto Ox, we need
take only a nonzero linear form on the fibre Ex of the vector bundle E at x.

2.9 Direct Images.

Let Y be another compact Riemann surface and π : Y → X a surjective
morphism. Take any locally free sheaf on Y and take its direct image on X.
It is a locally free sheaf on X and this is another way of constructing new
vector bundles. For example, if we start with a line bundle L on Y , its direct
image is a vector bundle of rank equal to the degree of the map π. Also since
the Euler characteristic is invariant under direct images we can compute the
degree of the direct image. In fact, we have

χ(E) = deg(E) + rk(E)(1− g(Y ))

= deg(π∗(E)) + rk(E)deg(π)(1− g(X))

This computes the degree of π∗(E) in terms of that of deg(E), deg(π) and
the genera of X and Y .

2.10 Representations of the Fundamental group.

A transcendental construction of vector bundles on X is as follows. Let ρ
be a linear representation of the fundamental group π(X) in a vector space V .
Now π acts (conventionally on the right) as deck transformations on the uni-
versal covering space X̃ of X on the one hand and on V by linear transfor-
mations on the other. Let Eρ be the quotient of the space X̃ × V by the
action of π on the product by the prescription

g(z, v) = (zg−1, ρ(g)v)

for g ∈ π, z ∈ X̃ and v ∈ V . There is a natural morphism of Eρ → X given
by the second projection. This actually makes it a vector bundle. This is
called the vector bundle associated to the representation π. Obviously, the
rank of this vector bundle is the same as that of V . It degree is 0 as we shall
see presently.

If we take characters (i.e. one-dimensional representations) on π, we
would of course get line bundles by this procedure. Since we have seen that
line bundles are classified by H1(X,O∗), we have a natural homomorphism
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of the group of characters of π into H1(X,O∗). This homomorphism is
easy to explain. The natural homomorphism of the constant sheaf CI∗ into
the sheaf O∗ induces a homomorphism of H1(X, CI∗) into H1(X,O∗). The
former can be identified with the group of characters on π and the latter with
the group of isomorphism classes of line bundles. Now consider the following
commutative diagram of sheaves (with exact rows).

0 → ZZ → CI → CI∗ → 0
↓ ↓ ↓

0 → ZZ → O → O∗ → 0

Here the maps CI → CI∗ and O → O∗ are both given by the exponential
map. We are interested in the associated cohomology sequences. Since
H2(X,ZZ) = ZZ → H2(X,CI) = CI is an inclusion, it follows that the ho-
momorphism H1(X,CI∗) → H2(X, ZZ) is zero. This implies that the as-
sociated line bundle, as an element of H1(X,O∗) gets mapped onto zero
by the connecting homomorphisminto H2(X, ZZ). In other words, the de-
gree of the associated line bundle is always zero. But then since the map
H1(X, CI) → H1(X,O) is the Hodge projection, it follows that any line bun-
dle of degree zero, which is the image of an element of H1(X,O) is associated
to a suitable character. Indeed, by using the exact sequence

0 → ZZ → IR → S1 → 0

instead and noting that by virtue of Hodge decomposition, H1(X, IR) is
mapped isomorphically on H1(X,O), we can actually conclude that any line
bundle of degree zero comes from an element of H1(X,S1), namely a unitary
character of π.

In fact, the above argument gives the following result.

2.11 Theorem. There is a natural isomorphism between unitary character
group of the fundamental group and the group of line bundles of degree zero.

What is the corresponding result in respect of vector bundles? If ρ is
a representation of π then the determinant of the associated bundle Eρ is
clearly the line bundle associated to the character det(ρ). Hence we conclude
that deg(Eρ) is zero. If we restrict ourselves to unitary representations, then
we have the following easily proved, but very useful, statement.
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2.12 Proposition. Any homomorphism of Eρ into Eρ′ with ρ and ρ′ uni-
tary, is induced by a π-homomorphism of the representation spaces. In par-
ticular, Eρ and Eρ′ are isomorphic if and only if the representations ρ and
ρ′ are equivalent.

However, it is not true that every vector bundle of degree 0 arises from
a unitary representation of π. For example, take a nontrivial extension E
of O by O. Such an extension exists since these extensions are classified by
H1(X,O) which is of dimension g ≥ 1 by assumption. If it is associated
to a unitary representation of π, the inclusion of O in E arises, by the
above result, by a homomorphism of the trivial representation space into the
representation of ρ. Since unitary representations are completely reducible,
this subrepresentation would split and hence so would the inclusion of O in
E. By assumption this is not the case.

One might of course ask whether there exists a possibly non-unitary rep-
resentation to which any given bundle of degree 0 is associated. This is also
false. In fact, we have a very precise theorem in this regard, due to A. Weil.

2.13 Definition. A vector bundle E is said to be decomposable if it is
isomorphic to a nontrivial direct sum of subbundles. If not, it is said to be
indecomposable.

It is obvious that any vector bundle is a direct sum of indecomposable
bundles. Such a decomposition is not unique but in any two decompositions
the components are isomorphic, upto order. Hence one can talk of indecom-
posable components of a vector bundle.

2.14 Theorem. A vector bundle is associated to a representation of the
fundamental group, if and only if every indecomposable component is of degree
zero.

Thus a direct sum of a line bundle of degree 1 with one of degree −1 has
degree zero, but is not associated to any representation of π.

All these show that it is not possible to construct a reasonable structure
of a variety on the set of isomorphism classes of all vector bundles of a given
degree. We may however restrict ourselves to a big subset of vector bundles
and then give an affirmative answer to this question. We will now turn to
these considerations.
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CHAPTER III MODULI SPACE OF VECTOR BUNDLES

In order to construct a variety whose points correspond to isomorphism
classes of vector bundles, one would first like to fix some numerical invariants.
The rank r of the bundle is one such invariant and the degree is another.

One might first consider a rough classification and then pass to the equiv-
alence in order to construct the moduli variety in question. When we do this
we encounter the problem of passing to the quotient by a group action on a
projective variety.

In the sixties, Mumford studied group actions on projective varieties and
this led to the notion of stability under group actions. He applied his the-
ory to many constructions in Algebraic geometry and in particular to the
construction of the moduli space of vector bundles.

2.15 Stable and Semistable Vector bundles.

The key to the construction of the moduli of vector bundles is the defini-
tion of a stable (resp. semistable) vector bundle.

2.16 Definition. The slope µ(E) of a vector bundle E is the rational
number deg(E)/rk(E). A vector bundle on X is stable if for every (proper)
subbundle F of E, we have the inequality

µ(F ) < µ(E).

If the inequality is replaced by µ(F ) ≤ µ(E) then we get the notion of a
semistable vector bundle.

It is trivial to check that the above condition is equivalent to any one of
the following.

1) µ(E/F ) > µ(E);

2) µ(F ) < µ(E/F );

3) χ(F )/rk(F ) < χ(E)/rk(E);

4) χ(E/F )/rk(E/F ) > χ(E)/rk(E);

5) χ(F )/rk(F ) < χ(E/F )/rk(E/F ).
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2.17 Remarks. Note that if n and d are coprime, equality is not possible
in the definition of semistable bundles. Hence there is no distinction between
stable and semistable bundles in this case.

2.18 Elementary Properties.

Since line bundles do not have any proper subbundles, they are all stable.
Moreover, for any line bundle L, we have det(E ⊗ L) = det(E)⊗ Lrk(E) and
hence deg (E ⊗ L) = deg E + rk(E).deg (L). In other words, µ(E ⊗ L) =
µ(E) + deg(L). From this we see that E is stable or semi-stable if and only
if E ⊗ L is so.

2.19 Remarks. Indeed, we will eventually show that the tensor product
of two semistable bundles is semistable. But it is not very easy to prove at
this stage.

Thanks to the above theorem, in order to study stability of bundles and
their properties, we can and (often will) assume that its slope is sufficiently
large.

Stable vector bundles behave like line bundles in many ways. To start
with, a semistable bundle of negative degree cannot admit any nonzero sec-
tion. In fact, we have remarked (2.6) that any section can be considered
a section of E ⊗ O(−D) which does not vanish anywhere, where D is an
effective divisor. In other words, O is a subbundle of E ⊗O(−D). Since the
latter is semistable, we have 0 ≤ µ(E)−degD, but by assumption, µ(E) < 0
and deg (D) ≥ 0. Moreover, using the duality theorem, we can derive a
vanishing theorem for H1 as well.

2.20 Proposition. If E is a semistable vector bundle of negative degree,
then H0(E) = 0. The same conclusion subsists if E is stable, and nontrivial
of non-negative degree. If E is a semistable bundle of slope greater than
2g−2, then H1(X,E) = 0. The same vanishing is true if E is stable of slope
at least 2g − 2 and not isomorphic to K.

Using this, we can also give a criterion for the stability of a vector bundle
in terms of the dimensions of the space of sections of subbundles instead of
the Euler characteristics.

20



2.21 Proposition. If the slope of E is at least 2g − 2, then E is stable if
rk H0(X, F )/rk(F ) < rk H0(X, E)/rk(E) for every proper subbundle F .

Proof. If E is not stable, then take a subbundle F of maximal slope. (Using
the fact that every vector bundle is an extension of line bundles one can check
the existence of such a bundle). Then F is clearly semistable with µ(F ) >
µ(E)/geq2g − 2. Hence H1(X, F ) = 0 and consquently χ(F )/rk(F ) =
rkH0(F )/rk(F ) so that the given inequality gives‘ χ(X, F )/rk(F ) = µ(F )+
1− g < µ(E) + 1− g = χ(E)/rk(E)/leqrkH0(X, E)/rk(E), a contradiction.

2.22 Remarks. Since given any vector bundle we may tensor it with a
line bundle to make H1 vanish and inflate the slope to 2g − 2 or more, this
is indeed a criterion for stability.

Consider any semistable bundle E of slope greater than 2g − 1. Then
for any x ∈ X, we have both H1(E) and H1(E ⊗ O(−x)) are zero. Hence
we conclude from Riemann-Roch theorem that the dimension of the space of
sections of E that vanish at x (which we identified with H0(E⊗O(−x))) is n
less than the dimension of H0(E). This shows that sections of E generate the
fibre of E at all points. In other words, all these bundles occur as quotients
of the trivial line bundle (of rank R = d + n(1− g)). Now there is a variety
which parametrises all quotients of a fixed bundle (the trivial bundle of rank
R in our case), of a fixed rank and degree. Moreover the group GL(R) acts
in an obvious way on this quotient and points of the quotient will correspond
to isomorphism classes of semistable bundles.

However it turns out that the problem of taking quotients is more delicate
than simply taking the orbits. At stable points for the action which form an
open invariant set, things are ok. In this way, Mumford proved the following
theorem.

2.23 Theorem. There exists a natural structure of a nonsingular variety
on the space of isomorphism classes of stable vector bundles of rank r and
degree d.

2.24 Theorem of Narasimhan and Seshadri.
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¿ From the definition, it follows easily that a stable bundle is indecom-
posable. For if E = E1 ⊕ E2 then degE = deg(E1) + deg(E2) and also
rk(E) = rk(E1) + rk(E2). This contradicts the stability of E, since we can-
not have both µ(E1) < µ(E), µ(E2) < µ(E) at the same time and the above
equalities.

In particular, by Weil’s theorem, if E is stable of degree 0, then it is given
by a representation of the fundamental group (2.14). It turns out that this
is not so very significant. There is a deeper fact, due to Narasimhan and
Seshadri, (see 3.10 below) which is more vital.

In this respect stable bundles behave again like line bundles. In order to
state the theorem neatly, we will introduce a related definition.

2.25 Definition. A vector bundle is said to be polystable if it is a direct
sum of stable bundles all of which have the same slope.

2.26 Theorem. A vector bundle of degree 0 is polystable if and only if it
is associated to a unitary representation of the fundamental group. A vector
bundle of degree 0 is stable if and only if it is associated to an irreducible
unitary representation of π.

We have already seen (2.12) that the unitary representation which gives
rise to a vector bundle is uniquely determined up to equivalence. So this
implies that the set of all polystable bundles can be naturally topologised as
follows. Consider the 2g-fold product U(n)2g of the unitary group U(n). In
view of the presentation of π that we have described in (1.1), the space of
all unitary matrix representations can be identified with matrices (Ai, Bi),
i = 1, · · · , g with the single relation

∏
AiBiA

−1
i B−1

i = 1. In other words, it
is the inverse image of Id under the commutator map U(n)2g into the special
unitary group SU(n). This is therefore a compact space R. The quotient of
this space by the action of the (special) unitary group, acting by (diagonal)
conjugation gives then a topological model for the set of equivalence classes
of n-dimensional unitary representations of π.

This, together with the remarks in (2.12), means that the category of
polystable vector bundles and that of unitary representations of π are equiv-
alent.

2.27 Remarks. For polystable bundles with other (fixed slopes) there are
analogous theorems, but we pass them here for simplicity.
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2.28 Openness of Stability.

One can show that the property of stability of bundles is open in the
following sense. Let E be a family of vector bundles over X, parametrised
by a variety T . As we did in the case of line bundles, this has to be viewed
as {Et}t∈T , where Et is the restriction of E to {t} ×X. Consider the subset
of T consisting of t ∈ T with Et stable. What we mean is that this subset is
(Zariski) open. We will content ourselves by indicating how it is proved in
the case of bundles of rank 2.

Consider on J×T×X the bundle p∗23(E)⊗p∗13(P ) where P is the Poincaré
bundle of appropriate degree. Then nonstable bundles in our family corre-
spond to points t ∈ T such that there exist j ∈ J with H0(j ⊗ Et) 6= 0. But
we know by the semiconinuity principle that such pairs (j, t) form a closed
subset in J × T . The map J × T → T being proper, its image is closed.

2.29 Connectedness.

If E is a vector bundle of rank 2, then by tensoring it with a suitable
line bundle we can ensure that it has an everywhere nonvanishing section.
In other words E occurs in an exact sequence

0 → O → E → L → 0

Taking determinants we conclude that L = det(E).
If E1 and E2 are any two vector bundles of the same degree, then both

of them occur as extensions of a line bundle by O⊕n−1. As we have seen,
if L is given, these form a family parametrised by a vector space, namely
H1(X,L∗ ⊗O⊕n). Since L is any element of Jd, d = deg(E), it follows that
all these extensions form a family parametrised by a vector bundle T over Jd!
In particular, if they are both stable, then they lie in a Zariski open subset of
T . Thus we conclude that E1 and E2 occur in a connected family. Therefore,
eventually if one constructs a moduli space of stable bundles, it would be
connected and indeed irreducible! Besides, if E is any bundle, we have seen
that it is obtainable as an extension of the above type. Since we may also
take a stable bundle and get it as such an extension, it implies that there is
a Zariski open set of the affine space, which corresponds to stable bundles,
and so in a sense, any bundle can be approximated by stable bundles.

2.30 Moduli space of vector bundles.
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Since polystable bundles form a compact set as we have remarked, al-
though the parameter variety was not a complex variety, one might even
hope to construct a projective variety whose points correspond to polystable
bundles of a given rank and degree. This is essentially true and was proved
by Seshadri. However, there are some delicate points here, which we will
presently explain.

2.31 Theorem. There exists a natural structure of a normal complex
projective variety of dimension n2(g−1)+1 on the set of isomorphism classes
of polystable vector bundles of rank n and degree d.

¿ From the fact that we have mentioned normality in the above statement,
it may be surmised that it is not smooth. Indeed, it is only smooth if n and
d are coprime, and when g = 2, n = 2 for any degree. See NR1].

Although we have said above that it parametrises polystable bundles,
there is a better way to think of it. Consider any semistable vector bundle.
If it is not stable, then it admits a proper subbundle which is also of the
same slope. If F is a subbundle of E of least rank and same slope, then it
follows that F is stable. By induction then, we obtain a flag of subbundles

F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fr = E

where all the subbundles Fi have the same slope and Fi/Fi−1 are stable. A
flag with this property is not unique, much as the Jordan-Hölder series of
a module is not unique. However, again as in Jordan-Hölder theorem, the
successive quotients are however isomorphic upto order. In other words, the
polystable bundle GrE =

∑
Fi/Fi−1 is uniquely determined, upto isomor-

phism, by E.

2.32 Definition. Two semistable vector bundles E1 and E2 of the same
slope are said to be S-equivalent if Gr(E1) and Gr(E2) are isomorphic.

2.33 Remarks. The notion of S-equivalence is relevant only for nonstable
polystable bundles. On stable bundles, it reduces to isomorphism.

The openness, valid for stable and semistable bundles is not valid for
polystable bundles. For example, we may take extensions of O by itself. All
the extensions are S-equivalent to the trivial bundle of rank 2 but the trivial
extension is the only one which gives a polystable bundle. We gave this as
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an example to show that a ‘good’ structure of moduli cannot exist. But with
the notion of S-equivalence, all the extensions are S-equivalent to the trivial
bundle, so that it is no longer a negative example!

Thus it is more fruitful to think of the moduli space as the set of S-
equivalence classes of semistable bundles, rather than as the set of isomor-
phism classes of polystable bundles.

2.34 Universal Property.

Let us denote the moduli space we referred to above by UX(n, d), or
simply U(n, d). It has the following universal properties.

2.35 Theorem. If E is any family of semistable vector bundles on X,
parametrised by a variety T , then the (classifying) map ϕE, which maps
t ∈ T on the S-equivalence class of Et, is a morphism T → U(n, d).

2.36 Theorem. Let M be a variety. Assume given for every family E of
semistable bundles, parametrised by T , a morphism fE : T → M and that
the morphisms fE are compatible with pull backs in the sense that if E ′ is a
family obtained by pulling back E by the morphism (Id×g) : T ′×X → T×X
where g : T ′ → T is a morphism, then we have fE′ = fE ◦ g. Then there is
a unique morphism f : U(n, d) → M with the property that f ◦ ϕE = fE for
any family E.

The most optimistic expectation would be that there exists a Poincaré
bundle on the lines of (1.16) at least on the open set of stable points. However
this turns out to be false in general. The precise theorem that I proved was:

2.37 Theorem. [R] If there exists a Poincaré bundle on any Zariski
open set of U(n, d), then n and d are coprime. If they are indeed coprime,
there exists a Poincaré bundle on the whole of U(n, d)×X with the obvious
universal property.
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