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Lecture 1

Introduction to Derived

categories

Introduction

In this first lecture we introduce derived categories in connection with Fourier-

Mukai transforms. A more comprehensive treatment of this topic may be found in

[1]

Derived categories have been present in Fourier-Mukai theory from the very

beginning; the paper were Mukai introduced the transform now known as Fourier-

Mukai’s, was indeed entitled “Duality between D(X) and D(X̂) with its applica-

tion to Picard sheaves” [4].

Let us consider the original Mukai transform from a naive point of view:

assume that X is an abelian variety and E a vector bundle on X. We here consider

only algebraic (or holomorphic) vector bundles, so we can also think of E as a

smooth hermitian bundle E endowed with an hermitian connection ∇ which is

compatible with the complex structure. We now fix an index i and look for the

various cohomology spaces Hi(X, E ⊗ Pξ) where Pξ varies in the space X̂ of all

flat line bundles on X (the dual abelian variety of X). A natural question to ask

is whether the vector spaces Hi(X, E ⊗ Pξ) define a vector bundle on X̂. In some

case this happens; for instance if one has Hj(X, E ⊗ Pξ) = 0 for any j 6= i and

ξ ∈ X̂, there is a vector bundle Ê on X̂ such that Ê(ξ) ≃ Hi(X, E ⊗ Pξ) for any

ξ ∈ X̂, or, in algebraic terms, Ê⊗Oξ ≃ H
i(X, E ⊗Pξ), where Oξ is the skyscraper

sheaf of length 1 supported at the point ξ.

In general one is no so lucky, and there is no such vector bundles (or more

generally sheaves) obtained by collecting together cohomology groups. What we
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can do is to mimic the construction of the cohomology groups to get objects that

play that role. On the product X × X̂ there is a universal line bundle P, called

the Poincaré bundle, whose restriction to the fibre π̂−1(ξ) over ξ of the projection

π̂ : X × X̂ → X̂ is the line bundle Pξ; we normalise P so that it restrict to the

trivial line bundle on the fibre of the origin x0 of X for the other projection

π : X × X̂ → X. An analogy with the construction of the cohomology groups of

a sheaf, we take the sheaf F = π∗E ⊗ P (whose restriction to π̂−1(ξ) is precisely

E ⊗ Pξ), and a resolution

0→ F → R0 → R1 → · · · → Rn → . . .

by injective sheaves and define the higher direct images of F under π̂ as the

cohomology sheaves of the complex

0→ π∗F → π∗R
0 → π∗R

1 → · · · → π∗R
n → . . . ,

that is,

Riπ∗F = Hi(π∗R
•) .

The relationship between the sheaves Riπ∗(π
∗E ⊗ P) and the cohomology groups

Hi(X, E ⊗ Pξ) is given by some “cohomology base change” theorems [3, III.12].

This shows that the sheaves Riπ∗(π
∗E ⊗ P) encode more information than the

cohomology groups on the fibres. Another classical fact is the the higher direct

images are independent of the resolution R• of F , that is, if 0 → F → R̃• is

another acyclic of F (meaning that the higher direct images Riπ̂iR̃j are zero for

every i, j ≥ 0), then the complexes os sheaves π∗R
• and π∗R̃• have the same

cohomology sheaves. If we then identify complexes of sheaves when they have the

same cohomology sheaves (we say that they are quasi-isomorphic, and we write

Rπ̂∗F for the “class” of any of the complexes π∗R
•, the information about the

cohomology groups Hi(X, E ⊗ Pξ) is encode in the single object

Φ(E) = Rπ̂∗F = Rπ̂∗(π
∗E ⊗ P) .

To make a sense of all of this, we have to construct a category where quasi-

isomorphic complexes of sheaves are isomorphic and where we can define “derived

functors” such as Rπ̂∗, and also some derived versions Lπ∗ of the pull back π∗

and G
L

⊗P of the tensor product, when we are working with sheaves which are not

vector bundles.

We are going to describe the construction for the derived category of an

abelian variety A. In our situation A will be one of the following:

• The category of modules over a (commutative and unitary) ring A.

• The category Mod(X) of sheaves of OX modules on an algebraic variety X.
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• The category Qco(X) of quasi-coherent sheaves of OX modules on an al-

gebraic variety X. This case includes the first for rings of the form A =

k[ξ1, . . . , ξr] when X = SpecA is an affine variety.

• The category Coh(X) of coherent sheaves of OX modules on an algebraic

variety X.

1.1 The categories C(A) and K(A)

Let A be an abelian category. A complex (K•, dK•) in A is a sequence

· · · → Kn−1 dn−1

−−−→ Kn
dn

−→ Kn+1 → · · ·

where theKn are objects in A and the morphisms dn are morphisms in A satisfying

the condition dn+1 ◦ dn = 0 for all n ∈ Z. We say that dK• is the differential of

the complex K•.

Definition 1.1. The category of complexes C(A) is the category whose objects

are complexes (K•, dK•) in A and whose morphisms f : (K•, dK•)→ (L•, dL•) are

collections of morphisms fn : Kn → Ln, n ∈ Z, in A such that the diagrams

· · · // Kn−1 dn−1

//

fn−1

��

Kn
dn

//

fn

��

Kn+1 dn+1

//

fn+1

��

· · ·

· · · // Ln−1 dn−1

// Ln
dn

// Ln+1 dn+1

// · · ·

commute. △

Given two complexes K• and L•, their direct sum K• ⊕ L• is defined in the

obvious way. One can also describe in a natural way the kernel and the cokernel of

a morphism of complexes, and readily check that the category C(A) of complexes

of an abelian category is an abelian category as well.

Let K• and L• be complexes; for each n ∈ Z, we set

Hom(K•,L•)n =
∏

i

HomA(Ki,Li+n) .

These groups form a complex of abelian groups

Hom•(K•,L•) =
⊕

n

Hom(K•,L•)n (1.1)

endowed with the differential given by

dn : Hom(K•,L•)n → Hom(K•,L•)n+1

f i 7→ di+nL• ◦ f
i + (−1)n+1f i+1 ◦ diK•

(1.2)
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Since our abelian categories admit tensor products, if one assumes that they

also admit arbitrary direct sums, we can define the tensor product by:

(K• ⊗ L•)n =
⊕

p+q=n

(Kp ⊗ Lq)

endowed with the differential dK• ⊗ Id + (−1)pId⊗ dL• over Kp ⊗Lq. If A has no

arbitrary direct sum (like the category Coh(X)), then K• ⊗ L• is defined only if

for every n there are only a finite number of summands in
⊕

p+q=n(K
p ⊗ Lq).

An important notion is that of shift of a complex by an integer number.

For a complex K•, we define K•[n] by setting K[n]p = Kp+n with the differential

dK•[n] = (−1)ndK• .

A morphism of complexes f : K• → L• induces a morphism of complexes

f [n] : K•[n]→ L•[n] given by f [n]p = fp+n. In this way, K• 7→ K•[n] is an additive

functor. Sometimes we shall denote by τ the shifting functor by 1, τ(K•) = K•[1],

so that τn(K•) = K•[n] for any integer n. One has canonical isomorphisms:

K•[n]⊗ L• ≃ (K• ⊗ L•)[n] ≃ K• ⊗ L•[n]

Hom•(K•,L•[n]) ≃ Hom•(K•,L•)[n] ≃ Hom•(K•[−n],L•)

The n-th cohomology of a complex K• is the object

Hn(K•) = ker dn/ Im dn−1 .

We say that Zn(K•) = ker dn are the n-cycles of K• and Bn(K•) = Im dn−1 are

the n-boundaries of K•.

A morphism of complexes f : K• → L• induces morphisms between the cycles

and the boundaries, and then it passes to cohomology yielding morphisms

Hn(f) : Hn(K•)→ Hn(L•) ,

for every n. One has Hn(K•[m]) ≃ Hn+m(K•) and Hn(f [m]) ≃ Hn+m(f).

We say that a complex K• is said to be acyclic or exact if H(K•) = 0; we also

say that a morphism of complexes f : K• → L• is called a quasi-isomorphism

if H(f) : H(K•) → H(L•) is an isomorphism. The composition of two quasi-

isomorphisms is a quasi-isomorphism.

We now introduce the important notion of homotopy equivalence, which will

enable us to build a new category — the homotopy category — out of the category

of complexes.

Let f : K• → L• a morphism of complexes. We say that f is homotopic

to zero if there is a collection of morphisms hn : Kn → Ln−1 such that fn =

hn+1 ◦dnK• +dn−1
L• ◦hr for every n. A complex K• is said to be homotopic to zero if
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its identity morphism is homotopic to zero. Finally, two morphisms f, g : K• → L•

are said to be homotopic if f − g is homotopic to zero.

It is clear that the sum of two morphisms homotopic to zero is homotopic to

zero. Moreover, the composition f ◦ g is homotopic to zero whenever either f or

g is homotopic to zero. Let us denote by Ht(K•,L•) the set of the morphisms of

complexes f : K• → R• which are homotopic to zero.

Definition 1.2. The homotopy category K(A) is the category whose objects are

the objects of C(A) and whose morphisms are

HomK(A)(K
•,L•) = HomC(A)(K

•,L•)/Ht(K•,L•) .

△

From Equation (1.2) we see that the n-cycles of the complex of homomor-

phisms Hom•(K•,L•) coincide with the morphisms of complexes K• → L•[n], while

the n-boundaries coincide with morphisms homotopic to zero. Therefore,

Hn(Hom•(K•,L•)) = HomK(A)(K
•,L•[n]) .

What is important to us here is that if a morphism of complexes f : K• → L•

is homotopic to zero, then it induces the zero morphism in cohomology, H(f) = 0;

hence, two homotopic morphisms induce the same morphism in cohomology. In

particular, if a complex K• is homotopic to zero, then it is acyclic.

We now define the cone of a morphism; this notion comes from classical

homotopy theory, and its is a way of overcoming the fact that there are no kernels

and cokernels in the homotopy category K(A).

Definition 1.3. The cone of a morphism of complexes f : K• → L• is the complex

Cone(f) such that Cone(f)n = Kn+1 ⊕ Ln and the differential is defined as

dnCone(f) =

(
−dn+1

K• 0

fn+1 dnL•

)

△

Although one has Cone(f)n = (K•[1])n ⊕ Ln for every n, Cone(f) is not

isomorphic as a complex with the direct sum K•[1] ⊕ L•, because the differential

of the latter is the direct sum of the differentials of the factors. There are functorial

morphisms :
β : Cone(f)→ K•[1],

(k, l) 7→ k

α : L• → Cone(f)

l 7→ (0, l)

and an exact sequence of complexes 0 → L• → Cone(f) → K•[1] → 0. Let us

consider the sequence

K•
f
−→ L• α

−→ Cone f
β
−→ K•[1] . (1.3)
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The composition α ◦ f is homotopic to zero. If we consider the sequence (1.3) in

the homotopy category K(A), the composition of any two consecutive morphisms

is zero. The sequence (1.3) is called a distinguished (or exact) triangle in K(A)

and is also written in the form

K•

f // L•

α
{{ww

ww
ww

ww
w

Cone f

β

ccG
G

G
G

G

where the dashed arrow stands for a morphism Cone f → K•[1]. The following

property is readily checked:

Proposition 1.4. Given an exact triangle in K(A),

K•
f
−→ L• α

−→ Cone f
β
−→ K•[1] ,

there is an exact sequence of cohomology groups

Hn(K•)
Hn(f)
−−−−→ Hn(L•)

Hn(α)
−−−−→ Hn(Cone f)

Hn(β)
−−−−→ Hn(K•[1]) ≃ Hn+1(K•)

for every integer n. �

Putting all these exact sequences together we have the so-called cohomology

long exact sequence:

. . .
Hn−1(β)
−−−−−−→ Hn(K•)

Hn(f)
−−−−→ Hn(L•)

Hn(α)
−−−−→ Hn(Cone f)

Hn(β)
−−−−→ Hn+1(K•) . . .

(1.4)

Proposition 1.4 tell us that the the functors Hn : K(A)→ A are cohomologi-

cal. Actually, if B is another abelian category, an additive functor F : K(A)→ B

is cohomological if for every exact triangle K•
f
−→ L•

α
−→ Cone f

β
−→ K•[1] the

sequence F (K•)
F (f)
−−−→ F (L•)

α
−→ F (Cone f)

F (β)
−−−→ F (K•)[1] is exact.

An important consequence of the cohomology long exact sequence (1.4) is

the following:

Corollary 1.5. A morphism of complexes f : K• → L• is a quasi-isomorphism if

and only if Cone(f) is acyclic. �

Cones are good substitutes for exact sequences of complexes.

If 0 → K•
f
−→ L•

g
−→ N • → 0 be an exact sequence of complexes (in C(A)),

there is a morphism of complexes : Cone(f)→ N • defined in degree n by

Kn+1 ⊕ Ln → Nn

(an+1, bn) 7→ g(bn) .
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One easily checks that it is a quasi-isomorphism. Combining this with the the

cohomology long exact sequence (1.4) we get directly the more usual cohomology

sequence: There exist functorial morphisms

δn : Hn(N •)→ Hn+1(L•)

such that one has an exact sequence:

· · ·
δn−1

−−−→ Hn(L•)→ Hn(M•)→ Hn(N •)
δn

−→ Hn+1(L•)→

→ Hn+1(M•)→ Hn+1(N •)
δn+1

−−−→ · · ·

1.2 Derived Category

In our way to defining a category where quasi-isomorphic complexes are actually

isomorphic, we have first identify homotopic morphisms, and thus move form the

category of complexes C(A) to the homotopy category K(A). A second step is to

“localize” by (classes of) quasi-isomorphims. This localization is a fraction calculus

for categories if we just think of the composition of morphisms as a product.

Recall that if one has a ring A (like the integer numbers) and we cant to make

the elements s is a part S of A invertible, so that a fraction a/s makes sense,

this can be done if S is a multiplicative system, namely, if it contains the unity

and is closed under products. Then one can define the localised ring S−1A whose

elements are equivalence classes a/s of pairs (a, s) ∈ A× S where (a, s) ∼ (a′, s′)

(or a/s = a′/s′ if there is t ∈ S such that t(as′ − a′s) = 0. Any element s ∈ S

becomes invertible in the fractions ring S−1A because s/1 · 1/s = 1.

A similar thing can be done for morphisms of complexes, since quasi-isomorphisms

verify the conditions for being a nice set of denominators (or a multiplicative sys-

tem as before), namely, the identity is a quasi-isomorphism and the composition

of two quasi-isomorphisms is a quasi-isomorphism. We now take a fraction as a

diagram of (homotopy classes of) complex morphisms

R•

f

!!CC
CC

CC
CC

φ

}}{{
{{

{{
{{

K• L•

in the homotopy category K(A) where φ is a quasi-isomorphism. We denote such

a diagram by f/φ. A second diagram g/ψ

S•

g

!!B
BB

BB
BB

B
ψ

}}{{
{{

{{
{{

K• L•
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is said to be equivalent to the former, if there are quasi-isomorphisms R• ← T • →

S• such that the diagram

T •

!!CC
CC

CC
CC

}}{{
{{

{{
{{

R•

f
**VVVVVVVVVVVVVVVVVVVVVVV

φ

}}{{
{{

{{
{{

S•

ψ
tthhhhhhhhhhhhhhhhhhhhhhh

g

!!B
BB

BB
BB

B

K• L•

is commutative in K(A). One can prove that equivalence of fractions is actually

an equivalence relation using the following result

Proposition 1.6. Given a diagram

R•

g

��
M•

f // N •

in K(A), there are morphisms of complexes M•
g′

←− Z•
f ′

−→ R• such that the

diagram

Z•

f ′

//

g′

��

R•

g

��
M•

f // N •

is commutative in K(A). Moreover, f ′ (respectively, g′) is a quasi-isomorphism if

and only if f (respectively, g) is so. �

Though we are not giving a proof here, it is important to note that the proof

is based on the properties of the cone of a morphism.

Definition 1.7. The derived category D(A) of A is the category whose objects

are the objects of K(A) (that is, they are complexes of objects of A), and whose

morphisms are equivalence classes [f/φ] of diagrams. △

In order this definition to make sense we have to say how to compose mor-

phisms. This can be done thanks to Proposition 1.6. Now, given two morphisms

[f/φ] and [g/ψ] in D(A), corresponding to diagrams

R•

f

!!CC
CC

CC
CC

φ

}}{{
{{

{{
{{

S•

g

!!DD
DD

DD
DD

ψ

}}||
||

||
||

K• L• M•
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their composition is defined through the diagram

T •

ψ′

}}{{
{{

{{
{{ f ′

!!CC
CC

CC
CC

R•

f

!!CC
CC

CC
CC

φ

}}{{
{{

{{
{{

S•

g

!!DD
DD

DD
DD

ψ

}}{{
{{

{{
{{

K• L• M•

Hence, we set [g/ψ] ◦ [f/φ] = [(g ◦ f ′)/(φ ◦ ψ′)], which makes sense because the

above construction is independent of the representatives.

A morphism f : K• → L• in K(A) defines the morphism f/IdK• : K• → L• in

the derived category, which we shall denote simply by f . Hence, we have a functor

K(A)→ D(A).

The derived category D(A) is an additive category and the functor K(A)→

D(A) is additive.

A morphism f/φ : K• → L• in the derived category induces a morphism in

cohomology H(f/φ) : H(K•)→ H(L•), defined as the composition

H(K•)
H(φ)−1

−−−−−→ H(R•)
H(f)
−−−→ H(L•) ,

which is independent of the representative f/φ of the class and is compatible with

compositions.

Definition 1.8. Two complexes K• and L• are quasi-isomorphic if there is a complex

Z• and quasi-isomorphisms K• ← Z• → L•. △

It follows from the Lemma 1.6 that the notion of quasi-isomorphism induces

an equivalence relation between complexes. One can also prove that two complexes

K• and L• are quasi-isomorphic if there is a complex Z• and quasi-isomorphisms

K• → Z• ← L•.

We now have the result we were looking for:

Proposition 1.9. A morphism of complexes f : K• → L• is a quasi-isomorphism if

and only the induced morphism in the derived category is an isomorphism. More-

over, two complexes are quasi-isomorphic if and only if they are isomorphic in the

derived category.

The derived category can be also defined by means of a universal property.

Proposition 1.10. Let C be an additive category. An additive functor F : K(A)→

C factors through an additive functor D(A) → C if and only if it maps quasi-

isomorphisms to isomorphisms. If B is an abelian category, an additive functor
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G : K(A)→ K(B) mapping quasi-isomorphisms into quasi-isomorphisms induces

an additive functor G : D(A)→ D(B) such that the diagram

C(A)
G //

��

C(B)

��
D(A)

G // D(B)

is commutative. �

We can also defined categories out of some subcategories of C(A), as long as

all the operations we have done can be reproduced in the new situation, namely,

we have to be able to construct the corresponding homotopy category, and to

localise by the quasi-isomorphims; for this, we need to be able to define the cone

of a morphism inside the new category (cf. for instance Proposition 1.6, whose

proof requires the cone construction).

The most natural examples are the following:

• Let us consider the category C
+(A) of bounded below complexes in A, that

is, complexes K• for which there is n0 such that K•n = 0 for all n ≤ n0. We

can define the homotopy category K+(A) and a “derived” category D+(A)

by following an analogous procedure as the one for arbitrary complexes. Due

to Proposition 1.10, the natural functor K+(A) → D(A) induces a functor

γ : D+(A) → D(A). This functor is fully faithful and its essential image is

the faithful subcategory of D(A) consisting of complexes in A with bounded

below cohomology. (The essential image of the functor γ is the subcategory of

the objects which are isomorphic to objects of the form γ(K•) for some K• in

D+(A)). In a similar way, the categories C
−(A) of bounded above complexes

(i.e. complexes for which there is n0 such that K•n = 0 for all n ≥ n0) and

C
b(A)) of bounded on both sides complexes, give rise to “derived” categories

D−(A) and Db(A), which are characterised as faithful subcategories of D(A)

as above.

• Let A′ be a thick abelian subcategory of A, that is, any extension in A of two

objects of A′ is also in A′. If CA′(A) is the category of complexes whose co-

homology objects are in A′, we can construct its homotopy category KA′(A)

and its derived category DA′(A). The functor KA′(A) → D(A) induces by

Proposition 1.10 a functor DA′(A)→ D(A), which is fully faithful; its essen-

tial image is the subcategory of D(A) whose objects are the complexes with

cohomology objects in A′.

• Combining the two procedures we also have the homotopy categoriesK+
A′(A),

K−
A′(A) and Kb

A′(A) of complexes bounded below, above and on both sides,
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respectively, and whose cohomology objects are in the subcategory A′ of

A. We also have the corresponding derived categories D+
A′(A), D−

A′(A) and

Db
A′(A)

Let us write ⋆ for any of the symbols +, −, b or for no symbol at all. Since

the functor natural functor K⋆(A′)→ D(A) maps quasi-isomorphisms to isomor-

phisms, it yields a functor D⋆(A′) → D⋆
A′(A). In general, it may fail to be an

equivalence of categories.

We have special notations for the abelian categories we are most interested

in:

• If A is the category of modules over a commutative ring A, we use the

notations D(A), D+(A), D−(A), and Db(A).

• If A = Mod(X) is the category of sheaves of OX -modules on an algebraic va-

riety X, the corresponding derived categories are denoted by D(X), D+(X),

D−(X), and Db(X).

• If A = Mod(X) as above and A′ = Qco(X) is the category of quasi-coherent

sheaves of OX -modules on X, the derived category DA′(A) of complexes of

OX -modules with quasi-coherent cohomology sheaves is denoted Dqc(X). In

a similar we have the categories D+
qc(X), D−

qc(X) and Db
qc(X).

• If A = Mod(X) as above and A′ = Coh(X) is the category of coherent

sheaves of OX -modules on X, the derived category DA′(A) of complexes of

OX -modules with coherent cohomology sheaves is denoted Dc(X). One also

has the derived categories D+
c (X), D−

c (X) and Db
c(X).

• If A = Qco(X) and A′ = Coh(X), we have the derived categoriesDc(Qco(X))

D+
c (Qco(X)), D−

c (Qco(X)) and Db
c(Qco(X)).

As we already mentioned, the natural functors D⋆
qc(X)→ D⋆(Qco(X)) may

fail to be equivalences of categories. However, one has equivalences of categories:

D+
qc(X) ≃ D+(Qco(X)) , Db

qc(X) ≃ Db(Qco(X)) .

The first equivalence is a consequence of the fact that every quasi-coherent sheaf on

an algebraic variety can be embedded as a subsheaf of an injective quasi-coherent

sheaf. One also has D+
c (X) ≃ D+

c (Qco(X)) and Db
c(X) ≃ Db

c(Qco(X)).

When X is smooth, the same is true for unbounded complexes as well, so

that D⋆
qc(X) ≃ D⋆(Qco(X)) and D⋆(Coh(X)) ≃ D⋆

c (Qco(X)) ≃ D⋆
c (X) for any

value of ⋆
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The derived category as a triangulated category

The derived category D(A) (and any of the derived categories D⋆
A′(A)) is an exam-

ple of a triangulated category. We are not giving here the definition of triangulated

category, but just point out some of the features of the derived category that make

it into a triangulated category.

The first one is the existence of a shift functor τ : D(A) → D(A), τ(K•) =

K•[1], which is an equivalence of categories. The second is the existence of “trian-

gles”, and among them a class of “distinguished triangles” fulfilling some proper-

ties we are not describing here. In the case of the derived category, distinguished

triangles are defined in the following way.

A triangle in D(A) is a sequence of morphisms

K• u
−→ L• v

−→M• w
−→ K•[1]

which we also write in the form:

K•
u // L•

v
}}zz

zz
zz

zz

M•

w

bbD
D

D
D

where the dashed arrow stands for the morphism M•
w
−→ K•[1]. A morphism of

triangles is defined in the obvious way, and we say that a triangle is distinguished

or exact if it is isomorphic to the triangle defined by the cone of a morphism

f : K• → L•, which is the triangle (cf. (1.3))

K•
f
−→ L• α

−→ Cone(f)
β
−→ K•[1] .

From Proposition 1.4, an exact triangle in D(A) induces a long exact sequence in

cohomology

· · · → Hi(A•)
Hi(u)
−−−−→ Hi(B•)

Hi(v)
−−−−→ Hi(C•)

Hi(w)
−−−−→

Hi+1(A•)
Hi+1(u)
−−−−−→ Hi+1(B•)

Hi+1(v)
−−−−−→ Hi+1(C•)

Hi+1(w)
−−−−−→ · · ·

If B is another abelian category, an additive functor F : D⋆
A′(A) → D(B is

said to be exact if it commutes with the shift functor, F (K•[1]) ≃ F (K•)[1], and

maps exact triangles to exact triangles. Then, for any exact triangle K•
u
−→ L•

v
−→

M•
w
−→ K•[1] we have a long exact sequence

· · · → Hi(F (K•)→ Hi(F (L•))→ Hi(F (M•))→

Hi+1(F (K•))→ Hi+1(F (L•))→ Hi+1(F (M•))→ · · ·
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1.2.1 Derived Functors

We know that he cohomology groups of a sheaf F on an algebraic variety X are the

cohomology objects of the complex of global sections Γ(X, I•) of a resolution I•

of F by injective sheaves. Moreover, the De Rham theorem says that two different

resolutions give rise to the same cohomology groups. Now one easily checks that

if I• and J • are two injective resolutions of a sheaf F , the complexes Γ(X, I•)

and Γ(X,J •) are quasi-isomorphic, so that they define isomorphic objects in the

derived category of the category of abelian groups. We can then associate with F

a single object RΓ(X,F);= Γ(X, I•) ≃ Γ(X,J •).

This is the procedure we mimic to define derived functors on the derived

category. Let A be an abelian category with enough injectives. Hence, any object

M in A has an injective resolution

M→ I0(M)→ I1(M)→ . . .

functorial inM. One can prove using bicomplexes, a notion we have not introduced

in this notes, that for any complex M• there is a complex of injective objects

I(M•) and a quasi-isomorphism

M• → I(M•) ,

which defines a functor I : K(A)→ K(A).

Let now B be another abelian category and F : A → B a left-exact func-

tor. Then F induces a functor RF : K+(A)→ D+(B) by RF (M•) = F (I(M•)).

Moreover, if J • is an acyclic complex of injective objects then F (J •) is acyclic, be-

cause J • splits. This implies that RF maps quasi-isomorphisms to isomorphisms

and then (cf. Proposition 1.10) yields a functor

RF : D+(A)→ D+(B) ,

which is the right derived functor of F .

We can also derive on the right functors from K(A) to K(B) what are not

induced by a left-exact functor. We shall give some examples, without the complete

theory.

We shall denote R
iF (M•) = Hi(RF (M•)). The restriction of the functor

R
iF : D(A)→ B to A is the “classical” right i-th derived functor of F .

The right derived functor RF is exact, that is, it maps exact triangle to exact

triangles. In particular, an exact triangle in K(A)

M′• →M• →M′′• →M′•[1]
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induces a long exact sequence

· · · → R
iF (M′•)→ R

iF (M•)→ R
iF (M′′•)→

R
i+1F (M′•)→ R

i+1F (M•)→ R
i+1F (M′′•)→ · · ·

For any bounded below complex K• there is a natural morphism

M• → RF (M•) .

in the derived category. The complexM• is said to be F -acyclic is this morphism

is an isomorphism, that is,M• ≃ RF (M•) in D+(B).

The right derived functor RF satisfies a version of the “De Rham theorem”,

namely, if a complexM• is isomorphic in the derived categoryD+(A to a F -acyclic

complex J •, then

RF (M•) ≃ F (J •) ,

in D+(B).

Let C be a third abelian category and G : B→ C another left-exact functor.

Proposition 1.11 (Composite functor theorem of Grothendieck). If F transforms

complexes of injective objects into G-acyclic complexes, one has a natural isomor-

phism of derived functors

R(G ◦ F ) ∼→ RG ◦RF .

The theory of right derived functors can be applied when A is one of the

categories Mod(X) or Qco(X) because both have enough injectives.

One can develop in a similar way a theory for deriving left exact functors on

the left if we assume that A has enough projectives, so that any object M has a

functorial projective resolution

. . . P 1(M)→ P 0(M)→M→ 0 .

Then for every bounded above complexM• there exists a bounded above complex

P (M•) of projective objects which defines a functor P : K−(A) → K−(A). Then

the functor LF : K−(A) → K−(B given by LF (M•) = F (P (M•)) defines as

above a left derived functor

LF : D−(A)→ D−(B) .

Analogous properties to those proved for right derived functors holds for left de-

rived functors.

One should note that the categories Mod(X), Qco(X) and Coh(X) do not

have enough projectives. However if we restrict ourselves to the case when X
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is a projective or quasi-projective variety, then any quasi-coherent sheaf admits

a resolution by locally free sheaves (possibly of infinite rank), and the problem

is circumvented by considering complexes P• of locally free sheaves. For every

bounded above complexM• of quasi-coherent sheaves there exist a bounded above

complex P (M•) of locally free sheaves and a quasi-isomorphism P (M•) → M•,

and we can still define the left derived functor by LF (M•) = F (P (M•)). For a

general algebraic variety (not necessarily projective or quasi-projective) this is not

possible, though some functors can still be derived. We shall come again to this

point in Section

1.2.2 A:pullback

.

Derived Direct Image

Let f : X → Y be a morphism of algebraic varieties. The direct image functor

f∗ : Mod(X)→Mod(Y ) is left-exact, so it induces a right derived functor

Rf∗ : D+(X)→ D+(Y )

described as Rf∗M
• ≃ f∗(I

•) where I• is a complex of injective OX -modules

quasi-isomorphic toM•. Under very mild conditions, the direct image of a quasi-

coherent sheaf is also quasi-coherent (f has to be quasi-compact and locally of

finite type); in this case, Rf∗ maps complexes with quasi-coherent cohomology to

complexes with quasi-coherent cohomolgy, thus defining a functor

Rf∗ : D+
qc(X)→ D+

qc(Y ) ,

that we denote with the same symbol. When f is proper, so that the higher direct

images of a coherent sheaf are coherent as well (cf. [2, Thm.3.2.1] or [3, Thm. 5.2]

in the projective case), we also have a functor

Rf∗ : D+
c (X)→ D+

c (Y ) .

Finally, since the dimension of X bounds the number of higher direct images

of a sheaf of OX -modules), Rf∗ maps complexes with bounded cohomology to

complexes with bounded cohomology, thus defining a functor

Rf∗ : Db
qc(X)→ Db

qc(Y ) .

Moreover, in this case Rf∗ can be extended to a functor

Rf∗ : Dqc(X)→ Dqc(Y )
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between the whole derived categories, which actually map Db
qc(X) to Db

qc(Y ) and

Db
c(X) to Db

c(Y ).

If Y is a point, then AY is the category Ab of abelian groups and f∗ is

the functor of global sections Γ(X, ). In this case, Rf∗M
• = RΓ(X,M•) and

R
if∗M

• is called the i-th hypercohomology group H
i(X,M•) of the complex

M•. If coincides with the cohomology group Hi(X,M) when the complex reduces

to a single sheaf.

If f : X → Y is a continuous map, then Γ(X, ) = Γ(Y, ) ◦ f∗ and one

may apply the composite functor theorem of Grothendieck (since f∗ transforms

injective sheaves into injective sheaves) obtaining

RΓ(X, ) = RΓ(Y, ) ◦Rf∗

The derived inverse image

Let f : X → Y be a morphism of algebraic varieties. We want to derive on the

left the inverse image (or pull-back) functor f∗ : Mod(Y )→Mod(X), which is left

exact.

One can prove quite easily that any sheaf of OX -modules M is a quotient

of a flat sheaf of OX -modules P (M) and that we can choose P (M) depending

functorially on M. One then prove that for any bounded above complex M•

there is a complex P (M•) of flat sheaves and a quasi-isomorphism P (M•)→M•

which defines a functor K−(Mod(Y )) → K−(Mod(Y )). One then proves that

Lf∗(M•) = f∗(P (M•)) yields a left derived functor

Lf∗ : D−(Y )→ D−(X)

It is very easy to check that Lf∗ induces functors Lf∗ : D−
qc(X) → D−

qc(Y )

and Lf∗ : D−
c (X)→ D−

c (Y ). In some cases it induces a functor

Lf∗ : Dc(X)→ Dc(Y ) ,

that maps Db
c(X) to Db

c(Y ). One such case holds when every coherent sheaf G on

Y admits a finite resolution by coherent locally free sheaves, a condition which

is equivalent to the smoothness of Y by Serre’s criterion. In such a case, every

object in Db
c(Y ) can be represented as a bounded complex of coherent locally free

sheaves, i.e. it is a perfect complex. Another is when f is of finite homological

dimension, that is, when for every coherent sheaf G on Y there are only a finite

number of non-zero derived inverse images Ljf
∗(G) = H−j(Lf∗(G)); in particular,

flat morphisms are of finite homological dimension.
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Derived homomorphism Functor

As before,X is an algebraic variety over a field k. We denote simply by HomX(K,L)

the k-vector space of homomorphism of OX -modules, and we wish to construct

a “derived functor” of the complex of homomorphisms L• 7→ Hom•

X(K•,L•), for

a fixed complex K•. Although this functor is not induced by a left-exact functor

F : Mod(X) → Mod(X), we still can derive the complex of homomorphisms by

mimicking the procedure used to defined RF .

The key observation is that if I• be a bounded below complex of injec-

tive objects and K• any complex, then if either K• or I• is acyclic, the complex

Hom•

X(K•, I•) is acyclic as well.

It follows that if we fix a complex K•, the functor

RIIHom•

X(K•, ) : K+(Mod(X)0)→ D(k) ,

defined by

RIIHom•

X(K•,L•) = Hom•

X(K•, I(N •)
•

) ,

maps quasi-isomorphisms to isomorphisms. (The subscript “II” reflects the fact

that we are deriving with respect to the second variable). By Proposition 1.10 it

induces a right derived functor

RIIHom•

X(K•, ) : D+(X)→ D(k) .

One then proves that for any fixed object L• ∈ D+(X), the functor

RIIHom•

X( ,N •) : K(Mod(X))0 → D(k)

maps quasi-isomorphisms to isomorphisms so that it induces, again by Proposi-

tion 1.10, a functor RIRIIHom•

X( ,L•) : D(X)0 → D(k). Hence one obtains a

bifunctor

RHom•

X : D(X)0 ×D+(X)→ D(k)

defined as RHom•

X(K•,L•) = RIRIIHom•(K•,L•) ≃ Hom•(K•, I•)), where I• is

complex of injective sheaves quasi-isomorphic to L•. We shall denote

ExtiX(K•,L•) = R
iHom•

X(K•,L•) = Hi(RHom•(K•,L•)) .

If X is projective or quasi-projective one can also derive first the homomorphisms

in the reverse order, so that for any complex L• we have a right derived func-

tor RIHom•

X( ,N •) : D−(Qco(X))0 → D(k) given by RIHom•( cplxM,N •) ≃

Hom•(P (M•),N •), where P (M•) is a complex of locally free sheaves quasi-

isomorphic to K•- Moreover, this functor induces a bifunctor

RIIRIHom• : D−(Qco(X))0 ×D(Qco(X))→ D(k) ,
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or, what’s amount to the same

RIIRIHom• : D−
qc(X)0 ×Dqc(X)→ D(k) ,

The functors RIRIIHom•

X and RIIRIHom•

X coincide over D−
qc(X)0 ×D+

qc(X).

One has the following property, known as the Yoneda formula.

Proposition 1.12. Let M• be a complex of OX-modules and N • a bounded below

complex. Then

Exti(M•,N •) ≃ Homi
X(M•,N •) := HomX(M•,N •[i])

�

One can also consider the complex of sheaves of homomorphisms, which we

denote by Hom•

OX
(M•,N •), and is given by

Homn(M•,N •) =
∏

i

HomOX
(Mi,N i+n)

with the differential df = f ◦ dM• + (−1)n+1dN• ◦ f .

Proceeding as above we can define a derived sheaf homomorphism

RHom•

OX
= RIRIIHom

•

OX
: D(X)0 ×D+(X)→ D(X)

described as

RHom•

OX
(K•,L•) ≃ RIRIIHom

•

OX
(K•,L•)

≃ Hom•

OX
(K•, I•) ,

where I• is a bounded below complex of injective objects quasi-isomorphic to L•.

We can apply Grothendieck’s composite functor theorem to the composition

Γ(U,Hom•

OX
(K•,L•)) ≃ Hom•

OU
(K•

|U ,L
•

|U ), to obtain an isomorphism in the

derived category D(U):

RΓ(U,RHom•

OX
(K•,L•)) ≃ RHom•

OU
(K•

||U ,L
•

||U ) .

One can derive the local homomorphisms with respect to the first argument,

obtaining a derived functor

RIIRIHom
•

OX
: D−

c (X)0 ×D(X)→ D(X)

where D−
c (X) is the derived category constructed from the bounded above com-

plexes of OX -modules with coherent cohomology sheaves. Both derived functors

RIRIIHom
•

OX
and RIIRIHom

•

OX
coincide on D−

c (X)0 ×D(X).
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Derived Tensor Product

Let (X,O) be an algebraic variety. Given a complex N •, there exist a complex

P (N •) of flat sheaves and a quasi-isomorphism P (N •) → N •. Moreover, if a

complex P• of flat sheaves is acyclic, then the tensor product N • ⊗P• of the two

complexes is acyclic for any complex N •.

It follows that if we fix a complexM•, the functor “tensor product complex”

M• ⊗ : K(Mod(X))→ K(Mod(X))

has a “left derived functor”, denoted by (M•⊗ ) : D(X)→ D(X). Now, fixed N •,

the functor ( ⊗N •) : C(X) → D(X) induces a bifunctor, called derived tensor

product
L

⊗ : D(X)×D(X)→ D(X)

whose description is M•

L

⊗N • = M• ⊗ P (N •), where P (N •) → N • is a quasi-

isomophism and P (N •) is a complex of flat sheaves.

One can derive the tensor product reversing the sense of the derivations and

obtaining the same result, i.e.,M•

L

⊗N • ≃ N •

L

⊗M•. It is also easy to prove that

(M•
L

⊗N •)
L

⊗P• ≃M•
L

⊗ (N •
L

⊗P•)

1.2.3 Some remarkable formulas in the derived category

We finish this lecture with a relation of some formulas which will be useful for the

theory of integral functors and Fourier-Mukai transforms.

The first one is known as the adjunction formula between the derived inverse

a direct images.

Proposition 1.13. Let f : X → Y be a morphism of algebraic varieties. There is a

functorial morphism

Rf∗RHom
•

OX
(Lf∗M•,N •)→ RHom•

OY
(M•,Rf∗N

•) .

forM• in D−(X) and N • in D+(Y ), which is an isomorphism ifM• has bounded

cohomology. Moreover in this case we have a group isomorphism

HomD(X)(Lf
∗M•,N •) ≃ HomD(Y )(M

•,Rf∗N
•) .

If f has finite homological dimension, so that Lf∗ maps bounded complexes to

bounded complexes, this formula says that Lf∗ : Db(Y )→ Db(X) is left adjoint to

Rf∗ : Db(X)→ Db(Y ). �
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The second formula is known as the projection formula.

Proposition 1.14. Let f : X → Y be a morphism of algebraic varieties. There is a

functorial morphism

Rf∗(M
•)

L

⊗N • → Rf∗(M
•

L

⊗Lf∗N •)

in D(Y )the derived category, withM• a complex of OX-modules and N • a complex

of OY -modules, which is an isomorphism if N • has quasi-coherent cohomology.

We also have a compatibility between the derived tensor product and the

derived inverse image.

Proposition 1.15. Let f : X → Y be a morphism of algebraic varieties. IfM•,N • ∈

D(Y ), one has a functorial isomorphism

(Lf∗M•)
L

⊗ (Lf∗N •) ∼→ Lf∗(M•
L

⊗N •) .

One of the most useful formulas related with the Fourier-Mukai transform is

thebase change formula in the derived category :

Proposition 1.16. Let us consider a cartesian diagram of morphisms of algebraic

varieties

X ×Y Ỹ
g̃ //

f̃

��

X

f

��
Ỹ

g // Y

with f and g of finite homological dimension. For any complexM• of OX-modules

there is a natural morphism

Lg∗Rf∗M
• → Rf̃∗Lg̃

∗M•

Moreover, ifM• has quasi-coherent cohomology and either f or g is flat, then the

above morphism is an isomorphism.

We list here some more remarkable formulas.

• One has a functorial isomorphism in D(X)

RHom•

OX
(M•,N •)

L

⊗H• ∼→ RHom•

OX
(M•,N •

L

⊗H•)

forM• inDb
c(X),N • inD+(X) andH• is inDb

c(X) and is a perfect complex.
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• If X is projective or quasi-projective so that any coherent sheaf is a quotient

of a locally free sheaf of finite rank, one has a functorial isomorphism (in the

derived category)

RHom•

OX
(M•,RHom•

OX
(N •,H•)) ∼→ RHom•

OX
(M•

L

⊗N •,H•)

withM•, N • in D−
c X and H• in D+(X).

• If K• is a bounded complex of coherent sheaves of finite homological di-

mension, then its derived dual K•∨ = RHom•

OX
(K•,OX) is also of finite

homological dimension and one has K• ≃ K•∨∨ in Db
c(X). Moreover the

functor (−)
L

⊗K•∨ : Db
c(X) → Db

c(X) is both left and right adjoint to the

functor (−)
L

⊗K• : Db
c(X)→ Db

c(X).

We need another formula, which is the statement of Grothendieck duality

Proposition 1.17. Let f : X → Y be a proper morphism of algebraic varieties.

The derived direct image functor Rf∗ : Dqc(X) → Dqc(Y ) has a right adjoint

f ! : Dqc(Y )→ Dqc(X), so that there is a functorial isomorphism

HomD(Y )(RfX∗M
•,G•) ≃ HomD(X)(M

•, f !G•) . (1.5)

When f is smooth (i.e., it is flat and has smooth fibres) of relative dimension

n, then the functor f ! is given by

f !G• ≃ f∗G• ⊗ ωX/Y [n] ,

where ωX/Y is the line bundle of the relative n-differentials.
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