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LECTURES ON PRINCIPAL BUNDLES

V. BALAJI

These are notes of five lectures given in Mexico in November 2006 at CIMAT, Guanajuato,

in the ”College on Vector Bundles” honour of Peter Newstead.

1. INTRODUCTION

The aim of these lectures is to give a brief introduction to principal bundles on algebraic
curves towards the construction of the moduli spaces of semistable principal bundles. The
first lecture develops the basic machinery on principal bundles, their automorphisms. At
the end of the first chapter, we give a proof of theorem of Grothendieck on orthogonal
bundles. The second chapter, after developing the notions of semistability and stability
gives a modern proof of Grothendieck’s theorem of classification of principal bundles on the
projective line. The third chapter gives an outline of the construction of the moduli space of
principal bundles on curves. The moduli space was constructed by A.Ramanthan in 1975.
The method outlined here is from a new construction in [BS].

2. CHAPTER 1

Throughout these notes, unless otherwise stated, we have the following notations and
assumptions:

(a) We work over an algebraically closed field k of characteristic zero and without loss
of generality we can take k to be the field of complex numbers C.

(b) G, will stand for a reductive algebraic group often the general linear group GL(n)
and H a subgroup of GG. Their representations are finite dimensional and rational.

(c) X is a smooth projective curve almost always in these notes.

2.1. Generalities on principal bundles.

Definition 2.1.. A principal G bundle 7 : F — X with structure group G (or a G-
bundle for short) is a variety E with a right G-action, the action being free, such that 7 is
G-equivariant, X being given the trivial action. Further, the bundle 7 is locally isotrivial,
i.e, locally trivial in the étale topology.(in other words, for every x € X, there exists a
neighbourhood U and an étale covering U" — U (i.e finite and unramified) such that, when
E is pulled back to U’ it is “trivial” as G-bundle.

Remark 2.2.. In general we need to work with what is known as the fppf topology if the

base is not smooth.
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e By a family of H bundles on X parametrised by T" we mean a principal H-bundle on
X x T, which we also denote by {E,;};,cr. We note that in general we may not have
T to be smooth and therefore we need the fppf local triviality.

e Recall the definitions of semisimple and reductive algebraic groups. Given an linear
algebraic group G define the radical R(G) = ([ B)° the intersection running over
all Borel subgroups, (which as we know are conjugate), or equivalently , R(G) is the
maximal, normal, connected, solvable subgroup of G. If R(G) = (e) then G is called
semisimple, and if R,(G) the unipotent elements, called the unipotent radical of G
is trivial, then G is called reductive.(In this case R(G) will be a torus!) Equivalently,
(by considering the derived subgroup) G is semisimple (resp reductive) iff it has no
connected abelian (resp unipotent abelian), normal subgroup other than (e).

(a) Let Y be any quasi projective G-variety and let E be a G-principal bundle. For
example Y could be a G-module. Then we denote by E(Y) the associated bundle
with fibre type Y which is the following object: E(Y) = (E x Y)/G for the twisted
action of G on E x Y given by g.(e,y) = (e.g,97 .y).

(b) Any G-equivariant map ¢ : F; — Fy will induce a morphism E(¢) : E(F;) —
E(F,).

In particular, a section s : X — FE(F') is given by a morphism
s FE— F

such that, s'(e.g) = g 1.5'(e) and s(z) = (e, s'(e)), where e € E is such that 7(e) = z,
where 7: F — X.

Definition 2.3.. If p: H — G is a homomorphism of groups the associated bundle E(G),
for the action of H on G by left multiplication through p, is naturally a G-bundle. We denote
this G-bundle often by p.(F) and we say this bundle is obtained from E by extension of
structure group.

Definition 2.4.. A pair (E, ¢), where E is a H-bundle and ¢ : E(G) — F'is a G-bundle
isomorphism, is said to give a reduction of structure group of the bundle F' to H. For
convenience, we often omit ¢ and simply say E is obtained from F' by reduction of structure

group.

Two H-reductions of structure group (E4, ¢1) and (Es, ¢2) are equivalent or isomorphic if
there is a H-bundle isomorphism v : £y — E5 such that the following diagram commutes:

NS

F
Remark 2.5.. A principal G-bundle E on X has an H-structure or equivalently a reduction
of structure group to H if we are given a section o : X — E(G/H), where E(G/H) ~
E x%G/H. To see this, we note the identification of the spaces E(G/H) ~ E/H. Then by
pulling back the principal H-bundle E — E/H by o, we get an H-bundle Fy C E, giving
the required H-reduction. In other words, there is a natural isomorphism Ey(G) ~ E. Thus,

we get a correspondence between sections of F(G/H) and H-reductions of E.
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To see the other direction, let Ey be a H-bundle and consider the natural inclusion
Ey — Ey(G) = E given by 2 — (2, 1¢), where of course (z, 1¢) is identified with (zh, A1)
for h € H. Going down by an action of H we get a map X — Ey(G)/H = E(G/H). This
gives the required section of E(G/H).

Remark 2.6.. Note that a reduction of structure group of £ to H C G can be realised by
giving a G-map s : E — G/H satisfying the propertys(e.g) = g 's(e). In this sense, the
reduction Ey defined above can be seen to be the inverse image of the identity coset in G/H
by the map s.

Remark 2.7.. In the case of G = GL(n), when we speak of a principal G-bundle we identify
it often with the associated vector bundle by taking the associated vector bundle for the
standard representation.

Remark 2.8.. A GL(n) bundle is completely determined by the associated vector bundle
E(V), (where V is the canonical n-dimensional space on which GL(n) acts) as its bundle of
frames. Let V be a vector bundle on X with fibre the vector space V. Then consider the
union

U Isom(V,, V)

rzeX
where I'som(V,, V) are simply isomorphisms between the vector spaces V' and V,.

Note that there is a natural action of GL(V') on the right which is easily seen to be free.
This forms the total space of the principal GL(V') bundle E whose associated vector bundle
E(V)~V.

Similarly, a PG L(n)-bundle is equivalent to a projective bundle, i.e an isotrivial bundle
with P™ as fibre.

Proposition 2.9.. Let F; and Ey be two H-bundles. Giving an isomorphism of the H-
bundles E; is equivalent to giving a reduction of structure group of the principal H x H—
bundle F; X x E5 to the diagonal subgroup Ay C H x H.

Proof: A reduction of structure group to the diagonal A gives a A—bundle EA. Now observe
that the projection maps on H x H when restricted to the diagonal give isomorphisms of
A ~ H. Seeing the bundle En C E; X x E5 and using the two projections to E; and Es, we
get isomorphisms from E; ~ Ea ~ FE5. The converse is left as an exercise.

Definition 2.10.. Let P be a G-bundle. Consider the canonical adjoint action of G on
itself, i.e g- ¢’ = g~ '¢g’g. Then we denote the associated bundle P x% G by Ad(P).

Observe that because of the presence of an identity section, the associated fibration Ad(P)
is in fact a group scheme over X.

Proposition 2.11.. The sections I'(X, Ad(P)) are precisely the G-bundle automorphisms
of P.

Proof: Let 0 : X — Ad(P) be a section. We view the section ¢ as remarked above as
an equivariant map o : P — G. Then by its definition, we have the following equivariance

relation:
o(p.g) =g " o) =go(p)g™’
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Define the morphism:
fo: P— P
given by
fo(p) =p.o(p)
Vp € P. The equivariance property for ¢ implies that f,(p.g) = f,(p).g and hence its an

H-morphism. Clearly it gives an automorphism of P.

For the converse, let f: P — P be an H-bundles automorphism. Define ¢ as follows:

f(p) =p.o(p)

Note that the H—equivariance property of f implies the equivariance property of ¢ which
therefore defines a section of Ad(P).

Remark 2.12.. Let E be a reduction of structure group of the principal G-bundle P to the
subgroup H. Then as we have remarked above, we can represent E as a pair (P, ¢) where
¢: X — P(G/H) is a section of the associated fibration. Let ¢ be an automorphism of the
G-bundle P. Then, o also acts as an automorphism on the associated fibration P(G/H).
This gives an action of the group Aut(P) on the set of all H-reductions of P.

Two H-reductions E and F' of a principal G-bundle are equivalent (i.e give isomorphic
H-bundles) iff there exists an automorphism o of P which takes £ to F' in the above sense.

To illustrate this phenomenon I give below a theorem due to Grothendieck ([G]).

Theorem 2.13.. Let X be a smooth projective complex variety and let H = O(n) C G =
G L(n) be the standard inclusion. Then the canonical map induced by extension of structure
group

{Isom classes of H — bundles} — {Isom classes of G — bundles}

is injective. In other words, a G-bundle P has, if any, a unique reduction of structure
group to H upto equivalence.

Proof: The proof of this theorem is quite beautiful and I will give it in full. Its also of
importance to observe that the theorem is false for the inclusion SO(n) C SL(n)!

Let S be the space of symmetric n X n—matrices which are non-singular. Then G acts on
S as follows:

AX = AXA

The action is easily checked to be transitive and the isotropy subgroup at I is the standard
orthogonal group H = O(n). i.e S ~ G/H as a G-space. The more important fact is that
there is a canonical inclusion of S in G. If ¢ : G — G/H is the canonical quotient map
then identifying the quotient with S, the map ¢ is given by

a(4) = A4

and then the restriction of the map to S < G is given by the map gs(A4) = A? on the

space of symmetric matrices.
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—_—

S inclusion G
S

—>G/H

Let Py be a fixed reduction of structure group of P to H and let F be any other reduction
of P which is therefore given by a section o : X — P(G/H). Since we already have a
reduction, we can express the new reduction o as:

0:X — Py(G/H)

Consider the group scheme Ad(P) = P(G). Since P has a H-reduction, we can view this
group scheme as Py (G), where H — G acts on G by conjugation i.e h.g = h™'gh.

We also observe that the associated fibration Py (G/H) taken with the natural left action
of H on G via its inclusion or by the conjugation action of H on G is identical. In other
words, we can view the morphism associated to the canonical quotient map G — G/H for
the associated fibrations Py (G) and Py (G/H) as being induced by the conjugation action
of H on G and G/H. Note that this is special to our situation since we have a H-reduction
Py to start with.

We thus get the map:
¢: Pp(G) — Pu(G/H)
Observe again that the space S with its inclusion S < G is an H—morphism for the conju-
gation action of H. (Since H = O(n), A' = A™1).

Viewing the spaces in the diagram above as a diagram of H-—spaces for the conjugation
action we have the following diagram of associated spaces:

(2) Py (S) —— Pu(G)

inclusion

qs ¢

Py(S) —= Pu(G/H)

We now note that to prove that the reduction of P given by ¢ is equivalent to the one given
by Py, we need to give an automorphism which takes one to the other. An automorphism
is giving a section of P(G) or equivalently of Py (G). Its easy to check that, giving such
an automorphism is giving a section 7 : X — Ppy(G) such that the following diagram
commutes:

(3) Pu(G) —2 Py(G/H)

Tv/

X

We now recall the following interpolation statement:
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Lemma 2.14.. The characteristic polynomial of a non-singular matrix A can be used to get
a square root of A.

Proof. By an interpolation exercise, we can construct a polynomial h(t) such that h(t)* —¢
is divisible by f(t), i.e h%(t) —t = f(t)g(t) for some polynomial g(t). Since f(A) = 0 by
Cayley-Hamilton theorem, we get h(A)? = A, i,e h(A) provided a square root of A.

Now identify Py (G/H) with Py(S), which is a bundle of non-singular symmetric matrices.
The section ¢ gives a characteristic polynomial f(¢) with coefficients being holomorphic
functions on X. Since X is compact complex, these coefficients are therefore constant. Since
these coefficients are constant, we can use the characteristic polynomial to get the square
root of the section o.

Take h(t) as above. Then define

This provided a section of Py (S) such that ¢pon = o since ¢ on S is the squaring operation.
The composition 7 : X — Py(S) < Py (G) gives the required 7.

Remark 2.15.. The reader should try and understand the proof in Grothendieck’s paper.
The main idea as suggested by Prof Ramanan, is to compare a pair of equivalent non-
degenerate quadratic forms on a vector space. When carried out over a family, together
with choosing a square root (over X) is essentially the classical proof. The proof given here
applies the definitions developed here and also naturally generalises the problem.

Remark 2.16.. It fails for SO(n) C SL(n). In fact, it fails for n = 2. This can be seen as
follows: SO(2) ~ G,,,. Hence SO(2) principal bundles cab be identifies with G,,-bundles
and hence with line bundles. Extension of structure group of a SO(2)-bundle to SL(2) is
equivalent to taking a line bundle L to L & L*, which is an SL(2)-bundle. This has clearly
two inequivalent reductions L and L*.

3. CHAPTER 2

Definition 3.1.. A vector bundle V' is said to be semistable (resp stable) if for every sub-

bundle W C V, 2802 < 2ot

Lemma 3.2.. Let V and W be semistable vector bundles on X of degree zero. Then V @ W
is semistable of degree zero.(Note that this theorem, as it stands is false in char p).

Proof. Any semistable bundle on X of degree zero has a Jordan-Holder filtration such
that its associated graded is a direct sum of stable bundles of degree zero. Note that the
filtration is not unique but the associated graded is so. Hence the tensor product V @ W
gets a filtration such that its associated graded is a direct sum of tensor products of stable
bundles of degree zero. We see easily that this reduces to proving the lemma when V' and
W are stable of degree zero. Then by the Narasimhan-Seshadri theorem, V ® W is defined
by a unitary representation of the fundamental group (namely the tensor product of the
irreducible unitary representations which define V' and W respectively), which implies that

V ® W is semistable (cf. Narasimhan-Seshadri, Annals of Math. 1965).
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Proposition 3.3.. Let E be a principal H-bundle on X with H a semisimple algebraic
group. Then the following are equivalent:

(a) There exists a faithful representation H < GL(V') such that the induced bundle
E(V) = E x"V is semistable (of degree zero).

(b) For every representation H — GL(W), the bundle E(W) is semistable (of degree
Z€r0).

Proof.
(b) = (a) is obvious.

(a) = (b): Since H is semisimple; the vector bundle E(V') is semistable of degree 0.
Consider the natural tensor representation T%*(V) = ®*V ® ®°V*. Then by Lemma 3.2,
the bundle E(T**(V)) = @*E(V) @ @"E(V)* is semistable of degree 0.

It is well-known that any H-module W is a sub-quotient of a suitable T%°(V).

This can be seen as follows: Consider the action map H x W — W. Taking the dual
maps at the algebra level we have the map W — k[H] ® W (0) where W (0) is W with the
trivial H-action (namely h.w = wVh € H). This follows by writing the action condition,
where the action on the right is by translation on the algebra of functions. Hence, the H-
module is a sub-module of k[H]|%™W  In other words, it is enough to handle the H-module
k[H]. For this embed H — GL(V) and embed GL(V) — End(V) x End(V*) (i.e inside
matrices (A, B), such that A.B~! = I). Then, by dualising and we see that

Sym(V) @ Sym (V") — K[GL(V)] — k[H]

the last two maps being surjections (H-maps). Now put W in copies of k[H] and we are
done. Notice that if we are in char 0 then we can choose a splitting and embed W in a finite
direct sum of tensor representations.

Hence E(W) is a sub-quotient of E(T**(V)) of degree zero. Therefore E(W) is also
semistable.

Definition 3.4.. An H bundle E is said to be semistable if it satisfies the equivalent condi-
tions in Proposition 3.3.

3.0.1. Tannakian definitions.

Definition 3.5.. Another definition of a principal G-bundle is the Tannakian one: Let X
be a connected smooth projective variety over C. Denote by Vect(X) the category of vector
bundles over X. The category Vect(X) is equipped with an algebra structure defined by the
tensor product operation

Vect(X) x Vect(X) —  Vect(X),

which sends any pair (E,F) to EQ) F, and the direct sum operation €, making it an
additive tensor category in the sense of Definition 1.15 Deligne-Milne’s article in Springer,
LNM 900.

M.V.Nori gives an alternative description of principal G-bundles, which I briefly recall.

For Nori however, X is allowed to be a much more general space (a prescheme!). However
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we restrict ourselves to the situation where X is a smooth variety, since the applications here
will be in this generality.

Let Rep(G) denote the category of all finite dimensional complex left representations of
the group G, or equivalently, left G-modules. By a G-module (or representation) we shall
always mean a left G-module (or a left representation).

Given a principal G-bundle P over X and a left G-module V| the associated fiber bundle
P x4V has a natural structure of a vector bundle over X. Consider the functor

(2.2) F(P) : Rep(G) — Vect(X),

which sends any V' to the vector bundle P x“V and sends any homomorphism between two
G-modules to the naturally induced homomorphism between the two corresponding vector
bundles. The functor F(P) enjoys several natural abstract properties. For example, it is
compatible with the algebra structures of Rep(G) and Vect(X) defined using direct sum
and tensor product operations. Furthermore, F'(P) takes an exact sequence of G-modules
to an exact sequence of vector bundles, it also takes the trivial G-module C to the trivial

line bundle on X, and the dimension of V' also coincides with the rank of the vector bundle
F(P)(V).

Nori proves that the collection of principal G-bundles over X are in bijective correspon-
dence with the collection of functors from

F : Rep(G) — Vect(X)

satisfying the following properties: strict,ezxact,faithful,tensor functor such that F, is a fibre
functor on the category Rep(G).

(a) Strict: a morphism of vector bundles is said to be strict if the cokernel is also locally
free. Let u:V — W be a G-module map. Then we want the induced morphism
F(u) : F(V) — F(W) to be strict. In particular, kerF(u) and I'mF(u) are also
locally free.

(b) Exact: kerF(u) = F(ker(u)), cokerF(u) = F(coker(u)).

(¢) Faithful: F(Hom(V,W)) — Hom(F(V), F(W)).

(d) Tensor functor: F(V @ W)=V (V)® F(W) and F(trivial) = Ox.

(e) F, is a fibre functor, which says that using the pair (Rep(G), F,,),by the easy half
of Grothendieck-Tannaka theorem one recovers back G from the Tannakian category
(Rep(G), Fy).

Given F, there is a P unique upto a unique isomorphism such that F' ~ F(P) (naturally
equivalent!).

Remark 3.6.. More generally, this definition allows us to talk about torsors in any Tannaka
category. For example, we could work with the category of semiharmonic Higgs bundles on a
smooth projective variety, or the category of parabolic bundles with quasi-parabolic structure
prescribed on a fixed divisor with simple normal crossings and the weights satisfying some
natural conditions. Then a principal Higgs bundle or principle parabolic bundles could be
defined as a functor satisfying Nori’s axioms with values in the Higgs category or parabolic
category (cf.[S]). This method can be used to construct moduli of these objects.
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Definition 3.7.. Fix a Borel subgroup B and a maximal torus T C B. Let P be a parabolic
subgroup of the reductive group G. A character y : P — C* is said to be dominant if it is
trivial on the connected component of the centre of G and such that with respect to positive
roots aw € X*(T'), we have (o, x|r) > 0. This notion does not depend on the choice of B.
Here (, ) denotes the natural W—invariant pairing on X*(7") ® Q.

Remark 3.8.. Let x be a character of P. Then, we consider the P-bundle G — G/P.
The character x then defines a line bundle L, on G/P. The property of dominance of x is
equivalent to the ampleness of the line bundle L7.

Definition 3.9.. (A. Ramanathan)([R1], [R2]) E is semistable if V parabolic subgroup P of
H, V reduction op : X — E(H/P) and V dominant character y of P, the bundle o},(L,))
has degree < 0.

Theorem 3.10.. (A.Ramanathan) Let H be semisimple. Then E is semistable in the above
sense if and only if it is so in the sense of Def 3.4.

Remark 3.11.. The proof of this theorem is quite non-trivial. I will indicate it at the end
the course. We note that Ramanathan’s definition makes sense for reductive groups as well.

Remark 3.12.. Recall the definition of stability of vector bundles. A vector bundle V is said
to be semistable (resp stable) if for every sub-bundle W C V, ielg]((vvg)) < ielf(%) . Comparing
this definition with Ramanathan’s definition given above it seems as if one is interested in
asking Ramanathan’s condition for maximal parabolic subgroups. This is indeed correct. It
is not too hard, by expressing the dominant character of a given parabolic in terms of the
characters of the maximal parabolic subgroups containing it, that one can always reduce
to the case of maximal parabolic subgroups. Once on a maximal parabolic, then since
Pic(G/P) = Z it follows that there is only one inequality to be checked like the case of the
vector bundles where we fail to see all the characters etc.

Remark 3.13.. We will, for the most part, be working with curves of ¢ > 2. In g = 0
we have the Grothendieck-Harder theorem (Harder for fields of char p) which says that all
G-bundles have reduction of structure group to the maximal torus upto action by the Weyl
group. This is true for any connected reductive group G.

Let V' be a vector bundle on X. Then recall that there is a unique filtration of V'
o=VycvicWwc..cVi,CcVi=V

by subbundles and such that the filtration is characterised by the two conditions, namely,
that all the quotients V;/V;_; are semistable for i € [1,l] and further, the slopes
deg(V;/Vi_1)/rank(V;/V;_1) are strictly decreasing as i increases. This filtration was in-
troduced by Harder and Narasimhan and is called the H N-filtration of V. This allows us to
reduce, in some sense, all questions on vector bundles to semistable vector bundles. In the
principal bundle setting we have the following:

Definition 3.14.. (Harder-Narasimhan Reduction) Let E be a principal G bundle on X and
(P,op) be a reduction of structure group of E to a parabolic subgroup P of G, then this
reduction is called H-N reduction if the following two conditions hold:

(a) If L is the Levi factor of P then the principal L bundle Ep(L) = Epx¥'L over X is

a semistable L bundle.
9



(b) For any dominant character y of P with respect to some Borel subgroup B C P of
G, the associated line bundle L, over X has degree > 0.

Remark 3.15.. For G = GL(n, k) a reduction Ep gives a filtration of the rank n vector
bundle associated to the standard representation. With a bit of work one can check that
Ep is canonical in the above sense iff the corresponding filtration of the associated vector
bundle filtration coincides with its Harder Narasimhan filtration.

Theorem 3.16.. (Grothendieck)([G]) Let E be a principal G-bundle on P!, where G is
connected reductive. Then E is has a reduction of structure group to the maximal torus of
GG unique upto an action of the Weyl group.

Proof: The proof proceeds as follows. Case 1: E' is a semistable G—bundle.

Now we reduce further to the case when G is semisimple, in which case Grothendieck’s
theorem would read:

E semistable bundle with semisimple structure group, then E is trivial.

For this, consider the quotient group G associated to G by going ‘modulo the identity

component of the center. Then, since F is semistable, it follows that E(G) is also semistable.
This needs a proof but is not difficult. (see A.Ramanathan. [R2])

Now G is semisimple we get by the semisimple version of Grothendieck that E(G) is trivial.
This implies that the structure group of F reduces to the identity component of the center
of G proving the theorem.

To complete the proof we need to prove the result if the group G is semisimple then the
only semistable bundle will be the trivial one. Let G < SL(V') be a faithful representation.
Then consider E(V') the extension of structure group to SL(V). Since E(V) is semistable
with trivial determinant, by Riemann-Roch, F(V') has a section, which will be nowhere
vanishing (because of the semistability and degree 0 property of E(V')). Since we are on P,
we get a splitting of E(V) with a trivial factor. Now an induction on rank of E(V') proves
that E(V) is trivial. Since E(V) comes with a reduction of structure group to G, we get a
section of E(SL(V)) x*LWV) SL(V)/G. Since E(SL(V)) is trivial, this section gives a map
from P! — SL(V)/G which will be constant, since SL(V)/G is an affine variety. This
implies that FE is trivial, completing the proof.

Case 2: F is not semistable. Then we reduce to the semistable case as follows:

Suppose that F is unstable. Then by the existence of HN reduction, we have a parabolic
subgroup P C G and a reduction of structure group Ep to P such that the associated Levi
bundle Ep(L) is semistable. If we prove that Ep(L) has a reduction of structure group to the
maximal torus of L then we observe that the parabolic subgroup is a semi-direct product of
L and the unipotent radical U. The point to note is that U has a filtration by the additive
group G, and hence on P!, one can prove without much difficulty that H'(P U) = 0.
This implies that the extended bundle Ep(L) can in fact be realised as a bundle obtained
by reduction of structure group to ”a” Levi subgroup L (by a choice of a splitting). In other
words, if Ep(L) has a reduction of structure group to its maximal torus, then so does F to

the maximal torus of G.
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Remark 3.17.. In the case of elliptic curves the same reduction statement is true for
semistable bundles with vanishing Chern classes (true when G is semisimple!) and the
moduli is simply the X*/W. In the case of vector bundles it is the symmetric product of
the curve (Atiyah).

Definition 3.18.. A reduction of structure group of F to a parabolic subgroup P is called
admissible if for any character x on P which is trivial on the center of H, the line bundle
associated to the reduced P-bundle Ep has degree zero.

Definition 3.19.. An H-bundle F is said to be polystable if it has a reduction of structure
group to a Levi R of a parabolic P such that the reduced R-bundle Ey is stable and the
extended P bundle Fg(P) is an admissible reduction of structure group for E. One can
define the associated graded of a semistable E, denoted by gr(FE) as follows: firstly one
shows that there exists an admissible reduction of structure group to P with the added
property that Ep(R) is stable as an R-bundle. (note that R is only a reductive group and
almost never semisimple!). Define gr(E) ~ Ep(R)(G). This will be the unique closed orbit
(in the GIT construction) in the orbit closure of E. In the case G = GL(n), E the associated
vector bundle. Then an example of an admissible reduction is writing E as:

0—F, —FE— Fy—0

where deg(E;) = 0. One knows by the theory of semistable bundles that in general E has a
filtration Ey C ... C By C FE of bundles such that the successive quotients E;/F;; are stable
of degree 0 and then we define gr(E) ~ ®F;/F;1.

(cf §4 (4.9) for other equivalent formulations).

4. CHAPTER 3

4.1. Construction of the moduli space. For the present purpose, we take G = SL(n, C)
and H C G a semisimple subgroup. We will be interested in constructing a moduli space of
H-bundles. Roughly, we wish to give the set My of isomorphism classes of H-bundles the
structure of an algebraic scheme in a natural way. Natural here could mean representing the
functor Fig or equivalently, given a family of H-bundles FF — X x T', parametrised by and
algebraic scheme T, the natural set map

t— (F)

from
T — MH

is a morphism. We note that there are bad bundles forcing us to refine our equivalence from
isomorphism classes to S-equivalence. Indeed one can have a family of H-bundles {F;}, on
Al x X parametrised by the affine line, such that V¢ # 0 € A' F; ~ E and Ey ~ gr(F).
For this see the last part of construction where the points of the moduli are defined. The
S-equivalence is in some sense identifying the general points on this family and the limit so
as to make the resultant moduli a separated scheme.

We recall very briefly the Grothendieck Quot scheme used in the construction of the moduli

space of vector bundles (cf.[N]).
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Let F be a coherent sheaf on X and let F(m) be F®Ox(m) (following the usual notations).
Choose an integer my = mg(n,d) (n = rk, d = deg) such that for any m > my and any
semistable bundle V' of rank n and deg d on X and we have h'(V(m)) = 0 and V(m) is
generated by its global sections.

Let x = h%(V(m)) and consider the Quot scheme @ consisting of coherent sheaves F on X
which are quotients of CX®:Ox with a fixed Hilbert polynomial P. The group G = GL(x, C)
canonically acts on ) and hence on X x @ (trivial action on X) and lifts to an action on
the universal sheaf £ on X x Q.

Let R denote the G-invariant open subset of () defined by

Rz{qGQI

E, =& |xxq 1islocally free s.t. the canonical map
X — HO(&,) is an isomorphism, det &, ~ Ox.

We denote by )*° the G-invariant open subset of R consisting of semistable bundles and
let £ continue to denote the restriction of £ to X x Q*°.

Henceforth, ‘by abuse of notation’, we shall write Q) for Q*°.

Definition 4.1.. Recall the definition of a good quotient. Let H x T' — T be an action of
HonT.p:T—Y =T//H is called a good quotient if:

(a) p is onto, affine and H-invariant.

(b) p.(OF) = Oy where OF is the sheaf of H-invariant sections ...

(c) Closed H-subsets of T' map to closed subs of Y and disjoint closed sets go to disjoint
closed sets by p.

If all the orbits are closed then p is called a geometric quotient. If further the action map
(HxT)— (T xT) is a closed embedding, in which case we say the action is free (in the
strong sense!), then p is an H-torsor or principal bundle. There can be situations where the
action is set theoretically free and a geometric quotient when p is not a principal bundle (cf
Mumford’s GIT). However, in char 0, by Luna one can always have an open subset where
the action is strongly free and hence a principal bundle. (cf Newstead [N])

4.2. The construction of the moduli space for principal bundles. Fix a base point
x € X (cf. Remark 2.3). Let ¢” : (Sch) — (Sets) be the following functor:

nry =L vis) | {V;} is a family of semistable principal G-bundles
q o s 5t parametrised by T' and s, € I'(X,V(G/H),)VteT [’

i.e. ¢"(T) consists pairs of rank n vector bundles (or equivalently principal G bundles)
together with a reduction of structure group to H.

By appealing to the general theory of Hilbert schemes, one can show without much diffi-
culty (cf. [R1, Lemma 3.8.1]) that ¢” is representable by a @-scheme, which we denote by
Q//'

The universal sheaf £ on X x @) is in fact a vector bundle. Denoting by the same &£ the
associated principal G-bundle, set @)’ = (£/H),. Then in our notation Q' = £(G/H), i.e.

we take the bundle over X x @ associated to €& with fibre G/H and take its restriction to
12



rXQ=Q. Let f:Q — @ be the natural map. Then, since H is reductive, f is an affine
morphism.

Observe that (' parametrises semistable vector bundles together with initial values at x
of possible reductions to H.

Define the “evaluation map” of ()-schemes as follows:
b Q' —Q
(V,s) — (V. 5(2)).
We then have the following two technical lemmas. (cf [BS]) for a proof of the first one.
Lemma 4.2.. The evaluation map ¢, : Q" — Q' is proper.

Lemma 4.3.. The evaluation map ¢, is injective.

Proof. Since H is semisimple, it follows that G/H is affine and by a classical result of
Chevalley, we have a G-embedding G/H < W in a finite dimensional G-module W. Let
(E,s) and (E',s') € Q" such that ¢.(E,s) = ¢.(E',s') in Q. ie. (E,s(x)) = (E', s (x)). So
we may assume that £ ~ F’ and that s and s’ are two different sections of E(G/H) with
s(x) = ¢ (z).

Using G/H — W, we may consider s and s’ as sections in I'(X, E(WW)). Observe that by
definition E being semistable of degree 0, so is E(W).

Recall the following fact:
If £ and F are semistable vector bundles with p(E) = pu(F'), then the evaluation map
¢, : Hom(FE, F) — Hom(FE,, F}) (%)
is injective.
In our situation, s and s’ € Hom(Ox, E(W)) and hence by (x) since ¢,(s) = ¢.(s'), we
get s = &, proving injectivity.
Remark 4.4.. It is immediate that the G-action on @ lifts to an action on Q".

Recall the commutative diagram

Pq

Q// Q/

Q

By Lemma 4.2, and Lemma 4.3 ¢, is a proper injection and hence affine. One knows that f
is affine (with fibres G/H). Hence v is a G equivariant affine morphism.

Remark 4.5.. Let (E,s) and (E’, ') be in the same G-orbit of @”. Then we have £ ~ E'.
Identifying £’ with E, we see that s and ¢’ lie in the same orbit of Aut ¢ £ on I'( X, E(G/H)).

Then using Remark 2.12 we see that the reductions s and s’ give isomorphic H-bundles.
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Conversely, if (E, s) and (E’, s') such that E' ~ E" and the reductions s, s’ give isomorphic
H-bundles, using again Remark 2.12 we see that (E,s) and (E’,s’) lie in the same G-orbit.

Consider the G-action on @” with the linearisation induced by the affine G-morphism
Q" — Q. It is seen without much difficulty that, since a good quotient of ) by G exists
and since Q" — @ is an affine G-equivariant map, a good quotient Q”/G exists (cf. [N]
Lemma 4.1).

Moreover by the universal property of categorical quotients, the canonical morphism

¢:Q"//G—Q//G
is also affine.

Theorem 4.6.. Let Mx(H) denote the scheme @”//G. Then this scheme is the coarse
moduli scheme of semistable H-bundles. Further Mx(H) is projective and if H — GL(V)
is a faithful representation, the canonical morphism ¢ : Mx(H) — Mx(GL(V)) is finite.

Proof. We need only check the last statement. Theorem 4.10, which is termed the semistable
reducton theorem) then implies that the moduli space M x(H) is projective, and therefore 1
is proper. By the remarks above v is also affine, therefore it follows that 1 is finite.

Remark 4.7.. We have supposed that H is semisimple; however, it is not difficult to treat
the more general case when H is reductive. Let H be then reductive and H = H mod centre,
its adjoint group. Let P be a principal H-bundle and P the H-bundle, obtained by extension
of structure groups. We define P to be semistable if P is semistable.

Recall that over a curve the topological type of the bundle is completely determined by
7 (G). For example, consider the exact sequence (assume the G is semisimple)

1 —m(G) —G°—G—1

Then one observes that for the simply connected group, principal bundles are of one topo-
logical type (namely trivial!). Then follow the cohomology map

H'(X,G) — H*(X,m(Q)) ~ m(G)

where, G is the sheaf of continuous functions with values in G. If we fix a topological
isomorphism class ¢ for principal H-bundles, this fixes a topological isomorphism ¢ for prin-
cipal H-bundles. Then the moduli space Mx(H). is “essentially” My (H)zx (product of
Jacobians). This can be made rigorous and leads to the construction of Mx(H)..

4.3. Points of the moduli. In this subsection we will briefly describe the k-valued points
of the moduli space Mx(H). The general functorial description of Mx(H) as a coarse moduli
scheme follows by the usual process.

Proposition 4.8.. The “points ” of Mx(H) are given by isomorphism classes of polystable
principal H-bundles.

We firstly remark that since the quotient q : Q" — Mx(H) obtained above is a good
quotient, it follows that each fibre ¢~!(F) for E € Mx(H) has a unique closed G-orbit. Let

us denote an orbit G - E by O(F). The proposition will follow from the following:
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Lemma 4.9.. If O(F) is closed then E is polystable.

Proof. (Idea of proof) Recall the definition of a polystable bundle Def 3.19 and the
definition of admissible reductions Def 3.18. If E has no admissible reduction of structure
group to a parabolic subgroup then it is polystable and there is nothing to prove.

Suppose then that E has an admissible reduction Fp, to P C H. Recall by the general
theory of parabolic subgroups that there exists a 1-PS ¢ : G,,, — H such that P = P(§). Let
L(&) and U(&) be its canonical Levi subgroup and unipotent subgroup respectively. The Levi
subgroup will be the centraliser of this 1-PS ¢ and one knows P(§) = L(£)-U(&) = U(&)-L(§).
In particular, if h € P then lim&(t) - h - £(t)~! exists. From these considerations one can
show that there is a morphism

f:P€) x Al — P(¢)

such that f(h,0) = m-u, where h € Pand h=m-u, m € L and u € U. (see Lemma 3.5.12
A.Ramanathan)

Consider the P-bundle Ep. Then, using the natural projection P — L where L = L(§),
we get an L-bundle Ep(L). Again, using the inclusion L < P < H, we get a new H-bundle
Ep(L)(H). Let us denote this H-bundle by Ep(L, H). It follows from the definition of
admissible reductions and polystability that Ep(L, H) is polystable.

Further, from the family of maps f defined above, and composing with the inclusion
P(§) — H we obtain a family of H-bundles Ep(f;) for ¢ # 0 and all these bundle are
isomorphic to the given bundle E. Following (Ramanathan Prop.3.5 pp 313), one can prove
that the bundle Ep(L,H) is the limit of Ep(f;). It follows that Ep(L, H) is in the G-
orbit O(FE) because O(E) is closed. This implies that F ~ FEp(L, H), implying that F is
polystable. Q.E.D.

To complete the projectivity of the moduli space, we need the following result. (cf [BS]
and [F] for proofs).

Theorem 4.10.. Let Px be a family of semistable principal H-bundles on X x Spec K, or
equivalently, if Hx denotes the group scheme H x Spec K, a semi-stable Hg-bundle Px on
Xk. Then there exists a finite extension L/K, with the integral closure B of A in L, such
that, Pk, after base change to Spec B, extends to a semistable Hg-bundle Pz on Xp.

Remark 4.11.. We outline in brief the classical Langton for vector bundles (cf [L]): We
are given Vi a semistable family on Xg. Firstly, there exists an extension of Vi to a Vy
which we may choose as reflexive since we are on a family of curves. (the choice is quite
non-canonical as can be seen from Prop 6 of Langton’s paper). If the special fibre Vj is
not semistable., then let F;(V}) be the first non-trivial term in the HN-filtration. We may
assume that the extension V4 has been chosen that u(F;) is minimal and also among these
with the least rk(F;). We get a new model V) = ker(Vy — Vi /F;(Vi)) and an extension

0 — Vi/Fi(Vi) — Vi — Fy(Vi) — 0

From this, after some work, one shows that F;(V}) injects into F;(Vj). Therefore by mini-
mality, F;(V)) = F;(V}). Continuing, one gets a decreasing family of models for Vi. Taking

their intersection (making sense of it!) one gets a sub W4 C V4 such that Wy ~ F;(Vj).
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Thus, u(Wg) = p(F;), which is greater than p(Vi), since Vj is not semistable. This implies
that Vi itself is not semistable , a contradiction!

Remark 4.12.. The first crucial difficulty in proving our theorem is even at the very first
step. Namely, there is no choice of extension of the family Fx asa H, family or even as a
torsor with a modified group scheme. If one chooses a representation then the associated
vector bundle family via Langton’s theorem has no canonical extension (be it the limit or
the family!). Indeed, we cannot simply use Langton’s theorem as we require the limiting
bundle to be polystable, which can be ensured only by the GIT construction of the moduli
space of vector bundles!

Remark 4.13.. Let H C G, where G is a linear group. In the notation of §2 let Fy and
Fg stand for the functors associated to families of semistable bundles of degree zero. (cf
Proposition ??7). The inclusion of H in G induces a morphism of functors Fy — Fg. We
remark that the semistable reduction theorem for principal H-bundles need not imply that
the induced morphism Fy — F{ is a proper morphism of functors. Indeed, this does not
seem to be the case. However, it does imply that the associated morphism at the level of
moduli spaces is indeed proper (cf Theorem 4.6).

Remark 4.14.. We need to go to a ramified cover to extend our family unlike the vector
bundle case. This can be seen in the following example: Let (V4,q4) be a family of trivial
vector bundles equipped with a non-degenerate quadratic form thus making it a family of
orthogonal bundles. Consider the family (V4 @& V4, qa @ t.qa) where ¢ is the uniformising
parameter. This is generically a family of orthogonal bundles the limit being the trivial
bundle with degenerate quadratic form. The vector bundle family has trivially extended
but the quadratic form fails to extend as a non-degenerate form. By going to the quadratic
extension (totally ramified) K (v/2) and letting B be the integral closure of A in this extension,
we see that by modifying the quadratic form in its equivalence, namely A.X.A! using the
matrix A = (a;;) where

4= (3 ﬂ%l)
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