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Chapter 1

Weighted L? analysis on a
punctured ball

1.1 A simple model problem

Let Bg (resp. Bg) denote the open (closed) ball of radius R > 0 in R™ and B}, = Br — {0}
(resp. Bj) denote the corresponding punctured ball.

Given v € R and a function
f:Bf CR" —R

satisfying
[~ fllLe(my) <1

we would like to study the solvability of the equation

|z|>Au = f in B}
{ (1.1)

u = 0 on 0B,

A solution of this equation is understood in the sense of distributions, namely u is a solution of
(1.1) if u € LY(By — Bg), for all R € (0,1) and if

/ uAvdr = folz| 2 dx
Bl Bl

for all C* functions v with compact support in Bj.

We claim that :
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Proposition 1.1.1. Assume that n > 3 and v € (2 — n,0). Then there exists a constant
c¢=c(n,v) >0 and for all f € L§S.(B7) there exists u a solution of (1.1) which satisfies

loc

™ ullpoe(p,) <1

The proof of this result is a simple consequence of the maximum principle. First, recall the
expression of the Euclidean Laplacian in polar coordinates

n—1

1
A=02+ O+ 5 Dgns

Using this expression we get at once
|2 Alz]” = —v (2 —n—v) ||’

away from the origin. Now, if v € (2 — n,0) (this is where we use the fact that n > 3 I), we
observe that the constant
Chy =72—-n—v)>0

The existence of a solution of (1.1) can then be obtained arguing as follows : Given R €
(0,1/2), we first solve the problem

|$‘2AUR = f in Bl—BR
ur = 0 on 0B1 U0OBg

(1.2)

Since f € L*°(B; — Bg), the existence of a solution ugp € W?P(B; — Bpg) for any p € (1,00)
follows from the following classical result :

Proposition 1.1.2 ([?], Theorem 9.15). Given p € (1,00) and Q a smooth bounded domain of
R™, if g € LP(Q) then there exists a unique solution of

Av = g in Q
{ v = 0 on o)
which belongs to W2P(Q) N W, ().
In our case Q = By — Bi and
f € L®(By — Bg) C LP(B; — Bg),
for all p € (1,00), and hence
up € W*P(By — Bg) "W, *(B) — Bg).

One can use the Sobolev Imbedding Theorem to show that up € C1'*(B; — Bg) for all a € (0, 1).
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Proposition 1.1.3 ([?], Theorem 7.26). Ifa=1— 2, then
W2P(Q) c CH(Q)
provided ) is a smooth bounded domain of R™.

The maximum principle also implies that

lur(z)] <

|[” (1.3)

n,v

for all x € B; — Bg. Indeed, observe that the function

w(z) = —— |’ - un(z)

n,v

is positive on 9B1 U dBg. Moreover
Aw <0

in B; — Bgr. Therefore one can apply the maximum principle

Proposition 1.1.4 ([?], Theorem 8.1). Assume that v € WH2(Q) satisfies Av < 0 in some
smooth bounded domain Q0 C R™. Then

: > .
lIglsz > %g (min(v, 0))

This result applies to the function w in B; — Bg. We conclude that w > 0 and hence

up < || .

n,v

Applying the same reasoning to —ugr we obtain the desired inequality. Observe that, in the case
where ug is C2, one can simply invoke the classical maximum principle ([?], Theorem 3.1).

Now, we would like to pass to the limit, as R tends to 0. To this aim, we use the following
estimates for solutions of (1.2)

Proposition 1.1.5 ([?], Theorem 9.13). Given a smooth bounded domain Q C R™ whose bound-
ary has two disjoint components Th and Ty, ' CC QUTy and p € (1,00). There exists a constant
c=c(n,p,Q,Q) >0 such that, if g € LP() and v € W?P(Q), satisfy

Av = g n Q
v = 0 on T

then
[vllw2r@y < ¢ (vlle@) + l9llLe@))
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Using this result with Q = B, — Bg, T1 = 0B; and ' = B, — Bap, together with the a priori
bound (1.3), we conclude that, for all R € (0,1/2) there exists a constant ¢ = ¢(n, v, R) > 0 such
that

HuR/HWQ‘p(Blfng) S ¢

for all R’ € (0, R). It is now enough to apply the Sobolev Imbedding Theorem
Proposition 1.1.6 ([?], Theorem 7.26). The imbedding

WhP(Q) — ¢"*(Q)
is compact provided 0 < av < 1 — % and Q is a smooth bounded domain.

It is now easy to use these two results together with a standard diagonal argument to show
that there exists a sequence (R;); tending to 0 such that the sequence of functions ug, converges
to some continuous function u on compacts of Bf. Obviously u will be a solution of (1.1) and,
passing to the limit in (1.3), will satisfy

o 127" ullpee(5y) <1 (1.4)

We have thus obtained a solution of (1.1) satisfying (1.4), provided v € (2 — n,0). This
completes the proof of Proposition 1.1.1.

Exercise 1.1.1. Given points x1, ..., T, € R", weights parameters p,v1,..., vy, € R, we define
two positive smooth functions

g:R*"—{xy,...,2,} — R and h:R*™ —{zy,...,2,} — R
such that :

(i) For eachi=1,...,m, g(x) = |z — z; vi—2

point x;.

Vi and h(z) = |z — x;

in a neighborhood of the

(ii) g(x) = |z|* and h(x) = |z|* away from a compact subset of R™.
Show that, provided n > 3 and p,v1,...,vym € (2 —n,0), given a function
fiR"—{zy,...,2,} — R

satisfying
Ifl<h

it 1s possible to find a solution of the equation
YV Au=f

which satisfies
lul <g
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1.2 Analysis in weighted spaces in the punctured unit ball

Given 6 € R we define the space
L3(B}) == |z*" L*(B)

This space is endowed with the norm
1/2
_25—
lollzzey = ([ 1l el 22 a0)
B,

Lemma 1.2.1. The space (L3(B5),] - lL2(B;)) 15 @ Banach space.

It is easy to check that

Exercise 1.2.1. Provide a proof of Lemma 1.2.1.

We define the unbounded operator A by
As: L}(Bf) — L3(BY)
u — |22 Au

The domain of this operator is the set of functions u € L3(B7) such that Asu = f € L}(B}) in
the sense of distributions : This means that u € W22?(B; — Bg), for all R € (0,1/2) and

/ uAvdr = folz|=?de
B1 Bl

for all C*° functions v with compact support in B7.

We start with some properties of As which are inherited from the corresponding classical
properties for elliptic operators.

Proposition 1.2.1. Assume that 6 € R is fixed. There exists a constant ¢ = ¢(n,d) > 0 such
that for all u, f € L3(BY) satisfying |z|?> Au = f in B} we have

IVullzz_ (B:,,) + ||V2UHL§72(BT/2) <c(llfllezs + lullzzs:)

1/2

The proof of this result follows from the :

Proposition 1.2.2 ([?], Theorem 9.11). Given a smooth bounded domain Q@ C R™, Q' CC Q
and p € (1,00). There exists a constant ¢ = ¢(n,p,Q,Q') > 0 such that, if g € LP(Q) and
v € W2P(Q), satisfy
Av=g in Q
then
[ollwew @y < e ([[vllze@) + lgllze @)
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The proof of the Proposition 1.2.1 goes as follows : Given R € (0,1/2) we define the functions
v(z) ;== u(Rx) and g(z) := f(Rx)

Obviously, we have
|z? Av =g

in By — Bl/gi We can then apply the result of Proposition 1.2.2 with Q@ = By — 31/2 and
V' = B35 — By, we conclude that
2 2 2
Voli3ra s, ) < € (101325, , ) + 19132, )
Performing the change of variables backward, we conclude that
R || Vul2,

4—n 2 2
Banjo—Br) TR IV UL, By <

—n 2 —n 2
¢ (R 10y + B W )

It remains to multiply this inequality by R* 2729, choose R = %(%)Z, for « € N and sum the
result over i. We obtain

2 2 2 2 2
IVullds o+ 192022 s: ) < ¢ (lulBsan + 113208 )

1

This completes the proof of the result.

1.3 The spectrum of the Laplacian on the unit sphere
We recall some well known facts about the spectrum of the Laplacian on the unit sphere.
Proposition 1.3.1 ([?], Theorem ??). The eigenvalues of —Agn-1 are given by

A= -2+ )

where j € N. The corresponding eigenspace will be denoted by E; and the corresponding eigen-
functions are the restrictions to S~ of the homogeneous harmonic polynomials on R™.

One easy computation is the following : If P is a homogeneous harmonic polynomial of degree
j, then P(x) = |z]9 P(z/|z|) and hence

ro.P=jP
Using the expression of the Laplacian in polar coordinates, we find that

AP =j(n—2+7)P+AgnaP



1.4. INDICIAL ROOTS 11

Since P is assumed to be harmonic, when restricted to the unit sphere this equality leads to
Agn-iP=—j(n—2+j5)P

This at least shows that the restrictions to S™~! of the homogeneous harmonic polynomials of
degree j on R™ belong to Ej.

Exercise 1.3.1. What is the dimension of the j-th eigenspace E; ¢

1.4 Indicial roots

We set
5“—”_2—&—'
J 2 J

Definition 1.4.1. The indicial roots of A at the origin are the real numbers given by

2—n
+._
I/j = B) :t(;j

for j e N.

The indicial roots are related to the asymptotic behavior of the solutions of the homogeneous
problem Au = 0 in R™ — {0}. Indeed, a simple computation shows that

A(j2]"7 ¢) =0

lf¢€E]

1.5 A crucial a prior: estimate

We now want to prove the key result which explains the importance of the parameters §; in the
study of the operator |z|?> A when defined between weighted L2-spaces. This is the purpose of
the :

Proposition 1.5.1. Assume that § # +0; for j € N. Then there exists a constant ¢ = ¢(n,d) >0
such that, for all u, f € L%(B5) satisfying

a2 Au =

in B}, we have

lullzacs;y < ¢ (Iflaesg) + el 2o, -5, )
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Observe that this result states that we can control the weighted L?-norm of v in terms of the
weighted L?-norm of f and some information about the function u away from the origin.

To prove the result let us perform the eigenfunction decomposition of both v and f. We write
x =10 where r = |z| and § = z/|z| € S"~! and we decompose

u(r,0) = ui(r,0) and  f(r,0) =Y f(r,0)
j=0 J

where, for each j > 0, the functions u;(r, -) and f;(r, -) belong to E;. In particular Agn-1u; =
—Aju; and Agn-1 fj = —A; f;, wherever this makes sense.

Observe that

1
/ |uf? 2| "2~ 2 dz = Z/ s |? || 22 d = Z/ ||“J'||2L2(sn—1) Fn—3-26 g,
B j>07B1 0

=0
and 1
/B1 P2 |22 2 do = Jz;o/& 112 2]~ de = ;)/0 15112 gnmsy 7020 dr
where || - ||12(gn-1) is the L?(S™!) norm. In addition, the functions u; and f; satisfy
j2|* Auj = f (1.5)

in the sense of distributions in Bj. Indeed, making use of

/ uAvdr = folz|~%dx
Bl Bl

with test functions of the form v(r,0) = h(r) #(0) where ¢ € E; and h is a smooth function with
compact support in (0,1), we find that w; is a E;-valued function solution of (1.5). Using the
decomposition of the Laplacian in polar coordinates, we also find that

r23fuj+(n71)r8rujf)\juj :fj (16)

in the sense of distribution. Moreover

1 1
[ sl @ <o and [l S P < oc
0 0

The Sobolev Imbedding Theorem will help us justifying most of the forthcoming computation :
Proposition 1.5.2 ([?], Theorem 7.26). If v =1— 2 then

W2r(Q) C ¢ ()

provided ) is a smooth bounded domain.
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Observe that u; € W%2((r,1)) for all r € (0,1) and hence we find that u; € 0110,61/2((07 1]).
Also, using the result of Proposition 1.2.1, we conclude that

/ |0y 2|72 do < o0 and / |02u;] |=|*~* do < oo (1.7)
Bl Bl

Let jo denote the least index in N such that
|6‘ < 5]‘0 (18)
The proof of Proposition 1.5.1 is now decomposed into two parts.

Part 1 : The case where [§| < d;. Let x be a cutoff function equal to 1 in B/, and

equal to 0 outside By, let us further assume that y is radial. We multiply the equation (1.6) by

x2r—20-2 u; and integrate over B;. We obtain using polar coordinates

/ X272 w0, (r" 7t Opuy) dr df — N / X2 u? 372 e df = / 2wy fjr 3720 dr df
B, B, By

where df denotes the volume form on S"~! and hence the Euclidean volume form is given by
do =r""tdrdo.

We integrate the first integral by parts to get

/ X2|6T(Xuj)|27"_26d$+(>\j+§(n—2—25))/ uZr 2B g
B . (1.9)
:/B (55T(X2)—7“|8rx\2)7“_1_26u? dx—/B X2 u; f; F—2-28 g0

Even is formally, this computation is correct, some care is needed to justify the integration by
parts at 0. Let us explain how the integration by parts is performed : We write

—x2r= w; O (r" "t Opuy) = 172009, (x u;)? 46 (n—2—26) x> pn—3-20,,2

J
(60r(x?) = r|ox[?) 2720 w3

+

_ ar (XQTn—1—25 u; aruj + §X2 7""_2_26 U?)

For all R € (0,1), we integrate this equality over [R, 1] x S"~! with respect to the measure dr df
to get

— / % P20 0 (T Doy ) A = 772918, (x uj)|? dz
B1—Bpr

S

B1—Br
+ 6(n—2-20) / X2 u? 2y
BlféR

(60.(x%) —r|0x|?) p1720 u? dx

1—Br

2p=20 (r uj Optj + §r1 uf) r" 1 do

+ 4+
S~

(1.10)
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Now, use the fact that, thanks to (1.7)

1
/ (/ P2 (Juj Oruy| + 77" uf) rt d0> r~tdr < oo
o \JoB,

to show that, for a sequence of R; tending to 0 we have

PEI—I}O 95y, X7 (ug Opuy + 00~ uf) 1" THdO = 0

We now use this sequence of radii and pass to the limit in (1.10) to get
—/ X2 B T 0. (e Q) de = / 2010, (x uj)|? dx
B1 Bl
+ 6(n—2-20) / X2 u? 2 dy
B
+ /B (60,.(x3) —r|0x|?)r 1% uf dz

All subsequent integrations by parts can be justified using similar arguments, we shall leave the
details to the reader.

We shall now make use of the following Hardy type inequality
Lemma 1.5.1. The following inequality holds

(n—2-— 25)2/ P2 de < 4 / =20 |0,ul? da

provided the integral on the left hand side is finite.
Using this Lemma together with (1.9) we conclude that

(5?- —6%) /B X2 u? lz| 22 da < /

B

Ul dere [ s
B1—Bi /2

where the constant ¢ = ¢(n,d) > 0 does not depend on j.

Now, we set
n:= (5?0 —62>0

This is where it is important that § # £0;. Using Cauchy-Schwarz inequality together with the
inequality
2ab<mna’+n1h?

we get

(2(5]2—62)—77)/3 x> s |x|_25_2da?§77_1/3 X f7 |x|_2_25dx—|—20/3 ., ude. (1.11)
1 1 1—Bi /2
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Observe that, for j > jo,
2(67 —6%) —n >2(62 — %) —n=n.

We can sum all the inequalities (1.11) over j > jo to conclude that

n / 2 a? |z 7® 2 de <t / e 7P de 4+ 2¢ / a? dx. (1.12)
B B Bi—B.
2

where we have set

Proof of Lemma 1.5.1: We now provide a proof of the Hardy type inequality we have
used. Assume that n — 2 # 2§ and also that

/ |0 ul? |x\725 dr < 0o
since otherwise there is nothing to prove. Then, start with the identity

oo oo o0
(n—2—26) / V23720 g = / 02 0 (r" 272 dr = 2 / VO 2 gy
0 0 0

where the last equality follows from an integration by parts. Use Cauchy-Schwarz inequality to
conclude that

(n —2—26)? / V2T g < 4 / 0,02 r" 2720 dr
0 0

The inequality in Lemma 1.5.1 follows from the integration of this inequality over S™~!. Observe
that, in order to justify the integration by parts, it is enough to assume that fooo v? x| 7202 dy
converges.

Part 2 : The case where 0| > 0; and §; # 0. It remains to estimate u;, for j = 0,..., jo—1.
Here we simply use the fact that we have an explicit expression for u; in terms of f;. In order to
simplify the discussion, we first assume that §; # 0. Then, we define @; by

1 —n [ —n T one
B5(r, ) = 5 ( o [ R s [ 24+5jfj(t,')dt>
J * *

where * has to be chosen according to the position of § with respect to £4;. In fact (see below)
we will choose * = 0 when 0 > d; and * = 1 when 0 < d;. It is easy to check that

jo|® Ay = f

in Bj.
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Basic strategy : Consider a quantity of the form

s
25144, / 1T F F(t) dt
*

ulr)=r—2

where we assume that .
/ 2 P32y < o
0

It is a simple exercise to compute, using an integration by parts that

/R u?(r) P20 g = 2(:':51 =3 (u(l)2 — Rn272 u(R)? — 2 /R fr)u(r) P32 dr)
(1.13)

This is where, once again, it is important that ¢ # £9;.
A simple application of Cauchy-Schwarz inequality, yields

25+2 n
2 n—3—29
MO < gy ([ £oe ),

provided we choose * = 0 when ¢ > §; and * = 1 when § < —4;. This is where the choice of * is
crucial.

Plugging this information in (1.13) and using Cauchy-Schwarz inequality, immediately implies

that
! 2 3-25 1 ! 2 3-25
e S e ——— nTeT20 g
/Ru r r < TR (/0 fe(r)r T)

1 1 1/2
+ — / u2(r)rn—3-20 dr)
|0 =+ 65 < 0 r)

1 1/2
(/ f2(7') 7,,7173725 d'f’)
0
It is a simple exercise to check that this implies that

1 1
/ Wrn T30 gy < c/ 2 P 320 gy
R 0

for some constant ¢ = ¢(d,n,j) > 0.

Using this result, and passing to the limit as R tends to 0, we conclude that
/ ﬂ? 2|72 2dz < ¢ fj2 2| =202 da (1.14)
Bl Bl

for some constant ¢ = ¢(d,n,j) > 0.

It remains to evaluate the difference between the the functions u; and @;. Since

e f? Ay — ;) =0
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we find that

wj— iy =12 0y
where ¢, 1) € E;. Remembering that u; —@; € L2(Bj) we find, in the case where § > §;, that the
only possibility is ¢ = ¢ = 0. Therefore, in this case the proof is already complete since (1.14)
provides the desired estimate. When 6 < —d;, it is very likely that ¢ and ) are not equal to 0.
In this case, we evaluate

18l 2(sn-1) + 1Pl L2(sn-1) < ellty — ujll L2, -5, )

for some constant ¢ = ¢(, j,n) > 0. To obtain this estimate without much work observe that the

space of functions
2—n

g Ty g e By

is finite dimensional and that we have two (equivalent) norms on it. Namely

2—n _

2—n . .
Ni(r 2 P g7 0 4) o= (|9l L2 (sn1y + 9]l L2sn 1)

and
No(r =" 2" ) o= [0 6 4 0, .

Observe that we have implicitly used the fact that J; # 0 and hence the functions r — PEEt

2—n . .
and 7 — r~z % are linearly independent.

Granted this estimate, we conclude that

il ez < ¢ (Iillzacs + I le2m, - p.,0))

This completes the proof of the result when all ; # 0. Collecting this estimates together with
(1.12) this completes the proof of the Proposition 1.5.1 when ¢; # 0, for all j € N.

Part 3 : The case where |§| > §; = 0. We now turn to the case where §; = 0. This case
happens when n = 2 and j = 0. The equation satisfied by ug reads

r? 8,% ug + 7 drug = fo

This time, the explicit formula we will use is

fio(r) = /:s_l (/:t‘lfo(t) dt) ds

where * will be chosen appropriately, namely * = 0 when § > 0 and * = 1 when 6 < 0. Again,
one can check directly that |x|? Aty = fo.

To start with use the strategy developed above to prove that

0rtollz_ (Br) < cllfollzsr)
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We leave the details to the reader. Once this is done, use again the above strategy to show that

1 1
/ ﬁ% P20l < —1 5 (/ fg(r) pm20-1 dr)
R 2|d| 0
1 1 1/2 1
+ m (/ ﬁ%(r) p20-1 dr) (/ \8ﬁ0|2(r)7"_25+1 dr)
0 0

Collecting these two estimates, we conclude that

1/2

IGollZ (g < ¢ (||fo||ig(3;) + [ follz2(sr) ﬂo||L§(B;)>

from which it follows that
laollz2(s) < cllfollLz(ss

Once this estimate has been obtained, we observe that
ug — g = o+ Blogr

When § > 0, o = 8 = 0 since ug — @y € L%(B7) and when § < 0 we can argue as what has been
already done when d; # 0 to obtain

ol + 18] < ellto = uoll2(s, -5, )
for some constant ¢ = ¢(n,d) > 0. Collecting all the estimate, we conclude that
luollzzsr) < e (Mollzaess) + luollzes, s, ) ) (1.15)

This completes the proof in all cases.

Exercise 1.5.1. Observe that there is another formula we could have used for tgy, namely

Tig (1) zlogr/rt_lfo(t) dt—/rt‘l logt fo(t) dt.

*

Prove the estimate (1.15) starting from this formula.

Exercise 1.5.2. Show that, in the main estimate in the statement of Proposition 1.5.1, one can
replace ||U||L2(31—B1/2) by ||UHL1(Bl—Bl/2)-
Exercise 1.5.3. Let a: Bf — R be a function which satisfies the bound

la(a)] < cla] 72T

in BY, for some a > 0. Show that the result of Proposition 1.5.1 remains true if the operator
|z|2 A is replaced by the operator |z|? (A + a).
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Exercise 1.5.4. T Show that the result of Proposition 1.5.1 remains true if the operator |x|*> A
is replaced by the operator |z|> A + d, where d € R is fized, provided we define

) 5 1/2
5 =% (("; +j) +d>
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WEIGHTED L? ANALYSIS ON A PUNCTURED BALL



Chapter 2

Weighted L? analysis on a
punctured manifold

2.1 The Laplace-Beltrami operator in normal geodesic co-

ordinates
Given a Riemannian manifold (M, g), the Laplace-Beltrami operator is defined in local coordinates
zh .z

1 i
Ay = ; ﬁ Oy (\/det(g)g J 8Ij)

where g" are the coefficients of the inverse of the matrix (g;;)i ;-

Recall that, in local coordinates, the volume form on M is given by

dvol, = \/detgdz’ ... dz"

In particular, if v is a smooth function of M, we have

/ uAgudvoly = —/ 9”011 8,5u dvoly = —/ 97 |Vul? dvol,,
M M M

Using the exponential mapping, we can define normal geodesic coordinates in a neighborhood
of a point p € M as follows : first choose an orthonormal basis ey, ..., e, of T, M. Then define

the mapping
F(z',...,2™) = Exp, <Z zt ei>

One can prove that F' is a local diffeomorphism from a neighborhood of 0 in (M, g) into a
neighborhood of p in M.

21
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Proposition 2.1.1. ([?], Theorem ¢%) In normal geodesic coordinates, the coefficients of the

metric g can be expanded as
9ij = 0i; + O(|z]?)

The functions O(]z|?) are smooth function which vanish quadratically at the origin. As a
simple consequence of this result, we have the expansion of the Laplace-Beltrami operator in
normal geodesic coordinates :

Ag = Acyel + O(|I|2) Oypi Ogi + O(|$|) Ok (2.1)

The operator O(|z|?) d,: 9, is a second order differential operator whose coefficients are smooth
and vanish quadratically at the origin and the operator O(|x|?) 9, is a first order differential
operator whose coefficients are smooth and vanish at the origin. This last expansion follows from a
direct computation using the formula of A, in local coordinates and the result of Proposition 2.1.1.

2.2 Two global results
Using the normal geodesic coordinates, we extend the results of Proposition 1.1.1 and Proposi-
tion 1.5.1 in a global setting.

As in the previous section (M, g) is a compact n-dimensional Riemannian manifold without
boundary. We choose points p1,...,pr € M and denote by

M ::M_{p17"'7pk}

Given R small enough, we define Bg(p) C M (resp. Br(p) C M) to be the open (resp. closed)
geodesic ball of radius R centered at p. The corresponding punctured balls are denoted by Bj(p)
and By (p). Finally, we set B

Mg := M — UjBR(pj)

We fix a smooth function
v :M* — (0,00)

such that, for all j =1,... )k
7v(p) = dist(p, p;)
in some neighborhood of p;.
Given ¢ € R we define the space
L2(M*) = 51 L2(M)

This space is endowed with the norm

1/2
lull L2y = (/ |u|? =202 dvolg>
M

Again, we have
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Lemma 2.2.1. The space (L3(M*),]| - l2(a+)) is a Banach space.
We define the unbounded operator As by
Ay MY —  LR(M)
u — Y2 (Ayu+au)

where a is a smooth function on M. The domain D(As) of this operator is the set of functions
u € L}(M*) such that Asu = f € L3(M*) in the sense of distributions : This means that
u € W22(Mg), for all R > 0 small enough and

/ u(Agv + av) dvoly = fvy2dvol,
M M

for all C* functions v with compact support in M*. It is easy to check that

Lemma 2.2.2. The domain of the operator As is dense in L2(M*) and the graph of As is closed.

Exercise 2.2.1. Give a proof of Lemma 2.2.2.

The result we have obtain in Proposition 1.2.1 translates immediately into :
Proposition 2.2.1. Assume § € R is fized. There exists a constant ¢ = c¢(n,d) > 0 such that for
all u, f € L2(M*) satisfying v* (Agu+ au) = f in M* we have

||Vu||L§_1(M*) + HV2U||L§_2(M*) < C(||f||L§(M*) + llullz2(arey)

The proof of the result goes as follows : First observe that the result of Proposition 1.1.1
remains true if one changes B} with B}. In which case the estimate of Proposition 1.1.1 has to
be replaced by

IVullzz_ (Bz) + ||V2UHL§72(BE) <c (Hf”Lg(B;{) + ||U||L§(B§)) (2.2)

if u, f € L3(B},) satisty |z|> Au = f in B},. This can be seen easily by performing a simple change
v(z) = u(Rx) and g(x) = f(Rx) so that v and g satisfy |z|>? Av = g in B}, then the estimate
follows from the corresponding estimate in Proposition 1.1.1.

Close to the puncture p; we use normal geodesic coordinates so that v = |z| and write the
equation v (Ayu+au) = f as

|1'|2 Acyat = f + |93|2 (Aeucl - Ag) u— |x|2 au
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Using the result of Proposition 1.1.1 together with the result of Proposition 2.1.1, we evaluate
2l (Aewet = Ag)u = lal? aullz sy < e B2 (lullzzoes) + IVulzz ey + 1920l 22 ar-))
for some constant ¢ = ¢(n,d) > 0 which does not depend on R > 0, small enough. Next we apply

(2.2) to conclude that
IVullzz s+ 19%0lez i < ¢ (I laesy + Tl 2o
+ R (IVullz o + V%0022, 00))

for some constant ¢ = ¢(n,d) > 0 independent of R > 0 small enough. This can also be written
as

(1-cR?) (IVullzz_ (Bz) + V2|2 (Br)) S ¢ (||f||L§(Blg) + ||uHL§(M*))

5§—2

If R > 0 is chosen so that ¢cR2 < 1 /2 we conclude that

IVullzz s + 192l < 26 (120 + lullizoe))
We now use the elliptic estimates provided by

Proposition 2.2.2. ([?], Theorem ??) Assume we are given Q C M, ' CC Q and p € (1,00).
Then there exists ¢ = c¢(M, g,Q,') > 0 such that, if v € WP and g € L*(Q) satisfy Agv =g in
Q, then

IVl oy + 11Vl Loy < € (Igllri) + lullzrie)

with Q = Mg/, and Q' = Mg to show that

IVallze o + 1920l oan < € (1 i2ata) + Illzz (a1, )

for some constant ¢ = ¢(n, R) > 0. The estimate then follows from the sum of the two estimates
we have obtained.

The following result is a consequence of Proposition 1.5.1.

Proposition 2.2.3. Assume that § # 9, for j € N. Then there exists a constant ¢ = c(n, 9)
and a compact K in M* such that, for all u, f € LZ(M*) satisfying

7 (Dgu+au) = f

in M*, we have

lullLzarey < ¢ (||fHL§(M*) + ||U||L2(K))
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Again this result states that we can control the weighted L2- norm of u in terms of the weighted
L?-norm of f and some information about the function u away from the punctures.

The proof of this second Proposition, also follows from a perturbation argument. First observe
that the result of Proposition 1.5.1 remains true if one changes B} with B}. In which case the
estimate of Proposition 1.5.1 has to be replaced by

lullzacszy < e (12 + B Ml z2(sn—5r0)) (2:3)
if u, f € L%(Bj,) satisy |z|> Au = f in B},. This can be seen easily by performing a simple change

v(z) = u(Rx) and g(x) = f(Rx) so that v and g satisfy |z|> Av = g in B}, then the estimate
follows from the corresponding estimate in Proposition 1.5.1.

Close to the puncture p; we use normal geodesic coordinates so that v = |z| and write the
equation v (Ayu+au) = f as

1212 Acurt = f 4 |2]? (Aeuer — Ay)u — |22 au
Using the result of Proposition 2.2.1 together with the result of Proposition 2.1.1, we evaluate
2 (Aeuct — Ag)u— |z? aUHLg(B}g) <cR’ ||U||L§(M*)

for some constant ¢ = ¢(n,d) > 0 which does not depend on R > 0, small enough. Next we apply
(2.3) to conclude that

lull z2(mz) < ¢ (||f||L§(B,§) + R? lull L2 (ar+y + R! ||UHL2(BR—BR/2)>

for some constant ¢ = ¢(n,d) > 0 independent of R > 0 small enough. Adding on both sides
llull £2(arz) We conclude that

lulzzcarey < e (120 + B lull 2oy + B lullzaar, ) )

where ¢ = ¢(n,d) > 0 does not depend on R > 0 small enough. In other words

(1—cR?) lullL2(arey < € (Hf”Lﬁ(B]*%) +RO! HU||L2(MR/2))

It remains to fix R > 0 such that ¢ R? < 1/2 and let K = MR /. this completes the proof of the
result.

Exercise 2.2.2. Show that the result of Proposition 2.2.3 remains true if the function a : M* —
R only belongs to L2 (M*) and satisfies the bound

loc
ja| < eyt

i M*, for some a > 0.
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Exercise 2.2.3. T Show that the result of Proposition 2.2.3 remains true if, near any of the p;,
the function a can be decomposed as a = d~y~2 + a; where d € R is a constant and the function
a; satisfies the bound

|G| < eyt

in Bgr,(p:), for some a; > 0 and provided we define

5 =R <<n22+j>2+c>

Exercise 2.2.4. T Show that the result of Proposition 2.2.3 remains true if, near any of the p;
there exists local coordinates x', ..., x™ in which the coefficients of the metric can be expanded as

1/2

gij = 6ij + O(|z|7)

and if in addition
Vgi; = O(|«|°~)

for some 3 > 0.

Exercise 2.2.5. ¥ Extend the result of Proposition 2.2.3 to handle the case where, near any of
the p;, the function a can be decomposed as

a = dz ’}/72 + le
where d; € R are constants and the function a; satisfies the bound
—24a;

|ai| < cv

in Br,(p:), for some a; > 0.

2.3 The kernel of the operator Aj

The results of the previous sections will now be used to derive the functional analytic properties
of the operator As. We start with the :

Theorem 2.3.1. The kernel of As is finite dimensional.

For the time being, let us assume that § # +6;. We argue by contradiction and assume that
the result is not true. Then, there would exist a sequence (u™),, of elements of L?(M*) which
satisfy Asu™ = 0.

Without loss of generality we can assume that the sequence is normalized so that

/ [u™|2 =202 dvol, = 1 (2.4)
M
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and also that
/ um ™ 202 dvoly = 0. (2.5)
M
for all m # m/. Using the result of Proposition 2.2.3 we obtain
[u™ =™ (|20 < cflu™ —u™ |2 (k) (2.6)

where ¢ = ¢(n,d) > 0 does not depend on m.

Using (2.4) together with the result of Proposition 2.2.1 we conclude that w,, is bounded in
W12(K). Now, we apply Rellich’s compactness result :

Proposition 2.3.1. ([?], Theorem ??) Given a smooth bounded domain Q@ C M, the imbedding
W2(Q) — 13(Q)
is compact.

This result allows us to extract some subsequence (which we will still denote by (u™),,,) which
converges in L?(K). In particular, the sequence (uy, ), is a Cauchy sequence in L?(K). In view
of (2.6) we see that the sequence (u,)n, is a Cauchy sequence in LZ(M*). This space being a
Banach space, we conclude that this sequence converges in Lg (M*) to some function w.

Clearly, passing to the limit in (2.4) we see that
/ lu> =22 dwol, = 1
Q
While, passing to the limit m’ — oo in (2.5), we get
/ umurP 2 dr =0
Q

and then passing to the limit as m tends to oo, we conclude that

/ wr 2024y =0
Q

Clearly a contradiction. This completes the proof when § # £d;, for all 7 € N. In order to
complete the proof is all cases it is enough to observe that if u € KerAs then u € KerAy: for all
0’ < §. Therefore, one can always reduce to the case where §’ # +4; for all j € N.

2.4 The range of the operator A;

We pursue our quest of the mapping properties of the operators As by studying the range of this
operator. Thanks to the results of the previous sections, we are in a position to prove the :
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Theorem 2.4.1. Assume that § # £6; for j € N. Then the range of As is closed.

Let u™, f™ € L3(M*) be sequences such that f™ := Asu™ converges to f in L2(M*). Since
we now know that Ker As is finite dimensional, it is closed and we can project every each u™
onto

{uéL?(M*) : /UUT72672d$:0 VveKerAg}
M

the orthogonal complement of Ker A5 in L§ (M), with respect to the scalar product associated to
the weighted norm. Therefore, without loss of generality, we can assume that u™ is L3-orthogonal
to Ker As.

Since f™ converges in L3(M*), there exists ¢ > 0 such that
1™ 22y < e (2.7)

Now, we claim that the sequence (u™),, is bounded in L2(M*). To prove this claim, we argue
by contradiction and assume that (at least for a subsequence still denoted (u™),,)

mlil}ﬁoo ||Um||L§(M*) =0

We set m m
Y and qgm /

m . -
™ || L2 (ar+)

L T —

llw™ | L2 (ar-)
so that Asv™ = ¢™. Applying the result of Proposition 2.2.1, we conclude that the sequence
(v™),, is bounded in W12(K) and hence, using Rellich’s Theorem, we conclude that a subsequence

(still denoted (v™),,) converges in L?(K). Now the result of Proposition 2.2.3 yields
o™ = o™ zeary < ¢ (9™ = 6™ iz + 0™ = 0™ lz21c)) - (2:8)

On the right hand side, the sequence (¢™),, tends to 0 in LZ(M*) and the sequence (v™),,
converges in L?(K). Therefore, we conclude that (v™),, is a Cauchy sequence in L?(M*) and
hence converges to v € LZ(M*).

To reach a contradiction, we first pass to the limit in the identity Asv™ = g™ to get that the
function v is a solution of Asv = 0 and hence v € Ker As. But by construction [|v|[zz(a+) =1
and also

/ My y 2072 dvoly =0

M

(since v € Ker As) and, passing to the limit in this last identity we find that [[v[|pz(a«) = 0. A
contradiction.

Now that the claim is proved, we use the result of Proposition 2.2.1 together with Rellich’s
Theorem to extract, form the sequence (4™),, some subsequence which converges to u in L% (M™).
Once more, Proposition 2.2.3 implies that

™ = gy < € (1™ = £ iz + 0™ = a2 - (2.9)
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This time, on the right hand side, the sequence (f™),, converges in L%(M *) and the sequence
(u™),, converges in L?(K). Therefore, we conclude that (u™),, is a Cauchy sequence in L3(M*)
and hence converges to u € LZ(M*). Passing to the limit in the identity Asu™ = f™ we conclude
that Asu = f and hence f belongs to the range of As. This completes the proof of the result.

2.5 Fredholm properties for As

It will be convenient to identify the dual of L3(M*) with L? ;(M*). This is done using the scalar
product

(u,v) ::/ uvy 2 dvol, (2.10)
M
Clearly, given v € L2 ;(M*), we can define T, € (L%(M*))/ by
T,(u) = (u,v)

Moreover, we have
ITollzzarmyy = Nellzz, e

Conversely, given T € (L2 (M*))l there exists a unique v € L? ;(M*) such that (u,v) = T'(u) for
all u € L3(M™).

We define Aj, the adjoint of A;
A+ (L)) — (L5(M7))
is defined to be an unbounded operator. An element T € (Lg(M*))/ belongs to D(Aj), the
domain of A}, if and only if there exists S € (L} (M*))I such that
T(Asv) = S(v)
for all v € D(As). We will write A3(T) = S.

Granted the above identification of (L%(M*)), with L2(M*) it is easy to check that we can
identify Az with A_s. Indeed, if we write T = T,, and A}(T) = T}, for u, f € L* ;(M*), then, by
definition

Tu(Asv) := (u, Asv)

and
A5(T)(v) :=(f,v)

for all v € D(As). Hence, we have

/ u(Ag + a)vdvol, = / fvy2dvol,
M M
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for all v € D(As). This in particular implies that 72 (A, +a)u = f in the sense of distributions.
Since u, f € L? 3(M*), we conclude that u € D(A_s) and f = A_; u.

Conversely, if u € D(A_s), we can write for all v € D(Ay)
(u, Asv) = / u(Ag + a)vdvoly,
M

= / v (Ag + a)udvoly,
M
= (A_su,v)

The integrations by parts can be justified since, according to the result of Proposition 2.2.1, we
have Vo € L2 | (M*), Vu € L*; (M*), V?v € L} ,(M*) and V?u € L?; ,(M*). Therefore
T, € D(A}) and A5(Ty) =Ta_su-

With these identifications in mind, we can state the

Theorem 2.5.1. Assume that 0 # £d; for all j € N. Then
KerAs = (ImA_5)*"

and
ImAs = (KerA,(;)J'

The first part is a classical property for unbounded operators with closed graph and dense
domain (see Corollary I1.17 in [?]). The second result follows from classical results for unbounded
operators with dense domains, closed graph and closed range (see Theorem II.18 in [?]).

Observe that, because of our identifications, F- is obtained from F using the scalar product
defined in (2.10).

Very useful for us will be the :

Corollary 2.5.1. Assume that § # £0; for all j € N. Then As is injective if and only if A_s is
surjective.

2.6 The deficiency space

Even though the previous results seem already a great achievement, since it will provide right
inverses for some operators, we will need a more refined result. As usual, this result for operators
defined on the punctured manifold M* are obtained by perturbing the corresponding results in
Euclidean space.

To start with, let us prove the :
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Lemma 2.6.1. Assume that 0 # £0;, for j € N. There exist an operator
Gy : L2(BY) — LA(BY)
and ¢ = ¢(n,8) > 0 such that for all f € L(B;), the function u:= Gs(f) is a solution of
o Au = f

in B} and

lullz2(ssy + [IVullzz_ () + ||V2UHL§_2(B;) <cllfllzzsy

At first glance this result looks rather strange wince we are not imposing any boundary data.
Nevertheless, some boundary data are hidden in the construction of the operator Gs. Observe
that we state the existence of Gy and do not state any uniqueness of this operator !

The proof of the existence of G relies on the eigenfunction decomposition of the function f.
We decompose as usual
F=>1
j=0

where f(r,-) € E; for all j € N. Let jo € N be the least index for which
0] < 45,

We set

F=Y 1

Jj=jo
Clearly f € L3(B}) and, for all R € (0,1/2) one can solve

|(E|2A1~LR = f in Bl—BR
ur = 0 on 0B1 UJBpg
The existence of g follows from Proposition 1.1.2 and we have the estimate

lirllL2(8—Br) < I fllL2m,—Br)
for some constant ¢ = ¢(n, R) > 0. We claim that there exists a constant ¢ = ¢(n,d) > 0 such
that ~

larllz2,-Br) < clfllL2,-Bg) (2.11)
Here the norm in L%(Bl — BR) is nothing but the restriction of the restriction of the norm in

L3(Bj) to functions which are defined in B; — Bg. The proof of the claim follows the Part 1 of
the proof of Proposition 1.5.1. We omit the details.
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Arguing as in the proof of Proposition 1.2.1 we conclude that there exists a constant ¢ =
¢(n,d) > 0 such that

IVirlrz  (B,—Br) < cllflz2(i—Br)

In particular, given R’ € (0,1/2), there exists ¢ = ¢(n, d, R') > 0 such that
larllLz(8,-Br) + IVrllL2(s, -5 < ¢ HfHL?;(B;‘)

for all R € (0,R’). Then using Rellich’s Theorem together with a simple diagonal argument,
we conclude that there exists a sequence of radii R; tending to 0 such that the sequence (g, );
converges in L?(B; — Bg), for all R € (0,1/2). Passing to the limit in the equation we obtain a
solution 4 of

|z2Aa = f in B
(2.12)
u = 0 on 0B,

Moreover, passing to the limit in (2.11), we have the estimate
lall2zry < cllfllzzsy

To finish this study observe that the solution of (2.12) which belongs to L%(Bj) is unique. To
see this, argue by contradiction. If the claim were not true there would exists two solutions and
taking the difference we would obtain a function w € L3(Bj) satisfying

z?Aw = 0 in B:
|| 1
o = 0 on 0B;

Performing the eigenfunction decomposition of w as

W=
Jj2Jjo
we find that . .
Wy =17 g4z i,
where ¢;,7; € E;. Using the fact that w; € Lg(Bf) we conclude that ; = 0. Next, using the
fact that w; = 0 on 0B, we get ¢; = 0 and hence w = 0.

Therefore, we can define

Gs(f) = .

It remains to understand the definition of G5 acting on f;, for j < jo — 1. For the sake of
simplicity, we assume that J; = 0 (When §; = 0, the formula has to be changed according to
what we have already done in Part 3 of the proof of Proposition 1.5.1) and we use an explicit
formula

1 2-n s 7 n-a_s 2on_¢ [T n-a s
Gs(fj) = 35 (r 2 +5a/ tT % fi(t)dt —r 2 5]/ thz o fj(t)dt>
J * *
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where x = 0 if § > §; and x = 1 if 6 < —¢;. The estimate follows at once from the arguments
developed in Part 2 of the proof of Proposition 1.5.1. We omit the details.

Let us now provide a few applications of this result.

Application # 1 : The first application is concerned with the extension of the previous result
to the operator defined on the manifold in a neighborhood of one puncture.

Lemma 2.6.2. Assume that § # £6;, for j € N. Given p; € M one of the punctures, there exists
R; = R(p;,n,d) > 0, an operator

G+ L3(BR, () — L3(B, (p2)

and ¢ = ¢(n, 8, p;) > 0 such that for all f € L3(B}, (pi)), the function u := Ggi)(f) is a solution
of
72 (Ag +a)u=f

in By (pi) and

lullzz g, oy + 1VUllLz_ B, o) + ||V2UHL§72(B§i w) < clfllzzess, @i

This result follows from a simple perturbation argument. First observe that, a scaling argu-
ment shows that the result of Lemma 2.6.1 holds when the radius of the ball, which was chosen
to be 1, is replaced by R. The corresponding operator will be denoted by G5 r and the estimate
holds with a constant which does not depend on R > 0. We leave this as an exercise.

Thanks to the result of Proposition 2.1.1 we can write

”72 (Ag — Acyel + a) u”Lg(BEi(;ﬂi)) < cR? (lluHL?(BEi (:)) T HVUHL:‘;A(B}/ ()

7

HIV2ullzz s, (pi)))

i

provided R > 0 is small enough. This implies that
If = As 0 G5 fllezsy, @) < cR? 112253, o)

for some constant ¢ = ¢(n,d) > 0 which does not depend on R. This clearly implies that the
operator A; o G5 g is invertible provided R is fixed small enough, say R = R;. To obtain the
result, it is enough to define ‘

Gy = Gsn, 0 (450 Gsr,)-
The relevant estimate then follows at once.

Application # 2 : Recall that the functions

2 7500 6
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are harmonic in Bf provided ¢ € E;. Building on the result of the previous application, we
now prove that one can perturb these functions to get, near any puncture p; a solution of the
homogeneous problem associated with the operator 7% (A, + a). This is the content of the
following :

Lemma 2.6.3. For all puncture p; € M, given j € N and ¢ € Ej, there exists Wiﬁ(l) which s
defined in B}, (p;) and which satisfies

7 (B +a) W =0
in By (pi). In addition,
WD — ol 54 6 € L3(By, ()
for all § < £6; + 2. Finally the mapping
¢ € B — Wil
is linear.

In this result, R; is the radius given in Lemma 2.6.2 and = are normal geodesic coordinates
near p;.

The proof of this Lemma uses the following computation which follows at once from Propo-
sition 2.1.1

VP (Bg+a) |z T ¢ = 52 (By = Aewer +a) [2] 7 % ¢ € LF(BR, (mi))

for all 6 < &0, + 2. The result then follows from Lemma 2.6.2.

For each i = 1,...,k, we define x(¥ to be a cutoff function which is identically equal to 1 in
Bpg, /2(pi) and identically equal to 0 in M — Bspr, /4(p;)-

The main result of this section is :

Proposition 2.6.1. Given § < &', §,8' # +6;, for all j € N. Assume that w € L2(M*) and
f € L% (M*) satisfy
7 (Ag+a)u=f

in M*. Then, there exists v € L2,(M*) such that
u—v € Dsg = Span {X(i) Wﬁ;“, 9 EL; §<+6; <8’}

In addition
HU||L§,(M*) + lu = vlp,, < C(”fHLg/(M*) + llull z2(ar+))

for some constant ¢ = ¢(n, §,d’) > 0.
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The proof of this result relies on the corresponding result for the Laplacian in the punctured
unit ball.

Lemma 2.6.4. Given§ < &', 8,0 # £6;, for allj € N. Assume thatu € L2(B}) and f € L}, (B7)
satisfy
2 Au = f

in Bf. Then, there exists v € L%,(B7}) such that
u—v € Dy = Span{|x|277nij¢, . pEE; §<+6; <8’}

In addition
[0z, (By) + llu = v, o < cflle2,5y) + lullLzesy)

for some constant ¢ = ¢(n, 6,0") > 0.

To prove the Lemma, we use the result of Lemma 2.6.1 and set v = G f € L%, (Bj). Therefore
|z|2 A (u—7) =0

in BY. We have
H'DHLg,(Bi‘) <c Hf”Lg,(Bl*)

for some constant ¢ = ¢(n,d) > 0. We set w = u — v which we decompose as usual
w = Z U.)j
J
where w;(r,-) € E;. We fix jo to be the least index for which
|5| < 6j0 and |(5l| < (5j0
We define
w = Z wj
Jj=2Jjo
We claim that @ € L% (B7) and also that
[vllzz, By < cllwlizeis, -5, .

for some constant ¢ = ¢(n,d) > 0. The proof of the claim follows the arguments of Part 1 in the
proof of Proposition 1.5.1. We omit the details.

Next, observe that, for j = 0,...,jo — 1 the function w; is given by

2—n ) 2—n_ 5.
wj =z T gy +|z| 7T %y
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for some ¢;,v; € E;. Observe that ¢; = 0 if §; < § and ¢; = 0 if —6; < J since w; € L2(B}). It
is easy to see that
¢jllLz(sn—1y + 19jllL2(sn-1) < ¢ ||wj||L2(BﬁBl/2)

for some constant ¢ = ¢(n,j) > 0.

We set
2— 2—

v=o+w+  d el T4 > 2] 50

§=0,....50—1, &;>6 G=0,..,jo—1, —8;>8

so that
2—n ) 2—n_ 5.

u—v= Z |1’|T+5J ¢]+ Z |x| 2 6] ’l]ZJ]

§=0,....50—1, 6<8;<8 J=0,....jo—1, b6<—8;<8

The estimate follows from collecting the above estimates. This completes the proof of Lemma 2.6.4.
We proceed with the proof of Proposition 2.6.1. Choose
6 >inf(8',0 +1)

such that & # %0;, for all j € N. Using the result of Proposition 2.2.1 we have

||VU||L§71(M*) + ||V2U||L§72(M*) < C(||f|\L§/(M*) + Hu||L§(M*))
Using the decomposition given in Proposition 2.1.1, we conclude that, near any puncture p;, we
have

|x|2 Au=f— |33|2 (6g = beuct +a) € L%(B}%)
We apply the previous result which yields the decomposition
u=v-+ Z |x|%i‘sj 0]

S<+68; <6

where ¢ € E;. Next use the result of Lemma 2.6.3 and replace all \x|2%ﬂi51 ¢ by x¥ Wiéi) to
get the decomposition

2—n ] 3 +(i i +(¢
w= ot D0 (e FE o XOWI) |+ YT XOWY
0<E6; <o’ 0<E6; <8

Observe that the function
~ 2—n B ; +(2 *
a=vt Y (al T e xO WD) e L3
S<+6; <8
and also that v2 (A, +a) @ = fe L2, (M*). If 6 = & then the roof is complete. If not, apply the

same argument with u replaced by @, f replaced by f and ¢ replaced by é and proceed until the
gap between d and ¢’ is covered.

We now give some important consequences of this result :
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2.6.1 The kernel of A5 revisited :

Thanks to the result of Proposition 2.6.1 we can state the :

Lemma 2.6.5. Fiz 6 < ' such that 6,0 # +6;, for j € N. Assume that u € L3(M*) satisfied
Y (Ayu+au)=0
in M*. Then u € L2, (M*) provided the interval (8,8') does not contain any £6;, for some j € N.

This Lemma is a direct consequence of the result of Proposition 2.6.1. It essentially states
that the kernel of the operator As does not change as § remains in some interval which does not
contain any +4;, for j € N.

2.6.2 The deficiency space :
We now define
Definition 2.6.1. Given 6 >0, § # 0;, for all j € N, the deficiency space Ds is defined by

Ds .= Span {X(l) Wjidgl)7 : ¢ S Ej, -0 < d:5] < (5}

s

Observe that the dimension of Ds can be computed as follows

dimD;s = 2 Z dim E;
5,6;<16]

As a first by product, we obtain

Proposition 2.6.2. Given § > 0, 0 # 0;, for all j € N. Assume that As is injective. Then the
operator
As: LE(M*)®Ds — L3(M™)

u — 2 (Agu+tau)

is surjective and

KerA_s = Ker As
As a consequence of the previous Proposition, we have the

Corollary 2.6.1. Given 6 >0, § # 9;, for all j € N. Assume that As is injective. Then

1
dim Ker A_s = codimIm As = 3 dim Dg
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Under the assumptions of the Corollary, we have
dimKer A_s = dim Ker A4

and
dim Ds = dim dim Ker A_s + codim Im A

But, by duality, we have dim Ker A_5 = codim Im As. The result then follows at once.

Exercise 2.6.1. 1 Extend the results of Corollary 2.6.1 to the case there As is not injective.



Chapter 3

Weighted C%¢ analysis on a
punctured manifold

3.1 From weighted Lebesgue spaces to weighted Holder
spaces

As far as linear analysis is concerned the results of the previous sections are sufficient. However,

we would like to apply them to nonlinear problems for which is will be more convenient to work

in the framework of Holder spaces. The purpose of this section is to explain how the analysis of
the previous section can be extended to weighted Holder spaces.

We begin with the definition of weighted Holder spaces.

Definition 3.1.1. Given £ € N, a € (0,1) and § € R, we define Cﬁ’o‘(M*) to be the space of
functions u € CZ’O‘(M*) for which the following norm

loc

k
n=2_gs
gt arey = lullctogary + > sup p"% 7 u(Bzpy, (0 ) et (Bs—mrcr,,
° ° i—1 PE(O,R) '

is finite.

For example, the function 7> %% € Cg;o‘ (M*) if and only if § > §'. Tt also follows directly
from this definition that
Cy¥(M*) C L2, (M™)

for all § > §'.

Lemma 3.1.1. The space (Cf’a(M*), Il - HCZ,Q(M*)) is a Banach space.
5

39
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Exercise 3.1.1. Show that the embedding
cho(M*) — o' (M)
is compact provided ' + o’ <L+« and § < §'.

The last easy observation is that the operator
As: CPO(M™) — Co (M)
u — Y2 (Agu+ au)
is well defined and bounded.

The extension of our results to weighted Holder spaces rely on the following regularity result.

Proposition 3.1.1. Assume that 6,6’ € R are fized with 6 < §'. Further assume that the interval
[0,0'] does not contain any £6; for j € N. Then, there exists ¢ = c(n,d,¢") > 0 such that for all

u, f € L3(By(pi)) satisfying
7 (Ag+a)u=f

in M*, if f € C?}a(M*) then u € C?}a(M*) and

ez ey < © (1 llet apey + Nl z2are)

Before we proceed to the proof of this result, let us explain how it can be used.

Application # 1: The first application of the result of Proposition 3.1.1 is concerned with the
kernel of the operator Ag.

Lemma 3.1.2. Assume that 6 € R is fived with 6 # 0;, for j € N. Further assume that
u € L2(M*) is a solution of
Y (A, +au)=0

in M*. Then u € Cy™(M*).

In other words, in order to check the injectivity of Ag, it is enough to check the injectivity of
As, which in practical situation is easier to perform.

Application # 2 : Observe that, if u € L2(M*) is in the kernel of As then u is also in the
kernel of Ag for all §' < § since LZ(M*) C L%(M*). However, it follows from Proposition 3.1.1
the the following is also true :

Lemma 3.1.3. Assume that 6 € R is fivred with § # 0;, for j € N. Further assume that
w € LE(M*) is in the kernel of As. Then u is also in the kernel of As for all &' > § for which
[0,0'] does not contain any £4;, for j € N
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Application # 3 : The third application of the result of Proposition 3.1.1 is concerned with
the extension of the result of Proposition 2.6.1 to weighted Holder spaces and this will be useful
when dealing with nonlinear differential operators. We have the :

Proposition 3.1.2. Given § < &', 8,8 # +6;, for all j € N. Assume that v € L3(M*) and
fe Cg}a(M*) satisfy
7 (Ag+a)u=f

in M*. Then, there exists v € C?;Q(M*) such that
u—v € Dsg = Span{x(i) Wj::gi), . pEL; § < +6; <0’}

In addition
HU||c§;Q(M*) +[lu— ”HDM/ < C(”f”cg;a(M*) + ||UHL§(M*))

for some constant ¢ = ¢(n, d,0") > 0.

There are important by products of this result :

Given 6, 6 > &g, 6 # §; for all j € N. Assume that Aj; is injective, then, according to the
result of Corollary 2.5.1, the operator A_s is surjective and hence there exists

Gos L2 5(M") — L2,(M").
a right inverse for A_s (i.e. A_50G_s =1). In particular, given
feCy(M*) C L2 5(M"),
the function u := G_; f € L% ;(M*) solves
A su=f
in M*. Applying the result of Proposition 3.1.2, we see that there exists v € Cg’o‘ (M*) such that
u—v € Ds := Span {x¥) Wﬁ@, P EE; —§ < £6; < 6}

and in addition
lollgze (arey + 1 = vllps < el flleoaqarey + lullzzar-))
for some constant ¢ = ¢(n,d) > 0.

If 6 € (=0, dp) and if A; is injective. Then, according to the result of Lemma 3.1.3 the operator
A_s is also injective for all ¢’ € (—dg,0¢). Therefore, according to the result of Corollary 2.5.1
the operator Ag is surjective. This implies that there exists

G : L3, (M*) — L, (M™).
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a right inverse for As. In particular, if —dg < §' < d < dg, given
fecy (M*) c L3, (M),
the function u := Gg f € L% (M*) solves
Assu=f
in M*. Applying the result of Proposition 3.1.2, we see that u € C?’Q(M*) and in addition
[ullgz.arey + lu = vllp; < c(fllgoearey + lullLzar)
for some constant ¢ = ¢(n, ) > 0. Collecting these result, we have proven the :

Proposition 3.1.3. Given 6 > —dg, 6 # 6;, for all j € N, let us assume that As is injective,
then the operator
As: CoY(M*)® Ds — Co™(M*)

u — Y2 (Agu+ au)
is well defined, bounded and surjective. In addition dim Ker(fl(;) = % dimD:.
In particular, under the assumptions of the Proposition, there exists an operator
Gs : CP*(M*) — C3*(M*) @ Ds.
which is a right inverse for the operator 72 (A, + a).

As a special case, when d € (dg,dp), then Dy is empty and the above statement simplifies into
the :

Proposition 3.1.4. Given 6 € (—dp,00). Let us assume that As is injective, then the operator
A is an isomorphism for all §' € (—dy,do).

We now proceed with the proof of Proposition 3.1.1. We start with the :

Lemma 3.1.4. Assume that 0,8’ € R are fized with § < §'. There exists ¢ = ¢(n,0,8") > 0 such
that for all u, f € LZ(M*) satisfying

72(Ag+a)u:f

in M*, if f € C%*(M*) then u € C;*(M*) and

llleze ey < € (1Nl apey + Nl z2care)

Away from the punctures p;, the regularity of u follows from classical elliptic regularity :
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Proposition 3.1.5. ([?], Theorem ??) Assume that Q' CC Q is fized. There exists ¢ =
c(n, ¥, Q) > 0 such that for all u, f € L*(Q) satisfying

(Ayj+a)u=f
in Q, if f €C%(Q) then u e Cy*() and

ulleza(ary < ¢ ([ fllcoay + lullz2o)

Close to the punctures, we use normal geodesic coordinates together with (2.1) and write the
equation satisfied by u as

2% (Acuct tt + O(|2|?) Opi Ops u + O(|2]) Opiu + O(L)u) = f

For all r € (0, R) we defined the rescaled functions

~

i(x) = u(Rx) and fl@)= f(Rx)
so that .
1212 (Acue @ + O(R?) 8,1 Oy Gt + O(R2) 0yiti + O(R) 4) = f
in By — B1/2. Applying the result of Proposition 3.1.5 with Q = By, — B; and ' = B3y — 33/4
we conclude that

ez Baja—asa) < € (1flevn (- + il (251 )

But we have

2—n

p 2ong g 5
||f|‘c07a(B2—Bl) <cR7TT Hf”cg'a(M*) <cR7T T ”f”cg’a(M*)

and ]
I 2=na s
lll 22—,y < e R7Z 70 [lull L2 (are

for some constant ¢ = ¢(n, d,4’) > 0. Therefore, we conclude that
~ 2-n
s By ooy < CRTH (1 ety agey + il zzare)
which by definition of the weighted Holder norm, implies that
luleze g < ¢ (1 letearey + el 2 )

This completes the proof of the Lemma.

The next result we will need reads :
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Lemma 3.1.5. Assume that § < ¢’ € R and further assume that [0,6'] does not contain any %9,
for all j € R. Letu € Cy*(B;) and f € Cy*(B}) satisfy

2 Au = f

in Bf. Then u € Cg;*(Bf) and

||U||c§;“(Bl*) <c (Hf“cg;“(éf) + HuHc;’v“(B;))

The proof of this last Lemma goes as follows. As usual, we perform the eigenfunction decom-
position of both v and f in B}

u:Zuj and f:ij
J J

We define jo € N to be the least index for which |4| < J,,. For j =0,...,,jo — 1 one can
use the explicit formula we have provided in the proof of Proposition 1.5.1 to show directly that
uj € C3*(Bj) and that

luillezeag) < e (illeoap) + lusllez=a))

ﬂ:ZUj and fNZZ‘f]

Jj2Jjo J=jo

We denote

The strategy is now to construct ¢ € C?}O‘ (BY) solution of
jo? AT = f

in BY with o = @ on dB; and also to prove that

||77Hc§;<*(3;) sc (Hf”Cg;“(Bl*) T HaHC?“(BT)) (3.1)

Assuming we have already done so, the difference @ — v is harmonic in B} and equal to 0 on 0B;.
The eigenfunction decomposition of the function @ — v shows that

i—v= (|x|2‘T"+5j b; + |z 2 %)
J>Jjo

where ¢;,1; € E;. But u —v € C?“(Bf) and hence 7); all have to be equal to 0. Using the fact
that @ — ¥ = 0 on 0By, we also get that ¢; = 0. Hence & = . This will complete the proof of
the Lemma.
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Therefore, the only missing part is the existence of ¥ and the a priori estimate (3.1). To
simplify the argument, let us first reduce to the case where & = 0 on dB;. To this aim, we choose
a cutoff function x which is radial, identically equal to 1 on By — B34 and identically equal to 0
in Bi/3. Then, define

and set R
W=9—-70 and §=f—|z]*Ad
so that the equation we have to solve now reads
> Aw = g
in B} with w = 0 on 0B;. Obviously the existence of ¥ is equivalent to the existence of @ and
(3.1) will follow at once from
||w||c§;“(él*) <c ||§||cg;a(3;)
since
~ 2 -~ ~ ~
If = || A7v60||c§;°‘(1§1*) <c (Hf”c?;a(Bf) + ||u||c§=°“(1§f))

The existence of w follows from the arguments already developed to prove Proposition 1.1.1.
However the derivation of the estimate is more involved an requires new technics since it is not
possible to construct barrier solutions anymore. In any case, for all R € (0,1/2), we solve

|z Adg = g
in By — BR with wr = 0 on 0B U 0BRg.

We claim that there exists a constant ¢ = ¢(n,d’) > 0 such that

’

n—2 1 n—2
sup 2|7~ |ér| < ¢ sup e~ |
1

B1—Bpgr

When R remains bounded away from 0, the claim is certainly true and follows from standard
elliptic estimate (use Proposition 1.1.2 and Proposition 1.1.3). In order to prove the claim, we
argue by contradiction and assume that, for a sequence R; tending to 0, for a sequence of functions
gi € Cg}a(Bf), we have

n-2_ s .
sup |z "= % |gi] = 1
By

while, for the corresponding sequence of solutions wg,
n—2 ’
— n2 5 -
A; :=sup|z| 2 | @R, |
B

tends to co. One should keep in mind that the eigenfunction decomposition of both §; and g,
have no component over E; for j < jo.
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Observe that the function wg is continuous and we can choose a point x; € By — Bp where
A; is achieved. We define the rescaled functions

w;(2) := A7 g, (

x| x) and gi(z) == Ai_1 Jr,(

x| x)

Obviously
|z[* Ay = g

in their common domain of definition.

Using the result of Proposition 1.1.5, we get the estimate

1Y@, (515001 < € (188 (814 2) + 15l (51— )
for some constant ¢ = ¢(n) > 0 And hence
VR | Lo (B - By 0) < ¢ (1 + Ai)

This implies that
2" 70 iR, | < c(1+ R ) (1—R)(1+ A

for all & € By — Bj,4. Therefore, if p € (3/4,1) is fixed so that
c(l+p" T ) (L-p)<1/2

we conclude that, for i large enough, z; ¢ By — B,,.

Working near Bp and using similar arguments one can show that there exists p € (1,3/2)
such that z; ¢ B; r — Br. Therefore we conclude that

R<pR<|z;|<p<1 (3.2)

As in the proof of Proposition 1.1.1 we pass to the limit for a subsequence of i tending to oo
to obtain W a solution of

lz|? A =0
in one of the following domains
(i) R™* (which occurs when ry :=lim1/|z;| = oo and ry := lim R;/|z;| = 0).
(ii) R™ — B, (which occurs when 7 := lim 1/|x;| = oo and r; := lim R;/|z;| < 1).

(iii) By, — By, (which occurs when ro :=lim1/|z;| > 1 and r;lim R; /|x;| < 1).

(iv) By, (which occurs when 7o :=lim1/|z;| > 1 and ry := lim R; /|z;| = 0).
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Observe that, using (3.2), we always have r1 < 1 < rg

In addition,
sup |z|"z 7% || = 1 (3.3)

where the supremum is taken over the domain of definition of @ and finally @ = 0 on either 0B,
if either r; or rs is finite. As usual, we perform the eigenfunction decomposition of w as

W=
Jj2Jjo
only depends on n and 4. It is easy to rule out case (iii) since & is harmonic in the annulus and

has zero boundary data. In order to rule out case (iv), it is enough to look at the behavior of the
function w; near 0. Using (3.3) together with |§| < J; we conclude that

~ 2—n .
W = |z| 2 % ¢,

for some ¢; € E;. But @; = 0 on dB,, and hence w; = 0. The other cases can be ruled out using
similar arguments and we leave the details to the reader.

Hence @ = 0 and this clearly contradicts (3.3). This completes the proof of the claim.

Now that we have proven the claim, we use elliptic estimates and Ascoli’s Theorem to pass
to the limit as R tends to 0 in the sequence wgr and obtain a solution of

|z[> Aw = g
in B} with w =0 on 0B; and

8=

n=2_ s _ n—2
sup |z| 2 |w| < csuplz| = % [g]
B¥ B*

1 1

To obtain the relevant estimates for the derivative, we use again the result of Proposition 3.1.5.
This completes the proof of Lemma 3.1.5.

To complete the proof of Proposition 3.1.1, we argue as follows : We start by applying the
result of Lemma 3.1.4 which implies that u € C;a(M*) and hence, thanks to (2.1) we can write,
near any of the punctures

o> A € €3 (BR(p;)

for & = min(d’,0 — 2). Next we apply the result of Lemma 3.1.5 which guaranties that u €
C?O‘(B}‘%(pj)). If 6 = ¢’ then the proof is complete. If not, we iterate the argument starting from

6 and proceed in this way until the interval [§,6"] has been entirely covered. The proof of the
estimate follows from the estimates given in Lemma 3.1.4 and Lemma 3.1.5.
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3.2 An example

As a typical example, we consider the study of the operator Agr + A where A € R.

Given p1,...,pr € S™, we define v to be a smooth positive function on S™* which coincides
with the distance to p; in some neighborhood of p;. Then, we define the operators

As: Lg(S"*) — L?(S”*)
u — 2 (Agn u+ Au)

and
As: CPY(S™*) —  CP(S™)

u — Y2 (Agnu+ Au)

Let us assume that A is not an eigenvalue of —Agn» (namely A # j (n — 1+ j), for all j € N).
Then the theory we have developed leads to the following :

Lemma 3.2.1. Assume that A is not an eigenvalue of —Agn, then the operators As and Ag are
injective for all § > 25,

The proof of this result goes as follows. First observe that if u € Ker As, then, according to
the result of Proposition 3.1.1, u € Ker As and hence |u| < ¢y 2" and |Vu| < ¢y~ 5+9. Using
these, once can show that the function ¢ is a solution in the sense of distributions of the equation

ASH u + )\ u = 0
Regularity theory then implies that u € C*°(S™), and hence u = 0.
Exercise 3.2.1. Prove that if the function u solution of Agnu + Au =0 in S™ x satisfies |u| <

072%*“5 and |Vu| < C’}/_%J’_é, then u is a solution of Agnu 4+ Au = 0 in S™, in the sense of
distributions.

The consequences of this result are :

Corollary 3.2.1. Assume that X is not an eigenvalue of —Agn, then the operator As is an
isomorphism for all |5| < “52.

Exercise 3.2.2. If )\ is not an eigenvalue of —Agn, then the operator As is surjective for § €
(=5 — 17, Q_T" —4), for all j € N. Characterize the kernel of this operator according to the value

of j.
Let us now assume that A = 0. The result of Lemma 3.2.1 is now changed into :

Lemma 3.2.2. The operators As and As are injective for all § > ”7_2
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Exercise 3.2.3. The operator As is also surjective for 6 € (=% — j, Q_T" —4), for all j € N.
Characterize the kernel of this operator according to the value of j.

Let us now assume that A = n, the second eigenvalue of —Agn. Then, following similar
arguments, we have the :

n+2

Lemma 3.2.3. The operators As and As are injective for all § > "5=.

The proof of this result proceeds as before, fist we show that any element in the

Lemma 3.2.4. Assume that Span{pi,...,px} = R"TL. Then the operators As and As are
injective for all § > %72

Exercise 3.2.4. The operator As is also surjective for 6 € (=4 — j, 27?” —J), for all j € N.
Characterize the kernel of this operator according to the value of j.
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Chapter 4

Analysis on ALE spaces

4.1 Asymptotically Locally Euclidean spaces

We will say that a complete, noncompact n-dimensional manifold (M, g) is an ALE space (As-
ymptotically Locally Euclidean space) if it can be decomposed into the union of a compact piece
K CC M and finitely many ends &1, ..., & which are diffeomorphic to the complement of a ball
in R™ and on which there exists coordinates (z!,...,2™) in which the coefficients of the metric g
satisfy

gij = 0i; + O(|z[~%)

and
Vigi; = O(lx| ")

for some o > 0.

We would like to study operators of the form
Ag+a
where the function a = M — R satisfies
Via = (’)(|x|_2_ﬁ_€)

for some 3 > 0, on each end &;.

We define a smooth positive function v : M — (0, 00) which coincides with |z| on each end
&j of M. As in the case of a punctured manifold, we defined weighted L2-spaces and weighted
Holder spaces by defining the norms in these spaces as follows

1/2
lallzzony = ([ a2~ duo,

o1
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and
71,—2_5
g qary = Nellewe ey + 3 59 75 = (o Vv 5,5,
. s
7Tz

As before we define the unbounded operator
As: LAM*) —  L3(M)
u — 2 (Ayju+au)
as well as the bounded operator
As: CPO(M*) — (M)
u — Y2 (Agju+au)
The key remark is that, if v and f solve
jaf2 Au = f
in B} then, setting
v(z) = 2P u(e/[2]?)  and  g(x) = [>T f(z/|z]?)

one can check that
> Av = f
in R" — Bj.
Further observe that

/ W () || 2 da = / R (y) [y 2 dy
B4 n—B,

and
HUHC?"‘(BI‘) = HU”Ci’?(R"fo)

These remarks allow one to extend all the previous results on a punctured manifold to this
noncompact complete setting. We leave the details to the reader.

In particular, we have the :

Proposition 4.1.1. Given 6 < 6y, 6 # —6;, for all j € N, let us assume that As is injective,
then the operator
As: GO (M) @Dy — Cy (M)
u — 92 (Agu+au)

is well defined, bounded and surjective. In addition dim Ker(As) = % dimD:s.
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As usual the deficiency space is defined by
Ds := Span {X(i) W]%dgi), : peE; —0 < £6; < 4}

where the functions Wjj;ii) are solutions of v% (A, + a) WJZE” =0 on &; and satisfy
+(4 2-n5. 2-ng 5.
WD = 12550 g 4 O(|a| 7 40577)
at infinity, for some 7 > 0.

Observe that when § € (—dg,d0), then Ds is empty and hence, under the assumption of
Proposition 4.1.1, the operator Ay is an isomorphism, for any ‘6’ € (—dg, do).

4.2 An example from conformal geometry

Consider, in dimension n > 3 the semilinear elliptic equation

—2) =
% s — 0 (4.1)

The reader should check that ug is a solution of (4.1). The operator we would like to study is the
linearised operator about the solution ug. Namely

Au +

where u > 0 in R™. We set

n(n + 2)

L=A+—— "
M CFArDE

Observe that we are precisely in the setting described in the previous section. We define a function
~ which is positive and coincides with |z| on the complement of the unit ball and the unbounded

operator
As: L3(M*) — L3(M?)

u — P (Aut D )

We prove the :

Lemma 4.2.1. The operator As is injective provided § < —%5

The proof goes as follows. Any solution w € LZ(R™) of Asw = 0 belongs to C?’Q(R”). We
then proceed to the eigenfunction decomposition of a solution w of Asw = 0 as

U):ij
J



54 CHAPTER 4. ANALYSIS ON ALE SPACES

First let us show that wyg = 0. The idea is that the function wg satisfies a second order
ordinary differential equation

s mn—1 n(n + 2) 4 B
<8r +— Or + 7 TESFRE wo =0 (4.2)

but, we know an explicit solution of this homogeneous equation namely

n—2
2

wo =

Ug + 7 Ortig

The fact that wg is also a solution of this equation either follows from direct computation or from
the observation that (4.1) is invariant under scaling in the sense that, whenever u is a solution of
(4.1) then so does

Ug(x) = a7 u(ax)

for all @ > 0. Taking the derivative with respect to & when a =1 in

we conclude that ( 2)

n(n + g

TU& 2 (8aua) =0

Just observe that Wy = Oqta|a=1. It turns out that the other independent solution of (4.2) but
this solution blows up at the origin like a constant times 72~ and tends at infinity to some

constant. This shows that wg has to be a multiple of wy. But the function wg is asymptotic to
2—n

A(Oqua) +

a constant times r at infinity and is certainly not bounded by a constant times 7*7* =% when
0 < Q*T" Therefore, we conclude that wg = 0.

The fact that wy; = 0 follows from a similar argument. This time we use the invariance of
the problem under translations. The FE; valued function w; satisfies a second order ordinary
differential equation

o n—=1. n-1 nn+2) 4 B
(8,+ Ot ) O (4.3)

but, we know n explicit solutions of this homogeneous equation namely

u~)§j) = (9ij0

for j = 1,...,n. The fact that u?%j ) are solutions of this equation either follows from direct
computation or from the observation that (4.1) is invariant under translation in the sense that,
whenever u is a solution of (4.1) then so does u(- + ace;). Further observe from the definition of
-

up that ng) decay like 71~™ at infinity and hence are not bounded by a constant times Pt

when § < —%. As above we conclude easily that, on the one hand, w; being smooth at the origin
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it has to be a linear combination of the ng ) and on the other hand does not have the right decay

at infinity unless it is identically equal to 0. This shows that w; =0

It remains to show that w; = 0 for all j > 2. this time an explicit solution of the corresponding
ordinary differential equation is not available. However, using Hardy’s inequality, we can show
that indeed w; = 0. The proof is very similar to what we have already done in Part 1 of the
proof of Proposition 1.5.1. We set

w;(r,0) = w;(r) $(0)

for some ¢ € E;. The scalar function w; satisfies

o n—1, jn—-2+4+j) nn+2) 4 o
(&—i— " O " +— TENFRE w; =0

1

Multiply this equation by 7"~ @, and integrate by parts over (0, c0) to conclude that

a2 , Y n(n+2 (% 4 o o
/0 |8,.wj|2r 1d7‘—|—j(n—2—|—j)/0 |wj|27‘ Sdr = 1 /0 (1—|—r2)2|wj|2T Ldr

But,
472
— <1
(1+1r2)2 —

and hence we get the inequality

oo oo 2 o0
0w >t dr+j(n—2+j ﬁ)-zr"_3dr§n(n+ w; |2 rLdr
J J J
0 0 4 0
Hardy’s inequality reads
(oo} oo
n—2)>2 w23 dr < 4 Oy |2 r™ 1 dr
( i i
0 0

and hence we conclude that

2 00 [ee]
-9 2
(n +j) / |w;|? r" 3 dr < 77](”44— ) / jw;|? r" " dr
0 0

2

which precisely implies that @w; = 0 provided j > 2.

Exercise 4.2.1. Justify the integrations by parts in the last proof, using the fact that w € L§ (R™)
and hence w € C3* (R™).
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Exercise 4.2.2. Ezxtend the previous analysis to the semilinear elliptic equation
Au+8e“=0
where this time the explicit solution is given by
uo(z) = —2log(1 + [z[?)
It will be useful to observe that the equation is invariant under the following transformation
uq(z) = 2loga + u(a )

for a>0.



Chapter 5

Mean curvature of hypersurfaces

5.1 The mean curvature

Assume that ¥ € R"*! is an oriented hypersurface. We denote by N the unit normal vector field
on ¥ which is compatible with the orientation. Given a small (smooth) function w with compact
support defined on X, we define X,, to be the image of ¥ by

p— p+w(p) N(p)

We can describe ¥ locally using a local chart. Let (z',...,2") be local coordinates and X
parameterizes locally 3. The first fundamental form (also referred to as the induced metric) on
Y. is defined by

g(Th, T) =T - Tz

for any tangent vectors 77,75 € T,X. In the above parametrization, a basis of the tangent space
at p is given by
O X, 0pn X

and, in this basis, the coefficients g;; of the induced metric on ¥ read
9i5 ‘= 8sz . &NX

We denote by
N:¥— st

the Gauss map (N (p) is nothing but the normal vector field to ¥) and by
DN, : T,% — Ty S™ 1

its differential at p.

o7
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Exercise 5.1.1. Check that, after having identified T, with T ) Sn=1, the mapping D,N is a
symmetric endomorphism (i.e. D,N(Ty1) - Ty =Ty - DpN(T3), for all Th, Ty € T,2).
The second fundamental form Ay is defined by
hs(Th,Ty) = =11 - DN (T5)

for any tangent vectors 17,75 € T,%. In the above parametrization, the coefficients of the second
fundamental form are given by
hij = 76xiX . az]N

where we have identified N o X with N so that, with slight abuse of notations, 0,: N is in fact
equal to Dx N (9,:X). It will be convenient to observe that

02, N = hij g'" Xy,
J

where (g%7);; denotes the inverse of (g;;)i;. We leave this as an exercise in linear algebra (simply
observe that N - N =1 and hence 0,: N - N = 0.

The tangent vector fields to X, are then given by
0;Y =0;X; +0jwN +wd; N
Hence the coefficients §;; of the induced metric on ¥, are given by
Gij = 0y1Y - 05 Y == gij — 2hij w4 Opiw Opiw + ayj w?

where we have defined
a;j = hik, g* he;

Using the classical expansion

det(I + B) =1+ Tr(B) + 5 ((TrB)* — Tr B*) + O(|| B||?)

1
2
for any (small) square matrix B, we find the expansion

Vdetg = (1 —TrA+ % (IVw]? = Tr(A?) w® + (TrA)* w?) + (’)(||w||21)) V/detg

where we have defined A := —DN.

We now assume that w is small and has compact support in ¥ which is bounded (but not
necessarily closed) so that we can compute the n-dimensional volume of %,,. The expansion of
Vol,,(2,) in powers of w is given by

Vol,,(X,) = /

(1= A+ 5 (Vwl2 - Te(4%) w? + (TrA)? w?) + O(Jwl|?:) ) dvols
b
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In particular, we conclude that the first and second variations of the n dimensional volume
form are given by

D, Vol (X)) jw=0(v) = —/ TrA v dvoly,
5

D?UVoln(Ew)‘w:O(v,v):/2(|VU|Z—TT(A2)U2+(T1PA)2 o) dvols, (5.1)

The trace of the operator A, which appears in the first variation of the n-dimensional volume,
is called the mean curvature of the hypersurface ¥ and is denoted by H(X). In local coordinates

H(X) = Z hijg’*
ij

Exercise 5.1.2. Show that the mean curvature of S™(r) the sphere of radius r > 0 in R" 1 s

equal to 7 when the normal vector is inward pointing. It will be useful to observe that the Gauss

map is given by N(p) = —%p, for allp € S™(r).

Exercise 5.1.3. Show that the mean curvature of S™ (r) x R" in R™ 721 s equal to ™ when
the normal vector is inward pointing.

5.2 Jacobi operator and Jacobi fields

The second order partial differential operator which appears in the second variation of the n-
dimensional volume, is called the Jacobi operator

Js = A, + Tr(A?)

This corresponds to the linearized mean curvature operator, that is the linearization of the map-
ping B
H(w) := H(Zy)

Indeed, by definition of the mean curvature, the first variation of the n-dimensional volume is
given by

D, Vol,,(¥)(v) = — /Z H(X)vdvols

And hence, the second variation of the n-dimensional volume is given by
D2Vol,,(2)(v1,v2) = — / Dy Hs (v1) vy dvols, + / H(2)? vy v dvols,
b b

Comparing this formula with (5.1) we conclude that

HZ(’U) = JZ v
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Exercise 5.2.1. Show that the Jacobi operator about S™(r) in R" ! is equal to J = r? (Agn +n).

The last object we need to introduce are called Jacobi fields they are nothing but so solutions
of the homogeneous problem Jyxw = 0. We describe some general recipe which allows one to
find explicit Jacobi fields. Assume we are given a vector field = in R™*!. We denote by ®¢(s; -)
the associated flow, namely for all z € R"*! ®z(s;x) is the solution at time s of the dynamical
system

dy _
ds E(y)
with y(0) = x.
For s small enough and p € 3, we can write
P=(s;p) = q(s;p) +w(s;p) N(s;p)

Using the fact that
(¢,t) — a+tN(q)

is a local diffeomorphism from a neighborhood of (p,0) in ¥ x R to a neighborhood of p € R**!,
it is easy to see that
asq(ovp) = HTPEN(p)
where Il7,s denotes the orthogonal projection over T,% and
Osw(0;p) = E(p) - N(p)
We define 3(s) to be the image of X by ®=(s, ). Then, we have the general formula
9sH(3(s))|s=o = DyHx (2 N) + VHs - Il s N (5.2)

This formula is very useful when the hypersurface ¥ has constant mean curvature in which
case (5.2) reduces to B
0sH(2(8))|s=0 = DwHx(E - N)

There are 3 families of vector fields which will be useful for us : The vector fields associated to
translations which are simply constant vector fields

Eie(z)=¢
The vector fields associated to rotations which are given by
ET7A(LU) =Ax

where A € M, 1(R) is skew symmetric ‘A = —A. Finally the vector field associated to the
dilation centered at the origin is given by

Ei(z) ==

We have proved the
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Proposition 5.2.1. Assume that ¥ is a constant mean curvature hypersurface. Then N - Xy,
N - X, are Jacobi fields. If in addition the mean curvature of 3 is equal to 0 then N - X is also
a Jacobi field on X.

Indeed, when = = E, . or = = E, 4, then ®=(s; -) is an isometry. Hence 0,H (X(s))|s=0 = 0 in
this case, which immediately implies that D, Hs, (2-N) = 0 if the mean curvature of ¥ is constant.
When = = Z; then ®z(s; -) = e®Id and hence 9;H(X(s))|s=0 = 0se¢™*|s=oH(X) = —H(0) in
this case. We conclude that ~

DyHx(2q-N) = —H(X)

This completes the proof of the Lemma.

Definition 5.2.1. We will say that ¥ is a constant mean curvature hypersurface is H(X) is a
constant function on X. We will say that X is a minimal hypersurface if H(X) =0 on X.

There is a nice variational characterization of both minimal and constant mean curvature
hypersurfaces. Indeed, it follows from the above considerations that minimal hypersurfaces are
critical points of the n-dimensional volume functional while constant mean curvature hypersur-
faces are critical points of the n-dimensional volume functional with some (n + 1)-dimensional
volume constraint (this amounts to consider perturbation which involve functions whose mean
over X is zero.
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Chapter 6

Minimal hypersurfaces with
catenoidal ends

6.1 The n-catenoid

The n-catenoid C' is a minimal hypersurface of revolution about the z,41-axis. It will be conve-
nient to consider a parametrization

X R x Sn—l . R’n+1

of C for which the induced metric is conformal to the product metric on R x S”~!. This para-
metrization is given by

X(t,z2):= (cp(t) z,w(t)), (6.1)

where t € R, z € S~ ! and where the functions ¢ and 1 are explicitly given by

©(t) := (cosh((n — 1)t))ﬁ and P(t) = /Ot 0> " ds.
It is easy to check that the induced metric on C' is given by
g =@ (dt* + ggn-r)
and, if the orientation of C' is chosen so that the unit normal vector field is given by
N:=(- ©' 7" 2,0, Ing), (6.2)
then, the second fundamental form h about C is given by
h:=¢*" ((1 —n)dt* + ggn—1).

63
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From these expressions, it is easy to check that the hypersurface parameterized by X is indeed
minimal.

The Jacobi operator about the n-catenoid is given, in the above defined parametrization, by

1 1 1
JC: —at (QDn_2at')+EASn—1 +n(n_1)g07

n 2n

We apply the above recipe to obtain globally defined Jacobi fields
(i) The function ®; := ¢~ d;p, which is associated to the translation of C along its axis.
(ii) The function &7 := ¢! (4,0 Opp — Y 3,590), which is associated to the dilation of C,

il e functions =@ (z - e) forec€ X , which is associated to the translation
iii) The functi Q1. pl—n f R™ x {0 hich i iated to the t lati
of C' along the direction e orthogonal to its axis.

(iv) The functions @fe = L (Yo + pdip) (z - e) for e € R™ x {0}, which is associated to
the rotation of the axis of C in a direction e orthogonal to its axis.

The interested reader should check that these constitute 2(n + 1) linearly independent Jacobi
fields.

We claim that the n-catenoid is an ALE space as defined in Chapter 4. Indeed, we change
variables and write

xz=(t) z

for t > 0 and z € S®~!. So that the upper end of the n-catenoid can now be parameterized as a
vertical graph over the horizontal hyperplane "1 = 0 for a function uc. It is a simple exercise
to check that, at infinity, the function uc can be expanded as

uc(z) = log|z| +log2 + O(|z|7?)

when n = 2 and
uc(w) = uc(00) — = |2>~" + O(|z[*~2")

In addition, in these coordinates, the metric g can be expanded as
g = Geucl + O(|$|2_2n)
and the potential in the Jacobi operator satisfies

Tr(A?) = O(J= ")

We are just in the situation described in Chapter 4.
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6.2 Unmarked space of minimal hypersurfaces with catenoidal
ends

We now defined the set of hypersurfaces we are interested in. The unmarked space M, is the

set of minimal hypersurfaces which have finitely many ends asymptotic to a properly rescaled,

translated and rotated n-catenoid. More precisely, this means that each element of M, can be

decomposed into the union of a compact piece and finitely many ends which (up to a translation,

a rotation and a dilation) can be written as a normal graph over one end of the n-catenoid for a
n+2 n

function which decays like a constant times \x|%+‘s for some § € (—"5=, —F).

We have the important :
Definition 6.2.1. An element ¥ € M, is said to be unmarked-nondegenerate if the operator
As =72 (Axg + Tr(A?))
is injective on L3(X) for all § < —%.

As usual, the function v is a

For the time being we do not have many example of minimal hypersurface with catenoidal ends,
except the n-catenoid itself. We here prove that this hypersurface is unmarked-nondegenerate.

Lemma 6.2.1. Assume that § < —%. Let w € L3(X) be a solution of Asw =0 then w = 0.

A simple proof of this result can be obtained as follows. Proceed with the eigenfunction
decomposition of w,
w(t,z) =Y w(t)
J
where wj(t,-) € Ej. Observe that w; is a solution of

1 Aj 1
E&g ("2 Oy wy) — ngJij +n(n-—1) ﬁwj =0
which is bounded by a constant times (cosh¢)®. When j = 0 (resp. when j = 1) then all solutions
are explicitly known and are described above, therefore wy (resp. w;) is a linear combination of
the Jacobi fields <I>§ (resp. @f ., for e € R™). It is easy to check that no such solution is bounded
by a constant times (cosht¢)® unless it is identically equal to 0 since we have chosen § < -5
Therefore, wy = wy = 0.

Now, when j > 2 we write w;(t,z) = v;(t) ¢;(z) where ¢; € E;. Observe that the function v;
being bounded by a constant times (cosht)® for § < —2 has to decay at infinity like (cosht)=%.
Then, we can write

1 _ Aj 1
— 0 (" 26tvj)—;]2vj+n(n—1)ﬁvj:0

n
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Define v; = ¢'~". Using the fact that <I>1+)e is a Jacobi field, we conclude that

1 A 1
— 5 ((pn—Qﬁtul) _Z;Uj +n(n—1)ﬁvl =0

n

For all s € R, we set v(®) := v — sv;. Using the above equations, we have

Lo (020, — 2y (5) — ) o2 4(®)
(pnat ((p Orv )_902U +n(n—-1) =—(M X)) v (6.3)

S0271 v

For all s € R, v, is positive near oo (because the function v; tends to 0 at 0o much faster than
the function v1). We choose s to be the sup of the reals for which vy > 0. Then vg vanishes in R
and at this point, which is a minimum point for vy, (6.3) yields 9? vs < 0. A contradiction. This
completes the proof of the result.

The main result of this Chapter states that, if 3 is unmarked nondegenerate, then there exists
an open manifold of dimension k(n + 1) which contains ¥ and is included in M,,, where k is the
number of catenoidal ends of X.

The proof of the result is an almost simple consequence of the implicit function theorem.

To prove this result, we apply the result of Proposition 3.1.3 with § € (—22, —2). Since X is

unmarked-nondegenerate, this yields the : 2
Proposition 6.2.1. The operator
As: CPY(M*)&Ds — CJ°(M¥)
u — 2 (Asu+ Tr(A4)?u)

is well defined, bounded and surjective. In addition dim Ker(As) = k(n + 1), where k is the
number of ends of X.

where we recall that the deficiency space Ds is given by
i +(¢ .
Ds := Span {x¥ WME), : ¢ € Ej, j=0,1}

recall that the functions Wﬁgi) are constructed in such a way that 72 (dx —I—Tr(A)Q)WJ%i) = 0 near
the i-th end and also that Wjiqgi) is asymptotic to |x|277”i5j ¢. Observe that, in the statement of
Proposition 6.2.1 one can replace Ds by

Ds := Span {x¥ <I>3':(i)7 x® q)fg) : eeR"}

where <I>(j)E @ and @fy) are the Jacobi fields associated to dilations, translations and rotations of
the i-th end of the hypersurface X.

We would like to apply the implicit function theorem to some nonlinear mapping N defined on
a neighborhood of 0 in C;’*(M*) @ Ds and whose differential at 0 is the operator As. Assuming
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this nonlinear operator is already obtained, we have immediately that the dimension of the zero
set of this operator is equal to the dimension of the kernel of As. Hence it is equal to k (n+1),
where k is the number of ends of 3. This yields the existence of a smooth k (n 4 1)-dimensional
family of minimal hypersurfaces with catenoidal ends, which contains ¥ and is embedded in M,
when ¥ is unmarked nondegenerate.

In order to define the nonlinear mapping N, we first observe that any element w € Dj is
associated to some hypersurface which can be constructed by moving slightly ends ends of ¥. To
make things precise let us consider the elements of Ds which are supported on &;. They are of
the form

a5 o5 +ay o5 + af . ‘I’IS) ta; ‘1’1_,(51)
where e, € € R™ and are normalized to have unit norm. We consider the end E; which we translate
along its axis by ag, which we dilate by (1+ag ), which we translate in the direction e orthogonal
to is axis by a; . and whose axis we rotate in the direction € b an angle a; . This gives an end
of a minimal hypersurface which is asymptotic to a catenoidal end and which can be smoothly
connected to ¥. A similar construction can be performed for all other ends. We obtain some
embedding

I, : 2 — X,

for all w in some neighborhood of 0 in Ds. Observe that, by construction,the mean curvature
of ¥, is equal to 0 except on some compact pieces where the perturbed end is connected to the
initial end.

Next, to any element u = v + wmcg’a(Z) x Djs we first construct the hypersurface 3, cor-
responding to the component w of u which belongs to Ds and then take the normal graph over
it for the function v o I;! corresponding to the component of u belonging to C?’Q(E). Once this
hypersurface is defined, we compute its mean curvature and pull back the result on ¥ using I,,.
This defined a nonlinear mapping

N :CP*() x Dy — € (%)

It is a simple exercise to check that this mapping is smooth and that the differential of this
mapping coincides with As (maybe up to a change in the definition of the cutoff function used
to define Ds).

6.3 The marked space of minimal hypersurfaces with catenoidal
ends

Here we introduce another space of minimal hypersurfaces with catenoidal ends : the marked
space of minimal hypersurfaces with catenoidal ends. The idea is that, in the unmarked space,
one is allowed to translate, rotate, and dilate the end. In the marked moduli space, the only
modifications allowed are the translation of the end along its axis and the dilation of the end.
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Paralleling what we have already done for the unmarked space, we define the marked space
M, as the set of minimal hypersurfaces which have finitely many ends asymptotic to the end or
a catenoid whose axis is fixed but which is properly rescaled and translated along its axis. More
precisely, this means that each element of M, can be decomposed into the union of a compact
piece and finitely many ends which (up to a translation, a rotation and a dilation) can be written
as a normal graph over one end of the n-catenoid, whose axis is fixed, for a function which decays

. . 2-n _
like a constant times |z|™2 T for some § € (—%, 252).

We have the corresponding notion of nondegeneracy :

Definition 6.3.1. An element ¥ € M,, is said to be marked-nondegenerate if the operator
As = ’}/2 (Az} + T’I"(A2))
is injective on L(X) for all § < 252,

Applying the implicit function theorem as above we find that, if ¥ is marked nondegenerate,
then there exists an open manifold of dimension k which contains ¥ and is included in M,,, where
k is the number of catenoidal ends of X.



Chapter 7

Analysis on manifolds with
cylindrical ends

7.1 Manifolds with cylindrical ends

We will say that a complete, noncompact n-dimensional manifold (M, g) is a manifold with
cylindrical ends if it can be decomposed into the union of a compact piece K CC M and finitely
many ends &, ...,E which are diffeomorphic to (0,00) x X; where ¥; is a (n — 1)-dimensional
manifold and if the metric g is asymptotic to the product metric

Geyr = dt* + dy,
in the sense that the coefficients of g — g, satisfy
VG = gey)ij = O(e™*)
for some a > 0.

On (M, g) we would like to study operators of the form
Ag+a
where this time the function a = M — R satisfies
Via—a;) = 0™
for some 3 > 0, on each end &; where a; € R.

We define a smooth positive function v : M — (0, c0) which coincides with e’ on each end &;
of M. We define weighted L?-spaces and weighted Holder spaces by defining the norms in these

spaces as follows
1/2
lallzzeon = ( [ 1o oo,
M
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and
HUHCQH(M) = HUHC“v“(K) + E 21;13 e 0! [t + - ')||C"'>“‘([t7t+1]><2j)
j -

As before we define the unbounded operator
As: LIM7) — LE(M)
u — Agju+tau
as well as the bounded operator
As: CPU(M*) — €3 (M)
u — Agu+tau

In order to extend the previous analysis to this framework, the key remark is that, if

|z Au = f
in By then, setting
v(t,z) =e 7 tule ! 2) and g(z) = et fle7tz)
one can check that )
n—2
Agcylv - (2) v = f
in (0,00) x S"~L
Further observe that
/ u?(x) |z 7P 2 de = / v2(t, z) €2t dt dvolgn—
By (0,00)x Sn—1
and
||UHc§va(B;) = ||U||cﬂ?((o,oo)xsn—1)
These remarks allow one to extend all the previous results on a punctured manifold to this
noncompact complete setting when all X; are equal to S"—1 and a; = — ("7_2)2 We leave the

details to the reader.

In order to further extend the result to all manifolds with cylindrical ends, observe that the

parameters §; are given by
N 1/2
n—
§j = << 5 > + )\]>
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are related to the asymptotic behavior of the solutions of the homogeneous equation

(afAj(”22)2>wo

In the general case, this equation has to be replaced by

(8? —ug-i) +ai) w =0

@

where p;7 are the eigenvalues of —dy;,. This gives the general definition of the parameters 6j(-i) as

6J(_¢) — R (Mg-i) _ ai)1/2

In particular, we have the :

Proposition 7.1.1. Given § < min; 6((;), 0 # —5§i), forallj e Nand alli = 1,...,k, let us
assume that Ag is injective, then the operator

As: CyY(M*)&Ds — Cy*(M*)
U — Agu—I—au

is well defined, bounded and surjective. In addition dim Ke?"(/L;) = % dimDs.

As usual the deficiency space is defined by
Ds == @F_, Span {x ¥ W;Ei), : peEj, -6 < :téj(-i) < 4}
where the functions W]i()i) are solutions of (A, + a) Wf(;i) =0 on &; and satisfy

ij;) = et g4 O(eFo—mt)
at infinity, for some n > 0.

Observe that when ¢ € (— min; 5(()i), min; 5((;)), then Dy is empty and hence, under the assump-

tion of Proposition 7.1.1, the operator Ag is an isomorphism, for any §’ € (— min; §(gi), min; 5éi)).

7.2 Manifolds with periodic-cylindrical ends

There is a last class of manifolds we will have to consider : manifolds with periodic-cylindrical
ends. We will say that a complete, noncompact n-dimensional manifold (M, g) is a manifold with
periodic-cylindrical ends if it can be decomposed into the union of a compact piece K CC M
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and finitely many ends &1, ..., &, which are diffeomorphic to (0,00) x ¥; where ¥; is a (n — 1)-
dimensional manifold and if the metric g is asymptotic to the metric

Gper = 302 (dtQ + dzl)

where ¢ is a function defined on (0, 0c0) which is Tj-periodic, in the sense that the coefficients of
g — Gper satisfy
V(g = gper)ij = Oe™")

for some o > 0.

On (M, g) we would like to study operators of the form
Ay+a
where this time the function @ = M — R satisfies
Via—a;) = 0@
for some § > 0, on each end &; where a; is a T;-periodic function defined on (0,00) (and in

particular a; does not depend on z € ;).

The definitions of the weighted L2-spaces as well as the weighted Holder spaces are the same
as in the above sections as well as the definition of the operators As and As.

Observe that the Laplace-Beltrami operator associated to the metric gpe, is explicitly given
by

i

1 1
A, =—0 (¢*"0 )+ — Ax
9p SDn ( ) S02
All our analysis in Chapters 1 to 3 is based on the fact that we can study the model operator

A

1 _ 1
o 6= 0 (0 4 5 A
. ¢
on (0,00) x ;. Then the corresponding properties for A, + @ are obtained using perturbation
arguments.

Now, in order to study the model operator A, . +a;, it is easier to perform the eigenfunction
decomposition of a function defined on (0,00) x %; as

w(t,z) = Z w;

J

where for all ¢ € (0,00), wj(t,-) € E; the j-th eigenspace of —dx,. Using this the solvability of
the equation
(Ag,.,. Taj)w=f

per
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reduces to the solvability of the second order ordinary differential equations

1 G
— 0 (* " Oy wy ) —Eﬂ()wj‘f'aiwj =i

n J

@

where p;” are the eigenvalues of —dy;,.

It turns out that it is easier to study the conjugate operator

n+2 2—n

7 (Ag,..taj)pzw=f

Since ¢ > 0 is bounded there is no loss of generality in doing so. Therefore, the ordinary
differential equations we need to solve now read

02 w; + 0\ w; = f; (7.1)
()
¥l )

derivative with respect to t. The exact expression of the function bgo is not really important for
)

where b;i) can be expressed in terms of the function a;, the eigenvalue p;”, the function ¢ ant its

the time being. the only important fact is that bgi is T periodic.

These equations in turn can be solved using the ”variation of the constant formula” namely,

o (1) —(@)
if w; J

and w are two linearly independent solutions of the homogeneous equation

then all the solutions of (7.1) are given by

1 i _—(i —(i —+( o0 TR
5= (wj“/wj()fjds—wj”/wj<)fjds)+ajwj“+aj o7

Therefore, all properties will follow from the corresponding properties of the functions wf(“.

To make the notation as simple as possible, we drop all indices ) and j- Given initial data
(ap,a1) we consider w the unique solution of

Ofw +bw =0 (7.2)
with w(0) = ag and dyw(0) = a;. We define the mapping
Blag, ar) = (w(T), dyw(T))
Clearly B is linear and TrB € R. We claim that

detB=1



74 CHAPTER 7. ANALYSIS ON MANIFOLDS WITH CYLINDRICAL ENDS

To see this, consider the solution wy associated to the initial data wy(0) = 1 and dywe(0) = 0
and the solution wy associated to the initial data wq(0) = 0 and d;w;(0) = 1. The Wronskian

W = w1 Gtwo — Wo Gtwl
does not depend on ¢ and W(0) = 1. Now, given the definition of B we have
W(T) = det BW(0)

and hence det B = 1 as claimed. We now distinguish a few cases according to the spectrum of
the operator B.

Assume that B can be diagonalized (in C?). Since the determinant of B is equal to 1 then the
eigenvalues are given by A and 1/ where A € C and |A| > 1. If |A\| > 1 then necessarily A € R
since the trace of B is a real number. The eigenvector of B associated to A corresponds to w™ a
solution of (7.2) which blows up at infinity exponentially and the eigenvector of B associated to
1/ corresponds to @™ a solution of (7.2) which tends to 0 exponentially at infinity. In this case
we define

1
0= T log | A|

so that d is precisely the exponential rate at which the solutions w® tend to 0 or infinity at
infinity.
When |\ = 1 then A\ = e and 1/\ = e~ . The eigenvectors of B are associated to w* The

eigenvector of B associated to A corresponds to w™ solutions of (7.2) which are bounded in R. In

this case we define
0=0

To end this discussion, we consider the case where B can’t be diagonalized. In this case the
eigenvalue \ necessarily satisfies A2 = 1 since the determinant of B is equal to 1. The eigenvector
e1 of B associated to the eigenvalue A corresponds to w™ a periodic solution of (7.2) (this is clear
when A = 1 since the solution is then T periodic and when A = —1 then the solution is then 27T
periodic). Since the operator B is not diagonalized then there exists a vector ey such that

B(eg) = Xea + pey

In other words ey, ez is a Jordan basis associated to B. We denote by w™ the solution of (7.2)
associated to ey. By definition we have

e1 = (wt(0),0,w™(0)) and e1 = (w(0),0,w™(0))

Now, on the one hand
Bey = (w (T),0,w™(T))

and on the other hand

Bes = A(w(0), 9w (0) + p (w™(0), 8wt (0))
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Therefore, we have the identity
(w™(T), 0w ™(T)) = A (w™ (0), 0w (0)) + p (w™(0), dw™(0))
which implies that
w (t+T) = w (t) +pwt(t)
for all ¢ € R (simply use the uniqueness of the solutions of (7.2) with given initial data). This

shows that y

v(t)=w () = Ap T w(t)
satisfies
v(t+T) = Av(t)
Therefore, v is T periodic when A = 1 and 27T periodic when A = —1. In any case,

w(t) =v(t) + A % w(t)

where both v and w™ are periodic. When p # 0, we will say that w™ is ”linearly growing” and
we set

0=0

The result of Proposition 7.1.1 holds in this framework when the values of §; are obtained as
above. Let us emphasize that for operators with periodic (nonconstant) coefficients the explicit

determination of the values of 5]@ is in general not possible.



