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1 Model Problems and their Optimality Sys-

tems

The purpose of these notes is to introduce an approach for solving optimiza-
tion problems which contain expressions which are Lipschitz continuous but
not C1 by Newton-type methods. In spite of the lack of C1 regularity, ”high
rate” of convergence is our goal. More precisely we aim for a super-linear
convergence.

In the remainder of this section we show by means of examples, where such
problems arise in practice. Optimal control problems with control and state
constraints are two of our generic model problems. The treatment of these
problems here is infinite dimensional, i.e. we post these methods in properly
chosen function spaces. Clearly for numerical realisation a disretisation is
required. This is not addressed in these notes.

For each of the follwing problems we also state the first order optimality
system. The derivation of these systems rely on Lagrange multiplier theo-
rems. For convenience of the reader, we recall a prototype multiplier theorem
in the Appendix of this section. The readers will notice that the regularity of
the Lagrange multipliers, which are functional quantities in our cases, differ
significantly from one problem to the other. These regularity properties have
a tremendously strong influence on the proper numerical treatment.

Throughout these notes Ω denotes a bounded domain in Rn, with bound-
ary denoted by Γ or ∂Ω, assumed to be sufficiently smooth.

1.1 Optimal Control with Control Constraints

We consider the optimal control problem with distributed control u, state
variable y and unilateral control constraints:

(P1) min J(y, u) =
1

2

∫

Ω

(y − z)2 dx +
β

2

∫

Ω

u2 dx ,

(1.1) −∆y = u in Ω , y = 0 on Γ ,

(1.2) u ∈ L2(Ω) , u(x) ≤ ψ(x) for a.e. x ∈ Ω,

where z ∈ L2, β > 0 and , ψ ∈ L∞(Ω) .
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For every u ∈ L2 system (1.1) has a unique solution y in H2 ∩ H1
0 . It is

standard that problem (P1) has a unique solution (y∗, u∗) characterized by
the following optimality system :




−∆y∗ = u∗ in Ω, y∗ ∈ H1

0 (Ω),
−∆p∗ = z − y∗ in Ω, p∗ ∈ H1

0 (Ω),
(βu∗ − p∗, u− u∗)L2 ≥ 0 for all u ≤ ψ.

Here p∗ is referred to as the adjoint state. Let us give an equivalent
formulation for this optimality system which is essential to motivate the
forthcoming algorithm:

Theorem 1.1. The unique solution (y∗, u∗) to problem (P1) is characterized
by

(S)





−∆y∗ = u∗ in Ω, y∗ ∈ H1
0 (Ω) ,

−∆p∗ = z − y∗ in Ω, p∗ ∈ H1
0 (Ω) ,

βu∗ = p∗ − λ∗,

λ∗ = c[u∗ +
λ∗

c
− Π(u∗ +

λ∗

c
)] = c max(0, u∗ +

λ∗

c
− ψ) ,

for every c > 0. Here Π denotes the projection of L2 onto Uad = {u ∈ L2 :
u ≤ ψ}.

The proof can be given by inspection. Here and throughout, order re-
lations like “max” and“ ≤ ”between elements of L2 are understood in the
pointwise almost everywhere sense.

We point out that the last equation in (S)

(1.3) λ∗ = c[u∗ +
λ∗

c
− Π(u∗ +

λ∗

c
)]

is equivalent to

(1.4) λ∗ ∈ ∂IUad
(u∗) ,

where ∂IC denotes the subdifferential of the indicator function IC of a a
convex set C. This follows from general properties of convex functions (see
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[IK1] for example) and can also easily be verified directly for the convex
function IUad

. The replacement of the well known differential inclusion (1.4)
in the optimality system for (P1) by (1.3) is an essential ingredient of the
algorithm that we shall discuss.

It is also useful to consider the constraint u ≤ ψ in L2 in abstract terms,
expressing it as

G(u) = u− ψ ≤ 0, where G : L2 → L2.

Clearly G is surjective and hence existence of a Lagrange multiplier λ∗ in
L2 with the specified properties follows from abstract Lagrange multiplier
theory, c.f. the Appendix of the chapter.

Let us also note that (1.3) can be expressed as

(1.5) λ∗ ≥ 0, u∗ ≤ ψ, (u∗ − ψ)λ∗ = 0.

The ensemble of inequalities in (1.5) is called a complementarity system.
Equation (1.3) is an equivalent formulation for (1.5) by means of nonlinear
equation. In this context, the max operation is referred to as complementar-
ity function.

For further treatment of (P1) we refer to [BIK], which is contained in
these notes.

1.2 Obstacle Problems

We consider

(P2)





min 1
2

a(y, y)− (f, y)

y ∈ H1
0 (Ω)

y ≤ ψ a.e. in Ω,

where a (·, ·) is a bilinear form on H1
0 (Ω)×H1

0 (Ω) satisfying

(1.6) a(v, v) ≥ ν|v|2H1
0
, a(w, z) ≤ µ|w|H1|z|H1 ,

for some ν > 0 and µ > 0 independently of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω).

For example,

(1.7) a(v, w) =

∫

Ω

∇v∇w dx
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satisfies these requirements. Further it is assumed that f ∈ L2(Ω), ψ ∈
H1(Ω) with ψ|∂Ω ≥ 0. Since ψ ∈ H1(Ω) the trace ψ|∂Ω is well-defined. The
assumption ψ|∂Ω ≥ 0 implies that the set of admissible functions y for (P2)
is nonempty. For our discussion the weak maximum principle, i.e. for all
v ∈ H1

0 (Ω)

(1.8) a(v, v+) ≤ 0 implies v+ = 0,

where v+ = max(0, v), will be important. It is satisfied for (1.7)
It is standard to argue that P2 admits a unique solution y∗ ∈ H1

0 (Ω).
From subsection 1.8, for example, it follows that there exists Lagrange mul-
tiplier λ∗ ∈ H−1(Ω) associated to the inequality constraint y ≤ ψ. In fact,

G(y) = y − ψ, where G : H1
0 → H1

0

is surjective, so that the Lagrange multiplier is in (H1
0 )∗ = H−1. Under

well-known regularity assumptions on the problem data it can be shown
that the Lagrange multiplier satisfies additional regularity in the sense that
λ∗ ∈ L2(Ω), and that the following optimality system holds:

(1.9)





a(y∗, v) + (λ∗, v) = (f, v), for all v ∈ H1
0 (Ω)

(λ∗, y∗ − ψ) = 0, y∗ ≤ ψ, (λ∗, v) ≥ 0 for all v ∈ K,

where K = {v ∈ H1
0 (Ω) : v ≥ 0 a.e.} and the inner products are taken in

L2(Ω). By inspection (1.9) can equivalently be expressed as

(1.10)





a(y∗, v) + (λ∗, v) = (f, v) for all v ∈ H1
0 (Ω)

λ∗ = max(0, λ∗ + c(y∗ − ψ)),

for arbitrary c > 0. (More precisely, (1.9) implies (1.10) for every c, and
(1.10) for some c > 0 implies (1.9)). The extra Lagrange multiplier regu-
larity does not follow from nonlinear programming arguments but rather by
variational or pde techniques.

1.3 Optimal Control with State Constraints

This problem is related to P1 but the constraint acts on the state-variable
rather than the control:
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(P3)





min J(y, u) = 1
2
|y − z|2L2 + β

2
|u|2L2

subject to

−∆y = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ a.e. in Ω

(y, u) ∈ H1
0 (Ω)× L2(Ω),

where z ∈ L2(Ω), ψ ∈ C(Ω), ψ > 0 on ∂Ω and β > 0. It will be convenient
to set W = H1

0 (Ω) ∩ H2(Ω). Under appropriate regularity requirements
every solutions to −∆y = u, with u ∈ L2(Ω) and y = 0 on ∂Ω satisfies
y ∈ W ⊂ C(Ω), n ≤ 3. It is standard to argue the existence of a solution
(y∗, u∗) ∈ W×L2(Ω) to (P3). It is also straightforward to argue the existence
of a Lagrange multiplier λ∗ ∈ W∗ since

G(y) = y − ψ, where G : W →W

is surjective. Let 〈·, ·〉C∗,C denote the duality pairing between C(Ω) and its
topological dual C∗(Ω). The proof to the following characterization of the
solution to P3 with some extra regularity for the Lagrange multiplier is found
in [BK], for example.

Theorem 1.2. The pair (y∗, u∗) ∈ W × L2(Ω) is a solution to (P) if and
only if there exists p∗ ∈ L2(Ω) and λ∗ ∈ C∗(Ω) such that

−∆y∗ = u∗ in Ω, y∗ = 0 on ∂Ω,

(p∗,−∆y) + 〈λ∗, y〉C∗,C = (z − y∗, y) for all y ∈ W

βu∗ = p∗

y∗ ≤ ψ, 〈λ∗, y∗ − ψ〉C∗,C = 0,

〈λ∗, y〉C∗,C ≥ 0, for all y ∈ C(Ω) with y ≥ 0.
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In general the regularity of λ∗ is no better than specified in Theorem1.2.
In fact if the active set at the solution

A = {x : y∗(x) = ψ(x)}

is a connected domain in Ω then it can be shown that λ∗ = λ∗d + λ∗b , where
λ∗d ∈ L2(Ω) and λ∗b ∈ L2(∂A). In particular λ∗ in not in L2(Ω) in general.

1.4 L1 and BV Functionals

In recent years, the space BV ( functions of total bounded variation) and of
the use of L1 functionals receives a considerable amount of attention. We
consider two such cases here.

The relationship to the previous subsection stems from the fact that in-
dicator functions ( describing the inequality constraints) and norm functions
are dual to each other in the sense of Fenchel duality.

We consider the image denoising problem with L1-fitting and smooth
regularization

(P4) min
u∈H1

0 (Ω)

∫

Ω

[
β

2
|∇u|2 + |u− z|

]
dx

for the given function z ∈ L1(Ω). Note that the cost functional in (P4) is
nondifferentiable in the classical sense. We see that problem (P4) is equiva-
lent to

(1.11) min
u∈H1

0 (Ω)
max
λ∈C

∫

Ω

[
β

2
|∇u|2 + λ(u− z)

]
dx = min

u∈H1
0 (Ω)

max
λ∈C

l(u, λ),

where l : H1
0 (Ω) × L2(Ω) → R is the Lagrange-functional and the set C is

defined as
C :=

{
λ ∈ L2(Ω) : |λ(x)| ≤ 1 a.e. x ∈ Ω

}
.

The equivalence of the two formulations results from the following identity

max
λ∈C

∫

Ω

λ(u− z) dx =

∫

Ω

|u− z| dx.

Hence, λ represents the Lagrange smoothing of the subdifferential sign(u−z)
[IK1].
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The ptimality conditions for the solution u∗ is formally easily found to be
(1.12)


−β ∆u∗ + λ∗ = 0, in Ω,

λ∗(x) =
λ∗(x) + c (u∗ − z)(x)

max{1, |λ∗(x) + c (u∗ − z)(x)|} , a. e. x ∈ Ω, for each c > 0.

The second condition realizing the complementarity condition is equivalent
to the actual definition of the subdifferential

(1.13)
λ∗(x) =

(u∗ − z)(x)

|(u∗ − z)(x)| , in I∗(x) = {x ∈ Ω | (u∗ − z)(x) 6= 0} ,

|λ∗(x)| ≤ 1, in J∗(x) = {x ∈ Ω | (u∗ − z)(x) = 0} .

From the optimality conditions it follows that u∗ ∈ H2.
The corresponding image denoising problem with quadratic L2-fitting

reads as

(1.14) min
u∈H1

0 (Ω)

∫

Ω

[
β

2
|∇u|2 + |u− z|2

]
dx

with the linear optimality condition

(1.15) −β∆ũ∗ + 2 (ũ∗ − z) = 0

for the unique solution ũ∗. Comparing (1.15) to (1.12) and (1.13), one no-
tices that for the L2-formulation the distance between ũ∗ and z plays an
important role in the optimality condition (1.15), whereas only the (regu-
larized) sign-function for (u∗ − z) appears in (1.12). This illustrates the
relative insensitivity of the L1-formulation towards outliers compared to
the L2-formulation.

We recall the Fenchel duality theorem in infinite dimensional spaces in a
form that is convenient here. Let V and Y be Banach spaces with topological
duals denoted by V ∗ and Y ∗, respectively. Further let Λ ∈ L(V, Y ) and let
F : V → R ∪ {∞}, G : Y → R ∪ {∞} be convex, lower semi-continuous
functionals not identically equal to ∞, and assume that there exists v0 ∈ V
such that F(v0) < ∞, G(Λv0) < ∞ and G is continuous at Λv0. Then we
have

(1.16) inf
u∈V

F(u) + G(Λu) = sup
p∈V ∗

−F∗(Λ∗p)− G∗(−p),
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where F∗ : V ∗ → R ∪ {∞} denotes the conjugate of F defined by

F∗(v∗) = sup
v∈V

〈v, v∗〉V,V ∗ −F(v).

Under the conditions imposed on F and G it is known that the problem on
the right hand side of (1.16) admits a solution. Moreover, (ū, p̄) are solutions
to the two optimization problems in (1.16) if and only if

Λ∗p̄ ∈ ∂F(ū),(1.17a)

−p̄ ∈ ∂G(Λū),(1.17b)

where ∂F denotes the subdifferential of the convex functional F .
Using the Fenchel duality theorem the dual of (P4) is formally found to

be

(1.18) min
p∈L2(Ω)2

F ∗(−div p) +
1

2β

∫

Ω

|p|2,

where

F ∗(v) =

{ ∞, |v| > 1
vz, |v| ≤ 1.

.
The relation between the solution to (1.18) and P4 is given by

p∗ = −β∇u∗

.
A typical image reconstruction problem based on the BV semi-norm

is given by

(P5)

{
min 1

2

∫
Ω
|Ku− f |2dx + α

2

∫
Ω
|u|2dx + β

∫
Ω
|Du|

over u ∈ BV,

where β > 0, α ≥ 0 are given and K ∈ L(L2(Ω)). We assume that constant
functions are not in the kernel of K or α > 0. Further BV(Ω) denotes the
space of functions of bounded variation. A function u is in BV(Ω) if the BV
semi-norm defined by

∫

Ω

|Du| = sup

{∫

Ω

u div~v : ~v ∈ (C∞
0 (Ω))2, |~v(x)|`∞ ≤ 1

}
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is finite.
The great advantage of BV-regularization over regularization involving

|∇u|2 lies in the fact that the former perserves corners and edges in the
image significantly better than the latter.

Formally ( as a reasonably simple exercise) the Fenchel dual of this prob-
lem is found to be:

(1.19)

{
inf 1

2
| div ~p + K∗f |2B

s.t. − β~1 ≤ ~p(x) ≤ β~1 for a.e. x ∈ Ω,

where |v|2B = (v,B−1v), and the relationship between solutions to the original
and the dual problem is given by

(1.20) div ~p = Bu−K∗f, ~p = β
∇u

|∇u| on {x : ∇u(x) 6= 0}.

Note that (1.19) is a bilaterally constrained optimization problem.
Rigorously we have the following result, where H0(div) = {~v ∈ IL2(Ω) :

div~v ∈ L2(Ω), ~v · n = 0 on ∂Ω}, and n is the outer normal to ∂Ω.

Theorem 1.3. Consider the problem

(1.21)

{
min 1

2
| div ~p + K∗f |2B for ~p ∈ H0(div)

s.t. − β~1 ≤ ~p ≤ β~1,

Its dual is given by (P5).

1.5 Miscellanies

There are still many related problems of non-differentiable optimization prob-
lems in function spaces, for example friction and contact problems and Bing-
ham fluid problems (two phase fluids).

Interesting and, in part open problems, are related to considering opti-
mization problems subject to variational inequalities, as treated in 1.3 as
constraints. Such problems are referred to as control of variational inequal-
ities. Equally interesting are problems, where the obstacle itself acts as a
control. From the point of view of mathematical programming all these
problems are nested complementarity problems in function spaces.
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1.6 Comments on the attached papers,[BIK, HIK, IK3,
IK5, HK2]

Let me give a short introduction to the five selected papers which are attached
to this file.

In [BIK] the primal dual active set strategy for solving control constrained
optimal control problems is introduced and some global convergence proper-
ties are obtained. The starting point for this algorithm is the last equation
in (S):

λ∗ = max(0, λ∗ + c(u∗ − ψ)

. In the course of an iterative algorithm we decide, at iteration-level k to
define the updated ’active’ set to be

Ak = {x : λk + c(uk − ψ) > 0}.
In the following iteration the control is fixed to be ψ on Ak, and is considered
unconstrained on the inactive set Ik = Ω \Ak. We ask the readers, who just
want to glimpse into these notes to read sections 1 and 2 of [BIK]. The
primal-dual active set strategy may appear to be a fixed point iteration - but
this would be the wrong way to think of it. In fact, it is a Newton method,
where the max-operation is teated as if it was differentiable.

While the max-operation is not differentiable in the classical sense, it
is Newton-differentiable, as operator between appropriate spaces, as de-
scribed in [HIK]. Actually, Newton-differentiable is called ’slant-differentiability’
in [HIK], for reason that I will explain in the course. Suffice it to say here
that Newton differentiability implies local super-linear convergence of the
Newton algorithm. Moreover, it is shown in [HIK] that the primal dual ac-
tive set strategy is equivalent to a Newton step (we now call it ’semi-smooth’
Newton step), applied to the max-operation. In [HIK] it is shown that max
is Newton differentiable between finite-dimensional spaces, and as operator
between Lp and Lq, provided that q < p. Looking back over the examples
in subsections 1.1.-1.4. we need to address the question, when this case of
Newton-differentiability occurs. It holds, for quite generally for control con-
strained optimal control problems. This is also covered in [HIK]. But it is
not true generically. ( We ask the readers not to skip too much from [HIK].)

In [IK3] we focus on the semi-smooth Newton method for obstacle-type
problems, as considered in section 1.2 above. Recall, that this is the case
where the Lagrange multiplier has L2 regularity, but this does not follow di-
rectly from a Lagrange multiplier theorem. We define a family of regularized
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problems which are semi-smooth and which converge to the original problem
asymptotically. Moreover we analyse monotonicity type problems, which are
related to the weak maximum principle, satisfied by this class of examples -
or the M-matrix property, if properly discretized. I ask the readers to read
the theorems - the proofs are not essential for what follows.

In [IK5] we treat the even less regular case of state constrained optimal
control problems. Here the Lagrange multipliers are generically not L2, but
rather only measures. Again we introduce a family of approximating prob-
lems which are semi-smooth, and which converge to the original problem
asymptotically. The reader may want to consider the numerical section in
both [IK3] and [IK5] and note that , if we knew how to tune the parameter,
which defines the regularization, and let it tend to infinity in a clever way,
then this would be very efficient.

This point is also addressed in [HK1]. We introduce a ”path” which
describes the behavior of the regularized problems as a function of the regu-
larization parameter. Mathematically the path is a consequence of sensitivity
analysis. Intuitively we may think that on the path the problems are better
behaved than far off the path. - But of course this path is not available
to us quantitatively. However, some intricate manipulations allow to get
models for the path on the basis of just two evaluations of the regularized
problems with two different regularization parameters. On the basis of these
models an approximate path is available, and strategies can be developed for
systematically updating the regularization parameter.

1.7 Appendix: A Lagrange Multiplier Theorem

To derive first order necessary optimality conditions for constrained optimiza-
tion problems the following Lagrange multiplier theorem is useful, c.f.[C].
Below DG denotes the Gateaux differential of the mapping G. By definition
the Gateaux derivative is a continuous linear mapping.

Theorem 1.4. Let U and Z be Banach spaces, and K ⊂ U , C ⊂ Z be
convex subsets, with C having a nonempty interior. Let ū ∈ K ba a solution
of the optimization problem

{
min J(u),
u ∈ K, G(u) ∈ C,

where J : U → (−∞,∞] and G : U → Z are two Gateaux differentiable
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mappings at ū. Then there exist a real number µ̄ ≥ 0 and an element λ̄ ∈ Z∗

such that
µ̄ + |λ̄|Z∗ > 0,

〈λ̄, z −G(ū)〉 ≤ 0, for all z ∈ C,

〈µ̄J ′(ū) + [DG(ū)]∗λ̄, u− ū〉 ≥ 0 for all u ∈ K.

Moreover, µ̄ can be taken equal to 1 if the following condition of Slater type
is satisfied:

there exists u0 ∈ K such that G(ū) + DG(ū)(u0 − ū) ∈ intC.
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Primal-dual Strategy for Constrained Optimal Control
Problems

mäıtine bergounioux1 kazufumi ito2 karl kunisch3

Abstract

An algorithm for efficient solution of control constrained optimal control problems

is proposed and analyzed. It is based on an active set strategy involving primal as

well as dual variables. For discretized problems sufficient conditions for convergence in

finitely many iterations are given. Numerical examples are given and the role of strict

complementarity condition is discussed.

Keywords: Active Set, Augmented Lagrangian, Primal-dual method, Optimal Control.

AMS subject classification. 49J20, 49M29

1 Introduction and formulation of the problem

In the recent past significant advances have been made in solving efficiently nonlinear optimal

control problems. Most of the proposed methods are based on variations of the sequential

quadratic programming (SQP) technique, see for instance [HT, KeS, KuS, K, T] and the

references given there. The SQP-algorithm is sequential and each of its iterations requires

the solution of a quadratic minimization problem subject to linearized constraints. If these

auxiliary problems contain inequality constraints with infinite dimensional image space then

their solution is still a significant challenge.

In this paper we propose an algorithm for the solution of infinite dimensional quadratic

problems with linear equality constraints and pointwise affine inequality constraints. It is

based on an active set strategy involving primal and dual variables. It thus differs signifi-

cantly from conventional active set strategies that involve primal variables only, see [Sch] for

example. In practice the proposed algorithm behaves like an infeasible one. The iterates of
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the algorithm violate the constraints up to the next-to-the-last iterate. The algorithm stops

at a feasible and optimal solution.

Within this paper we do not aim for generality but rather we treat as a model problem

an unilateral control constraint optimal control problem related to elliptic partial differential

equations. The distributed nature of this problem, which is reflected in the fact that it

behaves like an obstacle problem for the biharmonic equation, makes it difficult to analyze.

Let us briefly outline the contents of the paper. The algorithm will be presented in Section

2. We prove that if the algorithm produces the same active set in two consecutive iterates

then the optimal solution has been obtained. In Section 3 we shall give sufficient conditions

which guarantee that an augmented Lagrangian functional behaves as a decreasing merit

function for the algorithm. In practice this implies finite step convergence of the discretized

problem. Section 4 is devoted to showing that for a minor modification of the algorithm the

cost functional is increasing until the feasible optimal solution is reached. In Section 5 several

numerical examples are given. For most examples the algorithm behaves extremely efficient

and typically converges in less than five iterations. Thus, to present interesting cases the

majority of the test examples is in some sense extreme: Either the strict complementarity

condition is violated or the cost of the control is nearly zero.

To describe the problem, let Ω be an open, bounded subset of RN , N ≤ 3, with smooth

boundary Γ and consider the following distributed optimal control problem :

min J(y, u) =
1
2

∫

Ω
(y − zd)2 dx +

α

2

∫

Ω
(u− ud)2 dx , (P)

−∆y = u in Ω , y = 0 on Γ , (1.1)

u ∈ Uad ⊂ L2(Ω) , (1.2)

where zd, ud ∈ L2(Ω), α > 0 and Uad = { u ∈ L2(Ω) | u(x) ≤ b(x) a.e. in Ω}, b ∈ L∞(Ω) .

It is well known that, for every u ∈ L2(Ω) system (1.1) has a unique solution y = T (u) in

H2(Ω) ∩H1
o (Ω).

Remark 1.1 To emphasis the basic ideas of the proposed approach we treated the rather

simple problem (P). Many generalizations are possible. In particular, −∆ in (1.1) can be

replaced by any strictly elliptic second order differential operator.

It is standard that problem (P) has a unique solution (y∗, u∗) characterized by the fol-

lowing optimality system :




−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω) ,

−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1
o (Ω) ,

(α(u∗ − ud)− p∗, u− u∗) ≥ 0 for all u ∈ Uad,

2



where (·, ·) denotes the L2(Ω)-inner product.

Let us give an equivalent formulation for this optimality system which is essential to

motivate the forthcoming algorithm:

Theorem 1.1 The unique solution (y∗, u∗) to problem (P) is characterized by

(S)





−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω) ,

−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1
o (Ω) ,

u∗ = ud +
p∗ − λ∗

α
,

λ∗ = c[u∗ +
λ∗

c
−Π(u∗ +

λ∗

c
)] = cmax(0, u∗ +

λ∗

c
− b) ,

for every c > 0. Here Π denotes the projection of L2(Ω) onto Uad.

Proof - We refer to [IK].

We point out that the last equation in (S)

λ∗ = c[u∗ +
λ∗

c
−Π(u∗ +

λ∗

c
)] (1.3)

is equivalent to

λ∗ ∈ ∂IUad
(u∗) , (1.4)

where ∂IC denotes the subdifferential of the indicator function IC of a a convex set C.

This follows from general properties of convex functions (see [IK] for example) and can

also easily be verified directly for the convex function IUad
. The replacement of the well

known differential inclusion (1.4) [B] in the optimality system for (P) by (1.3) is an essential

ingredient of the algorithm that we shall propose.

Here and below, order relations like “max” and“ ≤ ”between elements of L2(Ω) are

understood in the pointwise almost everywhere sense.

Let us interpret the optimality system (S). From −∆y∗ = ud +
p∗ − λ∗

α
it follows that

p∗ = α[−∆y∗ − ud] + λ∗ and hence

−α∆y∗ −∆−1y∗ + λ∗ = α ud −∆−1zd .

It follows that

αu∗ + ∆−2u∗ + λ∗ = αud −∆−1zd ,

λ∗ = c max(0, u∗ +
λ∗

c
− b) for all c > 0

which implies the highly distributed nature of the optimal control. Setting H = αI + ∆−2

and f = αud −∆−1zd, system (S) can be expressed as

(S)1




Hu∗ + λ∗ = f ,

λ∗ = c max(0, u∗ +
λ∗

c
− b) for all c > 0
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We observe that by setting u = −∆y, system (S) constitutes an optimality system for the

variational inequality





min
α

2

∫

Ω
|∆y|2dx +

1
2

∫

Ω
|y − (zd − α ∆ud)|2dx

y ∈ H1
o (Ω) ∩H2(Ω)

−∆y ≤ b

the regularity of which was studied in [BS].

2 Presentation of the Algorithm

In this section we present the primal-dual active set algorithm and discuss some of its basic

properties. Let us introduce the active and inactive sets for the solution to (P) and define

A∗ = { x | u∗(x) = b a.e. } and I∗ = { x | u∗(x) < b a.e. } .

The proposed strategy is based on (1.3). Given (un−1, λn−1) the active set for the current

iterate is chosen as

An = { x | un−1(x) +
λn−1(x)

c
> b a.e. } .

We recall that λ∗ ≥ 0 and in the case of strict complementarity λ∗ > 0 on A∗. The complete

algorithm is specified next

Algorithm

1. Initialization : choose yo, uo and λo and set n = 1.

2. Determine the following subsets of Ω :

An = { x | un−1(x) +
λn−1(x)

c
> b } , In = { x | un−1(x) +

λn−1(x)
c

≤ b } .

3. If n ≥ 2 and An = An−1 then stop.

4. Else, find (yn, pn) ∈ H1
o (Ω)×H1

o (Ω) such that

−∆yn =





b in An

ud +
pn

α
in In ,

−∆pn = zd − yn in Ω .

and set

un =





b in An

ud +
pn

α
in In ,
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5. Set λn = pn − α(un − ud), update n = n + 1 and goto 2.

The existence of the triple (yn, un, pn) satisfying the system of step 4 of the Algorithm

follows from the fact that it constitutes the optimality system for the auxiliary problem

(Paux) min { J(y, u) | y ∈ H1
o (Ω), −∆y = u in Ω, u = b on An }

which has (yn, un) as unique solution.

We may use different initialization schemes. The one that was used most frequently is

the following one: 



uo = b ,

−∆yo = uo, yo ∈ H1
o (Ω) ,

−∆po = zd − yo , po ∈ H1
o (Ω) ,

λo = max(0, α(ud − b) + po) .

(2.1)

This choice of initialization has the property of feasibility. Alternatively, we tested the

algorithm with initialization as the solution of the unconstrained problem, i.e.




λo = 0

−∆yo = ud +
po

α
, yo ∈ H1

o (Ω) ,

−∆po = zd − yo , po ∈ H1
o (Ω) ,

uo = ud +
po

α
.

(2.2)

For all examples the first initialization behaved better or equal to the second.

The initialization process (2.1) has the property that the first set A1 is always included in

the active set A∗ of problem (P). More precisely we have

Lemma 2.1 If (uo, yo, λo) are given by (2.1) with uo ≥ u∗; then λo ≤ λ∗.

In addition, if uo = b then A1 ⊂ A∗.

Proof - By construction

λo = max(0, α(ud − uo) + po) = max(0, α(ud − uo) + ∆−1(yo − zd)) ,

and as a consequence of (S)

λ∗ = α(ud − u∗) + p∗ = α(ud − u∗) + ∆−1(y∗ − zd) = α(ud − u∗)−∆−2u∗ −∆−1zd ≥ 0.

It follows that

λ∗ − λo = λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0 , and

λ∗ − λo = α(uo − u∗) + ∆−2(uo − u∗) + α(ud − uo) + ∆−1(yo − zd) else .
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If uo ≥ u∗ the maximum principle yields ∆−2(uo − u∗) ≥ 0 and

λ∗ − λo

{
= λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0

≥ α(ud − uo) + ∆−1(yo − zd) ≥ 0 else .

Therefore λo ≤ λ∗.

In addition, if uo = b then uo +
λo

c
= b +

λo

c
> b on A1. Consequently λo > 0 on A1 and

λ∗ > 0. It follows that A1 ⊂ A∗ and the proof is complete.

A first convergence result which also justifies the stopping criterion in Step 3 is given in

the following theorem.

Theorem 2.1 If there exists n ∈ N−{0} such that An = An+1 then the algorithm stops and

the last iterate satisfies

(Sn)





−∆yn = un =





b in An

ud +
pn

α
in Ω−An ,

−∆pn = zd − yn in Ω .

λn = pn − α(un − ud) , un ∈ Uad

with

λn = 0 on In and λn > 0 on An . (2.3)

Therefore, the last iterate is the solution of the original optimality system (S).

Proof - If there exists n ∈ N−{0} such that An = An+1, then it is clear that algorithm stops

and the last iterate satisfies (Sn) by construction except possibly for un ∈ Uad.

Thus we have to prove un ∈ Uad and (2.3).

• On In we have λn = 0 by step 5 of the Algorithm. Moreover un +
λn

c
= un ≤ b, since

In = In+1.

• On An we get un = b and un +
λn

c
> b since An = An+1.Therefore λn > 0 on An and

un ∈ Uad.

To prove that the last iterate is a solution of the original optimality system (S), it remains

to show that

λn = c[un +
λn

c
−Π(un +

λn

c
)] .

• On In we have λn = 0 and un +
λn

c
= un ≤ b. It follows that

un +
λn

c
−Π(un +

λn

c
) = un −Π(un) = 0 = λn .
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• On An we get un = b, λn > 0 and therefore

c[un +
λn

c
−Π(un +

λn

c
)] = c[b +

λn

c
− b] = λn .

Now we give a structural property of the algorithm :

Lemma 2.2 If un is feasible for some n ∈ N− {0} (i.e. un ≤ b) then An+1 ⊂ An .

Proof - On In we get λn = 0 by construction, so that un+
λn

c
= un ≤ b (because of feasibility).

This implies In ⊂ In+1 and consequently An+1 ⊂ An .

Note that Theorem 2.1 and in particular (2.3) does not utilize or imply strict complemen-

tarity. In fact, if (2.3) holds, then the set of x for which un(x) = b and λn(x) = 0 is contained

in In.

We end this section with “simple cases” where we may conclude easily that the algorithm

is convergent.

Theorem 2.2 For initialization (2.1), the Algorithm converges in one iteration in the fol-

lowing cases

1. zd ≤ 0, ud = 0 , b ≥ 0 and the solution to −α∆u−∆−1u = zd is nonpositive.

2. zd ≥ 0, b ≤ 0, ud > b or

zd ≥ 0, b ≤ 0, ud ≥ b and zd + ∆−1b is not zero as element in L2(Ω).

Proof - Let us first examine case 1. The maximum principle implies that −∆−1uo ≥ 0 .

Consequently zd + ∆−1uo ≤ 0 and by a second application of the maximum principle

−∆−1(zd + ∆−1uo) ≤ 0 .

Together with the fact that ud − b = −b ≤ 0, this implies

λo = max(0, α(ud − b)−∆−1(zd + ∆−1uo)) = 0 .

Therefore A1 = ∅ and I1 = Ω.

Using the first iteration we obtain u1 =
p1

α
in Ω. Moreover −∆y1 = u1 and −∆p1 = zd − y1

imply that

−α∆u1 −∆−1u1 = zd .

By assumption u1 is feasible. Therefore A2 = A1 = ∅ and by Theorem 2.1 the algorithm

stops at the solution to (P).

Now we consider case 2. By assumption and due to (2.1) we have zd ≥ 0, b ≤ 0 , λo ≥ 0 and

A1 = { λo > 0 }. Due to the maximum principle −∆−1uo ≤ 0 and

po = −∆−1(zd − yo) = −∆−1[zd − (−∆−1uo)] ≥ 0 .

7



Moreover if zd +∆−1b is not the zero element in L2(Ω), then po > 0 in Ω and α(ud−b)+po >

α(ud − b).

If ud > b or (ud = b and zd + ∆−1b 6= 0) then λo = max(0, α(ud − b) + po) > 0 in Ω ( and

λo = 0 on ∂Ω). Consequently A1 = Ω and u1 = b, λ1 = −∆−1(zd + ∆−1b) + α(ud − b) > 0.

This yields A2 = A1 = Ω and the algorithm stops.

3 Convergence analysis

3.1 The Continuous Case

The convergence analysis of the Algorithm is based on the decrease of appropriately chosen

merit functions. For that purpose we define the following augmented Lagrangian functions

Lc(y, u, λ) = J(y, u) + (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2 and L̂c(y, u, λ) = Lc(y, u, λ+) ,

where (·, ·) is the L2(Ω)-inner product, ‖·‖ is the L2(Ω)-norm, λ+ = max(λ, 0) and ĝc(u, λ) =

max(g(u),−λ
c ) with g(u) = u− b. Further (·, ·)|S and ‖ · ‖|S denote the L2-inner product and

norm on a measurable subset S ⊂ Ω. Note that the mapping

u 7→ (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2 ,

is C1, which is not the case for the function given by

u 7→ (λ, g(u)) +
c

2
‖max(g(u), 0)‖2 .

The following relationship between primal and dual variables will be essential.

Lemma 3.1 For all n ∈ N− {0} and (y, u) ∈ H1
o (Ω)× L2(Ω) satisfying −∆y = u we have

J(yn, un)− J(y, u) = −1
2
‖y − yn‖2 − α

2
‖u− un‖2 + (λn, u− un)|An

(3.1)

Proof - Using ‖a‖2 − ‖b‖2 = −‖a− b‖2 + 2 (a− b, a) and Steps 4 and 5 of the Algorithm, we

find that

J(yn, un)− J(y, u) = −1
2
‖y − yn‖2 − α

2
‖u− un‖2 + (yn − y, yn − zd) + α (un − u, un − ud)

= −1
2
‖y − yn‖2 − α

2
‖u− un‖2 + (∆(yn − y), pn) + α (un − u, un − ud)

= −1
2
‖y − yn‖2 − α

2
‖u− un‖2 + (un − u,−pn + α(un − ud))

= −1
2
‖y − yn‖2 − α

2
‖u− un‖2 + (u− un, λn) .

As λn = 0 on In the result follows.
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Let us define

Sn−1 = { x ∈ An−1 | λn−1(x) ≤ 0 } and Tn−1 = { x ∈ In−1 | un−1(x) > b(x) } .

These two sets can be paraphrased by calling Sn−1 the set of elements that the active set

strategy predicts to be active at level n− 1 but the Lagrange multiplier indicates that they

should be inactive, and by calling Tn−1 the set of elements that was predicted to be inactive

but the n− 1st iteration level corrects it to be active. We note that

Ω = (In−1\Tn−1) ∪ Tn−1 ∪ Sn−1 ∪ (An−1\Sn−1) (3.2)

defines a decomposition of Ω in mutually disjoint sets. Moreover we have the following

relation between these sets at each level n:

In = (In−1\Tn−1) ∪ Sn−1 , An = (An−1\Sn−1) ∪ Tn−1 . (3.3)

In fact, as Ω = In ∪ An is is sufficient to prove that

(In−1\Tn−1) ∪ Sn−1 ⊂ In and (An−1\Sn−1) ∪ Tn−1 ⊂ An ,

that is

Sn−1 ⊂ In and Tn−1 ⊂ An .

Since Sn−1 ⊂ An−1 we find un−1 = b on Sn−1. From the definition of Sn−1 we conclude that

λn−1 ≤ 0 so that un−1 +
λn−1

c
≤ b. This implies Sn−1 ⊂ In. The verification of Tn−1 ⊂ An

is quite similar.

For the convenience of the reader we present these sets in Figure 1.

In�1 An�1Tn�1 Sn�1
Figure 1: Decomposition of Ω at levels n− 1 and n

In Figure 1 the shaded region depicts In and the white region is An. The following table

depicts the signs of primal and dual variables for two consecutive iteration levels.
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λn−1 λn un−1 un

Tn−1 = In−1 ∩ An 0 > b = b

Sn−1 = An−1 ∩ In ≤ 0 0 = b

In−1\Tn−1 (⊂ In) 0 0 ≤ b

An−1\Sn−1 (⊂ An) > 0 = b = b

Table 1

Below ‖∆−1‖ will denote the operator norm of ∆−1 in L(L2(Ω)).

Theorem 3.1 If An 6= An−1 and

α + γ ≤ c ≤ α− α2

γ
+

α2

‖∆−1‖2
(3.4)

for some γ > 0, then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1) . In addition, if the second

inequality of (3.4) is strict then either L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) or the Algorithm

stops at the solution to (S).

Proof - A short computation gives

(λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2

=
(

1√
c
λ,
√

c ĝc(u, λ)
)

+
1
2

(√
c ĝc(u, λ),

√
c ĝc(u, λ)

)

=
1
2
‖√c max(g(u),−λ

c
) +

1√
c

λ‖2 − 1
2c
‖λ‖2

=
1
2
‖max(

√
c g(u),− λ√

c
) +

1√
c

λ‖2 − 1
2c
‖λ‖2

=
1
2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2.

Moreover for all (y, u, λ) we find

Lc(y, u, λ) = J(y, u) +
1
2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2 . (3.5)

By assumption An 6= An−1 and hence Sn−1 ∪ Tn−1 6= ∅. Using (3.5) we get

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1) =

J(yn, un)− J(yn−1, un−1)

+
1
2c

[‖max(c g(un) + λ+
n , 0)‖2 − ‖λ+

n ‖2 − ‖max(c g(un−1) + λ+
n−1, 0)‖2 + ‖λ+

n−1‖2
]
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and by (3.1)

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1) =

−1
2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2 + (un−1 − un, λn)Tn−1

+
1
2c

[‖max(c g(un) + λ+
n , 0)‖2 − ‖λ+

n ‖2 − ‖max(c g(un−1) + λ+
n−1, 0)‖2 + ‖λ+

n−1‖2
]

.

(3.6)

It will be convenient to introduce d(x) =

|max(c g(un(x)) + λ+
n (x), 0)|2 − |λ+

n (x)|2 − |max(c g(un−1(x)) + λ+
n−1(x), 0)|2 + |λ+

n−1(x)|2.

Let us estimate d on the four distinct subsets of Ω according to (3.2).

• On In−1\Tn−1 we have λn(x) = λn−1(x) = 0, un−1(x) ≤ b(x) (g(un−1(x)) ≤ 0) and

d(x) = |max(c g(un(x)), 0)|2 − |max(c g(un−1(x)), 0)|2 ≤ c2|un(x)− un−1(x)|2 .

Moreover as λn = pn − α(un − ud) = 0 and λn−1 = pn−1 − α(un−1 − ud) = 0 we have

un(x)− un−1(x) =
pn(x)− pn−1(x)

α
so that

|un(x)− un−1(x)| ≤ 1
α
|pn(x)− pn−1(x)| on In−1\Tn−1

• On Sn−1, λn(x) = 0, λn−1(x) ≤ 0, g(un−1(x)) = 0 , so that d(x) = |max(c g(un(x)), 0)|2 .

Here we used the positivity of λ+ to get λ+
n−1(x) = 0. To estimate d(x) in detail we

consider first the case where un(x) ≥ b(x). Since x ∈ Sn−1 ⊂ In we obtain λn(x) =

pn(x) − α[un(x) − ud(x)] = 0 and hence un(x) =
pn(x)

α
+ ud(x). Moreover, λn−1(x) =

pn−1(x)−α[un−1(x)−ud(x)] ≤ 0 so that ud(x)− b(x) ≤ −pn−1(x)
α

where we used un−1(x) =

b(x). Since by assumption un(x) ≥ b these estimates imply

|un(x)−un−1(x)| = un(x)−b(x) =
pn(x)

α
+ud(x)−b(x) ≤ pn(x)

α
−pn−1(x)

α
=

1
α
|pn(x)−pn−1(x)| .

In addition it is clear that on the set In:

d(x) = |max(c g(un(x)), 0)|2 ≤ c2|un(x)− un−1(x)|2 .

In the second case, un(x) < b(x) so that max(c g(un(x)), 0) = 0 and d(x) = 0.

Finally we have a precise estimate on the whole set In. Let us denote

I∗n = In−1\Tn−1 ∪ {x ∈ Sn−1 | un(x) ≥ b(x)} = In\{x ∈ Sn−1 | un(x) < b(x)} ;

then ∫

In

d(x) dx =
∫

I∗n
d(x) dx = c2‖max(g(un), 0)‖2

I∗n ≤ c2 ‖un − un−1‖2
I∗n . (3.7)

We note that we have proved in addition that

‖un − un−1‖I∗n ≤
‖∆−1‖

α
‖yn − yn−1‖ . (3.8)
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• On An−1\Sn−1, we have g(un−1(x)) = g(un(x)) = 0, λn−1(x) > 0 and hence

d(x) = |max(λ+
n (x), 0)|2 − |λ+

n (x)|2 ≤ 0 . (3.9)

• On Tn−1 we have λn−1(x) = 0, g(un(x)) = 0, g(un−1(x)) > 0 and thus

d(x) = −c2|g(un−1(x))|2 = −c2|un(x)− un−1(x)|2 . (3.10)

Next we estimate the term (λn, un−1 − un)Tn−1
in (3.6):

(λn, un−1 − un)Tn−1
= (λn − λn−1, un−1 − un)Tn−1

= (pn − pn−1, un−1 − un)Tn−1
+ α‖un − un−1‖2

Tn−1
.

and therefore

(λn, un−1 − un)Tn−1
≤ ‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1 + α‖un − un−1‖2

Tn−1
. (3.11)

Inserting (3.7-3.11) into (3.6) we find

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1) ≤

−1
2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2

I∗n −
α

2
‖un−1 − un‖2

In\I∗n −
α

2
‖un−1 − un‖2

Tn−1

+‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1 + α‖un − un−1‖2
Tn−1

+
c

2
‖un−1 − un‖2

I∗n −
c

2
‖un−1 − un‖2

Tn−1
.

(3.12)

Using ab ≤ 1
2
(
a2

ρ
+ ρb2) for every ρ > 0 and relation (3.8), we get for c ≥ α

L̂c(yn, un, λn)− L̂c(yn−1, un−1, λn−1) ≤

−1
2
‖yn−1 − yn‖2 +

(c− α)
2

‖un−1 − un‖2
I∗n +

(α− c)
2

‖un−1 − un‖2
Tn−1

+
‖∆−1‖

2ρ
‖yn−1 − yn‖2 +

ρ‖∆−1‖
2

‖un−1 − un‖2
Tn−1

≤

−1
2
‖yn−1 − yn‖2 +

(c− α)‖∆−1‖2

2α2
‖yn−1 − yn‖2

+
α− c + ρ‖∆−1‖

2
‖un−1 − un‖2

Tn−1
+
‖∆−1‖

2ρ
‖yn−1 − yn‖2 =

1
2

[
(c− α)

‖∆−1‖2

α2
+
‖∆−1‖

ρ
− 1

]
‖yn−1 − yn‖2 +

1
2
(α + ρ‖∆−1‖ − c)‖un−1 − un‖2

Tn−1
.

Setting γ = ρ‖∆−1‖ then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1) provided that
[
[
(c− α)

α2
+

1
γ

]‖∆−1‖2 − 1
]
≤ 0 and α + γ − c ≤ 0 .
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The latter condition is equivalent to

(3.4) α + γ ≤ c ≤ α− α2

γ
+

α2

‖∆−1‖2
.

If the second inequality is strict then L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) except if yn =

yn−1. In this latter case un = un−1 as well and the Algorithm stops at the solution to (S).

Remark 3.1 Note that for the choice γ = α condition (3.4) is equivalent to

2 α ≤ c ≤ α2

‖∆−1‖2
. (3.13)

Remark 3.2 If there exists γ such that (3.4) holds, then necessarily

c > α ≥ 2‖∆−1‖2

holds. Indeed, assume that α < 2‖∆−1‖2. Then

α + γ < α− α2

γ
+ 2α ,

that is

γ2 − 2αγ + α2 = (γ − α)2 < 0 ,

which is a contradiction.

3.2 The Discrete Case

So far we have given a sufficient condition for L̂c to act as a merit function for which the

Algorithm has a strict descent property. In particular this eliminates the possibility of chat-

tering of the Algorithm: it will not return to the same active set a second time. If the control

and state spaces are discretized then the descent property can be used to argue convergence

in a finite number of steps. More precisely, assume that a finite difference or finite element

based approximation to (P) results in

(PN,M)

min JN,M(Y, U) =
1
2
‖M

1
2
1 (Y − Zd)‖2

RN +
α

2
‖M

1
2
2 (U − Ud)‖2

RM ,

S Y = M3 U ,

U ≤ B .

Here Y and Zd denotes vectors in RN corresponding to the discretization of y and zd, and

U, Ud and B denote vectors in RM , corresponding to the discretizations of u, ud and b.

Further M1, S and M2 are respectively N ×N, N ×N and M ×M positive definite matrices

while M3 is an N × M matrix. The norms in (PN,M) denote Euclidian norms and the

inequality is understood coordinatewise. Finally, it is assumed that M2 is a diagonal matrix.
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It is simple to argue the existence of a solution (Y ∗, U∗) to (PN,M). A first order optimality

system is given by 



S Y ∗ = M3 U∗

S P ∗ = −M1(Y ∗ − Zd)

U∗ = Ud +
1
α

M−1
2 (M>

3 P ∗ − Λ∗)

Λ∗ = c max(0, U∗ +
1
c
Λ∗ −B) ,

(3.14)

with (P ∗, Λ∗) ∈ RN × RM , for every c > 0. Here max is understood coordinatewise. The

algorithm for the discretized problem is given next.

Discretized Algorithm

1. Initialization : choose Y o, Uo and Λo, and set n = 1.

2. Determine the following subsets of {1, . . . ,M} :

An = { i | Un−1
i +

1
c
Λn−1

i > Bi } , In = {1, . . . , M}\An .

3. If n ≥ 2 and An = An−1 then stop.

4. Else, find (Y n, Pn) ∈ RN × RN such that

S Y n = M3





B in An

Ud +
1
α

M−1
2 M>

3 Pn in In ,

S Pn = −M1(Y n − Zd)

and set

Un =





B in An

Ud +
1
α

M−1
2 M>

3 Pn in In ,

5. Set Λn = M>
3 Pn − αM2(Un − Ud), update n = n + 1 and goto 2.

The following corollary describing properties of the Discretized Algorithm can be obtained

with techniques analogous to those utilized above for analysing the continuous Algorithm.

We shall denote

m2 = min
i

(M2)i,i, m2 = max
i

(M2)i,i and K = ‖M−1
2 M>

3 ‖ ‖S−1M1‖ .

Corollary 3.1 If

m2 (α + γ) ≤ c < α m2 − α2

γ
+

α2‖M1‖
K

(3.15)

holds for some γ > 0 then the Discretized Algorithm converges in finitely many steps to the

solution of (PN ).
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Proof - First we observe that if the Discretized Algorithm stops in Step 3 then the current iter-

ate gives the unique solution. Then we show with an argument analogous to that of the proof

of Theorem 3.1 that with (3.15) holding, we have LN,M
c (Yn, Un, Λn) < LN,M

c (Yn−1, Un−1, Λn−1)

or (Yn, Un) = (Yn−1, Un−1), where the discretized merit function is given by

LN,M
c (Y, U,Λ) =

1
2
‖M

1
2
1 (Y−Zd)‖2

RN +
α

2
‖M

1
2
2 (U−Ud)‖2

RM +(Λ, ĝc(U,Λ))RM +
c

2
‖ĝc(U,Λ)‖2

RM ,

with ĝc(U,Λ) = (max(U1−B1,−Λ1
c ), . . . ,max(UM−BM ,−ΛM

c ))>. If (Yn, Un) = (Yn−1, Un−1)

then An+1 = An and the Discretized Algorithm stops at the solution. The case LN,M
c (Yn, Un, Λn) <

LN,M
c (Yn−1, Un−1, Λn−1) cannot occur for infinitely many n since there are only finitely many

different combinations of active index sets. In fact, assume that there exists p < n such that

An = Ap and In = Ip. Since (Yn, Un) is a solution of the optimality system of Step 4 if and

only if (Yn, Un) is the unique solution of

min{ JN,M(y, u) | S Y = M3 U, U = B in An } ,

it follows that Yn = Yp, Un = Up and Λn = Λp. This contradicts LN,M
c (Yn, Un, Λn) <

LN,M
c (Yp, Up,Λp) and ends the proof.

4 Ascent properties of Algorithm

In the previous section sufficient conditions for convergence of the Algorithm in terms of α, c

and ‖∆−1‖ were given. Numerical experiments showed that the Algorithm converges also for

values of α, c and ‖∆−1‖ which do not satisfy the conditions of Theorems 3.1. In fact the only

possibility of constructing an example for which the Algorithm has some difficulties (which

will be made precise in the following section) is based on violating the strict complementarity

condition.

Thus one is challenged to further justify theoretically the efficient behavior of the Algo-

rithm. In the tests that were performed it was observed that the cost functional was always

increasing so that in practice the Algorithm behaves like an infeasible algorithm. To par-

allel theoretically this behavior of the Algorithm as far as possible, we slightly modify the

Algorithm. For the modified Algorithm an ascent property of the cost J will be shown.

Modified Algorithm

1. Initialization : choose uo, yo and λo; set n = 1.

2. (a) Determine the following subsets of Ω :

An = { x | un−1(x) +
λn−1(x)

c
> b } , In = { x | un−1(x) +

λn−1(x)
c

≤ b } ,
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(b) and find (ỹ, p̃) ∈ H1
o (Ω)×H1

o (Ω) such that

−∆ỹ =





b in An

ud +
p̃

α
in In ,

−∆p̃ = zd − ỹ in Ω .

and set

ũ =





b in An

ud +
p̃

α
in In ,

3. λ̃ = p̃− α(ũ− ud) .

4. Set

Ã = { x | ũ(x) +
λ̃(x)

c
> b} .

If Ã = An then stop, else goto 5.

5. Check for J(ỹ, ũ) > J(yn−1, un−1).

(a) If J(ỹ, ũ) > J(yn−1, un−1) then

n = n + 1, yn = ỹ, un = ũ, λn = λ̃ and goto 2a.

(b) Otherwise, determine

Tn−1 = { x ∈ In−1 | un−1(x) > b } .

• If measure of Tn−1 is null then stop;

• else set

An = An−1 ∪ Tn−1 , In = In−1\Tn−1 ,

then goto 2b.

Theorem 4.1 If the Modified Algorithm stops in Step 4, then (ũ, ỹ, λ̃) is the solution to (S).

If it never stops in Step 5b, then the sequence J(yn, un) (n ≥ 2) is strictly increasing and

converges to some J∗.

Proof - Let us first assume that the algorithm stops in Step 4. In case An is calculated from

2a then (ũ, ỹ, λ̃) is the solution to (S) by Theorem 2.1. If An is determined from 5b then

an argument analogous to that used in the proof of Theorem 2.1 allows to argue that again

(ũ, ỹ, λ̃) is the solution to (S).

Next we assume that algorithm never stops in Step 4. Let us consider an iteration level,

where the check for ascent in Step 5a is not passed. Consequently An and In are redefined
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according to step 5b and (ỹ, ũ) are recalculated from 2b. We have already noticed that (ỹ, ũ)

is a solution of the optimality system of Step 2b if and only if (ỹ, ũ) is the unique solution of

(Paux ) min{ J(y, u) | −∆y = u in Ω , y ∈ H1
o (Ω), u = b in An } .

Since An = An−1 ∪ Tn−1 strictly contains An−1 it necessary follows that

J(yn−1, un−1) ≤ J(ỹ, ũ) . (4.1)

It will next be shown that equality in (4.1) is impossible. In fact if J(ỹ, ũ) = J(yn−1, un−1)

then due to uniqueness of the solution to (Paux ) it follows that (ỹ, ũ) = (yn−1, un−1) and

consequently λ̃ = λn−1. On An = An−1 ∪ Tn−1, we get ũ = b = un−1. This implies that

un−1 = b on Tn−1 and gives a contradiction to the assumption that the measure of Tn−1

is non null. Hence J(yn−1, un−1) = J(ỹ, ũ) is impossible. Together with (4.1) it follows

that J(yn−1, un−1) < J(ỹ, ũ) and thus the sequence {J(yn, un)} generated by the Modified

Algorithm is strictly increasing. The pair (yb, b) with −∆yb = b in Ω is feasible for all (Paux )

so that J(yn, un) ≤ J(yb, b) . It follows that J(yn, un) is convergent to some J∗.

We note, in addition that ũ is feasible since ũ = un−1 = un−1 + λn−1

c ≤ b on In (λn−1 = λ̃ = 0

on In).

The previous result can be strengthened in the case where (P) is discretized as in subsec-

tion 3.1.

Corollary 4.1 If the Modified Algorithm is discretized as described in the previous section

and if it never stops in Step 5b, then the (discretized) solution is obtained in finitely many

steps.

Proof - Unless the algorithm stops in Step 4, the values of JN (Yn, Un) (n ≥ 2) are strictly

increasing. As argued in the proof of Corollary 3.1 at each level of the iteration the mini-

mization is carried out over an active set different from all those that have been computed

before. As there are only finitely many different possibilities for active sets, the Modified

Algorithm terminates in Step 4 at the unique solution of (S).

We have not found a numerical example in which the Modified Algorithm terminates in

Step 5b.

5 Numerical Experiments

In this section we report on numerical tests with the proposed Algorithm. For these tests

we chose Ω =]0, 1[×]0, 1[ and the five-point finite difference approximation of the Laplacian.

Unless otherwise specified the discretization was carried out on a uniform mesh with grid size

1/50.
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For the chosen dimension ‖∆−1‖ =
1

2π2
so that

1
‖∆−1‖2

= 4π4 ' 390. Relation (3.13)

which is required for the applicability of Theorem 3.1 is satisfied if α ≥ 5. 10−3 to get the

convergence via Theorem 3.1. Nevertheless we have also tested the method for smaller values

of α.

The tests were performed on an HP Work station using the MATLAB c© package.

5.1 Example 1

We set

zd(x1, x2) = sin (2πx1) sin (2πx2) exp(2x1)/6 , b ≡ 0 .

Several tests for different values for α, c and ud were performed. We present two of them.

For the first one (3.13) is satisfied with strict inequalities.

Table 2

Example 1.a: ud ≡ 0 , α = 10−2 , c = 10−1

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.8708e-02 1250 4.190703e-02 4.190785e-02 4.190785e-02

2 5.8230e-05 1331 4.190712e-02 4.190712e-02 4.190712e-02

3 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02

4 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02

Let us give plots of the optimal control and state.
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Figure 2: Optimal State Figure 3: Optimal control
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We present below a second example where (3.13) is not fulfilled because α is too small; in

addition ud has been chosen infeasible.

Table 3

Example 1.b: ud ≡ 1 , α = 10−6 , c = 10−2

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 5.0986e+02 1250 1.734351e-02 9.858325e+00 9.858325e+00

2 4.4728e+02 1487 2.089663e-02 7.688683e+00 7.688683e+00

3 3.6796e+02 1677 2.375001e-02 5.612075e+00 5.612075e+00

4 5.8313e+02 1831 2.603213e-02 4.526200e+00 4.526200e+00

5 6.7329e+02 1944 2.782111e-02 3.657995e+00 3.657995e+00

6 5.3724e+02 2039 2.911665e-02 2.402021e+00 2.402021e+00

7 3.6175e+02 2098 2.981378e-02 1.191161e+00 1.191161e+00

8 1.5071e+02 2146 3.011540e-02 3.678089e-01 3.678089e-01

9 6.5928e+01 2178 3.018832e-02 7.796022e-02 7.796022e-02

10 2.3420e+01 2196 3.019715e-02 3.344241e-02 3.344241e-02

11 3.4889e+00 2208 3.019762e-02 3.022994e-02 3.022994e-02

12 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02

13 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02

Though the size of the set An, in the sense of number of grid points in An is increasing,

the sequence An does not increase monotonically. More precisely points in An at iteration n

may not belong to An+1 at iteration n + 1.

We observe numerically that the algorithm stops as soon as an iterate is feasible. So the

sequence of iterates is not feasible until it reaches the solution. We could say that we have

an “outer” method. We must also underline that differently from classical primal active set

methods, the primal-dual method that we propose can move a lot of points from one iteration

to the next.

We compared the new Algorithm to an Uzawa method for the augmented Lagrangian

with Gauss-Seidel splitting. For convenience we recall that algorithm.

Algorithm : UGS

• Step 1. Initialization : Set n = 1 and choose γ > 0.
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Choose qo ∈ L2(Ω) and u−1 ∈ L2(Ω) .

• Step 2. Choose kn ∈ N, set u−1
n = un−1 and for j = 0, . . . , kn

yj
n = Arg min { Lγ(y, uj−1

n , qn) | y ∈ H2(Ω) ∩H1
o (Ω) }

uj
n = Arg min { Lγ(yj

n, u, qn) | u ∈ Uad } .

End of the inner loop : yn = ykn
n , un = ukn

n .

• Step 3.
qn+1 = qn +

ρ

kn + 1

kn∑

j=0

(Ayj
n − uj

n), where ρ ∈ (0, 2γ] ,

where

Lγ(y, u, q) = J(y, u) + (q,Ay − u)L2(Ω) +
γ

2
‖Ay − u‖2

L2(Ω).

For this algorithm a detailed convergence analysis was given in [BK]. Due to the splitting

technique the second constrained minimization in Step 2 can be carried out by a simple

algebraic manipulation. Algorithm UGS is an iterative algorithm that approximates the

solution (y∗, u∗), whereas the new Algorithm obtains the exact (discretized) solution. For

Example 1a. the computing time was 61 secs whereas the Algorithm UGS with accuracy set

at 10−3 was stopped after 105 min. At that moment the difference between the Algorithm

and Algorithm UGS was

|Jugs − J(y∗, u∗)| ≈ 4.10−8, ‖yugs − y∗‖L∞ ≈ 8.10−7 and ‖uugs − u∗‖L∞ ≈ 4.10−6 ,

where the index “ugs” refers to the result from Algorithm UGS. For Example 1.b the Algo-

rithm took 191 secs whereas Algorithm UGS was stopped after 120 min.

5.2 Example 2

The desired state zd, b are set as in the previous example and α = 10−2, c = 10−1. This

example has been constructed such that there is no strict complementarity at the solution.

More precisely we have set ud = b− 1
α

[−∆−1zd + ∆−2b] so that the exact solution of problem

(P) is u∗ = b = 0 and λ∗ = 0 and hence λ∗ is not positive where the constraint is active.

This example was considered by means of the optimality system (S) of Theorem 1.1.
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Table 4

uo ≡ 0 (≡ b)

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.4409e-15 1385 4.296739e-02 4.296739e-02 4.296739e-02

2 1.2546e-14 160 4.296739e-02 4.296739e-02 4.296739e-02

3 3.2752e-15 2078 4.296739e-02 4.296739e-02 4.296739e-02

4 4.5519e-15 2308 4.296739e-02 4.296739e-02 4.296739e-02

5 4.5242e-15 1613 4.296739e-02 4.296739e-02 4.296739e-02

6 4.3299e-15 1787 4.296739e-02 4.296739e-02 4.296739e-02

Here the canonical initial guess uo coincides with the solution u∗. From the Table 3 we

observe that un, J(yn, un), Lc(yn, un) and L̂c(yn, un) remain constant while the active sets

An chatter. For different initial guesses for uo the same type of behavior is observed, the

Algorithm always reaches the optimal value for u and J in one iteration, and if the stopping

criterion of the Algorithm was based on the coincidence of two consecutive values of J it would

stop after one iteration. The chattering of active sets is due to lack of strict complementarity

and machine precision. Let us briefly consider this phenomenon and note at first that the

signs in the Algorithm are set such that at the limit we should have Ω = I∗ (all inactive with

λ∗ = u∗ = 0). If x ∈ An−1 then un−1(x) = 0 by Step 4 and λn−1(x) = ±ε, with ε equal to

the computer epsilon, will decide whether x ∈ An or In, although for numerical purposes the

exact pair for (u, λ) is already obtained. If x ∈ In−1 then λn−1 = 0 and un−1(x) = ±ε will

decide whether x ∈ An or In, while the influence of this choice on J or Lc is of the order of

ε2 i.e. it is numerically zero. Therefore we decided to replace “> b” in the definition of An

by “> b − ε ” (and In = Ω\An ): the algorithm behaves now as expected and stops after 2

iterations.

5.3 Example 3

We have seen with Example 1. that the augmented Lagrangian function decreases during

iterations. We show with this example that the augmented Lagrangian function may not

decrease though the method is convergent and provides the exact solution. Let us precise the

data :

zd =

{
200 x1x2 (x1 − 1

2)2 (1− x2) if 0 < x1 ≤ 1/2 ,

200 x2 (x1 − 1)(x1 − 1
2)2 (1− x2) if 1/2 < x1 ≤ 1 ,

ud ≡ 0 , b ≡ 1, c = 10−2 .
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Table 5

Example 3.a: α = 10−6, uo ≡ 1 (≡ b)

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.1995e+02 1100 3.314755e-02 9.645226e+00 9.645226e+00

2 3.8057e+02 1370 3.672870e-02 7.943326e+00 7.943326e+00

3 3.6453e+02 1300 3.963515e-02 7.393744e+00 7.393744e+00

4 3.7512e+02 1400 4.249987e-02 7.809205e+00 7.809205e+00

5 3.8952e+02 1500 4.555558e-02 8.300084e+00 8.300084e+00

6 3.9452e+02 1600 4.880515e-02 8.320358e+00 8.320358e+00

7 3.8004e+02 1700 5.203947e-02 7.485445e+00 7.485445e+00

8 3.3858e+02 1800 5.490267e-02 5.699382e+00 5.699382e+00

9 2.6458e+02 1898 5.701220e-02 3.286759e+00 3.286759e+00

10 1.5311e+02 1986 5.811845e-02 1.093548e+00 1.093548e+00

11 8.3048e+01 2040 5.834162e-02 3.099587e-01 3.099587e-01

12 1.5809e+01 2086 5.839423e-02 5.959874e-02 5.959874e-02

13 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02

14 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02

The solution was obtained in 210 secs.

The following plot shows the influence of α on the behavior of the Lagrangian function Lc.

0 5 10 15 20 25
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−2
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0

1

2

3

4

alpha=1e−7

alpha=1e−6

alpha=1e−5

alpha=1e−4

Iterations

Lc

Figure 4: Influence of α on the behavior of Lc (Logarithmic scale)
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We see that during the first iterations the augmented Lagrangian function does not de-

crease if α is too small.

However, if the initialization point is close enough the solution then this function becomes

decreasing. We have tested initialization points different from b which were closer to the

solution and obtained decrease of Lc. As an example we give in Table 6 the results for

α = 10−10 with an initialization according to (2.1) but with uo the solution for α = 10−5

Table 6

Example 3.b: α = 10−10, uo given by the solution to (P) for α = 10−5

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn)

1 1.6605e+03 1986 5.696032e-02 4.889158e+01

2 1.4741e+03 2034 5.750110e-02 2.948470e+01

3 1.1542e+03 2082 5.781067e-02 1.299992e+01

4 6.8931e+02 2130 5.793424e-02 2.631407e+00

5 1.6713e+02 2168 5.795024e-02 2.198494e-01

6 1.1931e+02 2172 5.795048e-02 1.276798e-01

7 7.0091e+01 2176 5.795058e-02 7.857522e-02

8 2.0618e+01 2180 5.795061e-02 5.958497e-02

9 0.0000e+00 2182 5.795061e-02 5.795061e-02

10 0.0000e+00 2182 5.795061e-02 5.795061e-02

Note that the total number of iterations including the initialization with α = 10−5 to

obtain the solution corresponding for α = 10−10 is equal to 18. If one computes the solution

with initialization uo = b, the number of iterations is 27 and Lc decreases after iteration 12.

Thus a good initial guess can decrease the number of iterations to obtain the solution. This

process was repeated successfully for smaller values of α up to α = 10−15 as well.
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THE PRIMAL-DUAL ACTIVE SET STRATEGY AS A
SEMI-SMOOTH NEWTON METHOD

M. HINTERMÜLLER, K. ITO, AND K. KUNISCH

Abstract. This paper addresses complementarity problems mo-
tivated by constrained optimal control problems. It is shown that
the primal-dual active set strategy, which is known to be extremely
efficient for this class of problems, and a specific semi-smooth New-
ton method lead to identical algorithms. The notion of slant dif-
ferentiability is recalled and it is argued that the max-function
is slantly differentiable in Lp-spaces when appropriately combined
with a two-norm concept. This leads to new local convergence re-
sults of the primal-dual active set strategy. Global unconditional
convergence results are obtained by means of appropriate merit
functions.

1
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1. Introduction

This paper is motivated by linearly constrained quadratic problems
of the type

(P)

{
min J(y) = 1

2
(y,Ay)− (f, y)

subject to y ≤ ψ

where A is positive definite and f, ψ are given. In previous contribu-
tions [IK1, IK2, BIK, BHHK] we proposed a primal-dual active set
strategy as an extremely efficient method to solve (P). We shall show
in the present work that the primal-dual active set method can be
interpreted as a semi-smooth Newton method. This opens up a new
interpretation and perspective of analyzing the primal-dual active set
method. Both the finite dimensional case with y ∈ Rn and the infinite
dimensional case with y ∈ L2(Ω) will be considered. While our results
are quite generally applicable the main motivation arises from infinite
dimensional constrained variational problems and their discretization.
Frequently such problems have a special structure which can be ex-
ploited. For example, in the case of discretized obstacle problems A
can be an M–matrix, and for constrained optimal control problems A
is a smooth additive perturbation of the identity operator.

The analysis of semi-smooth problems and the Newton–algorithm
to solve such problems has a long history for finite dimensional prob-
lems. We refer to selected papers [Q1, Q2, QS] and the references given
there. Typically, under appropriate semi-smoothness and regularity as-
sumptions locally superlinear convergence rates of semi-smooth Newton
methods are obtained. Since many definitions used in the above papers
depend on Rademacher’s theorem, which has no analogue in infinite di-
mensions, very recently e.g. in [CNQ, U] new concepts for generalized
derivatives and semi-smoothness in infinite dimensional spaces were
introduced. In our work we use primarily the notion of slant differ-
entiability from [CNQ] which we recall for the reader’s convenience at
the end of this section. For the problem under consideration it coin-
cides with the differentiability concept in [U]. This will be explained
in Section 4.

Let us briefly outline the structure of the paper. In Section 2 the re-
lationship between the primal-dual active set method and semi-smooth
Newton methods is explained. Local as well as global convergence for
finite dimensional problems which is unconditional with respect to ini-
tialization in certain cases is addressed in Section 3. The global conver-
gence results depend on properties of the matrix A. For instance, the
M-matrix property required in Theorem 3.2 is typically obtained when
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discretizing obstacle problems (see e.g. [H, KNT]) by finite differences
or finite elements. Theorem 3.3 can be connected to discretizations of
control constrained optimal control problems. Some relevant numeri-
cal aspects of the conditions of Theorem 3.3 are discussed at the end
of Section 4. An instance of the perturbation result of Theorem 3.4
is given by discretized optimal control problems with sufficiently small
cost parameter. Perturbations of M-matrices resulting from discretized
obstacle problems and state constrained optimal control problems (see
e.g. [C]) fit into the framework of Theorem 3.4. In Section 4 slant dif-
ferentiability properties of the max-function between function spaces
are analyzed. Superlinear convergence of semi-smooth Newton meth-
ods for optimal control problems with pointwise control constraints is
proved. Several alternative methods were analyzed to solve optimal
control problems with pointwise constraints on the controls. Among
them are the projected Newton method, analyzed e.g. in [HKT, KS],
and affine scaling interior point Newton methods [UU]. We plan to
address nonlinear problems in future work. Let us stress, however,
that nonlinear iterative methods frequently rely on solving auxiliary
problems of the type (P) and solving them efficiently is important.

To briefly describe some of the previous work in the primal dual ac-
tive set method, we recall that this method arose as a special case of
generalized Moreau-Yosida approximations to nondifferentiable convex
functions [IK1]. Global convergence proofs based on a modified aug-
mented Lagrangian merit function are contained in [BIK]. In [BHHK]
comparisons between the primal-dual active set method and interior
point methods are carried out. In [IK2] the primal-dual active set
method was used to solve optimal control of variational inequalities
problems. For this class of problems convergence proofs are not yet
available.

We now turn to the notion of differentiability which will be used in
this paper. Let X and Z be Banach spaces and consider the nonlinear
equation

(1.1) F (x) = 0 ,

where F : D ⊂ X → Z, and D is an open subset of X.

Definition 1. The mapping F : D ⊂ X → Z is called slantly differen-
tiable in the open subset U ⊂ D if there exists a family of mappings
G : U → L(X, Z) such that

(A) lim
h→0

1

‖h‖ ‖F (x + h)− F (x)−G(x + h)h‖ = 0,

for every x ∈ U .
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We refer to G as a slanting function for F in U . Note that G is not
required to be unique to be a slanting function for F in U . The defini-
tion of slant differentiability in an open set is a slight adaptation of the
terminology introduced in [CNQ], where in addition it is required that
{G(x) : x ∈ U} is bounded in L(X,Z). In [CNQ] also the term slant
differentiability at a point is introduced. In applications to Newton’s
method this presupposes knowledge of the solution, whereas slant dif-
ferentiability of F in U requires knowledge of a set which contains the
solution. Under the assumption of slant differentiability in an open set
Newton’s method converges superlinearly for appropriate choices of the
initialization. Thus the assumption of slant differentiability in an open
set parallels the hypothesis of knowledge of the domain within which
a second order sufficient optimality condition is satisfied for smooth
problems.

Kummer [K2] introduced a notion similar to slant differentiability
at a point and coined the name Newton map. He also pointed out the
discrepancy between the requirements needed for numerical realization
and for the proof of superlinear convergence of the semi-smooth Newton
method.

The following convergence result is already known [CNQ].

Theorem 1.1. Suppose that x∗ is a solution to (1.1) and that F is
slantly differentiable in an open neighborhood U containing x∗ with
slanting function G(x). If G(x) is nonsingular for all x ∈ U and
{‖G(x)−1‖ : x ∈ U} is bounded, then the Newton–iteration

xk+1 = xk −G(xk)−1F (xk)

converges superlinearly to x∗ provided that ‖x0 − x∗‖ is sufficiently
small.

We provide the short proof since it will be used to illustrate the
subsequent discussion.

Proof. Note that the Newton iterates satisfy

(1.2) ‖xk+1 − x∗‖ ≤ ‖G(xk)−1‖ ‖F (xk)− F (x∗)−G(xk)(xk − x∗)‖,
provided that xk ∈ U . Let B(x∗, r) denote a ball of radius r centered
at x∗ contained in U and let M be such that ‖G(x)−1‖ ≤ M for all
x ∈ B(x∗, r). We apply (A) with x = x∗. Let η ∈ (0, 1] be arbitrary.
Then there exists ρ ∈ (0, r) such that

(1.3) ‖F (x∗ + h)− F (x∗)−G(x∗ + h)h‖ <
η

M
‖h‖ ≤ 1

M
‖h‖

for all ‖h‖ < ρ. Consequently, if we choose x0 such that ‖x0−x∗‖ < ρ,
then by induction from (1.2), (1.3) with h = xk − x∗ we have ‖xk+1 −
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x∗‖ < ρ and in particular xk+1 ∈ B(x∗, ρ). It follows that the iterates
are well-defined. Moreover, since η ∈ (0, 1] is chosen arbitrarily xk →
x∗ converges superlinearly. ¤

Note that replacing property (A) by a condition of the type

lim
h→0

1

‖h‖ ‖F (x)− F (x− h)−G(x)h‖ = 0

would require a uniformity assumption with respect to x ∈ U , for
Theorem 1.1 to remain valid in case X is infinite dimensional.

Let us put the concept of slant differentiability into a perspective
with the notion of semi-smoothness as introduced in [QS] in finite di-
mensions. Semi-smoothness of F : U ⊂ Rn → Rm in the sense of Qi
and Sun [QS] implies

(1.4) ‖F (x + h)− F (x)− V h‖ = O(‖h‖) ,

for x ∈ U , where V is an arbitrary element of the generalized Jacobian
∂F (x + h) in the sense of Clarke [C, Prop. 2.6.2]. Thus, slant dif-
ferentiability introduced in Definition 1 is a more general concept. In
fact, the slanting functions according to Definition 1 are not required
to be elements of ∂F (x + h). On the other hand, if (1.4) holds for
x ∈ U ⊂ Rn, then a single-valued selection V (x) ∈ ∂F (x), x ∈ U ,
serves as a slanting function in the sense of Definition 1.

We shall require the notion of a P-matrix which we recall next.

Definition 2. An n× n-matrix is called a P-matrix if all its principal
minors are positive.

It is well-known [BP] that A is a P-matrix if and only if all real
eigenvalues of A and of its principal submatrices are positive. Here B
is called a principal submatrix of A if it arises from A by deletion of
rows and columns from the same index set J ⊂ {1, . . . , n}.

2. The primal-dual active set strategy as semi-smooth
Newton method

In this section we consider complementarity problems of the form

(2.1)

{
Ay + λ = f,
y ≤ ψ, λ ≥ 0, (λ, y − ψ) = 0 ,

where (·, ·) denotes the inner product in Rn, A is an n × n-valued P-
matrix and f , ψ ∈ Rn. The assumption that A is a P-matrix guarantees
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the existence of a unique solution (y∗, λ∗) ∈ Rn × Rn of (2.1) [BP]. In
case A is symmetric positive definite (2.1) is the optimality system for

(P)





min J(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ.

Note that the complementarity system given by the second line in (2.1)
can equivalently be expressed as

(2.2) C(y, λ) = 0, where C(y, λ) = λ−max(0, λ + c(y − ψ)),

for each c > 0. Here the max–operation is understood component-wise.
Consequently (2.1) is equivalent to

(2.3)

{
Ay + λ = f
C(y, λ) = 0.

The primal-dual active set method is based on using (2.2) as a predic-
tion strategy, i.e. given a current primal-dual pair (y, λ) the choice for
the next active and inactive sets is given by

I = {i : λi + c(y − ψ)i ≤ 0}, and A = {i : λi + c(y − ψ)i > 0}.
This leads to the following algorithm.

Primal-dual active set algorithm.

(i) Initialize y0, λ0. Set k = 0.
(ii) Set Ik = {i : λk

i +c(yk−ψ)i ≤ 0}, Ak = {i : λk
i +c(yk−ψ)i > 0}.

(iii) Solve

Ayk+1 + λk+1 = f

yk+1 = ψ on Ak, λ
k+1 = 0 on Ik.

(iv) Stop, or set k = k + 1 and return to (ii).

Above we utilize yk+1 = ψ on Ak to stand for yk+1
i = ψi for i ∈ Ak.

Let us now argue that the above algorithm can be interpreted as a
semi-smooth Newton method. For this purpose it will be convenient
to arrange the coordinates in such a way that the active and inac-
tive ones occur in consecutive order. This leads to the block matrix
representation of A as

A =

(
AIk

AIkAk

AAkIk
AAk

)
,

where AIk
= AIkIk

and analogously for AAk
. Analogously the vector

y is partitioned according to y = (yIk
, yAk

) and similarly for f and
ψ. In Section 3 we shall argue that v → max(0, v) from Rn → Rn
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is slantly differentiable with a slanting function given by the diagonal
matrix Gm(v) with diagonal elements

Gm(v)ii =

{
1 if vi > 0,
0 if vi ≤ 0.

Here we use the subscript m to indicate particular choices for the slant-
ing function of the max-function. Note that Gm is also an element of
the generalized Jacobian (see [C, Definition 2.6.1]) of the max-function.
Semi-smooth Newton methods for generalized Jacobians in Clarke’s
sense were considered e.g. in [Q1, QS].

The choice Gm suggests a semi-smooth Newton step of the form

(2.4)




AIk
AIkAk

IIk
0

AAkIk
AAk

0 IAk

0 0 IIk
0

0 −cIAk
0 0







δyIk

δyAk

δλIk

δλAk


=−




(Ayk + λk − f)Ik

(Ayk + λk − f)Ak

λk
Ik−c(yk − ψ)Ak




where IIk
and IAk

are identity matrices of dimensions card(Ik) and
card(Ak). The third equation in (2.4) implies that

(2.5) λk+1
Ik

= λk
Ik

+ δλIk
= 0

and the last one yields

(2.6) yk+1
Ak

= ψAk
.

Equations (2.5) and (2.6) coincide with the conditions in the second
line of step (iii) in the primal-dual active set algorithm. The first two
equations in (2.4) are equivalent to Ayk+1 +λk+1 = f , which is the first
equation in step (iii).

Combining these observations we can conclude that the semi-smooth
Newton update based on (2.4) is equivalent to the primal-dual active
set strategy.

We also note that the system (2.4) is solvable since the first equation
in (2.4) together with (2.5) gives

(A δy)Ik
+ (A yk)Ik

= fIk
,

and consequently by (2.6)

(2.7) AIk
yk+1
Ik

= fIk
− AIkAk

ψAk
.

Since A is a P-matrix AIk
is regular and (2.7) determines yk+1

Ik
. The

second equation in (2.4) is equivalent to

(2.8) λk+1
Ak

= fAk
− (Ayk+1)Ak

.
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In Section 4 we shall consider (P) in the space L2(Ω). Again one can
show that the semi-smooth Newton update and the primal-dual active
set strategy coincide.

3. Convergence analysis: the finite dimensional case

This section is devoted to local as well as global convergence analysis
of the primal-dual active set algorithm to solve

(3.1)

{
Ay + λ = f
λ−max(0, λ + c(y − ψ)) = 0,

where f ∈ Rn, ψ ∈ Rn, A ∈ Rn×n is a P-matrix and the max-operation
is understood component-wise. To discuss slant differentiability of the
max-function we define for an arbitrarily fixed δ ∈ Rn the matrix-
valued function Gm : Rn → Rn×n by

(3.2) Gm(y) = diag (g1(y1), · · · , gn(yn)),

where gi : R→ R is given by

gi(z) =





0 if z < 0 ,
1 if z > 0 ,
δi if z = 0 .

Lemma 3.1. The mapping y → max(0, y) from Rn to Rn is slantly
differentiable on Rn and Gm defined in (3.2) is a slanting function for
every δ ∈ Rn.

Proof. Clearly Gm ∈ L(Rn) and {‖Gm(y)‖ : y ∈ Rn} is bounded. We
introduce D : Rn × Rn → R by

D(y, h) = ‖max(0, y + h)−max(0, y)−Gm(y + h)h‖.
It is simple to check that

D(y, h) = 0 if ‖h‖∞ < min {|yi| : yi 6= 0} =: β.

Consequently the max-function is slantly differentiable. ¤
Remark 3.1. Note that the value of the generalized derivative Gm of
the max-function can be assigned an arbitrary value at the coordinates
satisfying yi = 0. The numerator D in Definition 1 satisfies D(y, h) = 0
if ‖h‖∞ < β. Moreover, for every γ > β there exists h satisfying

D(y, h) ≥ β and ‖h‖∞ = γ.

Here we assume that β := 0 whenever {i|yi 6= 0} = ∅. Consequently,
for β > 0 the mapping

γ 7→ sup {‖max(0, y + h)−max(0, y)−Gm(y + h)h‖∞ : ‖h‖∞ = γ}
is discontinuous at γ = β and equals zero for γ ∈ (0, β). ¦
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Let us now turn to the convergence analysis of the primal-dual ac-
tive set method or, equivalently, the semi-smooth Newton method for
(3.1). Note that the choice Gm for the slanting function in Section 2
corresponds to a slanting function with δ = 0. In view of (2.5)–(2.8),
for k ≥ 1 the Newton update (2.4) is equivalent to

(3.3)

(
AIk

0
AAkIk

IAk

)(
δyIk

δλAk

)
= −

(
AIkAk

δyAk
+ δλIk

AAk
δyAk

)

and

(3.4) δλi = −λk
i , i ∈ Ik, and δyi = ψi − yk

i , i ∈ Ak.

Let us introduce F : Rn × Rn → Rn × Rn by

F (y, λ) =

(
Ay + λ− f
λ−max(0, λ + c(y − ψ))

)
,

and note that (3.1) is equivalent to F (y, λ) = 0. As a consequence
of Lemma 3.1 the mapping F is slantly differentiable and the system
matrix of (2.4) is a slanting function for F with the particular choice
Gm for the slanting function of the max-function. We henceforth denote
the slanting function of F by GF .

Let (y∗, λ∗) denote the unique solution to (3.1) and x0 = (y0, λ0)
the initial values of the iteration. From Theorem 1.1 we deduce the
following fact:

Theorem 3.1. The primal-dual active set method or equivalently the
semi-smooth Newton method converge superlinearly to x∗ = (y∗, λ∗),
provided that ‖x0 − x∗‖ is sufficiently small.

In our finite dimensional setting this result can be derived alterna-
tively by observing that Gm corresponds to a generalized Jacobian in
Clarke’s sense combined with the convergence results for semi-smooth
Newton methods in [Q1, QS]. In fact, from (2.4) we infer that GF (x∗)
is a nonsingular generalized Jacobian, and Lemma 3.1 proves the semi-
smoothness of F at x∗. Hence, Theorem 3.2 of [QS] yields the lo-
cally superlinear convergence property. For a discussion of the semi-
smoothness concept in finite dimensions we refer to [Q1, QS].

Furthermore, since (3.1) is strongly semi-smooth, by utilizing The-
orem 3.2 of [QS] the convergence rate can even be improved. Indeed,
the primal-dual active set strategy converges locally with a q-quadratic
rate. For the definition of strong semi-smoothness we refer to [FFKP].

We also observe that if the iterates xk = (yk, λk) converge to x∗ =
(y∗, λ∗) then they converge in finitely many steps. In fact, there are
only finitely many choices of active/inactive sets and if the algorithm
would determine the same sets twice then this contradicts convergence
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of xk to x∗. We refer to [FK] for a similar observation for a nonsmooth
Newton method of the types discussed in [Q1, QS, K1], for example.

Let us address global convergence next. In the following two results
sufficient conditions for convergence for arbitrary initial data x0 =
(y0, λ0) are given. We recall that A is referred to as M-matrix, if it
is nonsingular, (mij) ≤ 0, for i 6= j, and M−1 ≥ 0. Our notion of an
M-matrix coincides with that of nonsingular M-matrices as defined in
[BP].

Theorem 3.2. Assume that A is a M-matrix. Then xk → x∗ for
arbitrary initial data. Moreover, y∗ ≤ yk+1 ≤ yk for all k ≥ 1 and
yk ≤ ψ for all k ≥ 2.

For a proof of Theorem 3.2 we can utilize the proof of Theorem 1 in
[H], where a (primal) active set algorithm is proposed and analyzed.
However, we provide a proof in appendix A since in contrast to the
algorithm in [H] the primal-dual active set strategy makes use of the
dual variable λ and includes arbitrarily fixed c > 0. From the proof
in Appendix A it can be seen that for unilaterally constrained prob-
lems c drops out after the first iteration. We point out that, provided
the active and inactive sets coincide, the linear systems that have to
be solved in every iteration of both algorithms coincide. In practice,
however, λ and c play a significant role and make a distinct difference
between the performance of the algorithm in [H] and the primal-dual
active set strategy. In fact, the primal-dual active set strategy fixes
λk+1

i = 0 for i ∈ Ik. The decision whether an inactive index i ∈ Ik

becomes an active one, i.e. whether i ∈ Ak+1, is based on

λk+1
i + c(yk+1

i − ψi) > 0 .

In contrast, the (primal) active set algorithm in [H] uses the criterion

fi − (Ayk+1)i + (yk+1
i − ψi) > 0

instead. Clearly, if the linear system of both algorithms are solved
approximately (e.g. by some iterative procedure) then the numerical
behavior may differ.

Remark 3.2. Concerning the applicability of Theorem 3.2 we recall that
many discretizations of second order differential operators give rise to
M-matrices. ¦

For a rectangular matrix B ∈ Rn×m we denote by ‖ · ‖1 the sub-
ordinate matrix norm when both Rn and Rm are endowed with the
1-norms. Moreover, B+ denotes the n×m-matrix containing the pos-
itive parts of the elements of B. The following result can be applied
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to discretizations of constrained optimal control problems. We refer
to the end of Section 4 for a discussion of the conditions of the fol-
lowing Theorem 3.3 in the case of control constrained optimal control
problems.

Theorem 3.3. If A is a P-matrix and for every partitioning of the
index set into disjoint subsets I and A we have ‖(A−1

I AIA)+‖1 < 1
and

∑
i∈I(A

−1
I yI)i ≥ 0 for yI ≥ 0, then limk→∞ xk = x∗.

Proof. From (3.3) we have

(yk+1 − ψ)Ik
= (yk − ψ)Ik

+ A−1
Ik

AIkAk
(yk − ψ)Ak

+ A−1
Ik

λk
Ik

and upon summation over the inactive indices
∑
Ik

(yk+1
i − ψi) =

∑
Ik

(yk
i − ψi) +

∑
Ik

(
A−1
Ik

AIkAk
(yk − ψ)Ak

)
i

+
∑
Ik

(A−1
Ik

λk
Ik

)i

(3.5)

Adding the obvious equality
∑
Ak

(yk+1
i − ψi)−

∑
Ak

(yk
i − ψi) = −

∑
Ak

(yk
i − ψi)

to (3.5) implies

(3.6)
n∑

i=1

(yk+1
i − yk

i ) ≤ −
∑
Ak

(yk
i − ψi) +

∑
Ik

(A−1
Ik

AIkAk
(yk − ψ)Ak

)i .

Here we used the fact λk
Ik

= −δλIk
≤ 0, established in the proof of

Theorem 3.2. There it was also argued that yk
Ak

≥ ψAk
. Hence it

follows that
(3.7)

n∑
i=1

(yk+1
i − yk

i ) ≤ −‖yk − ψ‖1,Ak
+ ‖(A−1

Ik
AIkAk

)+‖1 ‖yk − ψ‖1,Ak
< 0 ,

unless yk+1 = yk. Consequently

yk →M(yk) =
n∑

i=1

yk
i

acts as a merit function for the algorithm. Since there are only finitely
many possible choices for active/inactive sets there exists an iteration

index k̄ such that Ik̄ = Ik̄+1. Moreover, (yk̄+1, λk̄+1) is solution to
(3.1). In fact, in view of (iii) of the algorithm it suffices to show that

yk̄+1 and λk̄+1 are feasible. This follows from the fact that due to
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Ik̄ = Ik̄+1 we have c(yk̄+1
i − ψi) = λk̄+1

i + c(yk̄+1
i − ψi) ≤ 0 for i ∈ Ik̄

and λk̄+1
i + c(yk̄+1

i − ψi) > 0 for i ∈ Ak̄. Thus the algorithm converges
in finitely many steps. ¤
Remark 3.3. Let us note as a corollary to the proof of Theorem 3.3 that
in case A is a M-matrix then M(yk) =

∑n
i=1 yk

i is always a merit func-
tion. In fact, in this case the conditions of Theorem 3.3 are obviously
satisfied.¦

A perturbation result: We now discuss the primal-dual active
set strategy for the case where the matrix A can be expressed as an
additive perturbation of an M-matrix.

Theorem 3.4. Assume that A = M+K with M an M-matrix and with
K an n × n-matrix. Then, if ‖K‖1 is sufficiently small, (3.1) admits
a unique solution x∗ = (y∗, λ∗), the primal-dual active set algorithm is
well-defined and limk→∞ xk = x∗.

Proof. Recall that as a consequence of the assumption that M is a M-
matrix all principal submatrices of M are nonsingular M-matrices as
well [BP]. Let S denote the set of all subsets of {1, . . . , n}, and define

ρ = sup
I∈S

‖M−1
I KI‖1 .

Let K be chosen such that ρ < 1
2
. For every subset I ∈ S the inverse

of AI exists and can be expressed as

A−1
I = (II +

∞∑
i=1

(−M−1
I KI)i

)
M−1
I .

As a consequence the algorithm is well-defined. Proceeding as in the
proof of Theorem 3.3 we arrive at

n∑
i=1

(yk+1
i − yk

i ) = −
∑
i∈A

(yk
i − ψi) +

∑
i∈I

(
A−1
I AIA(yk − ψ)A

)
i

+
∑
i∈I

(A−1
I λk

I)i ,

(3.8)

where λk
i ≤ 0 for i ∈ I and yk

i ≥ ψi for i ∈ A. Here and below we drop
the index k with Ik and Ak. Setting g = −A−1

I λk
I ∈ R|I| and since

ρ < 1
2

we find

∑
i∈I

gi ≥ ‖M−1
I λk

I‖1 −
∞∑
i=1

‖M−1
I KI‖i

1‖M−1
I λk

I‖1

≥ 1− 2ρ

1− ρ
‖M−1λk

I‖1 ≥ 0 ,
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and consequently by (3.8)

n∑
i=1

(yk+1
i − yk

i ) ≤ −
∑
i∈A

(yk
i − ψi) +

∑
i∈I

(A−1
I AIA(yk − ψ)A)i .

Note that A−1
I AIA ≤ M−1

I KIA −M−1
I KI(M + K)−1

I AIA. Here we
have used (M +K)−1

I −M−1
I = −M−1

I KI(M +K)−1
I and M−1

I MIA ≤ 0.
Since yk ≥ ψ on A, it follows that ‖K‖1 can be chosen sufficiently small
such that

∑n
i=1(y

k+1
i − yk

i ) < 0 unless yk+1 = yk, and hence

yk 7→ M(yk) =
n∑

i=1

yk
i

is a merit function for the algorithm. The proof is now completed in
the same manner as that of Theorem 3.3 ¤

The assumptions of Theorem 3.4 do not require A to be a P-matrix.
From its conclusions existence of a solution to (3.1) for arbitrary f
follows. This is equivalent to the fact that A is a P-matrix [BP, Theo-
rem 10.2.15]. Hence, it follows that Theorem 3.4 represents a sufficient
condition for A to be a P-matrix.

Observe further that the M-matrix property is not stable under ar-
bitrarily small perturbations since off-diagonal elements may become
positive. This implies certain limitations of the applicability of Theo-
rem 3.2. Theorem 3.4 guarantees that convergence of the primal-dual
active set strategy for arbitrary initial data is preserved for sufficiently
small perturbations K of an M-matrix. Therefore, Theorem 3.4 is also
of interest in connection with numerical implementations of the primal-
dual active set algorithm.

Remark 3.4. The primal-dual active set strategy can be interpreted as
a prediction strategy which, on the basis of (yk, λk) predicts the true
active and inactive sets, i.e.

A∗ = {i : λ∗i + c(y∗i − ψi) > 0} and I∗ = {1, . . . , n} \ A∗ .

To further pursue this point we define the following partitioning of the
index set at iteration level k:

IG = Ik ∩ I∗, IB = Ik ∩ A∗, AG = Ak ∩ A∗, AB = Ak ∩ I∗ .

The sets IG, AG give good, the sets IB and AB a bad prediction. Let us
denote by GF (xk) the system matrix of (2.4) and let ∆y = yk+1 − y∗,
∆λ = λk+1− λ∗. If the primal-dual active set method is interpreted as
a semi-smooth Newton method then the convergence analysis is based
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on the identity
(3.9)

GF (xk)




∆yIk

∆yAk

∆λIk

∆λAk


 = − (

F (xk)− F (x∗)−GF (xk)(xk − x∗)
)

=: Ψ(xk) .

Without loss of generality we can assume that the components of the
equation λ−max{0, λ+c(y−ψ)} = 0 are ordered as (IG, IB,AG,AB).
Then the right hand side of (3.9) has the form

(3.10) Ψ(xk) = −col
(
0Ik

, 0Ak
, 0IG

, λ∗IB
, 0AG

, c(ψ − y∗)AB

)
,

where 0Ik
denotes a vector of zeros of length |Ik|, λ∗IB

denotes a vector
of λ∗ coordinates with index set IB, and analogously for the remaining
terms. Since yk ≥ ψ on Ak and λk ≤ 0 on Ik we have

(3.11) ‖ψ − y∗‖AB
≤ ‖yk − y∗‖AB

and ‖λ∗‖IB
≤ ‖λk − λ∗‖IB

.

Exploiting the structure of GF (xk) and (3.10) we find
(3.12)

∆yAG
= 0, ∆yAB

= (ψ − y∗)AB
, ∆λIG

= 0, ∆λIB
= −λ∗IB

.

On the basis of (3.9)-(3.12) we can draw the following conclusions:

(i) If xk → x∗ then there exists an index k̄ such that IB = AB = ∅
for all k ≥ k̄. Consequently Ψ(xk̄) = 0 and, as we noted before,
if xk → x∗ then convergence occurs in finitely many steps.

(ii) By (3.9)–(3.11) there exists a constant κ ≥ 1 independent of k
such that

‖∆y‖+ ‖∆λ‖ ≤ κ
(‖(yk − y∗)AB

‖+ ‖(λk − λ∗)IB
‖) .

Thus if the incorrectly predicted sets are small in the sense that

‖(yk − y∗)AB
‖+ ‖(λk − λ∗)IB

‖ ≤ 1
2κ−1

(
‖(yk − y∗)AB,c

‖+

‖(λk − λ∗)IB,c
‖
)

,

where AB,c (IB,c) denotes the complement of the indices AB

(IB), then

‖yk+1 − y∗‖+ ‖λk+1 − λ∗‖ ≤ 1
2

(‖yk − y∗‖+ ‖λk − λ∗‖) ,

and convergence follows.
(iii) If y∗ < ψ and λ0 + c(y0 − ψ) ≤ 0 (e.g. y0 = ψ, λ0 = 0),

then the algorithm converges in one step. In fact, in this case
AB = IB = ∅ and Ψ(x0) = 0.¦
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Finally, we shall point out that Theorems 3.2–3.4 establish global
convergence of the primal-dual active set strategy or, equivalently,
semi-smooth Newton method without the necessity of a line search.
The rate of convergence is locally superlinear. Moreover, it can be
observed from (2.4) that if Ik = Ik′ for k 6= k′, then yk = yk′ and
λk = λk′ . Hence, in case of convergence no cycling of the algorithm is
possible, and termination at the solution of (2.1) occurs after finitely
many steps.

4. The infinite dimensional case

In this section we first analyze the notion of slant differentiability
of the max-operation between various function spaces. Then we turn
to the investigation of convergence of semi-smooth Newton methods
applied to (P). We close the section with a numerical example for su-
perlinear convergence.

Let X denote a space of functions defined over a bounded domain
or manifold Ω ⊂ Rn with Lipschitzian boundary ∂Ω, and let max(0, y)
stand for the point-wise maximum operation between 0 and y ∈ X.
Let δ ∈ R be fixed arbitrarily. We introduce candidates for slanting
functions Gm of the form

(4.1) Gm(y)(x) =





1 if y(x) > 0 ,
0 if y(x) < 0 ,
δ if y(x) = 0 ,

where y ∈ X.

Proposition 4.1.

(i) Gm can in general not serve as a slanting function for max(0, ·) :
Lp(Ω) → Lp(Ω), for 1 ≤ p ≤ ∞.

(ii) The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is
slantly differentiable on Lq(Ω) and Gm is a slanting function.

The proof is deferred to Appendix A.
We refer to [U] for a related investigation of the two-norm prob-

lem involved in Proposition 4.1 in the case of superposition operators.
An example in [U] proves the necessity of the norm-gap for the case
in which the complementarity condition is expressed by means of the
Fischer-Burmeister functional.
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We now turn to (P) posed in L2(Ω). For convenience we repeat the
problem formulation

(P)





min J(y) =
1

2
(y,Ay)− (f, y)

subject to y ≤ ψ,

where (·, ·) now denotes the inner product in L2(Ω), f and ψ ∈ L2(Ω),
A ∈ L(L2(Ω)) is selfadjoint and

(H1) (Ay, y) ≥ γ‖y‖2 ,

for some γ > 0 independent of y ∈ L2(Ω). There exists a unique
solution y∗ to (P) and a Lagrange multiplier λ∗ ∈ L2(Ω), such that
(y∗, λ∗) is the unique solution to

(4.2)

{
Ay∗ + λ∗ = f,
C(y∗, λ∗) = 0,

where C(y, λ) = λ − max(0, λ + c(y − ψ)), with the max–operation
defined point-wise a.e. and c > 0 fixed. The primal-dual active set
strategy is analogous to the finite dimensional case. We repeat it for
convenient reference:

Primal-dual active set algorithm in L2(Ω).

(i) Choose y0, λ0 in L2(Ω). Set k = 0.
(ii) Set Ak = {x : λk(x) + c(yk(x)− ψ(x)) > 0} and Ik = Ω\Ak.
(iii) Solve

Ayk+1 + λk+1 = f
yk+1 = ψ on Ak, λ

k+1 = 0 on Ik.

(iv) Stop, or set k = k + 1 and return to (ii).

Under our assumptions on A, f and ψ it is simple to argue the solv-
ability of the system in step (iii) of the above algorithm.

For the semi-smooth Newton step as well we can refer back to Sec-
tion 2. At iteration level k with (yk, λk) ∈ L2(Ω) × L2(Ω) given, it
is of the form (2.4) where now δyIk

denotes the restriction of δy (de-
fined on Ω) to Ik and analogously for the remaining terms. Moreover
AIkAk

= E∗
Ik

A EAk
, where EAk

denotes the extension-by-zero operator
for L2(Ak) to L2(Ω)–functions, and its adjoint E∗

Ak
is the restriction of

L2(Ω)–functions to L2(Ak), and similarly for EIk
and E∗

Ik
. Moreover

AAkIk
= E∗

Ak
A EIk

, AIk
= E∗

Ik
A EIk

and AAk
= E∗

Ak
A EAk

. It can be
argued precisely as in Section 2 that the primal-dual active set strat-
egy and the semi-smooth Newton updates coincide, provided that the
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slanting function of the max-function is taken according to

(4.3) Gm(u)(x) =

{
1 if u(x) > 0
0 if u(x) ≤ 0,

which we henceforth assume.
Proposition 4.1 together with Theorem 1.1 suggest that the semi-

smooth Newton algorithm applied to (4.2) may not converge in general.
We therefore restrict our attention to operators A of the form

(H2) A = C + βI, with C ∈ L(L2(Ω), Lq(Ω)), where β > 0, q > 2.

We show next that a large class of optimal control problems with
control constraints can be expressed in the form (P) with (H2) satisfied.

Example 1. We consider the optimal control problem

(4.4)





minimize 1
2
‖y − z‖2

L2 + β
2
‖u‖2

L2

subject to −∆y = u in Ω, y = 0 on ∂Ω ,
u ≤ ψ, u ∈ L2(Ω) ,

where z ∈ L2(Ω), ψ ∈ Lq(Ω), and β > 0. Let B ∈ L(H1
o (Ω), H−1(Ω))

denote the operator −∆ with homogeneous Dirichlet boundary condi-
tions. Then (4.4) can equivalently be expressed as

(4.5)

{
minimize 1

2
‖B−1u− z‖2

L2 + β
2
‖u‖2

L2

subject to u ≤ ψ, u ∈ L2(Ω) .

In this case A ∈ L(L2(Ω)) turns out to be Au = B−1JB−1u + βu,
where J is the embedding of H1

o (Ω) into H−1(Ω), and f = B−1z.
Condition (H2) is obviously satisfied.

In (4.4) we considered the distributed control case. A related bound-
ary control problem is given by

(4.6)





minimize 1
2
‖y − z‖2

L2(Ω) + β
2
‖u‖2

L2(∂Ω)

subject to −∆y + y = 0 in Ω, ∂y
∂n

= u on ∂Ω ,
u ≤ ψ, u ∈ L2(∂Ω) ,

where n denotes the unit outer normal to Ω along ∂Ω. This problem
is again a special case of (P) with A ∈ L(L2(∂Ω)) given by Au =
B−∗JB−1u+βu where B−1 ∈ L(H−1/2(Ω), H1(Ω)) denotes the solution
operator to

−∆y + y = 0 in Ω, ∂y
∂n

= u on ∂Ω ,

and f = B−∗z. Moreover, C = B−∗JB−1
|L2(Ω) ∈ L(L2(∂Ω), H1/2(∂Ω))

with J the embedding of H1/2(Ω) into H−1/2(∂Ω) and hence (H2) is
satisfied as a consequence of the Sobolev embedding theorem.
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For the sake of illustration it is also worthwhile to specify (2.5)–
(2.8), which were found to be equivalent to the Newton-update (2.4)
for the case of optimal control problems. We restrict ourselves to the
case of the distributed control problem (4.4). Then (2.5)–(2.8) can be
expressed as
(4.7) 




λk+1
Ik

= 0, uk+1
Ak

= ψAk
,

E∗
Ik

[
(B−2 + βI)EIk

uk+1
Ik

−B−1z + (B−2 + βI)EAk
ψAk

]
= 0 ,

E∗
Ak

[
λk+1 + B−2uk+1 + βuk+1 −B−1z

]
= 0 ,

where we set B−2 = B−1JB−1. Setting pk+1 = B−1z − B−2uk+1, a
short computation shows that (4.7) is equivalent to

(4.8)





−∆yk+1 = uk+1 in Ω , yk+1 = 0 on ∂Ω ,

−∆pk+1 = z − yk+1 in Ω , pk+1 = 0 on ∂Ω ,

pk+1 = βuk+1 + λk+1 in Ω ,

uk+1 = ψ in Ak , λk+1 = 0 in Ik .

This is the system in the primal variables (y, u) and adjoint vari-
ables (p, λ), previously implemented in [BHHK, BIK] for testing the
algorithm.¦

At this point we remark that the primal-dual active set strategy has
no straight-forward infinite dimensional analogue for state constrained
optimal control problems and obstacle problems [H]. For state con-
strained optimal control problems the Lagrange multiplier is only a
measure in general and hence the core steps (ii) and (iii) of our algo-
rithm are no longer meaningful. For details on the regularity issue we
refer to [C]. Theorem 3.2 proves global convergence of the primal-dual
active set strategy or, equivalently, semi-smooth Newton method for
discretized obstacle problems. However, no comparable result can be
expected in infinite dimensions. The main reason comes from the fact
that the systems that would have to be solved in step (iii) are the first
order conditions related to the problems

min 1
2
(Ay, y)L2(Ω) − (f, y)L2(Ω) s.t. y = ψ a.e. on Ak .

Again the multiplier associated to the equality constraint is only a
measure in general.

Our main intention is to consider control constrained problems as in
Example 1. To prove convergence under assumptions (H1), (H2) we
utilize a reduced algorithm which we explain next.
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The operators EI and EA denote the extension by zero and their ad-
joints are restrictions to I and A, respectively. The optimality system
(4.2) does not depend on the choice of c > 0. Moreover, from the dis-
cussion in Section 2 the primal-dual active set strategy is independent
of c > 0 after the initialization phase. For the specific choice c = β
system (4.2) can equivalently be expressed as

βy∗ − βψ + max(0, Cy∗ − f + βψ) = 0 ,(4.9)

λ∗ = f − Cy∗ − βy∗ .(4.10)

We shall argue in the proof of Theorem 4.1 below that the primal-
dual active set method in L2(Ω) for (y, λ) is equivalent to the following
algorithm for the reduced system (4.9)– (4.10), which will be shown to
converge superlinearly.

Reduced algorithm

(i) Choose y0 ∈ L2(Ω) and set k = 0.
(ii) Set Ak = {x : (f − Cyk − βψ)(x) > 0}, Ik = Ω \ Ak.
(iii) Solve

βyIk
+ (C(EIk

yIk
+ EAk

ψAk
))Ik

= fIk

and set yk+1 = EIk
yIk

+ EAk
ψAk

.
(iv) Stop, or set k = k + 1 and return to (ii).

Theorem 4.1. Assume that (H1), (H2) hold and that ψ and f are
in Lq(Ω). Then the primal-dual active set strategy or equivalently the
semi-smooth Newton method converge superlinearly if ‖y0− y∗‖ is suf-
ficiently small and λ0 = β(y0 − ψ).

The proof is given in Appendix A. It consists essentially of two steps.
In the first equivalence between the reduced algorithm and the original
one is established and in the second one slant differentiability of the
mapping F̂ : L2(Ω) → L2(Ω) given by F̂ (y) = max(0, Cy − f + βψ) is
shown. With respect to the latter we can alternatively utilize the theory
of semi-smoothness of composite mappings as developed in [U]. For this
purpose we first recall the notion of semi-smoothness as introduced in
[U]. Suppose, we are given the superposition operator

Ψ̃ : Y → Lr(Ω), Ψ̃(y)(x) = ψ̃(H(y)(x)),

where ψ̃ : Rm → R and H : Y → ∏m
i=1 Lri(Ω), with 1 ≤ r ≤ ri < ∞,

and Y is a Banach space. Then, Ψ̃ is called semi-smooth at y ∈ Y if

(4.11) sup
G∈∂sΨ̃(y+h)

‖Ψ̃(y+h)−Ψ̃(y)−Gh‖Lr = O(‖h‖Y ) as h → 0 in Y.
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Here ∂sΨ̃ denotes the generalized differential
(4.12)

∂sΨ̃(y) =

{
G ∈ L(Y, Lr)

∣∣∣ G : v 7→ ∑
i di(y)(H ′

i(y)v), where d(y)

is a measurable selection of ∂ψ̃(H(y))

}
,

where ∂ψ̃ is Clarke’s generalized Jacobian [C], and prime denotes the
Fréchet derivative. In our context Y = Lr(Ω) = L2(Ω), m = 2, ri = 2,

H(y) = (0, Cy − f + βψ), and ψ̃(a, b) = max(a, b). Clearly H is affine
with respect to the second component. By (H2), and since ψ ∈ Lq(Ω),
f ∈ Lq(Ω), it follows that H is Lipschitz from L2(Ω) to (Lq(Ω))2, with

q > 2. Moreover, ψ̃ is semi-smooth in the sense of [QS]. Consequently,
Ψ̃ is semi-smooth in the sense of (4.11) by [U, Thm. 5.2].

In general, a slanting function G according to Definition 1 need not
satisfy G(y) ∈ ∂sΨ̃(y). However, the particular slanting function

Ĝ(y)v = Gm(Cy − f + βψ)Cv

with

Gm(u)(x) =

{
1 if u(x) ≥ 0,
0 if u(x) < 0

satisfies Ĝ(y) ∈ ∂sΨ̃(y). In fact, d(y) = (d1(y), d2(y)) = (0, Gm(Cy −
f + βψ)) is a measurable selection of ∂ max(0, Cy − f + βψ). Thus,
(4.12) yields

∂sΨ̃(y) 3 G(y)v =
∑

i

di(y)(H ′
i(y)v) = Gm(Cy − f + βψ)Cv = Ĝ(y)v.

Consequently, from the proof of Theorem 6.4 in [U] we infer that the
reduced algorithm converges locally superlinearly.

Let us point out that the semi-smooth Newton method in [U] requires
a smoothing step while our primal-dual active set strategy does not. To
explain the difference of the two approaches, we note that with respect
to (P) the following NCP-problem is considered in [U]: Find y ∈ Y
such that

(4.13) y − ψ ≤ 0, Z(y) := Ay − f ≥ 0, (y − ψ)Z(y) = 0.

Then (4.13) is reformulated by utilizing an NCP-function. In our con-
text, this yields

(4.14) max(y − ψ, f − Ay) = 0.

Following [U] one chooses Y = Lp(Ω), p > 2, and considers y 7→
max(y − ψ, f − Ay) from Lp(Ω) to L2(Ω) in order to introduce the
norm gap which is required for semi-smoothness according to (4.11).
In Algorithm 6.3 of [U] the Newton step first produces an update in
L2(Ω), which requires smoothing to obtain the new iterate in Lp(Ω)
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which is utilized in (4.14). In our formulation (4.13) is reformulated as
(4.9) rather than (4.14). Here we can take advantage of the fact that
(4.9) allows to directly exploit the smoothing property of the operator
C. Consequently, we obtain a superlinearly convergent Newton method
without the necessity of a smoothing step.

If an appropriate growth condition is satisfied then the superlinear
convergence result of Theorem 4.1 can be improved to superlinear con-
vergence with a specific rate. Let us suppose that there exists α > 0
such that

(A’) lim
h→0

1

‖h‖1+α
‖F (x∗ + h)− F (x∗)−G(x∗ + h)h‖ = 0 .

Then an inspection of the proof of Theorem 1.1 shows that the rate of
convergence of xk to x∗ is of q-order 1 + α, i.e. we have ‖xk+1 − x∗‖ =
O(‖xk − x∗‖1+α) as k → ∞. To investigate (A’) for the specific F
appearing in the proof of Theorem 4.1 one can apply the general theory
in [U]. We prefer to give an independent proof adapted to our problem
formulation. Let the assumptions of Theorem 4.1 hold and recall that
F : L2(Ω) → L2(Ω) is given by F (y) = βy − βψ + max(0, Cy − f +
βψ). First we consider the case 2 < q < +∞. The relevant difference
quotient for the nonlinear term which must be analyzed for (A’) to
hold is given by

1

‖h‖1+α
L2

‖max(0, C(y∗ + h)− f + βψ)−max(0, Cy∗ − f + βψ)

−Gm(Cy∗ + Ch− f + βψ)(Ch)‖L2

=
1

‖Ch‖1+α
Lq

‖max(0, w + Ch)−max(0, w)−Gm(w + Ch)(Ch)‖L2

‖Ch‖1+α
Lq

‖h‖1+α
L2

,

where we set w = Cy∗−f+βψ. Utilizing the fact that C ∈ L(L2(Ω), Lq(Ω))
it suffices to consider

1

‖h‖1+α
Lq

‖Dw,h‖L2 =
1

‖h‖1+α
Lq

‖max(0, w+h)−max(0, w)−Gm(w+h)h‖L2 .

Here and below we use the notation introduced in the proof of Propo-
sition 4.1(ii). Proceeding as in the proof of Proposition 4.1(ii) we find
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for 1
σ

+ 1
τ

= 1, σ ∈ (1,∞),

1

‖h‖1+α
Lq

‖Dw,h‖L2 ≤ 1 + |δ|
‖h‖1+α

Lq

[
|Ωε(h)|1/2τ

( ∫

Ωε(h)

|w(x)|2σdx
)1/2σ

+ |Ωε(w)|1/2τ
( ∫

Ω0(h)\Ωε(h)

|w(x)|2σdx
)1/2σ]

(4.15)

=
1 + |δ|
‖h‖1+α

Lq

(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
( ∫

Ω0(h)

|w(x)|2σdx
)1/2σ

.

Let us set r = q
1+α

. We have

( ∫

Ω0(h)

|w(x)|2σdx
)1/2σ

≤
(∫

Ω0(h)

|w(x)| 2σq
r |w(x)| 2σ(r−q)

r dx
)1/2σ

≤
( ∫

Ω0(h)

|w(x)| 2σq
r

r
2σ

)1/r( ∫

Ω0(h)

|w(x)| 2σ(r−q)
r

r
r−2σ

)(r−2σ)/2rσ

( ∫

Ω0(h)

|w(x)|qdx
)1/r( ∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx
)(r−2σ)/2rσ

,

where it is assumed that r = q
1+α

> 2σ > 2. Since |w(x)| ≤ |h(x)| for
x ∈ Ω0(h) we find

1

‖h‖1+α
Lq

‖Dw,h‖L2 ≤

≤ (1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )
( ∫

Ω0(h)

1

|w(x)| 2σ(q−r)
r−2σ

dx
)(r−2σ)/2rσ

.

Suppose that

(4.16)

∫

{x:|w(x)|6=0}

1

|w(x)| 2σ(q−r)
r−2σ

dx < +∞ .

Then, following the argument in the proof of Proposition 4.1(ii) we
have

lim
‖h‖Lq→0

1

‖h‖1+α
Lq

‖Dw,h‖L2 = 0 ,

and hence (A’) holds. Let us interpret the conditions on α and q. As
already pointed out we must have q > 2(1 + α) which for α = 0 is
consistent with the requirement that there must be a norm gap. The
exponent in (4.16) can equivalently be expressed as Q(α, q) = 2σαq

q−2σ(1+α)
.

Hence for fixed q, the quotient Q(α, q) is increasing with α and (4.16)
is more likely to be satisfied for small rather than for large α. Similarly,
for fixed α, Q(α, q) is decreasing with respect to q (> 2σ(1 + α)) and
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hence (4.16) has a higher chance to be satisfied for large rather than
small q.

Convergence of q-order larger than 2 is possible, if q > 2 and (4.16)
holds for the associated values of q and α. If w is Lipschitzian then
it must be of at least linear growth across the boundary of the set
{x : w(x) 6= 0}. For this reason it is of interest to consider the range
of α-values satisfying 2αq

q−2(1+α)
< 1. This necessitates α < 1

2
.

In the case q = +∞ we have for every σ > 1
( ∫

Ω0(h)

|w(x)|2σdx
)1/2σ

=
( ∫

Ω0(h)

|w(x)|2σ(1+α)|w(x)|−2σαdx
)1/2σ

≤‖h‖1+α
L∞

( ∫

Ω0(h)

|w(x)|−2σαdx
)1/2σ

.

This estimate and (4.15) for q = +∞ yield

1

‖h‖1+α
L∞

‖Dw,h‖L2 ≤(1 + |δ|)(|Ωε(h)|1/2τ + |Ωε(w)|1/2τ )·

·
( ∫

Ω0(h)

1

|w(x)|2σα
dx

)1/2σ

.

Now suppose that for some σ > 1,

(4.17)

∫

{x:|w(x)|6=0}

1

|w(x)|2σα
dx < +∞ .

Then, again following the arguments in the proof of Proposition 4.1,
we obtain

lim
‖h‖L∞→0

1

‖h‖1+α
L∞

‖Dw,h‖L2 = 0 ,

which shows that (A’) is satisfied.

Example 1 (continued). As already observed Theorem 4.1 is directly
applicable to problems (4.4) and (4.6) and confirms local superlinear
convergence of the semi-smooth Newton algorithm.

Convergence for (4.4) was already analyzed in [BIK] where it was
proved that a modified augmented Lagrangian acts as a merit function
provided that

(4.18) β + γ ≤ c ≤ β − β2

γ
+

β2

‖∆−1‖2

for some γ > 0. Here ‖∆−1‖ denotes the operator norm of ∆−1 in
L(L2(Ω)). This previous convergence result is unconditional with re-
spect of the initial condition but it restricts the range of β. Theorem 4.1
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is a local result with respect to initialization, but does not restrict the
range of β > 0. Further, the discussion following Theorem 4.1 provides
rate of convergence results.

Let us also comment on the discretized version of (4.4). To be spe-
cific we consider a two dimensional domain Ω endowed with a uniform
rectangular grid, with ∆h denoting the five-point-star discretization of
∆, and functions z, ψ, y, u discretized by means of grid functions at the
nodal points. Numerical results for this case were reported in [BIK]
and [BHHK] and convergence can be argued provided the discretized
form of (4.18) holds. Let us consider to which extent Theorems 3.2–
3.4 provide new insight on confirming convergence, which was observed
numerically in practically all examples. Theorem 3.2 is not applicable
since Ah = βI + ∆−2

h is not an M-Matrix. Theorem 3.4 is applicable
with M = βI and K = ∆−2

h , and asserts convergence if β is suffi-
ciently large. We also tested numerically the applicability of Theo-
rem 3.3 and found that for Ω = (0, 1)2 the norm condition was satisfied
in all cases we tested with grid-size h ∈ [10−2, 10−1] and β ≥ 10−4,
whereas the cone condition

∑
i∈I(A

−1
I yI)i ≥ 0 for yI ≥ 0 was satisfied

only for β ≥ 10−2, for the same range of grid-sizes. Still the function
yk → M(yk) utilized in the proof of Theorem 3.4 behaved as a merit
function for the wider range of β ≥ 10−3. Note that the norm and cone
condition of Theorem 3.4 only involve the system matrix A, wheres
M(yk) also depends on the specific choice of f and ψ.¦

Remark 4.1. Throughout the paper we used the function C defined
in (2.2) as a complementarity function. Another popular choice of
complementarity function is given by the Fischer-Burmeister function

CFB(y, λ) =
√

y2 + λ2 − (y + λ) .

Note that CFB(0, λ) =
√

λ2−λ = 2 max(0,−λ), and hence by Proposi-
tion 4.1 the natural choices for slanting functions do not satisfy prop-
erty (A).¦

Remark 4.2. Condition (H2) can be considered as yet another inci-
dence, where a two norm concept for the analysis of optimal control
problems is essential. It utilizes the fact that the control-to-solution
mapping of the differential equation is a smoothing operation. Two
norm concepts where used for second order sufficient optimality con-
ditions and the analysis of SQP-methods in [M, I, IK3], for example,
and also for semi-smooth Newton methods in [U].¦
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In view of the fact that (P) consist of a quadratic cost functional with
affine constraints the question arises whether superlinear convergence
coincides with one step convergence after the active/inactive sets are
identified by the algorithm. The following example illustrates the fact
that this is not the case.

Example 2. We consider Example 1 with the specific choices

z(x1, x2) = sin(5x1) + cos(4x2), ψ ≡ 0, β = 10−5, and Ω = (0, 1)2.

A finite difference based discretization of (4.4) with a uniform grid of
mesh size h = 1

100
and the standard five point star discretization of

the Laplace operator was used. The primal-dual active set strategy
with initialization given by solving the unconstrained problem and set-
ting λ0

h = 0, was used. The exact discretized solution (u∗h, λ
∗
h, y

∗
h) was

attained in 8 iterations. In Table 1 we present the values for

qk
u =

|uk
h − u∗h|

|uk−1
h − u∗h|

, qk
λ =

|λk
h − λ∗h|

|λk−1
h − λ∗h|

,

where the norms are discrete L2-norms. Clearly these quantities indi-
cate superlinear convergence of uk

h and λk
h.

k 1 2 3 4 5 6 7
qk
u 1.0288 0.8354 0.6837 0.4772 0.2451 0.0795 0.0043

qk
λ 0.6130 0.5997 0.4611 0.3015 0.1363 0.0399 0.0026

Table 1.

We also tested whether the quantities appearing in the rate of conver-
gence discussion are reflected in the numerical results. For this purpose
note that for the problem under consideration w appearing in (4.16)
and (4.17) is given by w = ∆−2u∗ + ∆−1z + βψ. Roughly, (4.16) and
(4.17) have a higher chance to be satisfied with larger value for α, if w
is not smooth across the boundary of the set {x : w(x) = 0}. In a nu-
merical test we kept all problem data identical to those specified above
except for changing ψ to ψ(x1, x2) = x1x2 − 1. Note that this new
ψ increases the chance that (4.16) and (4.17) are satisfied. Moreover,
increasing β (for the same ψ) results in an increase of the influence of
ψ to w. Thus we expect an improved convergence as β is increased.
For the new ψ and small β the algorithm finds the solution in one less
iterations. Increasing β results in a further reduction of 3 iterations,
see Tables 1 and 2.
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qk
u

k 1 2 3 4 5 6
β = 10−5 1.0443 0.8359 0.6780 0.4679 0.2342 0.0614
β = 10−3 0.1410 0.0455 0.0041 – – –

Table 2.
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Appendix A.

Proof of Theorem 3.2. The assumption that A is a M-matrix implies
that for every index partition I and A we have A−1

I ≥ 0 and A−1
I AIA ≤

0, see [BP, p. 134]. Let us first show the monotonicity property of
the y-component. Observe that for every k ≥ 1 the complementarity
property

(A.1) λk
i = 0 or yk

i = ψi , for all i, and k ≥ 1 ,

holds. For i ∈ Ak we have λk
i + c(yk

i − ψi) > 0 and hence by (A.1)
either λk

i = 0, which implies yk
i > ψi, or λk

i > 0, which implies yk
i = ψi.
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Consequently yk ≥ ψ = yk+1 on Ak and δyAk
= ψAk

− yk
Ak
≤ 0. For

i ∈ Ik we have λk
i + c(yk

i −ψi) ≤ 0 which implies δλIk
≥ 0 by (2.4) and

(A.1). Since δyIk
= −A−1

Ik
AIkAk

δyAk
−A−1

Ik
δλIk

by (3.3) it follows that

δyIk
≤ 0. Therefore yk+1 ≤ yk for every k ≥ 1.

Next we show that yk is feasible for all k ≥ 2. Due to the mono-
tonicity of yk it suffices to show that y2 ≤ ψ. Let V = {i : y1

i > ψi}.
For i ∈ V we have λ1

i = 0 by (A.1), and hence λ1
i + c(y1

i − ψi) > 0 and
i ∈ A1. Since y2 = ψ on A1 and y2 ≤ y1 it follows that y2 ≤ ψ.

To verify that y∗ ≤ yk for all k ≥ 1 note that

fIk−1
= λ∗Ik−1

+ AIk−1
y∗Ik−1

+ AIk−1Ak−1
y∗Ak−1

= AIk−1
yk
Ik−1

+ AIk−1Ak−1
ψAk−1

.

It follows that

AIk−1

(
yk
Ik−1

− y∗Ik−1

)
= λ∗Ik−1

+ AIk−1Ak−1

(
y∗Ak−1

− ψAk−1

)
.

Since λ∗Ik−1
≥ 0 and y∗Ak−1

≤ ψAk−1
the M-matrix properties of A imply

that yk
Ik−1

≥ y∗Ik−1
for all k ≥ 1.

Turning to the feasibility of λk assume that for a pair of indices
(k̄, i), k̄ ≥ 1, we have λk̄

i < 0. Then necessarily i ∈ Ak̄−1, yk̄
i =

ψi, and λk̄
i + c(yk̄

i − ψi) < 0. It follows that i ∈ Ik̄, λk̄+1
i = 0, and

λk̄+1
i + c(yk̄+1

i −ψi) ≤ 0, since yk+1
i ≤ ψi, k ≥ 1. Consequently i ∈ Ik̄+1

and by induction i ∈ Ik for all k ≥ k̄ +1. Thus, whenever a coordinate
of λk becomes negative at iteration k̄, it is zero from iteration k̄ + 1
onwards, and the corresponding primal coordinate is feasible. Due
to finite-dimensionality of Rn it follows that there exists ko such that
λk ≥ 0 for all k ≥ ko.

Monotonicity of yk and y∗ ≤ yk ≤ ψ for k ≥ 2 imply the existence
of ȳ such that lim yk = ȳ ≤ ψ. Since λk = Ayk + f ≥ 0 for all k ≥ ko,
there exists λ̄ such that lim λk = λ̄ ≥ 0. Together with (A.1) it follows
that (ȳ, λ̄) = (y∗, λ∗). ¤

Remark A.1. From the proof it follows that if λk̄
i < 0 for some coordi-

nate i at iteration k̄, then λk
i = 0 and yk

i ≤ ψi for all k ≥ k̄ + 1.

Proof of Proposition 4.1. (i) It suffices to consider the one dimensional
case Ω = (−1, 1) ⊂ R. We show that property (A) does not hold
at y(x) = −|x|. Let us define hn(x) = 1

n
on (− 1

n
, 1

n
) and hn(x) = 0
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otherwise. Then∫ 1

−1

|max(0, y + hn)(x)−max(0, y)(x)− (Gm(y + hn)(hn)) (x)|p dx

=

∫

{x:y(x)+hn(x)>0}
|y(x)|pdx =

∫ 1
n

− 1
n

|y(x)|pdx =
2

p + 1

(
1

n

)p+1

,

and ‖hn‖Lp = p
√

2/np+1. Consequently,

lim
n→∞

1
‖hn‖Lp

‖max(0, y + hn)−max(0, y)−Gm(y + hn)hn‖Lp = p

√
1

p+1
6= 0 ,

and hence (A) is not satisfied at y for any p ∈ [1,∞).
To consider the case p = ∞ we choose Ω = (0, 1) and show that (A)

is not satisfied at y(x) = x. For this purpose define for n = 2, . . .

hn(x) =




−(1 + 1

n
)x on (0, 1

n
] ,

(1 + 1
n
)x− 2

n
(1 + 1

n
) on ( 1

n
, 2

n
] ,

0 on ( 2
n
, 1] .

Observe that En = {x : y(x) + hn(x) < 0} ⊃ (0, 1
n
]. Therefore

lim
n→∞

1
‖hn‖L∞([0,1])

‖max(0, y + hn)−max(0, y)−Gm(y + hn)hn‖L∞([0,1])

= lim
n→∞

n2

n+1
‖y‖L∞(En) ≥ lim

n→∞
n

n+1
= 1

and hence (A) cannot be satisfied.
(ii) Let δ ∈ R be fixed arbitrarily and y, h ∈ Lq(Ω), and set

Dy,h(x) = max(0, y(x) + h(x))−max(0, y(x))−Gm(y + h)(x)h(x) .

A short computation shows that

(A.2) |Dy,h(x)|



≤ |y(x)| if (y(x) + h(x))y(x) < 0 ,
≤ (1 + |δ|) |y(x)| if y(x) + h(x) = 0 ,
= 0 otherwise.

For later use we note that from Hölder’s inequality we obtain for 1 ≤
p < q ≤ ∞

‖w‖Lp ≤ |Ω|r‖w‖Lq , with r =

{
q−p
pq

if q < ∞ ,
1
p

if q = ∞ .

From (A.2) it follows that only

Ωo(h) = {x ∈ Ω : y(x) 6= 0, y(x)(y(x) + h(x)) ≤ 0}
requires further investigation. For ε > 0 we define subsets of Ωo(h) by

Ωε(h) = {x ∈ Ω : |y(x)| ≥ ε, y(x)(y(x) + h(x)) ≤ 0} .
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Note that |y(x)| ≥ ε a.e. on Ωε(h) and therefore

‖h‖Lq(Ω) ≥ ε|Ωε(h)|1/q, for q < ∞ .

It follows that

(A.3) lim
‖h‖Lq(Ω)→0

|Ωε(h)| = 0 for every fixed ε > 0 .

For ε > 0 we further define sets

Ωε(y) = {x ∈ Ω : 0 < |y(x)| ≤ ε} ⊂ {x : y(x) 6= 0} .

Note that Ωε(y) ⊂ Ωε′(y) whenever 0 < ε ≤ ε′ and
⋂

ε>0 Ωε(y) = ∅. As
a consequence

(A.4) lim
ε→0+

|Ωε(y)| = 0 .

From (A.2) we find

1

‖h‖Lq

‖Dy,h‖Lp ≤ 1 + |δ|
‖h‖Lq

(∫

Ωo(h)

|y(x)|pdx

)1/p

≤ 1 + |δ|
‖h‖Lq

[(∫

Ωε(h)

|y(x)|pdx

)1/p

+

(∫

Ωo(h)\Ωε(h)

|y(x)|pdx

)1/p ]

≤ 1 + |δ|
‖h‖Lq

[
|Ωε(h)|(q−p)/(qp)

(∫

Ωε(h)

|y(x)|qdx

)1/q

+

|Ωε(y)|(q−p)/(qp)

(∫

Ωo(h)\Ωε(h)

|y(x)|qdx

)1/q ]

≤ (1 + |δ|) (|Ωε(h)|(q−p)/(qp) + |Ωε(y)(q−p)/(qp)|) .

Choose η > 0 arbitrarily and note that by (A.4) there exists ε̄ > 0 such
that (1 + |δ|)|Ωε̄(y)|(q−p)/(qp) < η. Consequently

1

‖h‖Lq

‖Dy,h‖Lp ≤ (1 + |δ|)|Ωε̄(h)|(q−p)/(qp) + η

and by (A.3)

lim
‖h‖Lq→0

1

‖h‖Lq

‖Dy,h‖Lp ≤ η .

Since η > 0 is arbitrary the claim holds for 1 ≤ p < q < ∞.
The case q = ∞ follows from the result for 1 ≤ p < q < ∞. ¤

Proof of Theorem 4.1. Let yk, k ≥ 1, denote the iterates of the reduced
algorithm and define

λk+1 =

{
0 on Ik ,
(f − Cyk+1 − βψ)Ak

on Ak ,
for k = 0, 1, . . . ,
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We obtain λk + β(yk − ψ) = f − Cyk − βψ for k = 1, 2, . . ., and hence
the active sets Ak, the iterates yk+1 produced by the reduced algorithm
and by the algorithm in the two variables (yk+1, λk+1) coincide for k =
1, 2, . . ., provided the initialization strategies coincide. This, however, is
the case since due to our choice of λ0 and β = c we have λ0+β(y0−ψ) =
f − Cy0 − βψ and hence the active sets coincide for k = 0 as well.

To prove convergence of the reduced algorithm we utilize Theo-
rem 1.1 with F : L2(Ω) → L2(Ω) given by F (y) = βy−βψ+max(0, Cy−
f + βψ). From Proposition 4.1(ii) it follows that F is slantly differen-
tiable. In fact, the relevant difference quotient for the nonlinear term
in F is

1

‖Ch‖Lq

∥∥ max(0, Cy − f + βψ + Ch)−max(0, Cy − f + βψ)−

Gm(Cy − f + βψ + Ch)(Ch)
∥∥

L2

‖Ch‖Lq

‖h‖L2

,

which converges to 0 for ‖h‖L2 → 0. Here

Gm(Cy − f + βψ + Ch)(x) =

{
1 if (C(y + h)− f + βψ)(x) ≥ 0 ,
0 if (C(y + h)− f + βψ)(x) < 0 ,

so that in particular δ of (4.1) was set equal to 1 which corresponds to
the ’≤’ sign in the definition of Ik. A slanting function GF of F at y
in direction h is therefore given by

GF (y + h) = βI + Gm(Cy − f + βψ + Ch)C .

It remains to argue that GF (z) ∈ L(L2(Ω)) has a bounded inverse.
Since for arbitrary z ∈ L2(Ω), h ∈ L2(Ω)

GF (z)h =

(
βII + CI CIA

0 βIA

) (
hI
hA

)
,

where I = {x : (Cz−f +βψ)(x) ≥ 0} and A = {x : (Cz−f +βψ)(x) <
0} it follows from (H1) that GF (z)−1 ∈ L(L2(Ω)). Above we denoted
CI = E∗

ICEI and CIA = E∗
ICEA. ¤

(M. Hintermüller) Institute of Mathematics, University of Graz, A-
8010 Graz, Austria

(K. Ito) North Carolina State University, Raleigh, NC 27695, USA

(K. Kunisch) Institute of Mathematics, University of Graz, A-8010
Graz, Austria



Semi–Smooth Newton Methods for Variational
Inequalities of the First Kind.

Kazufumi Ito1 and Karl Kunisch2

July 2002

1Center for Research in Scientific Computation, Department of Mathematics,
North Carolina State University; supported in part by AFSOR under contract
F-49620-95-1-0447.

2Institut für Mathematik, Universität Graz, Graz, Austria; supported in part
by the Fonds zur Förderung der wissenschaftlichen Forschung under SFB 03, Op-
timierung und Kontrolle”.



Abstract

Semi–smooth Newton methods are analyzed for a class of variational inequal-
ities in infinite dimensions. It is shown that they are equivalent to certain
active set strategies. Global and local super-linear convergence are proved.
To overcome the phenomenon of finite speed of propagation of discretized
problems a penalty version is used as the basis for a continuation procedure
to speed up convergence. The choice of the penalty parameter can be made
on the basis of an L∞ estimate for the penalized solutions. Unilateral as well
as bilateral problems are considered.



1 Introduction

This paper is devoted to the convergence analysis of iterative algorithms for
solving variational inequalities of the form

(1.1)


min 1

2
a(y, y)− (f, y)

y ∈ H1
0 (Ω)

y ≤ ψ a.e. in Ω,

where a(·, ·) is a coercive bilinear form on H1
0 (Ω) × H1

0 (Ω), and (·, ·) de-
notes the inner product in L2(Ω). The precise assumptions on the quanti-
ties appearing in (1.1) are given in Section 2. While iterative methods for
solving finite dimensional discretization of (1.1) are extensively studied see
e.g. [D, H, HK] and the references therein, little attention has been paid to
the infinite–dimensional counter–parts. Our contribution will focus on the
convergence of the infinite dimensional algorithms. More precisely we shall
analyze primal–dual active set algorithms or - as we shall argue - equivalently
semi–smooth Newton algorithms. To briefly describe this class of algorithms
let y∗ denote the solution to (1.1) and let λ∗ be the associated Lagrange
multiplier. As we shall recall in Section 2, the optimality system associated
to (1.1) can be expressed as

(1.2)


a(y∗, v) + (λ∗, v) = (f, v), for all v ∈ H1

0 (Ω),

λ∗ = max(0, λ∗ + c(y∗ − ψ)),

for each c > 0, where max denotes the pointwise a.e. maximum operation.
The second order augmented Lagrangian method in [B, IK1] employs the
primal–dual active set strategy based on the second equality in (1.2) and
is given as the following iterative method: given a current pair (yk, λk) of
primal and dual variables, predict the active set Ak+1 as

(1.3) Ak+1 = {x : λk(x) + c(yk(x)− ψ(x)) > 0}.

We arrive at the following formal algorithm:

1



Algorithm

(i) Choose c > 0, (yo, λ0), set k = 0.

(ii) Determine Ak+1 according to (1.2).

(iii) Solve for yk+1 = arg min{1
2
a(y, y)− (f, y) : y = ψ on Ak+1}.

(iv) Let λk+1 be the Lagrange multiplier associated to the constraint in (iii)
with λk+1 = 0 on Ω \ Ak+1.

(v) Set k = k + 1 and goto (ii).

Let us observe that the optimality system for the variational problem in (iii)
is given by

(1.4)


a(yk+1, v) + 〈λk+1, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 (Ω),

yk+1 = ψ on Ak+1, λk+1 = 0 on Ik+1 = Ω \ Ak+1.

In particular, the Lagrange multiplier associated to the constraint y = ψ
on Ak+1, is in general only a distribution in H−1(Ω). This results from

the fact that ∂yk+1

∂n
is not continuous across the boundaries between active

and inactive sets. Rather λk+1 contains jumps of magnitude ∂yk+1

∂n+
J

− ∂yk+1

∂n−J
,

where n±J stands for the normal directions to either side of the boundary
between active and inactive set. These jumps are not present in the solution
of the limit–problem (1.1), since under mild assumptions [KS],[T] we have
y∗ ∈ H2(Ω) and λ∗ ∈ L2(Ω). The fact that the Lagrange multipliers λk+1

of the auxiliary problems in (iii) of the Algorithm are not contained in the
pivot space L2(Ω) between H1

0 (Ω) and H−1(Ω) presents a serious difficulty,
both from the point of view of numerical implementation and convergence
analysis. In order to remedy this difficulty we consider a one-parameter
family of regularized problems based on smoothing of the complementarity
condition by

λ = α max(0, λ+ c(y − ψ)), 0 < α < 1

which replaces the second equation in (1.2). The motivation for this regular-
ization is that it is a relaxation of the second equation in (1.2). We analyze
(i) the convergence of the active set strategy to the regularized problem, (ii)
the monotone convergence property and L∞ rate of convergence of solutions

2



to the regularized problem to the original variational inequality and then
(iii) develop and test a continuation method for the second order augmented
Lagrangian method based on (i) and (ii).

The outline of the paper is as follows. In Section 2 we first introduce an
equivalent but much more convenient form of the regularized problems and
subsequently an iteration method based on the primal–dual active set strat-
egy. We show that the method based on the active set strategy is equivalent
to a semi-smooth Newton method [HIK]. Global as well as local super–linear
convergence of the iteration method for the regularized problems is proven.
The equivalence to the semi-smooth Newton is used to prove local super–
linear convergence. Section 3 is devoted to the asymptotic analysis with
respect to the regularization parameter. Monotone convergence properties
of the solutions of the regularized problems towards the solution of the orig-
inal problem are proven and an L∞ error estimate for this convergence is
obtained. It is important to note that the L∞-error estimate can be used as
a guideline for the choice of the penalty in terms of the mesh-size. In Section
5 we present our numerical examples to demonstrate the structural results
obtained in this paper. Moreover we demonstrate that the algorithm allows
to determine the boundary of the active set within grid–size accuracy. We
also show that regularization can be used to overcome an essential drawback
of active set strategies applied to (1.1), i.e., when the bilinear form a is dis-
cretized by finite differences (the five point stencil in dimension two) then
changes from one iteration to the next occur along layers between active and
inactive sets which have only the width of one mesh-size. For fine mesh-sizes
this results in large iteration numbers. This difficulty can be overcome by
multigrid methods, for example. Here we show that regularization techniques
provide an alternative to deal with this shortcoming of active set strategies
for (1.1). A regularized version of the above algorithm converges within a
very few iteration due to its capability to change large sets of active indices
to inactive ones and vice versa. We shall demonstrate that this property
can advantageously be used in a continuation procedure with respect to the
regularization parameter. The focus of our numerical test is not to compete
with the most efficient implementations for this frequently tested class of
obstacle problems, but rather to validate the structural results of the paper
and to show the potential of a systematic use of regularization.

Our theoretical results provide a framework for an efficient second order
iterative proccess for solving a regularized form of (1.2). It should also be
noted that solving the regularized problem is equivalent to solving a single

3



step of the first order augmented Lagrangian method, e.g., see [IK2] and thus
semi-smooth Newton methods should also improve the original implementa-
tion of the first order augmented Lagrangian method reported in [IK2]. This
can be the focus of future investigations.

Beyond the motivation of overcoming the difficulty due to lack of regular-
ity of the Lagrange multiplier our interest in analyzing primal–dual active set
strategies for (1.1) also stems from our desire to investigate these algorithms
separately for classes of problems which differ with respect to the regularity
properties of the Lagrange multipliers. The abstract results are contained
in [IK1]. In [BIK] we considered optimal control problems with control con-
straints. In this case the Lagrange multipliers of the original problem as well
as those arising in the auxiliary problems of the primal–dual active set algo-
rithm are in L2(Ω) or L2(∂Ω), depending on whether distributed or boundary
control problems are considered. For such problems large sets of active and
inactive indices are moved from one iteration to the next. In [HIK] we estab-
lished the strong relationship of these methods with superlinearly convergent
semi–smooth Newton methods. For variational inequalities of the form (1.1)
the Lagrange multipliers of the limit problem are L2 but those of the auxil-
iary problems are not. Finally, for state constrained optimal control problems
as well as for control of variational inequalities the Lagrange multipliers of
the limit–problems themselves are not L2 smooth but are in general only
measures. Numerical results for these classes of problems are contained in
[BHHK, IK2]. Convergence results for the latter are only available in the
case of discretized state constrained optimal control problems.

We briefly summarize those facts on semi–smooth Newton methods which
are relevant for our analysis in Section 2. Let X and Z be Banach spaces
and let F : D ⊂ X → Z be a nonlinear mapping with open domain D.

Definition 1.1 The mapping F : D ⊂ X → Z is called generalized–differentiable
on the open subset U ⊂ D if there exists a family of generalized derivatives
G : U → L(X,Z) such that

lim
h→0

1

‖h‖
‖F (x+ h)− F (x)−G(x+ h)h‖ = 0,(A)

for every x ∈ U .

We shall refer to mappings F which allow a generalized derivative on U
in the sense of Definition 1.1 as Newton–differentiable.
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Theorem 1.1 Suppose that x∗ ∈ D is a solution to F (x) = 0 and that
F is Newton–differentiable in an open neighborhood U containing x∗ and
that {‖G(x)−1‖ : x ∈ U} is bounded. Then the Newton–iteration xk+1 =
xk − G(xk)

−1F (xk) converges superlinearly to x∗ provided that ‖x0 − x∗‖ is
sufficiently small.

Let us consider Newton–differentiability of the max–operator. For this
purpose X denotes a function space of real–valued functions on Ω ⊂ Rn and
max(0, y) is the pointwise max–operation. For δ ∈ R we introduce candidates
for the generalized derivative of the form

Gm,δ(y)(x) =


1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0,

where y ∈ X.

Proposition 1.1 The mapping max(0, ·) : Lq(Ω)→ Lp(Ω) with 1 ≤ p < q <
∞ is Newton differentiable on Lq(Ω) and Gm,δ is a generalized derivative.

For the proofs of Theorem 1.1 and Proposition 1.1 we refer to [HIK].
Related results can be found in [U]. The following chain rule will be utilized
in Section 2. We utilize a third Banach space Y .

Proposition 1.2 Let F2 : Y → X be an affine mapping with F2 y = By +
b, B ∈ L(Y,X), b ∈ X, and assume that F1 : D ⊂ X → Z is Newton–
differentiable on the open subset U ⊂ D with generalized derivative G. If
F−1

2 (U) is nonempty then F = F1 ◦ F2 is Newton–differentiable on F−1
2 (U)

with generalized derivative given by G(By + b)B ∈ L(Y, Z), for y ∈ F−1
2 (U).

Proof. By assumption F−1
2 (U) is nonempty and due to continuity of F2 the

set F−1
2 (U) is open. Note that G(By + b)B ∈ L(Y, Z) for each y ∈ F−1

2 (U)
since G(x) ∈ L(X,Z) for each x ∈ U . For y ∈ F−1

2 (U) we find

lim
h→0
h∈Y

1

‖h‖
‖(F1 ◦ F2)(y + h)− (F1 ◦ F2)(y)−G(F2(y + h))Bh‖

= lim
h→0
h∈Y

1

‖Bh‖
‖F1(By + b+Bh)− F1(By + b)−G(By + b+Bh)Bh‖ ‖Bh‖

‖h‖

= 0,

and hence the claim follows.
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2 Global and local convergence of the itera-

tive method for the regularized problems

We consider

(2.1)


min 1

2
a(y, y)− (f, y)

y ∈ H1
0 (Ω)

y ≤ ψ a.e. in Ω,

where a (·, ·) is a bilinear form on H1
0 (Ω)×H1

0 (Ω) satisfying

(2.2) a(v, v) ≥ ν|v|2H1
0
, a(w, z) ≤ µ|w|H1|z|H1 ,

for some ν > 0 and µ > 0 independently of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω).

Further it is assumed that f ∈ L2(Ω), ψ ∈ H1(Ω) with ψ|∂Ω ≥ 0. Through-
out Ω is a bounded domain in Rn with Lipschitzian boundary ∂Ω. Since
ψ ∈ H1(Ω) the trace ψ|∂Ω is well-defined. The assumption ψ|∂Ω ≥ 0 implies
that the set of admissible functions y for (2.1) is nonempty. We shall also
require that a satisfies the weak maximum principle, i.e. for all v ∈ H1

0 (Ω)

(2.3) a(v, v+) ≤ 0 implies v+ = 0,

where v+ = max(0, v). We set K = {v ∈ H1
0 (Ω) : v ≥ 0 a.e.}. It will further

be convenient to introduce the representation operator

A : H1
0 (Ω)→ H−1(Ω)

associated to a(·, ·). Utilizing (2.2) it is well-known [KS] that (2.1) ad-
mits a unique solution y∗ ∈ H1

0 (Ω) and an associated Lagrange multiplier
λ∗ ∈ H−1(Ω). Under well-known additional regularity assumptions which we
recall in Remark 2.3 below λ∗ ∈ L2(Ω) and the following optimality system
characterizes y∗:

(2.4)


a(y∗, v) + (λ∗, v) = (f, v), for all v ∈ H1

0 (Ω)

(λ∗, y∗ − ψ) = 0, y∗ ≤ ψ, (λ∗, v) ≥ 0 for all v ∈ K.
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By inspection (2.4) can equivalently be expressed as

(2.5)


a(y∗, v) + (λ∗, v) = (f, v) for all v ∈ H1

0 (Ω)

λ∗ = max(0, λ∗ + c(y∗ − ψ)),

for arbitrary c > 0. (More precisely, (2.4) implies (2.5) for every c, and (2.5)
for some c > 0 implies (2.4)). Next we turn to the regularization of the
max–function in (2.5). We have motivated the necessity for regularization
for the primal–dual active set method by the abstract Algorithm in Section
1. Concerning the semi–smooth Newton approach we have from Proposition
1.1 that the max operation is Newton differentiable from Lp(Ω) to L2(Ω) if
p > 2. If we were to consider both y and λ as independent variables in a
semi–smooth Newton approach to (2.5), then we can expect to obtain the
necessary smoothing for the y component due to the first equation in (2.5)
but we lack the smoothing property with respect to λ.

In our first attempt to regularize the max–function in (2.5) we are tempted
to use the well–known smoothing

maxσ (x) =


0 for x < −σ

2

1
2σ

(x+ σ
2
)2 for −σ

2
≤ x ≤ σ

2

x for x > σ
2
,

with σ > 0, see e.g. [B]. After a short computation we obtain an explicit
expression for λ = λσ(z) satisfying λ = maxσ(0, λ+ c z) as

λσ(z)


= 0 for λ+ c z < −σ

2

= σ
2
− c z −

√
−2cσz for −σ

2
≤ λ+ c z ≤ σ

2

∈ [σ
2
,∞) for λ+ c z > σ

2
.

Thus we obtain an equation Ay + λσ(y − ψ) = f for y ∈ H1
0 (Ω), where

λσ is a multi–valued function defined above. This smoothing has some nice
properties but it is much less convenient than penalty–type smoothing that
we turn to next.

As stated in introduction we shall use

(2.6) λ = α max(0, λ+ c(y∗ − ψ)), 0 < α < 1
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to regularize the second equation in (2.5). This is equivalent to

(2.7) λ = max(0, λ̄+ γ(y − ψ)), γ ∈ (0,∞),

where λ̄ ∈ L2(Ω), if we set λ̄ = 0 and γ = cα/(1−α). Note that γ →∞+ as
α → 1−. This type of regularization will allow us to prove global monotone
convergence of the primal–dual active set method. The introduction of λ̄ in
(2.7), which does not appear in the original regularization, was motivated
by augmented Lagrangians, [IK1], [IK2]. We shall see in Section 3 that de-
pending on its choice the feasibility of the approximations can be controlled.
Note that if λ̄ = 0 on {x : y(x) ≥ ψ(x)}, then (2.7) can be regarded as a
penalty–type formulation of the complementarity condition

y − ψ ≤ 0, λ ≥ 0, (y − ψ, λ) = 0,

as γ →∞. In the remainder of this subsection γ > 0 is a fixed constant and
we consider an active set strategy or alternatively a semi–smooth Newton
method to solve

(2.8)


a(y, v) + (λ, v) = (f, v) for all v ∈ H1

0 (Ω)

λ = max(0, λ̄+ γ(y − ψ)).

Monotone operator theory provides the existence of a unique solution (yγ, λγ) ∈
H1

0 (Ω)× L2(Ω). An independent existence proof will follow from the results
of this section.

We turn to the description of the algorithm.

Primal–Dual Active Set (PDAS) Algorithm

(i) Choose y0 , set k = 0.

(ii) Set Ak+1 = {x : (λ̄+ γ(yk − ψ))(x) > 0}, Ik+1 = Ω \ Ak+1.

(iii) Solve for yk+1 ∈ H1
0 (Ω):

(2.9) a(y, v) + (λ̄+ γ(y − ψ), χAk+1
v) = (f, v) for all v ∈ H1

0 (Ω).

(iv) Set

λk+1 =


0 on Ik+1

λ̄+ γ(yk+1 − ψ) on Ak+1.
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(v) Stop or k = k + 1, goto (ii).

Remark 2.1 Here we establish the relationship between the above algo-
rithm and a semi–smooth Newton method applied to (2.8). Recall the defini-
tion A : H1

0 (Ω)→ H−1(Ω) and introduce the nonlinear mapping F : H1
0 (Ω)×

L2(Ω)→ H−1(Ω)× L2(Ω), by

F (y, λ) =

 Ay + λ− f

λ−max(0, λ̄+ γ(y − ψ))

 .

A generalized derivative G of F in the sense of Definition 1.1 and Proposition
1.1 with δ = 0 is given by

G(yk, λk)h =

 Ah1 + h2

h2 − γχAk+1
h1

 .

where h = (h1, h2) ∈ H1
0 (Ω)× L2(Ω).

The resulting semi–smooth Newton–update is thus given by

(2.10)


Aδy + δλ = −Ayk − λk + f

δλ = −λk on Ik+1,

δλ− γδy = −λk + λ̄+ γ(yk − ψ) on Ak+1

where δy = yk+1 − yk and δλ = λk+1 − λk, and coincides with step (iii)–(iv)
of the primal–dual active set algorithm.

Remark 2.2 The semi-smooth Newton can be applied to (2.6) without re-
formulation as (2.7). Based on (2.6) it coincides with the one we specified
above, with λ̄ = 0, except for the initialization phase, where now y0 and λ0

must be prescribed. In case of (2.6) the active set in step (ii) of the algorithm
would be set Ãk+1 = {x : (λk + γ(yk − ψ))(x) > 0} and the update on the
basis of (2.6) for λk+1 coincides with the one of step (iv) in the algorithm.
Note that sgn (λk +γ(yk−ψ))(x) = sgn (yk−ψ)(x) for all x ∈ Ω, and k ≥ 1,
and hence Ãk+1 = Ak+1 for all k ≥ 2. A similar remark applies in case λ̄ 6= 0.

Properties of the semi–smooth Newton algorithm or equivalently the
PDAS are analyzed next.
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Proposition 2.1 If Ak+1 = Ak for k ≥ 1, then (yk, λk) is the solution to
(2.9).

Proof. Since for given Ak+1 the solution to (2.9) is unique it follows from
Ak = Ak+1 that yk = yk+1 and consequently λk+1 = λk.

Proposition 2.2 The sequence {yk}∞k=1 is monotonically decreasing, i.e. yk+1 ≤
yk, a.e. on Ω for all k ≥ 1.

Proof. Let δy = yk+1 − yk for k ≥ 1 and observe that

(2.11) a(δy, δy+) + (λk+1 − λk, δy+) = 0.

We have

λk+1(x)− λk(x)



= 0 for x ∈ Ik+1 ∩ Ik,

= γ(yk+1(x)− yk(x)) for x ∈ Ak+1 ∩ Ak,

= −λ̄− γ(yk − ψ)(x) ≥ 0 for x ∈ Ik+1 ∩ Ak,

> γ(yk+1 − yk)(x) for x ∈ Ak+1 ∩ Ik.

It follows that (λk+1 − λk, δy+) ≥ 0 and by (2.11)

a(δy, δy+) ≤ 0.

Consequently δy+ = 0 by (2.3) and yk+1 ≤ yk follows. �

Proposition 2.3 For every k ≥ 1 we have Ik ⊂ Ik+1.

Proof. If not, then there exists a set S ⊂ Ω of positive measure and x ∈
Ik ∩ Ak+1 for every x ∈ S. It follows that (λ̄ + (yk−1 − ψ))(x) ≤ 0 and by
Proposition 2.2 (λ̄ + (yk − ψ))(x) ≤ 0. On the other hand x ∈ Ak+1, and
hence (λ̄+ (yk − ψ)(x)) > 0. This gives the desired contradiction. �
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Proposition 2.4 For every k ≥ 1 we have yγ ≤ yk.

Proof. We consider the sign of λk−λγ. LetAγ = {x : (λ̄+γ(yγ−ψ))(x) > 0},
and Iγ = Ω \ Aγ. For x ∈ Iγ ∩ Ik we have (λk − λγ)(x) = 0, and for
x ∈ Aγ ∩ Ak we find (λk − λγ)(x) = γ(yk − yγ)(x). If x ∈ Iγ ∩ Ak then
(λk − λγ)(x) = (λ̄+ γ(yk − ψ))(x) ≤ γ(yk − yγ). Finally, if x ∈ Aγ ∩ Ik then
(λk − λγ)(x) = −(λ̄+ γ(yγ − ψ))(x) ≤ 0. We find

a(yγ − yk, (yγ − yk)+) = −(λγ − λk, (yγ − yk)+) ≤ 0.

By (2.2) it follows that (yγ − yk)+ = 0 and hence yγ ≤ yk. �

Proposition 2.5 For every k ≥ 1 we have 0 ≤ λk+1 ≤ λk.

Proof. The claim follows from Propositions 2.2 and 2.3. �

Note that Propositions 2.2–2.5 hold for k ≥ 1 and are in general not valid
for the initialization step with k = 0.

Theorem 2.1 For every γ > 0 we have limk→∞(yk, λk) = (yγ, λγ) in H1
0 (Ω)×

L2(Ω).

Proof. The sequences {yk}∞k=1 and {λk}∞k=1 are decreasing pointwise almost
everywhere and are uniformly bounded by L2(Ω) functions. By (2.2) and
(2.9) moreover, {yk}∞k=1 is bounded in H1

0 (Ω). Hence there exist ŷ ∈ H1
0 (Ω)

and λ̂ ∈ L2(Ω) such that a subsequence of yk converges weakly in H1
0 (Ω) to

ŷ, and limk→∞ yk = ŷ a.e. and limk→∞ λk = λ̂ a.e.. Since Ik ⊂ Ik+1 and
λk = 0 on Ik it follows that λ̂ = 0 on I =

⋃∞
k=1 Ik and λ̂ = λ̄+ γ(ŷ − ψ) on

A =
⋂∞
k=1Ak. Moreover, if x ∈ I then (λ̄ + (ŷ − ψ))(x) ≤ 0, and for x ∈ A

we have (λ̄ + γ(yk − ψ))(x) > 0 for all k and hence (λ̄ + (ŷ − ψ))(x) ≥ 0.
Consequently λ̂ = max(0, λ̄+γ(ŷ−ψ)). By Lebesgue’s bounded convergence
theorem limk→∞ λk = λ̂ in L2(Ω). Taking the limit in

a(yk, v) + (λk, v) = (f, v),

we arrive at

a(ȳ, v) + (λ̂, v) = (f, v) for all v ∈ H1
0 (Ω)

λ̂ = max(0, λ̄+ γ(ŷ − ψ)).
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Since the solution to this system is unique we have (ŷ, λ̂) = (yγ, λγ). Finally,
setting v = yk in (2.6) and using (2.2) we find |yk|H1

0
→ |yγ|H1

0
. Together with

weak convergence of yk to yγ in H1
0 this implies limk→∞ yk = yγ in H1

0 (Ω). �

Remark 2.3 Under additional regularity assumptions the above result can
be strengthened. We shall repeatedly refer to these assumptions which we
now summarize. The bilinear form has the form

a(v, w) =

∫
Ω

[aij∂xiv∂xjw + dw]dx,

for v, w ∈ H1(Ω), where we use the summation convention, the leading dif-
ferential operator is uniformly elliptic and aij ∈ C1(Ω̄), d ∈ L∞(Ω), d ≥ 0.
Moreover ψ ∈ H2(Ω), ∂Ω is C1,1 or Ω is a polyhedron.

Under these requirements the representation operator A is a homeo-
morphism from H2(Ω) ∩ H1

0 (Ω) to L2(Ω). The solution to (2.1) satisfies
(y∗, λ∗) ∈ (H2(Ω)∩H1

0 (Ω))×L2(Ω), see e.g. [KS], [T], [IK2], or as corollary
to the results of section 3. Moreover limk→∞ yk = yγ in H1

0 (Ω) ∩ H2(Ω) in
the statement of Theorem 2.1. �

Theorem 2.1 guarantees global convergence of the semi–smooth Newton
method, i.e. the algorithm converges from any initial condition. Next we
establish that once the iterates are sufficiently close to the solution, then the
convergence is superlinear.

For this purpose we introduce the mapping F : L2(Ω)→ L2(Ω) by

(2.12) F (λ) = λ−max(0, λ̄+ γ(A−1(f − λ)− ψ)).

Note that F (λ) = 0 is equivalent to system (2.8). We consider the following
reduced algorithm in the variable λ. It arises from applying the quasi–Newton
method to F (λ) = 0. It turns out that the reduced algorithm is equivalent
to the primal-dual active set algorithm.

Reduced Algorithm

(i) Choose y0 ∈ H1
0 (Ω), set λ0 = f − Ay0 and k = 0.

(ii) Set Ak+1 = {x : [λ̄+ γA−1(f − λk)− γ ψ](x) > 0}, Ik+1 = Ω \ Ak+1.

(iii) Set δλ = λk on Ik+1, and solve for δλ ∈ L2(Ω)

(δλ+ γA−1(δλ))(x) = [−λk + λ̄− γ ψ + γA−1(f − λk)](x), x ∈ Ak+1.
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(iv) Set λk+1 = λk + δλ and goto (ii).

In fact (iii)–(iv) of the reduced algorithm is equivalent to

(λk+1−λ̄+γ ψ)(x) = γ(A−1(f−λk+1))(x) for x ∈ Ak+1, λk+1 = 0 in Ik+1.

and thus it is equivalent to (iii)–(iv) of the primal–dual active set algorithm
with yk+1 = A−1(f − λk+1). Since the initializations for both algorithms are
the same the two algorithms give identical iterates. Note that while λ0 may
only be in H−1(Ω), the iterates satisfy λk ∈ L2(Ω) for k ≥ 1.

Theorem 2.2 If λ0 ∈ L2(Ω) and |λ0 − λγ|L2(Ω) is sufficiently small then
(yk, λk)→ (yγ, λγ) superlinearly in H1

0 (Ω)× L2(Ω).

Proof. First we show superlinear convergence of λk to λγ by applying The-
orem 1.1 to F defined in (2.12). Let q = 1

2
− 1

n
, if n ≥ 3 and q ∈ (2,∞) if

n = 2. Then H1(Ω) is continuously injected into Lq(Ω), and q > 2 for each
n. From Propositions 1.1 and 1.2 it follows that F is Newton–differentiable
on L2(Ω). For this purpose we set B = γA−1 and b = λ̄ + γ(A−1f − ψ) in
Proposition 1.2. To apply Theorem 1.1 it remains to verify that the general-
ized derivatives G(λ) ∈ L(L2(Ω)) of F have uniformly bounded inverses. We
define

A = {x : [λ̄+ γ(A−1(f − λ)− ψ)](x) > 0}, I = Ω \ A.

Further let EA : L2(A) → L2(Ω) and EI : L2(I) → L2(Ω) denote the exten-
sion - by - zero operators from A and I to Ω, respectively. Their adjoints
E∗A : L2(Ω)→ L2(A) and E∗I : L2(Ω)→ L2(I) are restriction operators. The
mapping (E∗A, E

∗
I) : L2(Ω) → L2(A) × L2(I) determines an isometric iso-

morphism and every λ ∈ L2(Ω) can uniquely be expressed as (E∗Aλ,E
∗
Iλ). A

generalized derivative of F in the sense of Definition 1.1 is obtained by setting
δ = 0 in the definition Gm,δ for generalized derivatives of the max–operation.
We obtain

G(λ) = I + γχAA
−1.

This operator can equivalently be expressed as

G(λ) =

(
IA 0
0 II

)
+ γ

(
E∗AA

−1EA E∗AA
−1EI

0 0

)
,
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where IA and II denote the identity operators on L2(A) and L2(I). Let
(gA, gI) ∈ L2(A)× L2(I) be arbitrary and consider the equation

(2.13) G(λ)((δλ)A, (δλ)I) = (gA, gI).

Then necessarily (δλ)I = gI and (2.13) is equivalent to

(2.14) (δλ)A + γE∗AA
−1EA(δλ)A = gA − γE∗AA−1EIgI .

The Lax–Milgram theorem and positivity of A−1 imply the existence of a
unique solution (δλ)A to (2.14) and consequently (2.13) has a unique solu-
tion for every (gA, gI) and every λ. Moreover these solutions are uniformly
bounded w.r.t. λ ∈ L2. This follows from (δλ)I = gI and

|δλA|L2(A) ≤ |gA|L2(Ω) + γ‖A−1‖L(L2(Ω)) |gI |L2(I).

This proves superlinear convergence λk → λγ in L2(Ω). Superlinear conver-
gence of yk to yγ in H1

0 (Ω) follows from Ayk + λk = f and the fact that
A : H1

0 (Ω)→ H−1(Ω) is a homeomorphism. �
If the problem data are sufficiently regular as specified in Remark 2.3

such that A : H1
0 (Ω) ∩ H2(Ω) → L2(Ω) is a homeomorphism, then yk → yγ

in H2(Ω) under the assumptions of Theorem 2.2.

3 Convergence of regularized problems

First we establish a general convergence result with respect to the penalty
parameter γ. For related results we refer to [GLT], for example.

Theorem 3.1 The solutions (yγ, λγ) to the regularized problem (2.8) con-
verge to (y∗, λ∗) in the sense that yγ → y∗ strongly in H1

0 (Ω) and λγ ⇀ λ∗

weakly in H−1(Ω) as γ →∞.

Proof. From (2.4) and (2.8) we have for every γ > 0

a(yγ, yγ − y∗) + (λγ, yγ − y∗) = (f, yγ − y∗).

where λγ = max(0, λ̄+ γ(yγ − ψ)). Since λγ ≥ 0 and ψ − y∗ ≥ 0 we have
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(λγ, yγ−y∗) = (λγ,
λ̄

γ
+yγ−ψ+ψ−y∗− λ̄

γ
) ≥ 1

γ
(λγ, λ̄+γ(yγ−ψ))− 1

γ
(λγ, λ̄),

and hence

(3.1) (λγ, yγ − y∗) ≥
1

γ
|λγ|2L2 −

1

γ
(λγ, λ̄).

Using this inequality and the equation derived from (2.4) and (2.8) we
have

a(yγ, yγ) +
1

γ
|λγ|2L2 ≤ a(yγ, y

∗) + (f, yγ − y∗) +
1

γ
(λ̄, λγ).

It thus follows from (2.2) that

ν |yγ|2H1
0

+
1

γ
|λγ|2L2

is uniformly bounded with respect to γ ≥ 1 and hence by (2.8) the family
{λγ}γ≥1 is bounded in H−1(Ω). Consequently there exist (ŷ, λ̂) ∈ H1

0 (Ω) ×
H−1(Ω) and a sequence {(yγn , λγn} with lim γn =∞ such that

w − lim(yγn , λγn) = (ŷ, λ̂) in H1
0 (Ω)×H−1(Ω).

Henceforth we drop the subscript n with γn. Note that

1

γ
|λγ|2L2 = γ |max(0,

λ̄

γ
+ yγ − ψ)|2L2 .

Since H1
0 (Ω) is embedded compactly into L2(Ω), we can assume without loss

of the generality that yγ converges to ŷ a.e. in Ω. From the above equality
and Fatou’s lemma we conclude that |(ŷ − ψ)+| = 0 and therefore ŷ ≤ ψ.
From (2.4) and (2.8) we also have

a(yγ − y∗, yγ − y∗) + 〈λγ − λ∗, yγ − y∗〉H−1,H1
0

= 0,

and by (3.1)

(λγ, yγ − y∗) ≥ −
1

4γ
|λ̄|2L2
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Hence
0 ≤ lim

γ→∞
ν |yγ − y∗|2H1

0
≤ limγ→∞〈λ∗, yγ − y∗〉H−1,H1

o

= 〈λ∗, ŷ − ψ〉H−1,H1
0
≤ 0,

where we used the complementarity condition 〈λ∗, y∗ − ψ〉H−1,H1
0

= 0 and

ŷ ≤ ψ. It follows that limγ→∞ yγ = y∗ in H1
0 (Ω) and hence ŷ = y∗. Taking

the limit in
a(yγ, v) + (λγ, v) = (f, v) for all v ∈ H1

0 ,

we find
a(y∗, v) + 〈λ̂, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 .

This equation is also satisfied with λ̂ replaced by λ∗ and consequently λ∗ =
λ̂. Since (y∗, λ∗) is the unique solution to (2.5) the whole family {(yγ, λγ)}
converges in the sense given in the statement of the theorem. �

In the next two sections we establish monotonicity for the family {yγ}γ>0

and the rate of convergence to y∗ in L∞(Ω) for two specific selections of λ̄.
We believe that such results are new and they play an important role in
developing a fast algorithm in Section 5.

3.1 Infeasible case

Here we choose λ̄ = 0. For γ > 0 we set

Aγ = {x ∈ Ω: (yγ − ψ)(x) > 0} and Iγ = Ω \ Aγ.

Proposition 3.1 If 0 < α < β then

y∗ ≤ yβ ≤ yα, a.e. in Ω.

Proof. By (2.8) we have

λα − λβ = max(0, α(yα − ψ))−max(0, β(yβ − ψ)).

It follows that

(3.2)
(λα − λβ)(x) = 0 for x ∈ Iα ∩ Iβ

(λα − λβ)(x) ≤ β(yα − yβ)(x) for x ∈ Aα ∩ Aβ.
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For x ∈ Iβ∩Aα we find (λα−λβ)(x) = α(yα−ψ)(x) ≤ β(yα−ψ)(x)−β(yβ−
ψ)(x) = β(yα − yβ)(x), and thus

(3.3) (λα − λβ)(x) ≤ β(yα − yβ)(x) for x ∈ Iβ ∩ Aα.

Moreover

(3.4) (λα − λβ)(x) ≤ 0 for x ∈ Aβ ∩ Iα.

For (3.2)–(3.4) and (2.8) we find

a(yβ − yα, (yβ − yα)+) = (λα − λβ, (yβ − yα)+) ≤ 0

and hence yβ ≤ yα. The verification that y∗ ≤ yα is quite similar. �

Proposition 3.2 For 0 < α < β we have

I∗ ⊃ Iβ ⊃ Iα.

Proof. If x ∈ Aβ ∩ Iα then (yα − ψ)(x) ≤ 0 and (yβ − ψ)(x) > 0. Hence
yα(x) < yβ(x) which contradicts Proposition 3.1 and therefore Iβ ⊃ Iα. �

Our next objective is to prove convergence of yγ to y∗ in L∞(Ω) with
rate γ−1, provided certain regularity conditions are satisfied. We require
a technical lemma which we describe first. For this purpose let ω denote
a subdomain of Ω with Lipschitzian boundary ∂ω. The restriction of a to
H1(ω)×H1(ω) will be denoted by the same symbol.

Lemma 3.1 Assume that g ∈ L∞(ω) and that a(1, v) ≥ 0, for all v ∈ H1(ω)
with v ≥ 0. For c > 0, c ∈ R, let yc ∈ H1

0 (ω) denote the solution to

(3.5) a(y, v) + c(y, v)L2(ω) = (g, v)L2(ω) for all v ∈ H1
0 (ω).

Then yc ∈ L∞(ω) and |yc|L∞(ω) ≤ 1
c
|g|L∞(ω).

Proof. For the sake of completeness we include the proof which can be
obtained with known techniques. Let ḡ = max(0, sup{g(x) : x ∈ ω}).
For all v ∈ H1

0 (ω) we have

(3.6) a(yc − 1
c
ḡ, v) + (ḡ − g, v)L2(ω) = (ḡ − cyc, v)L2(ω) − a( ḡ

c
, v).
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Set v = (yc − 1
c
ḡ)+ and observe that v ∈ H1

0 (ω) since ḡ ≥ 0. Since
a(1, v) ≥ 0 for all v ∈ H1(ω) and v ≥ 0, it follows from (3.6) that

a(yc − 1
c
ḡ, (yc − 1

c
ḡ)+) ≤ 0

and consequently y(x) ≤ 1
c
|g|L∞(ω) for a.e. x ∈ ω. Analogously it can be

verified that −1
c
|g|L∞(ω) ≤ y(x) for a.e. x ∈ ω. �

Let us introduce the active and inactive sets associated to the solution y∗

of (1.1):

A∗ = {x ∈ Ω: y∗(x) = ψ(x)}, I∗ = {x ∈ Ω: y∗(x) < ψ(x)},

with boundaries ∂A∗ and ∂I∗ respectively.

Theorem 3.2 Let the regularity requirements of Remark 2.3 be satisfied and
assume that f ∈ L∞(Ω) and Aψ ∈ L∞(Ω). If, moreover, the boundary ∂A∗
of the active set is C1,1 manifold in Rn−1 and for every γ > 0 the boundary
∂Aγ of Aγ is Lipschitzian manifold in Rn−1 , then

|yγ − y∗|L∞(Ω) ≤ 1
γ
|f − Aψ|L∞(Ω).

Proof. The regularity assumption imply that y∗ ∈ W 2,p(Ω) and yγ ∈
W 2,p(Ω) with p > n. Recall that W 2,p(Ω) ⊂ C(Ω̄) if p > n. From Proposition
3.2 it follows that A∗ ⊂ Aγ for every γ > 0. From the definition of Aγ we
have 

Ayγ + γ(yγ − ψ) = f in Aγ

yγ − ψ = 0 on ∂Aγ.
Consequently

A(yγ − ψ) + γ(yγ − ψ) = f − Aψ in Aγ

yγ − ψ = 0 on ∂Aγ.

From Lemma 3.1 with ω = Aγ and g = f we find

|yγ − ψ|L∞(Aγ) ≤ 1
γ
|f − Aψ|L∞(Ω)
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and in particular

(3.7) |yγ − ψ|L∞(A∗) ≤ 1
γ
|f − Aψ|L∞(Ω).

Note further that on I∗ we have

(3.8)


A(yγ − y∗) = λ∗ − λγ ≤ 0 in I∗

yγ − y∗ = yγ − ψ ≥ 0 on ∂I∗.

From the maximum principle applied to (3.8), and (3.7) it follows that

(3.9) |yγ − y∗|L∞(I∗) ≤ |yγ − ψ|L∞(∂I∗) ≤ 1
γ
|f − Aψ|L∞(Ω),

see e.g. [T], pg 191. Combining (3.7) and (3.9) gives the desired conclusion.
�

To justify the terminology to refer to λ̄ = 0 as the infeasible case note
that if yγ < ψ for some γ > 0 then Iγ = Ω, λγ = 0 and (yγ, λγ) satisfy
the optimality system (2.4). Consequently (y∗, λ∗) = (yγ, λγ) and y∗ is also
a solution of the unconstrained problem. Thus unless y∗ is also a solution
to the unconstrained problem, yγ ≤ ψ for some finite γ is impossible. In
the following subsection it will be shown that proper choice of λ̄ guarantees
feasibility of the solutions yγ to (2.8).

3.2 Feasible case

Here we choose λ̄ ∈ L2(Ω) such that

(3.10)


λ̄ ≥ 0 and λ̄− (f − Aψ) ≥ 0, a.e. in Ω

〈λ̄− (f − Aψ), v〉H−1,H1
0
≥ 0 for all v ∈ K.

Note that if ψ ∈ H2(Ω) then for the choice λ̄ = max(0, f − Aψ) (3.10) is
satisfied.

Proposition 3.3 If (3.10) holds and 0 < α < β then

yα ≤ yβ ≤ ψ a.e. in Ω.

In particular yα is feasible for every α > 0.
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Proof. From (2.8) we have by (3.10)

a(yα − ψ, (yα − ψ)+) = (f − λα, (yα − ψ)+)− a(ψ, (yα − ψ)+)

= 〈f − Aψ −max(0, λ̄+ α(yα − ψ)), (yα − ψ)+〉

= 〈f − Aψ − λ̄, (yα − ψ)+〉 − α(yα − ψ, (yα − ψ)+)

≤ −α| (yα − ψ)+|2 ≤ 0

and hence by (2.3)
yα ≤ ψ.

It follows that yα is feasible for every α > 0.
Next let 0 < α < β. By (2.8)

(3.11) a(yα − yβ, (yα − yβ)+) = (λβ − λα, (yα − yβ)+).

We introduce the set

S = {x : yα(x)− yβ(x) > 0}

and decompose this set as S = S1 ∩ S2 ∪ S3, where

S1 ={x ∈ S : (λ̄+ β(yβ − ψ))(x) ≤ 0}

S2 ={x ∈ S : (λ̄+ β(yβ − ψ))(x) > 0, (λ̄+ α(yα − ψ))(x) ≤ 0}

S3 ={x ∈ S : (λ̄+ β(yβ − ψ))(x) > 0, (λ̄+ α(yα − ψ))(x) > 0}.

To estimate the right hand side of (3.11) recall that

λβ − λα = max(0, λ̄+ β(yβ − ψ))−max(0, λ̄+ α(yα − ψ)).

We find

(λβ − λα, (yα − yβ)+) = (λβ − λα, yα − yβ)L2(S1) + (λβ − λα, yα − yβ)L2(S2)

+(λβ − λα, yα − yβ)L2(S3)

≤ (β(yβ − ψ)− α(yα − ψ), (yα − yβ)L2(S2) + (β(yβ − yα), yα − yβ)L2(S3)

+(β(yα − ψ)− α(yα − ψ), yα − yβ)L2(S3).
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Utilizing the fact that yα ≤ ψ and yβ ≤ ψ we find

(λβ − λα, (yα − yβ)+) ≤ β(yβ − yα, yα − yβ)L2(S2)

+(β − α)(yα − ψ, yα − yβ)L2(S3) ≤ 0.

Inserting this estimate into (3.11) and using the weak maximum principle
implies that yα ≤ yβ. �

Corollary 3.1 If (3.10) holds and 0 < α < β then

0 ≤ λα ≤ λβ ≤ max(0, λ̄)

and Iα ⊃ Iβ.

Proof. From the representation λγ = max(0, λ̄+γ(yγ−ψ)) and the fact that
γ → γ(yγ − ψ)(x) is increasing with respect to γ for a.e. x ∈ Ω, it follows
that λγ is increasing and Iγ is decreasing with respect to γ. The estimate
λγ ≤ max(0, λ̄) is a consequence of the feasibility of yγ for every γ. �

As in the infeasible case we can consider the question of rate of conver-
gence with respect to γ if additional regularity requirements are satisfied.

Remark 3.1 From Theorem 3.1, Corollary 3.1 and Lebesgue’s monotone
convergence theorem it follow that λγ → λ∗ strongly in L2(Ω).

Theorem 3.3 Assume that f ∈ L∞(Ω), Aψ ∈ L∞(Ω), λ̄ ∈ L∞(Ω) and that
the assumptions of Remark 2.3 hold. If in addition Aγ is a domain with a
C1,1 boundary, then

|yγ − y∗|L∞(Ω) ≤ 1
γ
|λ̄|L∞(Ω).

Proof. By the assumptions of the theorem y∗ and yγ ∈ W 2,p(Ω), p > n. On
Aγ we have λ̄+ γ(yγ − ψ) ≥ 0 and yγ ≤ ψ, and hence

|yγ − ψ|L∞(Aγ) ≤ 1
γ
|λ̄|L∞(Ω).

Since Aγ ⊂ A∗ by Corollary 3.1 this implies that

|yγ − y∗|L∞(Aγ) ≤ 1
γ
|λ̄|L∞(Ω).
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Moreover we have
A(y∗ − yγ) = λγ − λ∗ ≤ 0 in Iγ

y∗ − yγ ≤ 0 on ∂Iγ.

From the maximum principle and the regularity assumption on ∂Iγ it follows
that

|y∗ − yγ|L∞(Iγ) ≤ 1
γ
|λ̄|L∞(Ω).

�

4 Bilateral constraints

The treatment of bilateral constraints gives rise to some additional difficul-
ties. Here we consider

(4.1)


min 1

2
a(y, y)− (f, y)

over y ∈ H1
0 (Ω)

ϕ ≤ y ≤ ψ in Ω.

Throughout this section we assume that

a(ϕ, ψ) = (∇ϕ,∇ψ) for all ϕ, ψ ∈ H1
0 (Ω),

that ϕ and ψ are in H1(Ω), that ∂Ω is C1,1 and

(4.2)
ϕ ≤ 0 ≤ ψ on ∂Ω, max(0,∆ψ + f) ∈ L2(Ω),

min(0,∆ϕ+ f) ∈ L2(Ω),

(4.3) S1 := {x ∈ Ω: ∆ψ + f > 0} ∩ S2 := {x ∈ Ω: ∆ϕ+ f < 0} = ∅,

and that there exists c0 > 0 such that

(4.4) −∆(ψ − ϕ) + c0(ψ − ϕ) ≥ 0 a.e. in Ω.

Under these assumptions it was shown in [IK1] that there exists a solution
y∗ ∈ H1

0 (Ω)∩H2(Ω) to (4.1) with associated Lagrange multiplier λ∗ ∈ L2(Ω).
This was verified by passing to the limit γ →∞ in
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(4.5) −∆yγ + λγ = f, λγ =


λ̄+ γ (yγ − ψ) if λ̄+ γ (yγ − ψ) > 0,
λ̄+ γ (yγ − ϕ) if λ̄+ γ (yγ − ϕ) < 0,
0 otherwise,

where

(4.6) λ̄ =


∆ψ + f on S1

∆ϕ+ f on S2

0 otherwise.

The weak limit of (yγ, λγ) in H2(Ω)× L2(Ω) satisfies

−∆y∗ + λ∗ = f, λ∗ =


λ∗ + c (y∗ − ψ) if λ∗ + c (y∗ − ψ) > 0,
λ∗ + c (y∗ − ϕ) if λ∗ + c (y∗ − ϕ) < 0,
0 otherwise,

for every c > 0. The latter equation can be equivalently expressed as

(4.7)


−∆y∗ + λ∗ = f,

λ∗ = max(0, λ∗ + c(y∗ − ψ)) + min(0, λ∗ + c(y∗ − ϕ)),

for every arbitrary fixed c > 0.

Primal–Dual Active Set–Algorithm

(i) Choose y0 , set k = 0.

(ii) Set

Aψk+1 = {x : (λ̄+ γ(yk − ψ))(x) > 0},

Aϕk+1 = {x : (λ̄+ γ(yk − ϕ))(x) < 0}

Ik+1 = Ω \ (Aψk+1 ∪ A
ϕ
k+1).

(iii) Solve for yk+1 ∈ H1
0 (Ω).

23



(4.8) a(y, v) + ((λ̄+ (y − ψ))χAψk+1
, v) + ((λ̄+ (y − ϕ))χAϕk+1

, v) = (f, v),

for all v ∈ H1
0 (Ω). Set

λk+1 =


0 on Ik+1

λ̄+ γ(yk+1 − ψ) on Aψk+1

λ̄+ γ(yk+1 − ϕ) on Aϕk+1.

(iv) Stop, or k = k + 1 and goto (ii).

(yk, λk) to (yγ, λγ).
For the following local convergence result the choice of λ̄ as in (4.6) is not

essential.

Proposition 4.1 If |λ0−λγ|L2(Ω) is sufficiently small then (yk, λk)→ (yγ, λγ)
superlinearly in H1

0 (Ω)× L2(Ω).

Proof. The proof is quite similar to that of Theorem 2.2 and we therefore
only give a brief outline. Again the algorithm is expressed in the variable λ
only. The resulting iteration map F : L2(Ω)→ L2(Ω) is given by

F (λ) = λ−max(0, λ̄+ γ(A−1(f − λ)−ψ))−min(0, λ̄+ γ(A−1(f − λ)−ϕ)),

and (4.7) is equivalent to F (λ) = 0. Steps (ii) and (iii) of the reduced
algorithm are replaced by:

(ii’) Set

Aψk+1 = {x : (λ̄+ γA−1(f − λk)− γ ψ((x) > 0},

Aϕk+1 = {x : (λ̄+ γA−1(f − λk)− γ ϕ)(x) < 0},

Ik+1 = Ω \ (Aψk+1 ∪ A
ϕ
k+1).
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(iii’) Set

δ λ = −λk on Ik+1 and solve for δ λ ∈ H−1

δ λ+ γA−1(δ λ) = −λk + λ̄− γ ψ + γA−1(f − λk) in Aψk+1

δ λ+ γA−1(δ λ) = −λk + λ̄− γ ϕ+ γA−1(f − λk) in Aϕk+1.

As in the proof of Theorem 2.2 one argues that F is Newton–differentiable.
To characterize the generalized derivative we set

cψ = λ̄+ γ(A−1(f − λ)− ψ), cϕ = λ̄+ γ(A−1(f − λ)− ϕ),

and

Aψ = {x : cψ(x) > 0}, Aϕ = {x : cϕ(x) < 0}, I = Ω \ (Aψ ∪ Aϕ).

A generalized derivative is given by

G(λ) = I + γ χAψA
−1 + γ χAϕA

−1 = I + γ χAA
−1,

where A = Aϕ ∪ Aψ. Existence and uniform boundedness of the inverses of
G(λ) is verified as in the proof of Theorem 2.2. �

5 Numerical experiments

In this section we describe some numerical experiments to illustrate and
confirm our results. The problem under consideration is

(5.1)


−∆y + λ = f in Ω,

y = 0 on ∂Ω

y ≤ ψ, λ ≥ 0, (λ, y − ψ)L2(Ω) = 0

which is discretized by means of node–based finite differences. In the one-
dimensional case Ω = (0, 1) with grid {xi} = { i

m
}mi=0 and in the two–

dimensional case Ω = (0, 1) × (0, 1) with grid {xi,j} = {( i
m
, j
m
}mi,j=0. The
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functions y, λ, f and ψ are discretized by grid functions denoted by the same
symbol and −∆ is discretized by the three-, respectively five-point finite dif-
ference stencil. It is well-known that the resulting discretized operator −∆h

satisfies the discrete maximum principle. Unless specified otherwise the al-
gorithms are initialized with the unconstrained solution to (5.1), i.e. ψ =∞.

Example 5.1 Here Ω = (0, 1), f = 1
4
×sin(5x), ψ = 1

4
, and m = 100. For all

runs that we report upon the primal–dual active set algorithm converges in
finitely many steps, i.e. the situation discussed in Proposition 2.1 occurs. We
denote the number of iterations that are required until the algorithm reaches
the solution of the discretized problem by iter. For γ > 0 the iterates of the
algorithm are denoted by yk, the solution by yγ. Similarly Ak stands for the
active sets of the iterates, Aδ for the active set corresponding to solution yδ.
In this example as well as in Examples 5.2 and 5.3 below the algorithm was
terminated when in two successive iterations the active sets coincide. The
current variables then give the solution of the discretized problem.

Let us start with some general observations for the numerical solution:

• yγ2 ≤ yγ1 for γ1 ≤ γ2 and λ̄ = 0.

• yγ1 ≤ yγ2 for γ1 ≤ γ2 and λ̄ = max(0, f + ∆kψ).

• Ak+1 ⊂ Ak for γ > 0 and λ̄ = 0 or λ̄ = max(0, f + ∆hψ).

• iter (γ1) ≥ iter (γ2) if γ1 ≤ γ2

• for large γ changes after the initialization phase from active to inactive
occur only along the boundary of Ak. This is not the case for small γ.

In Table 1 we report the required number of iterations and the cardinality
of the active set A as a function of γ, for λ̄ = 0.

γ 2.5 5 10 20 100 1000 10000
iter 4 4 6 6 15 20 20
#(Aγ) 29 26 23 22 19 18 18

Table 1:

26



The results of Table 1 suggest to combine the primal–dual active set strategy
with a continuation procedure with respect to γ: Thus we start with small γ
and use the solution as initialization for the algorithm with larger γ. Table
2 shows that this continuation method is effective.

γ 5 20 104

iter 5 3 4

Table 2:

Concerning superlinear convergence of the algorithm for fixed γ ∈ (1,∞) it
is not obvious whether the continuous result can be used as indicator for the
discrete one, due to finite speed of propagation of the discrete Laplacian. In
Table 3 we report the results for the quotients

qk = (yk+1 − y20)T∆h(yk+1 − y20)�(yk − y20)∆h(yk − y20),

for selected values of k, where λ̄ = 0, γ = 104.

k 2 6 10 13 14 15 16 17 18
qk .84 .80 .72 .62 .58 .51 .43 .31 .13

Table 3:

It is quite typical for the runs that we tested that the quotients decrease
approximately by one power of 10, between initialization and final result.

Example 5.2 For this example Ω = (0, 1)×(0, 1), f = 500x sin(5x) cos(2y),
ψ = 1 on the annulus, R = {(x, y) : .2 <

√
x2 + y2 < .4}, ψ = 10 on Ω R,

and m = 200. Again the algorithm with λ̄ = 0 and λ̄ = max(0, f + ∆hψ)
terminates after finitely many iterations. The same observations can be
made as for the one-dimensional example above. Typical results for λ̄ = 0
and various values of γ are given in Table 4.

For λ̄ = max(0, f + ∆hψ) the number of required iterations is comparable
and the final active sets for γ ≥ 108 is the same. For γ = 103 changes
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γ 103 104 105 106 107 108 109

iter 5 8 12 27 35 36 36
#(Aγ) 3117 2530 2348 2306 2302 2301 2301

Table 4:

from active to inactive sets take place along the boundaries of these sets in
layers up to the depth of 16 pixels. Continuation procedures with respect to
γ as explained in Example 5.1 again reduce the total number of iterations
significantly, see Table 5.

γ 104 106 108

iter 8 5 1

Table 5:

We carried out computations with the same specifications as in Table 5
with a series of mesh-sizes characterized by m = (100, 200, 300, 400). The
resulting number of total iterations are (11, 14, 16, 20).– Again superlinear
convergence of the iterates can be observed. In Table 6 we give selected
results for the quotients qk with m = 200, γ = 108 and λ̄ = 0. Since in this
case the algorithm terminates in 36 iterations we set qf = q36.

k 1 8 15 22 29 31 33 35
qk .86 .82 .79 .75 .55 .42 .21 .17

Table 6:

Tests with the smooth obstacle ψ = 8((x − 1
2
)2 + (y − 1

2
)2) − 1 give quite

similar results. The iteration procedure with the same values for γ as in
Table 5 requires 16 iterations to obtain the solution, without continuation
procedure 44, for γ = 108.

Example 5.3 This is an example with lack of strict complementarity. The
choice for Ω, and f is as in Example 5.2. We set m=40. Let y∗h denote
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the solution to the unconstrained problem −∆hyh = f , and define ψ =
10 except on S = (3

8
, 5

8
), where it is set equal to y∗h. The algorithm with

both λ̄ = 0 and λ̄ = max(0, f + ∆hψ) terminates in 1 iteration for a large
range of γ–values. In a similar experiment with m = 30 and S replaced by
(1

3
, 2

3
) × (1

3
, 2

3
) the algorithm starts to chatter if λ̄ = 0, while it converges in

finitely many iterations comparable to those in Table 4 for λ̄ = max(0, f +
∆hψ). Due to finite precision arithmetic and the fact that the active/inactive
set structure and the stopping rule are determined by commands involving
machine zero, chattering in the case of lack of strict complementarity comes
as no surprise. There are various remedies to avoid chattering based on
stopping rules involving machine epsilon. The alternative choice of using
λ̄ = max(0, f+∆hψ) rather than λ̄ = 0 has consistently eliminated chattering
in this and other examples. For instance, again with m = 30, we chose ψ = 10
on Ω\S and ψ = y∗h − 1. In the interior of the active set we have lack of
strict complementarity and for λ̄ = 0 and γ > 106 the iterates chatter. With
λ̄ = max(0, f + ∆hψ) no chattering occurs.

In Examples 5.1 and 5.2 we investigated the case when the penalty param-
eter tends to ∞. For a specific application it may be desirable to compute
with a fixed penalty parameter. For this purpose the penalty parameter
should be chosen such that the error due to penalization is of the same order
as that due to discretization. Theorems 3.2 and 3.3 then suggest to choose
γ proportional to h−2. The success of this procedure is illustrated in the
following example.

Example 5.4 The following example from [G], p. 44–45. It represents an
elasto–plastic torsion problem formulated as obstacle problem on the unit
disc Ω̃ with center at (.5, .5). Let r =

√
(x1 − .5)2 + (x2 − .5)2, d > 2 be a

constant and set
ψ(x) = 1− r, and f(x) = d.

Then the solution to the obstacle problem on Ω̃ is given by

y(x) =


1− r if 2

d
≤ r ≤ 1

d
4
[(1− r2)− (r − 2

d
)2] if 0 ≤ r ≤ 2

d
.

In our calculation we chose d = 5.123.
To compute on the unit square Ω we used exact non–homogeneous bound-

ary conditions assigned at the boundary. The regularization parameter was
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γ = |λ̄|∞/h2 with h = 0.01. The exact interface Γ between the active and
inactive sets is given by r = 1 − 2

d
. We use this example to demonstrate

how the interface can be approximated by our proposed algorithms. In the
following figures we show the estimated interface for both the infeasible (Γ1)
and feasible (Γ2) method determined by means of

(5.2)
Γ1 = {x ∈ R2 : y − ψ = 0}

Γ2 = {x ∈ R2 : λ̄+ γ(y − ψ) = 0}

or alternatively by

(5.3)

Γ1 = {x ∈ R2 : y − ψ = 1
γ
}

Γ2 = {x ∈ R2 : λ̄+ γ(y − ψ) = 1
γ
}

Figure 1 shows a blow–up section of Γ and the Γ1 ’s for the infeasible method
and Figure 2 shows a blow–up section of Γ and the Γ2 ’s for the feasible
method. The most outer curve is for the exact interface Γ both in Figures
1 and 2. In this example the second estimates by (5.3) provide better and
smoother estimates of the interface Γ both for the infeasible and feasible
methods than (5.2).
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Abstract

A regularized optimality system for state-constrained optimal control prob-
lems is introduced and semi-smooth Newton methods for its solution are
analyzed. Convergence of the regularized problems is proved. Numerical
tests confirm the theoretical results and demonstrate the efficiency of the
proposed methodology.
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1 Introduction

This paper is aimed at describing an approach for the numerical solution
of optimal control problems with point-wise state constraints. The objective
consists in obtaining a method that is as close as possible to a Newton scheme,
with the property that super-linear rate of convergence of the iterates can
be observed numerically and proved analytically. Two obstacles need to be
overcome. First, due to the constraints, the underlying optimization problem
in non-differentiable in the Frechet sense, and secondly as a consequence of
the specific nature of state constraints, the infinite dimensional variables
which describe the optimality system experience very little regularity. The
Lagrange multiplier associated to the state constrained, for example, is only
a measure, in general, and the adjoint state is typically only in L2 (solution
tres faible). The first of these two difficulties will be overcome by utilising
results from semi-smooth Newton methods in infinite dimensional spaces.
The second is approached by utilizing a regularization technique.

State constrained have presented a challenge for some time. Earlier work
focused on the derivation of first order optimality conditions. From among
the many contributions we mention [AR1] [AR2] [B1] [BC] [BK] [C] [T]. More
recently second order necessary as well as sufficient optimality conditions for
certain classes optimal control problems subject to elliptic partial differential
equations were investigated in [CT] and [CTU]. Finite element approxima-
tions of the infinite dimensional optimality systems are considered in [AM]
and in [TT] parabolic optimal control problems, for example. The litera-
ture on numerical methods for the treatment of state-constrained optimal
control problems is less rich. In [B1] and [B2] Lagrangian and augmented
Lagrangian methods are analysed for state-constrained optimal control prob-
lems. The Lagrangian formulation is utilized for decoupling the state equa-
tion. Within the resulting saddle point problems the point-wise constraints,
however, remain as explicit constraints. A significantly different approach
towards numerical realization of state constrained optimal control problems
was followed in [HR], where level set methods are employed to determine the
interface between active and inactive sets. - Of course, one can also take the
point of view that after discretization of the optimality condition, see (1.2)
below, one arrives at a finite dimensional complementarity problem. Such
problems have been intensively studied, see [LPR], for example. Such an
approach misses important features, however, as for example, the regular-
ity of Lagrange multipliers and its consequences, and smoothing effects or
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lack thereof of the partial differential equation. These properties significantly
influence the behavior of numerical algorithms.

In our work we focus on the treatment of the constraints as infinite di-
mensional inequality conditions. The numerical algorithms are related to
those already utilized in [BHHK]. There, however, no attempt towards a
convergence analysis was made. The latter, in turn, suggests a modification
of the algorithm utilized in [BHHK]. This modification results in a significant
speed-up of the algorithm that we propose in this paper over the previous
one in [BHHK]. Both algorithms are of iterative nature, but while the earlier
one would typically only alter the active set along the interface between ac-
tive and inactive sets, the new one has the capability of making changes on
larger patches. The price for this advantage consists in the necessity to uti-
lize a tuning parameter which determines the influence of the regularization
procedure.

Within this paper we shall not aim at generality but rather we consider
a model problem. Generalization to more complex cost-functionals, and dif-
ferential equations are possible. We shall focus on the following problem:





min J(y, u) = 1
2
|y − z|2L2 + α

2
|u|2L2

subject to

−∆y = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ a.e. in Ω

(y, u) ∈ H1
0 (Ω)× L2(Ω),

(1.1)

where Ω is a bounded domain in Rd, d ∈ {1, 2, 3}, with a C1,1 boundary
if d = 2 or 3. Further we assume that z ∈ L2(Ω), ψ ∈ C(Ω), ψ > 0 on
∂Ω and α > 0. The norm on L2(Ω) is denoted by | · |L2 or alternatively
by | · |, and the L2(Ω)-inner product by (·, ·). It will be convenient to set
W = H1

0 (Ω) ∩H2(Ω). Due to the regularity requirements every solutions to
−∆y = u, with u ∈ L2(Ω) and y = 0 on ∂Ω satisfies y ∈ W ⊂ C(Ω). It is
standard to argue the existence of a solution (y∗, u∗) ∈ W×L2(Ω) to (P). Let
〈·, ·〉C∗,C denote the duality pairing between C(Ω) and its topological dual

2



C∗(Ω). The proof to the following characterization of the solution is found
in [BK], for example.

Proposition 1.1 The pair (y∗, u∗) ∈ W × L2(Ω) is a solution to (P) if and
only if there exists p∗ ∈ L2(Ω) and λ∗ ∈ C∗(Ω) such that

−∆y∗ = u∗ in Ω, y∗ = 0 on ∂Ω,

(p∗,−∆y) + 〈λ∗, y〉C∗,C = (z − y∗, y) for all y ∈ W

αu∗ = p∗

y∗ ≤ ψ, 〈λ∗, y∗ − ψ〉C∗,C = 0,

〈λ∗, y〉C∗,C ≥ 0, for all y ∈ C(Ω) with y ≥ 0.

In Section 2 we shall present a regularized optimality system and describe
an algorithm for its solution. Local super-linear as well as global convergence
for a certain range of regularization parameters will be proved. Section 3
is devoted to the convergence analysis with respect to the regularization
parameter. The theoretical results are confirmed by numerical tests which
are presented in Section 4. The nature of the algorithm changes with the size
of regularization parameter. As the size of the parameter value is increased
the widths of the sets which change from one iteration to the next decreases.
Moreover for moderate values of the regularization parameter the behavior
of the iterates is monotone. This is not the case for large parameter values.
These different properties suggest to use the regularization parameter within
a continuation procedure.

2 Semi-smooth Newton algorithm

In this section we describe and analyze a semi-smooth Newton algorithm for
a regularized approximation to the optimality condition expressed in Propo-
sition (1.1). To motivate the procedure note that formally the optimality
system can be expressed as
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



αAy = p

Ap + λ = z − y

λ = max(0, λ + y − ψ),

(2.1)

where A denotes the negative Laplacian with Dirichlet boundary conditions.
Eliminating p from these equations we find





(I + αA2)y = z − λ

λ = max(0, λ + y − ψ),
(2.2)

or

λ = max(0, λ + B(z − λ)− ψ)(2.3)

where B = (I + αA2)−1. We note that λ appears twice inside the max-
operation, once with and once without smoothing operation. The latter is
responsible for the fact that semi-smooth Newton techniques cannot be ap-
plied directly [HIK]. The structure of (2.3) distinguishes state constrained
from control constrained problems, since for the latter the optimality system
can be reformulated in such a way that inside the max-operation the rele-
vant variable only appears under a smoothing operation. To circumvent this
difficulty we replace λ = max(0, λ + y − ψ) in (2.1) by the two-parameter
family of approximations [IK1, IK2]

λ = max(0, λ̄ + γ(y − ψ)),(2.4)

where γ > 0 and λ̄ ∈ L2(Ω). The role of λ̄ will become evident in Section 4.

Algorithm

(i) Choose y0 ∈ L2(Ω), set k = 0.

(ii) Set Ak+1 = {x: (λ̄ + γ(yk − ψ))(x) > 0}, Ik+1 = Ω \ Ak+1.

(iii) Solve for (yk+1, pk+1) ∈ W ×W .

α Ay = p
Ap + y + (λ̄ + γ(y − ψ))χAk+1

= z
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(iv) Set

λk+1 =





0 on Ik+1

λ̄ + γ(yk+1 − ψ) on Ak+1.

(v) Stop or k = k + 1, and goto (ii).

Above χAk+1
denotes the characteristic function of the set Ak+1. Observe

that (iii) is the necessary and sufficient optimality condition to the uncon-
strained problem





min J(y, u) + 1
2γ

∫

Ak+1

|λ̄ + γ(y − ψ)|2dx

subject to

−∆y = u in Ω, y = 0 on ∂Ω.

(2.5)

This problem clearly admits a unique solution (yk+1, uk+1), and (yk+1, pk+1),
with pk+1 = αuk+1, gives the solution to the system in step (iii) of the Algo-
rithm. In the remainder of this section we argue convergence of the iterates
(yk, pk, λk) to the solution (yγ, pγ, λγ) of





α Ay = p

Ap + λ = z − y

λ = max(0, λ̄ + γ(y − ψ)).

(2.6)

Here we suppress the dependence of (yγ, pγ, λγ) on λ̄.

Lemma 2.1 For every γ > 0 there exists a unique solution (yγ, pγ, λγ) ∈
W ×W × L2(Ω) to (2.6).

Proof. Consider the operator B:W →W∗ given by

B = α A2 + I + max(0, λ̄ + γ(· − ψ)).
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Clearly α A2 is maximal monotone and B−α A2 is continuous and monotone,
and thus B is maximal monotone as well. Moreover

(By −Bȳ, y − ȳ)W∗,W ≥ α|A(y − ȳ)|2 + |y − ȳ|2(2.7)

for all y, ȳ ∈ W . Hence B is coercive and consequently surjective. Thus
By = z admits a solution y ∈ W . By (2.7) it is unique. Set p = α Ay ∈
L2(Ω), λ = max(0, λ̄+γ(y−ψ)) ∈ L2(Ω) and note that By = Ap+y+λ = z.
This equation holds in W∗. But z − y − λ ∈ L2(Ω) and hence p ∈ W .
Thus (y, p, λ) ∈ W ×W × L2(Ω) is the desired unique solution to (2.6). For
the relevant facts on monotone operators we refer to [BP], Chapter 1, for
example. ¤

Proposition 2.1 If Ak+1 = Ak, then (yk, pk, λk) is the solution to (2.6).

Proof. Since, for givenAk+1, the solution to (iii) is unique we have (yk, pk) =

(yk+1, pk+1). By assumption Ak = {x: (λ̄ + γ(yk − ψ)(x) > 0}. Consequently
(yk, pk, λk) satisfies (2.6). ¤

Theorem 2.1 If y0, ψ and ȳ ∈ Lp(Ω) for some p > 2 and |y0 − yγ|Lp is
sufficiently small, then (yk, pk, λk) converges to (yγ, pγ, λγ) super-linearly in
W ×W × L2(Ω) as k →∞.

Proof. (i) Observe that the iterate (yk+1, pk+1) can be expressed as





α Ayk+1 = pk+1

A pk+1 + yk+1 + max(0, ȳ + γ(yk − ψ))

+γ G(ȳ + γ(yk − ψ))(yk+1 − yk) = z,

(2.8)

where, for g ∈ Lp(Ω),

G(g)(x) =





0 if g(x) ≤ 0

g(x) if g(x) > 0.

It is wellknown, see e.g. [HIK, U], that for every g ∈ Lp(Ω) we have

|max(0, g + h)−max(0, g)−G(g + h)h|L2 = o(|h|Lp),(2.9)
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as |h|Lp → 0.

(ii) Let us set

δy = yk+1 − yγ, δp = pk+1 − pγ, δλ = λk+1 − λγ.

From (2.5) and (2.8) we have





α A δy = δp

A δp + δλ + δy = 0

δλ = γG(λ̄ + γ(yk − ψ))δy + R,

(2.10)

where

R = max(0, λ̄ + γ(yγ + (yk − yγ)− ψ))−max(0, λ̄ + γ(yγ − ψ))

−γ G(λ̄ + γ(yγ + (yk − yγ)− ψ)(yk − yγ).

Taking the inner product with Aδy in the first equation of (2.10) we find

α|Aδy|2 + |δy|2 + γ(G(λ̄ + γ(yk − ψ))δy, δy) = −(R, δy).

From (2.9) we have |R|L2(Ω) = o(|yk − yγ|Lp(Ω)) and hence

|yk+1 − yγ|W = o(|yk − yγ|Lp).

From the last equation in (2.10) it follows that

|λk+1 − λγ|L2(Ω) = o(|yk − yγ|Lp),

and finally the second equation leads to

|pk+1 − pγ|W = o(|yk − yγ|Lp). ¤

We now address the convergence of the Algorithm to the solution of (2.6)
from arbitrary initial conditions and an appropriate range of values for γ.

Theorem 2.2 If γ
α
‖A−1‖2

L(L2(Ω)) < 1 then limk→∞(yk, pk, λk) = (yγ, pγ, λγ)

in W ×W × L2(Ω).
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Proof. Let δy = yk+1 − yk, δλ = λk+1 − λk, and δp = pk+1 − pk. From step
(iii) of the Algorithm we have





α Aδy = δp

A δp + δy + χAk+1
δy + R = 0,

(2.11)

where χAk+1
is the characteristic function of the set Ak+1 and

R =





0 on (Ak+1 ∩ Ak) ∪ (Ik+1 ∩ Ik)

λ̄ + γ(yk − ψ) on Ak+1 ∩ Ik

−λ̄− γ(yk − ψ) on Ik+1 ∩ Ak.

(2.12)

From (2.11) we deduce that

(αA2 + q) δy = −R,

where q = 1 + χAk+1
, which implies

α|Aδy|2 + |q δy2| = −(R, y)

and hence
|Aδy| ≤ 1

α
‖A−1‖L(L2(Ω)) |R|.(2.13)

On Ik we have λ̄ + γ(yk−1 − ψ) ≤ 0 and hence

λ̄ + γ(yk − ψ) ≤ γ(yk − yk−1) on Ak+1 ∩ Ik.

Similarly λ̄ + γ(yk+1 − ψ) ≥ 0 on Ak and hence

−λ̄− γ(yk − ψ) ≤ γ(yk−1 − yk) on Ik+1 ∩ Ak.

From (2.12), (2.13) we find

|Aδy| ≤ γ
α
‖A−1‖L(L2(Ω)) |yk − yk−1|,

and hence

|A(yk+1 − yk)| ≤ γ
α
‖A−1‖2

L(L2(Ω)) |A(yk − yk−1)|.
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Since γ
α
‖A−1‖2

L(L2(Ω)) < 1 by assumption, it follows that {yk} is a Cauchy
sequence in W . Hence there exists ŷ ∈ W such that limk→∞ yk = ŷ in W .
Let us define λ̂ = max(0, λ̄ + γ(ŷ − ψ)) and set

Â = {x: (λ̄ + γ(ŷ − ψ))(x) > 0}, Î = Ω \ Â.

Observe that

λk+1 − λ̂ =





γ(yk+1 − ŷ) on Ak+1 ∩ Â

γ(yk+1 − ŷ) + λ̂ + γ(ŷ − ψ) on Ak+1 ∩ Î

−(λ̄ + γ(ŷ − ψ)) on Ik+1 ∩ Â

0 on Ik+1 ∩ Î,

which implies

|λk+1 − λ̂|L2 ≤ γ|yk+1 − ŷ|L2 +

(∫

Ω

|λ̄ + γ(λ̂− ψ)|2χAk+1 ∩ Î dx

)1/2

+

(∫

Ω

|λ̄ + γ(λ̂− ψ)|2χÂ ∩ Ik+1
dx

)1/2

.

Lebesgue’s bounded convergence theorem implies that limk→∞ λk = λ̂ in
L2(Ω). Taking the limit with respect to k in

Apk+1 + yk+1 + λk+1 = z,

we find that {pk}∞k=1 converges in W and the limit p̂ satisfies

Ap̂ + ŷ + λ̂ = z.

By uniqueness of the solution to (2.6) we have (ŷ, p̂, λ̂) = (yγ, pγ, λγ). ¤

3 Convergence of regularized problems

In this section convergence of the solutions to (2.6) as γ → ∞ is analyzed.
Our first result holds for arbitrary choices of λ̄.
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Theorem 3.1 The solutions {(yγ, pγ, λγ)}γ>0 to the regularized problem (2.6)
converge to (y∗, p∗, λ∗) in the sense that yγ → y∗ strongly in W, pγ → p∗

strongly in L2(Ω) and λγ ⇀ λ∗ weakly in W∗ as γ →∞.

Proof. As a preparatority step let us note that

(λγ, yγ − y∗) = 1
γ
(λγ, λ̄ + γ(yγ − ψ) + γ(ψ − y∗)− λ̄)

≥ 1
γ
|λγ|2 − 1

γ
(λγ, λ̄),

(3.1)

where we used that λγ ≥ 0 and ψ ≥ y∗. Consequently

(λγ, yγ − y∗) ≥ − 1
4γ
|λ̄|2,(3.2)

for every γ > 0. From Proposition 1.1 and (2.6) we conclude that

α(Ayγ, A(yγ − y∗)) = (Apγ, yγ − y∗) = (z − yγ − λγ, yγ − y∗),

and therefore by (3.1)

α|Ayγ|2 + |yγ|2 + 1
γ
|λγ|2

≤ α(Ayγ, A y∗) + (yγ, y
∗) + (z, yγ − y∗) + 1

γ
(λγ, λ̄).

This inequality implies that
{
|yγ|2W + 1

γ
|λγ|2

}
γ≥1

is uniformly bounded,(3.3)

and from (2.6)

{|pγ|}γ≥1 and {|λγ|W∗}γ≥1 are uniformly bounded ,(3.4)

as well. From (3.3), (3.4) we conclude the existence of (ŷ, p̂, λ̂) ∈ W×L2(Ω)×
W∗ and of a subsequence, again denoted by (yγ, pγ, λγ), such that

(yγ, pγ, λγ) ⇀ (ŷ, p̂, λ̂) weakly in W × L2(Ω)×W∗.

Since λγ ≥ 0 for every γ > 0 we have

〈λ̂, v〉W∗,W ≥ 0 for every v ∈ W .
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Note that
1
γ2 |λγ|2L2 = |max(0, 1

γ
|λ̄|+ yγ − ψ)|2,

and therefore by (3.3)

lim
γ→∞

|max(0, 1
γ
|λ̄|+ yγ − ψ)|2 = 0.

By Fatou’s lemma this implies that max(0, ŷ − ψ) = 0 and thus

ŷ ≤ ψ in Ω.

By Proposition 1.1 and (2.6)

α(A(yγ − y∗), A(yγ − y∗)) = (pγ − p∗, A(yγ − y∗))

= −|yγ − y∗|2 + 〈λ∗ − λγ, yγ − y∗〉W∗,W ,

which, using (3.2) implies

α|A(yγ − y∗)|2 + |yγ − y∗|2 ≤ 〈λ∗, yγ − y∗〉W∗,W + 1
4γ
|λ̄|2.

Taking the limit γ →∞ we find

0 ≤ lim α|A(yγ − y∗)|2 + |yγ − y∗|2 ≤ 〈λ∗, ȳ − y∗〉W∗,W

= 〈λ∗, ŷ − ψ〉 ≤ 0.

Consequently lim
γ→∞

yγ = y∗ in W and lim
γ→∞

pγ = p∗ in L2(Ω), by (2.6). Taking

the limit γ →∞ in

(pγ, A v) + 〈λγ, v〉W∗,W = (z − yγ, v) for all v ∈ W

implies that

(p∗, A v) + 〈λ̂, v〉W∗,W = (z − y∗, v) for all v ∈ W .

Since this equation is also satisfied with λ̂ replaced λ∗ we have λ̂ = λ∗.
Finally, since the solution to the optimality system given in Proposition 1.1
is unique the whole sequence (yγ, pγ, λγ) converges to (y∗, p∗, λ∗). ¤

11



4 Numerical example

Utilizing a finite difference discretization with a five-point stencil approxima-
tion to the Laplace operator, the Algorithm was tested for several examples.
The Algorithm was initialized with the solution to the unconstrained prob-
lem. Super-linear convergence could be observed for arbitrary fixed choices
of γ. For relatively small values of γ a large number of grid points is moved
from active to inactive an vice-versa from one iteration to the next. For large
γ, on the other hand, one iteration of the algorithm tends to have an effect
only along the current active/inactive set interface. This suggests to utilize
a continuation procedure with respect to γ. Here we present numerical find-
ings for an example already treated in [BHHK], where Ω is the unit square,
z(x, y) = sin(2πxy) and ψ = 0.1. In [BHHK] a wide range of α values was
tested. Among these values α = 0.001 required most iterations for an active
set algorithm without γ - continuation procedure. In Table 1 we depict the
results with step-size 1

60
and λ̄ = 0. The number of active mesh-points and

the required number of iterations are shown as a function of γ. The Algo-
rithm was stopped when two consecutive active sets coincide, i.e. the exact
discretized solution was computed, see Proposition 2.1.

γ 103 104 105 106 108 109 1010

iter 10 17 27 30 30 31 31
active 791 667 606 587 577 575 575

Table 1:

In Table 1 for each value of γ the Algorithm was initialized by the optimal
control to the unconstrained problem. In Table 2 for γ > 103 the Algorithm
was initialized with the result obtained before with the smaller γ - value.

γ 103 106 109

iter 10 6 3 Σ =19

Table 2:

In this as well as in other examples we found that a reduction of at least
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30 percent can be obtained by the continuation procedure. To document
super-linear convergence which can be observed numerically we computed
the ratios

rk =
|∆(yh

k+1 − yh
∗ )|

|∆(yh
k − yh∗ )|

,

where yh
∗ denotes the solution to the descritized problem (2.6) for a fixed γ

- value. We present the selected data corresponding to γ = 104 in Table 3.

i 9 10 11 12 13 14 15 16
ri .7049 .6468 .5475 .4554 .4131 .2780 .0562 0.0

Table 3:

In Table 4 we present results for another example with ψ = (x − .5) +
(y− .5)− .1 and α = .1 and all other specifications as before. For γ ≤ 104 the
behavior of the iterates is monotone in the sense that the sequences {yk}∞k=1,
{λk}∞k=1, {pk}∞k=1 and {uk}∞k=1 are monotonically decreasing and Ik ⊂ Ik+1

for every k ≥ 1. For γ > 102 the Algorithm was initialized with the result
obtained with the smaller γ - value.

γ 102 103 104 1010

iter 4 5 5 11
active 857 416 183 34

Table 4:

Augmented Lagrangian method. System (2.6) with special choices for λ̄ is
precisely the system that arises as auxiliary problem in the classical first order
augmented Lagrangian method. The Algorithm of Section 2 is an efficient
method to solve such systems. This suggests to investigate the augmented
Lagrangian method as an alternative to the continuation method with respect
to γ to solve the original system (2.1). We specify the augmented Lagrangian
method next:

ALM

(a) Choose γ > 0, λ0; set k = 0.
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(b) Solve for (yk, pk, λk):
α Ayk = pk

Apk + λk + yk = z
λk = max(0, λk−1 + γ(yk − ψ)).

(c) k = k + 1 and goto (1).

Note that γ is not increased in ALM, rather λ is updated. To solve the
system in (b) the semi-smooth Newton Algorithm of Section 2 with λ̄ = λk−1

is used. Below we present our numerical findings with ALM for the test
problem presented at the beginning of this section. We carried out tests for
λ0 = 0 and λ0 = max(0, z − ψ − α A2ψ). Since λ0 = 0 gives better results
we only report on them. The question arises concerning the precision to
which the system in (b) is solved, i.e. how many iterates of the semi-smooth
Newton Algorithm should be carried out. For the results below we solved
the system exactly for k = 0. For k ≥ 1 only one step of the semi-smooth
Newton Algorithm was performed before λ was updated. We chose h = 1

60
,

α = 0.001 and ψ = 0.1. For γ = 105 we required 55 system solves to reach
the exact solution, for γ = 106 it took 37 system solves. We tested several
alternatives to the above procedure without success to decrease the number
of system solves significantly. It appears that we can safely conclude that for
the class of problems under consideration the continuation procedure with
respect to γ is numerically more efficient than the augmented Lagrangian
method.

References

[AM] W. Alt and U. Mackenroth: Convergence of finite element approxima-
tions to state constrained convex parabolic boundary control problems,
SIAM J. Control and Optim. 22(1991), 83-98.

[AR1] N. Arada and J.P. Raymond: State-constrained relaxed problems for
semilinear elliptic equations, J. Math. Anal. and Appl. 223(1998),
248-271.

[AR2] N. Arada and J.P. Raymond: Optimal control problems with
mixed control-state constraints, preprint, Universite Paul Sabatier,
Toulouse.

14



[B1] M. Bergounioux: On boundary state constrained control problems, Nu-
mer. Funct. Anal. and Optimiz. 14(1993), 515-543.

[B2] M. Bergounioux: Augmented Lagrangian method for distributed op-
timal control problems with state constraints, J. Optim.Theory and
Appl. 78 (1993), 493-521.

[BC] F.J. Bonnans and E. Casas: An extension of Pontryagin’s maximum
principle for state-constrained optimal control of semilinear elliptic
equations and variational inequalities, SIAM J. Control and Optim.
33(1995), 274-298.

[BHHK] M. Bergounioux, M. Haddou, M.Hintermüller and K. Kunisch: A
comparison of a Moreau-Yosida based active set strategy and inte-
rior point problems for constrained optimal control problems, SIAM
J. Optim 11(2000), 495-521.

[BK] M. Bergounioux and K. Kunisch: On the structure of Lagrange mul-
tipliers for state-constrained optimal control problems, System and
Control Letters, to appear.

[BP] V. Barbu and Th. Percupanu : Convexity and Optimization in Banach
Spaces, D. Reidel Publ. Comp., Dodrecht, 1986.

[C] E. Casas: Boundary control of semilinear elliptic equations with point-
wise state constraints, SIAM J. Control and Optim. 31(1993), 993-
1006.
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[CTU] E. Casas, F. Tröltzsch and A. Unger: Second order sufficient optimal-
ity conditions for nonlinear elliptic control problems, J. Analysis and
its Applications 15(1996), 687-707-

[HIK] M. Hintermüller, K. Ito and K. Kunisch: The Primal-Dual Active Set
Strategy as Semi-Smooth Newton Method, submitted.

[HR] M. Hintermüller and W. Ring: A level set approach for the solution
of a state-constrained optimal control problem, submitted.

15



[IK1] K. Ito and K. Kunisch: Augmented Lagrangian Methods for Nons-
mooth Convex Optimization in Hilbert Spaces, Nonlinear Analysis,
Theory, Methods and Applications, 41(2000), 573–589.

[IK2] K. Ito and K. Kunisch: Semi–smooth Newton methods for variational
inequalities of the first kind, Mathematical Modelling and Numerical
Analysis, to appear.

[LPR] Z.Q. Luo, J.S. Pang and D.Ralph: Mathematical Programs With
Equilibrium Constraints, Cambridge University Press, 1966

[T] D. Tiba: Optimal control for parabolic control problems and applica-
tions, Lecture Notes in Mathematics 1459, Springer-Verlag, Berlin,
1990.
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PATH-FOLLOWING METHODS FOR A CLASS OF
CONSTRAINED MINIMIZATION PROBLEMS IN

FUNCTION SPACE¦

M. HINTERMÜLLER∗,† AND K. KUNISCH†

Abstract. Path-following methods for primal-dual active set strate-
gies requiring a regularization parameter are introduced. Existence
of a primal-dual path and its differentiability properties are ana-
lyzed. Monotonicity and convexity of the primal-dual path value
function are investigated. Both feasible and infeasible approxi-
mations are considered. Numerical path following strategies are
developed and their efficiency is demonstrated by means of exam-
ples.

1. Introduction

Primal-dual active set strategies or, in some cases equivalently, semi-
smooth Newton methods, were proven to be efficient methods for solv-
ing constrained variational problems in function space [1, 9, 10, 11,
12, 13]. In certain cases regularization is required resulting in a fam-
ily of approximating problems with more favorable properties than the
original one, [12, 13]. In previous work [13] convergence, and in some
cases rate of convergence, with respect to the regularization parameter
was proved. In the numerical work the adaptation of these parameters
was heuristic, however. The focus of the present investigation is on
an efficient control of the regularization parameter in the primal-dual
active set strategy for a class of constrained variational problems. To
explain the involved issues we proceed mostly formally in this section
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2 M. HINTERMÜLLER∗,† AND K. KUNISCH†

and consider the problem

(1)

{
minJ (v) over v ∈ X

s.t. G v ≤ ψ,

where J is a quadratic functional on a Hilbert space X, and G : X →
Y . It is assumed that Y ⊂ L2(Ω) is a Hilbert lattice with ordering
≤ induced by the natural ordering of L2(Ω). We note that (1) sub-
sumes problems of very different nature. For example, for the control
constrained optimal control problem





min 1
2
|y − z|2L2 + α

2
|u|2L2

s.t. −∆y = u in Ω, y = 0 on ∂Ω,

u ≤ ψ a.e. in Ω,

with Ω a bounded domain in Rn, z ∈ L2(Ω), α > 0, one can use y =
(−∆)−1u, where ∆ denotes the Laplacian with homogenous Dirichlet
boundary conditions, and arrives at

{
min 1

2
|(−∆)−1u− z|2 + α

2
|u|2

s.t. u ≤ ψ a.e. in Ω,

which is clearly of the form (1). For J (v) = 1
2

∫
Ω
|∇v|2dx − ∫

Ω
f v,

X = H1
0 (Ω), and G = I we obtain the classical obstacle problem. For

state constrained control problems with y ≤ ψ one has
{

min 1
2
|(−∆)−1u− z|2 + α

2
|u|2

s.t. (−∆)−1u ≤ ψ a.e. in Ω,

which is also of the form (1). From the point of view of duality theory
these three problems are very different. While it is straightforward to
argue the existence of a Lagrange multiplier in L2(Ω) for the control
constrained optimal control problem, it is already more involved and
requires additional assumptions to guarantee its existence in L2(Ω) for
obstacle problems, and for state constrained problems the Lagrange
multiplier is only a measure. If we resort to a formal discussion, then
in either of these cases we arrive at the optimality system of the form

(2)

{
J ′(v) + G∗λ = 0,

λ = max(0, λ + c(G(v)− ψ) )

for any fixed c > 0. Here, G∗ denotes the adjoint of G. The second
equation in (2) is equivalent to λ ≥ 0, G(v) ≤ ψ and λ(G(v)− ψ) = 0.
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Continuing formally, the primal-dual active set strategy determines
the active set at iteration level k by means of

Ak+1 = {x ∈ Ω: λk(x) + c(G(vk)(x)− ψ(x) ) > 0},
assigns the inactive set Ik+1 = Ω \ Ak+1, and updates (v, λ) by means
of

(3)

{
J ′(vk+1) + G∗λk+1 = 0,

λk+1 = 0 on Ik+1, (G(vk+1)− ψ)(x) = 0 for x ∈ Ak+1.

These auxiliary problems require special attention. For obstacle prob-
lems the constraint vk+1 = ψ on Ak+1 induces that the associated
Lagrange multiplier λk+1 is in general less regular than the Lagrange
multiplier associated to v ≤ ψ for the original problem; see, e.g., [13].
For problems with combined control and state constraints it may hap-
pen that due to the assignment on Ik+1 and Ak+1 (3) has no solution
while the original problem does. For these reasons in, e.g., [9, 12, 13]
the second equation in (2) was regularized resulting in the family of
equations

(4)

{
J ′(v) + G∗λ = 0,

λ = max(0, λ̄ + γ(G(v)− ψ)),

where λ̄ is fixed, possibly λ̄ = 0, and γ ∈ R+. In the above mentioned
references it was shown that under appropriate conditions the solutions
(vγ, λγ) to (4) exist, the quantity λγ enjoys extra regularity and (vγ, λγ)
converge to the solution of (2) as γ →∞+.

In previous numerical implementations the increase of γ to infinity
was heuristic. As the system (4) becomes increasingly ill-conditioned
as γ tends to ∞, in this paper a framework for a properly controlled
increase of γ-values will be developed in order to cope with the con-
ditioning problem. At the same time we aim at solving the auxiliary
problems (3) only inexactly to keep the overall computational cost low.
To this end we defined neighborhoods of the path which allow inexact
solutions and which contract in a controlled way towards the path as
the iteration proceeds. Our work is inspired by concepts from path-
following methods in finite dimensional spaces [4, 5, 16, 18, 19]. We
first guarantee the existence of a sufficiently smooth path γ → (vγ, λγ),
with γ ∈ (0,∞) in appropriately chosen function spaces. Once the path
is available it can be used as the basis for updating-strategies of the
path parameter. Given a current value γk, with associated primal and
dual states (vγk

, λγk
), the γ-update should be sufficiently large to make

good progress towards satisfying the complementarity conditions. On
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the other hand, since we are not solving the problems along the path
exactly, we have to use safeguards against steps which would lead us
too far off the path. Of course, these goals are impeded by the fact that
the path is not available numerically. To overcome this difficulty we
use qualitative properties of the value function, like monotonicity and
convexity, which can be verified analytically. These suggest the intro-
duction of model functions which will be shown to approximate very
well the value functional along the path. We use these model functions
for our updating strategies of γ. In the case of exact path following
we can even prove convergence of the resulting strategy. In the present
paper the program just described is carried out for a class of prob-
lems, corresponding to contact problems. State-constrained optimal
control problems require a different approach that will be considered
independently. As we shall see, the (infinite dimensional) parameter λ̄
can be used to guarantee that the iterates of the primal variable are
feasible. Further it turns out that the numerical behavior of infeasible
approximations is superior to the feasible ones from the point of view
of iteration numbers.

Interior point methods also require an additional parameter, which,
however enters into (2) differently. For the problem under consideration
here, the interior-point relaxation replaces the second equation in (2)
by

(5) λ(x) (ψ −G(v))(x) =
1

γ
for x ∈ Ω.

Path following interior point methods typically start strictly feasible,
with iterates which are required to stay strictly feasible during the
iterations while satisfying, or satisfying approximately, the first equa-
tion in (2) and (5). Path-following interior point methods have not
received much attention for infinite dimensional problems yet. In fact,
we are only aware of [17], were such methods are analyzed for optimal
control problems related to ordinary differential equations. For the
problem classes that we outlined at the beginning of this section, the
primal-dual active set strategy proved to be an excellent competitor
to interior point methods, as was demonstrated, for example, in [1]
comparing these two methods.

This paper is organized as follows. Section 2 contains the precise
problem formulation and the necessary background on the primal-dual
active set strategy. The existence and regularity of the primal-dual
path is discussed in Section 3. Properties of the primal-dual path value
functional are analyzed in Section 4. Section 5 contains the derivation
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of the proposed model functions for the primal-dual path value func-
tional. Exact as well as inexact path-following algorithms are proposed
in Section 6 and their numerical behavior is discussed there as well.

2. Problem statement, regularization and its motivation

We consider

(P)

{
min 1

2
a(y, y)− (f, y) over y ∈ H1

0 (Ω)

s.t. y ≤ ψ

where f ∈ L2(Ω), ψ ∈ H1(Ω), with ψ|∂Ω ≥ 0, where Ω is a bounded
domain in Rn with Lipschitz continuous boundary ∂Ω. Throughout
(·, ·) denotes the standard L2(Ω)-inner product, and we assume that
a(·, ·) is a bilinear form on H1

0 (Ω)×H1
0 (Ω) satisfying

(6) a(v, v) ≥ ν|v|2H1
0

and a(w, z) ≤ µ|w|H1|z|H1

for some ν > 0, µ > 0 independent of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω).

Here and throughout we use |v|H1
0

= |∇v|L2 for v ∈ H1
0 (Ω) which defines

a norm on H1
0 (Ω) due to Friedrichs’ inequality, and |w|H1 = (|w|2L2 +

|∇w|2L2)1/2 denotes the standard H1-norm; see, e.g., [2]. Moreover let
A : H1

0 (Ω) → H−1(Ω) be defined by

a(v, w) = 〈Av, w〉H−1,H1
0

for all v, w ∈ H1
0 (Ω).

It is well-known that (P) admits a unique solution y∗ ∈ H1
0 (Ω) with

associated Lagrange multiplier λ∗ = −Ay∗+f , satisfying the optimality
system

(7)

{
a(y∗, v) + 〈λ∗, v〉H−1,H1

0
= (f, v),

〈λ∗, y∗ − ψ〉H−1,H1
0

= 0, y∗ ≤ ψ, 〈λ∗, v〉 ≤ 0 for all v ≤ 0.

This also holds with f ∈ H−1(Ω). Under well-known additional re-
quirements on a, ψ and Ω, as for example
(8){

a(v, w) =
∫
Ω
(
∑

aijvxi
wxj

+ d v w), with aij ∈ C1(Ω̄), d ∈ L∞(Ω),

d ≥ 0, ψ ∈ H2(Ω), ∂Ω is C1,1 or Ω is a convex polyhedron,

we have (y∗, λ∗) ∈ H2(Ω) × L2(Ω) and the optimality system can be
expressed as

(9)

{
A y∗ + λ∗ = f in L2(Ω),

λ∗ = (λ∗ + c(y∗ − ψ))+, for some c > 0,

where (v)+ = max(0, v); for details see, e.g., [14].
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Our aim is the development of Newton-type methods for solving (7)
or (9) which is complicated by the system of inequalities in (7) and the
non-differentiable max-operator in (9). In the recent past significant
progress was made in the investigation of semi-smooth Newton meth-
ods and primal-dual active set methods to cope with non-differentiable
functionals in infinite-dimensional spaces; see for instance [10, 15]. A
direct application of these techniques to (9) results in the following al-
gorithm.

Algorithm A

(i) Choose c > 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λk(x) + c(yk(x)− ψ(x)) > 0}.
(iii) Compute yk+1 = arg min {1

2
a(y, y)− (f, y) : y = ψ on Ak+1}

(iv) Let λk+1 be the Lagrange multiplier associated to the constraint
in (iii) with λk+1 = 0 on Ω \ Ak+1.

(v) Set k := k + 1 and go to (ii).

The optimality system for the variational problem in (iii) is given by

(10)

{
a(yk+1, v) + 〈λk+1, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 (Ω),

yk+1 = ψ on Ak+1, λk+1 = 0 on Ik+1 = Ω \ Ak+1.

The Lagrange multiplier associated to the constraint y = ψ on Ak+1 is
in general only a distribution in H−1(Ω) and is not in L2(Ω). In fact
λk+1 is related to the jumps in the normal derivatives of y across the
interface between Ak+1 and Ik+1, [13]. This complicates the conver-
gence analysis for Algorithm A since the calculus of Newton (or slant)
differentiability [10] does not apply. We note that these difficulties are
not present if (7) or (9) are discretized. However, they are crucial for
the treatment of infinite dimensional problems and as such they are
generic. Analogous difficulties arise for state constrained optimization
problems, for inverse problems with BV-regularization, and for elastic-
ity problems with contract and friction, to mention a few. This suggests
the introduction of regularized problems, which in our case are chosen
as

(Pγ) min
1

2
a(y, y)− (f, y) +

1

2γ

∫

Ω

|(λ̄ + γ(y−ψ))+|2 over y ∈ H1
0 (Ω)

where γ > 0 and λ̄ ∈ L2(Ω), λ̄ ≥ 0 are fixed. For later use we denote
the objective functional of (Pγ) by J(y; γ). The choice of λ̄ will be used
to influence the feasibility of the solution yγ of (Pγ). Using Lebesgue’s
bounded convergence theorem to differentiate the max under the in-
tegral in J(y; γ), the first order optimality condition associated with
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(Pγ) is given by

(OCγ)

{
a(yγ, v) + (λγ, v) = (f, v) for all v ∈ H1

0 (Ω),

λγ = (λ̄ + γ(yγ − ψ))+,

where (yγ, λγ) ∈ H1
0 (Ω) × L2(Ω). With (8) holding, we have yγ ∈

H2(Ω). The primal-dual active set strategy, or equivalently the semi-
smooth Newton method, for (Pγ) is given next. For its statement and
for later use we introduce χAk+1 , the characteristic function of the set
Ak+1 ⊆ Ω.

Algorithm B

(i) Choose λ̄ ≥ 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λ̄(x) + γ(yk(x) − ψ(x)) > 0}, Ik+1 =

Ω \ Ak+1.
(iii) Solve for yk+1 ∈ H1

0 (Ω):
a(yk+1, v) + (λ̄ + γ(yk+1 − ψ)χAk+1

, v) = (f, v), for all v ∈
H1

0 (Ω).
(iv) Set

λk+1 =

{
0 on Ik+1,
λ̄ + γ(yk+1 − ψ) on Ak+1.

Algorithm B was analyzed in [13] where global as well as locally
superlinear convergence for every fixed γ > 0 were established. How-
ever, the choice and adaptation (increase) of γ was heuristic in [13] and
earlier work. The focus of the present investigation is the automatic
adaptive choice of γ. We shall utilize the following two results which
we recall from [13] where the proofs can also be found.

Proposition 2.1. The solutions (yγ, λγ) to (OCγ) converge to (y∗, λ∗)
in the sense that yγ → y∗ strongly in H1

0 (Ω) and λγ ⇀ λ∗ weakly in
H−1(Ω) as γ →∞.

We say that a satisfies the weak maximum principle, if for any v ∈
H1

0 (Ω)

(11) a(v, v+) ≤ 0 implies v+ = 0.

Proposition 2.2. Assume that (11) holds and let 0 < γ1 ≤ γ2 < ∞.
a) In the infeasible case, i.e., for λ̄ = 0, we have y∗ ≤ yγ2 ≤ yγ1.
b) In the feasible case, i.e., if

(12) λ̄ ≥ 0 and 〈λ̄− f + Aψ, v〉H−1,H1
0
≥ 0 for all v ∈ H1

0 (Ω),

with v ≥ 0, then yγ1 ≤ yγ2 ≤ y∗ ≤ ψ.
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3. The primal-dual path

In this section we introduce the primal-dual path and discuss its
smoothness properties.

Definition 3.1. The family of solutions C = {(yγ, λγ) : γ ∈ (0,∞)} to
(OCγ), considered as subset of H1

0 (Ω) ×H−1(Ω), is called the primal-
dual path associated to (P).

For r ≥ 0 we further set Cr = {(yγ, λγ) : γ ∈ [r,∞)} and with some
abuse of terminology we also refer to Cr as path. In the following lemma
we denote by ŷ the solution to the unconstrained problem

(P̂ ) min J(y) =
1

2
a(y, y)− (f, y) over y ∈ H1

0 (Ω).

Subsequently, in connection with convergence of a sequence in func-
tion space we use the subscript ’weak’ together with the space to indi-
cate convergence in the weak sense.

Lemma 3.1. For each r > 0 the path Cr is bounded in H1
0 (Ω)×H−1(Ω),

with limγ→∞(yγ, λγ) = (y∗, λ∗) in H1
0 (Ω)×H−1(Ω)weak. For λ̄ = 0 the

path C0 is bounded in H1
0 (Ω) × H−1(Ω), with limγ→0+(yγ, λγ) = (ŷ, 0)

in H1
0 (Ω)× L2(Ω).

Proof. From (OCγ) we have for every γ > 0

(13) a(yγ, yγ − y∗) + (λγ, yγ − y∗) = (f, yγ − y∗).

Since λγ = max(0, λ̄ + γ(yγ − ψ)) ≥ 0 and ψ − y∗ ≥ 0 we have

(λγ, yγ − y∗) = (λγ,
λ̄

γ
+ yγ − ψ + ψ − y∗ − λ̄

γ
)

≥1

γ
(λγ, λ̄ + γ(yγ − ψ))− 1

γ
(λγ, λ̄)

≥1

γ

[|λγ|2L2 − (λγ, λ̄)
]
.

Combined with (13) this implies that

(14) a(yγ, yγ) +
1

γ
|λγ|2L2 ≤ a(yγ, y

∗) + (f, yγ − y∗) +
1

γ
(λ̄, λγ).
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This estimate, (6) and (OCγ) imply that Cr is bounded in H1
0 (Ω) ×

H−1(Ω) for every r > 0. In fact,

ν|yγ|2H1 + 1
γ
|λγ|2L2 ≤ a(yγ, yγ) + 1

γ
|λγ|2L2

≤ µ|yγ|H1 |y∗|H1 + |f |H−1 (|yγ|H1 + |y∗|H1) + 1
γ
|λ̄|L2 |λγ|L2

≤ ν
4
|yγ|2H1 + µ2

ν
|y∗|2H1 + ν

2
|yγ|2H1 + 1

2ν
|f |2H−1

+ 1
2γ
|λγ|2L2 + 1

2γ
|λ̄|2L2 + |f |H−1 |y∗|H1 ,

and hence

ν
4
|yγ|2H1 + 1

2γ
|λγ|2L2 ≤ µ2

ν
|y∗|2H1 + 1

2ν
|f |H−1 + |f |H−1 |y∗|H1 + 1

2γ
|λ̄|2L2 .

This estimate implies that {yγ : γ ≥ r} is bounded in H1
0 (Ω) for

every r > 0. The first equation of (OCγ) implies that {λγ : γ ≥ r}
is bounded in H−1(Ω) as well. From Proposition 2.1 we have that
limγ→∞(yγ, λγ) = (y∗, λ∗) in H1

0 (Ω)×H−1(Ω)weak. If λ̄ = 0, then from
(14), (6) and (OCγ) the path Co is bounded in H1

0 (Ω) × H−1(Ω) and
λγ → 0 in L2(Ω) for γ → 0+. From (OCγ) and the optimality condition

for (P̂ ) we have

a(yγ − ŷ, yγ − ŷ) + (λγ, yγ − ŷ) = 0,

and hence limγ→0+ yγ = ŷ in H1
0 (Ω). ¤

Proposition 3.1. The path Cr is globally Lipschitz in H1
0 (Ω)×H−1(Ω),

for every r > 0. If λ̄ = 0, then C0 is globally Lipschitz continuous.

Proof. Let γ, γ̄ ∈ [r,∞) be arbitrary. Then

A(yγ − yγ̄) + (λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+ = 0.

Taking the inner-product with yγ − yγ̄ and using the monotonicity and
Lipschitz continuity (with constant L = 1) of x 7→ max(0, x) we find

a(yγ − yγ̄, yγ − yγ̄)
≤

∣∣((λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+, yγ − yγ̄

)∣∣
≤ |γ − γ̄| |yγ − ψ|L2|yγ − yγ̄|L2 .

By Lemma 3.1 the set {yγ}γ≥r is bounded in H1
0 (Ω). Hence there exists

K1 > 0 such that

ν|yγ − yγ̄|2H1
0
≤ K1|γ − γ̄| · |yγ − yγ̄|L2

and by Poincare’s inequality there exists K2 > 0 such that

|yγ − yγ̄|H1
0
≤ K2|γ − γ̄| for all γ ≥ r, γ̄ ≥ r.
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Let us recall here that |y|H1
0

= |∇y|L2 . Lipschitz continuity of γ 7→ λγ

from [r,∞) to H−1(Ω) follows from the first equation in (OCγ). For
λ̄ = 0 the set {yγ}γ≥0 is bounded in H1

0 (Ω). The remainder of the proof
remains identical. ¤

Lemma 3.2. For every subset I ⊂ [r,∞), r > 0, the mapping γ 7→ λγ

is globally Lipschitz from I to L2(Ω).

Proof. For 0 < γ1 ≤ γ2 we have by (OCγ)

|λγ1 − λγ2|L2 = |(λ̄ + γ1(yγ1 − ψ))+ − (λ̄ + γ2(yγ2 − ψ))+|L2

≤ (K3γ1 + K1 + |ψ|L2) |γ1 − γ2|
for some constant K3 > 0. ¤

We shall use the following notation:

Sγ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) > 0}.
Further we set

(15) g(γ) = λ̄ + γ(yγ − ψ).

Since γ 7→ yγ ∈ H1
0 (Ω) is Lipschitz continuous by Proposition 3.1,

there exists a weak accumulation point ẏ(= ẏγ) of 1
γ̄−γ

(yγ̄ − yγ) as

γ̄ → γ > 0, which is also a strong accumulation point in L2(Ω). Further
1

γ̄−γ
(g(γ̄) − g(γ)) has ġ(γ) : = yγ − ψ + γ ẏγ as strong accumulation

point in L2(Ω) as γ̄ → γ. In case γ̄ approaches γ from above (or below)
the associated accumulation points satisfy certain properties which are
described next.

Proposition 3.2. Let γ > 0 and denote by ẏγ any weak accumulation
point of 1

γ̄−γ
(yγ̄ − yγ) in H1

0 (Ω) as γ̄ ↓ γ. Set

S+
γ = Sγ ∪ {x : λ̄(x) + γ(yγ(x)− ψ(x)) = 0 ∧ ġ(γ)(x) ≥ 0}.

Then ẏγ satisfies

(16) a(ẏγ, v) + ((yγ − ψ + γẏγ)χS+
γ
, v) = 0 for all v ∈ H1

0 (Ω).

Proof. By (OCγ) we have for every v ∈ H1
0 (Ω)

(17) a(yγ̄ − yγ, v) + ((λ̄ + γ̄(yγ̄ − ψ))+ − (λ̄ + γ(yγ − ψ))+, v) = 0

We multiply (17) by (γ̄− γ)−1 and discuss separately the two terms in
(17). Clearly, we have

lim
γ̄↓γ

(γ̄ − γ)−1a(yγ̄ − yγ, v) = a(ẏγ, v).
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Here and below the limit is taken on the sequence of γ̄-values, which
provides the accumulation point. Lebesgue’s bounded convergence the-
orem allows to consider the pointwise limits of the integrands. Consid-
ering separately the cases g(γ)(x) < 0, g(γ)(x) > 0 and g(γ)(x) = 0
we have

(18)
(γ̄ − γ)−1((g(γ̄))+ − (g(γ))+, v)

→ ((yγ − ψ + γ ẏγ)χS+
γ
, v) as γ̄ ↓ γ.

¤
As a consequence of the proof we obtain

Corollary 3.1. Let γ > 0 and denote by ẏγ any weak accumulation
point of 1

γ̄−γ
(yγ̄ − yγ) in H1

0 (Ω) as γ̄ ↑ γ. Set S−γ = Sγ ∪ {x : λ̄(x) +

γ(yγ(x)− ψ(x)) = 0 ∧ ġ(γ)(x) ≥ 0}. Then ẏγ satisfies

(19) a(ẏγ, v) + ((yγ − ψ + γ ẏγ)χS−γ , v) = 0 for all v ∈ H1
0 (Ω).

Another corollary of Proposition 3.2 treats the case λ̄ = 0.

Corollary 3.2. Let λ̄ = 0 and assume that (11) holds. Then the right-
and left derivatives ẏr

γ and ẏl
γ of γ 7→ yγ, γ ∈ (0,∞) exist and are given

by

(20) a(ẏr
γ, v) + ((yγ − ψ + γ ẏr

γ)χyγ>ψ, v) = 0 for all v ∈ H1
0 (Ω)

(21) a(ẏl
γ, v) + ((yγ − ψ + γ ẏl

γ)χyγ≥ψ, v) = 0 for all v ∈ H1
0 (Ω).

Proof. Let γ̄ ↓ γ. By Proposition 2.2 any accumulation point ẏr
γ of

(γ̄ − γ)−1(yγ̄ − yγ) satisfies ẏr
γ ≤ 0 and hence

S+
γ = {x ∈ Ω: yγ(x) > ψ(x)} ∪ {x ∈ Ω: yγ(x) = ψ(x) ∧ ẏr

γ(x) = 0}.
This implies that every accumulation point ẏr

γ satisfies (20). Since
the solution to (20) is unique, the directional derivative from the right
exists.

Similarly, if γ̄ ↑ γ, by Proposition 2.2 we have S−γ = {x ∈ Ω: yγ(x) ≥
ψ(x)}, and (21) follows. ¤

Henceforth we set

S◦γ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) = 0}.
Corollary 3.3. If meas (S◦γ) = 0 then γ 7→ yγ ∈ H1

0 (Ω) is differentiable
at γ and the derivative ẏγ satisfies

(22) a(ẏγ, v) + ((yγ − ψ + γ ẏγ)χSγ , v) = 0 for all v ∈ H1
0 (Ω).
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Proof. Let z denote the difference of two accumulation points of (γ̄ −
γ)−1(yγ̄ − yγ) as γ̄ → γ. As a consequence of (16) and (19)

a(z, v) + γ(zχSγ , v) = 0 for all v ∈ H1
0 (Ω).

This implies that z = 0 by (6). Consequently, accumulation points are
unique and by (16), (19) they satisfy (22). ¤

4. The primal-dual path value functional

In this section we investigate the value function associated with (Pγ)
and study its monotonicity as well as smoothness properties.

Definition 4.1. The functional

γ 7→ V (γ) = J(yγ; γ) =
1

2
a(yγ, yγ)− (f, yγ) +

1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

defined on (0,∞) is called the primal-dual-path value functional.

Let us start by studying first order differentiability properties of V .

Proposition 4.1. The value function V is differentiable with

V̇ (γ) = − 1

2γ2

∫

Ω

|(λ̄ + γ(yγ −ψ))+|2 +
1

γ

∫

Ω

(λ̄ + γ(yγ −ψ))+(yγ −ψ).

Corollary 4.1. For λ̄ = 0 we have V̇ (γ) = 1
2

∫
Ω
|(yγ − ψ)+|2 ≥ 0, and

V̇ (γ) > 0 unless yγ is feasible. For λ̄ satisfying (12) and with (11)

holding we have yγ ≤ ψ and hence V̇ (γ) ≤ 0, for γ ∈ (0,∞).

In either of the two cases V̇ (γ) = 0 implies that yγ solves (P̂ ).

Proof. We only show that V̇ (γ) = 0 implies that yγ solves (P̂ ). The
rest of the assertion follows immediately from Proposition 4.1.

If λ̄ = 0, then V̇ (γ) = 0 yields yγ ≤ ψ. Thus, λγ = 0 and, hence, yγ

solves (P̂ ).
If (11) and (12) are satisfied, then yγ ≤ ψ and V̇ (γ) = 0 implies

γ(yγ −ψ) ≤ λ̄+ γ(yγ −ψ) ≤ 0. As a consequence λγ = 0, and yγ solves

(P̂ ). ¤

Proof (of Proposition 4.1). For γ̄, γ ∈ (0,∞) we find

(23)
1
2

a(yγ̄ + yγ, yγ̄ − yγ)− (f, yγ̄ − yγ)+
1
2
((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+, yγ̄ − yγ) = 0,
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and consequently

V (γ̄)− V (γ) =
1

2
a(yγ̄, yγ̄)− 1

2
a(yγ, yγ)− (f, yγ̄ − yγ)

+
1

2γ̄

∫

Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 − 1

2γ

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2

=
1

2γ̄

∫

Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 +
1

2γ

∫

Ω

−|(λ̄ + γ(yγ − ψ))+|2

+
1

2

∫

Ω

−((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+)(yγ̄ − yγ)

=

∫

Pγ̄∩Pγ

z +

∫

Pγ̄∩Nγ

z +

∫

Pγ∩Nγ̄

z = I1 + I2 + I3,

where z stands for the sum of the kernels on the left of the above
equalities,

Pγ = {x : λ̄ + γ(yγ − ψ) > 0}, Nγ = {x : λ̄ + γ(yγ − ψ) < 0},
and Pγ̄, Nγ̄ are defined analogously. For I2 we have

|I2| ≤ 1

2

∫

Pγ̄∩Nγ

1

γ̄
(λ̄ + γ̄(yγ̄ − ψ))2 + |λ̄ + γ̄(yγ̄ − ψ)| |yγ̄ − yγ|

≤ 1

2

∫

Ω

1

γ̄
(γ̄(yγ̄ − ψ)− γ(yγ − ψ))2 + |yγ̄ − yγ|(|γ̄yγ̄ − γ yγ|+ |γ̄ − γ| |ψ|)

and hence by Proposition 3.1

(24) lim
γ̄→γ

1

γ̄ − γ
|I2| = 0.

Analogously one verifies that

(25) lim
γ̄→γ

1

γ̄ − γ
|I3| = 0.

On Pγ̄ ∩ Pγ we have

z = 1
2γ̄

(λ̄ + γ̄(yγ̄ − ψ))2

− 1

2γ
(λ̄ + γ(yγ − ψ))2 − 1

2
(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

= γ−γ̄
2γ̄γ

(λ̄ + γ̄(yγ̄ − ψ))2

+ 1
2γ

[
2λ̄(γ̄(yγ̄ − ψ)− γ(yγ − ψ)) + γ̄2(yγ̄ − ψ)2 − γ2(yγ − ψ)2

]

− 1
2

(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

= γ−γ̄
2γ̄γ

(λ̄ + γ̄(yγ̄ − ψ))2 + λ̄
γ

[γ̄(yγ̄ − ψ)− γ(yγ̄ − ψ)]

+ 1
2

[
γ̄2

γ
(yγ̄ − ψ)2 − γ̄(yγ̄ − ψ)2 + (γ̄ − γ)(yγ̄ − ψ)(yγ − ψ)

]
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and thus on Pγ̄ ∩ Pγ̄

(γ̄ − γ)−1z =
−1

2γ̄γ
(λ̄ + γ̄(yγ − ψ))2 +

λ̄

γ
(yγ̄ − ψ)

+
1

2

[
γ̄

γ
(yγ̄ − ψ)2 + (yγ̄ − ψ)(yγ − ψ)

]
.

By Lebesgue’s bounded convergence theorem

lim
γ̄→γ

1

γ̄ − γ
I1 = lim

γ̄→γ

1

γ̄ − γ

∫

Ω

z χPγ̄∩Pγ

= − 1

2γ2

∫

Ω

((λ̄ + γ(yγ − ψ))+)2 +
1

γ

∫

Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

Together with (24) and (25) this implies the claim. ¤
Remark 4.1. Note that V̇ is characterized without recourse to ẏγ.

The boundedness of {γ2V̇ (γ)}γ≥0 is established next. In the sequel
we use (v)− = −min(0, v).

Proposition 4.2. If λ̄ = 0 and a(v+, v−) = 0 for all v ∈ H1
0 (Ω), then

{γ2V̇ (γ)}γ≥0 is bounded. If (11) and (12) hold, then again {γ2V̇ (γ)}γ≥0

is bounded.

Proof. In the case λ̄ = 0 we have

a(yγ − ψ, v) + γ((yγ − ψ)+, v) = (f, v)− a(ψ, v) for all v ∈ H1
0 (Ω).

Since (yγ−ψ) ∈ H1
0 (Ω) and a((yγ−ψ)+, (yγ−ψ)−) = 0 we have, using

(6) with v = (yγ − ψ)+,

ν|(yγ−ψ)+|2H1
0 (Ω)+γ|(yγ−ψ)+|2L2 ≤ |f |L2|(yγ−ψ)+|H1

0
+µ|ψ|H1|yγ−ψ|H1 .

This implies the existence of a constant K, depending on |ψ|H1 and
|f |L2 , but independent of γ ≥ 0, such that γ|(yγ − ψ)+|L2 ≤ K. Since

V̇ (γ) = 1
2

∫
Ω
|(yγ − ψ)+|2 the claim follows.

Turning to the feasible case with (11) and (12) holding, we have that
yγ ≤ ψ for every γ > 0, and hence (λ̄ + γ(yγ − ψ))(x) > 0 if and only
if λ̄(x) > γ(ψ − yγ)(x). Consequently,

|V̇ (γ)| ≤ 1

2γ2

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1

γ

∫

Ω

(λ̄ + γ(yγ − ψ))+(ψ − yγ)

≤ 3

2γ2
|λ̄|2L2 ,

which again implies the claim. ¤
Before we investigate V̈ , we state a result which connects γV̇ (γ),

|y∗ − yγ|H1
0
, and V ∗ − V (γ), where V ∗ = limγ→∞ V (γ).
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Proposition 4.3. In the feasible respectively infeasible case the follow-
ing estimate holds true:

|y∗ − yγ|2H1
0
≤ 2

ν

(
V ∗ − V (γ)− γV̇ (γ)

)

Proof. We have V ∗ − V (γ) = J(y∗)− J(yγ; γ) and

J(y∗)− J(yγ; γ) ≥ ν

2
|y∗ − yγ|2H1

0
+ a(yγ, y

∗ − yγ)− (f, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

where we used (6). From (OCγ) we have

a(yγ, y
∗ − yγ)− (f, y∗ − yγ) = −((λ̄ + γ(yγ − ψ))+, y∗ − yγ),

and hence

J(y∗)− J(yγ; γ) ≥ ν

2
|y∗ − yγ|2H1

0
− ((λ̄ + γ(yγ − ψ))+, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

≥ ν

2
|y∗ − yγ|2H1

0
− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

+ ((λ̄ + γ(yγ − ψ))+, yγ − ψ)

=
ν

2
|y∗ − yγ|2H1

0
+ γV̇ (γ).

This completes the prove. ¤

Below we shall assume that yγ−ψ ∈ C(Ω̄). Recall that for dimension
n ≤ 3 and with (6) and (8) holding, we have yγ ∈ H2(Ω) ⊂ C(Ω̄).

Proposition 4.4. Let ẏγ denote any accumulation point of (γ̄−γ)−1(yγ̄−
yγ) as γ̄ → γ.

(a) If λ̄ = 0, yγ − ψ ∈ C(Ω̄) and (8) is satisfied, then γ 7→ V (γ) is
twice differentiable at γ with

(26) V̈ (γ) =

∫

Ω

(yγ − ψ)+ẏγ.
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(b) For arbitrary λ̄, if meas(S◦γ) = 0, then γ 7→ V (γ) is twice dif-
ferentiable at γ with

(27)

V̈ (γ) = 1
γ3

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2−
2
γ2

∫

Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)+

1
γ

∫

Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χSγ .

Proof. (a) On the subsequence γn realizing the accumulation point, we
have that limn→∞(γn−γ)−1(V̇ (γn)−V̇ (γ)) equals the right hand side of
(26). The claim will be established by verifying that the accumulation
points ẏγ restricted to Sγ = {x : yγ(x) − ψ(x) > 0} are unique. Let z
denote the difference of two accumulation points. By (16) and (19) we
have

a(z, v) + γ(z, v) = 0 for all v ∈ H1
0 (Ω) with v = 0 on Ω \ Sγ.

Using (8) and the fact that Sγ is an open set relative to Ω due to
continuity of yγ − ψ, we find that z = 0 in Sγ, as desired.
(b) Let ẏγ denote any accumulation point of (γ̄−γ)−1(yγ̄−yγ) as γ̄ ↓ γ,
and recall the notation g(γ) = λ̄ + γ(yγ − ψ) and S+

γ from section 3.
On the subsequence realizing the accumulation point we find

(28)

lim
γ̄→γ

1
γ̄−γ

(V̇ (γ̄)− V̇ (γ)) = 1
γ3

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2

− 2
γ2

∫

Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)

+ 1
γ

∫

Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χS+
γ
.

By assumption, meas(S◦γ) = 0 and, hence, the right hand sides of (27)
and (28) coincide. Since ẏγ is unique by Corollary 3.3 the claim is
established. ¤

5. Model functions

In this section we derive low-parameter families of functions which
approximate the value functional V and share some of its qualitative
properties. We will make use of these models in the numerics section
when devising path following algorithms.

5.1. Infeasible case. Throughout this subsection we assume

(29) λ̄ = 0, yγ − ψ ∈ C(Ω̄) for all γ ∈ (0,∞), and (8).
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Observe that (8), together with the general assumption (6), imply (11).
In fact, for any v ∈ H1

0 (Ω) we have a(v, v+) ≥ γ|v+|2 and hence 0 ≥
a(v, v+) implies v+ = 0.

Proposition 5.1. The value function V satisfies V̇ (γ) ≥ 0 and V̈ (γ) ≤
0 for γ ∈ (0,∞).

Proof. Proposition 4.1 implies that V̇ (γ) ≥ 0. Moreover yγ2 ≤ yγ1 for

γ2 ≥ γ1 > 0 and hence ẏγ ≤ 0 a.e. on Sγ. Consequently V̈ (γ) ≤ 0 by
Proposition 4.4. ¤

A model function m for the value function V should reflect the sign
properties of V and its derivatives. Moreover V (0) gives the value of

(P̂ ) and hence we shall require that m(0) = V (0). Finally from Lemma
3.1 we conclude that V is bounded on [0,∞). All these properties are
satisfied by functions of the form

(30) m(γ) = C1 − C2

E + γ

with C1 ∈ R. C2 ≥ 0, E > 0 satisfying

(31) m(0) = V (0) = C1 − C2

E
.

Other choices for model functions are also conceivable, for example,
γ → C1 − C1

(E+γ)r with r > 1. Note, however, that the asymptotic

behavior of the model in (30) is such that γ2ṁ(γ) is bounded for γ →
∞. This is consistent with the boundedness of γ2V̇ (γ) for γ → ∞
asserted in Proposition 4.2.

Another reason for choosing (30) is illustrated next. Choosing v =
(yγ − ψ)+ in (OCγ) we find

(32) a(ẏγ, (yγ − ψ)+) + |(yγ − ψ)+|2L2 + γ

∫

Ω

(yγ − ψ)+ẏγ = 0.

For the following discussion we

(33) replace a(·, ·) by E(·, ·) with E > 0 a constant, and V by m.

By Proposition 4.1 and (26) the following ordinary differential equation
is obtained for m:

(34) (E + γ) m̈(γ) + 2 ṁ(γ) = 0.

The solutions to (34) are given by (30). To get an account for the
quality of our model in (30) we refer to the left plot of Figure 4 in
Section 6.
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5.2. Feasible case. Throughout this subsection we assume

(35) (11), λ̄ satisfies (12) and meas (S◦γ) = 0 for all γ ∈ (0,∞).

Proposition 5.2. The value function V satisfies V̇ (γ) ≤ 0 and V̈ (γ) ≥
0 for γ ∈ (0,∞).

Proof. By Proposition 2.2 we have yγ ≤ ψ and hence V̇ (γ) ≤ 0 by
Proposition 4.1. A short computation based on (27) shows that
(36)

V̈ (γ) =
1

γ3

∫

Ω

χλ̄2+

∫

Ω

χ(yγ−ψ)ẏγ ≥ 1

γ

∫

Ω

χ(yγ−ψ)2+

∫

Ω

χ (yγ−ψ)ẏγ,

where χ is the characteristic function of the set Sγ = {λ̄ + γ(yγ −ψ) >
0}. From (22) we have

γ|ẏγ|L2(Sγ) ≤ |ψ − yγ|L2(Sγ),

and hence V̈ (γ) ≥ 0. ¤
An immediate consequence is stated next.

Lemma 5.1. If the solution to the unconstrained problem is not feasi-
ble, then limγ↓0 V (γ) = ∞.

Proof. Assume that limγ↓0 V (γ) is finite. Then, using (Pγ), there exists
a sequence γn → 0 and ỹ ∈ H1

0 (Ω) such that yγn ⇀ ỹ weakly in H1
0 (Ω),

with yγn the solution to (Pγn), and λγn = max(0, λ̄ + γn(yn − ψ)) → 0
in L2(Ω). Consequently ỹ ≤ ψ. Taking the limit with respect to n in

(OCγn) it follows that ỹ ≤ ψ is the solution to (P̂ ) which contradicts
our assumption. ¤

From Lemmas 3.1 and 5.1, and Proposition 5.2 it follows that γ 7→
V (γ), γ ∈ (0,∞), is a monotonically strictly decreasing, convex func-
tion with limγ→0+ V (γ) = ∞. All these properties are also satisfied by
functions of the form

(37) m(γ) = C1 − C2

E + γ
+

B

γ
,

provided that C1 ∈ R, C2 ≥ 0, E > 0, B > 0 and C2 ≤ B.
We now give the motivation for choosing the model function m for

V as in (37). From (22) with v = (yγ − ψ)χ we get

a(ẏγ, (y − ψ)χ) + γ(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0,

where χ = χSγ . As in the infeasible case we replace a(·, ·) by E(·, ·),
with E a constant, and using (22) we arrive at

(E + γ)(ẏγχ, v) + ((yγ − ψ)χ, v) = 0.
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The choice v = yγ − ψ implies

(38) (E + γ)(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0.

Note that V̇ (γ) can be expressed as

(39) V̇ (γ) = − 1

2γ2

∫

Ω

λ̄2χ +
1

2

∫

Ω

(yγ − ψ)2χ.

Using (36) and (39) in (38), and replacing V by m, due to the substi-
tution for a(·, ·), we find

(E + γ)m̈ + 2ṁ− E γ−3

∫

Ω

χ λ̄2 = 0.

We further replace
∫

Ω
χλ̄2, which is a bounded quantity depending on

γ, by 2B, and obtain, as the ordinary differential equation that we
propose for the model function m in the feasible case,

(40) (E + γ)m̈ + 2ṁ− 2γ−3E B = 0.

The family of solutions is given by (37). In the right plot of Figure 4
in Section 6 we depict the approximation quality of m(γ).

6. Path-following algorithms

In this section we study the basic Algorithm B together with a variety
of adjustment schemes for the path parameter γ. For this purpose recall
that, depending on the shift parameter λ̄, the elements yγ along the
primal-dual path are feasible or infeasible. As we have seen in the
previous section, this implies different models for approximating the
value function V . We will see, however, that for γ > 0 in both cases
similar strategies for updating γ may be used. When referring to the
infeasible or feasible case, (29), respectively, (35) is assumed to hold.

The subsequent discussion is based on the following two-dimensional
test problems. We point out that the bound ψ in P1 below does not
satisfy ψ ∈ H1(Ω). However, as we shall see, the feasible and infeasible
primal-dual path as well as the algorithms introduced subsequently still
perform satisfactorily. We include this example since discontinuous
obstacles are of practical relevance.

Test problem P1. We consider (8) with aij = δij, with δij the
Kronecker symbol, d = 0 and Ω = (0, 1)2. We choose

f(x1, x2) = 500x1 sin(5x1) cos(x2)

and ψ ≡ 10 on Ω \ K, and ψ ≡ 1 on K with K = {x ∈ Ω : 1
5
≤

‖x − (1
2
, 1

2
)>‖2 ≤ 2

5
}. The solution y∗, the obstacle ψ, and the active

set A∗ at the solution are shown in Figure 1.
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Figure 1. Optimal solution y∗ (upper left plot), obsta-
cle ψ (upper right plot), and the active set A∗ (lower
plot) for test problem P1.

Test problem P2. Again we consider (8) with aij, d and Ω as before,
and define

(41) y† :=





x1 on T1 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≤ 1− x1},
1− x2 on T2 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≥ 1− x1},
1− x1 on T3 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≥ 1− x1},
x2 on T4 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≤ 1− x1}.

The obstacle ψ is defined by ψ ≡ y† on S1 := {x ∈ Ω : ‖x−(1
2
, 1

2
)>‖∞ ≤

1
4
}, ψ ≡ 1

4
on S2 \ S1, and

ψ :=





2x1 on T1 ∩ (Ω \ S2),
1
4
− 2(x2 − 7

8
) on T2 ∩ (Ω \ S2),

1
4
− 2(x1 − 7

8
) on T3 ∩ (Ω \ S2),

2x2 on T4 ∩ (Ω \ S2),

with S2 := {x ∈ Ω : ‖x− (1
2
, 1

2
)>‖∞ ≤ 3

8
}. The forcing term is given by

(f, φ)L2 =

∫

Ω+

φ(s)ds + (χS1 , φ)L2 +

∫

S1∩Ω+

φ(s)ds for all φ ∈ H1
0 (Ω),
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where Ω+ := {x ∈ Ω : x2 = x1} ∪ {x ∈ Ω : x2 = 1 − x1}. We recall
that for φ ∈ H1

0 (Ω), Ω ⊂ R2, the traces along smooth curves are well-
defined. The solution y∗ is given by y∗ = y†. The active or coincidence
set at the solution is A∗ = S1. The Lagrange multiplier λ∗ = f + ∆y∗

is in H−1(Ω) and enjoys no extra regularity. In Figure 2 we display the
optimal solution y∗, the obstacle ψ, and the active set A∗.

Figure 2. Optimal solution y∗ (upper left plot), obsta-
cle ψ (upper right plot), and the active set A∗ (lower
plot) for test problem P2.

Test problem P3. For this test problem (8) is satisfied. We there-
fore obtain y∗ ∈ H2(Ω) and λ∗ ∈ L2(Ω). The coefficients aij and d as
well as Ω are as before. The volume force f is given by f = −∆v
with v(x1, x2) = sin(3πx1) sin(3πx2). Further, we have ψ = 1

4
−

1
10

sin(πx1) sin(πx2). The optimal solution y∗, the Lagrange multiplier
λ∗, and the active set at y∗ are displayed in Figure 3.

Unless specified otherwise, the subsequent algorithms are initialized
by y0 = (−∆)−1f , where −∆ denotes the Laplacian with homogeneous
Dirichlet boundary conditions. The initial Lagrange multiplier is cho-
sen as λ0 = γ0χ{y0>ψ}(y0 − ψ).

The discretization of −∆ is based on the classical five point finite
difference stencil. By h we denote the mesh size which we occasionally
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0 1
0 

1
Active set P3

Figure 3. Optimal solution y∗ (upper left plot), obsta-
cle ψ (upper right plot), and the active set A∗ (lower
plot) for test problem P3.

drop for convenience. The forcing term f in P2 is discretized by f =
−∆y† + χS1e + χS1(−∆y†), where e is the vector of all ones, and χS1

represents a diagonal matrix with entry (χS1)ii = 1 for grid points
xi ∈ S1 and (χS1)ii = 0 otherwise. Above y† denotes the grid function
corresponding to (41).

6.1. A strategy based on model functions – exact path fol-
lowing. As outlined in section 5 there are good reasons to trust our
model functions (30) and (37) in the infeasible and feasible cases, re-
spectively. Let us start by focusing on the infeasible case. The model is
given by m(γ) = C1−C2(E + γ)−1. For determining the three param-
eters C1, C2 and E, we use the information V (0), V (γ), V̇ (γ), which,
by Proposition 4.1, is available from one solve of the unconstrained
problem (P̂ ) and one solve for (Pγ). The conditions

(42) m(0) = V (0), m(γ) = V (γ), ṁ(γ) = V̇ (γ)
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yield

E = γ2V̇ (γ)
(
V (γ)− V (0)− γV̇ (γ)

)−1

,

C2 = γ−1E(E + γ) (V (γ)− V (0)) ,(43)

C1 = V (0) + C2E
−1.

We could have used an alternative reference value γr ∈ (0, γ) and com-
puted m(γr) = V (γr) instead of m(0) = V (0). In Figure 4 we compare
V (γ) to m(γ) for different values of the coefficients (C1, C2, E). These
coefficients depend on different values yf for γ (in (42)) produced by Al-
gorithm EPTS (see below) for problem P1. The solid line corresponds
to V (γ). The corresponding γ-values γf for (42) are depicted in the
legend of the left plot in Figure 4. The dotted and dashed line belong
to rather small γ-values and the dashed-dotted and the circled lines to
large γf in (42). As we can see, the dotted line is accurate in the range
for relatively small γf , while the other lines are more accurate for large
γf . From now on we consider only the choices γr = 0 and γ = γk in

10
2

10
4

10
6

10
8

10
10

−88

−87

−86

−85

−84

−83

−82
Model m(γ) vs V(γ) (solid); infeasible case

γ

m
(γ

),
 V

(γ
)

V(γ)
γ
f
=1.35E3

γ
f
=7.37E5

γ
f
=7.55E8

γ
f
=1.93E11

10
0

10
2

10
4

10
6

10
8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
|m(γ) − V(γ)|; feasible case

γ

|m
(γ

)−
V

(γ
)|

γ
f
=10

γ
f
=1.56E2

γ
f
=4.11E3

γ
f
=1.19E5

γ
f
=1.52E7

Figure 4. Left: Model m(γ) vs. V (γ) (solid) in the
infeasible case for P1. Right: Model m(γ) vs. V (γ) in
the feasible case.

(42) when updating γk.
Next we discuss properties of the model parameters E, C1, C2 ac-

cording to (43). For this purpose assume that the solution ŷ to (P̂ )
is not feasible for (P). Then by Corollary 4.1 we have V̇ (γ) > 0 for
all γ > 0. Consequently V (γ) > V (0) and V (γ) − V (0) − γV̇ (γ) =
− ∫ γ

0

∫ γ

s
V̈ (σ)dσds > 0, and, hence, E > 0 and C2 > 0 for all γ ∈

(0, +∞). This implies m(γ) ≤ C1 and m(γ) → C1 for γ → +∞.
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We propose the following update strategy for γ: Let {τk} satisfy
τk ∈ (0, 1) for all k ∈ N and τk ↓ 0 as k →∞, and assume that V (γk)
is available. Then, given γk the updated value γk+1 should ideally
satisfy

(44) |V ∗ − V (γk+1)| ≤ τk|V ∗ − V (γk)|.
Since V ∗ and V (γk+1) are unknown, we use C1,k and our model mk(γ) =
C1,k − C2,k/(Ek + γ) at γ = γk+1 instead. Thus, (44) is replaced by

(45) |C1,k −mk(γk+1)| ≤ τk|C1,k − V (γk)| =: βk.

Solving the equation C1,k −mk(γk+1) = βk, we obtain

(46) γk+1 =
C2,k

βk

− Ek.

In Theorem 6.1 we shall show that γk+1 ≥ κγk, with κ > 1, indepen-
dently of k ∈ N.

In the feasible case, i.e., when λ̄ satisfies (12), we use the model
m(γ) = C1 − C2(E + γ)−1 + Bγ−1 with C2 ≥ 0 and E, B > 0; see
(37). Let γr > 0, γr 6= γ, denote a reference γ-value, then we use the
conditions

m(γr) = V (γr), ṁ(γr) = V̇ (γr), m(γ) = V (γ), ṁ(γ) = V̇ (γ)

for fixing B, C1, C2, E. Solving the corresponding system of nonlinear
equations, we get

E =
(
(γr − γ)(V̇ (γr)γ

2
r + V̇ (γ)γ2) + 2γrγ(V (γ)− V (γr))

)
/

(
(V̇ (γ)γ + V̇ (γr)γr)(γ − γr) + (γr + γ)(V (γr)− V (γ))

)

and

B = γ2
rγ

2
(
(V (γ)− V (γr))

2 − V̇ (γ)V̇ (γr)(γ − γr)
2
)

/
(
(γ − γr)

2(V̇ (γr)γ
2
r + V̇ (γ)γ2) + 2(γ − γr)γrγ(V (γr)− V (γ))

)

Then the parameters C1 and C2 are given by

C2 = (E + γ)2

(
B

γ2
+ V̇ (γ)

)
,

C1 = V (γ) +
C2

E + γ
− B

γ
.

In the right plot of Figure 4 we show |m(γ)− V (γ)| with m(γ) pro-
duced by the iterates of Algorithm EPTS for P1 similar to the infeasible
case. Again we can see that our model yields a close approximation of
the value function V .
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If we require that (45) is satisfied in the feasible case, then we obtain
the following update strategy for γ:

(47) γk+1 = −Dk

2
+

√
D2

k

4
+

BkEk

βk

,

where Dk = Ek + (C2,k − Bk)/βk. In Theorem 6.1 we shall establish
γk+1 ≥ κγk for all k ∈ N0 with κ > 1 independent of k.

Next we describe an exact path-following version of Algorithm B
which utilizes the update strategy (45) for updating γ.

Algorithm EP.

(i) Select γr. Compute V (γr) and choose γ0 > max(1, γr); set
k = 0.

(ii) Apply Algorithm B to obtain yγk
.

(iii) Compute V (γk), V̇ (γk) and γk+1 according to (46) in the infea-
sible case or (47) in the feasible case.

(iv) Set k = k + 1, and go to (ii).

Concerning the choice of γr note that in the infeasible case we have
γr ≥ 0, and in the feasible case γr > 0. Convergence of Algorithm EP
is addressed next.

Theorem 6.1. Assume that the solution to (P̂ ) is not feasible for
(P). Then the iterates γk of Algorithm EP tend to ∞ as k → ∞ and
consequently limk→∞(yγk

, λγk
) = (y∗, λ∗) in H1

0 (Ω)×H−1(Ω)weak.

Proof. Let us consider the infeasible case. then (45) is equivalent to

(48) 0 < C1,k −mk(γk+1) < τk(C1,k −mk(γk)).

Since γ 7→ mk(γ) is strictly increasing and τk ∈ (0, 1), it follows
that γk+1 > γk for every k = 0, 1, . . .. If limk→∞ γk = ∞, then
limk→∞(yγk

, λγk
) = (y∗, λ∗). Otherwise there exists γ̄ such that limk→∞ γk =

γ̄. Since γ 7→ V (γ) and γ 7→ V̇ (γ) are continuous on (0,∞), it follows
from (42) and (43) that limk→∞ Ek = E(γ̄), limk→∞ C1,k = C1(γ̄), and
limk→∞ C2,k = C2(γ̄), where E(γ̄), C1(γ̄), C2(γ̄) are given by (43) with
γ replaced by γ̄. Taking the limit with respect to k in (48) we arrive
at

C2(γ̄)

E(γ̄) + γ̄
= 0,

which is impossible, since C2(γ̄) > 0 and E(γ̄) > 0 if the solution to

(P̂ ) is not feasible for (P). Thus limk→∞ γk = ∞. The feasible case is
treated analogously. ¤
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Numerically we stop the algorithm as soon as ‖(r1,h
k , r2,h

k , r3,h
k )>‖2 ≤√

εM , where

r1,h
k = ‖yh

γk
+ (−∆h)−1(λh

γk
− fh)‖H−1,h/‖fh‖H−1,h ,

r2,h
k = ‖λh

γk
−max(0, λh

γk
+ yh

γk
− ψh)‖H−1,h ,

r3,h
k = ‖max(0, yh

γk
− ψh)‖Lh

2
,

εM denotes the machine accuracy. Here | · |H−1,h denotes the dis-
crete version of | · |H−1 . For some vector v it is realized as |v|H−1 =
|∇h(−∆h)−1v|Lh

2
with | · |Lh

2
the discrete L2-norm and ∇h a forward

difference approximation of the gradient operator; see [8]. The inner
iteration, i.e., Algorithm B for γ = γk is terminated if successive active
sets coincide or

‖ −∆hyh,l
γk

+ λh,l
γk
− fh‖H−1,h/‖fh‖H−1,h ≤ √

εM .

Here the superscript l = l(k) denotes the iteration index of Algorithm
B for fixed k. For a discussion and numerical results in the case where
the approximation errors due to the discretization of the underlying
function space problems is incorporated in the algorithmic framework,
e.g., when stopping the algorithm, we refer to the next section 6.2.

The initialization of γ is as follows: In the infeasible case we propose
a choice of γ0 based on the deviation of the linearization of V (γ) at

γ = γr from the objective value of the unconstrained problem (P̂ ) at
the projection of yγr onto the feasible set. In our realization of this

heuristic we choose γr = 0, compute ŷ, V (0) and V̇ (0). Then we set

(49) γ0 = max

{
1, ζ

J(yb)− V (0)

V̇ (0)

}
,

where ζ ∈ (0, 1] is some fixed constant, yb(x) = min(ŷ, ψ(x)), and J

denotes the objective function of (P̂ ). Note that ŷ is the minimizer

of the unconstrained problem (P̂ ). For the examples below we used
ζ = 1. In the feasible case we choose a reference value γr, e.g., γr = 1,
and solve the path problem (Pγ). Then we choose

(50) γ0 = γr +
J(ŷ)− V (γr)

V̇ (γr)
,

where ŷ denotes the minimizer of the discretized unconstrained problem
(P̂ ). If ŷ is not feasible for (P), then one has J(ŷ) < V (γr) and hence
γ0 > γr.

When applied to P1, P2 and P3 for h = 1/128 and with τk = 0.01k+1,
we obtain the results shown in Figure 5 and Table 1.
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Figure 5. Number of inner iterations (vertical axis) per
outer iteration for P1 (left plot), P2 (middle plot), and
P3 (right plot); solid line – infeasible case; dashed line –
feasible case.

P1 P2 P3
version # out. it. # in. it. # out. it. # in. it. # out. it. # in. it.

feasible 5 44 4 10 4 31
infeasible 4 15 4 11 4 16

Table 1. Comparison of iteration counts.

From our test runs, also for other test problems, we observe the
following characteristics:

• For the feasible version the number of inner iterations exhibits
an increasing tendency until a saturation value is reached and
then, unless the algorithm stops at an approximate solution,
it starts to decrease. For the infeasible version we typically
observe that the first couple of iterations require several inner
iterations. As the outer iterations proceed the number of inner
iterations drops eventually to one. We also tested less aggressive
γ-updates compared to the ones used here, like, e.g., updates
based on γk+1 = ξγk with ξ > 1 fixed.

• The numerically observable convergence speed of yγk
towards

y∗ in H1
0 (Ω) is typically superlinear. This can be seen from

Figure 6 where the plots for the discrete versions qh
k of the quo-

tients

qk =
|yγk+1

− y∗|H1
0

|yγk
− y∗|H1

0

are shown. Note the vertical axis uses a logarithmic scale. In
the first row, for P1 we depict the behavior of qh

k for h = 2−i, i =
5, 6, 7, 8, for the infeasible case (left plot) and the feasible case
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(right plot), respectively. We observe that the convergence rate
is stable with respect to decreasing mesh size h. In the second
row we see the behavior of qh

k for P2 and P3, respectively, with
h = 2−7. Again, we observe a superlinear rate of convergence.
With respect to decreasing h the same conclusion as for P1 holds
true. These stability results provide a link between our function
space theory and the numerical realization of the algorithms.

• In connection with the convergence speed it is of interest how
the detection process of the correct active set works. For the
rather aggressive γ-updates used in Algorithm EP the difference
between two successive active sets is zero typically only in the
last iteration. However, if a less aggressive strategy for updating
γ is used, then it is to expect, that the difference of active
sets might become zero already earlier along the iteration. In
Figure 7, for the strategy γk+1 = 2γk, we show the difference of
successive active sets, i.e., the vertical axis relates to the number
of grid point which are inAk+1 but not inAk and vice versa. We
detect that for the infeasible case there exists an iteration index
k̄ after which the difference is constantly zero. This behavior
is a strong indication that the correct active set was detected.
It suggests to fix this set Ak̄, and to set ȳ|Ak̄

= ψ|Ak̄
, Ik̄ =

Ω \ Ak̄ and λ̄Ik̄
= 0. Then one computes ȳ|Ik̄

and λ̄Ak̄
such

that a(ȳ, v)+ 〈λ̄, v〉H−1,H1
0

= (f, v) for all v ∈ H1
0 (Ω) and checks

whether (ȳ, λ̄) satisfies (7). If this is the case, then the solution
is found; otherwise γk̄ is updated and the iteration continued. If
we apply this technique for P1 in the infeasible case, then the
algorithm stops at iteration 15 (35 inner iterations) with the
exact discrete solution as compared to 28 outer and 47 inner
iterations without the additional stopping rule. There were
four iterations where the additional system solve was necessary
but without obtaining the numerical solution. Hence, w.r.t.
system solves the amount of work drops from 47 solves to 39
(= 35 + 4). A similar observation is true for P2 and P3. In
the feasible case, however, this strategy yields no reduction of
iterations. Here, typically the correct active set is determined
in the last iteration (for large enough γ).

• The dependence of the iteration number on the mesh size of
the discretization for P1 are depicted in Table 2 (the ones for
P2 and P3 are similar). In parenthesis we show the number
of inner iterations. The results clearly indicate that the outer
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Figure 7. Difference in active sets for P1 and P2; solid
line – infeasible case; dashed line – feasible case.

iterations are mesh independent, while the number of inner it-
erations increases as the mesh size decreases. In the third row
we display the results obtained by applying Algorithm A for
the solution of the unregularized problem (P) with data ac-
cording to P1. If we compare these results with the ones of
the infeasible exact path following algorithm, we find that for
sufficiently small mesh sizes h the infeasible version of Algo-
rithm EP requires significantly less iterations than Algorithm
A, which is also an infeasible algorithm. Also, the number of
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iteration required by Algorithm A exhibits a relatively strong
dependence on h when compared to Algorithm EP in the in-
feasible case. Similar observations apply also to P2 and P3,
respectively. This shows that taking into account the function
space theoretic properties when regularizing problem (??) re-
sults in an algorithmic framework which performs stably with
respect to decreasing mesh size of discretization.

Mesh size h
version 1/16 1/32 1/64 1/128 1/256

EP feasible 5(19) 5(23) 5(30) 5(44) 5(72)
EP infeasible 4(8) 4(11) 4(13) 4(15) 4(19)

Algorithm A 4 8 14 26 48

Table 2. Comparison of iteration counts for different
mesh sizes.

• From the plots in Figure 8, where the y-axis again has a log-
arithmic scale, it can be seen that our strategy (45) produces
a rapidly increasing sequence {γk}. The plots in Figure 8 de-
pict the increase of γk as a function of the iteration number.
The question arises, whether one could increase γ more rapidly.
Numerical examples employing an ad-hoc strategy show that if
γ is increased too quickly, then the numerical error may pre-
vent the residuals of the first order system to drop below

√
εM .

This effect is due to the ill-conditioning of the linear systems
for large γ. On the other hand, small increases in γ result in
a slow convergence speed of Algorithm EP. Further, in our test
runs and as can be seen from Figure 8 the feasible version of
Algorithm EP was less aggressive in enlarging γk.
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6.2. Inexact path following. While exact path following is primarily
of theoretical interest, the development of inexact path following tech-
niques which keep the number of iterations as small as possible is of
more practical importance. The strategy in the previous section relies
on the fact that for every γk the corresponding point on the primal-
dual path is computed. This, however, is not the case for inexact tech-
niques and, as a consequence, a different update strategy for the path
parameter γ is necessary. A common concept in inexact path-following
methods is based on the definition of an appropriate neighborhood of
the path; see, e.g., [3] and the references therein for a non-interior
neighborhood-based path-following method, or [5, 16, 18, 19] for path-
following techniques related to interior point methods. It is typically
required that the primal-dual iterates stay within the neighborhood of
the path, with the goal to reduce the computational burden while still
maintaining convergence of the method.

We define

r1
γ(y, λ) = ‖ −∆y + λ− f‖H−1 ,(51a)

r2
γ(y, λ) = ‖λ−max(0, λ + γ(y − ψ))‖H−1 ,(51b)

and the neighborhood:
(52)

N (γ) := {(y, λ) ∈ H1
0 (Ω)× L2(Ω) : ‖(r1

γ(y, λ), r2
γ(y, λ))>‖2 ≤ τ√

γ
}

in the infeasible case and

N (γ) := {(y, λ) ∈ H1
0 (Ω)× L2(Ω) :‖(r1

γ(y, λ), r2
γ(y, λ))>‖2 ≤ τ√

γ
∧

∂

∂γ
J(y; γ) ≤ 0}(53)

in the feasible case. Above τ > 0 denotes some fixed parameter. Note
that adding the condition ∂

∂γ
J(y; γ) ≥ 0 in (52) yields no further re-

striction, since this condition is automatically satisfied by the structure
of J(y; γ). We also point out that the conditions on the derivative of
J(y; γ) are included in (52) and (53), respectively, in order to qual-
itatively capture (up to first order) the analytical properties of the
primal-dual path.

Next we specify our framework for an inexact path following algo-
rithm.

Algorithm IP.

(i) Initialize γ0 according to (49) in the infeasible case or (50) in
the feasible case; set k := 0.
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(ii) Apply Algorithm B to find (yk+1, λk+1) ∈ N (γk).
(iii) Update γk to obtain γk+1.
(iv) Set k = k + 1, and go to (ii).

Note that if in step (ii) the path-problem (Pγ) is solved, then r1
γ(yγ, λγ) =

r2
γ(yγ, λγ) = 0.

As it is the case with primal-dual path-following interior point meth-
ods, the update strategy for γ in step (iii) of Algorithm IP is a delicate
issue. If the increase of γ from one iteration to the next is rather small,
then we follow the path closely and the convergence speed is slow. If
the γ-update is too aggressive, then step (ii) requires many iterations of
Algorithm B to produce iterates in the neighborhood. We propose the
following strategy which performed very well in our numerical tests.

We introduce the primal infeasibility measure ρF , and the comple-
mentarity measure ρC as follows

ρF
k+1 :=

∫

Ω

(yk+1 − ψ)+dx,(54)

ρC
k+1 :=

∫

Ik+1

(yk+1 − ψ)+dx +

∫

Ak+1

(yk+1 − ψ)−dx,(55)

where (·)− = −min(0, ·) and (·)+ = max(0, ·). Note that at the op-
timal solution both measures vanish. Further we point out that ρC is
related to the duality measure well-known from primal-dual path fol-
lowing interior point methods. These measures are used in the following
criterion for updating γ:

(56) γk+1 ≥ max

(
γk max

(
τ1,

ρF
k+1

ρC
k+1

)
,

1

(max(ρF
k+1, ρ

C
k+1))

q

)

with τ1 > 1, and q ≥ 1. The first term in the outermost max-expression
is used because of our observation that ρF

k+1 ≥ ρC
k+1 in the infeasible

case. If ρC is small compared to ρF we find that the iterates primarily
lack feasibility as compared to complementarity. Therefore, a strong
increase in γ which aims at reducing constraint infeasibility is favorable.
If both measures are of almost the same size and rather small, then
the second term in the outer max expression should yield a significant
increase in γ. Typically q ∈ [3

2
, 2] is chosen which induces growth rates

for γ.
If there is still a significant change in the active sets from one iteration

to the next and the update γk+1 based on (56) would be too large
compared to γk, then many inner iterations would be necessary to
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keep track of the path or very conservative γ-updates in the following
iterations have to be chosen. We safeguard the γ-updates by utilizing
our model function m(γ), which was found to be a reliable tool. In fact,
in updating γ large deviations from m(γ) are prohibited by comparing
the value of the tangent to J(y; γ) at γ = γk with the actual model
value. If necessary and as long as γk+1 is much larger than γk, we
reduce the actual γ-value until

(57) |tk(γk+1)−mk(γk+1)| ≤ τ3|J(yk+1; γk)− J(yk; γk−1)|
with 0 < τ3 < 1, tk(γ) = J(yk+1; γk) + ∂J

∂γ
(yk+1; γk)(γ − γk), and mk(γ)

the model related to γk. Recall that mk(γk) = J(yk+1; γk). The mo-
tivation of this strategy utilizes the good approximation qualities of
our models. Indeed, for small γ the distance between tk and mk might
be large, but so is |J(yk+1; γk) − J(yk; γk−1)| since the change in the
function value is expected to be relatively large for small γ. For large
γ, however, both difference measures tend to be small.

Concerning the numerical realization of Algorithm IP in the discrete
setting we point out that by an a posteriori analysis of the discretiza-
tion errors one finds that the norm of the residuals in (51a) and (51b)
can be approximated typically to the order of h. This can be used as
an upper bound for γ in the discrete versions of (52) and (53), respec-
tively. However, since, on a fixed grid, our discrete versions of (P) and
(Pγ) are consistent (as γ → ∞) and admit unique solutions in RNh ,
where Nh ∈ N depends on the mesh size of discretization h, it is of
interest to consider γ → ∞. On a fixed grid, this allows us also to
study the behavior of our discretized algorithms as finite dimensional
solvers for problems similar to the discrete versions of the ones under
consideration. With respect to the latter aspect, below we report on
test runs of Algorithm IP when applied to our test problems P1, P2,
and P3. The parameters had values q = 1.5, τ1 = 10, τ3 = 0.999,
τ = 1e6. The stopping rule for the outer iteration is as before.

P1. The infeasible version of Algorithm IP requires 9 outer iterations
and at most two inner iterations per outer iteration. In particular, in
many iterations the criterion (yk+1, λk+1) ∈ N (γk) was satisfied within
one inner iteration. The feasible version of Algorithm IP stops after
11 iterations. With respect to inner iterations in the feasible case we
note that more than one or two inner iterations were necessary only
in the last three outer iterations with 3, 4, and 6 inner iterations,
respectively. For both runs, the behavior of the measures ρF and ρC

is shown in Figure 9. Note that the vertical scale is a logarithmic
one. The left plot corresponds to the infeasible case. The feasibility
measure ρF and the complementarity measure ρC are both convergent
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at a superlinear rate. In the feasible case, which is depicted in the right
plot, we observe that ρC is only linearly convergent. In some iterations
we have ρF

k > 0. However, the constraint violation is of the order of
the machine precision and, thus, negligible.
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Figure 9. Behavior of the measure ρF (solid) and ρC

(dashed) for P1; left plot – infeasible case; right plot –
feasible case.

P2. For this test problem the infeasible version of Algorithm IP
required 11 iterations with one inner iteration per outer iteration. The
feasible version needed 6 outer iterations and 9 inner iterations.

P3. The behavior of Algorithm IP for solving P3 is comparable to
its behavior for P1 and P2. In fact, the infeasible version required 11
outer iterations and 11 inner iterations for solving the discrete problem.
The feasible variant of Algorithm IP stopped successfully after 9 outer
and 19 inner iterations. For the latter run, in the next to the last
iteration 5 inner iterations were necessary; otherwise at most 2 inner
iterations were needed. With respect to the behavior of the decrease
of the measures ρC and ρF a similar observation to the one obtained
from Figure 9 for P1 holds true. We only remark that in the feasible
case ρC exhibits an almost superlinear convergence behavior.

Compared to the exact path-following strategy of Algorithm EP,
the inexact path-following concept of Algorithm IP is in many cases
more efficient. In Table 3 we provide the number of outer and inner
iterations for exact vs. inexact path following. In parenthesis we write
the number of inner iterations.

Finally we address the issue of how to incorporate the approxima-
tion error due to the discretization of function space quantities; see
[6, 7]. First note that with (8) holding (which is the case for P3)
the discretization of the residual in the definition of the neighborhoods
(52) respectively (53) approximates the original one to the order of
h. Hence, in our discrete version of Algorithm IP the neighborhood
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Infeasible case Feasible case
P1 P2 P3 P1 P2 P3

EP 4 (15) 4 (11) 4 (16) 5 (44) 4 (10) 4 (31)
IP 9 (12) 11 (11) 11 (11) 11 (25) 6 (9) 9 (19)

Table 3. Comparison of iteration counts between ex-
act and inexact path following.

criterion
‖(r1

γ(y, λ), r2
γ(y, λ))>‖2 ≤ τ√

γ

becomes

‖(r1,h
γ (y, λ), r2,h

γ (y, λ))>‖2 ≤ max

{√
εM , κinh,

τ√
γ

}
,

with some constant κin > 0. We stop the outer iteration as soon as the
discrete residual drops below max{κouth,

√
εM} where κout > 0 is fixed.

In our tests we use κin = 1 and κout = 10. Applying this strategy for
the solution of P3, we obtain (outer) iteration numbers as displayed
in Table 4. Here, in parenthesis we denote the total number of inner
iterations.

version mesh size
1/16 1/32 1/64 1/128 1/256 1/512

IP 1 (1) 4 (4) 5 (5) 8 (8) 9 (10) 10 (10)

Table 4. Inexact path following with h-dependent
stopping of inner and outer iterations.
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