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Introduction.

In a control problem we find the following basic elements.

(1) A control u that we can handle according to our interests,
which can be chosen among a family of feasible controls K.

(2) The state of the system y to be controlled, which depends on
the control. Some limitations can be imposed on the state,
in mathematical terms y ∈ C, which means that not every
possible state of the system is satisfactory.

(3) A state equation that establishes the dependence between the
control and the state. In the next sections this state equation
will be a partial differential equation, y being the solution of
the equation and u a function arising in the equation so that
any change in the control u produces a change in the solution
y. However the origin of control theory was connected with the
control of systems governed by ordinary differential equations
and there is a huge activity in this field; see, for instance, the
classical books Pontriaguine et al. [40] or Lee and Markus
[36].

(4) A function to be minimized, called the objective function or
the cost function, depending on the control and the state (y, u).

The objective is to determine an admissible control, called optimal
control, that provides a satisfactory state for us and that minimizes the
value of functional J . The basic questions to study are the existence
of solution and its computation. However to obtain the solution we
must use some numerical methods, arising some delicate mathematical
questions in this numerical analysis. The first step to solve numerically
the problem requires the discretization of the control problem, which
is made usually by finite elements. A natural question is how good the
approximation is, of course we would like to have some error estimates
of these approximations. In order to derive the error estimates it is
essential to have some regularity of the optimal control, some order
of differentiability is necessary, at least some derivatives in a weak
sense. The regularity of the optimal control can be deduced from the
first order optimality conditions. Another key tool in the proof of the
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4 INTRODUCTION.

error estimates is the use of the second order optimality conditions.
Therefore our analysis requires to derive the first and second order
conditions for optimality.

Once we have a discrete control problem we have to use some nu-
merical algorithm of optimization to solve this problem. When the
problem is not convex, the optimization algorithms typically provides
local minima, the question now is if these local minima are significant
for the original control problem.

The following steps must be followed when we study an optimal
control problem:

(1) Existence of a solution.
(2) First and second order optimality conditions.
(3) Numerical approximation.
(4) Numerical resolution of the discrete control problem.

We will not discuss the numerical algorithms of optimization, we
will only consider the first three points for a model problem. In this
model problem the state equation will be a semilinear elliptic partial
differential equation. Through the nonlinearity introduces some com-
plications in the study, we have preferred to consider them to show
the role played by the second order optimality conditions. Indeed, if
the equation is linear and the cost functional is the typical quadratic
functional, then the use of the second order optimality conditions is
hidden.

There are no many books devoted to all the questions we are going
to study here. Firstly let me mention the book by Profesor J.L. Lions
[38], which is an obliged reference in the study of the theory of optimal
control problems of partial differential equations. In this text, that
has left an indelible track, the reader will be able to find some of
the methods used in the resolution of the two first questions above
indicated. More recent books are X. Li and J. Yong [37], H.O. Fattorini
[34] and F. Tröltzsch [46].



CHAPTER 1

Existence of a Solution

1.1. Setting of the Control Problem

Let Ω be an open and bounded subset of Rn (n = 2 o 3), Γ
being its boundary that we will assume to be regular; C1,1 is enough
for us in all this course. In Ω we will consider the linear operator A
defined by

Ay = −
n∑

i,j=1

∂xj
(aij(x)∂xi

y(x)) + a0(x)y(x),

where aij ∈ C0,1(Ω̄) and a0 ∈ L∞(Ω) satisfy:





∃m > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ m|ξ|2 ∀ξ ∈ Rn and ∀x ∈ Ω,

a0(x) ≥ 0 a.e. x ∈ Ω.

Now let φ : R −→ R be a non decreasing monotone function of class
C2, with φ(0) = 0. For any u ∈ L2(Ω), the Dirichlet problem

(1.1)

{
Ay + φ(y) = u in Ω
y = 0 on Γ

has a unique solution yu ∈ H1
0 (Ω) ∩ L∞(Ω).

The control problem associated to this system is formulated as fol-
lows

(P)





Minimize J(u) =

∫

Ω

L(x, yu(x), u(x))dx

u ∈ K = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β a.e. x ∈ Ω},
where −∞ < α < β < +∞ and L fulfills the following assumptions:
(H1) L : Ω × R2 −→ R is a Carathéodory function and for all x ∈ Ω,
L(x, ·, ·) is of class C2 in R2. Moreover for every M > 0 and all
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6 1. EXISTENCE OF A SOLUTION

x, x1, x2 ∈ Ω and y, y1, y2, u, u1, u2 ∈ [−M, +M ], the following prop-
erties hold

|L(x, y, u)| ≤ LM,1(x), |∂L

∂y
(x, y, u)| ≤ LM,p(x)

|∂L

∂u
(x1, y, u)− ∂L

∂u
(x2, y, u)| ≤ CM |x1 − x2|

|L′′(y,u)(x, y, u)|R2×2 ≤ CM

|L′′(y,u)(x, y1, u1)− L′′(y,u)(x, y2, u2)|R2×2 ≤ CM(|y1 − y2|+ |u1 − u2|),
where LM,1 ∈ L1(Ω), LM,p ∈ Lp(Ω), p > n, CM > 0, L′′(y,u) is the

Hessian matrix of L with respect to (y, u), and | · |R2×2 is any matricial
norm.

To prove our second order optimality conditions and the error esti-
mates we will need the following additional assumption
(H2) There exists Λ > 0 such that

∂2L

∂u2
(x, y, u) ≥ Λ ∀ (x, y, u) ∈ Ω× R2.

Remark 1.1. A typical functional in control theory is

(1.2) J(u) =

∫

Ω

{|yu(x)− yd(x)|2 + Nu2(x)
}

dx,

where yd ∈ L2(Ω) denotes the ideal state of the system and N ≥ 0.
The term

∫
Ω

Nu2(x)dx can be considered as the cost term and it is
said that the control is expensive if N is big, however the control is
cheap if N is small or zero. From a mathematical point of view the
presence of the term

∫
Ω

Nu2(x)dx, with N > 0, has a regularizing
effect on the optimal control. Hypothesis (H1) is fulfilled, in particular
the condition LM,p ∈ Lp(Ω), if yd ∈ Lp(Ω). This condition plays an
important role in the study of the regularity of the optimal control.
Hypothesis (H2) holds if N > 0.

Remark 1.2. Other choices for the set of feasible controls are pos-
sible, in particular the case K = L2(Ω) is frequent.The important ques-
tion is that Kmust be closed and convex. Moreover if K is not bounded,
then some coercivity assumption on the functional J is required to as-
sure the existence of a solution.

Remark 1.3. In practice φ(0) = 0 is not a true restriction because
it is enough to change φ by φ − φ(0) and u by u − φ(0) to transform
the problem under the required assumptions. Non linear terms of the
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form f(x, y(x)), with f of class C2 with respect to the second variable
and monotone non decreasing with respect to the same variable, can
be considered as an alternative to the term φ(y(x)). We lose some
generality in order to avoid technicalities and to get a simplified and
more clear presentation of our methods to study the control problem.

The existence of a solution yu in H1
0 (Ω) ∩ L∞(Ω) can be proved as

follows: firstly we truncate φ to get a bounded function φk, for instance
in the way

φk(t) =





φ(t) if |φ(t)| ≤ k,
+k if φ(t) > +k,
−k if φ(t) < −k.

Then the operator (A + φk) : H1
0 (Ω) −→ H−1(Ω) is monotone, contin-

uous and coercive, therefore there exists a unique element yk ∈ H1
0 (Ω)

satisfying Ayk +φk(yk) = u in Ω. By using the usual methods it is easy
to prove that {yk}∞k=1 is uniformly bounded in L∞(Ω) (see, for instance,
Stampacchia [45]), consequently for k large enough φk(yk) = φ(yk) and
then yk = yu ∈ H1

0 (Ω)∩L∞(Ω) is the solution of problem (1.1). On the
other hand the inclusion Ayu ∈ L∞(Ω) implies the W 2,p(Ω)-regularity
of yu for every p < +∞; see Grisvard [35]. Finally, remembering that
K is bounded in L∞(Ω), we deduce the next result

Theorem 1.4. For any control u ∈ K there exists a unique solution
yu of (1.1) in W 2,p(Ω) ∩H1

0 (Ω), for all p < ∞. Moreover there exists
a constant Cp > 0 such that

(1.3) ‖yu‖W 2,p(Ω) ≤ Cp ∀u ∈ K.

It is important to remark that the previous theorem implies the
Lipschitz regularity of yu. Indeed it is enough to remind that W 2,p(Ω) ⊂
C0,1(Ω̄) for any p > n.

1.2. Existence of a Solution

The goal of this section is to study the existence of a solution
for problem (P), which is done in the following theorem.

Theorem 1.5. Let us assume that L is a Carathéodory function
satisfying the following assumptions

A1) For every (x, y) ∈ Ω × R, L(x, y, ·) : R −→ R is a convex
function.

A2) For any M > 0 there exists a function ψM ∈ L1(Ω) such that

|L(x, y, u)| ≤ ψM(x) a.e. x ∈ Ω, ∀|y| ≤ M, ∀|u| ≤ M.
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Then problem (P) has at least one solution.

Proof. Let {uk} ⊂ K be a minimizing sequence of (P), this means
that J(uk) → inf(P). Let us take a subsequence, again denoted in the
same way, converging weakly? in L∞(Ω) to an element ū ∈ K. Let us
prove that J(ū) = inf(P). For this we will use Mazur’s Theorem (see,
for instance, Ekeland and Temam [33]): given 1 < p < +∞ arbitrary,
there exists a sequence of convex combinations {vk}k∈N,

vk =

nk∑

l=k

λlul, with

nk∑

l=k

λl = 1 and λl ≥ 0,

such that vk → ū strongly in Lp(Ω). Then, using the convexity of L
with respect to the third variable, the dominated convergence theorem
and the assumption A1), it follows

J(ū) = lim
k→∞

∫

Ω

L(x, yū(x), vk(x))dx ≤

lim sup
k→∞

nk∑

l=k

λl

∫

Ω

L(x, yū(x), ul(x))dx ≤ lim sup
k→∞

nk∑

l=k

λlJ(ul)+

lim sup
k→∞

∫

Ω

nk∑

l=k

λl |L(x, yul
(x), ul(x))− L(x, yū(x), ul(x))| dx =

inf (P) + lim sup
k→∞

∫

Ω

nk∑

l=k

λl |L(x, yul
(x), ul(x))− L(x, yū(x), ul(x))| dx,

where we have used the convergence J(uk) → inf(P). To prove that the
last term converges to zero it is enough to remark that for any given
point x, the function L(x, ·, ·) is uniformly continuous on bounded sub-
sets of R2, the sequences {yul

(x)} and {ul(x)} are uniformly bounded
and yul

(x) → yū(x) when l →∞, therefore

lim
k→∞

nk∑

l=k

λl |L(x, yul
(x), ul(x))− L(x, yū(x), ul(x))| = 0 a.e. x ∈ Ω.

Using again the dominated convergence theorem, assumption A2) and
the previous convergence, we get

lim sup
k→∞

∫

Ω

nk∑

l=k

λl |L(x, yul
(x), ul(x))− L(x, yū(x), ul(x))| dx = 0,

which concludes the proof. ¤
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Remark 1.6. It is possible to formulate other similar problems to
(P) by taking K as a closed and convex subset of Lp(Ω), with 1 < p <
+∞. The existence of a solution can be proved as above by assuming
that K is bounded in Lp(Ω) or J is coercive on K. The coercivity holds
if the following conditions is fulfilled: ∃ψ ∈ L1(Ω) and C > 0 such that

L(x, y, u) ≥ C|u|p + ψ(x) ∀(x, y, u) ∈ Ω× R2.

This coercivity assumption implies the boundedness in Lp(Ω) of any
minimizing sequence, the rest of the proof being as in Theorem 1.5.

1.3. Some Other Control Problems

In the rest of the chapter we are going to present some control
problems that can be studied by using the previous methods. First let
us start with a very well known problem, which is a particular case of
(P).

1.3.1. The Linear Quadratic Control Problem. Let us as-
sume that φ is linear and L(x, y, u) = (1/2){(y− yd(x))2 + Nu2}, with
yd ∈ L2(Ω) fixed, therefore

J(u) =
1

2

∫

Ω

(yu(x)− yd(x))2dx +
N

2

∫

Ω

u2(x)dx.

Now (P) is a convex control problem. In fact the objective functional
J : L2(Ω) → R is well defined, continuous and strictly convex. Under
these conditions, if K is a convex and closed subset of L2(Ω), we can
prove the existence and uniqueness of an optimal control under one of
the two following assumptions:

(1) K is a bounded subset of L2(Ω).
(2) N > 0.

For the proof it is enough to take a minimizing sequence as in
Theorem 1.5, and remark that the previous assumptions imply the
boundedness of the sequence. Then it is possible to take a subsequence
{uk}∞k=1 ⊂ K converging weakly in L2(Ω) to ū ∈ K. Finally the con-
vexity and continuity of J implies the weak lower semicontinuity of J ,
then

J(ū) ≤ lim inf
k→∞

J(uk) = inf (P).

The uniqueness of the solution is an immediate consequence of the
strict convexity of J .
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1.3.2. A Boundary Control Problem. Let us consider the fol-
lowing Neumann problem{

Ay + φ(y) = f in Ω
∂νA

y = u on Γ,

where f ∈ Lρ(Ω), ρ > n/2, u ∈ Lt(Γ), t > n− 1 and

∂νA
y =

n∑
i,j=1

aij(x)∂xi
y(x)νj(x),

ν(x) being the unit outward normal vector to Γ at the point x.
The choice ρ > n/2 and t > n − 1 allows us to deduce a theorem

of existence and uniqueness analogous to Theorem 1.4, assuming that
a0 6≡ 0.

Let us consider the control problem

(P)

{
Minimize J(u)
u ∈ K,

where K is a closed, convex and non empty subset of Lt(Γ). The
functional J : Lt(Γ) −→ R is defined by

J(u) =
1

2

∫

Ω

L(x, yu(x))dx +
N

r

∫

Γ

|u(x)|rdσ(x),

L : Ω × R −→ R being a Carathodory function such that there exists
ψ0 ∈ L1(Ω) and for any M > 0 a function ψM ∈ L1(Ω) satisfying

ψ0(x) ≤ L(x, y) ≤ ψM(x) a.e. x ∈ Ω, ∀|y| ≤ M.

Let us assume that 1 < r < +∞, N ≥ 0 and that one of the following
assumptions is fulfilled:

(1) K is bounded in Lt(Γ) and r ≤ t.
(2) N > 0 and r ≥ t.

Remark that in this situation the control variable is acting on the
boundary Γ of the domain, for this reason it is called a boundary control
and (P) is said a boundary control problem. In problem (P) defined in
§1.1, u was a distributed control in Ω.

1.3.3. Control of Evolution Equations. Let us consider the
following evolution state equation




∂y

∂t
(x, t) + Ay(x, t) = f in ΩT = Ω× (0, T ),

∂νA
y(x, t) + b(x, t, y(x, t)) = u(x, t) on ΣT = Γ× (0, T ),

y(x, 0) = y0(x) in Ω,
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where y0 ∈ C(Ω̄) and u ∈ L∞(ΣT ). If f ∈ Lr([0, T ], Lp(Ω)), with r
and p sufficiently large, b is monotone non decreasing and bounded
on bounded sets, then the above problem has a unique solution in
C(Ω̄T )∩L2([0, T ], H1(Ω)); see Di Benedetto [3]. Thus we can formulate
a control problem similar to the previous ones, taking as an objective
function

J(u) =

∫

ΩT

L(x, t, yu(x, t))dxdt +

∫

ΣT

l(x, t, yu(x, t), u(x, t))dσ(x)dt.

To prove the existence of a solution of the control problem is neces-
sary to make some assumptions on the functional J . L : ΩT ×R −→ R
and l : ΣT × R2 −→ R are Carathédory functions, l is convex with
respect to the third variable and for every M > 0 there exist two
functions αM ∈ L1(ΩT ) and βM ∈ L1(ΣT ) such that

|L(x, t, y)| ≤ αM(x, t) a.e. (x, t) ∈ ΩT , ∀|y| ≤ M

and

|l(x, t, y, u)| ≤ βM(x, t) a.e. (x, t) ∈ ΣT , ∀|y| ≤ M, ∀|u| ≤ M.

Let us remark that the hypotheses on the domination of the func-
tions L and l by αM and βM are not too restrictive. The convexity
of l with respect to the control is the key point to prove the existence
of an optimal control. In the lack of convexity, it is necessary to use
some compactness argumentation to prove the existence of a solution.
The compactness of the set of feasible controls has been used to get
the existence of a solution in control problems in the coefficients of the
partial differential operator. These type of problems appear in struc-
tural optimization problems and in the identification of the coefficients
of the operator; see Casas [11] and [12].

If there is neither convexity nor compactness, we cannot assure, in
general, the existence of a solution. Let us see an example.{ −∆y = u in Ω,

y = 0 on Γ.

(P )





Minimize J(u) =

∫

Ω

[yu(x)2 + (u2(x)− 1)2]dx

−1 ≤ u(x) ≤ +1, x ∈ Ω.

Let us take a sequence of controls {uk}∞k=1 such that |uk(x)| = 1
for every x ∈ Ω and verifying that uk ⇀ 0 weakly∗ in L∞(Ω). The
existence of such a solution can be obtained by remarking that the
unit closed ball of L∞(Ω) is the weak∗ closure of the unit sphere {u ∈
L∞(Ω) : ‖u‖L∞(Ω) = 1}; see Brezis [10]. The reader can also make a
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direct construction of such a sequence (include Ω in a n-cube to simplify
the proof). Then, taking into account that yuk

→ 0 uniformly in Ω, we
have

0 ≤ inf
−1≤u(x)≤+1

J(u) ≤ lim
k→∞

J(uk) = lim
k→∞

∫

Ω

yuk
(x)2dx = 0.

But it is obvious that J(u) > 0 for any feasible control, which proves
the non existence of an optimal control.

To deal with control problems in the absence of convexity and com-
pactness, (P) is sometimes included in a more general problem (P̄), in
such a way that inf(P)= inf(P̄), (P̄) having a solution. This leads to
the relaxation theory; see Ekeland and Temam [33], Warga [47], Young
[48], Roubček [42], Pedregal [39].

In the last years a lot of research activity has been focused on the
control problems associated to the equations of the fluid mechanics; see,
for instance, Sritharan [44] for a first reading about these problems.



CHAPTER 2

Optimality Conditions

In this chapter we are going to study the first and second order con-
ditions for optimality. The first order conditions are necessary condi-
tions for local optimality, except in the case of convex problems, where
they become also sufficient conditions for global optimality. In absence
of convexity the sufficiency requires the establishment of optimality
conditions of second order. We will prove sufficient and necessary con-
ditions of second order. The sufficient conditions play a very important
role in the numerical analysis of the problems. The necessary condi-
tions of second order are the reference that indicate if the sufficient
conditions enunciated are reasonable in the sense that its fulfillment is
not a too restrictive demand.

2.1. First Order Optimality Conditions

The key tool to get the first order optimality conditions is provided
by the next lemma.

Lemma 2.1. Let U be a Banach space, K ⊂ U a convex subset and
J : U −→ R a function. Let us assume that ū is a local solution of the
optimization problem

(P)

{
inf J(u)
u ∈ K

and that J has directional derivatives at ū. Then

(2.1) J ′(ū) · (u− ū) ≥ 0 ∀u ∈ K.

Reciprocally, if J is a convex function and ū is an element of K satis-
fying (2.1), then ū is a global minimum of (P).

Proof. The inequality (2.1) is easy to get

J ′(ū) · (u− ū) = lim
λ↘0

J(ū + λ(u− ū))− J(ū)

λ
≥ 0.

The last inequality follows from the local optimality of ū and the fact
that ū + λ(u− ū) ∈ K for every u ∈ K and every λ ∈ [0, 1] due to the
convexity of K.

13
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Reciprocally if ū ∈ K fulfills (2.1) and J is convex, then for every
u ∈ K

0 ≤ J ′(ū) · (u− ū) = lim
λ↘0

J(ū + λ(u− ū))− J(ū)

λ
≤ J(u)− J(ū),

therefore ū is a global solution of (P). ¤
In order to apply this lemma to the study of problem (P) we need

to analyze the differentiability of the functionals involved in the control
problem.

Proposition 2.2. The mapping G : L∞(Ω) −→ W 2,p(Ω) defined
by G(u) = yu is of class C2. Furthermore if u, v ∈ L∞(Ω) and z =
DG(u) ·v, then z is the unique solution in W 2,p(Ω) of Dirichlet problem

(2.2)

{
Az + φ′(yu(x))z = v in Ω,
z = 0 on Γ.

Finally, for every v1, v2 ∈ L∞(Ω), zv1v2 = G′′(u)v1v2 is the solution of

(2.3)

{
Azv1v2 + φ′(yu(x))zv1v2 + φ′′(yu(x))zv1zv2 = 0 in Ω,

zv1v2 = 0 on Γ,

where zvi
= G′(u)vi, i = 1, 2.

Proof. To prove the differentiability of G we will apply the im-
plicit function theorem. Let us consider the Banach space

V (Ω) = {y ∈ H1
0 (Ω) ∩W 2,p(Ω) : Ay ∈ L∞(Ω)},

endowed with the norm

‖y‖V (Ω) = ‖y‖W 2,p(Ω) + ‖Ay‖∞.

Now let us take the function

F : V (Ω)× L∞(Ω) −→ L∞(Ω)

defined by
F (y, u) = Ay + φ(y)− u.

It is obvious that F is of class C2, yu ∈ V (Ω) for every u ∈ L∞(Ω),
F (yu, u) = 0 and

∂F

∂y
(y, u) · z = Az + φ′(y)z

is an isomorphism from V (Ω) into L∞(Ω). By applying the implicit
function theorem we deduce that G is of class C2 and DG(u) ·z is given
by (2.2). Finally (2.3) follows by differentiating twice with respect to
u in the equation

AG(u) + φ(G(u)) = u.
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¤

As a consequence of this result we get the following proposition.

Proposition 2.3. The function J : L∞(Ω) → R is of class C2.
Moreover, for every u, v, v1, v2 ∈ L∞(Ω)

(2.4) J ′(u)v =

∫

Ω

(
∂L

∂u
(x, yu, u) + ϕu

)
v dx

and

J ′′(u)v1v2 =

∫

Ω

[
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)+

(2.5)
∂2L

∂u2
(x, yu, u)v1v2 − ϕuφ

′′(yu)zv1zv2

]
dx

where ϕu ∈ W 2,p(Ω) is the unique solution of problem

(2.6)





A∗ϕ + φ′(yu)ϕ =
∂L

∂y
(x, yu, u) in Ω

ϕ = 0 on Γ,

A∗ being the adjoint operator of A and zvi
= G′(u)vi, i = 1, 2.

Proof. From hypothesis (H1), Proposition 2.2 and the chain rule
it comes

J ′(u) · v =

∫

Ω

[
∂L

∂y
(x, yu(x), u(x))z(x) +

∂L

∂u
(x, yu(x), u(x))v(x)

]
dx,

where z = G′(u)v. Using (2.6) in this expression we get

J ′(u) · v =

∫

Ω

{
[A∗ϕu + φ′(yu)ϕu]z +

∂L

∂u
(x, yu(x), u(x))v(x)

}
dx

=

∫

Ω

{
[Az + φ′(yu)z]ϕu +

∂L

∂u
(x, yu(x), u(x))v(x)

}
dx

=

∫

Ω

{
ϕu(x) +

∂L

∂u
(x, yu(x), u(x))

}
v(x) dx,

which proves (2.4). Finally (2.5) follows again by application of the
chain rule and Proposition 2.2. ¤

Combining Lemma 2.1 with the previous proposition we get the
first order optimality conditions.
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Theorem 2.4. Let ū be a local minimum of (P). Then there exist
ȳ, ϕ̄ ∈ H1

0 (Ω) ∩W 2,p(Ω) such that the following relationships hold

(2.7)

{
Aȳ + φ(ȳ) = ū in Ω,
ȳ = 0 on Γ,

(2.8)





A∗ϕ̄ + φ′(ȳ)ϕ̄ =
∂L

∂y
(x, ȳ, ū) in Ω,

ϕ̄ = 0 on Γ,

(2.9)

∫

Ω

{
ϕ̄(x) +

∂L

∂u
(x, ȳ(x), ū(x))

}
(u(x)− ū(x))dx ≥ 0 ∀u ∈ K.

From this theorem we can deduce some regularity results of the
local minima.

Theorem 2.5. Let us assume that ū is a local minimum of (P) and
that hypotheses (H1) and (H2) are fulfilled. Then for any x ∈ Ω̄, the
equation

(2.10) ϕ̄(x) +
∂L

∂u
(x, ȳ(x), t) = 0

has a unique solution t̄ = s̄(x), where ȳ is the state associated to ū and
ϕ̄ is the adjoint state defined by (2.8). The mapping s̄ : Ω̄ −→ R is
Lipschitz. Moreover ū and s̄ are related by the formula

(2.11) ū(x) = Proj[α,β](s̄(x)) = max(α, min(β, s̄(x))),

and ū is Lipschitz too.

Proof. The existence and uniqueness of solution of equation (2.10)
is an immediate consequence of the hypothesis (H2), therefore s̄ is
well defined. Let us see that s̄ is bounded. Indeed, making a Taylor
development of the first order in the relation

ϕ̄(x) +
∂L

∂u
(x, ȳ(x), s̄(x)) = 0

we get that

∂2L

∂u2
(x, ȳ(x), θ(x)s̄(x))s̄(x) = −ϕ̄(x)− ∂L

∂u
(x, ȳ(x), 0),

which along with (H2) lead to

Λ|s̄(x)| ≤ |ϕ̄(x)|+
∣∣∣∣
∂L

∂u
(x, ȳ(x), 0)

∣∣∣∣ ≤ C ∀x ∈ Ω.

Now let us prove that s̄ is Lipschitz. For it we use (H2), the
properties of L enounced in (H1), the fact that ȳ and ϕ̄ are Lipschitz
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functions (due to the inclusion W 2,p(Ω) ⊂ C0,1(Ω̄)) and the equation
above satisfied by s̄(x). Let x1, x2 ∈ Ω̄

Λ|s̄(x2)− s̄(x1)| ≤ |∂L

∂u
(x2, ȳ(x2), s̄(x2))− ∂L

∂u
(x2, ȳ(x2), s̄(x1))| =

|ϕ̄(x1)− ϕ̄(x2) +
∂L

∂u
(x1, ȳ(x1), s̄(x1))− ∂L

∂u
(x2, ȳ(x2), s̄(x1))| ≤

|ϕ̄(x1)− ϕ̄(x2)|+ CM (|ȳ(x1)− ȳ(x2)|+ |x2 − x1|) ≤ C|x2 − x1|.
Finally, from (2.9) and the fact that (∂L/∂u) is an increasing function
of the third variable we have

α < ū(x) < β ⇒ ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) = 0 ⇒ ū(x) = s̄(x),

ū(x) = β ⇒ ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) ≤ 0 ⇒ ū(x) ≤ s̄(x),

ū(x) = α ⇒ ϕ̄(x) +
∂L

∂u
(x, ȳ(x), ū(x)) ≥ 0 ⇒ ū(x) ≥ s̄(x),

which implies (2.11). ¤

Remark 2.6. If the assumption (H2) does not hold, then the op-
timal controls can be discontinuous. The most obvious case is the one
where L is independent of u, in this case (2.9) is reduced to

∫

Ω

ϕ̄(x)(u(x)− ū(x)) dx ≥ 0 ∀u ∈ K,

which leads to

ū(x) =

{
α if ϕ̄(x) > 0
β if ϕ̄(x) < 0

a.e. x ∈ Ω.

If ϕ̄ vanishes in a set of points of zero measure, then ū jumps from α
to β. Such a control ū is called a bang-bang control. The controls of
this nature are of great interest in the applications due to the easiness
to automate the control process. All the results presented previously
are valid without the assumption (H2), except Theorem 2.5.

Remark 2.7. A very frequent case is given by the function L(x, y, u) =
[(y−yd(x))2 +Nu2]/2, where N > 0 and yd ∈ L2(Ω) is a fixed element.
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In this case, (2.9) leads to

ū(x) = ProyK

(
− 1

N
ϕ̄

)
(x) =





α if − 1

N
ϕ̄(x) < α,

β if − 1

N
ϕ̄(x) > β,

− 1

N
ϕ̄(x) if α ≤ − 1

N
ϕ̄(x) ≤ β.

In this case s̄ = −ϕ̄/N .
If furthermore we assume that K = L2(Ω), then (2.9) implies that

ū = −(1/N)ϕ̄. Thus ū has the same regularity than ϕ̄. Therefore ū
will be the more regular as much as greater be the regularity of yd, Γ,
φ and the coefficients of operator A. In particular we can get C∞(Ω̄)-
regularity if all the data of the problem are of class C∞.

Remark 2.8. If we consider the boundary control problem formu-
lated in §1.3.2, then the corresponding optimality system is

{
Aȳ + φ(ȳ) = f in Ω,
∂νA

ȳ = ū on Γ,

{
A?ϕ̄ + φ′(ȳ)ϕ̄ = ȳ − yd in Ω,
∂νA? ϕ̄ = 0 on Γ,

∫

Γ

(
ϕ̄(x) + N |ū(x)|r−2ū(x)

)
(v(x)− ū(x))dσ(x) ≥ 0 ∀v ∈ K.

Thus if N > 0 and K = Lr(Γ), with r > n− 1, we get from the last
inequality

ū(x) =
−1

N1/(r−1)
|ϕ̄(x)|(2−r)/(r−1)ϕ̄(x),

which allows a regularity study of ū in terms of the function ϕ̄. If K is
the set of controls of L∞(Γ) bounded by α and β, then

ū(x) = Proy[α,β](
−1

N1/(r−1)
|ϕ̄(x)|(2−r)/(r−1)ϕ̄(x)).
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Remark 2.9. Let us see the expression of the the optimality system
corresponding to the problem formulated in §1.3.3:




∂ȳ

∂t
+ Aȳ = f in ΩT ,

∂νA
ȳ + b(x, t, ȳ) = ū on ΣT ,

ȳ(x, 0) = y0(x) in Ω,





−∂ϕ̄

∂t
+ A?ϕ̄ =

∂L

∂y
(x, t, ȳ) in ΩT ,

∂νA∗ ϕ̄ +
∂b

∂y
(x, t, ȳ)ϕ̄ =

∂l

∂y
(x, t, ȳ, ū) on ΣT ,

ϕ̄(x, T ) = 0 in Ω,∫

ΣT

{
ϕ̄ +

∂l

∂u
(x, t, ȳ, ū)

}
(u− ū)dσ(x)dt ≥ 0 ∀u ∈ K.

Of course the convenient differentiability hypotheses on the func-
tions b, L and l should be done to obtain the previous system, but this
is a question that will not analyze here. Simply we intend to show how
the adjoint state equation in problems of optimal control of parabolic
equations is formulated.

Remark 2.10. In the case of control problems with state con-
straints it is more difficult to derive the optimality conditions, mainly
in the case of pointwise state constraints, for instance |y(x)| ≤ 1 for
every x ∈ Ω. In fact this is an infinity number of constraints, one
constraint for every point of Ω. The reader is referred to Bonnans and
Casas [4], [5], [8].

It is possible to give an optimality system without making any de-
rivative with respect to the control of the functions involved in the
problem. These conditions are known as Pontryagin Maximum Princi-
ple. This result, first stated for control problems of ordinary differential
equations (see [40]), has been later extended to problems governed by
partial differential equations; see Bonnans and Casas [7], [8], Casas
[13], [15], Casas, Raymond and Zidani [28], [29], Casas and Yong
[31], Fattorini [34], Li and Yong [37]. This principle provides some
optimality conditions more powerful than those obtained by the gen-
eral optimization methods. In particular, it is possible to deduce the
optimality conditions in the absence of convexity of the set of controls
K and differentiability properties with respect to the control of the
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functionals involved in the control problem. As far as I know in [29]
the reader can find the most general result on the Pontryagin principle
for control problems governed by partial differential equations.

Difficulties also appear to obtain the optimality conditions in the
case of state equations with more complicated linearities than those
presented in these notes. This is the case for the quasilinear equations;
see Casas y Fernández [19], [20]. Sometimes the non linearity causes
the system to have multiple solutions for some controls while for other
there is no solution; see Bonnans and Casas [6] and Casas, Kavian
and Puel [21]. A situation of this nature, especially interesting by
the applications, is the one that arises in the control of the Navier-
Stokes equations; see Abergel and Casas [1], Casas [14], [16] and Casas,
Mateos and Raymond [25].

2.2. Second Order Optimality Conditions

Let ū be a local minimum of (P), ȳ and ϕ̄ being the associated state
and adjoint state respectively. In order to simplify the notation we will
consider the function

d̄(x) =
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x).

From (2.9) it follows

(2.12) d̄(x) =





0 a.e. x ∈ Ω if α < ū(x) < β,
≥ 0 a.e. x ∈ Ω if ū(x) = α,
≤ 0 a.e. x ∈ Ω if ū(x) = β.

The following cone of critical directions is essential in the formula-
tion of the second order optimality conditions.

Cū = {v ∈ L2(Ω) satisfying (2.13) and v(x) = 0 if d̄(x) 6= 0},

(2.13) v(x) =

{ ≥ 0 a.e. x ∈ Ω if ū(x) = α,
≤ 0 a.e. x ∈ Ω if ū(x) = β.

Now we can to formulate the necessary and sufficient conditions for
optimality.

Theorem 2.11. Under the hypotheses (H1) and (H2), if ū is a
local minimum of (P), then

(2.14) J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.

Reciprocally, if ū ∈ K fulfills the first order optimality conditions (2.7)–
(2.9) and the condition

(2.15) J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0},
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then there exist δ > 0 and ε > 0 such that

(2.16) J(u) ≥ J(ū) +
δ

2
‖u− ū‖2

L2(Ω) ∀u ∈ K ∩ B̄ε(ū),

where B̄ε(ū) is the unit closed ball in L∞(Ω) with center at ū and radius
ε.

Proof. i)- Let us assume that ū is a local minimum of (P) and
prove (2.14). Firstly let us take v ∈ Cū ∩ L∞(Ω). For every 0 < ρ <
β − α we define

vρ(x) =

{
0 if α < ū(x) < α + ρ or β − ρ < ū(x) < β,

v(x) otherwise.

Then we still have that vρ ∈ Cū ∩ L∞(Ω). Moreover vρ → v when
ρ → 0 in Lp(Ω) for every p < +∞ and ū + λvρ ∈ K for every λ ∈
(0, ρ/‖v‖L∞(Ω)]. By using the optimality of ū it comes

0 ≤ J(ū + λvρ)− J(ū)

λ
= J ′(ū)vρ +

λ

2
J ′′(ū + θλλvρ)v

2
ρ,

with 0 < θλ < 1. From this inequality and the following identity

J ′(ū)vρ =

∫

Ω

(
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x))vρ(x) dx =

∫

Ω

d̄(x)vρ(x) dx = 0,

we deduce by passing to the limit when λ → 0

0 ≤ J ′′(ū + θλλvρ)v
2
ρ → J ′′(ū)v2

ρ.

Now from the expression of the second derivative J ′′ given by (2.5), we
can pass to the limit in the previous expression when ρ → 0 and get
that J ′′(ū)v2 ≥ 0.

To conclude this part we have to prove the same inequality for any
v ∈ Cū, not necessarily bounded. Let us take v in Cū and consider

vk(x) = Proy[−k,+k](v(x)) = min{max{−k, v(x)}, +k}.
Then vk → v en L2(Ω) and vk ∈ Cū ∩ L∞(Ω), which implies that
J ′′(ū)v2

k ≥ 0. Passing again to the the limit when k → +∞, we deduce
(2.14).

ii)- Now let us assume that (2.15) holds and prove (2.16). We argue
by contradiction and assume that for any k ∈ N we can find an element
uk ∈ K such that

(2.17) ‖ū− uk‖L∞(Ω) <
1

k
y J(uk) < J(ū) +

1

k
‖uk − ū‖2

L2(Ω).

Let us define

δk = ‖uk − ū‖L2(Ω) y vk =
1

δk

(uk − ū).
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By taking a subsequence if necessary, we can suppose that vk ⇀ v
weakly in L2(Ω). By using the equation (2.2) it is easy to check that

lim
k→∞

zk = lim
k→∞

G′(ū)vk = G′(ū)v = z strongly in H1
0 (Ω) ∩ L∞(Ω).

On the other hand, from the properties of L established in the hypoth-
esis (H1) we get for all 0 < θk < 1

|[J ′′(ū + θkδkvk)− J ′′(ū)]v2
k| ≤

(2.18) C‖θkδkvk‖L∞(Ω)‖vk‖2
L2(Ω) ≤ C‖uk − ū‖L∞(Ω) → 0.

From (2.17) it comes

1

k
‖uk − ū‖2

L2(Ω) > J(uk)− J(ū) = J(ū + δkvk)− J(ū) = δkJ
′(ū)vk+

(2.19)
δ2
k

2
J ′′(ū + θkδkvk)v

2
k ≥

δ2
k

2
J ′′(ū + θkδkvk)v

2
k.

The last inequality follows from (2.9) along with the fact that uk ∈ K
and therefore

δkJ
′(ū)vk = J ′(ū)(uk − ū) =

∫

Ω

d̄(x)(uk(x)− ū(x)) dx ≥ 0.

From the strong convergence zk → z in L∞(Ω), the weak con-
vergence vk ⇀ v in L2(Ω), the expression of J ′′ given by (2.5), the
hypothesis (H2), (2.18) and the inequality (2.19) we deduce

J ′′(ū)v2 ≤ lim inf
k→∞

J ′′(ū)v2
k ≤ lim sup

k→∞
J ′′(ū)v2

k ≤

lim sup
k→∞

|[J ′′(ū + θkδkvk)− J ′′(ū)]v2
k|+

(2.20) lim sup
k→∞

J ′′(ū + θkδkvk)v
2
k ≤ lim sup

k→∞

2

k
= 0.

Now let us prove that J ′′(ū)v2 ≥ 0 to conclude that J ′′(ū)v2 = 0. For
it we are going to use the sufficient second order condition (2.15). First
we have to prove that v ∈ Cū. Let us remark that every vk satisfies
the sign condition (2.13). Since the set of functions of L2(Ω) verifying
(2.13) is convex and closed, then it is weakly closed, which implies that
v belongs to this set and consequently it also satisfies (2.13). Let us see
that d̄(x)v(x) = 0. From (2.12) and (2.13) we get that d̄(x)v(x) ≥ 0.
Using the mean value theorem and (2.17) we get

J(uk)− J(ū) = J ′(ū + θk(uk − ū))(uk − ū) <
δ2
k

k
,
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which leads to∫

Ω

|d̄(x)v(x)| dx =

∫

Ω

d̄(x)v(x) dx = J ′(ū)v =

lim
k→0

J ′(ū + θk(uk − ū))vk = lim
k→0

1

δk

J ′(ū + θk(uk − ū))(uk − ū) = 0.

Thus we have that v ∈ Cū. Therefore (2.15) and (2.20) is only possible
if v = 0. Combining this with (2.20) it comes

lim
k→∞

J ′′(ū)v2
k = 0.

Once again using (H2) and the expression (2.5), we deduce from the
above identity and the weak and strong convergences of {vk} and {zk}
respectively that

0 < Λ ≤ lim inf
k→∞

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx ≤ lim sup
k→∞

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

k dx =

lim
k→∞

J ′′(ū)v2
k − lim

k→∞

∫

Ω

[
∂2L

∂y2
(x, ȳ, ū)z2

k +
∂2L

∂y∂u
(x, ȳ, ū)vkzk

−ϕ̄φ′′(ȳ)z2
k

]
dx = 0,

which provides the desired contradiction. ¤
We will finish this chapter by proving a very important result to

deduce the error estimates of the approximations of problem (P).

Theorem 2.12. Under the hypotheses (H1) and (H2), if ū ∈ K
satisfies (2.7)-(2.9), then the following statements are equivalent

(2.21) J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}
and

(2.22) ∃δ > 0 y ∃τ > 0 / J ′′(ū)v2 ≥ δ‖v‖2
L2(Ω) ∀v ∈ Cτ

ū ,

where

Cτ
ū = {v ∈ L2(Ω) satisfying (2.13) and v(x) = 0 if |d̄(x)| > τ}.

Proof. Since Cū ⊂ Cτ
ū for all τ > 0, it is obvious that (2.22)

implies (2.21). Let us prove the reciprocal implication. We proceed by
contradiction and assume that for any τ > 0 there exists vτ ∈ Cτ

ū such
that J ′′(ū)v2

τ < τ‖vτ‖2
L2(Ω). Dividing vτ by its norm we can assume

that

(2.23) ‖vτ‖L2(Ω) = 1, J ′′(ū)v2
τ < τ and vτ ⇀ v en L2(Ω).
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Let us prove that v ∈ Cū. Arguing as in the proof of the previous
theorem we get that v satisfies the sign condition (2.13). On the other
hand ∫

Ω

|d̄(x)v(x)| dx =

∫

Ω

d̄(x)v(x) dx =

lim
τ→0

∫

Ω

d̄(x)vτ (x) dx = lim
τ→0

∫

|d̄(x)|≤τ

d(x)vτ (x) dx ≤

lim
τ→0

τ

∫

Ω

|vτ (x)| dx ≤ lim
τ→0

τ
√

m(Ω)‖vτ‖L2(Ω) = 0,

which proves that v(x) = 0 if d̄(x) 6= 0. Thus we have that v ∈ Cū.
Then (2.21) implies that either v = 0 or J ′′(ū)v2 > 0. But (2.23) leads
to

J ′′(ū)v2 ≤ lim inf
τ→0

J ′′(ū)v2
τ ≤ lim sup

τ→0
J ′′(ū)v2

τ ≤ 0.

Thus we conclude that v = 0. Once again arguing as in the proof of
the previous theorem we deduce that

0 < Λ ≤ lim
τ→0

∫

Ω

∂2L

∂u2
(x, ȳ, ū)v2

τ dx = lim
τ→0

J ′′(ū)v2
τ−

lim
τ→0

∫

Ω

[
∂2L

∂y2
(x, ȳ, ū)z2

τ +
∂2L

∂y∂u
(x, ȳ, ū)vτzτ − ϕ̄φ′′(ȳ)z2

τ

]
dx = 0,

Which leads to the desired contradiction. ¤
Remark 2.13. The fact that the control u appears linearly in the

state equation and the hypothesis (H2) have been crucial to deduce
the second order optimality conditions proved in this chapter. As a
consequence of both assumptions, the functional J ′′(ū) is a Legendre
quadratic form in L2(Ω), which simplifies the proof, allowing us to
follow the method of proof used in finite dimensional optimization; see
Bonnans and Zidani [9]. In the absence of one of these assumptions,
the condition (2.15) is not enough to assure the optimality; see Casas
and Tröltzsch [30] and Casas and Mateos [22].



CHAPTER 3

Numerical Approximation

In order to simplify the presentation we will assume that Ω is con-
vex.

3.1. Finite Element Approximation of (P)

Now we consider a based finite element approximation of (P). As-
sociated with a parameter h we consider a family of triangulations
{Th}h>0 of Ω̄. To every element T ∈ Th we assign two parameters ρ(T )
and σ(T ), where ρ(T ) denotes the diameter of T and σ(T ) is the di-
ameter of the biggest ball contained in T . The size of the grid is given
by h = maxT∈Th

ρ(T ). The following usual regularity assumptions on
the triangulation are assumed.

(i) - There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

for every T ∈ Th and all h > 0.

(ii) - Let us set Ωh = ∪T∈Th
T , Ωh and Γh its interior and boundary

respectively. We assume that the vertices of Th placed on the boundary
Γh are points of Γ. From [41, inequality (5.2.19)] we know

(3.1) measure(Ω \ Ωh) ≤ Ch2.

Associated to these triangulations we define the spaces

Uh = {u ∈ L∞(Ωh) | u|T is constant on each T ∈ Th},

Yh = {yh ∈ C(Ω̄) | yh|T ∈ P1, for every T ∈ Th, and yh = 0 in Ω̄ \Ωh},

where P1 is the space formed by the polynomials of degree less than
or equal to one. For every u ∈ L2(Ω), we denote by yh(u) the unique
element of Yh satisfying

(3.2) a(yh(u), qh) +

∫

Ω

φ(yh(u))qh dx =

∫

Ω

uqh dx ∀qh ∈ Yh,

25
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where a : Yh × Yh −→ R is the bilinear form defined by

a(yh, qh) =

∫

Ω

(
n∑

i,j=1

aij(x)∂xi
yh(x)∂xj

qh(x) + a0(x)yh(x)qh(x)) dx.

In other words, yh(u) is the discrete state associated with u. Let us
remark that yh = zh = 0 on Ω̄ \ Ωh, therefore the above integrals can
be replaced by the integrals in Ωh. Therefore the values of u in Ω \Ωh

do not contribute to the computation of yh(u), consequently we can
define yh(uh) for any uh ∈ Uh. In particular for any extension of uh to
Ω, the discrete state yh(u) is the same.

The finite dimensional approximation of the optimal control prob-
lem (P) is defined in the following way

(Ph)





min Jh(uh) =
∫
Ωh

L(x, yh(uh)(x), uh(x)) dx,

such that (yh(uh), uh) ∈ Yh × Uh,

α ≤ uh(x) ≤ β a.e. x ∈ Ωh.

Let us start the study of problem (Ph) by analyzing the differentia-
bility of the functions involved in the control problem. We just enounce
the differentiability results analogous to the ones of §2.1.

Proposition 3.1. For every u ∈ L∞(Ω), problem (3.2) has a
unique solution yh(u) ∈ Yh, the mapping Gh : L∞(Ω) −→ Yh, defined by
Gh(u) = yh(u), is of class C2 and for all v, u ∈ L∞(Ω), zh(v) = G′

h(u)v
is the solution of

(3.3) a(zh(v), qh) +

∫

Ω

φ′(yh(u))zh(v)qh dx =

∫

Ω

vqh dx ∀qh ∈ Yh

Finally, for every v1, v2 ∈ L∞(Ω), zh(v1, v2) = G′′(u)v1v2 ∈ Yh is the
solution of the variational equation:

(3.4) a(zh, qh) +

∫

Ω

φ′(yh(u))zhqh dx +

∫

Ω

φ′′(yh(u))zh1zh2qhdx = 0

∀qh ∈ Yh, where zhi = G′
h(u)vi, i = 1, 2.

Proposition 3.2. Functional Jh : L∞(Ω) → R is of class C2.
Moreover for all u, v, v1, v2 ∈ L∞(Ω)

(3.5) J ′h(u)v =

∫

Ωh

(
∂L

∂u
(x, yh(u), u) + ϕh(u)

)
v dx

and

J ′′h(u)v1v2 =

∫

Ωh

[
∂2L

∂y2
(x, yh(u), u)zh(v1)zh(v2)+
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∂2L

∂y∂u
(x, yh(u), u)[zh(v1)v2 + zh(v2)v1]+

(3.6)
∂2L

∂u2
(x, yh(u), u)v1v2 − ϕh(u)φ′′(yh(u))zh1zh2

]
dx

where yh(u) = Gh(u) and ϕh(u) ∈ Yh is the unique solution of the
problem

(3.7)

a(qh, ϕh(u)) +

∫

Ω

φ′(yh(u))ϕh(u)qh dx =

∫

Ω

∂L

∂y
(x, yh(u), u)qh dx ∀qh ∈ Yh,

with zhi = G′
h(u)vi, i = 1, 2.

We conclude this section by studying the existence of a solution
of problem (Ph) and establishing the first order optimality conditions.
The second order conditions are analogous to those proved for prob-
lem (P) and they can be obtained by the classical methods of finite
dimensional optimization.

In the sequel we will denote

Kh = {uh ∈ Uh : α ≤ uh|T ≤ β ∀T ∈ Th}.
Theorem 3.3. For every h > 0 problem (Ph) has at least one

solution. If ūh is a local minimum of (Ph), then there exist ȳh, ϕ̄h ∈ Yh

such that

(3.8) a(ȳh, qh) +

∫

Ω

φ(ȳh)qh(x) dx =

∫

Ω

ūh(x)qh(x) dx ∀qh ∈ Yh,

(3.9) a(qh, ϕ̄h) +

∫

Ω

φ′(ȳh)ϕ̄hqh dx =

∫

Ω

∂L

∂y
(x, ȳh, ūh)qh dx ∀qh ∈ Yh,

(3.10)

∫

Ωh

{
ϕ̄h +

∂L

∂u
(x, ȳh, ūh)

}
(uh − ūh)dx ≥ 0 ∀uh ∈ Kh.

Proof. The existence of a solution is an immediate consequence
of the compactness of Kh in Uh and the continuity of Jh in Kh. The
optimality system (3.8)-(3.10) follows from Lemma 2.1 and Proposition
3.2. ¤

From this theorem we can deduce a representation of the local min-
ima of (Ph) analogous to that obtained in Theorem 2.5.
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Theorem 3.4. Under the hypotheses (H1) and (H2), if ūh is a
local minimum of (Ph), and ȳh and ϕ̄h are the state and adjoint state
associated to ūh, then for every T ∈ Th the equation

(3.11)

∫

T

[ϕ̄h(x) +
∂L

∂u
(x, ȳh(x), t)] dx = 0,

has a unique solution t̄ = s̄T . The mapping s̄h ∈ Uh, defined by s̄h|T =
s̄T , is related with ūh by the formula

(3.12) ūh(x) = Proj[α,β](s̄h(x)) = max(α, min(β, s̄h(x))).

Proof. The existence of a unique solution of (3.11) is a conse-
quence of hypothesis (H2). Let us denote by ūT the restriction of ūh

to T . From the definition of Uh and (3.10) we deduce that
∫

T

{
ϕ̄h +

∂L

∂u
(x, ȳh, ūT )

}
dx(t− ūT ) ≥ 0 ∀t ∈ [α, β] and ∀T ∈ Th.

From here we get

α < ūT < β ⇒
∫

T

{
ϕ̄h +

∂L

∂u
(x, ȳh, ūT )

}
dx = 0 ⇒ ūT = s̄T ,

ūT = β ⇒
∫

T

{
ϕ̄h +

∂L

∂u
(x, ȳh, ūT )

}
dx ≤ 0 ⇒ ūT ≤ s̄T ,

ūT = α ⇒
∫

T

{
ϕ̄h +

∂L

∂u
(x, ȳh, ūT )

}
dx ≥ 0 ⇒ ūT ≥ s̄T ,

which implies (3.12). ¤

3.2. Convergence of the Approximations

In this section we will prove that the solutions of the discrete prob-
lems (Ph) converge strongly in L∞(Ωh) to solutions of problem (P). We
will also prove that the strict local minima of problem (P) can be ap-
proximated by local minima of problems (Ph). In order to prove these
convergence results we will use two lemmas whose proofs can be found
in [2] and [23].

Lemma 3.5. Let (v, vh) ∈ L∞(Ω) × Uh satisfy ‖v‖L∞(Ω) ≤ M and
‖vh‖L∞(Ωh) ≤ M . Let us assume that yv and yh(vh) are the solutions of
(1.1) and (3.2) corresponding to v and vh respectively. Moreover let ϕv
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and ϕh(vh) be the solutions of (2.6) and (3.7) corresponding to v and
vh respectively. Then the following estimates hold

(3.13) ‖yv− yh(vh)‖H1(Ω) + ‖ϕv−ϕh(vh)‖H1(Ω) ≤ C(h+ ‖v− vh‖L2(Ωh)),

(3.14) ‖yv−yh(vh)‖L2(Ω) +‖ϕv−ϕh(vh)‖L2(Ω) ≤ C(h2 +‖v−vh‖L2(Ωh)),

(3.15) ‖yv−yh(vh)‖L∞(Ω) +‖ϕv−ϕh(vh)‖L∞(Ω) ≤ C(h+‖v−vh‖L2(Ωh)),

where C ≡ C(Ω, n,M) is a positive constant independent of h.

Estimate (3.15) was not proved in [2], but it follows from [2] and the
uniform error estimates for the discretization of linear elliptic equations;
see for instance Schatz [43, Estimate (0.5)] and the references therein.

Lemma 3.6. Let {uh}h>0 be a sequence, with uh ∈ Kh and uh ⇀ u
weakly in L1(Ω), then yh(uh) → yu and ϕh(uh) → ϕu in H1

0 (Ω)∩C(Ω̄)
strongly. Moreover J(u) ≤ lim infh→0 Jh(uh).

Let us remark that uh is only defined in Ωh, then we need to precise
what uh ⇀ u weakly in L1(Ω) means. It means that∫

Ωh

ψuh dx →
∫

Ω

ψu dx ∀ψ ∈ L∞(Ω).

Since the measure of Ω \Ωh tends to zero when h → 0, then the above
property is equivalent to∫

Ω

ψũh dx →
∫

Ω

ψu dx ∀ψ ∈ L∞(Ω)

for any uniformly bounded extension ũh of uh to Ω. Analogously we
can define the weak? convergence in L∞(Ω).

Theorem 3.7. Let us assume that (H1) and (H2) hold. For every
h > 0 let ūh be a solution of (Ph). Then there exist subsequences of
{ūh}h>0 converging in the weak∗ topology of L∞(Ω), that will be denoted
in the same form. If ūh ⇀ ū in the mentioned topology, then ū is a
solution of (P) and the following identities hold

(3.16) lim
h→0

Jh(ūh) = J(ū) = inf(P ) and lim
h→0

‖ū− ūh‖L∞(Ωh) = 0.

Proof. The existence of subsequences converging in the weak∗

topology of L∞(Ω) is a consequence of the boundedness of {ūh}h>0,
α ≤ ūh(x) ≤ β for every h > 0 and x ∈ Ωh. Let ū be a limit point of
one of these converging subsequences and prove that ū is a solution of
(P). Let ũ be a solution of (P). From Theorem 2.5 we deduce that ũ is
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Lipschitz in Ω̄. Let us consider the operator Πh : L1(Ω) −→ Uh defined
by

Πhu|T =
1

m(T )

∫

T

u(x) dx ∀T ∈ Th.

Let uh = Πhũ ∈ Uh, it is easy to prove that

‖ũ− uh‖L∞(Ω) ≤ Λũh,

where Λũ is the Lipschitz constant of ũ. By applying Lemmas 3.5 and
3.6 we get

J(ū) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤

≤ lim sup
h→0

Jh(uh) = J(ũ) = inf (P) ≤ J(ū),

which proves that ū is a solution of (P) and

lim
h→0

Jh(ūh) = J(ū) = inf(P ).

Let us prove now the uniform convergence ūh → ū. From (2.11) and
(3.12) follows

‖ū− ūh‖L∞(Ωh) ≤ ‖s̄− s̄h‖L∞(Ωh),

therefore it is enough to prove the uniform convergence of {s̄h}h>0 to
s̄. On the other hand, from (3.11) we have that

∫

T

[ϕ̄h(x) +
∂L

∂u
(x, ȳh(x), s̄h|T )] dx = 0.

From this equality and the continuity of the integrand with respect to
x it follows the existence of a point ξT ∈ T such that

(3.17) ϕ̄h(ξT ) +
∂L

∂u
(ξT , ȳh(ξT ), s̄h(ξT )) = 0.

Given x ∈ Ωh, let T ∈ Th be such that x ∈ T . Since s̄h is constant in
each element T

|s̄(x)− s̄h(x)| ≤ |s̄(x)− s̄(ξT )|+ |s̄(ξT )− s̄h(ξT )| ≤
Λs̄|x− ξT |+ |s̄(ξT )− s̄h(ξT )| ≤ Λs̄h + |s̄(ξT )− s̄h(ξT )|,

where Λs̄ is the Lipschitz constant of s̄. Thus it remains to prove
the convergence s̄h(ξT ) → s̄(ξT ) for every T . For it we will use again
the strict positivity of the second derivative of L with respect to u
(Hypothesis (H2)) along with (3.17) and the fact that s̄(x) is the
solution of the equation (2.10) to get

Λ|s̄(ξT )− s̄h(ξT )| ≤
∣∣∣∣
∂L

∂u
(ξT , ȳh(ξT ), s̄(ξT ))− ∂L

∂u
(ξT , ȳh(ξT ), s̄h(ξT ))

∣∣∣∣ ≤
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∣∣∣∣
∂L

∂u
(ξT , ȳh(ξT ), s̄(ξT ))− ∂L

∂u
(ξT , ȳ(ξT ), s̄(ξT ))

∣∣∣∣ +

∣∣∣∣
∂L

∂u
(ξT , ȳ(ξT ), s̄(ξT ))− ∂L

∂u
(ξT , ȳh(ξT ), s̄h(ξT ))

∣∣∣∣ =

∣∣∣∣
∂L

∂u
(ξT , ȳh(ξT ), s̄(ξT ))− ∂L

∂u
(ξT , ȳ(ξT ), s̄(ξT ))

∣∣∣∣ + |ϕ̄(ξT )− ϕ̄h(ξT )| → 0

thanks to the uniform convergence ȳh → ȳ and ϕ̄h → ϕ̄ (Lemma 3.6).
¤

In a certain way, next result is the reciprocal one to the previous
theorem. The question we formulate now is wether a local minimum
u of (P) can be approximated by a local minimum uh of (Ph). The
answer is positive if the local minimum u is strict. In the sequel, Bρ(u)
will denote the open ball of L∞(Ω) with center at u and radius ρ. B̄ρ(u)
will denote the corresponding closed ball.

Theorem 3.8. Let us assume that (H1) and (H2) hold. Let ū be
a strict local minimum of (P). Then there exist ε > 0 and h0 > 0 such
that (Ph) has a local minimum ūh ∈ Bε(ū) for every h < h0. Moreover
the convergences (3.16) hold.

Proof. Let ε > 0 be such that ū is the unique solution of problem

(Pε)

{
min J(u)
u ∈ K ∩ B̄ε(ū).

Let us consider the problems

(Phε)

{
min Jh(uh)
uh ∈ Kh ∩ B̄ε(ū).

Let Πh : L1(Ω) −→ Uh be the operator introduced in the proof of the
previous theorem. It is obvious that Πhū ∈ Kh ∩ B̄ε(ū) for every h
small enough. Therefore Kh ∩ B̄ε(ū) is non empty and consequently
(Phε) has at least one solution ūh. Now we can argue as in the proof
of Theorem 3.7 to conclude that ‖ūh − ū‖L∞(Ωh) → 0, therefore ūh is
local solution of (Ph) in the open ball Bε(ū) as desired. ¤

3.3. Error Estimates

In this section we will assume that (H1) and (H2) hold and ū will
denote a local minimum of (P) satisfying the sufficient second order
condition for optimality (2.15) or equivalently (2.22). {ūh}h>0 will
denote a sequence of local minima of problems (Ph) such that ‖ū −
ūh‖L∞(Ωh) → 0; remind Theorems 3.7 and 3.8. The goal of this section
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is to estimate the error ū − ūh in the norms of L2(Ωh) and L∞(Ωh)
respectively. For it we are going to prove three previous lemmas.

For convenience, in this section we will extend ūh to Ω by taking
ūh(x) = ū(x) for every x ∈ Ω.

Lemma 3.9. Let δ > 0 be as in Theorem 2.12. Then there exists
h0 > 0 such that

(3.18)
δ

2
‖ū− ūh‖2

L2(Ωh) ≤ (J ′(ūh)− J ′(ū))(ūh − ū) ∀h < h0.

Proof. Let us set

d̄h(x) =
∂L

∂u
(x, ȳh(x), ūh(x)) + ϕ̄h(x)

and take δ > 0 and τ > 0 as in Theorem 2.12. We know that d̄h

converge uniformly to d̄ in Ω, therefore there exists hτ > 0 such that

(3.19) ‖d̄− d̄h‖L∞(Ω) <
τ

4
∀h ≤ hτ .

For every T ∈ Th we define

IT =

∫

T

d̄h(x) dx.

From (3.10) follows

ūh |T =

{
α if IT > 0
β if IT < 0.

Let us take 0 < h1 ≤ hτ such that

|d̄(x2)− d̄(x1)| < τ

4
if |x2 − x1| < h1.

This inequality along with (3.19) imply that

if ξ ∈ T and d̄(ξ) > τ ⇒ d̄h(x) >
τ

2
∀x ∈ T, ∀T ∈ T̂h, ∀h < h1,

hence IT > 0, therefore ūh |T = α, in particular ūh(ξ) = α. From (2.12)
we also have ū(ξ) = α. Then (ūh − ū)(ξ) = 0 whenever d̄(ξ) > τ and
h < h1. We can prove the analogous result when d̄(ξ) < −τ . On the
other hand, since α ≤ ūh(x) ≤ β, it is obvious (ūh − ū)(x) ≥ 0 if
ū(x) = α and (ūh − ū)(x) ≤ 0 if ū(x) = β. Thus we have proved that
(ūh − ū) ∈ Cτ

ū , remember that ū = ūh in Ω \ Ωh. Then (2.22) leads to

(3.20) J ′′(ū)(ūh − ū)2 ≥ δ‖ūh − ū‖2
L2(Ω) = δ‖ūh − ū‖2

L2(Ωh) ∀h < h1.
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On the other hand, by applying the mean value theorem, we get for
some 0 < θh < 1 that

(J ′(ūh)− J ′(ū))(ūh − ū) = J ′′(ū + θh(ūh − ū))(ūh − ū)2 ≥

(J ′′(ū + θh(ūh − ū))− J ′′(ū))(ūh − ū)2 + J ′′(ū)(ūh − ū)2 ≥
(δ − ‖J ′′(ū + θh(ūh − ū))− J ′′(ū)‖) ‖ūh − ū‖2

L2(Ω).

Finally it is enough to choose 0 < h0 ≤ h1 such that

‖J ′′(ū + θh(ūh − ū))− J ′′(ū)‖ ≤ δ

2
∀h < h0

to deduce (3.18). The last inequality can be obtained easily from the
relationship (2.5) thanks to the uniform convergence (ϕ̄h, ȳh, ūh) →
(ϕ̄, ȳ, ū) and hypothesis (H1). ¤

The next step consists in estimating the convergence of J ′h to J ′.

Lemma 3.10. There exists a constant C > 0 independent of h such
that for every u1, u2 ∈ K and every v ∈ L2(Ω) the following inequalities
are fulfilled

(3.21) |(J ′h(u2)− J ′(u1))v| ≤ C
{
h + ‖u2 − u1‖L2(Ω)

} ‖v‖L2(Ω).

Proof. By using the expression of the derivatives given by (2.4)
and (3.5) along with the inequality (3.1) we get

|(J ′h(u2)− J ′(u1))v| ≤
∫

Ω\Ωh

∣∣∣∣
∂L

∂u
(x, yu1 , u1) + ϕu1

∣∣∣∣ |v| dx ≤

∫

Ωh

∣∣∣∣
(

∂L

∂u
(x, yh(u2), u2) + ϕh(u2)

)
−

(
∂L

∂u
(x, yu1 , u1) + ϕu1

)∣∣∣∣ |v| dx ≤

C
{
h + ‖ϕh(u2)− ϕu1‖L2(Ω) + ‖yh(u2)− yu1‖L2(Ω)

} ‖v‖L2(Ω).

Now (3.21) follows from the previous inequality and (3.14). ¤

A key point in the derivation of the error estimate is to get a good
approximate of ū by a discrete control uh ∈ Kh satisfying J ′(ū)ū =
J ′(ū)uh. Let us define this control uh and prove that it fulfills the
required conditions. For every T ∈ Th let us set

IT =

∫

T

d̄(x) dx.
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We define uh ∈ Uh with uh|T = uhT for every T ∈ Th given by the
expression

(3.22) uhT =





1

IT

∫

T

d̄(x)ū(x) dx si IT 6= 0

1

m(T )

∫

T

ū(x) dx si IT = 0.

We extend this function to Ω by taking uh(x) = ū(x) for every
x ∈ Ω \ Ωh. This function uh satisfies our requirements.

Lemma 3.11. There exists h0 > 0 such that for every 0 < h < h0

the following properties hold

(1) uh ∈ Kh.
(2) J ′(ū)ū = J ′(ū)uh.
(3) There exists C > 0 independent of h such that

(3.23) ‖ū− uh‖L∞(Ωh) ≤ Ch.

Proof. Let Λū > 0 be the Lipschitz constant of ū and let us take
h0 = (β − α)/(2Λū), then for every T ∈ Th and every h < h0

|ū(ξ2)− ū(ξ1)| ≤ Λū|ξ2 − ξ1| ≤ Λūh <
β − α

2
∀ξ1, ξ2 ∈ T

which implies that ū cannot take the values α and β in a same element
T for any h < h0. Therefore the sign of d̄ in T must be constant thanks
to (2.12). Hence IT = 0 if and only if d̄(x) = 0 for all x ∈ T . Moreover
if IT 6= 0, then d̄(x)/IT ≥ 0 for every x ∈ T . As a first consequence
of this we get that α ≤ uhT ≤ β, which means that uh ∈ Kh. On the
other hand

J ′(ū)uh =

∫

Ω\Ωh

d̄(x)ūh(x) dx +
∑
T∈Th

(∫

T

d̄(x) dx

)
uhT

=

∫

Ω\Ωh

d̄(x)ū(x) dx +
∑
T∈Th

∫

T

d̄(x)ū(x) dx = J ′(ū)ū.

Finally let us prove (3.23). Since the sign of d̄(x)/IT is always non
negative and d̄ is a continuous function, we get for any of the two
possible definitions of uhT the existence of a point ξj ∈ T such that
uhT = ū(ξj). Hence for all x ∈ T

|ū(x)− uh(x)| = |ū(x)− uhT | = |ū(x)− ū(ξj)| ≤ Λū|x− ξj| ≤ Λūh,

which proves (3.23). ¤
Finally we get the error estimates.
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Theorem 3.12. There exists a constant C > 0 independent of h
such that

(3.24) ‖ū− ūh‖L2(Ω) ≤ Ch.

Proof. Taking u = ūh in (2.9) we get

(3.25) J ′(ū)(ūh − ū) =

∫

Ω

(
ϕ̄ +

∂L

∂u
(x, ȳ, ū)

)
(ūh − ū) dx ≥ 0.

From (3.10) with uh defined by (3.22) it follows

J ′h(ūh)(uh − ūh) =

∫

Ω

(
ϕ̄h +

∂L

∂u
(x, ȳh, ūh)

)
(uh − ūh) dx ≥ 0,

then

(3.26) J ′h(ūh)(ū− ūh) + J ′h(ūh)(uh − ū) ≥ 0.

Adding (3.25) and (3.26) and using Lemma 3.11-2, we deduce

(J ′(ū)− J ′h(ūh)) (ū− ūh) ≤ J ′h(ūh)(uh− ū) = (J ′h(ūh)− J ′(ū)) (uh− ū).

For h small enough, this inequality along with (3.18) imply

δ

2
‖ū− ūh‖2

L2(Ω) ≤ (J ′(ū)− J ′(ūh)) (ū− ūh) ≤
(J ′h(ūh)− J ′(ūh)) (ū− ūh) + (J ′(ūh)− J ′(ū)) (uh − ū).

Using (3.21) with u2 = u1 = ūh and v = ū − ūh in the first addend
of the previous line and th expression of J ′ given by (2.4) along with
(3.14) for v = ū and vh = ūh, in the second addend, it comes

δ

2
‖ū− ūh‖2

L2(Ω) ≤ C1h‖ū− ūh‖L2(Ω)+

C2

(
h2 + ‖ū− ūh‖L2(Ω)

) ‖ū− uh‖L2(Ω).

From (3.23) and by using Young’s inequality in the above inequality
we deduce

δ

4
‖ū− ūh‖2

L2(Ωh) =
δ

4
‖ū− ūh‖2

L2(Ω) ≤ C3h
2,

which implies (3.24). ¤
Finally let us prove the error estimates in L∞(Ω).

Theorem 3.13. There exists a constant C > 0 independent of h
such that

(3.27) ‖ū− ūh‖L∞(Ωh) ≤ Ch.
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Proof. Let ξT be defined by (3.17). In the proof of Theorem 3.3
we obtained

‖ū− ūh‖L∞(Ωh) ≤ ‖s̄− s̄h‖L∞(Ωh) ≤ Λs̄h+

max
T∈Th

∣∣∣∣
∂L

∂u
(ξT , ȳh(ξT ), s̄(ξT ))− ∂L

∂u
(ξT , ȳ(ξT ), s̄(ξT ))

∣∣∣∣ + |ϕ̄(ξT )− ϕ̄h(ξT )|.
Using the hypothesis (H1), (3.15) and (3.24) we get

‖ū− ūh‖L∞(Ωh) ≤ Λs̄h + C(‖ȳ − ȳh‖L∞(Ω) + ‖ϕ̄− ϕ̄h‖L∞(Ω)) ≤
Λs̄h + C(h + ‖ū− ūh‖L2(Ωh)) ≤ Ch.

¤
Remark 3.14. Error estimates for problems with pointwise state

constraints is an open problem. The reader is referred to Deckelnick
and Hinze [32] for the linear quadratic case, when one side pointwise
state constraints and no control constraints. The case of integral state
constraints has been studied by Casas [17].

In Casas [18], the approximation of the control problem was done by
using piecewise linear continuous functions. For these approximations
the error estimate can be improved.

The case of Neumann boundary controls has been studied by Casas,
Mateos and Tröltzsch [26] and Casas and Mateos [24]. Casas and
Raymond considered the case of Dirichlet controls [27].
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portant des contraintes sur l’état, Nonlinear Partial Differential Equations and
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(A. Bermúdez, ed.), Springer-Verlag, 1989, Lecture Notes in Control and In-
formation Sciences 114, pp. 84–91.

7. , Un principe de Pontryagine pour le contrôle des systèmes elliptiques,
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Birkhäuser, Boston, 1995.

38. J.L. Lions, Contrôle optimal de systèmes gouvernés par des equations aux
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Abstract. We study the numerical approximation of boundary optimal control problems governed by semilinear
elliptic partial differential equations with pointwise constraints on the control. The analysis of the approximate
control problems is carried out. The uniform convergence of discretized controls to optimal controls is proven
under natural assumptions by taking piecewise constant controls. Finally, error estimates are established and some
numerical experiments, which confirm the theoretical results, are performed.
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1. Introduction

With this paper, we continue the discussion of error estimates for the numerical approxi-
mation of optimal control problems we have started for semilinear elliptic equations and
distributed controls in [1]. The case of distributed control is the easiest one with respect to
the mathematical analysis. In [1] it was shown that, roughly speaking, the distance between
a locally optimal control ū and its numerical approximation ūh has the order of the mesh
size h in the L2-norm and in the L∞-norm. This estimate holds for a finite element ap-
proximation of the equation by standard piecewise linear elements and piecewise constant
control functions.

The analysis for boundary controls is more difficult, since the regularity of the state
function is lower than that for distributed controls. Moreover, the internal approximation of
the domain causes problems. In the general case, we have to approximate the boundary by a

∗The first two authors were supported by Ministerio de Ciencia y Tecnologı́a (Spain). The second author was also
supported by the DFG research center “Mathematics for key technologies” (FZT86) in Berlin.
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polygon. This requires the comparison of the original control that is located at the boundary
� and the approximate control that is defined on the polygonal boundary �h . Moreover, the
regularity of elliptic equations in domains with corners needs special care. To simplify the
analysis, we assume here that � is a polygonal domain of R

2. Though this makes the things
easier, the lower regularity of states in polygonal domains complicates, together with the
presence of nonlinearities, the analysis.

Another novelty of our paper is the numerical confirmation of the predicted error esti-
mates. We present two examples, where we know the exact solutions. The first one is of
linear-quadratic type, while the second one is semilinear. We are able to verify our error
estimates quite precisely.

Let us mention some further papers related to this subject. The case of linear-quadratic
elliptic control problems approximated by finite elements was discussed in early papers
by Falk [11], Geveci [12] and Malanowski [25], and Arnautu and Neittaanmäki [2], who
already proved the optimal error estimate of order h in the L2-norm. In [25], also the case of
piecewise linear control functions is addressed. For some recent research in the case of linear
quadratic control problems, the reader is referred to Hinze [17] and Meyer and Rösch [27].

In the paper [8], the case of linear-quadratic elliptic problems was investigated again
from a slightly different point of view: It was assumed that only the control is approximated
while considering the elliptic equation as exactly solvable. Here, all main variants of elliptic
problems have been studied—distributed control, boundary control, distributed observation
and boundary observation. Moreover, the case of piecewise linear control functions was
studied in domains of dimension 2. Finally, we refer to [7], where error estimates were
derived for elliptic problems with integral state constraints.

There is an extensive literature on error estimates for the numerical approximation of
optimal control problems for ordinary differential equations and an associated abstract
theory of stability analysis. We mention only Hager [14], Dontchev and Hager [9], Dontchev
et al. [10] and Malanowski et al. [26]. We also refer to the detailed bibliography in [10]
and to the nicely written short survey given by Hager in [15]. One way to perform the error
analysis is to apply ideas from this abstract theory to the case of PDEs. In our former paper
[1] we have partially done this by adopting a well known perturbation trick that permits to
derive optimal error estimates.

Here, we apply a new, quite elegant and completely different technique that essentially
shortens the presentation. It does not rely on the available abstract perturbation analysis.

2. The control problem

Throughout the sequel, � denotes an open convex bounded polygonal set of R
2 and � is

the boundary of �. In this domain we formulate the following control problem

(P)




inf J (u) =
∫

�

L(x, yu(x)) dx +
∫

�

l(x, yu(x), u(x)) dσ (x)

subject to (yu, u) ∈ H 1(�) × L∞(�),

u ∈ U ad = {u ∈ L∞(�) | α ≤ u(x) ≤ β a.e. x ∈ �},
(yu, u) satisfying the state equation (2.1)
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{
−�yu(x) = a0(x, yu(x)) in �

∂ν yu(x) = b0(x, yu(x)) + u(x) on �,
(2.1)

where −∞ < α < β < +∞. Here u is the control while yu is said to be the associated
state. The following hypotheses are assumed about the functions involved in the control
problem (P):

(A1) The function L : � × R → R is measurable with respect to the first component, of
class C2 with respect to the second, L(·, 0) ∈ L1(�) and for all M > 0 there exist a
function ψL ,M ∈ L p(�) (p > 2) and a constant CL ,M > 0 such that

∣∣∣∣∂L

∂y
(x, y)

∣∣∣∣ ≤ ψL ,M (x),

∣∣∣∣∂2L

∂y2
(x, y)

∣∣∣∣ ≤ CL ,M ,∣∣∣∣∂2L

∂y2
(x, y2) − ∂2L

∂y2
(x, y1)

∣∣∣∣ ≤ CL ,M |y2 − y1|,

for a.e. x, xi ∈ � and |y|, |yi | ≤ M, i = 1, 2.

(A2) The function l : � × R
2 → R is measurable with respect to the first component, of

class C2 with respect to the second and third variables, l(x, 0, 0) ∈ L1(�) and for all
M > 0 there exists a constant Cl,M > 0 and a function ψl,M ∈ L p(�) (p > 1) such
that

∣∣∣∣ ∂l

∂y
(x, y, u)

∣∣∣∣ ≤ ψl,M (x),
∥∥D2

(y,u)l(x, y, u)
∥∥ ≤ Cl,M ,∣∣∣∣ ∂l

∂u
(x2, y, u) − ∂l

∂u
(x1, y, u)

∣∣∣∣ ≤ Cl,M |x2 − x1|,∥∥D2
(y,u)l(x, y2, u2) − D2

(y,u)l(x, y1, u1)
∥∥ ≤ Cl,M (|y2 − y1| + |u2 − u1|),

for a.e. x, xi ∈ � and |y|, |yi |, |u|, |ui | ≤ M, i = 1, 2, where D2
(y,u)l denotes the

second derivative of l with respect to (y, u). Moreover we assume that there exists
ml > 0 such that

∂2l

∂u2
(x, y, u) ≥ ml , a.e. x ∈ � and (y, u) ∈ R

2.

Let us remark that this inequality implies the strict convexity of l with respect to the
third variable.

(A3) The function a0 : � × R → R is measurable with respect to the first variable and of
class C2 with respect to the second,

a0(·, 0) ∈ L p(�) (p > 2),
∂a0

∂y
(x, y) ≤ 0 a.e. x ∈ � and y ∈ R
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and for all M > 0 there exists a constant Ca0,M > 0 such that

∣∣∣∣∂a0

∂y
(x, y)

∣∣∣∣ +
∣∣∣∣∂2a0

∂y2
(x, y)

∣∣∣∣ ≤ Ca0,M a.e. x ∈ � and |y| ≤ M,∣∣∣∣∂2a0

∂y2
(x, y2) − ∂2a0

∂y2
(x, y1)

∣∣∣∣ < Ca0,M |y2 − y1|
a.e. x ∈ � and |y1|, |y2| ≤ M.

(A4) The function b0 : � × R → R is Lipschitz with respect to the first variable and of
class C2 with respect to the second, b0(·, 0) ∈ W 1−1/p,p(�), with p > 2,

∂b0

∂y
(x, y) ≤ 0

and for all M > 0 there exists a constant Cb0,M > 0 such that

∣∣∣∣∂b0

∂y
(x, y)

∣∣∣∣ +
∣∣∣∣∂2b0

∂y2
(x, y)

∣∣∣∣ ≤ Cb0,M ,∣∣∣∣∂2b0

∂y2
(x, y2) − ∂2b0

∂y2
(x, y1)

∣∣∣∣ ≤ Cb0,M |y2 − y1|.

for all x ∈ � and |y|, |y1|, |y2| ≤ M .
(A5) At least one of the two conditions must hold: either (∂a0/∂y)(x, y) < 0 in E� × R

with E� ⊂ � of positive n-dimensional measure or (∂b0/∂y)(x, y) < 0 on E� × R

with E� ⊂ � of positive (n − 1)-dimensional measure.
Before finishing this section let us study the state equation (2.1).

Theorem 2.1. For every u ∈ L2(�) the state equation (2.1) has a unique solution yu ∈
H 3/2(�), that depends continuously on u. Moreover, there exists p0 > 2 depending on the
measure of the angles in � such that u ∈ W 1−1/p,p(�) with some 2 ≤ p ≤ p0 implies
yu ∈ W 2,p(�).

Proof: Due to the Assumptions (A3)–(A5), it is classical to show the existence of a
unique solution yu ∈ H 1(�) ∩ L∞(�). From the Assumptions (A3)–(A4) we also deduce
that a0(·, yu(·)) ∈ L2(�) and u − b0(·, yu(·)) ∈ L2(�). In this situation Lemma 2.2 below
proves that yu ∈ H 3/2(�).

Let us verify the W 2,p(�) regularity. It is known that H 3/2(�) ⊂ W 1,4(�); see for
instance Grisvard [13]. Therefore, the trace of yu belongs to the space W 1−1/4,4(�) [13,
Theorem 1.5.13]. From the Lipschitz property of b0 with respect to x and y, we deduce that
b0(·, yu(·)) ∈ W 1−1/4,4(�) too. Now Corollary 4.4.3.8 of Grisvard [13] yields the existence
of some p0 ∈ (2, 4] depending on the measure of the angles in � such that yu ∈ W 2,p(�)
for any 2 ≤ p ≤ p0 provided that u ∈ W 1−1/p,p(�). We should remind at this point that we
have assumed � to be convex.
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Lemma 2.2. Let us assume that f ∈ L2(�) and g ∈ L2(�) satisfy that∫
�

f (x) dx +
∫

�

g(x) dσ (x) = 0.

Then the problem

{
−�y = f in �

∂ν y = g on �
(2.2)

has a solution y ∈ H 3/2(�) that is unique up to an additive constant.

Proof: It is a consequence of Lax-Milgram Theorem’s that (2.2) has a unique solution
in H 1(�) up to an additive constant. Let us prove the H 3/2(�) regularity. To show this we
consider the problem

{−�y1 = f in �

y1 = 0 on �.

Following Jerison and Kenig [19], this problem has a unique solution y1 ∈ H 3/2(�).
Moreover, from �y1 ∈ L2(�) and y1 ∈ H 3/2(�) we deduce that ∂ν y1 ∈ L2(�); see Kenig
[21].

From the equality∫
�

(g − ∂ν y1) dσ = −
∫

�

f dx −
∫

�

∂ν y1 dσ = −
∫

�

f dx −
∫

�

�y1 dx = 0

we deduce the existence of a unique solution y2 ∈ H 1(�) of




−�y2 = 0 in �

∂ν y2 = g − ∂ν y1 on �∫
�

y2 dx =
∫

�

(y − y1) dx .

Once again following Jerison and Kenig [18] we know that y2 ∈ H 3/2(�). Now it is easy
to check that y = y1 + y2 ∈ H 3/2(�).

Let us note that H 3/2(�) ⊂ C(�̄) holds for Lipschitz domains in R
2. As a consequence

of the theorem above, we know that the functional J is well defined in L2(�).

Remark 2.3. It is important to notice that, regarding to the control, the cost functional J
and the state equation are convex and linear respectively. These assumptions are crucial to
prove the existence of a solution of Problem (P) as well as to establish the convergence
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of the discretizations. Indeed using the convexity of l with respect to u, we can prove, as
in Casas and Mateos [7], the existence of at least one global solution of (P). The reader is
also referred to this paper to check the importance of this structure of (P) to carry out the
convergence analysis of the discretizations.

Let us discuss the differentiability properties of J .

Theorem 2.4. Suppose that assumptions (A3)–(A4) are satisfied. Then the mapping
G : L∞(�) → H 3/2(�) defined by G(u) = yu is of class C2. Moreover, for all u, v ∈
L∞(�), zv = G ′(u)v is the solution of




−�zv = ∂a0

∂y
(x, yu)zv in �

∂νzv = ∂b0

∂y
(x, yu)zv + v on �.

(2.3)

Finally, for every v1, v2 ∈ L∞(�), zv1v2 = G ′′(u)v1v2 is the solution of




−�zv1v2 = ∂a0

∂y
(x, yu)zv1v2 + ∂2a0

∂y2
(x, yu)zv1 zv2 in �

∂vzv1v2 = ∂b0

∂y
(x, yu)zv1v2 + ∂2b0

∂y2
(x, yu)zv1 zv2 on �.

(2.4)

where zvi = G ′(u)vi , i = 1, 2.

This theorem is now standard and can be proved by using the implicit function theorem;
see Casas and Mateos [6].

Theorem 2.5. Under the assumptions (A1)–(A4), the functional J : L∞(�) → R is of
class C2. Moreover, for every u, v, vi , v2 ∈ L∞(�)

J ′(u)v =
∫

�

(
∂l

∂u
(x, yu, u) + ϕu

)
v dσ (2.5)

and

J ′′(u)v1v2 =
∫

�

[
∂2L

∂y2
(x, yu)zv1 zv2 + ϕu

∂2a0

∂y2
(x, yu)zv1 zv2

]
dx

+
∫

�

[
∂2l

∂y2
(x, yu, u)zv1 zv2 + ∂2l

∂y∂u
(x, yu, u)

(
zv1v2 + zv2v1

)
+ ∂2l

∂u2
(x, yu, u)v1v2 + ϕu

∂2b0

∂y2
(x, yu)zv1 zv2

]
dσ (2.6)
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where zvi = G ′(u)vi , i = 1, 2, yu = G(u), and the adjoint state ϕu ∈ H 3/2(�) is the unique
solution of the problem




−�ϕ = ∂a0

∂y
(x, yu)ϕ + ∂L

∂y
(x, yu) in �

∂νϕ = ∂b0

∂y
(x, yu)ϕ + ∂l

∂y
(x, yu, u) on �.

(2.7)

This theorem follows from Theorem 2.4 and the chain rule.

3. First and second order optimality conditions

The first order optimality conditions for Problem (P) follow readily from Theorem 2.5.

Theorem 3.1. Assume that ū is a local solution of Problem (P). Then there exist ȳ, ϕ̄ ∈
H 3/2(�) such that

{
−�ȳ(x) = a0(x, ȳ(x)) in �

∂ν ȳ(x) = b0(x, ȳ(x)) + ū(x) on �,
(3.1)




−�ϕ̄ = ∂a0

∂y
(x, ȳ)ϕ̄ + ∂L

∂y
(x, ȳ) in �

∂νϕ̄ = ∂b0

∂y
(x, ȳ)ϕ̄ + ∂l

∂y
(x, ȳ, ū) on �,

(3.2)

∫
�

(
∂l

∂u
(x, ȳ, ū) + ϕ̄

)
(u − ū) dσ ≥ 0 ∀u ∈ U ad . (3.3)

If we define

d̄(x) = ∂l

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x),

then we deduce from (3.3) that

d̄(x) =




0 for a.e. x ∈ � where α < ū(x) < β,

≥0 for a.e. x ∈ � where ū(x) = α,

≤0 for a.e. x ∈ � where ū(x) = β.

(3.4)

In order to establish the second order optimality conditions we define the cone of critical
directions

Cū = {v ∈ L2(�) satisfying (3.5) and v(x) = 0 if |d̄(x)| > 0},

v(x) =
{

≥0 for a.e. x ∈ � where ū(x) = α,

≤0 for a.e. x ∈ � where ū(x) = β.
(3.5)

Now we formulate the second order necessary and sufficient optimality conditions.
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Theorem 3.2. If ū is a local solution of (P), then J ′′(ū)v2 ≥ 0 holds for all v ∈ Cū.
Conversely, if ū ∈ U ad satisfies the first order optimality conditions (3.1)–(3.3) and the
coercivity condition J ′′(ū)v2 > 0 holds for all v ∈ Cū\{0}, then there exist δ > 0 and ε > 0
such that

J (u) ≥ J (ū) + δ‖u − ū‖2
L2(�) (3.6)

is satisfied for every u ∈ U ad such that ‖u − ū‖L∞(�) ≤ ε.

The necessary condition provided in the theorem is quite easy to get. The sufficient
conditions are proved by Casas and Mateos [6, Theorem 4.3] for distributed control problems
with integral state constraints. The proof can be translated in a straightforward way to the
case of boundary controls. The hypothesis (∂2l/∂u2) ≥ ml > 0 introduced in Assumption
(A2) as well as the linearity of u in the state equation is essential to apply the mentioned
Theorem 4.3. The same result can be proved by following the approach of Bonnans and
Zidani [5].

Remark 3.3. By using the assumption (∂2l/∂u2)(x, y, u) ≥ ml > 0, we deduce from Casas
and Mateos [6, Theorem 4.4] that the following two conditions are equivalent:

(1) J ′′(ū)v2 > 0 for every v ∈ Cū\{0}.
(2) There exist δ > 0 and τ > 0 such that J ′′(ū)v2 ≥ δ‖v‖2

L2(�) for every v ∈ Cτ
ū , where

Cτ
ū = {v ∈ L2(�) satisfying (3.5) and v(x) = 0 if |d̄(x)| > τ }.

It is clear that that Cτ
ū contains strictly Cū , so the condition (2) seems to be stronger than

(1), but in fact they are equivalent.

We finish this section by providing a characterization of the optimal control ū and
deducing from it the Lipschitz regularity of ū as well as some extra regularity of ȳ
and ϕ̄.

Theorem 3.4. Suppose that ū is a local solution of (P), then for all x ∈ � the equation

ϕ̄(x) + ∂l

∂u
(x, ȳ(x), t) = 0 (3.7)

has a unique solution t̄ = s̄(x). The mapping s̄ : � → R is Lipschitz and it is related with
ū through the formula

ū(x) = Proj[α,β](s̄(x)) = max{α, min{β, s̄(x)}}. (3.8)

Moreover ū ∈ C0,1(�) and ȳ, ϕ̄ ∈ W 2,p(�) ⊂ C0,1(�̄) for some p > 2.
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Proof: Let us remind that ȳ, ϕ̄ ∈ H 3/2(�) ⊂ C(�̄) because n = 2. We fix x ∈ � and
consider the real function g : R → R defined by

g(t) = ϕ̄(x) + ∂l

∂u
(x, ȳ(x), t).

From assumption (A2) we have that g is C1 with g′(t) ≥ ml > 0 for every t ∈ R. Therefore,
there exists a unique real number t̄ satisfying g(t̄) = 0. Consequently s̄ is well defined
and relation (3.8) is an immediate consequence of (3.4). Let us prove the regularity results.
Invoking once again assumption (A2) along with (3.7) and (3.8), we get for every x1, x2 ∈ �

|ū(x2) − ū(x1)|
≤ | s̄(x2) − s̄(x1) |≤ 1

ml

∣∣∣∣ ∂l

∂u
(x2, ȳ(x2), s̄(x1)) − ∂l

∂u
(x2, ȳ(x2), s̄(x1))

∣∣∣∣
≤ 1

ml

{
|ϕ̄(x2) − ϕ̄(x1)| +

∣∣∣∣ ∂l

∂u
(x1, ȳ(x1), s̄(x1)) − ∂l

∂u
(x2, ȳ(x2), s̄(x1))

∣∣∣∣
}

≤ C{|x2 − x1| + |ϕ̄(x2) − ϕ̄(x1)| + |ȳ(x2) − ȳ(x1)|}. (3.9)

The embedding H 3/2(�) ⊂ W 1,4(�) ensures that the traces of ȳ and ϕ̄ belong to the
space W 1−1/4,4(�). Exploiting that n = 2 and taking in this space the norm

‖z‖W 1−1/4,4(�) =
{
‖z‖4

L4(�) +
∫

�

∫
�

|z(x2) − z(x1)|4
|x2 − x1|4 dσ (x1) dσ (x2)

}1/4

,

the regularity ū, s̄ ∈ W 1−1/4,4(�) ⊂ W 1−1/p,p(�) (1 ≤ p ≤ 4) follows from (3.9). Now
Theorem 2.1 leads to the regularity ȳ ∈ W 2,p(�). The same is also true for ϕ̄. Indeed, it is
enough to use Corollary 4.4.3.8 of Grisvard [13] as in the proof of Theorem 2.1. Using the
embedding W 2,p(�) ⊂ C0,1(�̄) and (3.9) we get the Lipschitz regularity of ū and s̄.

4. Approximation of (P) by finite elements and piecewise constant controls

Here, we define a finite-element based approximation of the optimal control problem (P).
To this aim, we consider a family of triangulations {Th}h>0 of �̄ : �̄ = ∪T ∈Th T . This
triangulation is supposed to be regular in the usual sense that we state exactly here. With
each element T ∈ Th, we associate two parameters ρ(T ) and σ (T ), where ρ(T ) denotes the
diameter of the set T and σ (T ) is the diameter of the largest ball contained in T . Let us define
the size of the mesh by h = maxT ∈Th ρ(T ). The following regularity assumption is assumed.
(H )—There exist two positive constants ρ and σ such that

ρ(T )

σ (T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
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For fixed h > 0, we denote by {Tj }N (h)
j=1 the family of triangles of Th with a side on the

boundary of �. If the edges of Tj ∩ � are x j
� and x j+1

� then [x j
�, x j+1

� ] := Tj ∩ �, 1 ≤ j ≤
N (h), with x N (h)+1

� = x1
� . Associated with this triangulation we set

Uh = {
u ∈ L∞(�) | u is constant on every side

(
x j

�, x j+1
�

)
for 1 ≤ j ≤ N (h)

}
.

Yh = {
yh ∈ C(�̄)|yh|T ∈ P1, for all T ∈ Th

}
,

where Pi is the space of polynomials of degree less than or equal to 1. For each u ∈L∞
(�),

we denote by yh(u) the unique element of Yh that satisfies

a(yh(u), zh) =
∫

�

a0(x, yh(u))zh dx +
∫

�

[b0(x, yh(u)) + u]zh dx ∀zh ∈ Yh, (4.1)

where a : Yh × Yh → R is the bilinear form defined by

a(yh, zh) =
∫

�

∇ yh(x)∇zh(x) dx .

The existence and uniqueness of a solution of (4.1) follows in the standard way from the
monotonicity of a0 and b0. For instance, it can be deduced from [24, Lemma 4.3].

The finite dimensional control problem is defined by

(Ph)




min Jh(uh) =
∫

�

L(x, yh(uh)(x)) dx +
∫

�

l(x, yh(uh)(x), uh(x)) dσ (x),

subject to (yh(uh), uh) ∈ Yh × U a1
h ,

where

U ad
h = Uh ∩ U ad = {uh ∈ Uh |α ≤ uh(x) ≤ β for all x ∈ �}.

Since Jh is a continuous function and U ad
h is compact , we get that (Ph) has at least one

global solution. The first order optimality conditions can be written as follows:

Theorem 4.1. Assume that ūh is a local optimal solution of (Ph). Then there exist ȳh and
ϕ̄h in Yh satisfying

a(ȳh, zh) =
∫

�

a0(x, ȳh)zh dx +
∫

�

(b0(x, ȳh) + ūh)zh dx ∀ zh ∈ Yh, (4.2)

a(ϕ̄h, zh) =
∫

�

(
∂a0

∂y
(x, ȳh)ϕ̄h + ∂L

∂y
(x, ȳh)

)
zh dx

+
∫

�

(
∂b0

∂y
(x, ȳh)ϕ̄h + ∂l

∂y
(x, ȳh, ūh)

)
zh dσ (x) ∀ zh ∈ Yh, (4.3)
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∫
�

(
ϕ̄h + ∂l

∂u
(x, ȳh, ūh)

)
(uh − ūh) dσ (x) ≥ 0 ∀uh ∈ U ad

h . (4.4)

The following result is the counterpart of Theorem 3.4.

Theorem 4.2. Let us assume that ūh is a local solution of problem (Ph).Then for every
1 ≤ j ≤ N (h), the equation

∫ x j+1
�

x j
�

(
ϕ̄h(x) + ∂l

∂u
(x, ȳh(x), t)

)
dσ (x) = 0 (4.5)

has a unique solution s̄ j . The mapping s̄h ∈ Uh, defined by s̄h(x) = s̄ j on every side
(x j

�, x j+1
� ), is related to ūh by the formula

ūh(x) = Proj[α,β](s̄h(x)) = min{α, max{β, s̄h(x)}}. (4.6)

4.1. Convergence results

Our main aim is to prove the convergence of the local solutions of (Ph) to local solutions
of (P) as well as to derive error estimates. Before doing this we need to establish the order
of convergence of the solutions of the discrete equation (4.1) to the solution of the state
equation (2.1). An analogous result is needed for the adjoint state equation.

Theorem 4.3. For any u ∈ L2(�) there exists a constants C = C(‖u‖L2(�)) > 0 indepen-
dent of h such that

‖yu − yh(u)‖L2(�) + ‖ϕu − ϕh(u)‖L2(�) ≤ Ch, (4.7)

where yu denotes the solution of (2.1) and ϕu is the solution of (3.2) with (ȳ, ū) being
replaced by (y, u). Moreover, if u ∈ W 1−1/p,p(�) holds for some p > 2 and uh ∈ Uh then

‖yu − yh(uh)‖H 1(�) + ‖ϕu − ϕh(uh)‖H 1(�) ≤ C
{
h + ‖u − uh‖L2(�)

}
. (4.8)

Finally, if uh → u weakly in L2(�), then yh(uh) → yu and ϕh(uh) → ϕu strongly in C(�̄).

Proof: Let us prove the theorem for the state y. The corresponding proof for the adjoint
state ϕ follows the same steps. Inequality (4.7) is proved by Casas and Mateos [7]. Let us
prove (4.8). The regularity of u implies that yu ∈ H 2(�), then

‖yu − yh(u)‖H 1(�) ≤ Ch‖yu‖H 2(�) = hC
(‖u‖H 1/2(�)

)
;

see Casas and Mateos [7].
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On the other hand, from the monotonicity of a0 and b0 and the assumption (A5) it is easy
to get by classical arguments

‖yh(u) − yh(uh)‖H 1(�) ≤ C‖u − uh‖L2(�).

Combining both inequalities we achieve the desired result for the states . For the proof of
the uniform convergence of the states and adjoint states the reader is also referred to [7].

Now we can prove the convergence of the discretizations.

Theorem 4.4. For every h > 0 let ūh be a global solution of problem (Ph).Then there
exist weakly∗-converging subsequences of {ūh}h>0 in L∞(�) (still indexed by h).
If the subsequence {ūh}h>0 is converging weakly∗ to ū, then ū is a solution of (P),

lim
h→0

Jh(ūh) = J (ū) = inf(P) and lim
h→0

‖ū − ūh‖L∞(�) = 0. (4.9)

Proof: Since U ad
h ⊂ U ad holds for every h > 0 and uad is bounded in L∞(�), {ūh}h>0 is

also bounded in L∞(�). Therefore, there exist weakly∗-converging subsequences as claimed
in the statement of the theorem. Let ūh be the of one of these subsequences. By the definition
of U ad it is obvious that ūh ∈ U ad . Let us prove that the weak∗ limit ū is a solution of (ρ).
Let ū ∈ U ad be a solution fo (P) and consider the operator �h : L1(�) → Uh defined by

�hu|(x j
�,x j+1

� ) = 1∣∣x j+1
� − x j

�

∣∣
∫ x j+1

�

x j
�

u(x) dσ (x).

According to Theorem 3.4 we have that ũ ∈ C0,1(�) and then

‖ũ − �hũ‖L∞(�) ≤ Ch‖ũ‖C0.1(�)·

Remark that �hũ ∈ U ad
h for every h. Now using the convexity of l with respect to u and

the uniform convergence ȳh = yh(ũh) → ȳ = yũ and yh(�hũ) → yũ (Theorem 4.3) along
with the assumptions on L and l we get

J (ũ) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(�hũ) = J (ũ) = inf(P).

This proves that ū is a solution of (P) as well as the convergence of the optimal costs. Let
us verify the uniform convergence of {ūh} to ū. From (3.8) and (4.6) we obtain

‖ū − ūh‖L∞(�) ≤ ‖s̄ − s̄h‖L∞(�),
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therefore it is enough to prove the uniform convergence of {s̄h}h>0 to s̄. On the other hand,
from (4.5) and the continuity of the integrand with respect to x we deduce the existence of
a point ξ

j
� ∈ (x j

�, x j+1
� ) such that

ϕ̄h
(
ξ

j
�

) + ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄h

(
ξ

j
�

)) = 0. (4.10)

Given x ∈ �, let us take 1≤ j ≤ N (h) such that x ∈ (x j
�, x j+1

� ). By the fact that s̄h is
constant on each of these intervals we get

|s̄(x) − s̄h(x)| ≤ ∣∣s̄(x) − s̄
(
ξ

j
�

)∣∣ + ∣∣s̄(ξ j
�

) − s̄h
(
ξ

j
�

)∣∣
≤ �s

∣∣x − ξ
j
�

∣∣ + ∣∣s̄(ξ j
�

) − s̄h
(
ξ

j
�

)∣∣ ≤ �sh + ∣∣s̄(ξ j
�

) − s̄h
(
ξ

j
�

)∣∣,
where �s is the Lipschitz constant of s̄. So it remains to prove the convergence s̄h(ξ j

�) →
s̄(ξ j

�) for every j . For it we use the strict positivity of the second derivative of l with respect
to u (Assumption (A2)) along with the Eqs. (3.7) satisfied by s̄(x) and (4.10) to deduce

ml

∣∣s̄(ξ j
�

) − s̄h
(
ξ

j
�

)∣∣ ≤
∣∣∣∣ ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄

(
ξ

j
�

)) − ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄h

(
ξ

j
�

))∣∣∣∣
≤

∣∣∣∣ ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄

(
ξ

j
�

)) − ∂l

∂u

(
ξ

j
�, ȳ

(
ξ

j
�

)
, s̄

(
ξ

j
�

))∣∣∣∣
+

∣∣∣∣ ∂l

∂u

(
ξ

j
�, ȳ

(
ξ

j
�

)
, s̄

(
ξ

j
�

)) − ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄h

(
ξ

j
�

))∣∣∣∣
=

∣∣∣∣ ∂l

∂u

(
ξ

j
�, ȳh

(
ξ

j
�

)
, s̄

(
ξ

j
�

)) − ∂l

∂u

(
ξ

j
�, ȳ

(
ξ

j
�

)
, s̄

(
ξ

j
�

))∣∣∣∣
+∣∣ϕ̄(

ξ
j
�

) − ϕ̄h
(
ξ

j
�

)∣∣ → 0

because of the uniform convergence of ȳh → ȳ and ϕ̄h → ϕ̄; see Theorem 4.3.

The next theorem is a kind of reciprocal result of the previous one. At this point we are
wondering if every local minimum ū of (P) can be approximated by a local minimum of
(Ph). The following theorem answers positively this question under the assumption that
ū satisfies the second order sufficient optimality conditions given in Theorem 3.2. In the
sequel, Bρ(u) will denote the open ball of L∞(�) centered at u with radius ρ. By B̄ρ(u) we
denote the corresponding closed ball.

Theorem 4.5. Let ū be a local minimum of (P) satisfying the second order sufficient
optimality condition given in Theorem 3.2. Then there exist ε > 0 and h0 > 0 such that
(Ph) has a local minimum ūh ∈ Bε(ū) for every h < h0. Furthermore, the convergences
(4.9) hold.
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Proof: Let ε > 0 be given by Theorem 3.2 and consider the problems

(Pε)

{
min J (u)

subject to (yu, u) ∈ H 1(�) × (U ad ∩ B̄ε(ū))

and

(Phε)

{
min Jh(uh)

subject to (yh(uh), uh) ∈ Yh × (
U ad

h ∩ B̄ε(ū)
)
.

According to Theorem 3.2, ū is the unique solution of (Pε). Moreover πhū is a feasible
control for (Phε) for every h shall enough. Therefore U ad

h ∩ B̄ε(ū) is a non empty compact
set and consequently (Phε) has at least one solution ūh . Now we can argue as in the proof
of Theorem 4.4 to deduce that ūh → ū uniformly, hence ūh is a local solution of (Ph) in the
open ball Bε(ū) as required.

4.2. Error estimates

In this section we denote by ū a fixed local reference solution of (P) satisfying the sec-
ond order sufficient optimality conditions and by ūh the associated local solution of (Ph)
converging uniformly to ū. As usual ȳ , ȳh and ϕ̄, ϕ̄h are the state and adjoint states corre-
sponding to ū and ūh . The goal is to estimate ‖ū − ūh‖L2(�) . Let us start by proving a first
estimate for this term.

Lemma 4.6. Let δ > 0 given as in Remark 3.3, (2). Then there exists h0 > 0 such that

δ

2
‖ū − ūh‖2

L2(�) ≤ (J ′(ūh) − J ′(ū))(ūh − ū) ∀h < h0. (4.11)

Proof: Let us set

d̄h(x) = ∂l

∂u
(x, ȳh(x), ūh(x)) + ϕ̄h(x)

and take δ > 0 and τ > 0 as introduced in Remark 3.3, (2). We know that d̄h → d̄ uniformly
in � , therefore there exists hτ > 0 such that

‖d̄ − d̄h‖L∞(�) <
τ

4
∀ h ≤ hτ . (4.12)

For every 1 ≤ j ≤ N (h) we define

I j =
∫ x j+1

�

x j
�

d̄h(x) dσ (x).
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From Theorem (4.1) we deduce by the classical argumentation that

ūh |(x j
�,x j+1

� ) =
{

α if I j > 0

β if I j < 0.

Let us take 0 < h1 ≤ hτ such that

|d̄(x2) − d̄(x1)| <
τ

4
if |x2 − x1| < h1.

This inequality along with (4.12) implies that

if ξ ∈ (x j
�, x j+1

� ) and d̄(ξ ) > τ ⇒ d̄h(x) >
τ

2
∀ x ∈ (

x j
�, x j+1

�

)
, ∀ h < h1,

which implies that I j > 0, hence ūh |(x j
�,x j+1

� ) = α, in particular ūh(ξ ) = α. From (3.4) we
also deduce that ū(x) = α. Therefore ūh − ū(ξ ) = 0 whenever d̄(ξ ) > τ and h < h1.
Analogously we can prove that the same is true when d̄(ξ ) < −τ . Moreover since α ≤
ūh(x) ≤ β, it is obvious that (ūh − ū)(x) ≥ 0 if ū(x) = α and (ūh − ū)(x) ≤ 0 if ū(x) = β.
Thus we have proved that (ūh − ū) ∈ Cτ

ū and according to Remark 3.3(2) we have

J ′′(ū)(ūh − ū)2 ≥ δ‖ūh − ū‖2
L2(�) ∀ h < h1. (4.13)

On the other hand, by applying the mean value theorem we get for some 0 < θh < 1

(J ′(ūh) − J ′(ū))(ūh − ū) = J ′′(ū + θh(ūh − ū))(ūh − ū)2

≥ (J ′′(ū + θh(ūh − ū)) − J ′′(ū))(ūh − ū)2 + J ′′(ū)(ūh − ū)2

≥ (δ − ‖J ′′(ū + θh(ūh − ū)) − J ′′(ū)‖)‖ūh − ū‖2
L2(�).

Finally it is enough to choose 0 < h0 ≤ h1 such that

‖J ′′(ū + θh(ūh − ū)) − J ′′(ū)‖ ≤ δ

2
∀ h < h0

to prove (4.11). The last inequality can be obtained easily from the relation (2.6) thanks to
the uniform convergence of (ϕ̄h, ȳh, ūh) → (ϕ̄, ȳ, ū) and the assumptions (A1)–(A4).

The next step consists of estimating the convergence of J ′
h to J ′.

Lemma 4.7. For every ρ > 0 there exists Cρ > 0 independent of h such that

|(J ′
h(ūh) − J ′(ūh))v| ≤ (Cρh + ρ‖ūh − ū‖L2(�)), ‖v‖L2(�) ∀ v ∈ L2(�). (4.14)
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Proof: From the hypotheses on l it is readily deduced

|(J ′
h(ūh) − J ′(ūh))v| ≤

∫
�

(∣∣ϕ̄h − ϕūh

∣∣ +
∣∣∣∣∂l

∂u

(
x, ȳh, ūh

) − ∂l

∂u

(
x, yūh , ūh

)∣∣∣∣
)

vdσ (x)

≤ C
(∥∥ϕ̄h − ϕūh

∥∥
L2(�) + ∥∥ȳh − yūh

∥∥
L2(�)

)‖v‖L2(�), (4.15)

where yūh and ϕūh are the solutions of (2.1) and 2.7) corresponding to ūh .
We use the following well known property. For every ε > 0 there exists Cε > 0 such that

‖z‖L2(�) ≤ ε‖z‖H1(�) + Cε‖z‖L2(�)

Thus we get with the aid of (4.7)

∥∥ȳh − yūh

∥∥
L2(�) = ∥∥yh(ūh) − yūh

∥∥
L2(�) ≤ ε

∥∥yh(ūh) − yūh

∥∥
H 1(�)

+Cε

∥∥yh(ūh) − yūh

∥∥
L2(�) ≤ ε

∥∥yh(ūh) − yūh

∥∥
H 1(�) + CεCh

= ε
∥∥ȳh − yūh

∥∥
H 1(�) + CεCh.

Thanks to the monotonicity of a0 and b0 and the assumption (A5) we obtain from the
state equation in the standard way

∥∥ȳ − yūh

∥∥
H 1(�) ≤ C

∥∥ū − ūh

∥∥
L2(�).

On the other hand, (4.8) leads to

∥∥ȳ − ȳh

∥∥
H 1(�) ≤ C

(
h + ∥∥ū − ūh

∥∥
L2(�)

)
.

Combining the last three inequalities we deduce

∥∥ȳh − yūh

∥∥
L2(�) ≤ C

(
ε
(
h + ∥∥ū − ūh

∥∥
L2(�)

) + Cεh
)
.

The same arguments can be applied to the adjoint state, so (4.14) follows from (4.15).
Inequality (4.14) is obtained by choosing Cε = ρ and Cρ = Cε + Cε.

One key point in the proof of error estimates is to get a discrete control uh ∈ U ad
h that

approximates ū conveniently and satisfies J ′(ū)ū = J ′(ū)uh . Let us find such a control. Let
d̄ be defined as in Section 3 and set I j for every 1 ≤ j ≤ N (h) as in the proof of Lemma 4.6

I j =
∫ x j+1

�

x j
�

d̄(x) dσ (x).
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Now we define uh ∈ Uh with uh(x) ≡ u j
h on the intervals (x j

�, x j+1
� ) by the expression

u j
h =




1

I j

∫ x j+1
�

x j
�

d̄(x)ū(x) dσ (x) if I j �= 0

1∣∣x j
� − x j+1

�

∣∣
∫ x j+1

�

x j
�

ū(x)dσ (x) if I j = 0.

(4.16)

This uh satisfies our requirements.

Lemma 4.8. There exists h0 > 0 such that for every 0 < h < h0 the following properties
hold:

1. uh ∈ U ad
h .

2. J ′(ū)ū = J ′(ū)uh.
3. There exists C > 0 independent of h such that

‖ū − uh‖L∞(�) ≤ Ch. (4.17)

Proof: Let Lu > 0 be the Lipschitz constant of ū and take h0 = (β − α)/(2Lu), then

|ū(ξ2) − ū(ξ1)| ≤ Lu |ξ2 − ξ1| ≤ Luh <
β − α

2
∀ ξ1, ξ2 ∈ [

x j
�, x j+1

�

]
,

which implies that ū can not admit the values α and β on one segment [x j
�, x j+1

� ] for all
h < h0. Hence the sign of d̄ on [x j

�, x j+1
� ] must be constant due to (3.4). Therefore, I j = 0

if and only if d̄(x) = 0 for all x ∈ [x j
�, x j+1

� ]. Moreover if I j �= 0, then d̄(x)/I j ≥ 0 for
every x ∈ [x j

�, x j+1
� ]. As a first consequence of this we get that α ≤ u j

h ≤ β, which means
that uh ∈ U ad

h . On the other hand

J ′(ū)uh =
N (h)∑
j=1

∫ x j+1
�

x j
�

d̄(x) dσ (x)u j
h =

N (h)∑
j=1

∫ x j+1
�

x j
�

d̄(x)ū(x) dσ (x) = J ′(ū)ū.

Finally let us prove (4.17). Since the sign of d̄(x)/I j is always non negative and d̄ is a
continuous function, we get for any of the two possible definitions of u j

h the existence of a

point ξ j ∈ [x j
�, x j+1

� ] such that u j
h = ū(ξ j ). Therefore, for any x ∈ [x j

�, x j+1
� ]

|ū(x) − uh(x)| = ∣∣ū(x) − u j
h

∣∣ = |ū(x) − ū(ξ j )| ≤ Lu |x − ξ j | ≤ Luh,

which leads to (4.17).

Finally, we derive the main error estimate.
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Theorem 4.9. There exists a constant C > 0 independent of h such that

‖ū − ūh‖L2(�) ≤ Ch. (4.18)

Proof: Setting u = ūh in (3.3) we get

J ′(ū)(ūh − ū) =
∫

�

(
∂l

∂u
(x, ȳ, ū) + ϕ̄

)
(ūh − ū)dσ ≥ 0. (4.19)

From (4.4) with uh defined by (4.16) it follows

J ′
h(ūh)(uh − ūh) =

∫
�

(
ϕ̄h + ∂l

∂u
(x, ȳh, ūh)

)
(uh − ūh)dσ (x) ≥ 0

and then

J ′
h(ūh)(ū − ūh) + J ′

h(ūh)(uh − ū) ≥ 0. (4.20)

By adding (4.19) and (4.20) and using Lemma 4.8-2, we derive

(J ′(ū) − J ′
h(ūh))(ū − ūh) ≤ J ′

h(ūh)(uh − ū) = (J ′
h(ūh) − J ′(ū))(uh − ū).

For h small enough, this inequality and (4.11) lead to

δ

2
‖ū − ūh‖2

L2(�) ≤ (J ′(ū) − J ′(ūh))(ū − ūh) ≤ (J ′
h(ūh) − J ′(ūh))(ū − ūh)

+ (J ′
h(ūh) − J ′(ū))(uh − ū). (4.21)

Arguing as in (4.15) and using (4.8) and (4.17) we get

|(J ′
h(ūh) − J ′(ū))(uh − ū)| ≤ C

(‖ϕ̄h − ϕ̄‖L2(�) + ‖ȳh − ȳ‖L2(�)
)‖uh − ū‖L2(�)

≤ C
(
h + ‖ū − ūh‖L2(�)

)‖uh − ū‖L2(�)

≤ C
(
h2 + h‖ū − ūh‖L2(�)

)
. (4.22)

On the other hand, using (4.14)

|(J ′
h(ūh) − J ′(ūh))(ū − ūh)| ≤ (

Cρh + ρ‖ū − ūh‖L2(�)
)‖ū − ūh‖L2(�).

By taking ρ = δ/4, we deduce from this inequality along with (4.21) and (4.22)

δ

4
‖ū − ūh‖2

L2(�) ≤ Ch2 + (C + Cρ)h‖ū − ūh‖L2(�),

which proves (4.18) for a convenient constant C independent of h.
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5. Numerical confirmation

In this section we shall verify our error estimates by numerical test examples for which we
know the exact solution. We report both on a linear-quadratic problem and on a semilinear
problem.

5.1. A linear-quadratic problem and primal-dual active set strategy

Let us consider the problem

(E1)




min J (u) = 1

2

∫
�

(yu(x) − y�(x))2 dx + µ

2

∫
�

u(x)2dσ (x)

+
∫

�

eu(x)u(x)dσ (x) +
∫

�

ey(x)yu(x)dσ (x)

subject to (yu, u) ∈ H 1(�) × L∞(�),

u ∈ Uad = {u ∈ L∞(�)|0 ≤ u(x) ≤ 1 a.e. x ∈ �},
(yu, u) satisfying the linear state equation (5.1){

−�yu(x) + c(x)yu(x) = e1(x) in �

∂ν yu(x) + yu(x) = e2(x) + u(x) on �.
(5.1)

We fix the following data: � = (0, 1)2, µ = 1, c(x1, x2) = 1 + x2
1 − x2

2 , ey(x1, x2) =
1, y�(x1, x2) = x2

1 + x1x2, e1(x1, x2) = −2 + (1 + x2
1 − x2

2 )(1 + 2x2
1 + x1x2 − x2

2 ),

eu(x1, x2) =




−1 − x3
1 on �1

−1 − min

{
8(x2 − 0.5)2 + 0.5,

1 − 16x2(x2 − 0.25)(x2 − 0.75)(x2 − 1)

}
on �2

−1 − x2
1 on �3

−1 + x2(1 − x2) on �4

and

e2(x1, x2) =




1 − x1 + 2x2
1 − x3

1 on �1

7 + 2x2 − x2
2 − min{8(x2 − .5)2 + .5, 1} on �2

−2 + 2x1 + x2
1 on �3

1 − x2 − x2
2 on �4,

where �1 to �4 are the four sides of the square, starting at the bottom side and turning
counterclockwise. This problem has the following solution (ȳ, ū) with adjoint state ϕ̄ :
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ȳ(x) = 1 + 2x2
1 + x1x2 − x2

2 , ϕ̄(x1, x2) = 1 and

ū(x1, x2) =




x3
1 on �1

min{8(x2 − .5)2 + .5, 1} on �2

x2
1 on �3

0 on �4.

It is not difficult to check that the state equation (5.1) is satisfied by (ȳ, ū). The same refers
to the adjoint equation

{
−�ϕ̄(x) + c(x)ϕ̄(x) = ȳ(x) − y�(x) in �

∂νϕ̄(x) + ϕ̄(x) = ey on �.

In example (E1), the function

d̄(x) = ϕ̄(x) + eu(x) + ū(x) =




0 on �1

min{0, 16x2(x2 − 0.25)(x2 − 0.75)(x2 − 1)} on �2

0 on �3

x2(1 − x2) on �4

satisfies the relations (3.4) (see figure 1, where each interval (i − 1, i) on the x axis corre-
sponds to �i , 1 ≤ i ≤ 4), hence the first order necessary condition (3.3) is fulfilled. Since
(E1) is a convex problem, this condition is also sufficient for (ȳ, ū) to be global minimum.

Figure 1. Solid: ū(x1, x2), dashed: d̄(x1, x2).
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Let us briefly describe how we have performed the optimization. We define the following
operators: S : L2(�) → L2(�), and � : L2(�) → L2(�). For u ∈ L2(�), Su = y, and
�u = y|� , where

{
−�y(x) + c(x)y(x) = 0 in �

∂ν y(x) + y(x) = u(x) on �.

If we define y0 as the state associated to u(x) = 0 for all x ∈ � and set yd (x) = y�(x)−y0(x)
then minimizing J (u) is equivalent to minimize

J̃ (u) = 1

2
(S∗Su + u, u)L2(�) + (eu + �∗ey − S∗yd , u)L2(�),

subject to u ∈ Uad where (·, ·)X denotes the inner scalar product in the space X .
We perform the discretization in two steps. First we discretize the control and thereafter

the state. Let us take {e j }N (h)
j=1 as a basis of Uh . If uh(x) = ∑N (h)

j=1 u j e j (x) for x ∈ �, we
must perform the optimization over Uh of

J̃ (uh) = 1

2

N (h)∑
i, j=1

ui u j (S∗Sei + ei , e j )L2(�) +
N (h)∑
j=1

u j (e j , eu + �∗ey − S∗yd )L2(�)

subject to 0 ≤ u j ≤ 1 for j = 1, . . . , N (h).
If we set Ai, j = (S∗Sei + ei , e j )L2(�), bi = (ei , eu +�∗ey − S∗yd )L2(�) and �u = (u1, . . . ,

uN (h))T , then we must minimize

f (�u) = 1

2
�uT A�u + �bT �u

subject to 0 ≤ u j ≤ 1 for j = 1, . . . , N (h). Calculating the matrix A explicitely would
require solving 2N (h) partial differential equations. and this is numerically too expen-
sive. Therefore usual routines to perform quadratic constrained minimization should not
be used. General optimization programs that require only an external routine provid-
ing the function and its gradient do not take advantage of the fact that we indeed have
a quadratic functional. Therefore, we have implemented our own routine for a primal-
dual active set strategy according to Bergounioux and Kunisch [4]; see also Kunisch and
Rösch [23]. Let us briefly describe the main steps of this iterative method. First of all,
let us define the active sets for a vector �u ∈ R

N (h). We choose a parameter c > 0 and
make

Ah,+(�u) =
{

j ∈ {1, . . . , N (h)} | u j − ∂u j f (�u)

c
> 1

}
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and

Ah,−(�u) =
{

j ∈ {1, . . . , N (h)} | u j − ∂u j f (�u)

c
< 0

}
.

Notice that ∂u j f (�u) = J ′(uh)e j .

1. We choose an starting point �u0 (not necessarily feasible) and fix its active sets A0
h,+ =

Ah,+(�u0) and A0
h,− = Ah,−(�u0). Set n = 0.

At each step, we solve an unconstrained problem to get �un+1. To do this:
2. We define a vector �uact

n+1 that has zeros in all its components, except those belonging to
An

h,+, which are set to 1 and those belonging to An
h,− which are set to the lower bound

(which is also zero in this problem).
Set m = N (h) − |An

h,+| − |An
h,−|.

3. If m = 0, we set �un+1 = �uact
n+1 and go to 5.

4. If m > 0, we define a matrix K with N (h) rows and m columns such that row j is
the zero vector if j ∈ An

h,+ ∪ An
h,− and the submatrix formed by the rest of the rows is

the identity m × m matrix. At each iteration we must minimize f (K �v + �uact
n+1), where

�v ∈ R
m . This is equivalent to minimizing

q(�v) = 1

2
�vT K T AK �v + (

K T
(�b + A�uact

n+1

))T �v

for �v ∈ R
m . This is the unconstrained quadratic program. We will call �vn+1 its solution.

Now we set �un+1 = K �vn+1 + �uact
n+1

5. We fix the new active sets An+1
h,+ = Ah,+(�un+1) and An+1

h,− = Ah,−(�un+1).
6. The solution is achieved if An

h,+ = An+1
h,+ and An

h,− = An+1
h,− . If this is not the case, we set

n := n + 1 and return to 2.

It is shown in Kunisch and Rösch [23, Corollary 4.7] that with an adequate parameter c,
the algorithm terminates in finitely many iterations for the discretized problem. In practice,
we had no problem to choose c = 1.

Let us make a comment on how the unconstrained quadratic optimization in step 4 is
performed. Since it is not possible to compute the whole matrix A, we solve this problem
by the conjugate gradient method. At each iteraction of this method we must evaluate A �w
for some �w ∈ R

N (h). If we define w = ∑N (h)
j=1 w j e j , the component i of the vector A �w is

given by (e j , ϕ +w)L2(�), where ϕ is obtained solving the two partial differential equations

{
−�y(x) + c(x)y(x) = 0 in �

∂ν y(x) + y(x) = w(x) on �
and

{
−�ϕ(x) + c(x)ϕ(x) = y(x) in �

∂νϕ(x) + ϕ(x) = 0 on �.

These equations are solved by the finite element method. We have used the MATLAB PDE
Toolbox just to get the mesh for �, but we have performed the assembling of the mass and
stiffness matrices and of the right hand side vector with our own routines to determine all
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the integrals in an exact way. We had two reasons to do this. First, we have not included the
effect of integration errors in our previous research, and secondly, when making a non-exact
integration, the approximate adjoint state is possibly not the adjoint state of the approximate
state. This fact may negatively affect the convergence. In practice, a low order integration
method slows down the convergence.

Observe that the discretization of the state can be done independently of the discretization
of the controls. We have performed two tests to show that the bottleneck of the error is the
discretization of the controls. In the first test we have chosen the same mesh sizes both for
the state and the control. In the second test we have chosen a fixed small mesh size for the
state and we have varied the mesh size for the control. These are the results:

Test 1.

h ‖ȳ − ȳh‖L2(�) |ȳ − ȳh |H1(�) ‖ū − ūh‖L2(�) ‖ū − ūh‖L∞(�)

2−4 5.617876e − 04 7.259364e − 02 4.330776e − 02 1.146090e − 01

2−5 1.423977e − 04 3.635482e − 02 2.170775e − 02 5.990258e − 02

2−6 3.500447e − 05 1.800239e − 02 1.086060e − 02 3.060061e − 02

2−7 8.971788e − 06 8.950547e − 03 5.431141e − 03 1.546116e − 02

The orders of convergence obtained are h2 for ‖ȳ − ȳh‖L2(�) and h for the seminorm in the
H 1(�), L2(�) and L∞(�) norms. Figure 2 compares the error logarithm with p log(h),
where p is the order of convergence obtained and the x axis represents the values of
log(h).

The estimates |ȳ − ȳh |H 1(�) ≤ Ch and for |ū − ūh |L2(�) ≤ Ch are the ones expected from
inequalities (4.8) and (4.18). The estimate |ȳ − ȳh |L2(�) ≤ Ch2 is indeed better than the
one we can expect from inequality (4.7). This cannot only be explained by the information
that ȳ ∈ H 2(�) ensures order h2 for the FEM. Neverheless. the observed order h2 can be
theoretically justified. A forthcoming paper by A. Rösch studies this case.

Figure 2. Solid line: p log h. Dotted line: Data from Test 1.
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Test 2. We fix now the mesh size for the state to hy = 2−7. This ensures a fairly accurate solution of the partial
differential equations.

h ‖ȳ − ȳh‖L2(�) | ȳ − ȳh |H1(�) ‖ū − ūh‖L2(�) ‖ū − ūh‖L∞(�)

2−4 1.831053e − 04 9.837630e − 03 4.330774e − 02 1.145890e − 01

2−5 4.648617e − 05 9.026588e − 03 2.170775e − 02 5.989731e − 02

2−6 1.424508e − 05 8.952289e − 03 1.086060e − 02 3.059955e − 02

2−7 8.971788e − 06 8.950547e − 03 5.431141e − 03 1.546116e − 02

The error for the state is very small from the beginning. The order is again h for the
last two columns. We observe that refining the mesh for the state does not improve the
approximation of the control.

5.2. A semilinear example

Let us next consider the problem

(E2)




min J (u) = 1

2

∫
�

(yu(x) − y�(x))2 dx + µ

2

∫
�

u(x)2 dσ (x)

+
∫

�

eu(x)u(x) dσ (x) +
∫

�

ey(x)yu(x) dσ (x)

subject to (yu, u) ∈ H 1(�) × L∞(�),

u ∈ Uad = {u ∈ L∞(�)|0 ≤ u(x) ≤ 1 a.e. x ∈ �},
(yu, u) satisfying the semilinear state equation (5.2){

−�yu(x) + c(x)yu(x) = e1(x) in �

∂ν yu(x) + yu(x) = e2(x) + u(x) − y(x)|y(x)| on �.
(5.2)

The term y|y| stands for y2 that does not satisfy the assumptions on monotonicity required
for our current work. However, in our computations negative values of y never occured so
that in fact y2 was used. This also assures that locally assumption (A4) is satisfied.

We fix: � = (0, 1)2, µ = 1, c(x1, x2) = x2
2 + x1x2, ey(x1, x2) = −3 − 2x2

1 − 2x1x2,
y�(x1, x2) = 1 + (x1 + x2)2, e1(x1, x2) = −2 + (1 + x2

1 + x1x2)(x2
2 + x1x2),

eu(x1, x2) =




1 − x3
1 on �1

1 − min

{
8(x2 − 0.5)2 + 0.5,

1 − 16x2(x2 − 0.25)(x2 − 0.75)(x2 − 1)

}
on �2

1 − x2
1 on �3

1 + x2(1 − x2) on �4
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and

e2(x1, x2) =




2 − x1 + 3x2
1 − x3

1 + x4
1 on �1

8 + 6x2 + x2
2 − min{8(x2 − .5)2 + .5, 1} on �2

2 + 4x1 + 3x2
1 + 2x3

1 + x4
1 on �3

2 − x2 on �4.

This problem has the following solution (ȳ, ū) with adjoint state ϕ̄ : ȳ(x) = 1 + 2x2
1 +

x1x2, ϕ̄(x1, x2) = −1 and ū is the same as in example (El). Again, it holds d̄(x) = ϕ̄(x) +
eu(x)+ ū(x), which is also the same as in example (El) and satisfies relation (3.4) so that the
first order necessary condition (3.3) is fulfilled. The second derivative of J (ū) is, according
to (2.6),

J ′′(ū)v2 =
∫

�

zv(x)2 dx +
∫

�

v(x)2dσ (x) +
∫

�

(−2)sign(ȳ(x))ϕ̄(x)zv(x)2dσ (x),

where zv is given by Eq. (2.3). Since ϕ̄(x) ≤ 0 and ȳ(x) ≥ 0, clearly J ′′(ū)v2 ≥
‖v‖2

L2(�) holds. Therefore the second order sufficient conditions are fulfilled.
For the optimization, a standard SQP method was implemented; see for instance Heinken-

schloss and Tröltzsch [16], Kelley and sachs [20]. Kunisch and Sachs [22] and Tröltzsch
[28] and the references therein. Given wk = (yk, uk, ϕk), at step k + 1 we have to solve the
following linear-quadratic problem to find (yk+1,uk+1):

(Q P)k+1




min Jk+1(uk+1) = 1

2

∫
�

(yk+1(x) − y�(x))2 dx + 1

2

∫
�

uk+1(x)2 dσ (x)

+
∫

�

eu(x)uk+1(x) dσ (x) +
∫

�

ey(x)yk+1(x) dσ (x)

−
∫

�

sign(yk(x))ϕk(x)(yk+1(x) − yk(x))2 dσ (x)

subject to (yk+1, uk+1) ∈ H 1(�) × L∞(�),

uk+1 ∈ Uad,

(yk+1, uk+1) satisfying the linear state equation (5.3)




−�yk+1(x) + c(x)yk+1(x) = e1(x) in �

∂ν yk+1(x) + yk+1(x) = e2(x) + uk+1(x) − yk(x) | yk(x) |
− 2 | yk(x) | (yk+1(x) − yk(x)) on �.

(5.3)

The new iterate ϕk+1 is the solution of the associated adjoint equation. It is known (see
Unger [29]) that the sequence {wk} converges quadratically to w̄ = {(ȳ, ū, ϕ̄)} in the L∞
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norm provided that the initial guess is taken close to w̄, where (ȳ, ū) is a local solution of
(E2) and ϕ̄ is the associated adjoint state:

‖wk+1 − w̄‖C(�̄)×L∞(�)×C(�̄) ≤ C‖wk − w̄‖2
c(�̄)×L∞(�)×C(�̄).

To solve each of the linear-quadratic problems (QP)k we have applied the primal-dual active
set strategy explained for (E1). For the semilinear example the same tests were made as for
(E1). First we considered the same mesh both for control and state. Next a very fine mesh
was taken for the state while refining the meshes for the control.

Test 1.

h ‖ȳ − ȳh‖L2(�) | ȳ − ȳh |H1(�) ‖ū − ūh‖L2(�) ‖ū − ūh‖L∞(�)

2−4 3.178397e − 04 3.547400e − 02 4.330792e − 02 1.145619e − 01

2−5 8.094299e − 05 1.769994e − 02 2.170777e − 02 5.988813e − 02

2−6 1.983313e − 05 8.783231e − 03 1.086060e − 02 3.059566e − 02

2−7 4.938929e − 06 4.365300e − 03 5.431140e − 03 1.546130e − 02

The observed orders of convergence are again h2 for ‖ȳ − ȳh‖L2(�) and h for the other
columns.

Test 2. We fix now the mesh size for the state to hy = 2−7. This ensures a fairly accurate solution of the partial
differential equations. The order of convergence for the error in the control is again h.

h ‖ȳ − ȳh‖L2(�) | ȳ − ȳh |H1(�) ‖ū − ūh‖L2(�) ‖ū − ūh‖L∞(�)

2−4 1.093204e − 04 5.695770e − 03 4.330780e − 02 1.145649e − 01

2−5 2.782787e − 05 4.498224e − 03 2.170776e − 02 5.988683e − 02

2−6 8.585435e − 06 4.367794e − 03 1.086060e − 02 3.059585e − 02

2−7 4.938929e − 06 8.365300e − 03 5.431140e − 03 1.546130e − 02
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16. M. Heinkenschloss and F. Tröltzsch, “Analysis of the Lagrange-SQP-Newton method for the control of a

phase field equation,” Control and Cybernetics, vol. 28, pp. 178–211, 1999.
17. M. Hinze, “A variational discretization concept in control constrained optimization: The linear-quadratic

case.” To appear in Comp. Optimization and Appl.
18. D. Jerison and C. Kenig, “The Neumann problem on Lipschitz domains,” Bull. Amer. Math. Soc, vol. 4, pp.

203–207, 1981.
19. D. Jerison and C. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains,” J. Funct. Anal., vol.

130, pp. 161–219, 1995.
20. C. Kelley and E. Sachs, “Approximate quasi-Newton methods,” Mathematical Programming, vol. 48, pp.

41–70, 1990.
21. C. Kenig, “Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems,” vol. 83 of

CBMS, American Mathematical Society: Providence, Rhode Island, 1994.
22. K. Kunisch and E. Sachs, “Reduced SQP-methods for parameter identification problems,” SIAM J. Numer.

Anal., vol. 29, pp. 1793–1820, 1992.
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1. Introduction

In this paper we study an optimal control problem (P) governed by a semilinear
elliptic equation, the control being distributed in the domain �. Bound constraints on
the control are included in the formulation of the problem. Based on a standard finite
element approximation, we set up an approximate optimal control problem (Ph). Our
main aim is to estimate the error ‖ū − ūh‖, where ū stands for an optimal control of (P)
and ūh is an associated optimal one of (Ph). Error estimates for this problem were already
obtained by Arada, Casas and Tröltzsch [1] by using piecewise constant functions to
approximate the control space. With a such discretization the error estimate

‖ū − ūh‖L2(�h) � Ch, (1.1)

� This research was partially supported by Ministerio de Ciencia y Tecnología (Spain).
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was proved. The proof of this estimate was based on the fact that the optimal controls
are Lipschitz functions in �. If we think of the approximation of a Lipschitz function
by a piecewise constant function, not necessarily solutions of any control problem, these
estimates are optimal in general. If we want to improve the estimates we need more
regularity for ū and more regularity for the discrete functions. In particular, it is well
known that

lim
h→0

1

h
‖ū − ūh‖L2(�h) = 0 (1.2)

when ūh is a continuous piecewise linear function interpolating the Lipschitz function
ū in the nodes of the triangulation. If ū belongs to the Sobolev space H 2(�), then
order O(h2) can be proved for the interpolation. But unfortunately the H 2(�)-regularity
fails for the optimal controls under the presence of bound constraints. Therefore it is
natural to set the question about if the convergence (1.2) remains valid for the usual
approximations by continuous piecewise linear functions. The goal of this paper is to
prove that the answer is positive.

The estimate (1.1) has been also proved under the presence of a finitely number
of equality and inequality integral constraints on the state by Casas [3]. The case of a
Neumann boundary control was studied by Casas, Mateos and Tröltzsch [6]. In [1, 3, 6]
was crucial the fact that we could obtain a representation of the discrete optimal controls
analogous to the ones obtained for the continuous optimal controls, which allowed us
to prove the uniform convergence ūh → ū. This representation cannot be obtained
for piecewise linear optimal controls and consequently we do not know to deduce the
uniform convergence, just we can prove the L2-convergence. To overcome this difficulty
we have followed a different approach in order to prove (1.2).

As far as we know, the only previous paper concerned with the error estimates for
piecewise linear approximations of the control is due to Casas and Raymond [7]. In this
paper the case of a Dirichlet boundary control was studied. In this case it is necessary
to consider the same approximations for the control and the states, therefore piecewise
linear approximations were decided as optimal. For the optimal control we established
the regularity ū ∈ W 1−1/p,p(�) for some p = 2 + ε, which allowed to prove

lim
h→0

1

h1/2
‖ū − ūh‖L2(�) = 0. (1.3)

The proof of these error estimates given in [7] has inspired the corresponding proof
of this paper, but some new ideas have been necessary to achieve the desired result.

There is no many papers in the literature concerning the error estimates for control
problems governed by partial differential equations. The pioneer works in the context
of linear quadratic control problems are due to Falk [12] and Geveci [13]. For nonlinear
equations the situation is more difficult because second-order optimality conditions are
required to get the estimates. These conditions for optimality has been obtained in the
last years; see Bonnans and Zidani [2], Casas and Mateos [4], Casas and Tröltzsch [8],
Raymond and Tröltzsch [23].
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In the case of parabolic problems the approximation theory is far from being
complete, but some research has been carried out; see Knowles [17], Lasiecka [18,
19], McKnight and Bosarge [21], Tiba and Tröltzsch [24] and Tröltzsch [25–28].

In the context of control problems of ordinary differential equations a great work
has been done by Hager [15, 16] and Dontchev and Hager [10, 11]; see also the work by
Malanowski et al. [20]. The reader is also referred to the detailed bibliography in [11].

The plan of the paper is as follows. In section 2 the control problem is introduced
and the first and second order optimality conditions are recalled. From the first order
optimality conditions, the Lipschitz property of the optimal controls is deduced. In
section 3 the numerical approximation of (P) is carried out. In this section the first order
optimality conditions are also given and the convergence properties of the discretization
are established. Finally the error estimate (1.2) is proved in section 4.

2. The control problem

Given an open bounded and convex set � ⊂ R
n, with n = 2 or 3, � being its

boundary of class C1,1, we consider the following Dirichlet boundary value problem in
this domain {

Ay + f (x, y) = u in �,
y = 0 on �,

(2.1)

where

Ay = −
n∑

i,j=1

∂xj

(
aij (x)∂xi

y(x)
) + a0(x)y(x),

with aij ∈ C0,1(�) and a0 ∈ L∞(�) satisfying


∃m > 0 such that
n∑

i,j=1

aij (x)ξiξj � m|ξ |2 ∀ξ ∈ R
n and ∀x ∈ �,

a0(x) � 0 a.e. x ∈ �,

and f : � × R → R is a given function. The control is denoted by u and the solution of
the above system yu is the corresponding state. The assumptions will be precise below.

Now we consider the control problem

(P)


 Minimize J (u) =

∫
�

L
(
x, yu(x), u(x)

)
dx,

u ∈ K = {
u ∈ L∞(�): α � u(x) � β a.e. x ∈ �

}
,

where −∞ < α < β < +∞ are fixed and L : � × R
2 → R is a given function. Let us

state the assumptions on the functions involved in the control problem (P).
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(A1) f : � × R → R is a Carathédory function of class C2 with respect to the second
variable,

f (·, 0) ∈ L∞(�),
∂f

∂y
(x, y) � 0

and for all M > 0 there exists a constant Cf,M > 0 such that∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +
∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ � Cf,M for a.e. x ∈ � and |y| � M,

∣∣∣∣∂2f

∂y2
(x, y2) − ∂2f

∂y2
(x, y1)

∣∣∣∣ < Cf,M |y2 − y1| for |y1|, |y2| � M and x ∈ �.

(A2) L : � × R × R → R is a Carathédory function of class C2 with respect to the
second and third variables, L(·, 0, 0) ∈ L1(�), and for all M > 0 there exist a
constant CL,M > 0 and a function ψM ∈ Lp(�) (p > n) such that∣∣∣∣∂L

∂y
(x, y, u)

∣∣∣∣ � ψM(x),
∥∥D2

(y,u)L(x, y, u)
∥∥ � CL,M,

∣∣∣∣∂L

∂u
(x2, y, u) − ∂L

∂u
(x1, y, u)

∣∣∣∣ � CL,M |x2 − x1|,∥∥D2
(y,u)L(x, y2, u2) − D2

(y,u)L(x, y1, u1)
∥∥ � CL,M

(|y2 − y1| + |u2 − u1|
)
,

for a.e. x, xi ∈ � and |y|, |yi |, |u|, |ui | � M , i = 1, 2, where D2
(y,u)L denotes

the second derivative of L with respect to (y, u). Moreover we assume that there
exists 
 > 0 such that

∂2L

∂u2
(x, y, u) � 
, a.e. x ∈ � and (y, u) ∈ R

2.

It is well known that the state equation (2.1) has a unique solution yu ∈ H 1
0 (�) ∩

W 2,p(�) for any 1 � p < +∞; see Grisvard [14] for the W 2,p(�) regularity results.
Under the previous assumptions it is easy to prove the existence of a solution of

problem (P). In the proof it is essential the convexity of L with respect to the control. In
(A2) we have assume that L is strictly convex with respect to u, which will be useful to
prove the strong convergence of the discretizations. Therefore this strong convexity is
not a too restrictive assumption if we want to have a well posed problem in the sense that
it has at least one solution. However, there is a situation which is interesting in practice
and it is not included in our formulation. This is the case of a function L depending only
on the variables (x, y), but not on u. The optimal control problem is typically bang-bang
in this situation. It is an open problem for us the derivation of the error estimates in the
bang-bang case.

Among the functionals included in our problem, we can consider those of the type
L(x, y, u) = g(x, y) + h(u), with h′′(u) � 
. For instance, the classical example
L(x, y, u) = (y − yd(x))2 + 
u2, with 
 > 0 is of this type.
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Before taking a decision about the type of finite elements we are going to choose
in order to formulate a discrete version of the control problem (P), the regularity of the
optimal controls ū must be investigated. These regularity properties can be deduced from
the first order optimality conditions. On the other hand, the proof of the error estimates
require the sufficient second order conditions. The rest of this section is devoted to
the formulation of these optimality conditions and to the study of the regularity of the
optimal controls. As a first step, let us recalling the differentiability properties of the
functionals involve in the control problem. For the detailed proofs the reader is referred
to Casas and Mateos [4].

Theorem 2.1. For every u ∈ L∞(�), the state equation (2.1) has a unique solution yu

in the space W 2,p(�) and the mapping G : L∞(�) → W 2,p(�), defined by G(u) = yu

is of class C2. Moreover for all v, u ∈ L∞(�), zv = G′(u)v is defined as the solu-
tion of 

 Azv + ∂f

∂y
(x, yu)zv = v in �,

zv = 0 on �.
(2.2)

Finally, for every v1, v2 ∈ L∞(�), zv1v2 = G′′(u)v1v2 is the solution of


 Azv1v2 + ∂f

∂y
(x, yu)zv1v2 + ∂2f

∂y2
(x, yu)zv1zv2 = 0 in �,

zv1v2 = 0 on �,
(2.3)

where zvi
= G′(u)vi , i = 1, 2.

The value of p in the previous theorem is that one considered in assumption (A2)
for the regularity of ψM .

Theorem 2.2. The functional J : L∞(�) → R is of class C2. Moreover, for every
u, v, v1, v2 ∈ L∞(�)

J ′(u)v =
∫

�

(
∂L

∂u
(x, yu, u) + ϕu

)
v dx (2.4)

and

J ′′(u)v1v2 =
∫

�

[
∂2L

∂y2
(x, yu, u)zv1zv2 + ∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+ ∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1zv2

]
dx, (2.5)
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where yu = G(u), ϕu ∈ W 2,p(�) is the unique solution of the problem


 A∗ϕ + ∂f

∂y
(x, yu)ϕ = ∂L

∂y
(x, yu, u) in �,

ϕ = 0 on �,

(2.6)

where A∗ is the adjoint operator of A and zvi
= G′(u)vi , i = 1, 2.

From our assumptions (A1) and (A2) it is easy to check that J ′′(u) can be extended
to a continuous quadratic function in L2(�). Indeed it is enough to verify that the inte-
grals of (2.5) are well defined for any function v ∈ L2(�) and they are continuous with
respect to the topology of L2(�). This property will be used later.

Now the first order optimality conditions can be easily deduced from the above
theorem by the classical procedure:

Theorem 2.3. Let ū be a local minimum of (P). Then there exist ȳ, ϕ ∈ H 1
0 (�) ∩

W 2,p(�) such that the following relations hold:

{
Aȳ + f (x, ȳ) = ū in �,

ȳ = 0 on �,
(2.7)


 A∗ϕ + ∂f

∂y
(x, ȳ)ϕ = ∂L

∂y
(x, ȳ, ū) in �,

ϕ = 0 on �,

(2.8)

∫
�

{
ϕ(x) + ∂L

∂u

(
x, ȳ(x), ū(x)

)}(
u(x) − ū(x)

)
dx � 0 ∀u ∈ K. (2.9)

From this theorem we deduce the regularity of ū; see Arada, Casas and
Tröltzsch [1] for the proof.

Theorem 2.4. Let ū be a local minimum of (P). Then for every x ∈ �, the equation

ϕ(x) + ∂L

∂u

(
x, ȳ(x), t

) = 0 (2.10)

has a unique solution t̄ = s̄(x), where ȳ is the state associated to ū and ϕ is the adjoint
state defined by (2.8). The function s̄ : � → R is Lipschitz. Moreover ū and s̄ are related
by the formula

ū(x) = Proj[α,β]
(
s̄(x)

) = max
(
α, min

(
β, s̄(x)

))
, (2.11)

and ū is also a Lipschitz function.
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Let us finish this section by formulating the necessary and sufficient second-order
conditions for optimality. Let ū be a local minimum of (P), with ȳ and ϕ the associated
state and adjoint state respectively. To simplify the notation let us introduce the function

d̄(x) = ∂L

∂u

(
x, ȳ(x), ū(x)

) + ϕ(x). (2.12)

From (2.9) we get

d̄(x) =



0 if α < ū(x) < β,
� 0 if ū(x) = α,
� 0 if ū(x) = β.

(2.13)

Now we define the cone of critical directions

Cū = {
v ∈ L2(�) satisfying (2.14) and v(x) = 0 if d̄(x) �= 0

}
,

v(x) =
{

� 0 a.e. x ∈ � if ū(x) = α,
� 0 a.e. x ∈ � if ū(x) = β.

(2.14)

Now we are ready to state the second-order necessary and sufficient optimality
conditions.

Theorem 2.5. If ū is a local minimum of (P), then

J ′′(ū)v2 � 0 ∀v ∈ Cū. (2.15)

Reciprocally, if ū ∈ K satisfies the first-order optimality conditions (2.7)–(2.9) and the
second order condition

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (2.16)

then there exist δ > 0 and ε > 0 such that

J (u) � J (ū) + δ

2
‖u − ū‖2

L2(�)
∀u ∈ K ∩ Bε(ū), (2.17)

where Bε(ū) denotes the closed ball of L∞(�) with center at ū and radius ε.

Sufficient optimality conditions (2.16) can be formulated in an equivalent form,
which is more convenient for us to prove the error estimates of the numerical discretiza-
tions of (P).

Theorem 2.6. Let ū be an element of K satisfying (2.9), then the following statements
are equivalent:

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0} (2.18)

and

∃δ > 0 and ∃τ > 0 such that J ′′(ū)v2 � δ‖v‖2
L2(�)

∀v ∈ Cτ
ū , (2.19)
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where

Cτ
ū = {

v ∈ L2(�) satisfying (2.14) and v(x) = 0 if
∣∣d̄(x)

∣∣ > τ
}
.

3. Numerical approximation by using piecewise linear functions

Here we define a finite-element based approximation of the optimal control prob-
lem (P). To this aim, we consider a family of triangulations {Th}h>0 of �. This triangu-
lation is supposed to be regular in the usual sense that we state exactly here. With each
element T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes the
diameter of the set T and σ(T ) is the diameter of the largest ball contained in T . Define
the size of the mesh by h = maxT ∈Th

ρ(T ). We suppose that the following regularity
assumptions are satisfied.

(i) There exist two positive constants ρ and σ such that

ρ(T )

σ (T )
� σ,

h

ρ(T )
� ρ

hold for all T ∈ Th and all h > 0.

(ii) Let us take �h = ⋃
T ∈Th

T , and let �h and �h denote its interior and its boundary,
respectively. We assume that �h is convex and that the vertices of Th placed on the
boundary of �h are points of �. From [22, estimate (5.2.19)] we know

|� \ �h| � Ch2, (3.1)

where |B| denotes the Lebesgue measure of a measurable set B ⊂ R
n. Let us set

Uh = {
u ∈ C

(
�h

) | u|T ∈ P1, for all T ∈ Th

}
,

Yh = {
yh ∈ C

(
�

) | yh|T ∈ P1, for all T ∈ Th, and yh = 0 on � \ �h

}
,

where P1 is the space of polynomials of degree less or equal than 1. Let us denote by
{xj }N(h)

j=1 the nodes of the triangulation Th. A basis of Uh is formed by the functions

{ej }N(h)

j=1 ⊂ Uh defined by their values on the nodes xj

ej (xi) =
{

1 if i = j ,
0 otherwise.

In the sequel we will follow the notation uhj = uh(xj ) for any function uh ∈ Uh,
so that

uh =
N(h)∑
j=1

uhjej .
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For each u ∈ L∞(�h), we denote by yh(u) the unique element of Yh that satisfies

ah

(
yh(u), zh

) +
∫

�h

f
(
x, yh(u)

)
zh(x) dx =

∫
�h

u(x)zh(x) dx ∀zh ∈ Yh, (3.2)

where ah : Yh × Yh → R is the bilinear form defined by

ah(yh, zh) =
∫

�h

(
n∑

i,j=1

aij (x)∂xi
yh(x)∂xj

zh(x) + a0(x)yh(x)zh(x)

)
dx.

In other words, yh(u) is the approximate state associated with u. Notice that yh = zh = 0
in � \ �h, therefore the previous integrals are equivalent to the integration on �. The
finite dimensional approximation of the optimal control problem is defined by

(Ph)




min Jh(uh) =
∫

�h

L
(
x, yh(uh)(x), uh(x)

)
dx,

subject to
(
yh(uh), uh

) ∈ Yh × Uh,

uh ∈ Kh = {
uh ∈ Uh: α � uhj � β 1 � j � N(h)

}
.

We start the study of problem (Ph) by analyzing the differentiability of the functions
involved in the control problem. Let us collect the differentiability results analogous to
those of section 2.

Proposition 3.1. For every u ∈ L∞(�h), problem (3.2) has a unique solution yh(u) ∈
Yh, the mapping Gh : L∞(�h) → Yh, defined by Gh(u) = yh(u), is of class C2 and for
all v, u ∈ L∞(�h), zh(v) = G′

h(u)v is the solution of

ah

(
zh(v), qh

) +
∫

�

∂f

∂y

(
x, yh(u)

)
zh(v)qh dx =

∫
�

vqh dx ∀qh ∈ Yh. (3.3)

Finally, for all v1, v2 ∈ L∞(�), zh(v1, v2) = G′′(u)v1v2 ∈ Yh is the solution of the
variational equation

ah(zh, qh) +
∫

�

∂f

∂y

(
x, yh(u)

)
zhqh dx +

∫
�

∂2f

∂y2

(
x, yh(u)

)
zh1zh2qh dx = 0 ∀qh ∈ Yh,

(3.4)
where zhi = G′

h(u)vi , i = 1, 2.

Proposition 3.2. The functional Jh : L∞(�h) → R is of class C2. Moreover for all
u, v, v1, v2 ∈ L∞(�h)

J ′
h(u)v =

∫
�h

(
∂L

∂u

(
x, yh(u), u

) + ϕh(u)

)
v dx (3.5)
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and

J ′′
h (u)v1v2 =

∫
�h

[
∂2L

∂y2

(
x, yh(u), u

)
zh(v1)zh(v2)

+ ∂2L

∂y∂u

(
x, yh(u), u

)[
zh(v1)v2 + zh(v2)v1

]
+ ∂2L

∂u2

(
x, yh(u), u

)
v1v2 − ϕh(u)

∂2f

∂y2

(
x, yh(u)

)
zh1zh2

]
dx, (3.6)

where yh(u) = Gh(u) and ϕh(u) ∈ Yh is the unique solution of the problem

ah

(
qh, ϕh(u)

) +
∫

�

∂f

∂y

(
x, yh(u)

)
ϕh(u)qh dx =

∫
�

∂L

∂y

(
x, yh(u), u

)
qh dx ∀qh ∈ Yh,

(3.7)
with zhi = G′

h(u)vi , i = 1, 2.

Let us conclude this section by writing the first-order optimality conditions for
(Ph).

Theorem 3.3. For every h > 0 problem (Ph) has at least one solution. Moreover, if ūh

is a local minimum of (Ph), then there exist ȳh, ϕh ∈ Yh such that

a(ȳh, qh) +
∫

�

f (x, ȳh)qh(x) dx =
∫

�

ūh(x)qh(x) dx ∀qh ∈ Yh, (3.8)

a(qh, ϕh) +
∫

�

∂f

∂y
(x, ȳh)ϕhqh dx =

∫
�

∂L

∂y
(x, ȳh, ūh)qh dx ∀qh ∈ Yh, (3.9)

∫
�h

{
ϕh + ∂L

∂u
(x, ȳh, ūh)

}
(uh − ūh) dx � 0 ∀uh ∈ Kh. (3.10)

Proof. The existence of a solution of (Ph) is an immediate consequence of the com-
pactness of Kh in Uh an the continuity of Jh in Kh. The optimality system (3.8)–(3.10)
is obtained by classical arguments with the help of proposition 3.2. �

We finish this section by proving the convergence of the solutions of (Ph) toward
the solutions of (P). But first we are going to summarize some estimates and proper-
ties of yh(uh) − yu and ϕh(uh) − ϕ(u). The properties we need are collected in two
lemmas whose proofs can be obtained in Arada, Casas and Tröltzsch [1] and Casas and
Mateos [5].

Lemma 3.4. Let v2, v1 ∈ L∞(�) satisfy ‖vi‖L∞(�) � M , i = 1, 2, for some M < ∞.
Let us suppose that yv2 and yh(v1) are the solutions of (2.1) and (3.2) corresponding to
v2 and v1, respectively. Moreover let ϕv2 and ϕh(v1) be the solutions of (2.6) and (3.7)
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also corresponding to v2 and v1 respectively. Then the following estimates hold:∥∥yv2 − yh(v1)
∥∥

H 1(�)
+ ∥∥ϕv2 − ϕh(v1)

∥∥
H 1(�)

� C
(
h + ‖v2 − v1‖L2(�)

)
, (3.11)∥∥yv2 − yh(v1)

∥∥
L2(�)

+ ∥∥ϕv2 − ϕh(v1)
∥∥

L2(�)
� C

(
h2 + ‖v2 − v1‖L2(�)

)
, (3.12)∥∥yv2 − yh(v1)

∥∥
L∞(�)

+ ∥∥ϕv2 − ϕh(v1)
∥∥

L∞(�)
� C

(
hσ + ‖v2 − v1‖L2(�)

)
, (3.13)

where C ≡ C(�, n, M) is independent of h, and σ = 1 if n = 2 or the triangulation is
of nonnegative type and σ = 1/2 otherwise.

This result follows from [1, theorem 4.2].
The reader is referred to Ciarlet [9] for the definition and properties of a nonnega-

tive type triangulation.

Lemma 3.5. Let {uh}h>0 be a sequence, with uh ∈ Kh and uh ⇀ u weakly in L1(�),
then yh(uh) → yu and ϕh(uh) → ϕu in H 1

0 (�) ∩ C(�) strongly. Moreover J (u) �
lim infh→0 Jh(uh).

For the proof the reader can consult [5, theorem 9 and lemma 11]. The following
theorem is also proved in [5, theorems 11 and 12].

Theorem 3.6. For every h > 0 let ūh be a solution of (Ph). Then there exist subse-
quences {ūh}h>0 converging in the weak∗ topology of L∞(�), that will be denoted in the
same way. If ūh ⇀ ū in the mentioned topology, then ū is a solution of (P) and we have

lim
h→0

Jh(ūh) = J (ū) = inf(P ) and lim
h→0

‖ū − ūh‖L2(�h) = 0. (3.14)

4. Error estimates

The goal of this section is to prove the following theorem.

Theorem 4.1. Let us assume that ū is a local solution of (P) satisfying the sufficient
second-order optimality conditions provided in theorem 2.5 and let ūh be a local solution
of (Ph) such that

lim
h→0

‖ū − ūh‖L2(�h) = 0; (4.1)

see theorem 3.6. Then the following identity holds:

lim
h→0

1

h
‖ū − ūh‖L2(�h) = 0. (4.2)

We will prove the theorem arguing by contradiction. If (4.2) is false, then

lim sup
h→0

1

h
‖ū − ūh‖L2(�h) > 0,
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eventually +∞, therefore there exists a constant C > 0 and a sequence of h, denoted in
the same way, such that

‖ū − ūh‖L2(�h) � Ch ∀h > 0. (4.3)

We will obtain a contradiction for this sequence. In the sequel we consider the extension
of ūh to �, keeping the same notation, as follows

ūh(x) =
{

ūh(x) if x ∈ �h,
ū(x) otherwise.

(4.4)

The interpolation operator �h : C(�) → Uh is defined by

�hu =
N(h)∑
j=1

u(xj )ej , (4.5)

where {ej }N(h)

j=1 is the basis of Uh introduced in section 3. It is well known that

lim
h→0

1

h
‖u − �hu‖Lp(�h) = 0 ∀u ∈ W 1,p(�) and n < p < +∞. (4.6)

As above, we also consider the extension of �hū to � by setting �hū = ū on � \ �h.
For the proof of theorem 4.1 we need some lemmas.

Lemma 4.2. Let us assume that (4.2) is false. Let δ > 0 and 
 be the parameters
introduced in assumption (2.19) and (A2), respectively. Then there exist h0 > 0 and
µ > 0 independent of h such that

µ‖ū − ūh‖2
L2(�h)

�
(
J ′(ūh) − J ′(ū)

)
(ūh − ū) ∀h < h0. (4.7)

Proof. By applying the mean value theorem we get for some ûh = ū + θh(ūh − ū)(
J ′(ūh) − J ′(ū)

)
(ūh − ū) = J ′′(ûh)(ūh − ū)2. (4.8)

Let us take

vh = 1

‖ūh − ū‖L2(�)

(ūh − ū).

Let {hk}∞k=1 be a sequence converging to 0 such that

lim
k→∞

J ′′
hk

(ûhk
)v2

hk
= lim inf

h→0
J ′′

h (ûh)v
2
h, ūhk

(x) → ū(x) a.e. x ∈ �, vhk
⇀v in L2(�).

The goal is to prove that

lim inf
h→0

J ′′
h (û)v2

h �
{


 if v = 0,
δ‖v‖2

L2(�)
if v �= 0, (4.9)

where 
 is introduced in assumption (A2). Then (4.7) follows from (4.8) and this in-
equality by taking µ = 
/2 if v = 0 and µ = (δ/2)‖v‖2

L2(�)
otherwise.
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In order to simplify the notation we will replace hk by h, but we must have in mind
that {h} is the sequence {hk}∞k=1. Let us prove that v belongs to the critical cone Cū

defined in section 2. First of all remark that every vh satisfies the sign condition (2.14),
hence v also does. Let us prove that v(x) = 0 if d̄(x) �= 0, d̄ being defined by (2.12).
We will use the interpolation operator �h defined by (4.5). Since ū ∈ K it is obvious
that �hū ∈ Kh. Let us define

d̄h(x) = ϕh(x) + ∂L

∂u

(
x, ȳh(x), ūh(x)

)
. (4.10)

From assumption (A2), (4.1), (4.4) and lemma 3.5 we deduce that d̄h → d̄ in L2(�).
Now we have∫

�

d̄(x)v(x) dx = lim
h→0

∫
�h

d̄h(x)vh(x) dx

= lim
h→0

1

‖uh − ū‖L2(�h)

{∫
�h

d̄h(�hū − ū) dx +
∫

�h

d̄h(ūh − �hū) dx

}
.

Using the regularity of ū proved in theorem 2.4 and (3.10), (4.3) and (4.6) we deduce∫
�

d̄(x)v(x) dx � lim
h→0

1

‖uh − ū‖L2(�h)

∫
�h

d̄h(x)
(
�hū(x) − ū(x)

)
dx

� C lim
h→0

1

h
‖ū − �hū‖L2(�h) = 0.

Since v satisfies the sign condition (2.14), then d̄(x)v(x) � 0, hence the above inequality
proves that v is zero whenever d̄ �= 0, which allows us to conclude that v ∈ Cū.

Let us assume first that v = 0, then from the definition of vh, (2.5), (2.19) and
assumption (A2) we get

lim inf
h→0

J ′′(ûh)v
2
h = lim inf

h→0

{∫
�

[
∂2L

∂y2
(x, yûh

, ûh) − ϕûh

∂2f

∂y2
(x, yûh

)

]
z2
vh

dx

+ 2
∫

�

∂2L

∂y∂u
(x, yûh

, ûh)zvh
vh dx +

∫
�

∂2L

∂u2
(x, yûh

, ûh)v
2
h dx

}

�
∫

�

[
∂2L

∂y2
(x, ȳ, ū) − ϕ

∂2f

∂y2
(x, ȳ)

]
z2
v dx

+ 2
∫

�

∂2L

∂y∂u
(x, ȳ, ū)zvv dx + 
 = 
,

which implies (4.9) for v = 0.
Finally, let us consider the case v �= 0. Arguing as above we get

lim inf
h→0

J ′′(ûh)v
2
h =

∫
�

[
∂2L

∂y2
(x, ȳ, ū) − ϕ

∂2f

∂y2
(x, ȳ)

]
z2
v dx

+ 2
∫

�

∂2L

∂y∂u
(x, ȳ, ū)zvv dx + lim inf

h→0

∫
�

∂2L

∂u2
(x, yûh

, ûh)v
2
h dx.



E. Casas / Numerical approximation of elliptic control problems

Now thanks to Lusin’s theorem, for any ε > 0 there exists a compact set Kε ⊂ �

such that

lim
h→0

‖ū − ūh‖L∞(Kε) = 0 and |� \ Kε| < ε.

Combining this fact with the above inequality and remembering that vh ⇀ v weakly in
L2(�) and ‖vh‖L2(�) = 1, we deduce

lim inf
h→0

J ′′(ûh)v
2
h �

∫
�

[
∂2L

∂y2
(x, ȳ, ū) − ϕ

∂2f

∂y2
(x, ȳ)

]
z2
v dx + 2

∫
�

∂2L

∂y∂u
(x, ȳ, ū)zvv dx

+ lim inf
h→0

∫
Kε

∂2L

∂u2
(x, ȳ, ū)v2

h dx

+ lim inf
h→0

∫
Kε

[
∂2L

∂u2
(x, yûh

, ûh) − ∂2L

∂u2
(x, ȳ, ū)

]
v2

h dx

+ lim inf
h→0

∫
�\Kε

∂2L

∂u2
(x, yûh

, ûh)v
2
h dx

�
∫

�

[
∂2L

∂y2
(x, ȳ, ū) − ϕ

∂2f

∂y2
(x, ȳ)

]
z2
v dx + 2

∫
�

∂2L

∂y∂u
(x, ȳ, ū)zvv dx

+
∫

Kε

∂2L

∂u2
(x, ȳ, ū)v2 dx + lim inf

h→0



∫
�\Kε

v2
h dx

� J ′′(ū)v2 −
∫

�\Kε

∂2L

∂u2
(x, ȳ, ū)v2 dx + 


∫
�\Kε

v2 dx.

Finally using (2.19) and making ε → 0 we deduce

lim inf
h→0

J ′′(ûh)v
2
h � δ‖v‖2

L2(�)
,

which concludes the proof. �

Lemma 4.3. There exist a constant C > 0 independent of h such that for every u1,
u2 ∈ K and all v ∈ L2(�), with v = 0 in � \ �h,∣∣(J ′

h(u2) − J ′(u1)
)
v
∣∣ � C

{
h2 + ‖u2 − u1‖L2(�)

}‖v‖L2(�). (4.11)

Proof. From (2.4) and (3.5) we obtain∣∣(J ′
h(u2) − J ′(u1)

)
v
∣∣

�
∫

�\�h

∣∣∣∣∂L

∂u
(x, yu1, u1) + ϕu1

∣∣∣∣|v| dx

+
∫

�h

∣∣∣∣
(

∂L

∂u

(
x, yh(u2), u2

) + ϕh(u2)

)
−

(
∂L

∂u
(x, yu1, u1) + ϕu1

)∣∣∣∣|v| dx

� C
{‖u2 − u1‖L2(�) + ‖ϕh(u2) − ϕu1‖L2(�) + ‖yh(u2) − yu1‖L2(�)

}‖v‖L2(�).

Now (4.11) follows from this inequality and (3.12). �
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Lemma 4.4. The following identity holds:

lim
h→0

1

h2

∣∣J ′(ū)(�hū − ū)
∣∣ = 0. (4.12)

Proof. We will distinguish two different elements in every triangulation Th

T +
h = {

T ∈ Th:
∣∣d̄(x)

∣∣ > 0 ∀x ∈ T
}
,

T 0
h = {

T ∈ Th: ∃ξT ∈ T such that d̄(ξT ) = 0
}
.

Since d̄ is a continuous function, then d̄(x) > 0 ∀x ∈ T or d̄(x) < 0 ∀x ∈ T , for
any T ∈ T +

h . Now, according to (2.13) ū(x) = α for every x ∈ T or ū(x) = β for every
x ∈ T . This implies that �hū(x) = ū(x) for every x ∈ T and every T ∈ T +

h . On the
other part, let us remind that �hū has been defined in � \ �h by ū. Therefore

∣∣J ′(ū)(�hū − ū)
∣∣ =

∣∣∣∣∑
T ∈Th

∫
T

d̄(x)
(
�hū(x) − ū(x)

)
dx

∣∣∣∣
=

∣∣∣∣ ∑
T ∈T 0

h

∫
T

d̄(x)
(
�hū(x) − ū(x)

)
dx

∣∣∣∣
�

∑
T ∈T 0

h

∫
T

∣∣d̄(x) − d̄(ξT )
∣∣∣∣�hū(x) − ū(x)

∣∣ dx

� 
d̄h

∫
�h

∣∣�hū(x) − ū(x)
∣∣ dx,

where 
d̄ is the Lipschitz constant of d̄ . This Lipschitz property follows from assump-
tion (A2) and the fact that ȳ, ϕ ∈ W 2,p(�) ⊂ C0,1(�). Finally, the last inequality along
with (4.6) leads to (4.12). �

Proof of theorem 4.1. Taking u = ūh in (2.9), with ūh extended to � by (4.4) we get

J ′(ū)(ūh − ū) =
∫

�

(
ϕ + ∂L

∂u
(x, ȳ, ū)

)
(ūh − ū) dx � 0. (4.13)

From (3.10) and the fact that �hū = ūh = ū on � \ �h it comes

J ′
h(ūh)(�hū − ūh) =

∫
�

(
ϕh + ∂L

∂u
(x, ȳh, ūh)

)
(�hū − ūh) dx � 0,

hence

J ′
h(ūh)(ū − ūh) + J ′

h(ūh)(�hū − ū) � 0. (4.14)

Adding (4.13) and (4.14) we obtain(
J ′(ū) − J ′

h(ūh)
)
(ū − ūh) � J ′

h(ūh)(�hū − ū)

= (
J ′

h(ūh) − J ′(ū)
)
(�hū − ū) + J ′(ū)(�hū − ū).
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For every h small enough, this inequality and (4.7) imply

µ‖ū − ūh‖2
L2(�h)

�
(
J ′(ū) − J ′(ūh)

)
(ū − ūh)

�
(
J ′

h(ūh) − J ′(ūh)
)
(ū − ūh) + (

J ′
h(ūh) − J ′(ū)

)
(�hū − ū)

+ J ′(ū)(�hū − ū).

Now from (4.11) with u2 = u1 = ūh in the first summand of the previous line and
u2 = ūh and u1 = ū in the second, we get

µ‖ū − ūh‖2
L2(�h)

� C1h
2‖ū − ūh‖L2(�) + C2

(
h2 + ‖ū − ūh‖L2(�)

)‖ū − �hū‖L2(�)

+ J ′(ū)(�hū − ū).

Using Young’s inequality and reminding that ū = ūh = �hū on � \ �h we deduce
µ

2
‖ū − ūh‖2

L2(�h)
� C3

(
h4 + ‖ū − �hū‖2

L2(�h)

) + J ′(ū)(�hū − ū).

Finally, (4.6) and (4.12) imply that

lim
h→0

1

h2
‖ū − ūh‖2

L2(�h)
= 0,

which contradicts (4.3). �
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ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION
OF NEUMANN CONTROL PROBLEMS. ∗

EDUARDO CASAS† AND MARIANO MATEOS‡

Abstract. We continue the discussion of error estimates for the numerical analysis of Neumann
boundary control problems we started in [6]. In that paper piecewise constant functions were used
to approximate the control and a convergence of order O(h) was obtained. Here, we use continuous
piecewise linear functions to discretize the control and obtain the rates of convergence in L2(Γ).
Error estimates in the uniform norm are also obtained. We also discuss the approach suggested by
Hinze [9] as well as the improvement of the error estimates by making an extra assumption over
the set of points corresponding to the active control constraints. Finally, numerical evidence of our
estimates is provided.

Key words. Boundary control, semilinear elliptic equation, numerical approximation, error
estimates

AMS subject classifications. 49J20, 49K20, 49M05, 65K10

1. Introduction. This paper continues a series of works about error estimates
for the numerical analysis of control problems governed by semilinear elliptic partial
differential equations. In [1] a distributed problem approximated by piecewise con-
stant controls was studied. In [6] the control appears in the boundary. This makes
the task more difficult since the states are now less regular than in the distributed
case. Piecewise constant approximations were used in that reference. The advantage
of these is that we have a pointwise expression both for the control and its approxi-
mation, which we can compare to get uniform convergence. The reader is addressed
to these papers for further references about error estimates for the approximation
of linear-quadratic problems governed by partial differential equations and for the
approximation of ordinary differential equations.

In the case of continuous piecewise linear approximations of the control, there
exists not such a pointwise formula in general. If the functional is quadratic with
respecto to the control, recent results in [7] about the stability of L2 projections in
Sobolev W s,p(Γ) spaces allow us to obtain uniform convergence and adapt the proofs.
The general case is more delicate. Results for distributed control problems can be
found in [3]. The main purpose of this paper is to obtain similar results for Neumann
boundary controls. This is done in Theorem 4.6.

We also refer to the works for distributed linear-quadratic problems about semi-
discretization [9] and postprocessing [11]. The first proposes only discretizing the
state, and not the control. The solution can nevertheless be expressed with a finite
number of parameters via the adjoint-state and the problem can be solved with a
computer with a slightly changed optimization code. The second one proposes solv-
ing a completely discretized problem with piecewise constant approximations of the
control and finally construct a new control using the pointwise projection of the dis-
crete adjoint state. We are able to reproduce the first scheme for Neumann boundary
controls, a general functional and a semilinear equation.
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The rest of the paper is as follows. In the next section, we define precisely the
problem. In Section 3 we recall several results about this control problem. Section 4
contains the main results of this paper: we discretize the problem and obtain error
estimates for the solutions. In Section 5 we investigate what happens when we only
discretize the state, and not the control. Section 6 is devoted to the special case of an
objective function quadratic with respect to the control. Numerical evidence of our
results is presented in Section 7. Finally, in an appendix, we include the proof of a
finite element error estimate in the boundary.

2. Statement of the problem. Throughout the sequel, Ω denotes an open
convex bounded polygonal set of R

2 and Γ is the boundary of Ω. We will also take
p > 2. In this domain we formulate the following control problem

(P)































inf J(u) =

∫

Ω

L(x, yu(x)) dx +

∫

Γ

l(x, yu(x), u(x)) dσ(x)

subject to (yu, u) ∈ H1(Ω) × L∞(Γ),

u ∈ Uad = {u ∈ L∞(Γ) | α ≤ u(x) ≤ β a.e. x ∈ Γ},
(yu, u) satisfying the state equation (2.1)

{

−∆yu(x) = a0(x, yu(x)) in Ω
∂νyu(x) = b0(x, yu(x)) + u(x) on Γ,

(2.1)

where −∞ < α < β < +∞. Here u is the control while yu is said to be the associated
state. The following hypotheses are assumed about the functions involved in the
control problem (P):
(A1) The function L : Ω × R −→ R is measurable with respect to the first com-

ponent, of class C2 with respect to the second, L(·, 0) ∈ L1(Ω),
∂L

∂y
(·, 0) ∈ Lp(Ω)

∂2L

∂y2
(·, 0) ∈ L∞(Ω) and for all M > 0 there exists a constant CL,M > 0 such that

∣

∣

∣

∣

∂2L

∂y2
(x, y2) − ∂2L

∂y2
(x, y1)

∣

∣

∣

∣

≤ CL,M |y2 − y1|,

for a.e. x ∈ Ω and |y|, |yi| ≤ M , i = 1, 2.

(A2) The function l : Γ × R
2 −→ R is Lipschitz with respect to the first compo-

nent, of class C2 with respect to the second and third variables, l(·, 0, 0) ∈ L1(Γ),
D2

(y,u)l(·, 0, 0) ∈ L∞(Γ) and for all M > 0 there exists a constant Cl,M > 0 such that

∣

∣

∣

∣

∂l

∂y
(x2, y, u) − ∂l

∂y
(x1, y, u)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂l

∂u
(x2, y, u) − ∂l

∂u
(x1, y, u)

∣

∣

∣

∣

≤ Cl,M |x2 − x1|,

‖D2
(y,u)l(x, y2, u2) − D2

(y,u)l(x, y1, u1)‖ ≤ Cl,M (|y2 − y1| + |u2 − u1|),

for a.e. x, xi ∈ Γ and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)l denotes the second

derivative of l with respect to (y, u). Moreover we assume that there exists Λ > 0
such that

∂2l

∂u2
(x, y, u) ≥ Λ, a.e. x ∈ Γ and (y, u) ∈ R

2. (2.2)
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Let us remark that this inequality implies the strict convexity of l with respect to the
third variable.

(A3) The function a0 : Ω × R −→ R is measurable with respect to the first variable

and of class C2 with respect to the second, a0(·, 0) ∈ Lp(Ω),
∂a0

∂y
(·, 0) ∈ L∞(Ω),

∂2a0

∂y2
(·, 0) ∈ L∞(Ω),

∂a0

∂y
(x, y) ≤ 0 a.e. x ∈ Ω and y ∈ R

and for all M > 0 there exists a constant Ca0,M > 0 such that

∣

∣

∣

∣

∂2a0

∂y2
(x, y2) − ∂2a0

∂y2
(x, y1)

∣

∣

∣

∣

< Ca0,M |y2 − y1| a.e. x ∈ Ω and |y1|, |y2| ≤ M.

(A4) The function b0 : Γ×R −→ R is Lipschitz with respect to the first variable and

of class C2 with respect to the second, b0(·, 0) ∈ W 1−1/p,p(Γ),
∂2b0

∂y2
(·, 0) ∈ L∞(Γ),

∂b0

∂y
(x, y) ≤ 0

and for all M > 0 there exists a constant Cb0,M > 0 such that

∣

∣

∣

∣

∂b0

∂y
(x2, y) − ∂b0

∂y
(x1, y)

∣

∣

∣

∣

≤ Cb0,M |x2 − x1|,

∣

∣

∣

∣

∂2b0

∂y2
(x, y2) − ∂2b0

∂y2
(x, y1)

∣

∣

∣

∣

≤ Cb0,M |y2 − y1|.

for a.e. x, x1, x2 ∈ Γ and |y|, |y1|, |y2| ≤ M .

(A5) At least one of the two conditions must hold: either (∂a0/∂y)(x, y) < 0 in
EΩ × R with EΩ ⊂ Ω of positive n-dimensional measure or (∂b0/∂y)(x, y) < 0 on
EΓ × R with EΓ ⊂ Γ of positive (n − 1)-dimensional measure.

3. Analysis of the control problem. Let us briefly state some useful results
known for this control problem. The proofs can be found in [6].

Theorem 3.1. For every u ∈ L2(Γ) the state equation (2.1) has a unique solu-
tion yu ∈ H3/2(Ω), that depends continuously on u. Moreover, there exists p0 > 2
depending on the measure of the angles in Γ such that if u ∈ W 1−1/p,p(Γ) for some
2 ≤ p ≤ p0, then yu ∈ W 2,p(Ω).

Let us note that the inclusion H3/2(Ω) ⊂ C(Ω̄) holds for Lipschitz domains in
R

2. As a consequence of the theorem above, we know that the functional J is well
defined in L2(Γ).

Let us discuss the differentiability properties of J .
Theorem 3.2. Suppose that assumptions (A3)–(A4) are satisfied. Then the

mapping G : L∞(Γ) −→ H3/2(Ω) defined by G(u) = yu is of class C2. Moreover, for
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all u, v ∈ L∞(Γ), zv = G′(u)v is the solution of











−∆zv =
∂a0

∂y
(x, yu)zv in Ω

∂νzv =
∂b0

∂y
(x, yu)zv + v on Γ.

(3.1)

Finally, for every v1, v2 ∈ L∞(Ω), zv1v2
= G′′(u)v1v2 is the solution of















−∆zv1v2
=

∂a0

∂y
(x, yu)zv1v2

+
∂2a0

∂y2
(x, yu)zv1

zv2
in Ω

∂νzv1v2
=

∂b0

∂y
(x, yu)zv1v2

+
∂2b0

∂y2
(x, yu)zv1

zv2
on Γ,

(3.2)

where zvi
= G′(u)vi, i = 1, 2.

Theorem 3.3. Under the assumptions (A1)–(A4), the functional J : L∞(Γ) → R

is of class C2. Moreover, for every u, v, v1, v2 ∈ L∞(Γ)

J ′(u)v =

∫

Γ

(

∂l

∂u
(x, yu, u) + ϕu

)

v dσ (3.3)

and

J ′′(u)v1v2 =

∫

Ω

[

∂2L

∂y2
(x, yu)zv1

zv2
+ ϕu

∂2a0

∂y2
(x, yu)zv1

zv2

]

dx

+

∫

Γ

[

∂2l

∂y2
(x, yu, u)zv1

zv2
+

∂2l

∂y∂u
(x, yu, u)(zv1

v2 + zv2
v1)

+
∂2l

∂u2
(x, yu, u)v1v2 + ϕu

∂2b0

∂y2
(x, yu)zv1

zv2

]

dσ

(3.4)

where zvi
= G′(u)vi, i = 1, 2, yu = G(u), and the adjoint state ϕu ∈ H3/2(Ω) is the

unique solution of the problem














−∆ϕ =
∂a0

∂y
(x, yu)ϕ +

∂L

∂y
(x, yu) in Ω

∂νϕ =
∂b0

∂y
(x, yu)ϕ +

∂l

∂y
(x, yu, u) on Γ.

(3.5)

The existence of a solution for problem (P) follows easily from our assumptions
(A1)–(A5). In particular, we underline the important fact that the function l is convex
with respect to the third variable. See (2.2). The first order optimality conditions for
Problem (P) follow readily from Theorem 3.3.

Theorem 3.4. Assume that ū is a local solution of Problem (P). Then there
exist ȳ, ϕ̄ ∈ H3/2(Ω) such that

{

−∆ȳ(x) = a0(x, ȳ(x)) in Ω
∂ν ȳ(x) = b0(x, ȳ(x)) + ū(x) on Γ,

(3.6)















−∆ϕ̄ =
∂a0

∂y
(x, ȳ)ϕ̄ +

∂L

∂y
(x, ȳ) in Ω

∂νϕ̄ =
∂b0

∂y
(x, ȳ)ϕ̄ +

∂l

∂y
(x, ȳ, ū) on Γ,

(3.7)
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∫

Γ

(

∂l

∂u
(x, ȳ, ū) + ϕ̄

)

(u − ū) dσ(x) ≥ 0 ∀u ∈ Uad. (3.8)

If we define

d̄(x) =
∂l

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x),

then we deduce from (3.8) that

d̄(x) =







0 for a.e. x ∈ Γ where α < ū(x) < β,
≥ 0 for a.e. x ∈ Γ where ū(x) = α,
≤ 0 for a.e. x ∈ Γ where ū(x) = β.

(3.9)

In order to establish the second order optimality conditions we define the cone of
critical directions

Cū = {v ∈ L2(Γ) satisfying (3.10) and v(x) = 0 if |d̄(x)| > 0},

v(x) =

{

≥ 0 for a.e. x ∈ Γ where ū(x) = α,
≤ 0 for a.e. x ∈ Γ where ū(x) = β.

(3.10)

Now we formulate the second order necessary and sufficient optimality conditions.
Theorem 3.5. If ū is a local solution of (P), then J ′′(ū)v2 ≥ 0 holds for all

v ∈ Cū. Conversely, if ū ∈ Uad satisfies the first order optimality conditions (3.6)–
(3.8) and the coercivity condition J ′′(ū)v2 > 0 holds for all v ∈ Cū \ {0}, then there
exist δ > 0 and ε > 0 such that

J(u) ≥ J(ū) + δ‖u − ū‖2
L2(Γ) (3.11)

is satisfied for every u ∈ Uad such that ‖u − ū‖L∞(Ω) ≤ ε.
Remark 3.6. By using the assumption (∂2l/∂u2)(x, y, u) ≥ Λ > 0, we deduce

from Casas and Mateos [4, Theorem 4.4] that the following two conditions are equiv-
alent:

(1) J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}.

(2) There exist δ > 0 and τ > 0 such that J ′′(ū)v2 ≥ δ‖v‖2
L2(Γ) for every v ∈ Cτ

ū ,
where

Cτ
ū = {v ∈ L2(Γ) satisfying (3.10) and v(x) = 0 if |d̄(x)| > τ}.

It is clear that that Cτ
ū contains strictly Cū, so the condition (2) seems to be stronger

than (1), but in fact they are equivalent.
Theorem 3.7. Suppose that ū is a local solution of (P), then for all x ∈ Γ the

equation

ϕ̄(x) +
∂l

∂u
(x, ȳ(x), t) = 0 (3.12)

has a unique solution t̄ = s̄(x). The mapping s̄ : Γ −→ R is Lipschitz and it is related
with ū through the formula

ū(x) = Proj[α,β](s̄(x)) = max{α, min{β, s̄(x)}}. (3.13)

Moreover ū ∈ C0,1(Γ) and ȳ, ϕ̄ ∈ W 2,p(Ω) ⊂ C0,1(Ω̄) for some p > 2.
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4. Full discretization. Here, we define a finite-element based approximation of
the optimal control problem (P ). To this aim, we consider a family of triangulations
{Th}h>0 of Ω̄: Ω̄ = ∪T∈Th

T . This triangulation is supposed to be regular in the
usual sense that we state exactly here. With each element T ∈ Th, we associate two
parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of the set T and σ(T )
is the diameter of the largest ball contained in T . Let us define the size of the mesh
by h = maxT∈Th

ρ(T ). The following regularity assumption is assumed.

(H) - There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
For fixed h > 0, we denote by {Tj}N(h)

j=1 the family of triangles of Th with a side

on the boundary of Γ. If the edges of Tj ∩Γ are xj
Γ and xj+1

Γ then [xj
Γ, xj+1

Γ ] := Tj ∩Γ,

1 ≤ j ≤ N(h), with x
N(h)+1
Γ = x1

Γ.

4.1. Discretization of the state equation. Associated with this triangulation
we set

Yh = {yh ∈ C(Ω̄) | yh|T ∈ P1, for all T ∈ Th},

where P1 is the space of polynomials of degree less than or equal to 1. For each
u ∈ L∞(Γ), we denote by yh(u) the unique element of Yh that satisfies

a(yh(u), zh) =

∫

Ω

a0(x, yh(u))zh dx +

∫

Γ

[b0(x, yh(u)) + u]zh dx ∀zh ∈ Yh, (4.1)

where a : Yh × Yh −→ R is the bilinear form defined by

a(yh, zh) =

∫

Ω

∇yh(x)∇zh(x) dx.

The existence and uniqueness of a solution of (4.1) follows in the standard way
from the monotonicity of a0 and b0 (see [6]).

Let us now introduce the approximate adjoint state associated to a control. To
every u ∈ Uad we relate ϕh(u) ∈ Yh, the unique function satisfying

a(ϕh(u), zh) =

∫

Ω

(

∂a0

∂y
(x, yh(u))ϕh(u) +

∂L

∂y
(x, yh(u))

)

zh dx+

∫

Γ

(

∂b0

∂y
(x, yh(u))ϕh(u) +

∂l

∂y
(x, yh(u), u)

)

zh dσ(x) ∀zh ∈ Yh.

We will make intensive use of the following approximation properties.
Theorem 4.1. (i) For every u ∈ H1/2(Γ) there exists C > 0, depending contin-

uously on ‖u‖H1/2(Γ), such that

‖yu − yh(u)‖Hs(Ω) + ‖ϕu − ϕh(u)‖Hs(Ω) ≤ Ch2−s for all 0 ≤ s ≤ 1, (4.2)

and

‖yu − yh(u)‖L2(Γ) + ‖ϕu − ϕh(u)‖L2(Γ) ≤ Ch3/2. (4.3)
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(ii) For every u ∈ L2(Γ) there exists C0 > 0, depending continuously on ‖u‖L2(Γ),
such that

‖yu − yh(u)‖Hs(Ω) + ‖ϕu − ϕh(u)‖Hs(Ω) ≤ C0h
3/2−s for all 0 ≤ s ≤ 1. (4.4)

(iii) For every u1, u2 ∈ L2(Γ) there exists a constant C > 0 such that

‖yu1
− yu2

‖H1(Ω) + ‖yh(u1) − yh(u2)‖H1(Ω)+

‖ϕu1
− ϕu2

‖H1(Ω) + ‖ϕh(u1) − ϕh(u2)‖H1(Ω) ≤ C‖u1 − u2‖L2(Γ).

(iv) Moreover, if uh ⇀ u weakly in L2(Γ), then yh(uh) → yu and ϕh(uh) → ϕu

strongly in C(Ω̄).
Proof. (i) If u ∈ H1/2(Γ) then both the state and the adjoint state are in H2(Ω).

Then we can use the results proved in [5] to deduce (4.2) for s = 0 and s = 1. For
s ∈ (0, 1), the estimate can be deduced by real interpolation methods (see Brenner
and Scott [2, Section 12.3]. Inequality (4.3) is proved in an appendix.

(ii) Now, we only can assure that the state and the adjoint state are functions of
H3/2(Ω). Again the result follows by real interpolation. See [2, Theorem (12.3.5)].

(iii) This is obtained in a standard way from the monotonicity of a0 and b0 and
(A5).

(iv) See [5, 6]

4.2. Discrete optimal control problem. Now we are going to approximate
problem (P) by a finite dimensional problem. Set

Uh = {u ∈ C(Γ) | u|(xj
Γ,xj+1

Γ ) ∈ P1 for 1 ≤ j ≤ N(h)}.

The approximated control problem is

(Ph)











min Jh(uh) =

∫

Ω

L(x, yh(uh)(x)) dx +

∫

Γ

l(x, yh(uh)(x), uh(x)) dσ(x),

subject to (yh(uh), uh) ∈ Yh × Uad
h satysfying (4.1),

where Uad
h = Uh ∩ Uad.

Since Jh is a continuous function and Uad
h is compact, we get that (Ph) has at

least one global solution. The first order optimality conditions can be written as
follows:

Theorem 4.2. Assume that ūh is a local optimal solution of (Ph). Then there
exist ȳh and ϕ̄h in Yh satisfying

a(ȳh, zh) =

∫

Ω

a0(x, ȳh)zh dx +

∫

Γ

(b0(x, ȳh) + ūh)zh dx ∀zh ∈ Yh, (4.5)

a(ϕ̄h, zh) =

∫

Ω

(

∂a0

∂y
(x, ȳh)ϕ̄h +

∂L

∂y
(x, ȳh)

)

zh dx+

∫

Γ

(

∂b0

∂y
(x, ȳh)ϕ̄h +

∂l

∂y
(x, ȳh, ūh)

)

zh dσ(x) ∀zh ∈ Yh, (4.6)
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∫

Γ

(

ϕ̄h +
∂l

∂u
(x, ȳh, ūh)

)

(uh − ūh) dσ(x) ≥ 0 ∀uh ∈ Uad
h . (4.7)

We will denote

d̄h(x) = ϕ̄h(x) +
∂l

∂u
(x, ȳh(x), ūh(x)).

Remark 4.3. At this point, we can show the difficulty introduced by the fact that
Uh is formed by continuous piecewise linear functions instead of piecewise constant
functions. To make a clear presentation, let us assume for a while that l(x, y, u) =

`(x, y) +
Λ

2
u2. In the case where Uh is formed by piecewise constant functions, we get

from (4.7) that

ūh|(xj
Γ,xj+1

Γ ) = Proj[α,β]

(

− 1

Λ

∫ xj+1
Γ

xj
Γ

ϕ̄h(x)dσ(x)

)

.

Comparing this representation of ūh with (3.13) we can prove that ūh → ū strongly
in L∞(Γ); see [6].

Since we are considering piecewise linear controls in the present paper, no such
pointwise projection formula can be deduced. We only can say that ūh is the convex
projection of − 1

Λ ϕ̄h(x). More precisely, ūh is the solution of problem

min
vh∈Uh

‖ϕ̄h + Λvh‖2
L2(Γ). (4.8)

This makes the analysis of the convergence more difficult than in [6]. In particular,
we can prove that ūh → ū strongly in L2(Γ), but this convergence cannot be obtained
in L∞(Γ) in an easy way as done in [6]; see Section 6 for further discussion on this
particular case. The reader is also referred to [7] for the study of problem (4.8).

Theorem 4.4. For every h > 0 let ūh be a solution of (Ph). Then there exist
subsequences {ūh}h>0 converging in the weak* topology of L∞(Γ) that will be denoted
in the same way. If ūh ⇀ ū in the mentioned topology, then ū is a solution of (P)
and

lim
h→0

Jh(ūh) = J(ū) and lim
h→0

‖ū − ūh‖L2(Γ) = 0.

Proof. Since Uad
h ⊂ Uad holds for every h > 0 and Uad is bounded in L∞(Γ),

{ūh}h>0 is also bounded in L∞(Γ). Therefore, there exist weakly∗-converging subse-
quences as claimed in the statement of the theorem. Let ūh be the of one of these
subsequences. By the definition of Uad it is obvious that ūh ∈ Uad. Let us prove that
the weak∗ limit ū is a solution of (P). Let ũ ∈ Uad be a solution of (P) and consider
the operator Πh : C(Γ) → Uh defined by

Πhu(xj
Γ) = u(xj

Γ) for j = 1, . . . , N(h).

According to Theorem 3.7 we have that ũ ∈ C0,1(Γ) and then

‖ũ − Πhũ‖L∞(Γ) ≤ Ch‖ũ‖C0,1(Γ);
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see Lemma 4.5 below. Remark that Πhũ ∈ Uad
h for every h. Now using the convexity

of l(x, y, u) with respect to u and the uniform convergence ȳh = yh(ūh) → ȳ = yū and
yh(Πhũ) → yũ (Theorem 4.1(iv)) along with the assumptions on L and l we get

J(ū) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(Πhũ) = J(ũ) = inf (P ).

This proves that ū is a solution of (P) as well as the convergence of the optimal costs.
The L2 convergence of {ūh} to ū follows now in a standard way from the convergence
J(ūh) → J(ū) together with assumptions (A1) and (A2), the weak convergence
ūh ⇀ ū in L2(Γ), the strong convergence ȳh → ȳ in C(Ω̄) and the condition (2.2) on
the strict positivity of the second derivative of l with respect to the third variable.

The following interpolation results are well know; see for instance [2].
Lemma 4.5. For all u ∈ C0,1(Γ), 1 ≤ q < +∞ there exists C > 0

lim
h→0

‖u − Πhu‖Lq(Γ)

h
= 0, ‖u − Πhu‖L∞(Γ) ≤ Ch‖u‖C0,1(Γ) (4.9)

and for all ϕ ∈ H3/2(Γ) there exists C > 0 such that

‖ϕ − Πhϕ‖L2(Γ) ≤ Ch3/2‖ϕ‖H3/2(Γ). (4.10)

4.3. Error estimates. The main result of the paper is the following.
Theorem 4.6. Let ū be a solution of problem (P) such that J ′′(ū)v2 > 0 holds

for all v ∈ Cū \ {0} and ūh a sequence of solutions of (Ph) converging in L2(Γ) to ū.
Then

lim
h→0

‖ū − ūh‖L2(Γ)

h
= 0.

To prove this we will suppose it is false and finally we will get a contradiction. Indeed,
we will suppose that there exists a constant c̄ > 0 and a sequence of h, denoted in the
same way, such that

‖ū − ūh‖L2(Γ) ≥ c̄h ∀h > 0. (4.11)

We will state four auxiliary lemmas. Through the rest of this section, ū and ūh

will be the ones given in the assumptions of Theorem 4.6.
Lemma 4.7. There exists ν > 0 and h1 > 0 such that for all 0 < h < h1

ν‖ū − ūh‖2
L2(Γ) ≤ (J ′(ūh) − J ′(ū))(ūh − ū).

Proof. By applying the mean value theorem we get for some ûh = ū+ θh(ūh − ū)

(J ′(ūh) − J ′(ū))(ūh − ū) = J ′′(ûh)(ūh − ū)2. (4.12)

Let us take

vh =
ūh − ū

‖ūh − ū‖L2(Γ)
.
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Let {hk}∞k=1 be a sequence converging to 0 such that

lim
k→∞

J ′′
hk

(ûhk
)v2

hk
= lim inf

h→0
J ′′

h (ûh)v2
h, ūhk

→ ū a.e. x ∈ Γ, vhk
⇀ v ∈ L2(Γ).

The goal is to prove that

lim inf
h→0

J ′′(ûh)v2
h ≥

{

Λ if v = 0,
δ‖v‖2

L2(Γ) if v 6= 0.

Then the result follows by (4.12) and this inequality by taking ν = Λ/2 if v = 0 and
ν = (δ/2)‖v‖2

L2(Γ) otherwise.

To simplify the notation we will write h instead of hk. Let us check that v ∈ Cū.
The sign condition (3.13) is satisfied by the vh and obviously also by v. Let us see
that d̄(x) 6= 0 implies v = 0. Since v satisfies the sign condition and d̄h → d̄ strongly
in L2(Γ), we have

∫

Γ

|d̄(x)v(x)|dσ(x) =

∫

Γ

d̄(x)v(x)dσ(x) =

= lim
h→0

∫

Γ

d̄h(x)vh(x)dσ(x) = lim
h→0

∫

Γ

d̄h(x)
ūh − ū

‖ūh − ū‖L2(Γ)
dσ(x) =

= lim
h→0

∫

Γ

d̄h(x)
ūh − Πhū

‖ūh − ū‖L2(Γ)
dσ(x) + lim

h→0

∫

Γ

d̄h(x)
Πhū − ū

‖ūh − ū‖L2(Γ)
dσ(x).

First order optimality conditions for problem (Ph) state that the first integral is less
or equal than 0. Using Cauchy inequality, we get

∫

Γ

|d̄(x)v(x)|dσ(x) ≤ lim
h→0

‖d̄h‖L2(Γ)

‖Πhū − ū‖L2(Γ)

‖ūh − ū‖L2(Γ)
.

Taking into account (4.9) and (4.11), we can pass to the limit when h → 0 to get that

∫

Γ

|d̄(x)||v(x)|dσ(x) = 0.

Therefore, if d̄(x) 6= 0, then v(x) = 0 and v ∈ Cτ
ū for all τ ≥ 0.

(i) v = 0. In this case weak convergence of vh ⇀ v = 0 in L2(Γ) is enough to
obtain strong convergence of zvh

→ zv = 0 in C(Ω̄) and we have

lim inf
h→0

J ′′(ûh)v2
h = lim inf

h→0

{
∫

Ω

[

∂2L

∂y2
(x, yûh

) + ϕûh

∂2a0

∂y2
(x, yûh

)

]

z2
vh

dx

+

∫

Γ

[(

∂2l

∂y2
(x, yûh

, ûh) + ϕûh

∂2b0

∂y2
(x, yûh

)

)

z2
vh

+ 2
∂2l

∂y∂u
(x, yûh

, ûh)zvh
vh

]

dσ(x)

+

∫

Γ

∂2l

∂u2
(x, yûh

, ûh)v2
h dσ(x)

}

≥
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lim inf
h→0

{
∫

Ω

[

∂2L

∂y2
(x, yûh

) + ϕûh

∂2a0

∂y2
(x, yûh

)

]

z2
vh

dx

+

∫

Γ

[(

∂2l

∂y2
(x, yûh

, ûh) + ϕûh

∂2b0

∂y2
(x, yûh

)

)

z2
vh

+ 2
∂2l

∂y∂u
(x, yûh

, ûh)zvh
vh

]

dσ(x)

+Λ

∫

Γ

v2
h dσ(x)

}

=

∫

Ω

[

∂2L

∂y2
(x, ȳ) + ϕ̄

∂2a0

∂y2
(x, ȳ)

]

z2
v dx

+

∫

Γ

[(

∂2l

∂y2
(x, ȳ, ū) + ϕ̄

∂2b0

∂y2
(x, ȳ)

)

z2
v + 2

∂2l

∂y∂u
(x, ȳ, ū)zvv

]

dσ(x) + Λ = Λ

(ii) v 6= 0. Arguing as above

lim inf
h→0

J ′′(ûh)v2
h =

∫

Ω

[

∂2L

∂y2
(x, ȳ) + ϕ̄

∂2a0

∂y2
(x, ȳ)

]

z2
v dx

+

∫

Γ

[(

∂2l

∂y2
(x, ȳ, ū) + ϕ̄

∂2b0

∂y2
(x, ȳ)

)

z2
v + 2

∂2l

∂y∂u
(x, ȳ, ū)zvv

]

dσ(x)+

+ lim inf
h→0

∫

Γ

∂2l

∂u2
(x, yûh

, ûh)v2
h dσ(x).

Now we use Lusin’s theorem. For any ε > 0 there exists a compact set Kε ⊂ Γ such
that

lim
h→0

‖ū − ūh‖L∞(Kε) = 0 and |Γ \ Kε| < ε.

So we have

lim inf
h→0

J ′′(ûh)v2
h =

∫

Ω

[

∂2L

∂y2
(x, ȳ) + ϕ̄

∂2a0

∂y2
(x, ȳ)

]

z2
v dx

+

∫

Γ

[(

∂2l

∂y2
(x, ȳ, ū) + ϕ̄

∂2b0

∂y2
(x, ȳ)

)

z2
v + 2

∂2l

∂y∂u
(x, ȳ, ū)zvv

]

dσ(x)+

+ lim inf
h→0

∫

Kε

∂2l

∂u2
(x, ȳ, ū)v2

h dσ(x)+ lim inf
h→0

∫

Γ\Kε

∂2l

∂u2
(x, yûh

, ûh)v2
h dσ(x)

+ lim inf
h→0

∫

Kε

(

∂2l

∂u2
(x, yûh

, ûh) − ∂2l

∂u2
(x, ȳ, ū)

)

v2
h dσ(x) ≥
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∫

Ω

[

∂2L

∂y2
(x, ȳ) + ϕ̄

∂2a0

∂y2
(x, ȳ)

]

z2
v dx

+

∫

Γ

[(

∂2l

∂y2
(x, ȳ, ū) + ϕ̄

∂2b0

∂y2
(x, ȳ)

)

z2
v + 2

∂2l

∂y∂u
(x, ȳ, ū)zvv

]

dσ(x)+

+

∫

Kε

∂2l

∂u2
(x, ȳ, ū)v2 dσ(x)+ lim inf

h→0
Λ

∫

Γ\Kε

v2
hdσ(x) dσ(x) ≥

J ′′(ū)v2 −
∫

Γ\Kε

∂2l

∂u2
(x, ȳ, ū)v2 dσ(x)+Λ

∫

Γ\Kε

v2dσ(x).

Using second order sufficient conditions as stated in Remark 3.6(2) and making ε → 0
we deduce that

lim inf
h→0

J ′′(ûh)v2
h ≥ δ‖v‖2

L2(Γ).

Lemma 4.8. There exists a constant C > 0 such that

(J ′
h(ūh) − J ′(ū))v ≤ C(h3/2 + ‖ūh − ū‖L2(Γ))‖v‖L2(Γ).

Proof. The proof is straight forward. First, we apply the expressions for the
derivatives of J and Jh, the trace theorem and Theorem 4.1(iii).

(J ′
h(ūh) − J ′(ū))v =

∫

Γ

(ϕ̄h − ϕ̄)vdσ(x)+

∫

Γ

(

∂l

∂u
(x, ȳh, ūh) − ∂l

∂u
(x, ȳ, ū)

)

vdσ(x) =

∫

Γ

(ϕ̄h − ϕh(ū))vdσ(x) +

∫

Γ

(ϕh(ū) − ϕ̄)vdσ(x)+

∫

Γ

(

∂l

∂u
(x, ȳh, ūh) − ∂l

∂u
(x, ȳh, ū)

)

vdσ(x)+

∫

Γ

(

∂l

∂u
(x, ȳh, ū) − ∂l

∂u
(x, yh(ū), ū)

)

vdσ(x)+

∫

Γ

(

∂l

∂u
(x, yh(ū), ū) − ∂l

∂u
(x, ȳ, ū)

)

vdσ(x) ≤

C
(

‖ϕ̄h − ϕh(ū)‖L2(Γ) + ‖ϕh(ū) − ϕ̄‖L2(Γ)+
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‖ūh − ū‖L2(Γ) + ‖ȳh − yh(ū)‖L2(Γ) + ‖yh(ū) − ȳ‖L2(Γ)

)

‖v‖L2(Γ) ≤

≤ C
(

‖ϕh(ū) − ϕ̄‖L2(Γ) + ‖yh(ū) − ȳ‖L2(Γ) + ‖ūh − ū‖L2(Γ)

)

‖v‖L2(Γ).

Finally, using that ū ∈ H1/2(Γ), we can apply (4.3) to get that the last expression is
bounded by

C(h3/2 + ‖ūh − ū‖L2(Γ))‖v‖L2(Γ).

Lemma 4.9. For every ρ > 0 and every 0 < ε ≤ 1/2 there exists Cε,ρ > 0
independent of h such that

|(J ′
h(ūh) − J ′(ūh))v| ≤

(

Cρ,εh
3/2−ε + ρ‖ūh − ū‖L2(Γ)

)

‖v‖L2(Γ) ∀v ∈ L2(Γ). (4.13)

Proof. From the hypotheses on l it is readily deduced

|(J ′
h(ūh) − J ′(ūh))v| ≤

∫

Γ

(

|ϕ̄h − ϕūh
| +

∣

∣

∣

∣

∂l

∂u
(x, ȳh, ūh) − ∂l

∂u
(x, yūh

, ūh)

∣

∣

∣

∣

)

v dσ(x) ≤

C
(

‖ϕ̄h − ϕūh
‖L2(Γ) + ‖ȳh − yūh

‖L2(Γ)

)

‖v‖L2(Γ), (4.14)

where yūh
and ϕūh

are the solutions of (2.1) and (3.5) corresponding to ūh.
Here we cannot apply (4.3) because we do not know if {ūh} is bounded in H1/2(Γ).

If we try to apply estimate (4.4) and the trace theorem we would get that

|(J ′
h(ūh) − J ′(ūh))v| ≤ Cεh

1−ε.

This result is not enough to get the desired order of convergence for ‖ū − ūh‖L2(Γ).
See (4.16). We would get an order of convergence for ‖ū − ūh‖L2(Γ) even worse than
h. We will make a small turnround. Fix 0 < ε ≤ 1/2. From the trace theorem and
Theorem 1.4.3.3 in Grisvard [8] (taking p = 2, s′ = 1/2 + ε, s′′ = 1/2 + ε/2 and
s′′′ = 0), we have that there exist Cε > 0 and Kε > 0 such that for every σ > 0

‖z‖L2(Γ) ≤ Cε‖z‖H1/2+ε/2(Ω) ≤ Cε

(

σ‖z‖H1/2+ε(Ω) + Kεσ
−(1+1/ε)‖z‖L2(Ω)

)

.

If we name Kσ,ε = CεKεσ
−(1+1/ε), we get, using estimate (4.4) and the fact that

{ūh}h>0 is bounded in L2(Γ),

‖ȳh − yūh
‖L2(Γ) ≤ Cεσ‖ȳh − yūh

‖H1/2+ε(Ω) + Kσ,ε‖ȳh − yūh
‖L2(Ω) ≤

Cεσ‖ȳh − yūh
‖H1/2+ε(Ω) + Kσ,εC0h

3/2.

From Theorem 4.1(iii) we obtain

‖ȳ − yūh
‖H1/2+ε(Ω) ≤ C‖ū − ūh‖L2(Γ).

On the other hand, using estimate (4.2) and again Theorem 4.1(iii)

‖ȳ − ȳh‖H1/2+ε(Ω) ≤ ‖ȳ − yh(ū)‖H1/2+ε(Ω) + ‖yh(ū) − ȳh‖H1/2+ε(Ω) ≤
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C
(

h3/2−ε + ‖ū − ūh‖L2(Γ)

)

.

Combining the last three inequalities we deduce

‖ȳh − yūh
‖L2(Γ) ≤ CCεσ

(

h3/2−ε + ‖ū − ūh‖L2(Γ)

)

+ Kσ,εC0h
3/2.

The same arguments can be applied to the adjoint states, so (4.13) follows from
(4.14). Inequality (4.13) is obtained by choosing σ = ρ/(CCε) and Cρ,ε = Kσ,εC0 +ρ.

Lemma 4.10.

lim
h→0

1

h2
|J ′(ū)(Πhū − ū)| = 0.

Proof. Let us distinguish two kinds of elements on Γ:

τ+
h = {j : d̄(x) 6= 0 ∀x ∈ (xj

Γ, xj+1
Γ )},

τ0
h = {j : ∃ξj ∈ (xj

Γ, xj+1
Γ ) such that d̄(ξj) = 0}.

Since d̄ is continuous, for h small enough, its sign is constant on the elements corre-
sponding to indices in τ+

h , and hence either ū(x) = α or ū(x) = β and ū(x) = Πhū
on each of these elements. So, taking into account that d̄ is a Lipschitz function of
constant, say λ, we obtain

|J ′(ū)(Πhū − ū)| =

∣

∣

∣

∣

∣

∣

∑

j∈τ0
h

∫ xj+1
Γ

xj
Γ

d̄(x)(Πhū(x) − ū(x))dσ(x)

∣

∣

∣

∣

∣

∣

≤

∑

j∈τ0
h

∫ xj+1
Γ

xj
Γ

|d̄(x) − d̄(ξj)||Πhū(x) − ū(x)|dσ(x) ≤

λh
∑

j∈τ0
h

∫ xj+1
Γ

xj
Γ

|Πhū(x) − ū(x)|dσ(x). (4.15)

So we have that

|J ′(ū)(Πhū − ū)| ≤ λh‖ū − Πhū‖L1(Γ)

and the result follows taking into account the interpolation error stated in (4.9).
Proof of Theorem 4.6. First order optimality conditions for (P) and (Ph) imply

that

J ′(ū)(ūh − ū) ≥ 0

J ′
h(ūh)(Πhū − ūh) ≥ 0 ⇒ J ′

h(ūh)(Πhū − ū) + J ′
h(ūh)(ū − ūh) ≥ 0



NUMERICAL APPROXIMATION OF BOUNDARY CONTROL PROBLEMS II 15

Making the sum

J ′(ū)(ūh − ū) + J ′
h(ūh)(Πhū − ū) + J ′

h(ūh)(ū − ūh) ≥ 0

or equivalently

(J ′(ū) − J ′
h(ūh))(ū − ūh) ≤ J ′

h(ūh)(Πhū − ū).

Now applying Lemma 4.7 and the previous inequality

ν‖ūh − ū‖2
L2(Γ) ≤ (J ′(ū) − J ′(ūh))(ū − ūh) =

(J ′(ū) − J ′
h(ūh))(ū − ūh) + (J ′

h(ūh) − J ′(ūh))(ū − ūh) ≤

J ′
h(ūh)(Πhū − ū) + (J ′

h(ūh) − J ′(ūh))(ū − ūh) =

(J ′
h(ūh) − J ′(ū))(Πhū − ū) + J ′(ū)(Πhū − ū) + (J ′

h(ūh) − J ′(ūh))(ū − ūh) (4.16)

The first term is estimated using Lemma 4.8, and the third one with Lemma 4.9.

ν‖ū − ūh‖2
L2(Γ) ≤ C(h3/2 + ‖ū − ūh‖L2(Γ))‖Πhū − ū‖L2(Γ) + J ′(ū)(Πhū − ū)+

(Cρ,εh
3/2−ε + ρ‖ū − ūh‖L2(Γ))‖ū − ūh‖L2(Γ).

Now we have just to take ρ = ν/2 and use Young’s inequality to get that for all
0 < ε ≤ 1/2 there exists Cε > 0

‖ū− ūh‖2
L2(Γ) ≤ Cε(h3/2‖Πhū− ū‖L2(Γ) + ‖Πhū− ū‖2

L2(Γ) + J ′(ū)(Πhū− ū) + h3−2ε).

Fixing 0 < ε < 1/2, dividing by h2 and taking into account the interpolation error
estimate (4.9) and Lemma 4.10, we can pass to the limit and obtain

lim
h→0

‖ū − ūh‖L2(Γ)

h
= 0,

and we have achieved a contradiction.
As a consequence, we have uniform convergence and even an estimate for the

error in  L∞(Γ). We will use the following inverse inequality. For every uh ∈ Uh

‖uh‖L∞(Γ) ≤ Ch−1/2‖uh‖L2(Γ) (4.17)

Theorem 4.11. Let ū and ūh be the ones of Theorem 4.6. Then

lim
h→0

‖ū − ūh‖L∞(Γ)

h1/2
= 0.
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Proof. Using the triangular inequality, we obtain

‖ū − ūh‖L∞(Γ) ≤ ‖ū − Πhū‖L∞(Γ) + ‖Πhū − ūh‖L∞(Γ).

Since the optimal control is Lipschitz, applying (4.9) we have for the first term

‖ū − Πhū‖L∞(Γ)

h1/2
≤ Ch1/2.

For the second term, we can apply the inverse inequality (4.17):

‖Πhū − ūh‖L∞(Γ)

h1/2
≤ Ch−1/2‖Πhū − ūh‖L2(Γ)

h1/2
≤ C

‖Πhū − ū‖L2(Γ) + ‖ū − ūh‖L2(Γ)

h

and the result follows from (4.9) and Theorem 4.6.

5. Semidiscretization. In this section we will follow the schema proposed by
Hinze in [9] for linear quadratic distributed problems. The idea is to discretize the
state and solve the corresponding infinite dimensional optimization problem. The new
control problem is now defined by

(Qh)







min Jh(u) =

∫

Ω

L(x, yh(u)(x)) dx +

∫

Γ

l(x, yh(u)(x), u(x))dσ(x),

subject to (yh(u), u) ∈ Yh × Uad satisfying (4.1).

The first order optimality conditions can be written as follows:
Theorem 5.1. Assume that ūh is a local optimal solution of (Qh). Then there

exist ȳh and ϕ̄h in Yh satisfying

a(ȳh, zh) =

∫

Ω

a0(x, ȳh)zh dx +

∫

Γ

(b0(x, ȳh) + ūh)zh dx ∀zh ∈ Yh, (5.1)

a(ϕ̄h, zh) =

∫

Ω

(

∂a0

∂y
(x, ȳh)ϕ̄h +

∂L

∂y
(x, ȳh)

)

zh dx+

∫

Γ

(

∂b0

∂y
(x, ȳh)ϕ̄h +

∂l

∂y
(x, ȳh, ūh)

)

zh dσ(x) ∀zh ∈ Yh, (5.2)

∫

Γ

(

ϕ̄h +
∂l

∂u
(x, ȳh, ūh

)

(u − ūh) dσ(x) ≥ 0 ∀u ∈ Uad. (5.3)

The following result is the counterpart of Theorem 3.7.
Theorem 5.2. Assume that ūh is a local optimal solution of (Qh). Then for all

x ∈ Γ the equation

ϕ̄h(x) +
∂l

∂u
(x, ȳh(x), t) = 0 (5.4)

has a unique solution t̄ = s̄h(x). The mapping s̄h : Γ −→ R is Lipschitz and it is
related with ūh through the formula

ūh(x) = Proj[α,β](s̄h(x)) = max{α, min{β, s̄h(x)}}. (5.5)
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Notice that in general ūh(x) 6∈ Uh.
Lemma 5.3. For every h > 0 let ūh be a solution of (Qh). Then there exist

subsequences {ūh}h>0 converging in the weak* topology of L∞(Γ) that will be denoted
in the same way. If ūh ⇀ ū in the mentioned topology, then ū is a solution of (P)
and

lim
h→0

Jh(ūh) = J(ū) and lim
h→0

‖ūh − ū‖L∞(Γ) = 0.

Proof. The first part is as in the proof of Theorem 4.4. Let us check the second
part. Take x ∈ Γ.

|ū(x) − ūh(x)| ≤ |s̄(x) − s̄h(x)|.

Due to assumption (A2)

Λ|s̄(x) − s̄h(x)| ≤
∣

∣

∣

∣

∂l

∂u
(x, ȳh(x), s̄(x)) − ∂l

∂u
(x, ȳh(x), s̄h(x))

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂l

∂u
(x, ȳh(x), s̄(x)) − ∂l

∂u
(x, ȳ(x), s̄(x))

∣

∣

∣

∣

+

∣

∣

∣

∣

∂l

∂u
(x, ȳ(x), s̄(x)) − ∂l

∂u
(x, ȳh(x), s̄h(x))

∣

∣

∣

∣

=

∣

∣

∣

∣

∂l

∂u
(x, ȳh(x), s̄(x)) − ∂l

∂u
(x, ȳ(x), s̄(x))

∣

∣

∣

∣

+ |ϕ̄(x) − ϕ̄h(x)| ≤

|ȳh(x) − y(x)| + |ϕ̄(x) − ϕ̄h(x)|.

The proof concludes thanks to the uniform convergence ȳh → ȳ and ϕ̄h → ϕ̄ (see
Theorem 4.1(iv)).

Theorem 5.4. Let ū be a solution of problem (P) such that J ′′(ū)v2 > 0 holds
for all v ∈ Cū \ {0} and ūh a sequence of solutions of (Qh) converging in L∞(Γ) to
ū. Then for every ε > 0 there exists Cε > 0 such that

‖ū − ūh‖L2(Γ) ≤ Cεh
3/2−ε.

We will make a direct proof of this theorem, not following an argument by contra-
diction as in the proof of Theorem 4.6; see (4.11). Through the rest of the section ū
and ūh will be the ones of Theorem 5.4.

Lemma 5.5. There exists ν > 0 and h1 > 0 such that for all 0 < h < h1

ν‖ū − ūh‖2
L2(Γ) ≤ (J ′(ūh) − J ′(ū))(ūh − ū).

Proof. Take ûh, vh and v as in the proof of Lemma 4.7. The only point where we
used (4.11) was to state that v ∈ Cū. Now we can proceed as follows.

∫

Γ

|d̄(x)v(x)|dσ(x) =

∫

Γ

d̄(x)v(x)dσ(x) =
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= lim
h→0

∫

Γ

d̄h(x)vh(x)dσ(x) = lim
h→0

∫

Γ

d̄h(x)
ūh − ū

‖ūh − ū‖L2(Γ)
dσ(x) ≤ 0

since ū is an admissible control for (Qh) and we can apply first order optimality
condition (5.3). The rest of the proof is an in Lemma 4.7.

Proof of Theorem 5.4. We can repeat the proof of Theorem 4.6. Since ū is
admissible for (Qh), we can take ū instead of Πhu in (4.16) and we have that for
every ρ > 0 and every 0 < ε < 1/2 there exists Cρ,ε such that

ν‖ūh − ū‖2
L2(Γ) ≤ (J ′

h(ūh) − J ′(ūh))(ū − ūh) ≤

(Cρ,εh
3/2−ε + ρ‖ū − ūh‖L2(Γ))‖ū − ūh‖L2(Γ).

Now we have just to take ρ = ν/2 to get that

‖ū − ūh‖L2(Γ) ≤ Cεh
3/2−ε

for all 0 < ε < 1/2.
Remark 5.6. This semidiscretization procedure is interesting when l(x, y, u) =

`(x, y) + Λ
2 u2 because in that situation, (5.5) leads to

ūh(x) = Proj[α,β]

(

− 1

Λ
ϕ̄h(x)

)

.

This expression shows that ūh is piecewise linear. Though ūh can have more corner
points than those corresponding to the boundary nodes of the triangulation, the amount
of these points is finite. Therefore ūh can be handled by the computer.

6. Objective function quadratic with respect to the control. In many
practical cases when we make the full discretization, the order of convergence observed
for the controls in L2(Γ) is h3/2 and in L∞(Γ) is h. Let us show why. We will make
two assumptions that are fulfilled in many situations:

(Q1) l(x, y, u) = `(x, y) + e(x)u +
Λ

2
u2, where Λ > 0 and

• the function ` : Γ × R −→ R is Lipschitz with respect to the first com-
ponent, of class C2 with respect to the second variable, `(·, 0) ∈ L1(Γ),
∂2`

∂y2
(·, 0) ∈ L∞(Γ) and for all M > 0 there exists a constant C`,M > 0 such

that
∣

∣

∣

∣

∂`

∂y
(x2, y) − ∂`

∂y
(x1, y)

∣

∣

∣

∣

≤ C`,M |x2 − x1|,

∣

∣

∣

∣

∂2`

∂y2
(x, y2) − ∂2`

∂y2
(x, y1)

∣

∣

∣

∣

≤ C`,M |y2 − y1|,

for a.e. x, xi ∈ Γ and |y|, |yi| ≤ M , i = 1, 2;
• the function e : Γ → R is Lipschitz and satisfies the following approximation

property: there exists Ce > 0 such that

‖e − Πhe‖L2(Γ) ≤ Ceh
3/2.

This assumption is not very constraining. Although it is not true for Lipschitz
functions in general, it is true for a very wide class of functions. For instance
for Lipschitz functions that are piecewise in H3/2(Γ).
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(Q2) If we name Γs = {x ∈ Γ : ū(x) = α or ū(x) = β}, then the number of points
in ∂Γs –the boundary of Γs in the topology of Γ– is finite. Let us name N
that number.

Through the rest of this section, ū and ūh will be the ones given in the assumptions
of Theorem 4.6. (Q1) and (3.6) imply that for every x ∈ Γ

ū(x) = Proj[α,β]

(

− 1

Λ
(ϕ̄(x) + e(x))

)

Now we can state uniform convergence a priori.
Lemma 6.1. The sequence {ūh}h>0 is bounded in W 1−1/p,p(Γ) and the following

convergence property holds:

‖ū − ūh‖L∞(Γ) = 0.

Proof. The control does not appear explicitly in the adjoint equation, and hence
ϕūh

is uniformly bounded in W 2,p(Ω). Usual finite element estimates then give us
that ϕ̄h is uniformly bounded in W 1,p(Ω), and therefore their traces are uniformly
bounded in W 1−1/p,p(Γ). Since ūh is the L2(Γ) projection of −1

Λ (ϕ̄h +eu) in Uh∩Uad,
and this projection is stable for Sobolev norms (see Casas and Raymond [7]), then
the discrete controls are bounded in W 1−1/p,p(Γ).

Finally, Theorem 4.4 and the compactness of the embedding W 1−1/p,p(Γ) ⊂
L∞(Γ) leads to the desired convergence result.

This boundness can be taken into account to improve Lemma 4.9.
Lemma 6.2. There exists C > 0 such that

|(J ′
h(ūh) − J ′(ūh))v| ≤ Ch3/2‖v‖L2(Γ) ∀v ∈ L2(Γ). (6.1)

Proof. Since the controls are uniformly bounded in H1/2(Γ), we can use estimate
(4.3). From the hypotheses on l it is readily deduced

|(J ′
h(ūh) − J ′(ūh))v| ≤

∫

Γ

(|ϕ̄h − ϕūh
|) v dσ(x) ≤

C‖ϕ̄h − ϕūh
‖L2(Γ)‖v‖L2(Γ) ≤ Ch3/2‖v‖L2(Γ).

Remember that Lemma 4.7 was proved using assumption (4.11) and Lemma 5.5
was proved using that ū was an admissible control for (Qh). Let us show that in this
case the result is still true.

Lemma 6.3. There exists ν > 0 and h1 > 0 such that for all 0 < h < h1

ν‖ū − ūh‖2
L2(Γ) ≤ (J ′(ūh) − J ′(ū))(ūh − ū).

Proof. Let us take τ > 0 as in Remark 3.6-(2). Let us prove that ūh − ū ∈ Cτ
ū for

h small enough. The sign condition (3.13) is trivial. From the uniform convergence
ūh → ū, we can deduce that for h small enough ‖d̄ − d̄h‖L∞(Γ) < τ/4. Take ξ ∈
[xj

Γ, xj+1
Γ ] where d̄(ξ) > τ . On one side, we have that ū(ξ) = α. On the other hand,
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since d̄ is a Lipschitz function, for h small enough d̄(x) > τ/2 for every x ∈ [xj
Γ, xj+1

Γ ],

and hence d̄h(x) > τ/4 for every x ∈ [xj
Γ, xj+1

Γ ]. First order optimality conditions for

problem (Ph) imply that ūh(x) = α for every x ∈ [xj
Γ, xj+1

Γ ], and then ūh(ξ)−ū(ξ) = 0.
The same is applicable when d̄(ξ) < τ .

Therefore ūh − ū ∈ Cτ
ū and there exists δ > 0 such that

δ‖ūh − ū‖2
L2(Γ) ≤ J ′′(ū)(ūh − ū)2.

By applying the mean value theorem we get for some ûh = ū + θh(ūh − ū)

(J ′(ūh) − J ′(ū))(ūh − ū) = J ′′(ûh)(ūh − ū)2.

So we can write that

δ‖ūh − ū‖2
L2(Γ) ≤ (J ′(ūh) − J ′(ū))(ūh − ū) + [J ′′(ū) − J ′′(ûh)](ūh − ū)2.

Finally, the uniform convergence of ūh → ū and assumptions (A1)–(A4) allow us to
estimate the last term by δ

2‖ūh − ū‖2
L2(Γ) for h small enough.

Lemma 6.4. Under (Q2)

|J ′(ū)(Πhū − ū)| ≤ Ch3.

Proof. Now we will distinguish three kind of elements:

τ1
h = {j ∈ {1, . . . , N(h)} : (xj

Γ, xj+1
Γ ) ⊂ Γs},

τ2
h = {j ∈ {1, . . . , N(h)} : α < ū(x) < β ∀x ∈ (xj

Γ, xj+1
Γ )},

and

τ3
h = {j ∈ {1, . . . , N(h)} : (xj

Γ, xj+1
Γ ) ∩ ∂Γs 6= ∅}.

Notice that
1) τ1

h ∪ τ2
h ∪ τ3

h = {1, . . . , N(h)} and τ i
h ∩ τ j

h = ∅ if i 6= j.

2) If j ∈ τ1
h then ū(x) = Πhū(x) for all x ∈ (xj

Γ, xj+1
Γ ). Both are either α or β on

the segment.
3) If j ∈ τ2

h then d̄(x) = 0 for all x ∈ (xj
Γ, xj+1

Γ ) (see 3.9).
4) The number of elements of τ3

h is less or equal than N and if j ∈ τ3
h then there

exists ξj ∈ (xj
Γ, xj+1

Γ ) such that d̄(ξj) = 0.
Taking into account these considerations, the Lipschitz continuity of d̄ and ū we

have that

|J ′(ū)(Πhū − ū)| =
∑

j∈τ3
h

∫ xj+1
Γ

xj
Γ

|d̄(x) − d̄(ξj)| |Πhū − ū|dσ(x) ≤

Nhλh‖ū‖C0,1(Γ)h = Ch3.
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Lemma 6.5. Under (Q1) and (Q2)

‖Πhū − ū‖L2(Γ) ≤ Ch3/2.

Proof. Take τ i
h, i = 1, 2, 3, as in the previous proof. Notice that if j ∈ τ2

h then

ū(x) = 1
Λ (ϕ̄(x) + e(x) for all x ∈ (xj

Γ, xj+1
Γ ) and ϕ̄ ∈ H3/2(Γ). So, taking into account

Lemma 4.5 and assumption (Q1), we have that

∫

Γ

(ū(x) − Πhū(x))2dσ(x) ≤ 2

Λ

∑

j∈τ2
h

∫ xj+1
Γ

xj
Γ

|Πhϕ̄(x) − ϕ̄(x)|2dσ(x)+

2

Λ

∑

j∈τ2
h

∫ xj+1
Γ

xj
Γ

|Πhe(x) − e(x)|2dσ(x) +
∑

j∈τ3
h

∫ xj+1
Γ

xj
Γ

|Πhū(x) − ū(x)|2dσ(x) ≤

2

Λ

(

‖Πhϕ̄ − ϕ̄‖2
L2(Γ) + ‖Πhe − e‖2

L2(Γ)

)

+ N‖ū‖2
C0,1(Γ)h

3 ≤ Ch3.

Theorem 6.6. Let ū be a solution of problem (P) such that J ′′(ū)v2 > 0 holds
for all v ∈ Cū \ {0} and ūh a sequence of solutions of (Ph) converging in L2(Γ) to ū.
Then there exists C > 0 such that

‖ūh − ū‖L2(Γ) ≤ Ch3/2

Proof. We repeat the steps to get (4.16) and apply the previous lemmas:

ν‖ūh − ū‖2
L2(Γ) ≤

(J ′
h(ūh) − J ′(ū))(Πhū − ū) + J ′(ū)(Πhū − ū) + (J ′

h(ūh) − J ′(ūh))(ū − ūh) ≤

C(h3/2 + ‖ū − ūh‖L2(Γ))‖Πhū − ū‖L2(Γ) + Ch3/2‖ū − ūh‖L2(Γ) + Ch3.

By Young’s inequality we get that

‖ū − ūh‖2
L2(Γ) ≤ C(h3/2‖Πhū − ū‖L2(Γ) + ‖Πhū − ū‖2

L2(Γ) + h3),

and the result follows from Lemma 6.5.
Arguing as in the proof of Theorem 4.11 we obtain the following result.
Theorem 6.7. Under the assumptions of Theorem 6.6

‖ū − ūh‖L∞(Γ) ≤ Ch.

Notice that for a function ϕ ∈ H3/2(Γ), the interpolation error ‖ϕ−Πhϕ‖L∞(Γ) ≤ Ch
(see [2, Eq. (4.4.22)]) and this cannot be improved in general, so we have again the
best possible result.
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7. Numerical confirmation. In this section we shall verify our error estimates
by numerical test examples for which we know the exact solution. We report both
on a linear-quadratic problem and on a semilinear problem. A detailed explanation
about the optimization procedure used can be found in [6].

7.1. A linear-quadratic problem. Let us consider the problem

(E1)











































min J(u) =
1

2

∫

Ω

(yu(x) − yΩ(x))2dx +
µ

2

∫

Γ

u(x)2dσ(x)+

+

∫

Γ

eu(x)u(x)dσ(x) +

∫

Γ

ey(x)yu(x)dσ(x)

subject to (yu, u) ∈ H1(Ω) × L∞(Ω),
u ∈ Uad = {u ∈ L∞(Γ) | 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ},
(yu, u) satisfying the linear state equation (7.1)

{

−∆yu(x) + c(x)yu(x) = e1(x) in Ω
∂νyu(x) + yu(x) = e2(x) + u(x) on Γ.

(7.1)

We fix the following data: Ω = (0, 1)2, µ = 1, c(x1, x2) = 1 + x2
1 − x2

2, ey(x1, x2) = 1,
yΩ(x1, x2) = x2

1 + x1x2, e1(x1, x2) = −2 + (1 + x2
1 − x2

2)(1 + 2x2
1 + x1x2 − x2

2),

eu(x1, x2) =























−1 − x3
1 on Γ1

−1 − min

{

8(x2 − 0.5)2 + 0.58,
1 − 16x2(x2 − y∗

1)(x2 − y∗
2)(x2 − 1)

}

on Γ2

−1 − x2
1 on Γ3

−1 + x2(1 − x2) on Γ4

and

e2(x1, x2) =















1 − x1 + 2x2
1 − x3

1 on Γ1

7 + 2x2 − x2
2 − min{8(x2 − .5)2 + .58, 1} on Γ2

−2 + 2x1 + x2
1 on Γ3

1 − x2 − x2
2 on Γ4,

where Γ1 to Γ4 are the four sides of the square, starting at the bottom side and going
counterclockwise,

y∗
1 = 0.5 −

√
21

20
and y∗

2 = 0.5 +

√
21

20
.

This problem has the following solution (ȳ, ū) with adjoint state ϕ̄: ȳ(x) = 1 + 2x2
1 +

x1x2 − x2
2, ϕ̄(x1, x2) = 1 and

ū(x1, x2) =















x3
1 on Γ1

min{8(x2 − .5)2 + .58, 1} on Γ2

x2
1 on Γ3

0 on Γ4.

It is not difficult to check that the state equation (7.1) is satisfied by (ȳ, ū). So is the
adjoint equation

{

−∆ϕ̄(x) + c(x)ϕ̄(x) = ȳ(x) − yΩ(x) in Ω
∂νϕ̄(x) + ϕ̄(x) = ey on Γ.
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Fig. 7.1. solid: ū(x1, x2), dashed: d̄(x1, x2)

In example (E1)

d̄(x) = ϕ̄(x) + eu(x) + ū(x) =















0 on Γ1

min{0, 16x2(x2 − y∗
1)(x2 − y∗

2)(x2 − 1)} on Γ2

0 on Γ3

x2(1 − x2) on Γ4,

and it satisfies the relations (3.9) (see figure 7.1), so the first order necessary condition
(3.8) is fulfilled. Since (E1) is a convex problem, this condition is also sufficient for
(ȳ, ū) to be global minimum.

Observe that the control attains its constraints on Γ2 at the points (1, y∗
1) and

(1, y∗
2) which are not going to be node points of the control mesh (unless we force it

or we have a lot of luck, which would not be natural).

Test 1.

h ‖ȳ − ȳh‖L2(Ω) |ȳ − ȳh|H1(Ω) ‖ū − ūh‖L2(Γ) ‖ū − ūh‖L∞(Γ)

2−4 5.3e − 04 7.3e − 02 8.5e − 03 4.1e − 02
2−5 1.3e − 04 3.6e − 02 3.0e − 03 1.5e − 02
2−6 3.4e − 05 1.8e − 02 1.1e − 03 1.1e − 02
2−7 8.0e − 06 9.0e − 03 3.7e − 04 3.8e − 03
2−8 2.1e − 06 4.5e − 03 1.4e − 04 2.7e − 03

The orders of convergence obtained are h2 for ‖ȳ − ȳh‖L2(Ω), h for the seminorm
|ȳ−ȳh|H1(Ω), h1.5 for the L2(Γ) norm of the control and h for the L∞(Γ) norm. Notice,
nevertheless, that in the last column when we divide h by 2, the error is not divided
into two, but when we divide h by 4 the error is divided into 4. For the subsequences
corresponding to values of h even and odd powers of 1/2, ‖ū − ūh‖L∞(Γ) ≤ 0.5h for

h = 2−2k+1 and ‖ū − ūh‖L∞(Γ) ≤ 0.7h. for h = 2−2k.
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7.2. Semilinear example. Let us next consider the problem

(E2)



































min J(u) =
1

2

∫

Ω

(yu(x) − yΩ(x))2dx +
µ

2

∫

Γ

u(x)2dσ(x)+

+

∫

Γ

eu(x)u(x)dσ(x) +

∫

Γ

ey(x)yu(x)dσ(x)

subject to (yu, u) ∈ H1(Ω) × L∞(Ω),
u ∈ Uad = {u ∈ L∞(Ω) | 0 ≤ u(x) ≤ 1 a.e. x ∈ Γ},
(yu, u) satisfying the semilinear state equation (7.2)

{

−∆yu(x) + c(x)yu(x) = e1(x) in Ω
∂νyu(x) + yu(x) = e2(x) + u(x) − y(x)|y(x)| on Γ.

(7.2)

The term y|y| stands for y2 that does not satisfy the assumptions on monotonicity
required for our current work. However, in our computations negative values of y
never occured so that in fact y2 was used. This also assures that locally assumption
(A4) is satisfied.

We fix: Ω = (0, 1)2, µ = 1, c(x1, x2) = x2
2 + x1x2, ey(x1, x2) = −3 − 2x2

1 − 2x1x2,
yΩ(x1, x2) = 1 + (x1 + x2)2, e1(x1, x2) = −2 + (1 + x2

1 + x1x2)(x2
2 + x1x2),

eu(x1, x2) =























1 − x3
1 on Γ1

1 − min

{

8(x2 − 0.5)2 + 0.58,
1 − 16x2(x2 − y∗

1)(x2 − y∗
2)(x2 − 1)

}

on Γ2

1 − x2
1 on Γ3

1 + x2(1 − x2) on Γ4

and

e2(x1, x2) =















2 − x1 + 3x2
1 − x3

1 + x4
1 on Γ1

8 + 6x2 + x2
2 − min{8(x2 − .5)2 + .58, 1} on Γ2

2 + 4x1 + 3x2
1 + 2x3

1 + x4
1 on Γ3

2 − x2 on Γ4.

This problem has the following solution (ȳ, ū) with adjoint state ϕ̄: ȳ(x) = 1 +
2x2

1 + x1x2, ϕ̄(x1, x2) = −1 and ū is the same as in example (E1). Again d̄(x) =
ϕ̄(x) + eu(x) + ū(x), which is also the same as in example (E1) and satisfies relation
(3.9) so that the first order necessary condition (3.8) is fulfilled. The second derivative
of J(ū) is, according to (3.4),

J ′′(ū)v2 =

∫

Ω

zv(x)2dx +

∫

Γ

v(x)2dσ(x) +

∫

Γ

(−2)sign(ȳ(x))ϕ̄(x)zv(x)2dσ(x),

where zv is given by equation (3.1). Since ϕ̄(x) ≤ 0 and ȳ(x) ≥ 0, clearly J ′′(ū)v2 ≥
‖v‖2

L2(Γ) holds. Therefore the second order sufficient conditions are fulfilled.
The tests show the same orders of convergence as for the linear example.

Test 2.

h ‖ȳ − ȳh‖L2(Ω) |ȳ − ȳh‖H1(Ω) ‖ū − ūh‖L2(Γ) ‖ū − ūh‖L∞(Γ)

2−4 2.6e − 04 3.5e − 02 8.5e − 03 4.1e − 02
2−5 7.0e − 05 1.8e − 02 3.0e − 03 1.5e − 02
2−6 1.6e − 05 8.8e − 03 1.1e − 03 1.1e − 02
2−7 4.3e − 06 4.4e − 03 3.8e − 04 3.8e − 03
2−8 1e − 06 2.2e − 03 1.4e − 04 2.7e − 03
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8. Appendix. Proof of estimate (4.3). To simplify the notation, we will drop
the subindex u in this reasoning and we will make it only for the state. Let us define

A(x) =







a0(x, y(x)) − a0(x, yh(x))

y(x) − yh(x)
if y(x) − yh(x) 6= 0

0 otherwise

and

B(x) =







b0(x, y(x)) − b0(x, yh(x))

y(x) − yh(x)
if y(x) − yh(x) 6= 0

0 otherwise.

Notice that A(x) ≤ 0 for a.e. x ∈ Ω and B(x) ≤ 0 for a.e. x ∈ Γ, and due to (A5)
either A(x) < 0 or B(x) < 0 on a subset of positive measure of Ω or Γ.

For every g ∈ L2(Γ) there exists a unique φ ∈ H3/2(Ω) (see [10]) solution of

∫

Ω

∇z(x)∇φ(x) dx =

∫

Ω

A(x)φ(x)z(x) dx +

∫

Γ

B(x)φ(x)z(x) dσ(x)+

∫

Γ

g(x)z(x) dσ(x) ∀z ∈ H1(Ω)

and there exists C > 0 such that ‖φ‖H3/2(Ω) ≤ C‖g‖L2(Γ).
There exists also a unique φh ∈ Yh solution of

∫

Ω

∇zh(x)∇φh(x) dx =

∫

Ω

A(x)φh(x)zh(x) dx +

∫

Γ

B(x)φh(x)zh(x) dσ(x)+

∫

Γ

g(x)zh(x) dσ(x) ∀zh ∈ Yh

and ‖φ − φh‖H1(Ω) ≤ Ch1/2‖φ‖H3/2(Ω). (See [2, Theorem (12.3.5)].)

Take g ∈ L2(Γ) with ‖g‖L2(Γ) = 1 and denote M = max{‖y‖C(Ω̄), ‖yh‖C(Ω̄)}.
Now apply the equation satisfied by φ, introduce φh, apply the equations satisfied by
y and yh, the definition of A and B, assumptions on a0, b0, Hölders inequality and
the trace theorem to get

∫

Γ

g(x)(y(x) − yh(x)) dσ(x) =

∫

Ω

∇(y(x) − yh(x))∇φ(x) dx−

∫

Ω

A(x)φ(x)(y(x) − yh(x)) dx −
∫

Γ

B(x)φ(x)(y(x) − yh(x)) dσ(x) =

=

∫

Ω

∇(y(x) − yh(x))∇(φ(x) − φh(x)) dx +

∫

Ω

∇(y(x) − yh(x))∇φh(x) dx−

∫

Ω

A(x)φ(x)(y(x) − yh(x)) dx −
∫

Γ

B(x)φ(x)(y(x) − yh(x)) dσ(x) =
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=

∫

Ω

∇(y(x) − yh(x))∇(φ(x) − φh(x)) dx +

∫

Ω

(a0(x, y(x)) − a0(x, yh(x)))φh(x) dx+

∫

Γ

(b0(x, y(x)) − b0(x, yh(x)))φh(x) dσ(x)−

∫

Ω

A(x)φ(x)(y(x) − yh(x)) dx −
∫

Γ

B(x)φ(x)(y(x) − yh(x)) dσ(x) =

=

∫

Ω

∇(y(x) − yh(x))∇(φ(x) − φh(x)) dx+

∫

Ω

(a0(x, y(x)) − a0(x, yh(x)))(φh(x) − φ(x)) dx+

∫

Γ

(b0(x, y(x)) − b0(x, yh(x)))(φh(x) − φ(x)) dσ(x) ≤

‖y − yh‖H1(Ω)‖φ − φh‖H1(Ω) +

∫

Ω

Ca0,M |y(x)) − yh(x)| |φh(x) − φ(x)| dx+

∫

Γ

Cb0,M |y(x)) − yh(x)| |φh(x) − φ(x)| dσ(x) ≤

‖y − yh‖H1(Ω)‖φ − φh‖H1(Ω) + Ca0,M‖y − yh‖L2(Ω)‖φh − φ‖L2(Ω)+

Cb0,M‖y − yh‖L2(Γ)‖φh − φ‖L2(Γ) ≤ ‖y − yh‖H1(Ω)‖φ − φh‖H1(Ω) ≤

Ch‖y‖H2(Ω)h
1/2‖φ‖H3/2(Ω) ≤ Ch3/2(‖u‖H1/2(Γ) + 1)‖g‖L2(Γ).

Taking into account that ‖g‖L2(Γ) = 1, we can write that

‖y − yh‖L2(Ω) = sup
‖g‖L2(Γ)=1

∫

Γ

g(x)(y(x) − yh(x)) dσ(x) ≤ Ch3/2(‖u‖H1/2(Γ) + 1).
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ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION
OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR

ELLIPTIC EQUATIONS ∗

EDUARDO CASAS† AND JEAN-PIERRE RAYMOND‡

Abstract. We study the numerical approximation of boundary optimal control problems gov-
erned by semilinear elliptic partial differential equations with pointwise constraints on the control.
The control is the trace of the state on the boundary of the domain, which is assumed to be a convex,

polygonal, open set in R
2
. Piecewise linear finite elements are used to approximate the control as

well as the state. We prove that the error estimates are of order O(h1−1/p) for some p > 2, which is
consistent with the W 1−1/p,p(Γ)-regularity of the optimal control.

Key words. Dirichlet control, semilinear elliptic equation, numerical approximation, error
estimates

AMS subject classifications. 65N30, 65N15, 49M05, 49M25

1. Introduction. In this paper we study an optimal control problem governed
by a semilinear elliptic equation. The control is the Dirichlet datum on the boundary
of the domain. Bound constraints are imposed on the control and the cost functional
involves the control in a quadratic form, and the state in a general way. The goal is
to derive error estimates for the discretization of the control problem.

There is not many papers devoted to the derivation of error estimates for the
discretization of control problems governed by partial differential equations; see the
pioneer works by Falk [19] and Geveci [21]. However recently some papers have
appeared providing new methods and ideas. Arada et al. [1] derived error estimates for
the controls in the L∞ and L2 norms for distributed control problems. Similar results
for an analogous problem, but also including integral state constraints, were obtained
by Casas [8]. The case of a Neumann boundary control problem has been studied by
Casas et al. [11]. The novelty of our paper with respect to the previous ones is double.
First of all, here we deal with a Dirichlet problem, the control being the value of the
state on the boundary. Second we consider piecewise linear continuous functions to
approximate the optimal control, which is necessary because of the Dirichlet nature
of the control, but it introduces some new difficulties. In the previous papers the
controls were always approximated by piecewise constant functions. In the present
situation we have developed new methods, which can be used in the framework of
distributed or Neumann controls to consider piecewise linear approximations. This
could lead to better error estimates than those ones deduced for piecewise controls.

As far as we know there is another paper dealing with the numerical approxima-
tion of a Dirichlet control problem of Navier-Stokes equations by Gunzburger, Hou
and Svobodny [23]. Their procedure of proof does not work when the controls are
subject to bound constraints, as considered in our problem. To deal with this diffi-
culty we assume that sufficient second order optimality conditions are satisfied. We
also see that the gap between the necessary and sufficient optimality conditions of
second order is very narrow, the same as in finite dimension.

∗The first author was supported by Ministerio de Educación y Ciencia (Spain)
†Dpto. de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Tele-

comunicación, Universidad de Cantabria, 39071 Santander, Spain, e-mail: eduardo.casas@unican.es
‡Laboratoire MIP, UMR CNRS 5640, Université Paul Sabatier, 31062 Toulouse Cedex 4, France,

e-mail: raymond@mip.ups-tlse.fr
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2 E. CASAS AND J.-P. RAYMOND

Let us mention some recent papers providing some new ideas to derive optimal
error estimates. Hinze [26] suggested to discretize the state equation but not the
control space. In some cases, including the case of semilinear equations, it is possible
to solve the non completely discretized problem in the computer. However we believe
there is no advantages of this process for our problem because the discretization of
the states forces the discretization of the controls. Another idea, due to Meyer and
Rösch [33], works for linear-quadratic control problems in the distributed case, but
we do not know if it is possible to adapt it to the general case.

In the case of parabolic problems the theory is far from being complete, but some
research has been carried out; see Knowles [27], Lasiecka [28], [29], McKnight and
Bosarge [32], Tiba and Tröltzsch [36] and Tröltzsch [38], [39], [40], [41].

In the context of control problems of ordinary differential equations a great work
has been done by Hager [24], [25] and Dontchev and Hager [16], [17]; see also the work
by Malanowski et al. [31]. The reader is also referred to the detailed bibliography in
[17].

The plan of the paper is as follows. In §2 we set the optimal control problem
and we establish the results we need for the state equation. In §3 we write the first
and second order optimality conditions. The first order conditions allow to deduce
some regularity results of the optimal control, which are necessary to derive the error
estimates of the discretization. The second order conditions are also essential to
prove the error estimates. The discrete optimal control problem is formulated in §4
and the first order optimality conditions are given. To write these conditions we
have defined a discrete normal derivative for piecewise linear functions which are
solutions of some discrete equation. Sections §6 and §7 are devoted to the analysis
of the convergence of the solutions of the discrete optimal control problems and to
the proof of error estimates. The main result is Theorem 7.1, where we establish
‖ū− ūh‖L2(Γ) = O(h1−1/p).

The numerical tests we have performed confirm our theoretical estimates. For a
detailed report we refer to [12]. A simple example is reported in §8.

2. The Control Problem. Throughout this paper, Ω denotes an open convex
bounded polygonal set of R

2 and Γ its boundary. In this domain we formulate the
following control problem

(P)























inf J(u) =

∫

Ω

L(x, yu(x)) dx +
N

2

∫

Γ

u2(x) dx

subject to (yu, u) ∈ L∞(Ω) × L∞(Γ),

u ∈ Uad = {u ∈ L∞(Γ) | α ≤ u(x) ≤ β a.e. x ∈ Γ},
(yu, u) satisfying the state equation (2.1),

−∆yu(x) = f(x, yu(x)) in Ω, yu(x) = u(x) on Γ, (2.1)

where −∞ < α < β < +∞ and N > 0. Here u is the control while yu is the
associated state. The following hypotheses are assumed about the functions involved
in the control problem (P).

(A1) The function L : Ω×R −→ R is measurable with respect to the first component,
of class C2 with respect to the second one, L(·, 0) ∈ L1(Ω) and for all M > 0 there
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exist a function ψL,M ∈ Lp̄(Ω) (p̄ > 2) and a constant CL,M > 0 such that

∣

∣

∣

∣

∂L

∂y
(x, y)

∣

∣

∣

∣

≤ ψL,M (x),

∣

∣

∣

∣

∂2L

∂y2
(x, y)

∣

∣

∣

∣

≤ CL,M ,

∣

∣

∣

∣

∂2L

∂y2
(x, y2) −

∂2L

∂y2
(x, y1)

∣

∣

∣

∣

≤ CL,M |y2 − y1|,

for a.e. x ∈ Ω and |y|, |yi| ≤M , i = 1, 2.

(A2) The function f : Ω × R −→ R is measurable with respect to the first variable
and of class C2 with respect to the second one,

f(·, 0) ∈ Lp̄(Ω) (p̄ > 2),
∂f

∂y
(x, y) ≤ 0 a.e. x ∈ Ω and y ∈ R.

For all M > 0 there exists a constant Cf,M > 0 such that

∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2f

∂y2
(x, y)

∣

∣

∣

∣

≤ Cf,M a.e. x ∈ Ω and |y| ≤M,

∣

∣

∣

∣

∂2f

∂y2
(x, y2) −

∂2f

∂y2
(x, y1)

∣

∣

∣

∣

< Cf,M |y2 − y1| a.e. x ∈ Ω and |y1|, |y2| ≤M.

Let us finish this section by proving that problem (P) is well defined. We will say
that an element yu ∈ L∞(Ω) is a solution of (2.1) if

∫

Ω

−∆w y dx =

∫

Ω

f(x, y(x))w(x)dx −
∫

Γ

u(x)∂νw(x)dx ∀w ∈ H2(Ω) ∩H1
0 (Ω),

(2.2)
where ∂ν denotes the normal derivative on the boundary Γ. This is the classical
definition in the transposition sense. To study equation (2.1), we state an estimate
for the linear equation

−∆z(x) = b(x)z(x) in Ω, z(x) = u(x) on Γ, (2.3)

where b is a nonpositive function belonging to L∞(Ω).
Lemma 2.1. For every u ∈ L∞(Γ) the linear equation (2.3) has a unique solution

z ∈ L∞(Ω) (defined in the transposition sense), and it satisfies

‖z‖L2(Ω) ≤ C‖u‖H−1/2(Γ), ‖z‖H1/2(Ω) ≤ C‖u‖L2(Γ) and ‖z‖L∞(Ω) ≤ ‖u‖L∞(Γ).
(2.4)

The proof is standard, the first inequality is obtained by using the transposition
method, see J.L. Lions and E. Magenes [30]; the second inequality is deduced by
interpolation and the last one is obtained by applying the maximum principle.

Theorem 2.2. For every u ∈ L∞(Γ) the state equation (2.1) has a unique
solution yu ∈ L∞(Ω) ∩H1/2(Ω). Moreover the following Lipschitz properties hold

‖yu − yv‖L∞(Ω) ≤ ‖u− v‖L∞(Γ)

‖yu − yv‖H1/2(Ω) ≤ C‖u− v‖L2(Γ) ∀u, v ∈ L∞(Γ).
(2.5)

Finally if un ⇀ u weakly⋆ in L∞(Γ), then yun → yu strongly in Lr(Ω) for all r <
+∞.
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Proof. Let us introduce the following problems

−∆z = 0 in Ω, z = u on Γ, (2.6)

and

−∆ζ = g(x, ζ) in Ω, ζ = 0 on Γ, (2.7)

where g : Ω × R 7→ R is given by g(x, t) = f(x, z(x) + t), z being the solution of
(2.6). Lemma 2.1 implies that (2.6) has a unique solution in L∞(Ω) ∩ H1/2(Ω). It
is obvious that Assumption (A2) is fulfilled by g and (2.7) is a classical well set
problem having a unique solution in H1

0 (Ω) ∩ L∞(Ω). Moreover, since Ω is convex,
we know that ζ ∈ H2(Ω); see Grisvard [22]. Finally the solution yu of (2.1) can
be written as yu = z + ζ. Estimates (2.5) follow from Lemma 2.1; see Arada and
Raymond [2] for a detailed proof in the parabolic case. The continuous dependence in
Lr(Ω) follows in a standard way by using (2.5) and the compactness of the inclusion
H1/2(Ω) ⊂ L2(Ω) along with the fact that {yun} is bounded in L∞(Ω) as deduced
from the first inequality of (2.5).

Now the following theorem can be proved by standard arguments.
Theorem 2.3. Problem (P) has at least one solution.

3. Optimality Conditions. Before writing the optimality conditions for (P)
let us state the differentiability properties of J .

Theorem 3.1. The mapping G : L∞(Γ) −→ L∞(Ω)∩H1/2(Ω) defined by G(u) =
yu is of class C2. Moreover, for all u, v ∈ L∞(Γ), zv = G′(u)v is the solution of

−∆zv =
∂f

∂y
(x, yu)zv in Ω, zv = v on Γ, (3.1)

and for every v1, v2 ∈ L∞(Ω), zv1v2
= G′′(u)v1v2 is the solution of







−∆zv1v2
=

∂f

∂y
(x, yu)zv1v2

+
∂2f

∂y2
(x, yu)zv1

zv2
in Ω,

zv1v2
= 0 on Γ,

(3.2)

where zvi = G′(u)vi, i = 1, 2.
Proof. Let us define the space

V = {y ∈ H1/2(Ω) ∩ L∞(Ω) : ∆y ∈ L2(Ω)}

endowed with the natural graph norm. Now we consider the function F : L∞(Γ) ×
V −→ L∞(Γ)×L2(Ω) defined by F (u, y) = (y|Γ − u,∆y+ f(x, y)). It is obvious that
F is of class C2 and that for every pair (u, y) satisfying (2.1) we have F (u, y) = (0, 0).
Furthermore

∂F

∂y
(u, y) · z =

(

z|Γ,∆z +
∂f

∂y
(x, y)z

)

.

By using Lemma 2.1 we deduce that (∂F/∂y)(u, y) : V −→ L∞(Γ) × L2(Ω) is an
isomorphism. Then the Implicit Function Theorem allows us to conclude that G is of
class C2 and now the rest of the theorem follows easily.

Theorem 3.1 along with the chain rule lead to the following result.
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Theorem 3.2. The functional J : L∞(Γ) → R is of class C2. Moreover, for
every u, v, v1, v2 ∈ L∞(Γ)

J ′(u)v =

∫

Γ

(Nu− ∂νφu) v dx (3.3)

and

J ′′(u)v1v2 =

∫

Ω

[

∂2L

∂y2
(x, yu)zv1

zv2
+ φu

∂2f

∂y2
(x, yu)zv1

zv2

]

dx+

∫

Γ

Nv1v2 dx,

(3.4)
where zvi = G′(u)vi, i = 1, 2, yu = G(u), and the adjoint state φu ∈ H2(Ω) is the
unique solution of the problem

−∆φ =
∂f

∂y
(x, yu)φ+

∂L

∂y
(x, yu) in Ω, φ = 0 on Γ. (3.5)

The first order optimality conditions for Problem (P) follow readily from Theorem
3.2.

Theorem 3.3. Assume that ū is a local solution of Problem (P) and let ȳ be the
corresponding state. Then there exists φ̄ ∈ H2(Ω) such that

−∆φ̄ =
∂f

∂y
(x, ȳ)φ̄+

∂L

∂y
(x, ȳ) in Ω, φ̄ = 0 on Γ, (3.6)

and
∫

Γ

(

Nū− ∂ν φ̄
)

(u− ū) dx ≥ 0 ∀u ∈ Uad, (3.7)

which is equivalent to

ū(x) = Proj[α,β]

( 1

N
∂ν φ̄(x)

)

= max
{

α,min
{

β,
1

N
∂ν φ̄(x)

}}

. (3.8)

Theorem 3.4. Assume that ū is a local solution of Problem (P) and let ȳ and
φ̄ be the corresponding state and adjoint state. Then there exists p ∈ (2, p̄] (p̄ > 2
introduced in assumptions (A1) and (A2)) depending on the measure of the angles of
the polygon Ω such that ȳ ∈W 1,p(Ω), φ̄ ∈W 2,p(Ω) and ū ∈ W 1−1/p,p(Γ) ⊂ C(Γ).

Proof. From assumption (A1) and using elliptic regularity results it follows that
φ̄ belongs to W 2,p(Ω) for some p ∈ (2, p̄] depending on the measure of the angles of
Γ; see Grisvard [22, Chapter 4]. To prove that ū belongs to W 1−1/p,p(Γ) we recall the
norm in this space

‖ū‖W 1−1/p,p(Γ) =

{
∫

Γ

|ū(x)|pdx+

∫

Γ

∫

Γ

|ū(x) − ū(ξ)|p
|x− ξ|p dx dξ

}1/p

,

where we have used the fact that Ω ⊂ R
2. Now it is enough to take into account that

∂ν φ̄ ∈W 1−1/p,p(Γ), the relation (3.8) and

∣

∣

∣

∣

Proj[α,β]

( 1

N
∂ν φ̄(x)

)

− Proj[α,β]

( 1

N
∂ν φ̄(ξ)

)

∣

∣

∣

∣

≤ 1

N
|∂ν φ̄(x) − ∂ν φ̄(ξ)|,
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to deduce that the integrals in the above norm are finite.
Finally, decomposing (2.1) into two problems as in the proof of Theorem 2.3, we

get that ȳ = z̄ + ζ̄, with ζ̄ ∈ H2(Ω) and z̄ ∈W 1,p(Ω), which completes the proof.
In order to establish the second order optimality conditions we define the cone of

critical directions

Cū = {v ∈ L2(Γ) satisfying (3.9) and v(x) = 0 if |d̄(x)| > 0},

v(x) =

{

≥ 0 where ū(x) = α,
≤ 0 where ū(x) = β,

for a.e. x ∈ Γ, (3.9)

where d̄ denotes the derivative J ′(ū)

d̄(x) = Nū(x) − ∂ν φ̄(x). (3.10)

Now we formulate the second order necessary and sufficient optimality conditions.
Theorem 3.5. If ū is a local solution of (P), then J ′′(ū)v2 ≥ 0 holds for all

v ∈ Cū. Conversely, if ū ∈ Uad satisfies the first order optimality conditions provided
by Theorem 3.3 and the coercivity condition

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, (3.11)

then there exist µ > 0 and ε > 0 such that J(u) ≥ J(ū) + µ‖u − ū‖2
L2(Γ) is satisfied

for every u ∈ Uad obeying ‖u− ū‖L∞(Ω) ≤ ε.
The necessary condition provided in the theorem is quite easy to get. The suf-

ficient conditions are proved by Casas and Mateos [9, Theorem 4.3] for distributed
control problems with integral state constraints. The proof can be translated in a
straightforward way to the case of boundary controls; see also Bonnans and Zidani
[4].

Remark 3.6. It can be proved (see Casas and Mateos [9, Theorem 4.4]) that the
following two conditions are equivalent:

(1) J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}.

(2) There exist δ > 0 and τ > 0 such that J ′′(ū)v2 ≥ δ‖v‖2
L2(Γ) for every v ∈ Cτ

ū ,
where

Cτ
ū = {v ∈ L2(Γ) satisfying (3.9) and v(x) = 0 if |d̄(x)| > τ}.

It is clear that Cτ
ū contains strictly Cū, so the condition (2) seems to be stronger than

(1), but in fact they are equivalent. For the proof of this equivalence it is used the fact
that u appears linearly in the state equation and quadratically in the cost functional.

4. Numerical Approximation of (P). Let us consider a family of triangu-
lations {Th}h>0 of Ω̄: Ω̄ = ∪T∈Th

T . With each element T ∈ Th, we associate two
parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of the set T and σ(T )
is the diameter of the largest ball contained in T . Let us define the size of the mesh

by h = maxT∈Th
ρ(T ). For fixed h > 0, we denote by {Tj}N(h)

j=1 the family of trian-

gles of Th with a side on the boundary of Γ. If the vertices of Tj ∩ Γ are xj
Γ and

xj+1
Γ then [xj

Γ, x
j+1
Γ ] := Tj ∩ Γ, 1 ≤ j ≤ N(h), with x

N(h)+1
Γ = x1

Γ. We will also
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follow the notation x0
Γ = x

N(h)
Γ . We assume that every vertex of the polygon Ω is

one of these boundary points xj
Γ of the triangulation and the numbering of the nodes

{xj
Γ}

N(h)
j=1 is made counterclockwise. The length of the interval [xj

Γ, x
j+1
Γ ] is denoted

by hj = |xj+1
Γ −xj

Γ|. The following hypotheses on the triangulation are also assumed.

(H1) - There exists a constant ρ > 0 such that h/ρ(T ) ≤ ρ for all T ∈ Th and h > 0.

(H2) - All the angles of all triangles are less than or equal to π/2.

The first assumption is not a restriction in practice and it is the usual one. The
second assumption is going to allow us to use the discrete maximum principle and it
is actually not too restrictive.

Given two points ξ1 and ξ2 of Γ, we denote by [ξ1, ξ2] the part of Γ obtained by
running the boundary from ξ1 to ξ2 counterclockwise. With this convention we have
(ξ2, ξ1) = Γ \ [ξ1, ξ2]. According to this notation

∫ ξ2

ξ1

u(x) dx and

∫ ξ1

ξ2

u(x) dx

denote the integrals of a function u ∈ L1(Γ) on the parts of Γ defined by [ξ1, ξ2] and
[ξ2, ξ1] respectively. In particular we have

∫ ξ2

ξ1

u(x) dx =

∫

Γ

u(x) dx −
∫ ξ1

ξ2

u(x) dx.

Associated with this triangulation we set

Uh =
{

uh ∈ C(Γ) : uh|[xj
Γ
,xj+1

Γ
] ∈ P1, for 1 ≤ j ≤ N(h)

}

,

Yh =
{

yh ∈ C(Ω̄) : yh|T ∈ P1, for all T ∈ Th

}

,

Yh0 =
{

yh ∈ Yh : yh|Γ = 0
}

,

where P1 is the space of polynomials of degree less than or equal to 1. The space Uh

is formed by the restrictions to Γ of the functions of Yh.
Let us consider the projection operator Πh : L2(Γ) 7−→ Uh

(Πhv, uh)L2(Γ) = (v, uh)L2(Γ) ∀uh ∈ Uh.

The following approximation property of Πh is well known (see for instance [20,
Lemma 3.1])

‖y − Πhy‖L2(Γ) + h1/2‖y − Πhy‖H1/2(Γ) ≤ Chs−1/2‖y‖Hs(Ω) ∀y ∈ Hs(Ω)

and for every 1 ≤ s ≤ 2. Observing that, for 1/2 < s ≤ 3/2,

u 7−→ inf
y|Γ=u

‖y‖Hs(Ω)

is a norm equivalent to the usual one of Hs−1/2(Γ), we deduce from the above in-
equality

‖u− Πhu‖L2(Γ) + h1/2‖u− Πhu‖H1/2(Γ) ≤ Chs‖u‖Hs(Γ) ∀u ∈ Hs(Γ) (4.1)
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and for every 1/2 < s ≤ 3/2.
Let a : Yh × Yh 7−→ R be the bilinear form given by

a(yh, zh) =

∫

Ω

∇yh(x)∇zh(x) dx.

For all u ∈ L∞(Γ), we consider the problem






Find yh(u) ∈ Yh such that yh = Πhu on Γ, and

a(yh(u), wh) =

∫

Ω

f(x, yh(u))wh dx ∀wh ∈ Yh0,
(4.2)

Proposition 4.1. For every u ∈ L∞(Γ), the equation (4.2) admits a unique
solution yh(u).

Proof. Let zh be the unique element in Yh satisfying zh = Πhu on Γ, and zh(xi) =
0 for all vertex xi of the triangulation Th not belonging to Γ. The equation

ζh ∈ Yh0, a(ζh, wh) = −a(zh, wh) +

∫

Ω

f(x, zh + ζh)wh dx ∀wh ∈ Yh0,

admits a unique solution (it is a consequence of the Minty-Browder Theorem [7]). The
function zh + ζh is clearly a solution of equation (4.2). The uniqueness of solution to
equation (4.2) also follows from the Minty-Browder Theorem.

Due to Proposition 4.1, we can define a functional Jh in L∞(Γ) by:

Jh(u) =

∫

Ω

L(x, yh(u)(x)) dx +
N

2

∫

Γ

u2(x) dx.

The finite dimensional control problem approximating (P) is

(Ph)











min Jh(uh) =

∫

Ω

L(x, yh(uh)(x)) dx +
N

2

∫

Γ

u2
h(x) dx,

subject to uh ∈ Uad
h ,

where

Uad
h = Uh ∩ Uad = {uh ∈ Uh | α ≤ uh(x) ≤ β for all x ∈ Γ}.

The existence of a solution of (Ph) follows from the continuity of Jh in Uh and
the fact that Uad

h is a nonempty compact subset of Uh. Our next goal is to write the
conditions for optimality satisfied by any local solution ūh. First we have to obtain
an expression for the derivative of Jh : L∞(Γ) → R analogous to the one of J given
by the formula (3.3). Given u ∈ L∞(Γ) we consider the adjoint state φh(u) ∈ Yh0

solution of the equation

a(wh, φh(u)) =

∫

Ω

[

∂f

∂y
(x, yh(u))φh(u) +

∂L

∂y
(x, yh(u))

]

wh dx ∀wh ∈ Yh0. (4.3)

To obtain the analogous expression to (3.3) we have to define a discrete normal deriv-
ative ∂h

νφh(u).
Proposition 4.2. Let u belong to L∞(Γ) and let φh(u) be the solution of equation

4.3. There exists a unique element ∂h
νφh(u) ∈ Uh verifying

(∂h
νφh(u), wh)L2(Γ) = a(wh, φh(u))

−
∫

Ω

[

∂f

∂y
(x, yh(u))φh(u) +

∂L

∂y
(x, yh(u))

]

wh dx ∀wh ∈ Yh.
(4.4)
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Proof. The trace mapping is a surjective mapping from Yh on Uh, therefore the
linear form

L(wh) = a(wh, φh(u)) −
∫

Ω

[

∂f

∂y
(x, yh(u))φh(u) +

∂L

∂y
(x, yh(u))

]

wh dx

is well defined on Uh, and it is continuous on Uh. Let us remark that if in (4.4) the
trace of wh on Γ is zero, then (4.3) leads to

L(wh) = 0.

Hence L can be identified with a unique element of Uh, which proves the above
proposition.

Now the function G introduced in Theorem 3.1 is approximated by the function
Gh : L∞(Γ) 7−→ Yh defined by Gh(u) = yh(u). We can easily verify that Gh is of
class C2, and that for u, v ∈ L∞(Γ), the derivative zh = G′

h(u)v ∈ Yh is the unique
solution of







a(zh, wh) =

∫

Ω

∂f

∂y
(x, yh(u))zhwh dx ∀wh ∈ Yh0,

zh = Πhv on Γ.
(4.5)

From here we deduce

J ′
h(u)v =

∫

Ω

∂L

∂y
(x, yh(u))zh dx+N

∫

Γ

uv dx.

Now (4.4) and the definition of Πh lead to

J ′
h(u)v = N

∫

Γ

uv dx−
∫

Γ

∂h
νφh(u)Πhv dx =

∫

Γ

(Nu − ∂h
νφh(u))v dx, (4.6)

for all u, v ∈ L∞(Γ).
Finally we can write the first order optimality conditions.
Theorem 4.3. Let us assume that ūh is a local solution of (Ph) and ȳh the

corresponding state, then there exists φ̄h ∈ Yh0 such that

a(wh, φ̄h) =

∫

Ω

[

∂f

∂y
(x, ȳh)φ̄h +

∂L

∂y
(x, ȳh)

]

wh dx ∀wh ∈ Yh0, (4.7)

and
∫

Γ

(Nūh − ∂h
ν φ̄h)(uh − ūh) dx ≥ 0 ∀uh ∈ Uad

h . (4.8)

This theorem follows readily from (4.6).
Remark 4.4. The reader could think that a projection property for ūh similar to

that one obtained for ū in (3.8) can be deduced from (4.8). Unfortunately this property
does not hold because uh(x) cannot be taken arbitrarily in [α, β]. Functions uh ∈ Uh

are determined by their values at the nodes {xj
Γ}

N(h)
j=1 . If we consider the basis of Uh

{ej}N(h)
j=1 defined by ej(x

i
Γ) = δij, then we have

uh =

N(h)
∑

j=1

uh,jej , with uh,j = uh(xj
Γ), 1 ≤ j ≤ N(h).
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Now (4.8) can be written

N(h)
∑

j=1

∫

Γ

(Nūh − ∂h
ν φ̄h)ej dx(uh,j − ūh,j) ≥ 0 ∀{uh,j}N(h)

j=1 ⊂ [α, β], (4.9)

where ūh,j = ūh(xj
Γ). Then (4.9) leads to

ūh,j =

{

α if
∫

Γ
(Nūh − ∂h

ν φ̄h)ej dx > 0

β if
∫

Γ(Nūh − ∂h
ν φ̄h)ej dx < 0.

(4.10)

In order to characterize ūh as the projection of ∂h
ν φ̄h/N , let us introduce the

operator Projh : L2(Γ) 7−→ Uad
h as follows. Given u ∈ L2(Γ), Projhu denotes the

unique solution of the problem

inf
vh∈Uad

h

‖u− vh‖L2(Γ),

which is characterized by the relation
∫

Γ

(u(x) − Projhu(x))(vh(x) − Projhu(x)) dx ≤ 0 ∀vh ∈ Uad
h . (4.11)

Then (4.8) is equivalent to

ūh = Projh

( 1

N
∂h

ν φ̄h

)

. (4.12)

Let us recall the result in [13, Lemma 3.3], where a chracteriztation of Projh(uh) is
stated. Given uh ∈ Uh and ūh = Projh(uh), then ūh is characterized by the inequalities

hj−1[(uh,j−1 − ūh,j−1) + 2(uh,j − ūh,j)](t− ūh,j)

+hj [2(uh,j − ūh,j) + (uh,j+1 − ūh,j+1)](t− ūh,j) ≤ 0

for all t ∈ [α, β] and 1 ≤ j ≤ N(h).

5. Numerical Analysis of the State and Adjoint Equations. Throughout
the following the operator Ih ∈ L(W 1,p(Ω), Yh) denotes the classical interpolation
operator [6]. We also need the interpolation operator IΓ

h ∈ L(W 1−1/p,p(Γ), Uh). Since
we have

IΓ
h (y|Γ) = (Ihy)|Γ for all y ∈W 1,p(Ω),

we shall use the same notation for both interpolation operators. The reader can
observe that this abuse of notation does not lead to any confusion.

The goal of this section is to obtain the error estimates of the approximations
yh(u) given by (4.2) to the solution yu of (2.1). In order to carry out this analy-
sis we decompose (2.1) in two problems as in the proof of Theorem 2.3. We take
z ∈ H1/2(Ω) ∩ L∞(Ω) and ζ ∈ H1

0 (Ω) ∩ H2(Ω) as the solutions of (2.6) and (2.7)
respectively. Then we have yu = z + ζ.

Let us consider now the discretizations of (2.6) and (2.7).

{

Find zh ∈ Yh such that zh = Πhu on Γ and
a(zh, wh) = 0 ∀wh ∈ Yh0,

(5.1)
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Find ζh ∈ Yh0 such that

a(ζh, wh) =

∫

Ω

gh(x, ζh(x))wh(x) dx ∀wh ∈ Yh0,
(5.2)

where gh(x, t) = f(x, zh(x) + t). Now the solution yh(u) of (4.2) is decomposed as
follows yh(u) = zh + ζh. The following lemma provides the estimates for z − zh.

Lemma 5.1. Let u ∈ Uad and let z and zh be the solutions of (2.6) and (5.1)
respectively, then

‖zh‖L∞(Ω) ≤ ‖Πhu‖L∞(Γ) ≤ C(α, β) and ‖zh‖W 1,r(Ω) ≤ C‖Πhu‖W 1−1/r,r(Γ),(5.3)

‖zh‖L2(Ω) ≤ C‖Πhu‖H−1/2(Γ), (5.4)

where 1 < r ≤ p is arbitrary, p being given in Theorem 3.4. If in addition u ∈
Hs(Γ) ∩ Uad, with 0 ≤ s ≤ 1, then we also have

‖z − zh‖L2(Ω) ≤ Chs+1/2‖u‖Hs(Γ) ∀h > 0 and 0 ≤ s ≤ 1. (5.5)

Proof. The first inequality of (5.3) is proved in Ciarlet and Raviart [14], we only
have to notice that

‖Πhu‖L∞(Γ) ≤ C‖u‖L∞(Γ) ≤ C(α, β), (5.6)

where C is independent of h and u ∈ Uad; see Douglas et al. [18].
Inequality (5.5) can be found in French and King [20, Lemma 3.3] just taking into

account that

‖z‖Hs+1/2(Ω) ≤ C‖u‖Hs(Γ).

The second inequality of (5.3) is established in Bramble et al. [5, Lemma 3.2] for
r = 2. Let us prove it for all r in the range (1, p]. Let us consider zh ∈ H1(Ω) solution
of the problem

−∆zh = 0 in Ω, zh = Πhu on Γ.

This is a standard Dirichlet problem with the property (see M. Dauge [15])

‖zh‖W 1,r(Ω) ≤ C‖Πhu‖W 1−1/r,r(Γ).

Let us denote by Îh : W 1,r(Ω) 7−→ Yh the generalized interpolation operator due
to Scott and Zhang [35] that preserves piecewise-affine boundary conditions. More
precisely, it has the properties: Îh(yh) = yh for all yh ∈ Yh and Îh(W 1,r

0 (Ω)) ⊂ Yh0.

This properties imply that Îh(zh) = Πhu on Γ. Thus we have

−∆(zh − Îh(zh)) = ∆Îh(zh) in Ω, zh − Îh(zh) = 0 on Γ

and zh − Îh(zh) ∈ Yh0 satisfies

a(zh − Îh(zh), wh) = −a(Îh(zh), wh) ∀wh ∈ Yh0.

Then by using the Lp estimates (see, for instance, Brenner and Scott [6, Theorem
7.5.3]) we get

‖zh − Îh(zh)‖W 1,r(Ω) ≤ C‖zh − Îh(zh)‖W 1,r(Ω)

≤ C(‖zh‖W 1,r(Ω) + ‖Îh(zh)‖W 1,r(Ω)) ≤ C‖zh‖W 1,r(Ω) ≤ C‖Πhu‖W 1−1/r,r(Γ).
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Then we conclude the proof as follows

‖zh‖W 1,r(Ω) ≤ ‖Îh(zh)‖W 1,r(Ω) + ‖zh − Îh(zh)‖W 1,r(Ω) ≤ C‖Πhu‖W 1−1/r,r(Γ).

Finally let us prove (5.4). Using (5.5) with s = 0, (2.4), and an inverse inequality
we get

‖zh‖L2(Ω) ≤ ‖zh − zh‖L2(Ω) + ‖zh‖L2(Ω)

≤ C(h1/2‖Πhu‖L2(Γ) + ‖Πhu‖H−1/2(Γ)) ≤ C‖Πhu‖H−1/2(Γ).

Remark 5.2. The inverse estimate used in the proof

‖u‖L2(Γ) ≤ Ch−1/2‖u‖H−1/2(Γ) for all u ∈ Uh,

can be derived from the well known inverse estimate [3]

‖u‖H1/2(Γ) ≤ Ch−1/2‖u‖L2(Γ) for all u ∈ Uh,

and from the equality

‖u‖2
L2(Γ) = ‖u‖H1/2(Γ)‖u‖H−1/2(Γ).

Now we obtain the estimates for ζ − ζh.
Lemma 5.3. There exist constants Ci = Ci(α, β) > 0 (i = 1, 2) such that, for all

u ∈ Uad ∈ Hs(Γ), the following estimates hold

‖ζh‖L∞(Ω) ≤ C1 ∀h > 0 and s = 0, (5.7)

‖ζ − ζh‖L2(Ω) ≤ C2h
s+1/2(1 + ‖u‖Hs(Γ)) ∀h > 0 and 0 ≤ s ≤ 1, (5.8)

where ζ and ζh are the solutions of (2.7) and (5.2) respectively.
Proof. We are going to introduce an intermediate function ζh ∈ H2(Ω) satisfying

−∆ζh = gh(x, ζh(x)) in Ω, ζh = 0 on Γ. (5.9)

By using classical methods, see for instance Stampacchia [34], we get the boundedness
of ζ and ζh in L∞(Ω) for some constants depending on ‖u‖L∞(Γ) and ‖Πhu‖L∞(Γ),
which are uniformly estimated by a constant only depending on α and β; see (5.6).
On the other hand from (2.7), (5.9) and the assumption (A2) we deduce

C1‖ζ − ζh‖2
H1(Ω) ≤ a(ζ − ζh, ζ − ζh)

=

∫

Ω

[g(x, ζ(x)) − gh(x, ζh(x))](ζ(x) − ζh(x)) dx

=

∫

Ω

[g(x, ζ(x)) − g(x, ζh(x))](ζ(x) − ζh(x)) dx

+

∫

Ω

[g(x, ζh(x)) − gh(x, ζh(x))](ζ(x) − ζh(x)) dx

≤
∫

Ω

[g(x, ζh(x)) − gh(x, ζh(x))](ζ(x) − ζh(x)) dx ≤ C2‖z − zh‖L2(Ω)‖ζ − ζh‖L2(Ω)

≤ C3‖z − zh‖2
L2(Ω) +

C1

2
‖ζ − ζh‖2

L2(Ω).
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This inequality along with (5.5) implies

‖ζ − ζh‖H1(Ω) ≤ Chs+1/2‖u‖Hs(Γ). (5.10)

Thanks to the convexity of Ω, ζh belongs to H2(Ω) (see Grisvard [22]) and

‖ζh‖H2(Ω) ≤ C‖gh(x, ζh)‖L2(Ω) = C(‖u‖L∞(Γ), ‖Πhu‖L∞(Γ)).

Now using the results of Casas and Mateos [10, Lemma 4 and Theorem 1] we deduce
that

‖ζh − ζh‖L2(Ω) ≤ Ch2, (5.11)

‖ζh − ζh‖L∞(Ω) ≤ Ch. (5.12)

Finally (5.8) follows from (5.10) and (5.11), and (5.7) is a consequence of the
boundedness of {ζh}h>0 and (5.12).

Theorem 5.4. There exist constants Ci = Ci(α, β) > 0 (i = 1, 2) such that for
every u ∈ Uad ∩Hs(Γ), with 0 ≤ s ≤ 1, the following inequalities hold

‖yh(u)‖L∞(Ω) ≤ C1 ∀h > 0 and s = 0, (5.13)

‖yu − yh(u)‖L2(Ω) ≤ C2h
s+1/2(1 + ‖u‖Hs(Γ)) ∀h > 0 and 0 ≤ s ≤ 1. (5.14)

Furthermore if uh ⇀ u weakly in L2(Γ), {uh}h>0 ⊂ Uad, then yh(uh) → yu strongly
in Lr(Ω) for every r < +∞.

Proof. Remembering that yu = z + ζ and yh(u) = zh + ζh, (5.3), (5.5), (5.7)
and (5.8) lead readily to the inequalities (5.13) and (5.14). To prove the last part of
theorem it is enough to use Theorem 2.2 and (5.14) with s = 0 as follows

‖yu − yh(uh)‖L2(Ω) ≤ ‖yu − yuh
‖L2(Ω) + ‖yuh

− yh(uh)‖L2(Ω) −→ 0 as h −→ 0.

The convergence in Lr(Ω) follows from (5.13).
Corollary 5.5. There exists a constant C = C(α, β) > 0 such that, for all

u ∈ Uad and v ∈ Uad ∩Hs(Γ), with 0 ≤ s ≤ 1, we have

‖yu − yh(v)‖L2(Ω) ≤ C
{

‖u− v‖L2(Γ) + hs+1/2(1 + ‖v‖Hs(Γ))
}

. (5.15)

This corollary is an immediate consequence of the second estimate in (2.5) and
of (5.14).

Let us finish this section by establishing some estimates for the adjoint states.
Theorem 5.6. Given u, v ∈ Uad, let φu and φh(v) be the solutions of (3.5)

and (4.3) with u replaced by v in the last equation. Then there exist some constants
Ci = Ci(α, β) > 0 (1 ≤ i ≤ 3) such that

‖φh(v)‖L∞(Ω) ≤ C1 ∀h > 0, (5.16)

‖φu − φh(v)‖L2(Ω) ≤ C2(‖u− v‖L2(Γ) + h2), (5.17)

‖φu − φh(v)‖L∞(Ω) + ‖φu − φh(v)‖H1(Ω) ≤ C3(‖u− v‖L2(Γ) + h). (5.18)

Proof. All the inequalities follow from the results of Casas and Mateos [10] just
by taking into account that

‖φu −φh(v)‖X ≤ ‖φu −φv‖X + ‖φv −φh(v)‖X ≤ C(‖yu − yv‖L2(Ω) + ‖φv −φh(v)‖X),
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with X equal to L∞(Ω), L2(Ω) and H1(Ω) respectively.
Now we provide an error estimate for the discrete normal derivative of the adjoint

state defined by Proposition 4.2.
Theorem 5.7. There exists a constant C = C(α, β) > 0 such that the following

estimate holds

‖∂νφu − ∂h
νφh(u)‖L2(Γ) ≤

{

Ch1/2 ∀u ∈ Uad,

C(‖u‖H1/2(Γ) + 1)h1−1/p ∀u ∈ Uad ∩H1/2(Γ).

(5.19)

Proof. First of all let us remind that φu ∈ H2(Ω) and therefore ∂νφu ∈ H1/2(Γ).
Observe that the definition of the projection operator Πh leads to
∫

Γ

∣

∣

∣
∂νφu − ∂h

νφh(u)
∣

∣

∣

2

=

∫

Γ

∣

∣

∣
∂νφu − Πh∂νφu

∣

∣

∣

2

+

∫

Γ

∣

∣

∣
Πh∂νφu − ∂h

νφh(u)
∣

∣

∣

2

= I1 + I2.

Since ∂h
νφh(u) belongs to Uh, we can write

I2 =

∫

Γ

(∂νφu − ∂h
νφh(u))(Πh∂νφu − ∂h

νφh(u)).

Let us introduce zh ∈ Yh as the solution to the variational equation
{

a(zh, wh) = 0 ∀wh ∈ Yh0

zh = Πh∂νφu − ∂h
νφh(u) on Γ.

From (5.3) it follows that

‖zh‖H1(Ω) ≤ C‖Πh∂νφu − ∂h
νφh(u)‖H1/2(Γ). (5.20)

Now using the definition of ∂h
νφh(u) stated in Proposition 4.2 and a Green formula

for φu, we can write

I2 = a(zh, φu − φh(u)) +

∫

Ω

(∂f

∂y
(x, yh(u))φh(u) − ∂f

∂y
(x, yu)φu

)

zh

+

∫

Ω

(∂L

∂y
(x, yh(u)) − ∂L

∂y
(x, yu)

)

zh.

(5.21)

Due to the equation satisfied by zh

a(zh, Ihφu) = a(zh, φh(u)) = 0,

we also have

I2 = a(zh, φu − Ihφu) +

∫

Ω

(∂f

∂y
(x, yh(u)) − ∂f

∂y
(x, yu)

)

φuzh

+

∫

Ω

∂f

∂y
(x, yh(u))(φh(u) − φu)zh +

∫

Ω

(∂L

∂y
(x, yh(u)) − ∂L

∂y
(x, yu)

)

zh.

(5.22)

From well known interpolation estimates, the second inequality of (5.3) and an inverse
inequality it follows that

a(zh, φu − Ihφu) ≤ ‖zh‖W 1,p′(Ω)‖φu − Ihφu‖W 1,p(Ω)

≤ Ch‖φu‖W 2,p(Ω)‖zh|Γ‖W 1−1/p′,p′ (Γ) ≤ Ch‖zh|Γ‖H1−1/p′ (Γ)

≤ Ch1/p′‖zh|Γ‖L2(Γ) = Ch1/p′√
I2,

(5.23)
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where p′ = p/(p− 1).
From assumptions (A1) and (A2) and inequalities (5.13), (5.14) with s = 0,

(5.16) and (5.17), we get

∣

∣

∣

∫

Ω

(∂f

∂y
(x, yh(u)) − ∂f

∂y
(x, yu)

)

φuzh

∣

∣

∣
≤ Ch1/2‖zh‖L2(Ω), (5.24)

∣

∣

∣

∫

Ω

∂f

∂y
(x, yh(u))(φh(u) − φu)zh

∣

∣

∣
≤ C‖φh(u) − φu‖L2(Ω)‖zh‖L2(Ω)

≤ Ch2‖zh‖L2(Ω),

(5.25)

and
∣

∣

∣

∫

Ω

(∂L

∂y
(x, yh(u)) − ∂L

∂y
(x, yu)

)

zh

∣

∣

∣
≤ Ch1/2‖zh‖L2(Ω). (5.26)

Collecting together the estimates (5.23)-(5.26) and using (5.20) and the fact that
p′ < 2, we obtain

I2 ≤ Ch1/p′√
I2 + Ch1/2‖zh‖L2(Ω)

≤ C(h1/p′√
I2 + h1/2‖Πh∂νφu − ∂h

νφh(u)‖L2(Γ)) ≤ Ch1/2
√
I2,

(5.27)

which implies that

I2 ≤ Ch. (5.28)

Using again that φu ∈ W 2,p(Ω), we get that ∂νφu ∈ W 1−1/p,p(Γ) ⊂ H1−1/p(Γ).
Hence from (4.1) with s = 1 − 1/p, we can derive

I1 ≤ Ch‖∂νφu‖2
H1/2(Γ) ≤ Ch‖φu‖2

H2(Ω) ≤ Ch2(1−1/p). (5.29)

So the first estimate in (5.19) is proved.
To complete the proof let us assume that u ∈ H1/2(Γ), then we can use (5.14)

with s = 1/2 to estimate yu − yh(u) in L2(Ω) by Ch. This allows us to change h1/2 in
(5.24) and (5.26) by h. Therefore (5.27) can be replaced by I2 ≤ Ch1/p′

= Ch1−1/p,
thus I2 ≤ Ch2(1−1/p). So the second estimate in (5.19) is proved.

Corollary 5.8. There exists a constant C independent of h such that














‖∂h
νφh(u)‖H1/2(Γ) ≤ C ∀u ∈ Uad,

‖∂h
νφh(u)‖W 1−1/p,p(Γ) ≤ C(‖u‖H1/2(Γ) + 1) ∀u ∈ Uad ∩H1/2(Γ),

‖∂νφu − ∂h
νφh(v)‖L2(Γ) ≤ C

{

‖u− v‖L2(Γ) + hκ
}

∀u, v ∈ Uad,

(5.30)

where κ = 1 − 1/p if v ∈ H1/2(Γ) and κ = 1/2 otherwise.
Proof. Let us make the proof in the case where u ∈ Uad ∩ H1/2(Γ). The case

where u ∈ Uad can be treated similarly. We know that

‖∂νφu‖W 1−1/p,p(Γ) ≤ C‖φu‖W 2,p(Ω) ≤ C ∀u ∈ Uad.

On the other hand, the projection operator Πh is stable in the Sobolev spacesW s,q(Γ),
for 1 ≤ q ≤ ∞ and 0 ≤ s ≤ 1, see Casas and Raymond [13], therefore

‖Πh∂νφu‖W 1−1/p,p(Γ) ≤ C‖∂νφu‖W 1−1/p,p(Γ).
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Finally, with an inverse inequality and the estimate I2 ≤ Ch2−2/p obtained in the
previous proof we deduce

‖∂h
νφh(u)‖W 1−1/p,p(Γ) ≤ ‖Πh∂νφu − ∂h

νφh(u)‖W 1−1/p,p(Γ) + ‖Πh∂νφu‖W 1−1/p,p(Γ)

≤ C‖Πh∂νφu − ∂h
νφh(u)‖H1−1/p(Γ) + ‖Πh∂νφu‖W 1−1/p,p(Γ)

≤ Ch−1+1/p‖Πh∂νφu − ∂h
νφh(u)‖L2(Γ) + ‖∂νφu‖W 1−1/p,p(Γ) ≤ C.

The third inequality of (5.30) is an immediate consequence of Theorem 5.7.

6. Convergence Analysis for (Ph). In this section we will prove the strong
convergence in L2(Γ) of the solutions ūh of discrete problems (Ph) to the solutions of
(P). Moreover we will prove that {ūh}h remains bounded in H1/2(Γ), and next that
it is also bounded in W 1−1/p,p(Γ). Finally we will prove the strong convergence of
the solutions ūh of discrete problems (Ph) to the solutions of (P) in C(Γ).

Theorem 6.1. For every h > 0 let ūh be a global solution of problem (Ph). Then
there exist weakly∗-converging subsequences of {ūh}h>0 in L∞(Γ) (still indexed by h).
If the subsequence {ūh}h>0 is converging weakly∗ in L∞(Γ) to some ū, then ū is a
solution of (P),

lim
h→0

Jh(ūh) = J(ū) = inf(P ) and lim
h→0

‖ū− ūh‖L2(Γ) = 0. (6.1)

Proof. Since Uad
h ⊂ Uad holds for every h > 0 and Uad is bounded in L∞(Γ),

{ūh}h>0 is also bounded in L∞(Γ). Therefore, there exist weakly∗-converging sub-
sequences as claimed in the statement of the theorem. Let {ūh} be one of these
subsequences and let ū be the weak∗ limit. It is obvious that ū ∈ Uad. Let us
prove that ū is a solution of (P). Let us take a solution of (P), ũ ∈ Uad, therefore
ũ ∈ W 1−1/p,p(Γ) for some p > 2; see Theorem 3.4. Let us take uh = Ihũ. Then
uh ∈ Uad

h and {uh}h tends to ũ in L∞(Γ); see Brenner and Scott [6]. By taking
u = ũ, v = uh and s = 0 in (5.15) we deduce that yh(uh) → yũ in L2(Γ). Moreover
(5.13) implies that {yh(uh)}h>0 is bounded in L∞(Ω). On the other hand, Theorem
5.4 implies that ȳh = yh(ūh) → ȳ = yū strongly in L2(Ω) and {ȳh}h>0 is also bounded
in L∞(Ω). Then we have

J(ū) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(Ihũ) = J(ũ) = inf (P ).

This proves that ū is a solution of (P) as well as the convergence of the optimal costs,
which leads to ‖ūh‖L2(Γ) −→ ‖ū‖L2(Γ), hence we deduce the strong convergence of
the controls in L2(Γ).

Theorem 6.2. Let p > 2 be as in Theorem 3.4 and for every h let ūh denote a
local solution of (Ph). Then there exists a constant C > 0 independent of h such that

‖ūh‖W 1−1/p,p(Γ) ≤ C ∀h > 0. (6.2)

Moreover the convergence of {ūh}h>0 to ū stated in Theorem 6.1 holds in C(Γ).
Proof. By using the stability in H1/2(Γ) of the L2(Γ)-projections on the sets Uad

h

(see Casas and Raymond [13]) along with (4.12) and the first inequality of (5.30), we
get that {ūh}h>0 is uniformly bounded inH1/2(Γ). Using now the second inequality of
(5.30) and the stability of Πh in W 1−1/p,p(Γ) we deduce (6.2). Finally the convergence
is a consequence of the compactness of the imbedding W 1−1/p,p(Γ) ⊂ C(Γ) for p > 2.
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7. Error estimates. The goal is to prove the following theorem.
Theorem 7.1. Let us assume that ū is a local solution of (P) satisfying the

sufficient second order optimality conditions provided in Theorem 3.5 and let ūh be a
local solution of (Ph) such that ūh → ū in L2(Γ); see Theorem 6.1. Then the following
inequality holds

‖ū− ūh‖L2(Γ) ≤ Ch1−1/p, (7.1)

where p > 2 is given by Theorem 3.4.
We will prove the theorem arguing by contradiction. The statement of the the-

orem can be sated as follows. There exists a positive constant C such that for all
0 < h < 1/C, we have

‖ū− ūh‖L2(Γ)

h1−1/p
≤ C.

Thus if (7.1) is false, for all k > 0, there exists 0 < hk < 1/k such that

‖ū− ūhk
‖L2(Γ)

h
1−1/p
k

> k.

Therefore there exists a sequence of h such that

lim
h→0

1

h1−1/p
‖ū− ūh‖L2(Γ) = +∞. (7.2)

We will obtain a contradiction for this sequence. For the proof of this theorem we
need some lemmas.

Lemma 7.2. Let us assume that (7.1) is false. Let δ > 0 given by Remark 3.6-(2).
Then there exists h0 > 0 such that

1

2
min{δ,N}‖ū− ūh‖2

L2(Γ) ≤ (J ′(ūh) − J ′(ū))(ūh − ū) ∀h < h0. (7.3)

Proof. Let {ūh}h be a sequence satisfying (7.2). By applying the mean value
theorem we get for some ûh = ū+ θh(ūh − ū)

(J ′(ūh) − J ′(ū))(ūh − ū) = J ′′(ûh)(ūh − ū)2. (7.4)

Let us take

vh =
1

‖ūh − ū‖L2(Γ)
(ūh − ū).

Taking a subsequence if necessary we can assume that vh ⇀ v in L2(Γ). Let us
prove that v belongs to the critical cone Cū defined in §3. First of all remark that
every vh satisfies the sign condition (3.9), hence v also does. Let us prove that
v(x) = 0 if d̄(x) 6= 0, d̄ being defined by (3.10). We will use the interpolation operator
Ih ∈ L(W 1−1/p,p(Γ), Uh), with p > 2 given in Theorem 3.4. Since ū ∈ Uad it is
obvious that Ihū ∈ Uad

h . Given y ∈ W 1,p(Ω) such that y|Γ = ū. It is obvious that
Ihū is the trace of Ihy (see the beginning of section 5). Now, by using a result by
Grisvard [22, Chapter 1] we get

‖ū− Ihū‖p
Lp(Γ) ≤ C

(

ε1−1/p‖y − Ihy‖p
W 1,p(Ω) + ε−1/p‖y − Ihy‖p

Lp(Ω)

)

,
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for every ε > 0 and for some constant C > 0 independent of ε and y. Setting ε = hp

and using that (see for instance Brenner and Scott [6])

‖y − Ihy‖Lp(Ω) ≤ C1h‖y‖W 1,p(Ω), ‖Ihy‖W 1,p(Ω) ≤ C2‖y‖W 1,p(Ω)

and

inf
y|Γ=ū

‖y‖W 1,p(Ω) ≤ C3‖ū‖W 1−1/p(Γ),

we conclude that

‖ū− Ihū‖L2(Γ) ≤ |Γ|
p−2

2p ‖ū− Ihū‖Lp(Γ) ≤ Ch1−1/p‖ū‖W 1−1/p,p(Γ). (7.5)

Let us define

d̄h(x) = Nūh(x) − ∂h
ν φ̄h(x). (7.6)

The third inequality of (5.30) implies that d̄h → d̄ in L2(Γ). Now we have

∫

Γ

d̄(x)v(x) dx = lim
h→0

∫

Γ

d̄h(x)vh(x) dx

= lim
h→0

1

‖ūh − ū‖L2(Γ)

{
∫

Γ

d̄h(Ihū− ū) dx+

∫

Γ

d̄h(ūh − Ihū) dx

}

.

From (4.8), (7.2) and (7.5) we deduce

∫

Γ

d̄(x)v(x) dx ≤ lim
h→0

1

‖ūh − ū‖L2(Γ)

∫

Γ

d̄h(x)(Ihū(x) − ū(x)) dx

≤ lim
h→0

Ch1−1/p

‖ūh − ū‖L2(Γ)
= 0.

Since v satisfies the sign condition (3.9), then d̄(x)v(x) ≥ 0, hence the above inequality
proves that v is zero whenever d̄ is not, which allows us to conclude that v ∈ Cū. Now
from the definition of vh, (3.4) and (3.11) we get

lim
h→0

J ′′(ûh)v2
h = lim

h→0

{
∫

Ω

[

∂2L

∂y2
(x, yûh

) + φûh

∂2f

∂y2
(x, yûh

)

]

z2
vh
dx+N

}

=

∫

Ω

[

∂2L

∂y2
(x, ȳ) + φ̄

∂2f

∂y2
(x, ȳ)

]

z2
v dx+N

= J ′′(ū)v2 +N(1 − ‖v‖2
L2(Γ)) ≥ N + (δ −N)‖v‖2

L2(Γ).

Taking into account that ‖v‖L2(Γ) ≤ 1, these inequalities lead to

lim
h→0

J ′′(ûh)v2
h ≥ min{δ,N} > 0,

which proves the existence of h0 > 0 such that

J ′′(ûh)v2
h ≥ 1

2
min{δ,N} ∀h < h0.

From this inequality, the definition of vh and (7.4) we deduce (7.3).
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Lemma 7.3. There exists a constant C > 0 independent of h such that for every
v ∈ L∞(Γ)

|(J ′
h(ūh) − J ′(ūh))v| ≤ Ch1−1/p‖v‖L2(Γ). (7.7)

Proof. From (3.3), (4.6), (7.6), (6.2) and Theorem 5.7 we get

(J ′
h(ūh) − J ′(ūh))v =

∫

Γ

(∂νφūh
− ∂h

ν φ̄h)v dx ≤ ‖∂νφūh
− ∂h

ν φ̄h‖L2(Γ)‖v‖L2(Γ)

≤ C(‖ūh‖H1/2(Γ) + 1)h(1−1/p)‖v‖L2(Γ) ≤ Ch(1−1/p)‖v‖L2(Γ).

Lemma 7.4. There exists a constant C > 0 independent of h such that for every
v ∈ L∞(Γ)

|(J ′
h(ūh) − J ′(ū))v| ≤

(

N‖ū− ūh‖L2(Γ) + Ch1−1/p
)

‖v‖L2(Γ). (7.8)

Proof. Arguing in a similar way to the previous proof and using (5.30) and (6.2)
we have

(J ′
h(ūh) − J ′(ū))v =

∫

Γ

(

Nūh − ∂h
ν φ̄h

)

Πhv dx−
∫

Γ

(

Nū− ∂ν φ̄
)

v dx

= N

∫

Γ

(ūh − ū)v dx+

∫

Γ

(

∂ν φ̄− ∂h
ν φ̄h

)

v dx

≤
(

N‖ūh − ū‖L2(Γ) + Ch(1−1/p)
)

‖v‖L2(Γ).

One key point in the proof of error estimates is to get a discrete control uh ∈ Uad
h

that approximates ū conveniently and satisfies J ′(ū)ū = J ′(ū)uh. Let us find such a
control. Let us set Ij for every 1 ≤ j ≤ N(h)

Ij =

∫ xj+1

Γ

xj−1

Γ

d̄(x)ej(x) dx.

Now we define uh ∈ Uh with uh(xj
Γ) = uh,j for every node xj

Γ ∈ Γ by the expression

uh,j =



























1

Ij

∫ xj+1

Γ

xj−1

Γ

d̄(x)ū(x)ej(x) dx if Ij 6= 0,

1

hj−1 + hj

∫ xj+1

Γ

xj−1

Γ

ū(x) dx if Ij = 0.

(7.9)

Remind that the measure of [xj−1
Γ , xj+1

Γ ] is hj−1 + hj = |xj
Γ − xj−1

Γ | + |xj+1
Γ − xj

Γ|,
which coincides with |xj+1

Γ − xj−1
Γ | if xj

Γ is not a vertex of Ω.
In the following lemma, we state that the function uh defined by (7.9) satisfies

our requirements.
Lemma 7.5. There exists h0 > 0 such that, for every 0 < h < h0, the element

uh ∈ Uh defined by (7.9) obeys the following properties:
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1. uh ∈ Uad
h .

2. J ′(ū)ū = J ′(ū)uh.
3. The approximation property

‖ū− uh‖L2(Γ) ≤ Ch1−1/p (7.10)

is fulfilled for some constant C > 0 independent of h.
Proof. Since ū is continuous on Γ, there exists h0 > 0 such that

|ū(ξ2) − ū(ξ1)| ≤
β − α

2
∀h < h0, ∀ξ1, ξ2 ∈ [xj−1

Γ , xj+1
Γ ], 1 ≤ j ≤ N(h),

which implies that ū cannot admit both the values α and β on one segment [xj−1
Γ , xj+1

Γ ]

for any h < h0. Hence the sign of d̄ on [xj−1
Γ , xj+1

Γ ] must be constant due to (3.7).

Therefore, Ij = 0 if and only if d̄(x) = 0 for all x ∈ [xj−1
Γ , xj+1

Γ ]. Moreover if Ij 6= 0,

then d̄(x)/Ij ≥ 0 for every x ∈ [xj−1
Γ , xj+1

Γ ]. As a first consequence of this we get that
α ≤ uh,j ≤ β, which means that uh ∈ Uad

h . On the other hand

J ′(ū)uh =

N(h)
∑

j=1

∫ xj+1

Γ

xj−1

Γ

d̄(x)ej(x) dxuh,j =

N(h)
∑

j=1

∫ xj+1

Γ

xj−1

Γ

d̄(x)ū(x)ej(x) dx = J ′(ū)ū.

Finally let us prove (7.10). Let us remind that ū ∈ W 1−1/p,p(Γ) ⊂ H1−1/p(Γ)
and p > 2. Remind that the norm in Hs(Γ), 0 < s < 1, is given by

‖u‖Hs(Γ) =
(

‖u‖2
L2(Γ) +

∫

Γ

∫

Γ

|u(x) − u(ξ)|2
|x− ξ|1+2s

dx dξ
)1/2

. (7.11)

Using that
∑N(h)

j=1 ej(x) = 1 and 0 ≤ ej(x) ≤ 1 we get

‖ū− uh‖2
L2(Γ) =

∫

Γ

∣

∣

∣

N(h)
∑

j=1

(ū(x) − uh,j)ej(x)
∣

∣

∣

2

dx ≤

≤
N(h)
∑

j=1

∫ xj+1

Γ

xj−1

Γ

|ū(x) − uh,j|2ej(x) dx ≤
N(h)
∑

j=1

∫ xj+1

Γ

xj−1

Γ

|ū(x) − uh,j|2 dx.

(7.12)

Let us estimate every term of the sum.
Let us start by assuming that Ij = 0 so that uh,j is defined by the second relation

in (7.9). Then we have

∫ xj+1

Γ

xj−1

Γ

|ū(x) − uh,j|2 dx =

∫ xj+1

Γ

xj−1

Γ

∣

∣

∣

1

hj−1 + hj

∫ xj+1

Γ

xj−1

Γ

(ū(x) − ū(ξ)) dξ
∣

∣

∣

2

dx

≤
∫ xj+1

Γ

xj−1

Γ

1

hj−1 + hj

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2 dξ dx

≤ (hj−1 + hj)
2(1−1/p)

∫ xj+1

Γ

xj−1

Γ

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2
|x− ξ|1+2(1−1/p)

dx dξ

≤ (2h)2(1−1/p)‖ū‖2
H1−1/p(xj−1

Γ
,xj+1

Γ
)
.

(7.13)
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Now let us consider the case Ij 6= 0.

∫ xj+1

Γ

xj−1

Γ

|ū(x) − uh,j|2 dx =

∫ xj+1

Γ

xj−1

Γ

∣

∣

∣

1

Ij

∫ xj+1

Γ

xj−1

Γ

d̄(ξ)ej(ξ)(ū(x) − ū(ξ)) dξ
∣

∣

∣

2

dx

≤
∫ xj+1

Γ

xj−1

Γ

∣

∣

∣

∫ xj+1

Γ

xj−1

Γ

√

d̄(ξ)ej(ξ)

Ij
|ū(x) − ū(ξ)|

√

d̄(ξ)ej(ξ)

Ij
dξ

∣

∣

∣

2

dx

≤
∫ xj+1

Γ

xj−1

Γ

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2 d̄(ξ)ej(ξ)

Ij
dξ dx

≤
(

∫ xj+1

Γ

xj−1

Γ

d̄(ξ)ej(ξ)

Ij
dξ

)

sup
ξ∈[xj−1

Γ
,xj+1

Γ
]

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2 dx

= sup
ξ∈[xj−1

Γ
,xj+1

Γ
]

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2 dx.

(7.14)
To obtain the estimate for the last term we are going to use Lemma 7.6 stated below
with

f(ξ) =

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2 dx.

Since H1−1/p(Γ) ⊂ C0,θ(Γ) for θ = 1/2 − 1/p (see e.g. [37, Theorem 2.8.1]),it is easy
to check that

|f(ξ2) − f(ξ1)| ≤
∫ xj+1

Γ

xj−1

Γ

∣

∣

∣
[ū(x) − ū(ξ1)] + [ū(x) − ū(ξ2)]

∣

∣

∣

∣

∣

∣
ū(ξ2) − ū(ξ1)

∣

∣

∣
dx

≤ 2(hj−1 + hj)
1+2θCθ,p‖ū‖2

H1−1/p(xj−1

Γ
,xj+1

Γ
)
.

On the other hand we have
∫ xj+1

Γ

xj−1

Γ

f(ξ) dξ =

∫ xj+1

Γ

xj−1

Γ

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2
|x− ξ|1+2(1−1/p)

|x− ξ|1+2(1−1/p) dx dξ

≤ (hj−1 + hj)
1+2(1−1/p)

∫ xj+1

Γ

xj−1

Γ

∫ xj+1

Γ

xj−1

Γ

|ū(x) − ū(ξ)|2
|x− ξ|1+2(1−1/p)

dx dξ

≤ (hj−1 + hj)
2+(1−2/p)‖ū‖2

H1−1/p(xj−1

Γ
,xj+1

Γ
)
.

Then we can apply Lemma 7.6 to the function f with

M = (hj−1 + hj)
2θ max{4Cθ,p, 1}‖ū‖2

H1−1/p(xj−1

Γ
,xj+1

Γ
)
≤ Ch2θ‖ū‖2

H1−1/p(xj−1

Γ
,xj+1

Γ
)
,

to deduce that

f(ξ) ≤ C‖ū‖2
H1−1/p(xj−1

Γ
,xj+1

Γ
)
h1+2θ. (7.15)

This inequality along with (7.14) leads to

∫ xj+1

Γ

xj−1

Γ

|ū(x) − uh,j|2 dx ≤ C‖ū‖2
H1−1/p(xj−1

Γ
,xj+1

Γ
)
h1+2θ, (7.16)
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in the case where Ij 6= 0.
Since

N(h)
∑

j=1

‖ū‖2
H1−1/p(xj−1

Γ
,xj+1

Γ
)
≤ 2‖ū‖2

H1−1/p(Γ),

inequality (7.10) follows from (7.12), (7.13), (7.16) and the fact that 1+2θ = 2(1−1/p).

Lemma 7.6. Given −∞ < a < b < +∞ and f : [a, b] 7−→ R
+ a function satisfying

|f(x2) − f(x1)| ≤
M

2
(b− a) and

∫ b

a

f(x) dx ≤M(b− a)2,

then f(x) ≤ 2M(b− a) ∀x ∈ [a, b].
Proof. We argue by contradiction and we assume that there exists a point ξ ∈ [a, b]

such that f(ξ) > 2M(b− a), then

∫ b

a

f(x) dx =

∫ b

a

{[f(x)−f(ξ)]+f(ξ)} dx > −M
2

(b−a)2 +2M(b−a)2 =
3M

2
(b−a)2,

which contradicts the second assumption on f .

Proof of Theorem 7.1. Setting u = ūh in (3.7) we get

J ′(ū)(ūh − ū) =

∫

Γ

(

Nū− ∂ν φ̄
)

(ūh − ū) dx ≥ 0. (7.17)

From (4.8) with uh defined by (7.9) it follows

J ′
h(ūh)(uh − ūh) =

∫

Γ

(

Nūh − ∂h
ν φ̄h

)

(uh − ūh) dx ≥ 0

and then

J ′
h(ūh)(ū− ūh) + J ′

h(ūh)(uh − ū) ≥ 0. (7.18)

By adding (7.17) and (7.18) and using Lemma 7.5-2, we derive

(J ′(ū) − J ′
h(ūh)) (ū− ūh) ≤ J ′

h(ūh)(uh − ū) = (J ′
h(ūh) − J ′(ū)) (uh − ū).

For h < h0, this inequality and (7.3) lead to

1
2 min{N, δ}‖ū− ūh‖2

L2(Γ) ≤ (J ′(ū) − J ′(ūh)) (ū− ūh)

≤ (J ′
h(ūh) − J ′(ūh)) (ū − ūh) + (J ′

h(ūh) − J ′(ū)) (uh − ū).
(7.19)

Now from (7.7) and Young’s inequality we obtain

|(J ′
h(ūh) − J ′(ūh))(ū − ūh)| ≤ Ch1−1/p‖ū− ūh‖L2(Γ)

≤ Ch2(1−1/p) + 1
8 min{N, δ}‖ū− ūh‖2

L2(Γ).
(7.20)

On the other hand, using again Young’s inequality, (7.8) and (7.10) we deduce

|(J ′
h(ūh) − J ′(ū))(uh − ū)| ≤

(

N‖ū− ūh‖L2(Γ) + Ch1−1/p
)

‖ū− uh‖L2(Γ)

≤
(

N‖ū− ūh‖L2(Γ) + Ch1−1/p
)

h1−1/p

≤ 1
8 min{N, δ}‖ū− ūh‖2

L2(Γ) + Ch2(1−1/p),

(7.21)
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From (7.19)–(7.21) it comes

1

4
min{N, δ}‖ū− ūh‖2

L2(Γ) ≤ Ch2(1−1/p),

which contradicts (7.2).

8. Numerical tests. In this section we present some numerical tests which
illustrate our theoretical results. Let Ω be the unit square (0, 1)2. Consider

yd(x1, x2) =
1

(x2
1 + x2

2)
1/3

.

We are going to solve the following problem

(P)















Min J(u) =
1

2

∫

Ω

(yu(x) − yd(x))
2dx+

1

2

∫

Γ

u(x)2dx

u ∈ Uad = {u ∈ L2(Γ) : −1 ≤ u(x) ≤ 2 a.e. x ∈ Γ},
−∆yu = 0 in Ω, yu = u on Γ.

Remark that yd ∈ Lp(Ω) for all p < 3, but yd 6∈ L3(Ω), therefore the optimal
adjoint state ϕ̄ is actually in W 2,p(Ω) for p < 3. Consequently we can deduce that
the optimal control belongs toW 1−1/p,p(Γ), butW 1−1/p,p(Γ) is not included inH1(Γ).
There is no reason that the normal derivative ∂νϕ̄ be more regular than W 1−1/p,p(Γ).
For our problem, the plot shows that the optimal control has a singularity in the
corner at the origin, and it seems that ū 6∈ H1(Γ). So we cannot hope to have a
convergence order of O(h). Instead of that we have a convergence of order O(h1−1/p)
for some p > 2, as predicted by the theory.

Since we do not have an exact solution for (P), we have solved it numerically for
h = 2−9 and we have used this solution to compare with other solutions for bigger
values of h. We have solved it using an active set strategy, as is explained in [11].
Here is a plot of the optimal solution.

The control constraints are not active at the optimal control. In the following table
we show the norm in L2(Γ) of the error of the control and the order of convergence
step by step. This is measured as

oi =
log(‖ūhi − ū‖L2(Γ)) − log(‖ūhi−1

− ū‖L2(Γ))

log(hi) − log(hi−1)
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hi/
√

2 ‖ūhi − ū‖L2(Γ) oi

2−3 0.1055 −
2−4 0.0652 0.6944
2−5 0.0393 0.7302
2−6 0.0237 0.7314
2−7 0.0146 0.7008
2−8 0.0093 0.6493

Let us remark that 1 − 1/p < 2/3 for p < 3. The values oi are around 2/3.
We believe that the order of convergence could be closer to 2/3 if we could com-
pare the computed controls with the true optimal control instead with its numerical
approximation. We refer to [12] for more details and numerical tests.

Acknowledgements. The authors thank the referees for their valuable sugges-
tions that have contributed to improve the first version of the paper. They also thank
Professor Mariano Mateos for his collaboration in the numerical tests.
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[1] N. Arada, E. Casas, and F. Tröltzsch, Error estimates for the numerical approximation of

a semilinear elliptic control problem, Comp. Optim. Appls., 23 (2002), pp. 201–229.
[2] N. Arada and J.-P. Raymond, Dirichlet boundary control of semilinear parabolic equations.

part 1: Problems with no state constraints, Appl. Math. Optim., 45 (2002), pp. 125–143.
[3] M. Berggren, Approximations of very weak solutions to boundary-value problems, SIAM J.

Numer. Anal., 42 (2004), pp. 860–877.
[4] J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints,

SIAM J. Control Optim., 37 (1999), pp. 1726–1741.
[5] J. Bramble, J. Pasciak, and A. Schatz, The construction of preconditioners for elliptic

problems by substructuring. I, Math. Comp., 47 (1986), pp. 103–134.
[6] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-

Verlag, New York, Berlin, Heidelberg, 1994.
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[26] M. Hinze, A variational discretization concept in control constrained optimization: the linear-

quadratic case, Comp. Optim. Appls., 30 (2005), pp. 45–61.
[27] G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM

J. Control Optim., 20 (1982), pp. 414–427.
[28] I. Lasiecka, Boundary control of parabolic systems: finite-element approximations, Appl.

Math. Optim., 6 (1980), pp. 287–333.
[29] , Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic

systems with Dirichlet boundary conditions, SIAM J. Control Optim., 97 (1984), pp. 477–
500.

[30] J.L. Lions and E. Magenes, Problèmes aux Limites non Homogènes, Dunod, Paris, 1968.
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[33] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J.
Control Optim. (2004), pp. 970–985.

[34] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à
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