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Chapter 1

Weighted L2 analysis on a
punctured ball

1.1 A simple model problem

Let BR (resp. B̄R) denote the open (closed) ball of radius R > 0 in Rn and B∗R = BR − {0}
(resp. B̄∗R) denote the corresponding punctured ball.

Given ν ∈ R and a function
f : B∗1 ⊂ Rn −→ R

satisfying
‖|x|−ν f‖L∞(B1) ≤ 1

we would like to study the solvability of the equation{ |x|2 ∆u = f in B∗1

u = 0 on ∂B1

(1.1)

A solution of this equation is understood in the sense of distributions, namely u is a solution of
(1.1) if u ∈ L1(B1 − B̄R), for all R ∈ (0, 1) and if∫

B1

u∆v dx =
∫
B1

f v |x|−2 dx

for all C∞ functions v with compact support in B̄∗1 .

We claim that :
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6 CHAPTER 1. WEIGHTED L2 ANALYSIS ON A PUNCTURED BALL

Proposition 1.1.1. Assume that n ≥ 3 and ν ∈ (2 − n, 0). Then there exists a constant
c = c(n, ν) > 0 and for all f ∈ L∞loc(B∗1) there exists u a solution of (1.1) which satisfies

‖|x|−ν u‖L∞(B1) ≤ 1

The proof of this result is a simple consequence of the maximum principle. First, recall the
expression of the Euclidean Laplacian in polar coordinates

∆ = ∂2
r +

n− 1
r

∂r +
1
r2

∆Sn−1

Using this expression we get at once

|x|2 ∆|x|ν = −ν (2− n− ν) |x|ν

away from the origin. Now, if ν ∈ (2 − n, 0) (this is where we use the fact that n ≥ 3 !), we
observe that the constant

cn,ν := γ (2− n− ν) > 0

The existence of a solution of (1.1) can then be obtained arguing as follows : Given R ∈
(0, 1/2), we first solve the problem{ |x|2 ∆uR = f in B1 − B̄R

uR = 0 on ∂B1 ∪ ∂BR
(1.2)

Since f ∈ L∞(B1 − B̄R), the existence of a solution uR ∈ W 2,p(B1 − B̄R) for any p ∈ (1,∞)
follows from the following classical result :

Proposition 1.1.2 ([?], Theorem 9.15). Given p ∈ (1,∞) and Ω a smooth bounded domain of
Rn, if g ∈ Lp(Ω) then there exists a unique solution of{

∆v = g in Ω

v = 0 on ∂Ω

which belongs to W 2,p(Ω) ∩W 1,p
0 (Ω).

In our case Ω = B1 − B̄R and

f ∈ L∞(B1 − B̄R) ⊂ Lp(B1 − B̄R),

for all p ∈ (1,∞), and hence

uR ∈W 2,p(B1 − B̄R) ∩W 1,p
0 (B1 − B̄R).

One can use the Sobolev Imbedding Theorem to show that uR ∈ C1,α(B̄1−BR) for all α ∈ (0, 1).
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Proposition 1.1.3 ([?], Theorem 7.26). If α = 1− n
p , then

W 2,p(Ω) ⊂ C1,α(Ω̄)

provided Ω is a smooth bounded domain of Rn.

The maximum principle also implies that

|uR(x)| ≤ 1
cn,ν

|x|ν (1.3)

for all x ∈ B̄1 −BR. Indeed, observe that the function

w(x) =
1
cn,ν

|x|ν − uR(x)

is positive on ∂B1 ∪ ∂BR. Moreover
∆w ≤ 0

in B̄1 −BR. Therefore one can apply the maximum principle

Proposition 1.1.4 ([?], Theorem 8.1). Assume that v ∈ W 1,2(Ω) satisfies ∆v ≤ 0 in some
smooth bounded domain Ω ⊂ Rn. Then

inf
Ω
v ≥ inf

∂Ω
(min(v, 0))

This result applies to the function w in B1 − B̄R. We conclude that w ≥ 0 and hence

uR ≤
1
cn,ν

|x|ν .

Applying the same reasoning to −uR we obtain the desired inequality. Observe that, in the case
where uR is C2, one can simply invoke the classical maximum principle ([?], Theorem 3.1).

Now, we would like to pass to the limit, as R tends to 0. To this aim, we use the following
estimates for solutions of (1.2)

Proposition 1.1.5 ([?], Theorem 9.13). Given a smooth bounded domain Ω ⊂ Rn whose bound-
ary has two disjoint components T1 and T2, Ω′ ⊂⊂ Ω∪T1 and p ∈ (1,∞). There exists a constant
c = c(n, p,Ω,Ω′) > 0 such that, if g ∈ Lp(Ω) and v ∈W 2,p(Ω), satisfy{

∆v = g in Ω

v = 0 on T1

then
‖v‖W 2,p(Ω′) ≤ c

(
‖v‖Lp(Ω) + ‖g‖Lp(Ω)

)
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Using this result with Ω = B1− B̄R, T1 = ∂B1 and Ω′ = B1− B̄2R, together with the a priori
bound (1.3), we conclude that, for all R ∈ (0, 1/2) there exists a constant c = c(n, ν,R) > 0 such
that

‖uR′‖W 2,p(B1−B̄2R) ≤ c

for all R′ ∈ (0, R). It is now enough to apply the Sobolev Imbedding Theorem

Proposition 1.1.6 ([?], Theorem 7.26). The imbedding

W 1,p(Ω) −→ C0,α(Ω̄)

is compact provided 0 < α < 1− n
p and Ω is a smooth bounded domain.

It is now easy to use these two results together with a standard diagonal argument to show
that there exists a sequence (Ri)i tending to 0 such that the sequence of functions uRi

converges
to some continuous function u on compacts of B̄∗1 . Obviously u will be a solution of (1.1) and,
passing to the limit in (1.3), will satisfy

cn,ν ‖|x|−ν u‖L∞(B1) ≤ 1 (1.4)

We have thus obtained a solution of (1.1) satisfying (1.4), provided ν ∈ (2 − n, 0). This
completes the proof of Proposition 1.1.1.

Exercise 1.1.1. Given points x1, . . . , xm ∈ Rn, weights parameters µ, ν1, . . . , νm ∈ R, we define
two positive smooth functions

g : Rn − {x1, . . . , xn} −→ R and h : Rn − {x1, . . . , xn} −→ R

such that :

(i) For each i = 1, . . . ,m, g(x) = |x − xi|νi and h(x) = |x − xi|νi−2 in a neighborhood of the
point xi.

(ii) g(x) = |x|µ and h(x) = |x|µ away from a compact subset of Rn.

Show that, provided n ≥ 3 and µ, ν1, . . . , νm ∈ (2− n, 0), given a function

f : Rn − {x1, . . . , xn} −→ R

satisfying
|f | ≤ h

it is possible to find a solution of the equation

γ2 ∆u = f

which satisfies
|u| ≤ g
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1.2 Analysis in weighted spaces in the punctured unit ball

Given δ ∈ R we define the space

L2
δ(B

∗
1) := |x|δ+1 L2(B1)

This space is endowed with the norm

‖u‖L2
δ(B∗1 ) :=

(∫
B1

|u|2 |x|−2δ−2 dx

)1/2

It is easy to check that

Lemma 1.2.1. The space (L2
δ(B

∗
1), ‖ · ‖L2

δ(B∗1 )) is a Banach space.

Exercise 1.2.1. Provide a proof of Lemma 1.2.1.

We define the unbounded operator Aδ by

Aδ : L2
δ(B

∗
1) −→ L2

δ(B
∗
1)

u 7−→ |x|2 ∆u

The domain of this operator is the set of functions u ∈ L2
δ(B

∗
1) such that Aδu = f ∈ L2

δ(B
∗
1) in

the sense of distributions : This means that u ∈W 2,2(B1 − B̄R), for all R ∈ (0, 1/2) and∫
B1

u∆v dx =
∫
B1

f v |x|−2 dx

for all C∞ functions v with compact support in B∗1 .

We start with some properties of Aδ which are inherited from the corresponding classical
properties for elliptic operators.

Proposition 1.2.1. Assume that δ ∈ R is fixed. There exists a constant c = c(n, δ) > 0 such
that for all u, f ∈ L2

δ(B
∗
1) satisfying |x|2 ∆u = f in B∗1 we have

‖∇u‖L2
δ−1(B

∗
1/2)

+ ‖∇2u‖L2
δ−2(B

∗
1/2)

≤ c (‖f‖L2
δ(B∗1 ) + ‖u‖L2

δ(B∗1 ))

The proof of this result follows from the :

Proposition 1.2.2 ([?], Theorem 9.11). Given a smooth bounded domain Ω ⊂ Rn, Ω′ ⊂⊂ Ω
and p ∈ (1,∞). There exists a constant c = c(n, p,Ω,Ω′) > 0 such that, if g ∈ Lp(Ω) and
v ∈W 2,p(Ω), satisfy

∆v = g in Ω

then
‖v‖W 2,p(Ω′) ≤ c

(
‖v‖Lp(Ω) + ‖g‖Lp(Ω)

)
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The proof of the Proposition 1.2.1 goes as follows : Given R ∈ (0, 1/2) we define the functions

v(x) := u(Rx) and g(x) := f(Rx)

Obviously, we have
|x|2 ∆v = g

in B2 − B̄1/2. We can then apply the result of Proposition 1.2.2 with Ω = B2 − B̄1/2 and
Ω′ = B3/2 − B̄1, we conclude that

‖v‖2W 2,2(B3/2−B̄1)
≤ c

(
‖v‖2L2(B2−B̄1/2)

+ ‖g‖2L2(B2−B̄1/2)

)
Performing the change of variables backward, we conclude that

R2−n ‖∇u‖2
L2(B3R/2−B̄R)

+R4−n ‖∇2u‖2
L2(B3R/2−B̄R)

≤

c
(
R−n ‖u‖2

L2(B2R−B̄R/2)
+R−n ‖f‖2

L2(B2R−B̄R/2)

)
It remains to multiply this inequality by Rn−2−2δ, choose R = 1

3 ( 2
3 )i, for i ∈ N and sum the

result over i. We obtain

‖∇u‖2L2
δ−1(B

∗
1/2)

+ ‖∇2u‖2L2
δ−2(B

∗
1/2)

≤ c
(
‖u‖2L2

δ(B∗1 ) + ‖f‖2L2
δ(B∗1 )

)
This completes the proof of the result.

1.3 The spectrum of the Laplacian on the unit sphere

We recall some well known facts about the spectrum of the Laplacian on the unit sphere.

Proposition 1.3.1 ([?], Theorem ??). The eigenvalues of −∆Sn−1 are given by

λj = j (n− 2 + j)

where j ∈ N. The corresponding eigenspace will be denoted by Ej and the corresponding eigen-
functions are the restrictions to Sn−1 of the homogeneous harmonic polynomials on Rn.

One easy computation is the following : If P is a homogeneous harmonic polynomial of degree
j, then P (x) = |x|j P (x/|x|) and hence

r ∂rP = j P

Using the expression of the Laplacian in polar coordinates, we find that

r2 ∆P = j (n− 2 + j)P + ∆Sn−1P
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Since P is assumed to be harmonic, when restricted to the unit sphere this equality leads to

∆Sn−1P = −j (n− 2 + j)P

This at least shows that the restrictions to Sn−1 of the homogeneous harmonic polynomials of
degree j on Rn belong to Ej .

Exercise 1.3.1. What is the dimension of the j-th eigenspace Ej ?

1.4 Indicial roots

We set
δj :=

n− 2
2

+ j

Definition 1.4.1. The indicial roots of ∆ at the origin are the real numbers given by

ν±j :=
2− n

2
± δj

for j ∈ N.

The indicial roots are related to the asymptotic behavior of the solutions of the homogeneous
problem ∆u = 0 in Rn − {0}. Indeed, a simple computation shows that

∆(|x|ν
±
j φ) = 0

if φ ∈ Ej .

1.5 A crucial a priori estimate

We now want to prove the key result which explains the importance of the parameters δj in the
study of the operator |x|2 ∆ when defined between weighted L2-spaces. This is the purpose of
the :

Proposition 1.5.1. Assume that δ 6= ±δj for j ∈ N. Then there exists a constant c = c(n, δ) > 0
such that, for all u, f ∈ L2

δ(B
∗
1) satisfying

|x|2 ∆u = f

in B∗1 , we have

‖u‖L2
δ(B∗1 ) ≤ c

(
‖f‖L2

δ(B∗1 ) + ‖u‖L2(B1−B̄1/2)

)
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Observe that this result states that we can control the weighted L2-norm of u in terms of the
weighted L2-norm of f and some information about the function u away from the origin.

To prove the result let us perform the eigenfunction decomposition of both u and f . We write
x = r θ where r = |x| and θ = x/|x| ∈ Sn−1 and we decompose

u(r, θ) =
∑
j≥0

uj(r, θ) and f(r, θ) =
∑
j

fj(r, θ)

where, for each j ≥ 0, the functions uj(r, · ) and fj(r, · ) belong to Ej . In particular ∆Sn−1uj =
−λj uj and ∆Sn−1fj = −λj fj , wherever this makes sense.

Observe that∫
B1

|u|2 |x|−2δ−2 dx =
∑
j≥0

∫
B1

|uj |2 |x|−2δ−2 dx =
∑
j≥0

∫ 1

0

‖uj‖2L2(Sn−1) r
n−3−2δ dr

and ∫
B1

|f |2 |x|−2δ−2 dx =
∑
j≥0

∫
B1

|fj |2 |x|−2δ−2 dx =
∑
j≥0

∫ 1

0

‖fj‖2L2(Sn−1) r
n−3−2δ dr

where ‖ · ‖L2(Sn−1) is the L2(Sn−1) norm. In addition, the functions uj and fj satisfy

|x|2 ∆uj = fj (1.5)

in the sense of distributions in B∗1 . Indeed, making use of∫
B1

u∆v dx =
∫
B1

f v |x|−2 dx

with test functions of the form v(r, θ) = h(r)φ(θ) where φ ∈ Ej and h is a smooth function with
compact support in (0, 1), we find that uj is a Ej-valued function solution of (1.5). Using the
decomposition of the Laplacian in polar coordinates, we also find that

r2 ∂2
ruj + (n− 1) r ∂ruj − λj uj = fj (1.6)

in the sense of distribution. Moreover∫ 1

0

‖uj‖2L2(Sn−1) r
n−3−2δ dr <∞ and

∫ 1

0

‖fj‖2L2(Sn−1) r
n−3−2δ dr <∞

The Sobolev Imbedding Theorem will help us justifying most of the forthcoming computation :

Proposition 1.5.2 ([?], Theorem 7.26). If α = 1− n
p then

W 2,p(Ω) ⊂ C1,α(Ω̄)

provided Ω is a smooth bounded domain.
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Observe that uj ∈ W 2,2((r, 1)) for all r ∈ (0, 1) and hence we find that uj ∈ C1,1/2
loc ((0, 1]).

Also, using the result of Proposition 1.2.1, we conclude that∫
B1

|∂ruj | |x|−2δ dx <∞ and
∫
B1

|∂2
ruj | |x|2−2δ dx <∞ (1.7)

Let j0 denote the least index in N such that

|δ| < δj0 (1.8)

The proof of Proposition 1.5.1 is now decomposed into two parts.

Part 1 : The case where |δ| < δj. Let χ be a cutoff function equal to 1 in B1/2 and
equal to 0 outside B1, let us further assume that χ is radial. We multiply the equation (1.6) by
χ2 r−2δ−2 uj and integrate over B1. We obtain using polar coordinates∫

B1

χ2 r−2δ uj ∂r(rn−1 ∂ruj) dr dθ − λj

∫
B1

χ2 u2
j r

n−3−2δ dr dθ =
∫
B1

χ2 uj fj r
n−3−2δ dr dθ

where dθ denotes the volume form on Sn−1 and hence the Euclidean volume form is given by
dx = rn−1 dr dθ.

We integrate the first integral by parts to get∫
B1

χ2 |∂r(χuj)|2 r−2δ dx+ (λj + δ (n− 2− 2δ))
∫
B1

χ2 u2
j r

−2−2δ dx

=
∫
B1

(δ ∂r(χ2)− r |∂rχ|2) r−1−2δ u2
j dx−

∫
B1

χ2 uj fj r
−2−2δ dx

(1.9)

Even is formally, this computation is correct, some care is needed to justify the integration by
parts at 0. Let us explain how the integration by parts is performed : We write

−χ2 r−2δ uj ∂r(rn−1 ∂ruj) = rn−1−2δ |∂r(χuj)|2 + δ (n− 2− 2δ)χ2 rn−3−2δ u2
j

+ (δ ∂r(χ2)− r |∂χ|2) rn−2−2δ u2
j

− ∂r
(
χ2rn−1−2δ uj ∂ruj + δ χ2 rn−2−2δ u2

j

)
For all R ∈ (0, 1), we integrate this equality over [R, 1]× Sn−1 with respect to the measure dr dθ
to get

−
∫
B1−B̄R

χ2 r−2δ+1−n uj ∂r(rn−1 ∂ruj) dx =
∫
B1−B̄R

r−2δ |∂r(χuj)|2 dx

+ δ (n− 2− 2δ)
∫
B1−B̄R

χ2 u2
j r

−2−2δ dx

+
∫
B1−B̄R

(δ ∂r(χ2)− r |∂χ|2) r−1−2δ u2
j dx

+
∫
∂BR

χ2 r−2δ
(
r uj ∂ruj + δ r−1 u2

j

)
rn−1 dθ

(1.10)
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Now, use the fact that, thanks to (1.7)∫ 1

0

(∫
∂Br

r−2δ
(
|uj ∂ruj |+ r−1 u2

j

)
rn−1 dθ

)
r−1 dr <∞

to show that, for a sequence of Ri tending to 0 we have

lim
Ri→0

∫
∂BRi

χ2r−2δ
(
uj ∂ruj + δ r−1 u2

j

)
rn−1 dθ = 0

We now use this sequence of radii and pass to the limit in (1.10) to get

−
∫
B1

χ2 r−2δ+1−n uj ∂r(rn−1 ∂ruj) dx =
∫
B1

r−2δ |∂r(χuj)|2 dx

+ δ (n− 2− 2δ)
∫
B1

χ2 u2
j r

−2−2δ dx

+
∫
B1

(δ ∂r(χ2)− r |∂χ|2) r−1−2δ u2
j dx

All subsequent integrations by parts can be justified using similar arguments, we shall leave the
details to the reader.

We shall now make use of the following Hardy type inequality

Lemma 1.5.1. The following inequality holds

(n− 2− 2δ)2
∫

Rn

r−2−2δ u2dx ≤ 4
∫

Rn

r−2δ |∂ru|2 dx

provided the integral on the left hand side is finite.

Using this Lemma together with (1.9) we conclude that(
δ2j − δ2

) ∫
B1

χ2 u2
j |x|−2−2δ dx ≤

∫
B1

χ2 |fj | |uj | |x|−2−2δ dx+ c

∫
B1−B1/2

u2
j dx

where the constant c = c(n, δ) > 0 does not depend on j.

Now, we set
η := δ2j0 − δ2 > 0

This is where it is important that δ 6= ±δj . Using Cauchy-Schwarz inequality together with the
inequality

2 a b ≤ η a2 + η−1 b2

we get(
2(δ2j − δ2)− η

) ∫
B1

χ2 u2
j |x|−2δ−2 dx ≤ η−1

∫
B1

χ2 f2
j |x|−2−2δ dx+ 2 c

∫
B1−B1/2

u2
j dx. (1.11)
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Observe that, for j ≥ j0,
2(δ2j − δ2)− η ≥ 2(δ2j0 − δ2)− η = η.

We can sum all the inequalities (1.11) over j ≥ j0 to conclude that

η

∫
B1

χ2 ũ2 |x|−2δ−2 dx ≤ η−1

∫
B1

χ2 f̃2 |x|−2−2δ dx+ 2 c
∫
B1−B 1

2

ũ2 dx. (1.12)

where we have set
ũ :=

∑
j≥j0

uj and f̃ :=
∑
j≥j0

fj

Proof of Lemma 1.5.1: We now provide a proof of the Hardy type inequality we have
used. Assume that n− 2 6= 2 δ and also that∫

Rn

|∂ru|2 |x|−2δ dx <∞

since otherwise there is nothing to prove. Then, start with the identity

(n− 2− 2δ)
∫ ∞

0

v2 rn−3−2δ dr =
∫ ∞

0

v2 ∂r(rn−2−2δ)dr = −2
∫ ∞

0

v ∂rv r
n−2−2δ dr

where the last equality follows from an integration by parts. Use Cauchy-Schwarz inequality to
conclude that

(n− 2− 2δ)2
∫ ∞

0

v2 rn−3−2δ dr ≤ 4
∫ ∞

0

|∂rv|2 rn−2−2δ dr

The inequality in Lemma 1.5.1 follows from the integration of this inequality over Sn−1. Observe
that, in order to justify the integration by parts, it is enough to assume that

∫∞
0
v2 |x|−2δ−2 dx

converges.

Part 2 : The case where |δ| > δj and δj 6= 0. It remains to estimate uj , for j = 0, . . . , j0−1.
Here we simply use the fact that we have an explicit expression for uj in terms of fj . In order to
simplify the discussion, we first assume that δj 6= 0. Then, we define ũj by

ũj(r, ·) =
1

2δj

(
r

2−n
2 +δj

∫ r

∗
t

n−4
2 −δj fj(t, · ) dt− r

2−n
2 −δj

∫ r

∗
t

n−4
2 +δj fj(t, · ) dt

)
where ∗ has to be chosen according to the position of δ with respect to ±δj . In fact (see below)
we will choose ∗ = 0 when δ > δj and ∗ = 1 when δ < δj . It is easy to check that

|x|2 ∆ũj = f̃j

in B∗1 .
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Basic strategy : Consider a quantity of the form

u(r) = r
2−n

2 ±δj

∫ r

∗
t

n−4
2 ∓δj f(t) dt

where we assume that ∫ 1

0

f2(r) rn−3−2δ dr <∞

It is a simple exercise to compute, using an integration by parts that∫ 1

R

u2(r) rn−3−2δ dr =
1

2(±δj − δ)

(
u(1)2 −Rn−2−2δ u(R)2 − 2

∫ 1

R

f(r)u(r) rn−3−2δ dr

)
(1.13)

This is where, once again, it is important that δ 6= ±δj .

A simple application of Cauchy-Schwarz inequality, yields

|u(r)|2 ≤ r2δ+2−n

2|δ ± δj |

(∫ 1

0

f2(t) tn−3−2δ dt

)
,

provided we choose ∗ = 0 when δ > δj and ∗ = 1 when δ < −δj . This is where the choice of ∗ is
crucial.

Plugging this information in (1.13) and using Cauchy-Schwarz inequality, immediately implies
that ∫ 1

R

u2 rn−3−2δ dr ≤ 1
2|δ ± δj |2

(∫ 1

0

f2(r) rn−3−2δ dr

)
+

1
|δ ± δj |

(∫ 1

0

u2(r) rn−3−2δ dr

)1/2 (∫ 1

0

f2(r) rn−3−2δ dr

)1/2

It is a simple exercise to check that this implies that∫ 1

R

u2 rn−3−2δ dr ≤ c

∫ 1

0

f2(r) rn−3−2δ dr

for some constant c = c(δ, n, j) > 0.

Using this result, and passing to the limit as R tends to 0, we conclude that∫
B1

ũ2
j |x|−2δ−2 dx ≤ c

∫
B1

f2
j |x|−2δ−2 dx (1.14)

for some constant c = c(δ, n, j) > 0.

It remains to evaluate the difference between the the functions uj and ũj . Since

|x|2 ∆(uj − ũj) = 0
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we find that
uj − ũj = r

2−n
2 +δj φ+ r

2−n
2 −δj ψ

where φ, ψ ∈ Ej . Remembering that uj − ũj ∈ L2
δ(B

∗
1) we find, in the case where δ > δj , that the

only possibility is φ = ψ = 0. Therefore, in this case the proof is already complete since (1.14)
provides the desired estimate. When δ < −δj , it is very likely that φ and ψ are not equal to 0.
In this case, we evaluate

‖φ‖L2(Sn−1) + ‖ψ‖L2(Sn−1) ≤ c ‖ũj − uj‖L2(B1−B̄1/2)

for some constant c = c(δ, j, n) > 0. To obtain this estimate without much work observe that the
space of functions

{r
2−n

2 +δj φ+ r
2−n

2 −δj ψ : φ, ψ ∈ Ej}

is finite dimensional and that we have two (equivalent) norms on it. Namely

N1(r
2−n

2 +δj φ+ r
2−n

2 −δj ψ) := ‖φ‖L2(Sn−1) + ‖ψ‖L2(Sn−1)

and
N2(r

2−n
2 +δj φ+ r

2−n
2 −δj ψ) := ‖r

2−n
2 +δj φ+ r

2−n
2 −δj ψ‖L2(B1−B̄1/2)

.

Observe that we have implicitly used the fact that δj 6= 0 and hence the functions r −→ r
2−n

2 +δj

and r −→ r
2−n

2 −δj are linearly independent.

Granted this estimate, we conclude that

‖uj‖L2
δ(B∗1 ) ≤ c

(
‖fj‖L2

δ(B∗1 ) + ‖uj‖L2(B1−B1/2)

)
This completes the proof of the result when all δj 6= 0. Collecting this estimates together with
(1.12) this completes the proof of the Proposition 1.5.1 when δj 6= 0, for all j ∈ N.

Part 3 : The case where |δ| > δj = 0. We now turn to the case where δj = 0. This case
happens when n = 2 and j = 0. The equation satisfied by u0 reads

r2 ∂2
r u0 + r ∂ru0 = f0

This time, the explicit formula we will use is

ũ0(r) :=
∫ r

∗
s−1

(∫ s

∗
t−1 f0(t) dt

)
ds

where ∗ will be chosen appropriately, namely ∗ = 0 when δ > 0 and ∗ = 1 when δ < 0. Again,
one can check directly that |x|2 ∆ũ0 = f0.

To start with use the strategy developed above to prove that

‖∂rũ0‖L2
δ−1(B

∗
1 ) ≤ c ‖f0‖L2

δ(B∗1 )
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We leave the details to the reader. Once this is done, use again the above strategy to show that∫ 1

R

ũ2
0 r

−2δ−1 dr ≤ 1
2|δ|2

(∫ 1

0

f2
0 (r) r−2δ−1 dr

)
+

1
|δ|

(∫ 1

0

ũ2
0(r) r

−2δ−1 dr

)1/2 (∫ 1

0

|∂ũ0|2(r) r−2δ+1 dr

)1/2

Collecting these two estimates, we conclude that

‖ũ0‖2L2
δ(B∗1 ) ≤ c

(
‖f0‖2L2

δ(B∗1 ) + ‖f0‖L2
δ(B∗1 )‖ũ0‖L2

δ(B∗1 )

)
from which it follows that

‖ũ0‖L2
δ(B∗1 ) ≤ c ‖f0‖L2

δ(B∗1 )

Once this estimate has been obtained, we observe that

u0 − ũ0 = α+ β log r

When δ > 0, α = β = 0 since u0 − ũ0 ∈ L2
δ(B

∗
1) and when δ < 0 we can argue as what has been

already done when δj 6= 0 to obtain

|α|+ |β| ≤ c ‖ũ0 − u0‖L2(B1−B̄1/2)

for some constant c = c(n, δ) > 0. Collecting all the estimate, we conclude that

‖u0‖L2
δ(B∗1 ) ≤ c

(
‖f0‖L2

δ(B∗1 ) + ‖u0‖L2(B1−B1/2)

)
(1.15)

This completes the proof in all cases.

Exercise 1.5.1. Observe that there is another formula we could have used for ũ0, namely

ũ0(r) = log r
∫ r

∗
t−1 f0(t) dt−

∫ r

∗
t−1 log t f0(t) dt.

Prove the estimate (1.15) starting from this formula.

Exercise 1.5.2. Show that, in the main estimate in the statement of Proposition 1.5.1, one can
replace ‖u‖L2(B1−B̄1/2)

by ‖u‖L1(B1−B̄1/2)
.

Exercise 1.5.3. Let a : B∗1 −→ R be a function which satisfies the bound

|a(x)| ≤ c |x|−2+α

in B∗1 , for some α > 0. Show that the result of Proposition 1.5.1 remains true if the operator
|x|2 ∆ is replaced by the operator |x|2 (∆ + a).
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Exercise 1.5.4. † Show that the result of Proposition 1.5.1 remains true if the operator |x|2 ∆
is replaced by the operator |x|2 ∆ + d, where d ∈ R is fixed, provided we define

δj = <

((
n− 2

2
+ j

)2

+ d

)1/2
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Chapter 2

Weighted L2 analysis on a
punctured manifold

2.1 The Laplace-Beltrami operator in normal geodesic co-
ordinates

Given a Riemannian manifold (M, g), the Laplace-Beltrami operator is defined in local coordinates
x1, . . . , xn

∆g =
∑
i,j

1√
detg

∂xi

(√
det(g) gij ∂xj

)
where gij are the coefficients of the inverse of the matrix (gij)i,j .

Recall that, in local coordinates, the volume form on M is given by

dvolg =
√

detg dx1 . . . dxn

In particular, if u is a smooth function of M , we have∫
M

u∆gu dvolg = −
∫
M

gij∂xiu ∂xju dvolg = −
∫
M

gij |∇u|2g dvolg

Using the exponential mapping, we can define normal geodesic coordinates in a neighborhood
of a point p ∈ M as follows : first choose an orthonormal basis e1, . . . , em of TpM . Then define
the mapping

F (x1, . . . , xm) := Expp

(∑
i

xi ei

)
One can prove that F is a local diffeomorphism from a neighborhood of 0 in (M, g) into a
neighborhood of p in M .

21
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Proposition 2.1.1. ([?], Theorem ??) In normal geodesic coordinates, the coefficients of the
metric g can be expanded as

gij = δij +O(|x|2)

The functions O(|x|2) are smooth function which vanish quadratically at the origin. As a
simple consequence of this result, we have the expansion of the Laplace-Beltrami operator in
normal geodesic coordinates :

∆g = ∆eucl +O(|x|2) ∂xi ∂xj +O(|x|) ∂xk (2.1)

The operator O(|x|2) ∂xi ∂xj is a second order differential operator whose coefficients are smooth
and vanish quadratically at the origin and the operator O(|x|2) ∂xk is a first order differential
operator whose coefficients are smooth and vanish at the origin. This last expansion follows from a
direct computation using the formula of ∆g in local coordinates and the result of Proposition 2.1.1.

2.2 Two global results

Using the normal geodesic coordinates, we extend the results of Proposition 1.1.1 and Proposi-
tion 1.5.1 in a global setting.

As in the previous section (M, g) is a compact n-dimensional Riemannian manifold without
boundary. We choose points p1, . . . , pk ∈M and denote by

M∗ := M − {p1, . . . , pk}

Given R small enough, we define BR(p) ⊂ M (resp. B̄R(p) ⊂ M) to be the open (resp. closed)
geodesic ball of radius R centered at p. The corresponding punctured balls are denoted by B∗R(p)
and B̄∗R(p). Finally, we set

MR := M − ∪jB̄R(pj)

We fix a smooth function
γ : M∗ −→ (0,∞)

such that, for all j = 1, . . . , k
γ(p) = dist(p, pj)

in some neighborhood of pj .

Given δ ∈ R we define the space

L2
δ(M

∗) := γδ+1 L2(M)

This space is endowed with the norm

‖u‖L2
δ(M∗) :=

(∫
M

|u|2 γ−2δ−2 dvolg

)1/2

Again, we have
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Lemma 2.2.1. The space (L2
δ(M

∗), ‖ · ‖L2
δ(M∗)) is a Banach space.

We define the unbounded operator Aδ by

Aδ : L2
δ(M

∗) −→ L2
δ(M

∗)

u 7−→ γ2 (∆gu+ a u)

where a is a smooth function on M . The domain D(Aδ) of this operator is the set of functions
u ∈ L2

δ(M
∗) such that Aδu = f ∈ L2

δ(M
∗) in the sense of distributions : This means that

u ∈W 2,2(MR), for all R > 0 small enough and∫
M

u (∆gv + a v) dvolg =
∫
M

f v γ−2 dvolg

for all C∞ functions v with compact support in M∗. It is easy to check that

Lemma 2.2.2. The domain of the operator Aδ is dense in L2
δ(M

∗) and the graph of Aδ is closed.

Exercise 2.2.1. Give a proof of Lemma 2.2.2.

The result we have obtain in Proposition 1.2.1 translates immediately into :

Proposition 2.2.1. Assume δ ∈ R is fixed. There exists a constant c = c(n, δ) > 0 such that for
all u, f ∈ L2

δ(M
∗) satisfying γ2 (∆gu+ a u) = f in M∗ we have

‖∇u‖L2
δ−1(M

∗) + ‖∇2u‖L2
δ−2(M

∗) ≤ c (‖f‖L2
δ(M∗) + ‖u‖L2

δ(M∗))

The proof of the result goes as follows : First observe that the result of Proposition 1.1.1
remains true if one changes B∗1 with B∗R. In which case the estimate of Proposition 1.1.1 has to
be replaced by

‖∇u‖L2
δ−1(B

∗
R) + ‖∇2u‖L2

δ−2(B
∗
R) ≤ c

(
‖f‖L2

δ(B∗R) + ‖u‖L2
δ(B∗R)

)
(2.2)

if u, f ∈ L2
δ(B

∗
R) satisfy |x|2 ∆u = f in B∗R. This can be seen easily by performing a simple change

v(x) = u(Rx) and g(x) = f(Rx) so that v and g satisfy |x|2 ∆ v = g in B∗1 , then the estimate
follows from the corresponding estimate in Proposition 1.1.1.

Close to the puncture pj we use normal geodesic coordinates so that γ = |x| and write the
equation γ2 (∆g u+ a u) = f as

|x|2 ∆euclu = f + |x|2 (∆eucl −∆g)u− |x|2 a u
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Using the result of Proposition 1.1.1 together with the result of Proposition 2.1.1, we evaluate

‖|x|2 (∆eucl −∆g)u− |x|2 a u‖L2
δ(B∗R) ≤ cR2

(
‖u‖L2

δ(M∗) + ‖∇u‖L2
δ−1(M

∗) + ‖∇2u‖L2
δ−2(M

∗)

)
for some constant c = c(n, δ) > 0 which does not depend on R > 0, small enough. Next we apply
(2.2) to conclude that

‖∇u‖L2
δ−1(B

∗
R) + ‖∇2u‖L2

δ−2(B
∗
R) ≤ c

(
‖f‖L2

δ(B∗R) + ‖u‖L2
δ(M∗)

+ R2 (‖∇u‖L2
δ−1(M

∗) + ‖∇2u‖L2
δ−2(M

∗))
)

for some constant c = c(n, δ) > 0 independent of R > 0 small enough. This can also be written
as

(1− cR2) (‖∇u‖L2
δ−1(B

∗
R) + ‖∇2u‖L2

δ−2(B
∗
R)) ≤ c

(
‖f‖L2

δ(B∗R) + ‖u‖L2
δ(M∗)

)
If R > 0 is chosen so that cR2 ≤ 1/2 we conclude that

‖∇u‖L2
δ−1(B

∗
R) + ‖∇2u‖L2

δ−2(B
∗
R) ≤ 2 c

(
‖f‖L2

δ(B∗R) + ‖u‖L2
δ(M∗)

)
We now use the elliptic estimates provided by

Proposition 2.2.2. ([?], Theorem ??) Assume we are given Ω ⊂ M , Ω′ ⊂⊂ Ω and p ∈ (1,∞).
Then there exists c = c(M, g,Ω,Ω′) > 0 such that, if v ∈W 2,p and g ∈ L2(Ω) satisfy ∆gv = g in
Ω, then

‖∇v‖Lp(Ω′) + ‖∇2v‖Lp(Ω′) ≤ c
(
‖g‖Lp(Ω) + ‖u‖Lp(Ω)

)
with Ω = MR/2 and Ω′ = MR to show that

‖∇u‖L2
δ−1(MR) + ‖∇2u‖L2

δ−2(MR) ≤ c
(
‖f‖L2

δ(MR/2)
+ ‖u‖L2

δ(MR/2)

)
for some constant c = c(n,R) > 0. The estimate then follows from the sum of the two estimates
we have obtained.

The following result is a consequence of Proposition 1.5.1.

Proposition 2.2.3. Assume that δ 6= ±δj for j ∈ N. Then there exists a constant c = c(n, δ)
and a compact K in M∗ such that, for all u, f ∈ L2

δ(M
∗) satisfying

γ2 (∆gu+ a u) = f

in M∗, we have
‖u‖L2

δ(M∗) ≤ c
(
‖f‖L2

δ(M∗) + ‖u‖L2(K)

)
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Again this result states that we can control the weighted L2- norm of u in terms of the weighted
L2-norm of f and some information about the function u away from the punctures.

The proof of this second Proposition, also follows from a perturbation argument. First observe
that the result of Proposition 1.5.1 remains true if one changes B∗1 with B∗R. In which case the
estimate of Proposition 1.5.1 has to be replaced by

‖u‖L2
δ(B∗R) ≤ c

(
‖f‖L2

δ(B∗R) +R−δ−1 ‖u‖L2(BR−B̄R/2)

)
(2.3)

if u, f ∈ L2
δ(B

∗
R) satisfy |x|2 ∆u = f in B∗R. This can be seen easily by performing a simple change

v(x) = u(Rx) and g(x) = f(Rx) so that v and g satisfy |x|2 ∆ v = g in B∗1 , then the estimate
follows from the corresponding estimate in Proposition 1.5.1.

Close to the puncture pj we use normal geodesic coordinates so that γ = |x| and write the
equation γ2 (∆g u+ a u) = f as

|x|2 ∆euclu = f + |x|2 (∆eucl −∆g)u− |x|2 a u

Using the result of Proposition 2.2.1 together with the result of Proposition 2.1.1, we evaluate

‖|x|2 (∆eucl −∆g)u− |x|2 a u‖L2
δ(B∗R) ≤ cR2 ‖u‖L2

δ(M∗)

for some constant c = c(n, δ) > 0 which does not depend on R > 0, small enough. Next we apply
(2.3) to conclude that

‖u‖L2
δ(B∗R) ≤ c

(
‖f‖L2

δ(B∗R) +R2 ‖u‖L2
δ(M∗) +R−δ−1 ‖u‖L2(BR−B̄R/2)

)
for some constant c = c(n, δ) > 0 independent of R > 0 small enough. Adding on both sides
‖u‖L2(MR) we conclude that

‖u‖L2
δ(M∗) ≤ c

(
‖f‖L2

δ(B∗R) +R2 ‖u‖L2
δ(M∗) +R−δ−1 ‖u‖L2(MR/2)

)
where c = c(n, δ) > 0 does not depend on R > 0 small enough. In other words

(1− cR2) ‖u‖L2
δ(M∗) ≤ c

(
‖f‖L2

δ(B∗R) +R−δ−1 ‖u‖L2(MR/2)

)
It remains to fix R > 0 such that cR2 ≤ 1/2 and let K = MR/2. this completes the proof of the
result.

Exercise 2.2.2. Show that the result of Proposition 2.2.3 remains true if the function a : M∗ −→
R only belongs to L∞loc(M

∗) and satisfies the bound

|a| ≤ c γ−2+α

in M∗, for some α > 0.
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Exercise 2.2.3. † Show that the result of Proposition 2.2.3 remains true if, near any of the pi,
the function a can be decomposed as a = d γ−2 + ãi where d ∈ R is a constant and the function
ãi satisfies the bound

|ãi| ≤ c γ−2+αi

in BRi
(pi), for some αi > 0 and provided we define

δj = <

((
n− 2

2
+ j

)2

+ c

)1/2

Exercise 2.2.4. † Show that the result of Proposition 2.2.3 remains true if, near any of the pi
there exists local coordinates x1, . . . , xn in which the coefficients of the metric can be expanded as

gij = δij +O(|x|β)

and if in addition
∇gij = O(|x|β−1)

for some β > 0.

Exercise 2.2.5. ‡ Extend the result of Proposition 2.2.3 to handle the case where, near any of
the pi, the function a can be decomposed as

a = di γ
−2 + ãi

where di ∈ R are constants and the function ãi satisfies the bound

|ãi| ≤ c γ−2+αi

in BRi
(pi), for some αi > 0.

2.3 The kernel of the operator Aδ

The results of the previous sections will now be used to derive the functional analytic properties
of the operator Aδ. We start with the :

Theorem 2.3.1. The kernel of Aδ is finite dimensional.

For the time being, let us assume that δ 6= ±δj . We argue by contradiction and assume that
the result is not true. Then, there would exist a sequence (um)m of elements of L2

δ(M
∗) which

satisfy Aδ um = 0.

Without loss of generality we can assume that the sequence is normalized so that∫
M

|um|2 γ−2δ−2 dvolg = 1 (2.4)
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and also that ∫
M

um um
′
γ−2δ−2 dvolg = 0. (2.5)

for all m 6= m′. Using the result of Proposition 2.2.3 we obtain

‖um − um
′
‖L2

δ(M∗) ≤ c ‖um − um
′
‖L2(K) (2.6)

where c = c(n, δ) > 0 does not depend on m.

Using (2.4) together with the result of Proposition 2.2.1 we conclude that um is bounded in
W 1,2(K). Now, we apply Rellich’s compactness result :

Proposition 2.3.1. ([?], Theorem ??) Given a smooth bounded domain Ω ⊂M , the imbedding

W 1,2(Ω) −→ L2(Ω)

is compact.

This result allows us to extract some subsequence (which we will still denote by (um)m) which
converges in L2(K). In particular, the sequence (um)m is a Cauchy sequence in L2(K). In view
of (2.6) we see that the sequence (um)m is a Cauchy sequence in L2

δ(M
∗). This space being a

Banach space, we conclude that this sequence converges in L2
δ(M

∗) to some function u.

Clearly, passing to the limit in (2.4) we see that∫
Ω

|u|2 γ−2δ−2 dvolg = 1

While, passing to the limit m′ −→∞ in (2.5), we get∫
Ω

um u r−2δ−2 dx = 0

and then passing to the limit as m tends to ∞, we conclude that∫
Ω

u2 r−2δ−2 dx = 0

Clearly a contradiction. This completes the proof when δ 6= ±δj , for all j ∈ N. In order to
complete the proof is all cases it is enough to observe that if u ∈ KerAδ then u ∈ KerAδ′ for all
δ′ ≤ δ. Therefore, one can always reduce to the case where δ′ 6= ±δj for all j ∈ N.

2.4 The range of the operator Aδ

We pursue our quest of the mapping properties of the operators Aδ by studying the range of this
operator. Thanks to the results of the previous sections, we are in a position to prove the :
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Theorem 2.4.1. Assume that δ 6= ±δj for j ∈ N. Then the range of Aδ is closed.

Let um, fm ∈ L2
δ(M

∗) be sequences such that fm := Aδ u
m converges to f in L2

δ(M
∗). Since

we now know that KerAδ is finite dimensional, it is closed and we can project every each um

onto {
u ∈ L2

δ(M
∗) :

∫
M

u v r−2δ−2 dx = 0 ∀v ∈ KerAδ

}
the orthogonal complement of KerAδ in L2

δ(M
∗), with respect to the scalar product associated to

the weighted norm. Therefore, without loss of generality, we can assume that um is L2
δ-orthogonal

to KerAδ.

Since fm converges in L2
δ(M

∗), there exists c > 0 such that

‖fm‖L2
δ(M∗) ≤ c. (2.7)

Now, we claim that the sequence (um)m is bounded in L2
δ(M

∗). To prove this claim, we argue
by contradiction and assume that (at least for a subsequence still denoted (um)m)

lim
m→+∞

‖um‖L2
δ(M∗) = ∞

We set
vm :=

um

‖um‖L2
δ(M∗)

and gm :=
fm

‖um‖L2
δ(M∗)

so that Aδvm = gm. Applying the result of Proposition 2.2.1, we conclude that the sequence
(vm)m is bounded inW 1,2(K) and hence, using Rellich’s Theorem, we conclude that a subsequence
(still denoted (vm)m) converges in L2(K). Now the result of Proposition 2.2.3 yields

‖vm − vm
′
‖L2

δ(M∗) ≤ c
(
‖gm − gm

′
‖L2

δ(M∗) + ‖vm − vm
′
‖L2(K)

)
. (2.8)

On the right hand side, the sequence (gm)m tends to 0 in L2
δ(M

∗) and the sequence (vm)m
converges in L2(K). Therefore, we conclude that (vm)m is a Cauchy sequence in L2

δ(M
∗) and

hence converges to v ∈ L2
δ(M

∗).

To reach a contradiction, we first pass to the limit in the identity Aδ vm = gm to get that the
function v is a solution of Aδv = 0 and hence v ∈ KerAδ. But by construction ‖v‖L2

δ(M∗) = 1
and also ∫

M

vm v γ−2δ−2 dvolg = 0

(since v ∈ KerAδ) and, passing to the limit in this last identity we find that ‖v‖L2
δ(M∗) = 0. A

contradiction.

Now that the claim is proved, we use the result of Proposition 2.2.1 together with Rellich’s
Theorem to extract, form the sequence (um)m some subsequence which converges to u in L2

δ(M
∗).

Once more, Proposition 2.2.3 implies that

‖um − um
′
‖L2

δ(M∗) ≤ c
(
‖fm − fm

′
‖L2

δ(M∗) + ‖um − um
′
‖L2(K)

)
. (2.9)
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This time, on the right hand side, the sequence (fm)m converges in L2
δ(M

∗) and the sequence
(um)m converges in L2(K). Therefore, we conclude that (um)m is a Cauchy sequence in L2

δ(M
∗)

and hence converges to u ∈ L2
δ(M

∗). Passing to the limit in the identity Aδ um = fm we conclude
that Aδu = f and hence f belongs to the range of Aδ. This completes the proof of the result.

2.5 Fredholm properties for Aδ

It will be convenient to identify the dual of L2
δ(M

∗) with L2
−δ(M

∗). This is done using the scalar
product

〈u, v〉 :=
∫
M

u v γ−2 dvolg (2.10)

Clearly, given v ∈ L2
−δ(M

∗), we can define Tv ∈
(
L2
δ(M

∗)
)′ by

Tv(u) = 〈u, v〉

Moreover, we have
‖Tv‖(L2

δ(M∗))′ = ‖v‖L2
−δ(M∗)

Conversely, given T ∈
(
L2
δ(M

∗)
)′ there exists a unique v ∈ L2

−δ(M
∗) such that 〈u, v〉 = T (u) for

all u ∈ L2
δ(M

∗).

We define A∗δ , the adjoint of Aδ

A∗δ :
(
L2
δ(M

∗)
)′ −→ (

L2
δ(M

∗)
)′

is defined to be an unbounded operator. An element T ∈
(
L2
δ(M

∗)
)′ belongs to D(A∗δ), the

domain of A∗δ , if and only if there exists S ∈
(
L2
δ(M

∗)
)′ such that

T (Aδ v) = S(v)

for all v ∈ D(Aδ). We will write A∗δ(T ) = S.

Granted the above identification of
(
L2
δ(M

∗)
)′ with L2

δ(M
∗) it is easy to check that we can

identify A∗δ with A−δ. Indeed, if we write T = Tu and A∗δ(T ) = Tf , for u, f ∈ L2
−δ(M

∗), then, by
definition

Tu(Aδv) := 〈u,Aδv〉

and
A∗δ(T )(v) := 〈f, v〉

for all v ∈ D(Aδ). Hence, we have∫
M

u(∆g + a)v dvolg =
∫
M

f v γ−2dvolg
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for all v ∈ D(Aδ). This in particular implies that γ2 (∆g + a)u = f in the sense of distributions.
Since u, f ∈ L2

−δ(M
∗), we conclude that u ∈ D(A−δ) and f = A−δ u.

Conversely, if u ∈ D(A−δ), we can write for all v ∈ D(Aδ)

〈u,Aδv〉 =
∫
M

u (∆g + a)v dvolg

=
∫
M

v (∆g + a)u dvolg

= 〈A−δ u, v〉

The integrations by parts can be justified since, according to the result of Proposition 2.2.1, we
have ∇v ∈ L2

δ−1(M
∗), ∇u ∈ L2

−δ−1(M
∗), ∇2v ∈ L2

δ−2(M
∗) and ∇2u ∈ L2

−δ−2(M
∗). Therefore

Tu ∈ D(A∗δ) and A∗δ(Tu) = TA−δu.

With these identifications in mind, we can state the

Theorem 2.5.1. Assume that δ 6= ±δj for all j ∈ N. Then

KerAδ = (ImA−δ)
⊥

and
ImAδ = (KerA−δ)

⊥

The first part is a classical property for unbounded operators with closed graph and dense
domain (see Corollary II.17 in [?]). The second result follows from classical results for unbounded
operators with dense domains, closed graph and closed range (see Theorem II.18 in [?]).

Observe that, because of our identifications, F⊥ is obtained from F using the scalar product
defined in (2.10).

Very useful for us will be the :

Corollary 2.5.1. Assume that δ 6= ±δj for all j ∈ N. Then Aδ is injective if and only if A−δ is
surjective.

2.6 The deficiency space

Even though the previous results seem already a great achievement, since it will provide right
inverses for some operators, we will need a more refined result. As usual, this result for operators
defined on the punctured manifold M∗ are obtained by perturbing the corresponding results in
Euclidean space.

To start with, let us prove the :



2.6. THE DEFICIENCY SPACE 31

Lemma 2.6.1. Assume that δ 6= ±δj, for j ∈ N. There exist an operator

Gδ : L2
δ(B

∗
1) −→ L2

δ(B
∗
1)

and c = c(n, δ) > 0 such that for all f ∈ L2
δ(B

∗
1), the function u := Gδ(f) is a solution of

|x|2 ∆u = f

in B∗1 and
‖u‖L2

δ(B∗1 ) + ‖∇u‖L2
δ−1(B

∗
1 ) + ‖∇2u‖L2

δ−2(B
∗
1 ) ≤ c ‖f‖L2

δ(B∗1 )

At first glance this result looks rather strange wince we are not imposing any boundary data.
Nevertheless, some boundary data are hidden in the construction of the operator Gδ. Observe
that we state the existence of Gδ and do not state any uniqueness of this operator !

The proof of the existence of Gδ relies on the eigenfunction decomposition of the function f .
We decompose as usual

f =
∑
j≥0

fj

where f(r, ·) ∈ Ej for all j ∈ N. Let j0 ∈ N be the least index for which

|δ| < δj0

We set
f̃ =

∑
j≥j0

fj

Clearly f̃ ∈ L2
δ(B

∗
1) and, for all R ∈ (0, 1/2) one can solve |x|2 ∆ũR = f̃ in B1 − B̄R

ũR = 0 on ∂B1 ∪ ∂BR

The existence of ũR follows from Proposition 1.1.2 and we have the estimate

‖ũR‖L2(B1−B̄R) ≤ c ‖f̃‖L2(B1−B̄R)

for some constant c = c(n,R) > 0. We claim that there exists a constant c = c(n, δ) > 0 such
that

‖ũR‖L2
δ(B1−B̄R) ≤ c ‖f̃‖L2

δ(B1−B̄R) (2.11)

Here the norm in L2
δ(B1 − B̄R) is nothing but the restriction of the restriction of the norm in

L2
δ(B

∗
1) to functions which are defined in B1 − B̄R. The proof of the claim follows the Part 1 of

the proof of Proposition 1.5.1. We omit the details.
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Arguing as in the proof of Proposition 1.2.1 we conclude that there exists a constant c =
c(n, δ) > 0 such that

‖∇ũR‖L2
δ−1(B1−B̄R) ≤ c ‖f̃‖L2

δ(B1−B̄R)

In particular, given R′ ∈ (0, 1/2), there exists c = c(n, δ,R′) > 0 such that

‖ũR‖L2(B1−B̄′R) + ‖∇ũR‖L2(B1−B̄′R) ≤ c ‖f̃‖L2
δ(B∗1 )

for all R ∈ (0, R′). Then using Rellich’s Theorem together with a simple diagonal argument,
we conclude that there exists a sequence of radii Ri tending to 0 such that the sequence (ũRi

)i
converges in L2(B1 − B̄R), for all R ∈ (0, 1/2). Passing to the limit in the equation we obtain a
solution ũ of  |x|2 ∆ũ = f̃ in B∗1

ũ = 0 on ∂B1

(2.12)

Moreover, passing to the limit in (2.11), we have the estimate

‖ũ‖L2
δ(B∗1 ) ≤ c ‖f̃‖L2

δ(B∗1 )

To finish this study observe that the solution of (2.12) which belongs to L2
δ(B

∗
1) is unique. To

see this, argue by contradiction. If the claim were not true there would exists two solutions and
taking the difference we would obtain a function w̃ ∈ L2

δ(B
∗
1) satisfying{ |x|2 ∆w̃ = 0 in B∗1

ũ = 0 on ∂B1

Performing the eigenfunction decomposition of w̃ as

w̃ =
∑
j≥j0

w̃j

we find that
w̃j = r

2−n
2 +δj φj + r

2−n
2 −δj ψj

where φj , ψj ∈ Ej . Using the fact that w̃j ∈ L2
δ(B

∗
1) we conclude that ψj = 0. Next, using the

fact that w̃j = 0 on ∂B1, we get φj = 0 and hence w̃ = 0.

Therefore, we can define
Gδ(f̃) = ũ.

It remains to understand the definition of Gδ acting on fj , for j ≤ j0 − 1. For the sake of
simplicity, we assume that δj = 0 (When δj = 0, the formula has to be changed according to
what we have already done in Part 3 of the proof of Proposition 1.5.1) and we use an explicit
formula

Gδ(fj) =
1

2δj

(
r

2−n
2 +δj

∫ r

∗
t

n−4
2 −δj fj(t) dt− r

2−n
2 −δj

∫ r

∗
t

n−4
2 +δj fj(t) dt

)
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where ∗ = 0 if δ > δj and ∗ = 1 if δ < −δj . The estimate follows at once from the arguments
developed in Part 2 of the proof of Proposition 1.5.1. We omit the details.

Let us now provide a few applications of this result.

Application # 1 : The first application is concerned with the extension of the previous result
to the operator defined on the manifold in a neighborhood of one puncture.

Lemma 2.6.2. Assume that δ 6= ±δj, for j ∈ N. Given pi ∈M one of the punctures, there exists
Ri = R(pi, n, δ) > 0, an operator

G
(i)
δ : L2

δ(B
∗
Ri

(pi)) −→ L2
δ(B

∗
Ri

(pi))

and c = c(n, δ, pi) > 0 such that for all f ∈ L2
δ(B

∗
Ri

(pi)), the function u := G
(i)
δ (f) is a solution

of
γ2 (∆g + a)u = f

in B∗Ri
(pi) and

‖u‖L2
δ(B∗Ri

(pi)) + ‖∇u‖L2
δ−1(B

∗
Ri

(pi)) + ‖∇2u‖L2
δ−2(B

∗
Ri

(pi)) ≤ c ‖f‖L2
δ(B∗Ri

(pi))

This result follows from a simple perturbation argument. First observe that, a scaling argu-
ment shows that the result of Lemma 2.6.1 holds when the radius of the ball, which was chosen
to be 1, is replaced by R. The corresponding operator will be denoted by Gδ,R and the estimate
holds with a constant which does not depend on R > 0. We leave this as an exercise.

Thanks to the result of Proposition 2.1.1 we can write

‖γ2 (∆g −∆eucl + a)u‖L2
δ(B∗Ri

(pi)) ≤ cR2
(
‖u‖L2

δ(B∗Ri
(pi)) + ‖∇u‖L2

δ−1(B
∗
Ri

(pi))

+‖∇2u‖L2
δ−2(B

∗
Ri

(pi))

)
provided R > 0 is small enough. This implies that

‖f −Aδ ◦Gδ,R f‖L2
δ(B∗Ri

(pi)) ≤ cR2 ‖f‖L2
δ(B∗Ri

(pi))

for some constant c = c(n, δ) > 0 which does not depend on R. This clearly implies that the
operator Aδ ◦ Gδ,R is invertible provided R is fixed small enough, say R = Ri. To obtain the
result, it is enough to define

G
(i)
δ := Gδ,Ri ◦ (Aδ ◦Gδ,Ri).

The relevant estimate then follows at once.

Application # 2 : Recall that the functions

|x|
2−n

2 ±δj φ
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are harmonic in B∗1 provided φ ∈ Ej . Building on the result of the previous application, we
now prove that one can perturb these functions to get, near any puncture pi a solution of the
homogeneous problem associated with the operator γ2 (∆g + a). This is the content of the
following :

Lemma 2.6.3. For all puncture pi ∈ M , given j ∈ N and φ ∈ Ej, there exists W± (i)
j,φ which is

defined in B∗Ri
(pi) and which satisfies

γ2 (∆g + a)W± (i)
j,φ = 0

in B∗Ri
(pi). In addition,

W
± (i)
j,φ − |x|

2−n
2 ±δj φ ∈ L2

δ(B
∗
Ri

(pi))

for all δ < ±δj + 2. Finally the mapping

φ ∈ Ej −→W
± (i)
j,φ

is linear.

In this result, Ri is the radius given in Lemma 2.6.2 and x are normal geodesic coordinates
near pi.

The proof of this Lemma uses the following computation which follows at once from Propo-
sition 2.1.1

γ2 (∆g + a) |x|
2−n

2 ±δj φ = γ2 (∆g −∆eucl + a) |x|
2−n

2 ±δj φ ∈ L2
δ(B

∗
Ri

(pi))

for all δ < ±δj + 2. The result then follows from Lemma 2.6.2.

For each i = 1, . . . , k, we define χ(i) to be a cutoff function which is identically equal to 1 in
BRi/2(pi) and identically equal to 0 in M −B3Ri/4(pi).

The main result of this section is :

Proposition 2.6.1. Given δ < δ′, δ, δ′ 6= ±δj, for all j ∈ N. Assume that u ∈ L2
δ(M

∗) and
f ∈ L2

δ′(M
∗) satisfy

γ2 (∆g + a)u = f

in M∗. Then, there exists v ∈ L2
δ′(M

∗) such that

u− v ∈ Dδ,δ′ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , δ < ±δj < δ′}

In addition
‖v‖L2

δ′ (M
∗) + ‖u− v‖Dδ,δ′ ≤ c (‖f‖L2

δ′ (M
∗) + ‖u‖L2

δ(M∗))

for some constant c = c(n, δ, δ′) > 0.
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The proof of this result relies on the corresponding result for the Laplacian in the punctured
unit ball.

Lemma 2.6.4. Given δ < δ′, δ, δ′ 6= ±δj, for all j ∈ N. Assume that u ∈ L2
δ(B

∗
1) and f ∈ L2

δ′(B
∗
1)

satisfy
|x|2 ∆u = f

in B∗1 . Then, there exists v ∈ L2
δ′(B

∗
1) such that

u− v ∈ Dδ,δ′ := Span {|x|
2−n

2 ±j φ, : φ ∈ Ej , δ < ±δj < δ′}

In addition
‖v‖L2

δ′ (B
∗
1 ) + ‖u− v‖Dδ,δ′ ≤ c (‖f‖L2

δ′ (B
∗
1 ) + ‖u‖L2

δ(B∗1 ))

for some constant c = c(n, δ, δ′) > 0.

To prove the Lemma, we use the result of Lemma 2.6.1 and set v̄ = Gδ′ f ∈ L2
δ′(B

∗
1). Therefore

|x|2 ∆ (u− v̄) = 0

in B∗1 . We have
‖v̄‖L2

δ′ (B
∗
1 ) ≤ c ‖f‖L2

δ′ (B
∗
1 )

for some constant c = c(n, δ) > 0. We set w = u− v̄ which we decompose as usual

w =
∑
j

wj

where wj(r, ·) ∈ Ej . We fix j0 to be the least index for which

|δ| < δj0 and |δ′| < δj0

We define
w̃ =

∑
j≥j0

wj

We claim that w̃ ∈ L2
δ′(B

∗
1) and also that

‖v‖L2
δ′ (B

∗
1 ) ≤ c ‖w‖L2(B1−B̄1/2)

for some constant c = c(n, δ) > 0. The proof of the claim follows the arguments of Part 1 in the
proof of Proposition 1.5.1. We omit the details.

Next, observe that, for j = 0, . . . , j0 − 1 the function wj is given by

wj = |x|
2−n

2 +δj φj + |x|
2−n

2 −δj ψj
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for some φj , ψj ∈ Ej . Observe that φj = 0 if δj < δ and ψj = 0 if −δj < δ since wj ∈ L2
δ(B

∗
1). It

is easy to see that
‖φj‖L2(Sn−1) + ‖φj‖L2(Sn−1) ≤ c ‖wj‖L2(B1−B̄1/2)

for some constant c = c(n, j) > 0.

We set

v = v̄ + w +
∑

j=0,...,j0−1, δj>δ′

|x|
2−n

2 +δj φj +
∑

j=0,...,j0−1, −δj>δ′

|x|
2−n

2 −δj ψj

so that

u− v =
∑

j=0,...,j0−1, δ<δj<δ′

|x|
2−n

2 +δj φj +
∑

j=0,...,j0−1, δ<−δj<δ′

|x|
2−n

2 −δj ψj

The estimate follows from collecting the above estimates. This completes the proof of Lemma 2.6.4.

We proceed with the proof of Proposition 2.6.1. Choose

δ̃ ≥ inf(δ′, δ + 1)

such that δ̃ 6= ±δj , for all j ∈ N. Using the result of Proposition 2.2.1 we have

‖∇u‖L2
δ−1(M

∗) + ‖∇2u‖L2
δ−2(M

∗) ≤ c (‖f‖L2
δ′ (M

∗) + ‖u‖L2
δ(M∗))

Using the decomposition given in Proposition 2.1.1, we conclude that, near any puncture pi, we
have

|x|2 ∆u = f − |x|2 (δg − δeucl + a) ∈ L2
δ̃
(B∗Ri

)

We apply the previous result which yields the decomposition

u = v +
∑

δ<±δj<δ′

|x|
2−n

2 ±δj φ

where φ ∈ Ej . Next use the result of Lemma 2.6.3 and replace all |x| 2−n
2 ±δj φ by χ(i)W

±(i)
j,φ to

get the decomposition

u =

v +
∑

δ<±δj<δ′

(|x|
2−n

2 ±δj φ− χ(i)W
±(i)
j,φ )

+
∑

δ<±δj<δ′

χ(i)W
±(i)
j,φ

Observe that the function

ũ = v +
∑

δ<±δj<δ′

(|x|
2−n

2 ±δj φ− χ(i)W
±(i)
j,φ ) ∈ L2

δ̃
(M∗)

and also that γ2 (∆g + a) ũ = f̃ ∈ L2
δ′(M

∗). If δ̃ = δ′ then the roof is complete. If not, apply the
same argument with u replaced by ũ, f replaced by f̃ and δ replaced by δ̃ and proceed until the
gap between δ and δ′ is covered.

We now give some important consequences of this result :
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2.6.1 The kernel of Aδ revisited :

Thanks to the result of Proposition 2.6.1 we can state the :

Lemma 2.6.5. Fix δ < δ′ such that δ, δ′ 6= ±δj, for j ∈ N. Assume that u ∈ L2
δ(M

∗) satisfied

γ2 (∆g u+ a u) = 0

in M∗. Then u ∈ L2
δ′(M

∗) provided the interval (δ, δ′) does not contain any ±δj, for some j ∈ N.

This Lemma is a direct consequence of the result of Proposition 2.6.1. It essentially states
that the kernel of the operator Aδ does not change as δ remains in some interval which does not
contain any ±δj , for j ∈ N.

2.6.2 The deficiency space :

We now define

Definition 2.6.1. Given δ > 0, δ 6= δj, for all j ∈ N, the deficiency space Dδ is defined by

Dδ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , −δ < ±δj < δ}

Observe that the dimension of Dδ can be computed as follows

dimDδ = 2
∑

j,δj<|δ|

dimEj

As a first by product, we obtain

Proposition 2.6.2. Given δ > 0, δ 6= δj, for all j ∈ N. Assume that Aδ is injective. Then the
operator

Ãδ : L2
δ(M

∗)⊕Dδ −→ L2
δ(M

∗)

u 7−→ γ2 (∆gu+ a u)

is surjective and
KerA−δ = Ker Ãδ

As a consequence of the previous Proposition, we have the

Corollary 2.6.1. Given δ > 0, δ 6= δj, for all j ∈ N. Assume that Aδ is injective. Then

dimKerA−δ = codim ImAδ =
1
2

dimDδ
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Under the assumptions of the Corollary, we have

dim KerA−δ = dim Ker Ãδ

and
dimDδ = dim dim KerA−δ + codim ImAδ

But, by duality, we have dim KerA−δ = codim ImAδ. The result then follows at once.

Exercise 2.6.1. ‡ Extend the results of Corollary 2.6.1 to the case there Aδ is not injective.



Chapter 3

Weighted C2,α analysis on a
punctured manifold

3.1 From weighted Lebesgue spaces to weighted Hölder
spaces

As far as linear analysis is concerned the results of the previous sections are sufficient. However,
we would like to apply them to nonlinear problems for which is will be more convenient to work
in the framework of Hölder spaces. The purpose of this section is to explain how the analysis of
the previous section can be extended to weighted Hölder spaces.

We begin with the definition of weighted Hölder spaces.

Definition 3.1.1. Given ` ∈ N, α ∈ (0, 1) and δ ∈ R, we define C`,αδ (M∗) to be the space of
functions u ∈ C`,αloc (M∗) for which the following norm

‖u‖C`,α
δ (M∗) := ‖u‖C`,α

δ (MR) +
k∑
i=1

sup
ρ∈(0,R)

ρ
n−2

2 −δ ‖u(Exppi
(ρ · ))‖C`,α(B̄2−B1⊂Tpi

M)

is finite.

For example, the function γ
2−n

2 +δ ∈ C`,αδ′ (M∗) if and only if δ ≥ δ′. It also follows directly
from this definition that

C`,αδ (M∗) ⊂ L2
δ′(M

∗)

for all δ > δ′.

Lemma 3.1.1. The space (C`,αδ (M∗), ‖ · ‖C`,α
δ (M∗)) is a Banach space.

39
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Exercise 3.1.1. Show that the embedding

C`,αδ (M∗) −→ C`
′,α′

δ′ (M∗)

is compact provided `′ + α′ < `+ α and δ < δ′.

The last easy observation is that the operator

Aδ : C`,αδ (M∗) −→ C`,αδ (M∗)

u −→ γ2 (∆gu+ au)

is well defined and bounded.

The extension of our results to weighted Hölder spaces rely on the following regularity result.

Proposition 3.1.1. Assume that δ, δ′ ∈ R are fixed with δ < δ′. Further assume that the interval
[δ, δ′] does not contain any ±δj for j ∈ N. Then, there exists c = c(n, δ, δ′) > 0 such that for all
u, f ∈ L2

δ(B
∗
R(pi)) satisfying

γ2 (∆g + a)u = f

in M∗, if f ∈ C0,α
δ′ (M∗) then u ∈ C2,α

δ′ (M∗) and

‖u‖C2,α

δ′ (M∗) ≤ c
(
‖f‖C0,α

δ′ (M∗) + ‖u‖L2
δ(M∗)

)

Before we proceed to the proof of this result, let us explain how it can be used.

Application # 1: The first application of the result of Proposition 3.1.1 is concerned with the
kernel of the operator Aδ.

Lemma 3.1.2. Assume that δ ∈ R is fixed with δ 6= δj, for j ∈ N. Further assume that
u ∈ L2

δ(M
∗) is a solution of

γ2 (∆g + a u) = 0

in M∗. Then u ∈ C2,α
δ (M∗).

In other words, in order to check the injectivity of Aδ, it is enough to check the injectivity of
Aδ, which in practical situation is easier to perform.

Application # 2 : Observe that, if u ∈ L2
δ(M

∗) is in the kernel of Aδ then u is also in the
kernel of Aδ′ for all δ′ ≤ δ since L2

δ(M
∗) ⊂ L2

δ(M
∗). However, it follows from Proposition 3.1.1

the the following is also true :

Lemma 3.1.3. Assume that δ ∈ R is fixed with δ 6= δj, for j ∈ N. Further assume that
u ∈ L2

δ(M
∗) is in the kernel of Aδ. Then u is also in the kernel of Aδ′ for all δ′ > δ for which

[δ, δ′] does not contain any ±δj, for j ∈ N
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Application # 3 : The third application of the result of Proposition 3.1.1 is concerned with
the extension of the result of Proposition 2.6.1 to weighted Hölder spaces and this will be useful
when dealing with nonlinear differential operators. We have the :

Proposition 3.1.2. Given δ < δ′, δ, δ′ 6= ±δj, for all j ∈ N. Assume that u ∈ L2
δ(M

∗) and
f ∈ C0,α

δ′ (M∗) satisfy
γ2 (∆g + a)u = f

in M∗. Then, there exists v ∈ C2,α
δ′ (M∗) such that

u− v ∈ Dδ,δ′ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , δ < ±δj < δ′}

In addition
‖v‖C2,α

δ′ (M∗) + ‖u− v‖Dδ,δ′ ≤ c (‖f‖C0,α

δ′ (M∗) + ‖u‖L2
δ(M∗))

for some constant c = c(n, δ, δ′) > 0.

There are important by products of this result :

Given δ, δ > δ0, δ 6= δj for all j ∈ N. Assume that Aδ is injective, then, according to the
result of Corollary 2.5.1, the operator A−δ is surjective and hence there exists

G−δ : L2
−δ(M

∗) −→ L2
−δ(M

∗).

a right inverse for A−δ (i.e. A−δ ◦G−δ = I). In particular, given

f ∈ C0,α
δ (M∗) ⊂ L2

−δ(M
∗),

the function u := G−δ f ∈ L2
−δ(M

∗) solves

A−δ u = f

in M∗. Applying the result of Proposition 3.1.2, we see that there exists v ∈ C2,α
δ (M∗) such that

u− v ∈ Dδ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , −δ < ±δj < δ}

and in addition
‖v‖C2,α

δ (M∗) + ‖u− v‖Dδ
≤ c (‖f‖C0,α

δ (M∗) + ‖u‖L2
δ(M∗))

for some constant c = c(n, δ) > 0.

If δ ∈ (−δ0, δ0) and if Aδ is injective. Then, according to the result of Lemma 3.1.3 the operator
A−δ′ is also injective for all δ′ ∈ (−δ0, δ0). Therefore, according to the result of Corollary 2.5.1
the operator Aδ′ is surjective. This implies that there exists

Gδ′ : L2
δ′(M

∗) −→ L2
′δ′(M

∗).
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a right inverse for Aδ′ . In particular, if −δ0 < δ′ < δ < δ0, given

f ∈ C0,α
δ (M∗) ⊂ L2

δ′(M
∗),

the function u := Gδ′ f ∈ L2
δ′(M

∗) solves

Aδ′ u = f

in M∗. Applying the result of Proposition 3.1.2, we see that u ∈ C2,α
δ (M∗) and in addition

‖u‖C2,α
δ (M∗) + ‖u− v‖Dδ

≤ c (‖f‖C0,α
δ (M∗) + ‖u‖L2

δ(M∗))

for some constant c = c(n, δ) > 0. Collecting these result, we have proven the :

Proposition 3.1.3. Given δ > −δ0, δ 6= δj, for all j ∈ N, let us assume that Aδ is injective,
then the operator

Ãδ : C`,αδ (M∗)⊕Dδ −→ C`,αδ (M∗)

u −→ γ2 (∆gu+ au)

is well defined, bounded and surjective. In addition dimKer(Ãδ) = 1
2 dimDδ.

In particular, under the assumptions of the Proposition, there exists an operator

Gδ : C0,α
δ (M∗) −→ C2,α

δ (M∗)⊕Dδ.

which is a right inverse for the operator γ2 (∆g + a).

As a special case, when δ ∈ (δ0, δ0), then Dδ is empty and the above statement simplifies into
the :

Proposition 3.1.4. Given δ ∈ (−δ0, δ0). Let us assume that Aδ is injective, then the operator
Aδ′ is an isomorphism for all δ′ ∈ (−δ0, δ0).

We now proceed with the proof of Proposition 3.1.1. We start with the :

Lemma 3.1.4. Assume that δ, δ′ ∈ R are fixed with δ < δ′. There exists c = c(n, δ, δ′) > 0 such
that for all u, f ∈ L2

δ(M
∗) satisfying

γ2 (∆g + a)u = f

in M∗, if f ∈ C0,α
δ′ (M∗) then u ∈ C2,α

δ (M∗) and

‖u‖C2,α
δ (M∗) ≤ c

(
‖f‖C0,α

δ′ (M∗) + ‖u‖L2
δ(M∗)

)

Away from the punctures pj , the regularity of u follows from classical elliptic regularity :
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Proposition 3.1.5. ([?], Theorem ??) Assume that Ω̄′ ⊂⊂ Ω is fixed. There exists c =
c(n,Ω′,Ω) > 0 such that for all u, f ∈ L2(Ω) satisfying

(∆g + a)u = f

in Ω, if f ∈ C0,α(Ω̄) then u ∈ C2,α
δ (Ω̄′) and

‖u‖C2,α(Ω̄′) ≤ c
(
‖f‖C0,α(Ω̄) + ‖u‖L2(Ω)

)

Close to the punctures, we use normal geodesic coordinates together with (2.1) and write the
equation satisfied by u as

|x|2 (∆eucl u+O(|x|2) ∂xi ∂xj u+O(|x|) ∂xiu+O(1)u) = f

For all r ∈ (0, R) we defined the rescaled functions

û(x) = u(Rx) and f̂(x) = f(Rx)

so that
|x|2 (∆eucl û+O(R2) ∂xi ∂xj û+O(R2) ∂xi û+O(R2) û) = f̂

in B2 − B̄1/2. Applying the result of Proposition 3.1.5 with Ω = B2 − B̄1 and Ω′ = B3/2 − B̄3/4

we conclude that

‖û‖C2,α(B̄3/2−B3/4)
≤ c

(
‖f̂‖C0,α(B̄2−B1) + ‖û‖L2(B2−B̄1)

)
But we have

‖f̂‖C0,α(B̄2−B1) ≤ cR
2−n

2 +δ′ ‖f‖C0,α
δ (M∗) ≤ cR

2−n
2 +δ ‖f‖C0,α

δ (M∗)

and
‖û‖L2(B2−B̄1) ≤ cR

2−n
2 +δ ‖u‖L2

δ(M∗)

for some constant c = c(n, δ, δ′) > 0. Therefore, we conclude that

‖û‖C2,α(B̄3/2−B3/4)
≤ cR

2−n
2 +δ

(
‖f‖C0,α

δ′ (M∗) + ‖u‖L2
δ(M∗)

)
which by definition of the weighted Hölder norm, implies that

‖u‖C2,α
δ (B̄∗2R) ≤ c

(
‖f‖C0,α

δ′ (M∗) + ‖u‖L2
δ(M∗)

)
This completes the proof of the Lemma.

The next result we will need reads :
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Lemma 3.1.5. Assume that δ < δ′ ∈ R and further assume that [δ, δ′] does not contain any ±δj
for all j ∈ R. Let u ∈ C2,α

δ (B̄∗1) and f ∈ C0,α
δ′ (B̄∗1) satisfy

|x|2 ∆u = f

in B∗1 . Then u ∈ C0,α
δ′ (B̄∗1) and

‖u‖C2,α

δ′ (B̄∗1 ) ≤ c
(
‖f‖C0,α

δ′ (B̄∗1 ) + ‖u‖C2,α
δ (B̄∗1 )

)

The proof of this last Lemma goes as follows. As usual, we perform the eigenfunction decom-
position of both u and f in B∗1

u =
∑
j

uj and f =
∑
j

fj

We define j0 ∈ N to be the least index for which |δ| < δj0 . For j = 0, . . . , , j0 − 1 one can
use the explicit formula we have provided in the proof of Proposition 1.5.1 to show directly that
uj ∈ C2,α

δ′ (B̄∗1) and that

‖uj‖C2,α

δ′ (B̄∗1 ) ≤ c
(
‖fj‖C0,α

δ′ (B̄∗1 ) + ‖uj‖C2,α
δ (B̄∗1 )

)
We denote

ũ =
∑
j≥j0

uj and f̃ =
∑
j≥j0

fj

The strategy is now to construct ṽ ∈ C2,α
δ′ (B∗1) solution of

|x|2 ∆ ṽ = f̃

in B∗1 with ṽ = ũ on ∂B1 and also to prove that

‖ṽ‖C2,α

δ′ (B̄∗1 ) ≤ c
(
‖f̃‖C0,α

δ′ (B̄∗1 ) + ‖ũ‖C2,α
δ (B̄∗1 )

)
(3.1)

Assuming we have already done so, the difference ũ− ṽ is harmonic in B∗1 and equal to 0 on ∂B1.
The eigenfunction decomposition of the function ũ− ṽ shows that

ũ− ṽ =
∑
j≥j0

(
|x|

2−n
2 +δj φj + |x|

2−n
2 −δj ψj

)
where φj , ψj ∈ Ej . But ũ− ṽ ∈ C2,α

δ (B∗1) and hence ψj all have to be equal to 0. Using the fact
that ũ − ṽ = 0 on ∂B1, we also get that φj = 0. Hence ũ = ṽ. This will complete the proof of
the Lemma.
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Therefore, the only missing part is the existence of ṽ and the a priori estimate (3.1). To
simplify the argument, let us first reduce to the case where ũ = 0 on ∂B1. To this aim, we choose
a cutoff function χ which is radial, identically equal to 1 on B1 −B3/4 and identically equal to 0
in B1/2. Then, define

ṽ0(x) = χ(x) ũ(x/|x|)

and set
w̃ = ṽ − ṽ0 and g̃ = f̃ − |x|2 ∆ṽ0

so that the equation we have to solve now reads

|x|2 ∆w̃ = g̃

in B∗1 with w̃ = 0 on ∂B1. Obviously the existence of ṽ is equivalent to the existence of w̃ and
(3.1) will follow at once from

‖w̃‖C2,α

δ′ (B̄∗1 ) ≤ c ‖g̃‖C0,α

δ′ (B̄∗1 )

since
‖f̃ − |x|2 ∆ũ0‖C0,α

δ′ (B̄∗1 ) ≤ c
(
‖f̃‖C0,α

δ′ (B̄∗1 ) + ‖ũ‖C2,α
δ (B̄∗1 )

)
The existence of w̃ follows from the arguments already developed to prove Proposition 1.1.1.

However the derivation of the estimate is more involved an requires new technics since it is not
possible to construct barrier solutions anymore. In any case, for all R ∈ (0, 1/2), we solve

|x|2 ∆w̃R = g̃

in B1 − B̄R with w̃R = 0 on ∂B1 ∪ ∂BR.

We claim that there exists a constant c = c(n, δ′) > 0 such that

sup
B1−B̄R

|x|
n−2

2 −δ′ |w̃R| ≤ c sup
B∗1

|x|
n−2

2 −δ′ |g̃|

When R remains bounded away from 0, the claim is certainly true and follows from standard
elliptic estimate (use Proposition 1.1.2 and Proposition 1.1.3). In order to prove the claim, we
argue by contradiction and assume that, for a sequence Ri tending to 0, for a sequence of functions
g̃i ∈ C0,α

δ′ (B̄∗1), we have
sup
B∗1

|x|
n−2

2 −δ′ |g̃i| = 1

while, for the corresponding sequence of solutions w̃Ri

Ai := sup
B∗1

|x|
n−2

2 −δ′ |w̃Ri |

tends to ∞. One should keep in mind that the eigenfunction decomposition of both g̃i and w̃Ri

have no component over Ej for j < j0.
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Observe that the function w̃R is continuous and we can choose a point xi ∈ B1 − B̄R where
Ai is achieved. We define the rescaled functions

ŵi(x) := A−1
i w̃Ri(|xi|x) and ĝi(x) := A−1

i g̃Ri(|xi|x)

Obviously
|x|2 ∆ŵi = ĝi

in their common domain of definition.

Using the result of Proposition 1.1.5, we get the estimate

‖∇w̃Ri
‖L∞(B1−B̄3/4)

≤ c
(
‖w̃Ri

‖L∞(B1−B̄1/2)
+ ‖g̃i‖L∞(B1−B̄1/2)

)
for some constant c = c(n) > 0 And hence

‖∇w̃Ri‖L∞(B1−B̄3/4)
≤ c (1 +Ai)

This implies that
|x|

n−2
2 −δ |w̃Ri | ≤ c (1 +R

n−2
2 −δ) (1−R) (1 +Ai)

for all x ∈ B1 − B̄3/4. Therefore, if ρ ∈ (3/4, 1) is fixed so that

c (1 + ρ
n−2

2 −δ) (1− ρ) ≤ 1/2

we conclude that, for i large enough, xi /∈ B1 − B̄ρ.

Working near ∂BR and using similar arguments one can show that there exists ρ̄ ∈ (1, 3/2)
such that xi /∈ Bρ̄ R − B̄R. Therefore we conclude that

R < ρ̄R ≤ |xi| ≤ ρ < 1 (3.2)

As in the proof of Proposition 1.1.1 we pass to the limit for a subsequence of i tending to ∞
to obtain ŵ a solution of

|x|2 ∆ ŵ = 0

in one of the following domains

(i) Rn ∗ (which occurs when r2 := lim 1/|xi| = ∞ and r1 := limRi/|xi| = 0).

(ii) Rn − B̄r1 (which occurs when r2 := lim 1/|xi| = ∞ and r1 := limRi/|xi| < 1).

(iii) Br2 − B̄r1 (which occurs when r2 := lim 1/|xi| > 1 and r1 limRi/|xi| < 1).

(iv) B∗r2 (which occurs when r2 := lim 1/|xi| > 1 and r1 := limRi/|xi| = 0).
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Observe that, using (3.2), we always have r1 < 1 < r2

In addition,

sup |x|
n−2

2 −δ |ŵ| = 1 (3.3)

where the supremum is taken over the domain of definition of ŵ and finally ŵ = 0 on either ∂Brj

if either r1 or r2 is finite. As usual, we perform the eigenfunction decomposition of ŵ as

ŵ =
∑
j≥j0

ŵj

only depends on n and δ. It is easy to rule out case (iii) since ŵ is harmonic in the annulus and
has zero boundary data. In order to rule out case (iv), it is enough to look at the behavior of the
function ŵj near 0. Using (3.3) together with |δ| < δj we conclude that

ŵj = |x|
2−n

2 +δj φj

for some φj ∈ Ej . But ŵj = 0 on ∂Br2 and hence ŵj ≡ 0. The other cases can be ruled out using
similar arguments and we leave the details to the reader.

Hence ŵ ≡ 0 and this clearly contradicts (3.3). This completes the proof of the claim.

Now that we have proven the claim, we use elliptic estimates and Ascoli’s Theorem to pass
to the limit as R tends to 0 in the sequence w̃R and obtain a solution of

|x|2 ∆w̃ = g̃

in B∗1 with w̃ = 0 on ∂B1 and

sup
B∗1

|x|
n−2

2 −δ′ |w̃| ≤ c sup
B∗1

|x|
n−2

2 −δ′ |g̃|

To obtain the relevant estimates for the derivative, we use again the result of Proposition 3.1.5.
This completes the proof of Lemma 3.1.5.

To complete the proof of Proposition 3.1.1, we argue as follows : We start by applying the
result of Lemma 3.1.4 which implies that u ∈ C2,α

δ (M∗) and hence, thanks to (2.1) we can write,
near any of the punctures

|x|2 ∆ ∈ C0,α

δ̃
(B∗R(pj))

for δ̃ = min(δ′, δ − 2). Next we apply the result of Lemma 3.1.5 which guaranties that u ∈
C2,α

δ̃
(B∗R(pj)). If δ̃ = δ′ then the proof is complete. If not, we iterate the argument starting from

δ̃ and proceed in this way until the interval [δ, δ′] has been entirely covered. The proof of the
estimate follows from the estimates given in Lemma 3.1.4 and Lemma 3.1.5.
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3.2 An example

As a typical example, we consider the study of the operator ∆Sn + λ where λ ∈ R.

Given p1, . . . , pk ∈ Sn, we define γ to be a smooth positive function on Sn ∗ which coincides
with the distance to pi in some neighborhood of pi. Then, we define the operators

Aδ : L2
δ(S

n ∗) −→ L2
δ(S

n ∗)

u 7−→ γ2(∆Sn u+ λu)

and
Aδ : C2,α

δ (Sn ∗) −→ C0,α
δ (Sn ∗)

u 7−→ γ2(∆Sn u+ λu)

Let us assume that λ is not an eigenvalue of −∆Sn (namely λ 6= j (n− 1 + j), for all j ∈ N).
Then the theory we have developed leads to the following :

Lemma 3.2.1. Assume that λ is not an eigenvalue of −∆Sn , then the operators Aδ and Aδ are
injective for all δ > 2−n

2 .

The proof of this result goes as follows. First observe that if u ∈ KerAδ, then, according to
the result of Proposition 3.1.1, u ∈ KerAδ and hence |u| ≤ c γ

2−n
2 +δ and |∇u| ≤ c γ−

n
2 +δ. Using

these, once can show that the function i is a solution in the sense of distributions of the equation

∆Sn u+ λu = 0

Regularity theory then implies that u ∈ C∞(Sn), and hence u ≡ 0.

Exercise 3.2.1. Prove that if the function u solution of ∆Snu + λu = 0 in Sn ∗ satisfies |u| ≤
c γ

2−n
2 +δ and |∇u| ≤ c γ−

n
2 +δ, then u is a solution of ∆Snu + λu = 0 in Sn, in the sense of

distributions.

The consequences of this result are :

Corollary 3.2.1. Assume that λ is not an eigenvalue of −∆Sn , then the operator Aδ is an
isomorphism for all |δ| < n−2

2 .

Exercise 3.2.2. If λ is not an eigenvalue of −∆Sn , then the operator Aδ is surjective for δ ∈
(−n

2 − j, 2−n
2 − j), for all j ∈ N. Characterize the kernel of this operator according to the value

of j.

Let us now assume that λ = 0. The result of Lemma 3.2.1 is now changed into :

Lemma 3.2.2. The operators Aδ and Aδ are injective for all δ > n−2
2 .
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Exercise 3.2.3. The operator Aδ is also surjective for δ ∈ (−n
2 − j, 2−n

2 − j), for all j ∈ N.
Characterize the kernel of this operator according to the value of j.

Let us now assume that λ = n, the second eigenvalue of −∆Sn . Then, following similar
arguments, we have the :

Lemma 3.2.3. The operators Aδ and Aδ are injective for all δ > n+2
2 .

The proof of this result proceeds as before, fist we show that any element in the

Lemma 3.2.4. Assume that Span{p1, . . . , pk} = Rn+1. Then the operators Aδ and Aδ are
injective for all δ > n−2

2 .

Exercise 3.2.4. The operator Aδ is also surjective for δ ∈ (−n
2 − j, 2−n

2 − j), for all j ∈ N.
Characterize the kernel of this operator according to the value of j.
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Chapter 4

Analysis on ALE spaces

4.1 Asymptotically Locally Euclidean spaces

We will say that a complete, noncompact n-dimensional manifold (M, g) is an ALE space (As-
ymptotically Locally Euclidean space) if it can be decomposed into the union of a compact piece
K ⊂⊂M and finitely many ends E1, . . . , Ek which are diffeomorphic to the complement of a ball
in Rn and on which there exists coordinates (x1, . . . , xn) in which the coefficients of the metric g
satisfy

gij = δij +O(|x|−α)

and
∇`gij = O(|x|−α−`)

for some α > 0.

We would like to study operators of the form

∆g + a

where the function a = M −→ R satisfies

∇`a = O(|x|−2−β−`)

for some β > 0, on each end Ej .

We define a smooth positive function γ : M −→ (0,∞) which coincides with |x| on each end
Ej of M . As in the case of a punctured manifold, we defined weighted L2-spaces and weighted
Hölder spaces by defining the norms in these spaces as follows

‖u‖L2
δ(M) :=

(∫
M

|u|2 γ−2δ−2 dvolg

)1/2

51
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and
‖u‖C`,α

δ (M) := ‖u‖C`,α(K) +
∑
j

sup
r≥R

r
n−2

2 −δ ‖u(ρ ·)‖C`,α(B̄1−B1/2)

As before we define the unbounded operator

Aδ : L2
δ(M

∗) −→ L2
δ(M

∗)

u 7−→ γ2 (∆g u+ a u)

as well as the bounded operator

Aδ : C2,α
δ (M∗) −→ C0,α

δ (M∗)

u 7−→ γ2 (∆g u+ a u)

The key remark is that, if u and f solve

|x|2 ∆u = f

in B∗1 then, setting

v(x) = |x|2−n u(x/|x|2) and g(x) = |x|2−n f(x/|x|2)

one can check that
|x|2 ∆v = f

in Rn − B̄∗1 .

Further observe that ∫
B1

u2(x) |x|−2δ−2 dx =
∫

Rn−B̄1

v2(y) |y|2δ−2 dy

and
‖u‖C`,α

δ (B̄∗1 ) = ‖v‖C`,α
−δ (Rn−B∗1 )

These remarks allow one to extend all the previous results on a punctured manifold to this
noncompact complete setting. We leave the details to the reader.

In particular, we have the :

Proposition 4.1.1. Given δ < δ0, δ 6= −δj, for all j ∈ N, let us assume that Aδ is injective,
then the operator

Ãδ : C`,αδ (M∗)⊕Dδ −→ C`,αδ (M∗)

u −→ γ2 (∆gu+ au)

is well defined, bounded and surjective. In addition dimKer(Ãδ) = 1
2 dimDδ.
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As usual the deficiency space is defined by

Dδ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , −δ < ±δj < δ}

where the functions W±(i)
j,ψ are solutions of γ2 (∆g + a)W±(i)

j,φ = 0 on Ei and satisfy

W
±(i)
j,φ = |x|

2−n
2 ±δj φ+O(|x|

2−n
2 ±δj−η)

at infinity, for some η > 0.

Observe that when δ ∈ (−δ0, δ0), then Dδ is empty and hence, under the assumption of
Proposition 4.1.1, the operator Aδ′ is an isomorphism, for any ‘δ′ ∈ (−δ0, δ0).

4.2 An example from conformal geometry

Consider, in dimension n ≥ 3 the semilinear elliptic equation

∆u+
n(n− 2)

4
u

n+2
n−2 = 0 (4.1)

where u > 0 in Rn. We set

u0(x) =
(

2
1 + |x|2

)n−2
2

The reader should check that u0 is a solution of (4.1). The operator we would like to study is the
linearised operator about the solution u0. Namely

L := ∆ +
n(n+ 2)

(1 + |x|2)2

Observe that we are precisely in the setting described in the previous section. We define a function
γ which is positive and coincides with |x| on the complement of the unit ball and the unbounded
operator

Aδ : L2
δ(M

∗) −→ L2
δ(M

∗)

u 7−→ γ2 (∆u+ n(n+2)
(1+|x|2)2 u)

We prove the :

Lemma 4.2.1. The operator Aδ is injective provided δ < −n
2

The proof goes as follows. Any solution w ∈ L2
δ(Rn) of Aδ w = 0 belongs to C2,α

δ (Rn). We
then proceed to the eigenfunction decomposition of a solution w of Aδ w = 0 as

w =
∑
j

wj
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First let us show that w0 ≡ 0. The idea is that the function w0 satisfies a second order
ordinary differential equation(

∂2
r +

n− 1
r

∂r +
n(n+ 2)

4
4

(1 + |x|2)2

)
w0 = 0 (4.2)

but, we know an explicit solution of this homogeneous equation namely

w̃0 =
n− 2

2
u0 + r ∂ru0

The fact that w̃0 is also a solution of this equation either follows from direct computation or from
the observation that (4.1) is invariant under scaling in the sense that, whenever u is a solution of
(4.1) then so does

uα(x) = α
n−2

2 u(αx)

for all α > 0. Taking the derivative with respect to α when α = 1 in

∆uα +
n(n− 2)

4
u

n+2
n−2
α = 0

we conclude that

∆(∂αuα) +
n(n+ 2)

4
u

4
n−2
α (∂αuα) = 0

Just observe that w̃0 = ∂αuα|α=1. It turns out that the other independent solution of (4.2) but
this solution blows up at the origin like a constant times r2−n and tends at infinity to some
constant. This shows that w0 has to be a multiple of w̃0. But the function w̃0 is asymptotic to
a constant times r2−n at infinity and is certainly not bounded by a constant times r

2−n
2 −δ when

δ < 2−n
2 . Therefore, we conclude that w0 = 0.

The fact that w1 ≡ 0 follows from a similar argument. This time we use the invariance of
the problem under translations. The E1 valued function w1 satisfies a second order ordinary
differential equation(

∂2
r +

n− 1
r

∂r −
n− 1
r

+
n(n+ 2)

4
4

(1 + |x|2)2

)
w1 = 0 (4.3)

but, we know n explicit solutions of this homogeneous equation namely

w̃
(j)
1 = ∂xju0

for j = 1, . . . , n. The fact that w̃(j)
1 are solutions of this equation either follows from direct

computation or from the observation that (4.1) is invariant under translation in the sense that,
whenever u is a solution of (4.1) then so does u(·+ α ej). Further observe from the definition of
u0 that w(j)

1 decay like r1−n at infinity and hence are not bounded by a constant times r
2−n

2 −δ

when δ < −n
2 . As above we conclude easily that, on the one hand, w1 being smooth at the origin
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it has to be a linear combination of the w̃(j)
1 and on the other hand does not have the right decay

at infinity unless it is identically equal to 0. This shows that w1 = 0

It remains to show that wj = 0 for all j ≥ 2. this time an explicit solution of the corresponding
ordinary differential equation is not available. However, using Hardy’s inequality, we can show
that indeed wj = 0. The proof is very similar to what we have already done in Part 1 of the
proof of Proposition 1.5.1. We set

wj(r, θ) = w̄j(r)φ(θ)

for some φ ∈ Ej . The scalar function wj satisfies(
∂2
r +

n− 1
r

∂r −
j(n− 2 + j)

r
+
n(n+ 2)

4
4

(1 + |x|2)2

)
w̄j = 0

Multiply this equation by rn−1 w̄j and integrate by parts over (0,∞) to conclude that∫ ∞

0

|∂rw̄j |2 rn−1 dr + j(n− 2 + j)
∫ ∞

0

|w̄j |2 rn−3 dr =
n(n+ 2

4

∫ ∞

0

4r2

(1 + r2)2
|̄wj |2 rn−1 dr

But,
4r2

(1 + r2)2
≤ 1

and hence we get the inequality∫ ∞

0

|∂rw̄j |2 rn−1 dr + j(n− 2 + j)
∫ ∞

0

|w̄j |2 rn−3 dr ≤ n(n+ 2
4

∫ ∞

0

|w̄j |2 rn−1 dr

Hardy’s inequality reads

(n− 2)2
∫ ∞

0

|w̄j |2 rn−3 dr ≤ 4
∫ ∞

0

|∂rw̄j |2 rn−1 dr

and hence we conclude that(
n− 2

2
+ j

)2 ∫ ∞

0

|w̄j |2 rn−3 dr ≤ n(n+ 2)
4

∫ ∞

0

|w̄j |2 rn−1 dr

which precisely implies that w̄j = 0 provided j ≥ 2.

Exercise 4.2.1. Justify the integrations by parts in the last proof, using the fact that w ∈ L2
δ(Rn)

and hence w ∈ C2,α
δ (Rn).
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Exercise 4.2.2. Extend the previous analysis to the semilinear elliptic equation

∆u+ 8 eu = 0

where this time the explicit solution is given by

u0(x) = −2 log(1 + |x|2)

It will be useful to observe that the equation is invariant under the following transformation

uα(x) = 2 logα+ u(αx)

for α > 0.



Chapter 5

Mean curvature of hypersurfaces

5.1 The mean curvature

Assume that Σ ⊂ Rn+1 is an oriented hypersurface. We denote by N the unit normal vector field
on Σ which is compatible with the orientation. Given a small (smooth) function w with compact
support defined on Σ, we define Σw to be the image of Σ by

p 7−→ p+ w(p)N(p)

We can describe Σ locally using a local chart. Let (x1, . . . , xn) be local coordinates and X
parameterizes locally Σ. The first fundamental form (also referred to as the induced metric) on
Σ is defined by

g(T1, T2) := T1 · T2

for any tangent vectors T1, T2 ∈ TpΣ. In the above parametrization, a basis of the tangent space
at p is given by

∂x1X, . . . , ∂xnX

and, in this basis, the coefficients gij of the induced metric on Σ read

gij := ∂xiX · ∂xjX

We denote by
N : Σ −→ Sn−1

the Gauss map (N(p) is nothing but the normal vector field to Σ) and by

DNp : TpΣ −→ TN(p)S
n−1

its differential at p.

57
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Exercise 5.1.1. Check that, after having identified TpΣ with TN(p)S
n−1, the mapping DpN is a

symmetric endomorphism (i.e. DpN(T1) · T2 = T1 ·DpN(T2), for all T1, T2 ∈ TpΣ).

The second fundamental form hΣ is defined by

hΣ(T1, T2) = −T1 ·DpN(T2)

for any tangent vectors T1, T2 ∈ TpΣ. In the above parametrization, the coefficients of the second
fundamental form are given by

hij := − ∂xiX · ∂xjN

where we have identified N ◦ X with N so that, with slight abuse of notations, ∂xiN is in fact
equal to DXN(∂xiX). It will be convenient to observe that

∂xiN =
∑
j

hij g
jkXk

where (gij)ij denotes the inverse of (gij)ij . We leave this as an exercise in linear algebra (simply
observe that N ·N ≡ 1 and hence ∂xiN ·N ≡ 0.

The tangent vector fields to Σw are then given by

∂jY = ∂jXj + ∂jwN + w ∂jN

Hence the coefficients g̃ij of the induced metric on Σw are given by

g̃ij := ∂xiY · ∂xjY == gij − 2hij w + ∂xiw ∂xjw + aij w
2

where we have defined
aij := hik, g

k` h`j

Using the classical expansion

det(I +B) = 1 + Tr(B) + 1

2

(
(TrB)2 − TrB2

)
+O(‖B‖3)

for any (small) square matrix B, we find the expansion√
det g̃ =

(
1− TrA+ 1

2
(|∇w|2g − Tr(A2)w2 + (TrA)2 w2) +O(‖w‖3C1)

) √
detg

where we have defined A := −DN .

We now assume that w is small and has compact support in Σ which is bounded (but not
necessarily closed) so that we can compute the n-dimensional volume of Σw. The expansion of
Voln(Σw) in powers of w is given by

Voln(Σw) =
∫

Σ

(
1− TrA+ 1

2
(|∇w|2g − Tr(A2)w2 + (TrA)2 w2) +O(‖w‖3C1)

)
dvolΣ
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In particular, we conclude that the first and second variations of the n dimensional volume
form are given by

DwVoln(Σw)|w=0(v) = −
∫

Σ

TrAv dvolΣ

and
D2
wVoln(Σw)|w=0(v, v) =

∫
Σ

(
|∇v|2g − Tr(A2) v2 + (TrA)2 v2

)
dvolΣ (5.1)

The trace of the operator A, which appears in the first variation of the n-dimensional volume,
is called the mean curvature of the hypersurface Σ and is denoted by H(Σ). In local coordinates

H(Σ) =
∑
ij

hijg
ji

Exercise 5.1.2. Show that the mean curvature of Sn(r) the sphere of radius r > 0 in Rn+1 is
equal to n

r when the normal vector is inward pointing. It will be useful to observe that the Gauss
map is given by N(p) = − 1

r p, for all p ∈ Sn(r).

Exercise 5.1.3. Show that the mean curvature of Sn1(r)×Rn2 in Rn1+n2+1 is equal to n1
r when

the normal vector is inward pointing.

5.2 Jacobi operator and Jacobi fields

The second order partial differential operator which appears in the second variation of the n-
dimensional volume, is called the Jacobi operator

JΣ = ∆g + Tr(A2)

This corresponds to the linearized mean curvature operator, that is the linearization of the map-
ping

H̃(w) := H(Σw)

Indeed, by definition of the mean curvature, the first variation of the n-dimensional volume is
given by

DwVoln(Σ)(v) = −
∫

Σ

H(Σ) v dvolΣ

And hence, the second variation of the n-dimensional volume is given by

D2
wVoln(Σ)(v1, v2) = −

∫
Σ

DwH̃Σ(v1) v2 dvolΣ +
∫

Σ

H(Σ)2 v1 v2 dvolΣ

Comparing this formula with (5.1) we conclude that

H̃Σ(v) = JΣ v
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Exercise 5.2.1. Show that the Jacobi operator about Sn(r) in Rn+1 is equal to J = r2 (∆Sn +n).

The last object we need to introduce are called Jacobi fields they are nothing but so solutions
of the homogeneous problem JΣ w = 0. We describe some general recipe which allows one to
find explicit Jacobi fields. Assume we are given a vector field Ξ in Rn+1. We denote by Φξ(s; · )
the associated flow, namely for all x ∈ Rn+1 ΦΞ(s;x) is the solution at time s of the dynamical
system

dy

ds
= Ξ(y)

with y(0) = x.

For s small enough and p ∈ Σ, we can write

ΦΞ(s; p) = q(s; p) + w(s; p)N(s; p)

Using the fact that
(q, t) −→ q + tN(q)

is a local diffeomorphism from a neighborhood of (p, 0) in Σ×R to a neighborhood of p ∈ Rn+1,
it is easy to see that

∂sq(0, p) = ΠTpΣN(p)

where ΠTpΣ denotes the orthogonal projection over TpΣ and

∂sw(0; p) = Ξ(p) ·N(p)

We define Σ(s) to be the image of Σ by ΦΞ(s, · ). Then, we have the general formula

∂sH(Σ(s))|s=0 = DwH̃Σ(Ξ ·N) +∇HΣ ·ΠTpΣN (5.2)

This formula is very useful when the hypersurface Σ has constant mean curvature in which
case (5.2) reduces to

∂sH(Σ(s))|s=0 = DwH̃Σ(Ξ ·N)

There are 3 families of vector fields which will be useful for us : The vector fields associated to
translations which are simply constant vector fields

Ξt,e(x) = e

The vector fields associated to rotations which are given by

Ξr,A(x) = Ax

where A ∈ Mn+1(R) is skew symmetric tA = −A. Finally the vector field associated to the
dilation centered at the origin is given by

Ξd(x) = x

We have proved the
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Proposition 5.2.1. Assume that Σ is a constant mean curvature hypersurface. Then N · Xt,
N ·Xr are Jacobi fields. If in addition the mean curvature of Σ is equal to 0 then N ·Xd is also
a Jacobi field on Σ.

Indeed, when Ξ = Ξt,e or Ξ = Ξr,A, then ΦΞ(s; · ) is an isometry. Hence ∂sH(Σ(s))|s=0 = 0 in
this case, which immediately implies that DwH̃Σ(Ξ·N) = 0 if the mean curvature of Σ is constant.
When Ξ = Ξd then ΦΞ(s; · ) = es Id and hence ∂sH(Σ(s))|s=0 = ∂se

−s|s=0H(Σ) = −H(σ) in
this case. We conclude that

DwH̃Σ(Ξd ·N) = −H(Σ)

This completes the proof of the Lemma.

Definition 5.2.1. We will say that Σ is a constant mean curvature hypersurface is H(Σ) is a
constant function on Σ. We will say that Σ is a minimal hypersurface if H(Σ) = 0 on Σ.

There is a nice variational characterization of both minimal and constant mean curvature
hypersurfaces. Indeed, it follows from the above considerations that minimal hypersurfaces are
critical points of the n-dimensional volume functional while constant mean curvature hypersur-
faces are critical points of the n-dimensional volume functional with some (n + 1)-dimensional
volume constraint (this amounts to consider perturbation which involve functions whose mean
over Σ is zero.
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Chapter 6

Minimal hypersurfaces with
catenoidal ends

6.1 The n-catenoid

The n-catenoid C is a minimal hypersurface of revolution about the xn+1-axis. It will be conve-
nient to consider a parametrization

X : R× Sn−1 −→ Rn+1

of C for which the induced metric is conformal to the product metric on R × Sn−1. This para-
metrization is given by

X(t, z) :=
(
ϕ(t) z , ψ(t)

)
, (6.1)

where t ∈ R, z ∈ Sn−1 and where the functions ϕ and ψ are explicitly given by

ϕ(t) := (cosh((n− 1)t))
1

n−1 and ψ(t) :=
∫ t

0

ϕ2−n ds.

It is easy to check that the induced metric on C is given by

g := ϕ2 (dt2 + gSn−1)

and, if the orientation of C is chosen so that the unit normal vector field is given by

N :=
(
− ϕ1−n z, ∂t lnϕ

)
, (6.2)

then, the second fundamental form h about C is given by

h := ϕ2−n ((1− n) dt2 + gSn−1

)
.
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From these expressions, it is easy to check that the hypersurface parameterized by X is indeed
minimal.

The Jacobi operator about the n-catenoid is given, in the above defined parametrization, by

JC =
1
ϕn

∂t
(
ϕn−2 ∂t ·

)
+

1
ϕ2

∆Sn−1 + n (n− 1)
1
ϕ2n

We apply the above recipe to obtain globally defined Jacobi fields

(i) The function Φ−0 := ϕ−1 ∂tϕ, which is associated to the translation of C along its axis.

(ii) The function Φ+
0 := ϕ−1

(
ϕ∂tψ − ψ ∂tϕ

)
, which is associated to the dilation of C,

(iii) The functions Φ−1,e := ϕ1−n (z · e) for e ∈ Rn × {0}, which is associated to the translation
of C along the direction e orthogonal to its axis.

(iv) The functions Φ+
1,e := ϕ−1 (ψ ∂tψ + ϕ∂tϕ) (z · e) for e ∈ Rn × {0}, which is associated to

the rotation of the axis of C in a direction e orthogonal to its axis.

The interested reader should check that these constitute 2(n + 1) linearly independent Jacobi
fields.

We claim that the n-catenoid is an ALE space as defined in Chapter 4. Indeed, we change
variables and write

x = ϕ(t) z

for t ≥ 0 and z ∈ Sn−1. So that the upper end of the n-catenoid can now be parameterized as a
vertical graph over the horizontal hyperplane xn+1 = 0 for a function uC . It is a simple exercise
to check that, at infinity, the function uC can be expanded as

uC(x) = log |x|+ log 2 +O(|x|−2)

when n = 2 and
uC(x) = uC(∞)− 1

n−2
|x|2−n +O(|x|4−2n)

In addition, in these coordinates, the metric g can be expanded as

g = geucl +O(|x|2−2n)

and the potential in the Jacobi operator satisfies

Tr(A2) = O(|x|−2n)

We are just in the situation described in Chapter 4.
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6.2 Unmarked space of minimal hypersurfaces with catenoidal
ends

We now defined the set of hypersurfaces we are interested in. The unmarked space Mu is the
set of minimal hypersurfaces which have finitely many ends asymptotic to a properly rescaled,
translated and rotated n-catenoid. More precisely, this means that each element of Mu can be
decomposed into the union of a compact piece and finitely many ends which (up to a translation,
a rotation and a dilation) can be written as a normal graph over one end of the n-catenoid for a
function which decays like a constant times |x| 2−n

2 +δ for some δ ∈ (−n+2
2 ,−n

2 ).

We have the important :

Definition 6.2.1. An element Σ ∈Mu is said to be unmarked-nondegenerate if the operator

Aδ := γ2 (∆Σ + Tr(A2))

is injective on L2
δ(Σ) for all δ < −n

2 .

As usual, the function γ is a

For the time being we do not have many example of minimal hypersurface with catenoidal ends,
except the n-catenoid itself. We here prove that this hypersurface is unmarked-nondegenerate.

Lemma 6.2.1. Assume that δ < −n
2 . Let w ∈ L2

δ(Σ) be a solution of Aδ w = 0 then w ≡ 0.

A simple proof of this result can be obtained as follows. Proceed with the eigenfunction
decomposition of w,

w(t, z) =
∑
j

wj(t)

where wj(t, ·) ∈ Ej . Observe that wj is a solution of

1
ϕn

∂t
(
ϕn−2 ∂t wj

)
− λj
ϕ2

wj + n (n− 1)
1
ϕ2n

wj = 0

which is bounded by a constant times (cosh t)δ. When j = 0 (resp. when j = 1) then all solutions
are explicitly known and are described above, therefore w0 (resp. wj) is a linear combination of
the Jacobi fields Φ±0 (resp. Φ±1,e, for e ∈ Rn). It is easy to check that no such solution is bounded
by a constant times (cosh t)δ unless it is identically equal to 0 since we have chosen δ < −n

2 .
Therefore, w0 = w1 = 0.

Now, when j ≥ 2 we write wj(t, z) = vj(t)φj(z) where φj ∈ Ej . Observe that the function vj
being bounded by a constant times (cosh t)δ for δ < −n

2 has to decay at infinity like (cosh t)−δj .
Then, we can write

1
ϕn

∂t
(
ϕn−2 ∂t vj

)
− λj
ϕ2

vj + n (n− 1)
1
ϕ2n

vj = 0
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Define v1 = ϕ1−n. Using the fact that Φ+
1,e is a Jacobi field, we conclude that

1
ϕn

∂t
(
ϕn−2 ∂t v1

)
− λ1

ϕ2
vj + n (n− 1)

1
ϕ2n

v1 = 0

For all s ∈ R, we set v(s) := v1 − s vj . Using the above equations, we have

1
ϕn

∂t

(
ϕn−2 ∂t v

(s)
)
− λj
ϕ2

v(s) + n (n− 1)
1
ϕ2n

v(s) = −(λ1 − λj)ϕ−2 v(s) (6.3)

For all s ∈ R, vs is positive near ±∞ (because the function vj tends to 0 at ±∞ much faster than
the function v1). We choose s to be the sup of the reals for which vs ≥ 0. Then vs vanishes in R
and at this point, which is a minimum point for vs, (6.3) yields ∂2

t vs < 0. A contradiction. This
completes the proof of the result.

The main result of this Chapter states that, if Σ is unmarked nondegenerate, then there exists
an open manifold of dimension k(n+ 1) which contains Σ and is included in Mu, where k is the
number of catenoidal ends of Σ.

The proof of the result is an almost simple consequence of the implicit function theorem.
To prove this result, we apply the result of Proposition 3.1.3 with δ ∈ (−n+2

2 ,−n
2 ). Since Σ is

unmarked-nondegenerate, this yields the :

Proposition 6.2.1. The operator

Ãδ : C2,α
δ (M∗)⊕Dδ −→ C0,α

δ (M∗)

u −→ γ2 (∆Σu+ Tr(A)2u)

is well defined, bounded and surjective. In addition dimKer (Ãδ) = k (n + 1), where k is the
number of ends of Σ.

where we recall that the deficiency space Dδ is given by

Dδ := Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , j = 0, 1}

recall that the functions W±(i)
j,φ are constructed in such a way that γ2 (δΣ+Tr(A)2)W±(i)

j,φ = 0 near

the i-th end and also that W±(i)
j,φ is asymptotic to |x| 2−n

2 ±δj φ. Observe that, in the statement of
Proposition 6.2.1 one can replace Dδ by

D̃δ := Span {χ(i) Φ±(i)
0 , χ(i) Φ±(i)

1,e : e ∈ Rn}

where Φ±(i)
0 and Φ±(i)

1,e are the Jacobi fields associated to dilations, translations and rotations of
the i-th end of the hypersurface Σ.

We would like to apply the implicit function theorem to some nonlinear mapping N defined on
a neighborhood of 0 in C2,α

δ (M∗)⊕Dδ and whose differential at 0 is the operator Ãδ. Assuming



6.3. THE MARKED SPACE OF MINIMAL HYPERSURFACES WITH CATENOIDAL ENDS67

this nonlinear operator is already obtained, we have immediately that the dimension of the zero
set of this operator is equal to the dimension of the kernel of Ãδ. Hence it is equal to k (n+ 1),
where k is the number of ends of Σ. This yields the existence of a smooth k (n+ 1)-dimensional
family of minimal hypersurfaces with catenoidal ends, which contains Σ and is embedded in Mu

when Σ is unmarked nondegenerate.

In order to define the nonlinear mapping N , we first observe that any element w ∈ Dδ is
associated to some hypersurface which can be constructed by moving slightly ends ends of Σ. To
make things precise let us consider the elements of Dδ which are supported on Ei. They are of
the form

a+
0 Φ+(i)

0 + a−0 Φ−(i)
0 + a+

1,e Φ+(i)
1,e + a−1,ẽ Φ−(i)

1,ẽ

where e, ẽ ∈ Rn and are normalized to have unit norm. We consider the end Ei which we translate
along its axis by a+

0 , which we dilate by (1+a−0 ), which we translate in the direction e orthogonal
to is axis by a1,e and whose axis we rotate in the direction ẽ b an angle a1,ẽ. This gives an end
of a minimal hypersurface which is asymptotic to a catenoidal end and which can be smoothly
connected to Σ. A similar construction can be performed for all other ends. We obtain some
embedding

Iw : Σ −→ Σw

for all w in some neighborhood of 0 in Dδ. Observe that, by construction,the mean curvature
of Σw is equal to 0 except on some compact pieces where the perturbed end is connected to the
initial end.

Next, to any element u = v + winC2,α
δ (Σ) × Dδ we first construct the hypersurface Σw cor-

responding to the component w of u which belongs to Dδ and then take the normal graph over
it for the function v ◦ I−1

w corresponding to the component of u belonging to C2,α
δ (Σ). Once this

hypersurface is defined, we compute its mean curvature and pull back the result on Σ using Iw.
This defined a nonlinear mapping

N : C2,α
δ (Σ)×Dδ −→ C0,α

δ (Σ)

It is a simple exercise to check that this mapping is smooth and that the differential of this
mapping coincides with Ãδ (maybe up to a change in the definition of the cutoff function used
to define Dδ).

6.3 The marked space of minimal hypersurfaces with catenoidal
ends

Here we introduce another space of minimal hypersurfaces with catenoidal ends : the marked
space of minimal hypersurfaces with catenoidal ends. The idea is that, in the unmarked space,
one is allowed to translate, rotate, and dilate the end. In the marked moduli space, the only
modifications allowed are the translation of the end along its axis and the dilation of the end.
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Paralleling what we have already done for the unmarked space, we define the marked space
Mm as the set of minimal hypersurfaces which have finitely many ends asymptotic to the end or
a catenoid whose axis is fixed but which is properly rescaled and translated along its axis. More
precisely, this means that each element of Mm can be decomposed into the union of a compact
piece and finitely many ends which (up to a translation, a rotation and a dilation) can be written
as a normal graph over one end of the n-catenoid, whose axis is fixed, for a function which decays
like a constant times |x| 2−n

2 +δ for some δ ∈ (−n
2 ,

2−n
2 ).

We have the corresponding notion of nondegeneracy :

Definition 6.3.1. An element Σ ∈Mm is said to be marked-nondegenerate if the operator

Aδ := γ2 (∆Σ + Tr(A2))

is injective on L2
δ(Σ) for all δ < 2−n

2 .

Applying the implicit function theorem as above we find that, if Σ is marked nondegenerate,
then there exists an open manifold of dimension k which contains Σ and is included in Mm, where
k is the number of catenoidal ends of Σ.



Chapter 7

Analysis on manifolds with
cylindrical ends

7.1 Manifolds with cylindrical ends

We will say that a complete, noncompact n-dimensional manifold (M, g) is a manifold with
cylindrical ends if it can be decomposed into the union of a compact piece K ⊂⊂M and finitely
many ends E1, . . . , Ek which are diffeomorphic to (0,∞) × Σi where Σi is a (n − 1)-dimensional
manifold and if the metric g is asymptotic to the product metric

gcyl = dt2 + dΣi

in the sense that the coefficients of g − gcyl satisfy

∇`(g − gcyl)ij = O(e−α t)

for some α > 0.

On (M, g) we would like to study operators of the form

∆g + a

where this time the function a = M −→ R satisfies

∇`(a− aj) = O(e−β t)

for some β > 0, on each end Ej where aj ∈ R.

We define a smooth positive function γ : M −→ (0,∞) which coincides with et on each end Ej
of M . We define weighted L2-spaces and weighted Hölder spaces by defining the norms in these
spaces as follows

‖u‖L2
δ(M) :=

(∫
M

|u|2 γ−2δ dvolg

)1/2

69



70 CHAPTER 7. ANALYSIS ON MANIFOLDS WITH CYLINDRICAL ENDS

and
‖u‖C`,α

δ (M) := ‖u‖C`,α(K) +
∑
j

sup
t≥0

e−δ t ‖u(t+ ·, ·)‖C`,α([t,t+1]×Σj)

As before we define the unbounded operator

Aδ : L2
δ(M

∗) −→ L2
δ(M

∗)

u 7−→ ∆g u+ a u

as well as the bounded operator

Aδ : C2,α
δ (M∗) −→ C0,α

δ (M∗)

u 7−→ ∆g u+ a u

In order to extend the previous analysis to this framework, the key remark is that, if

|x|2 ∆u = f

in B∗1 then, setting

v(t, z) = e
n−2

2 t u(e−t z) and g(x) = e
n−2

2 t f(e−t z)

one can check that

∆gcyl
v −

(
n− 2

2

)2

v = f

in (0,∞)× Sn−1.

Further observe that∫
B1

u2(x) |x|−2δ−2 dx =
∫

(0,∞)×Sn−1
v2(t, z) e2δt dt dvolSn−1

and
‖u‖C`,α

δ (B̄∗1 ) = ‖v‖C`,α
−δ ((0,∞)×Sn−1)

These remarks allow one to extend all the previous results on a punctured manifold to this
noncompact complete setting when all Σj are equal to Sn−1 and aj = −

(
n−2

2

)2. We leave the
details to the reader.

In order to further extend the result to all manifolds with cylindrical ends, observe that the
parameters δj are given by

δj =

((
n− 2

2

)2

+ λj

)1/2
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are related to the asymptotic behavior of the solutions of the homogeneous equation(
∂2
t − λj −

(
n− 2

2

)2
)
w = 0

In the general case, this equation has to be replaced by(
∂2
t − µ

(i)
j + ai

)
w = 0

where µ(i)
j are the eigenvalues of −δΣi

. This gives the general definition of the parameters δ(i)j as

δ
(i)
j = <

(
µ

(i)
j − ai

)1/2

In particular, we have the :

Proposition 7.1.1. Given δ < mini δ
(i)
0 , δ 6= −δ(i)j , for all j ∈ N and all i = 1, . . . , k, let us

assume that Aδ is injective, then the operator

Ãδ : C`,αδ (M∗)⊕Dδ −→ C`,αδ (M∗)

u −→ ∆gu+ a u

is well defined, bounded and surjective. In addition dimKer(Ãδ) = 1
2 dimDδ.

As usual the deficiency space is defined by

Dδ := ⊕ki=1 Span {χ(i)W
±(i)
j,φ , : φ ∈ Ej , −δ < ±δ(i)j < δ}

where the functions W±(i)
j,ψ are solutions of (∆g + a)W±(i)

j,φ = 0 on Ei and satisfy

W
±(i)
j,φ = e±δj t φ+O(e(±δj−η) t)

at infinity, for some η > 0.

Observe that when δ ∈ (−mini δ
(i)
0 ,mini δ

(i)
0 ), then Dδ is empty and hence, under the assump-

tion of Proposition 7.1.1, the operator Aδ′ is an isomorphism, for any δ′ ∈ (−mini δ
(i)
0 ,mini δ

(i)
0 ).

7.2 Manifolds with periodic-cylindrical ends

There is a last class of manifolds we will have to consider : manifolds with periodic-cylindrical
ends. We will say that a complete, noncompact n-dimensional manifold (M, g) is a manifold with
periodic-cylindrical ends if it can be decomposed into the union of a compact piece K ⊂⊂ M
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and finitely many ends E1, . . . , Ek which are diffeomorphic to (0,∞) × Σi where Σi is a (n − 1)-
dimensional manifold and if the metric g is asymptotic to the metric

gper = ϕ2
(
dt2 + dΣi

)
where ϕ is a function defined on (0,∞) which is Ti-periodic, in the sense that the coefficients of
g − gper satisfy

∇`(g − gper)ij = O(e−α t)

for some α > 0.

On (M, g) we would like to study operators of the form

∆g + a

where this time the function a = M −→ R satisfies

∇`(a− aj) = O(e−β t)

for some β > 0, on each end Ej where aj is a Ti-periodic function defined on (0,∞) (and in
particular aj does not depend on z ∈ Σi).

The definitions of the weighted L2-spaces as well as the weighted Hölder spaces are the same
as in the above sections as well as the definition of the operators Aδ and Aδ.

Observe that the Laplace-Beltrami operator associated to the metric gper is explicitly given
by

∆gper
=

1
ϕn

∂t
(
ϕ2−n ∂t ·

)
+

1
ϕ2

∆Σi

All our analysis in Chapters 1 to 3 is based on the fact that we can study the model operator

∆gper + ai =
1
ϕn

∂t
(
ϕ2−n ∂t ·

)
+

1
ϕ2

∆Σi + ai

on (0,∞) × Σi. Then the corresponding properties for ∆g + a are obtained using perturbation
arguments.

Now, in order to study the model operator ∆gper
+ai, it is easier to perform the eigenfunction

decomposition of a function defined on (0,∞)× Σi as

w(t, z) =
∑
j

wj

where for all t ∈ (0,∞), wj(t, ·) ∈ Ej the j-th eigenspace of −δΣi . Using this the solvability of
the equation

(∆gper
+ aj)w = f
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reduces to the solvability of the second order ordinary differential equations

1
ϕn

∂t
(
ϕ2−n ∂t wj

)
− 1
ϕ2

µ
(i)
j wj + ai wj = fj

where µ(i)
j are the eigenvalues of −δΣi .

It turns out that it is easier to study the conjugate operator

ϕ
n+2

2 (∆gper
+ aj)ϕ

2−n
2 w̄ = f

Since ϕ > 0 is bounded there is no loss of generality in doing so. Therefore, the ordinary
differential equations we need to solve now read

∂2
t w̄j + b

(i)
j w̄j = fj (7.1)

where b(i)j can be expressed in terms of the function ai, the eigenvalue µ(i)
j , the function ϕ ant its

derivative with respect to t. The exact expression of the function b(i)j is not really important for

the time being. the only important fact is that b(i)j is T periodic.

These equations in turn can be solved using the ”variation of the constant formula” namely,
if w̄+(i)

j and w̄−(i)
j are two linearly independent solutions of the homogeneous equation

∂2
t w̄

±(i)
j + b

(i)
j w̄

±(i)
j = 0

then all the solutions of (7.1) are given by

w̄j =
1

W
(i)
j

(
w̄

+(i)
j

∫
w̄
−(i)
j fj ds− w

−(i)
j

∫
w̄

+(i)
j fj ds

)
+ a+

j w̄
+(i)
j + a−j w̄

−(i)
j

Therefore, all properties will follow from the corresponding properties of the functions w̄±(i)
j .

To make the notation as simple as possible, we drop all indices (i) and j . Given initial data
(a0, a1) we consider w the unique solution of

∂2
tw + bw = 0 (7.2)

with w(0) = a0 and ∂tw(0) = a1. We define the mapping

B(a0, a1) = (w(T ), ∂tw(T ))

Clearly B is linear and TrB ∈ R. We claim that

detB = 1
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To see this, consider the solution w0 associated to the initial data w0(0) = 1 and ∂tw0(0) = 0
and the solution w1 associated to the initial data w1(0) = 0 and ∂tw1(0) = 1. The Wronskian

W = w1 ∂tw0 − w0 ∂tw1

does not depend on t and W (0) = 1. Now, given the definition of B we have

W (T ) = detBW (0)

and hence detB = 1 as claimed. We now distinguish a few cases according to the spectrum of
the operator B.

Assume that B can be diagonalized (in C2). Since the determinant of B is equal to 1 then the
eigenvalues are given by λ and 1/λ where λ ∈ C and |λ| ≥ 1. If |λ| > 1 then necessarily λ ∈ R
since the trace of B is a real number. The eigenvector of B associated to λ corresponds to w̄+ a
solution of (7.2) which blows up at infinity exponentially and the eigenvector of B associated to
1/λ corresponds to w̄− a solution of (7.2) which tends to 0 exponentially at infinity. In this case
we define

δ =
1
T

log |λ|

so that δ is precisely the exponential rate at which the solutions w± tend to 0 or infinity at
infinity.

When |λ| = 1 then λ = eiµ and 1/λ = e−iµ. The eigenvectors of B are associated to w± The
eigenvector of B associated to λ corresponds to w̄+ solutions of (7.2) which are bounded in R. In
this case we define

δ = 0

To end this discussion, we consider the case where B can’t be diagonalized. In this case the
eigenvalue λ necessarily satisfies λ2 = 1 since the determinant of B is equal to 1. The eigenvector
e1 of B associated to the eigenvalue λ corresponds to w+ a periodic solution of (7.2) (this is clear
when λ = 1 since the solution is then T periodic and when λ = −1 then the solution is then 2T
periodic). Since the operator B is not diagonalized then there exists a vector e2 such that

B(e2) = λ e2 + µ e1

In other words e1, e2 is a Jordan basis associated to B. We denote by w− the solution of (7.2)
associated to e2. By definition we have

e1 = (w+(0), ∂tw+(0)) and e1 = (w−(0), ∂tw−(0))

Now, on the one hand
B e2 = (w−(T ), ∂tw+(T ))

and on the other hand

B e2 = λ (w−(0), ∂tw−(0)) + µ (w+(0), ∂tw+(0))
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Therefore, we have the identity

(w−(T ), ∂tw+(T )) = λ (w−(0), ∂tw−(0)) + µ (w+(0), ∂tw+(0))

which implies that
w−(t+ T ) = λw−(t) + µw+(t)

for all t ∈ R (simply use the uniqueness of the solutions of (7.2) with given initial data). This
shows that

v(t) = w−(t)− λµ
t

T
w+(t)

satisfies
v(t+ T ) = λ v(t)

Therefore, v is T periodic when λ = 1 and 2T periodic when λ = −1. In any case,

w−(t) = v(t) + λµ
t

T
w+(t)

where both v and w+ are periodic. When µ 6= 0, we will say that w− is ”linearly growing” and
we set

δ = 0

The result of Proposition 7.1.1 holds in this framework when the values of δj are obtained as
above. Let us emphasize that for operators with periodic (nonconstant) coefficients the explicit
determination of the values of δ(i)j is in general not possible.


