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Useful links

✄ The website of the Master 2 Probabilité & Finance (Univ. Pierre & Marie Curie, Paris, France):

www.masterfinance.proba.jussieu.fr

✄ A website devoted to Quantitative Finance:

www.maths-fi.com/uk default.asp
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1 Simulation of random variables

1.1 Pseudo-random numbers

From a mathematical point of view, the definition of a sequence of (uniformly distributed) random
numbers (over the unit interval [0, 1]) should be :

“Definition.” A sequence xn, n ≥ 1, of [0, 1]-valued real numbers is a sequence of random numbers
if there exists a probability space (Ω,A, P), a sequence Un, n ≥ 1, of i.i.d. random variables with
uniform distribution U([0, 1]) and ω ∈ Ω such that xn = Un(ω) fo every n ≥ 1.

But this naive and abstract definition is not satisfactory because the “scenario” ω ∈ Ω is may
be not a “good” one i.e. not a “generic” . . . ? Many probabilistic properties (like the law of large
numbers to quote the most basic one) are only satisfied P-a.s.. Thus, if ω precisely lies in the
negligible set that does not satisfy one of them.

Whatever, one usually cannot have access to an i.i.d. sequence of random variables (Un) with
distribution U([0, 1])! Any physical device would too slow and not reliable. Some works by logicians
like Martin-Löf lead to consider that a sequence (xn) that can be generated by an algorithm cannot
be considered as “random” one. Thus the digits of π are not random in that sense. This is quite
embarrassing since an essential requested feature for such sequences is to be generated almost
instantly on a computer!

The approach coming for computer and algorithmic sciences is not really more tractable since
their definition of a sequence of random numbers is that the complexity of the algorithm to generate
the first n terms behaves like O(n). The rapidly growing need of good (pseudo-)random sequences
with the explosion of Monte Carlo simulation in many fields of Science and Technology (I mean not
only neutronics) after World War II lead to adopt a more pragmatic approach – say – heuristic –
based on a statistical tests. The idea is to submit some sequences to statistical tests (uniform
distribution, block non correlation, rank tests, etc)

For practical implementation, such sequences are finite , as is the accuracy of computers. One
considers some sequences (xn) of so-called pseudo-random numbers displaying as

xn =
yn

N
, yn ∈ {0, . . . , N − 1}.

One classical process is to generate the yn by a congruential induction :

yn+1 ≡ ayn + b mod. N

where gcd(a,N) = 1, so that a is invertible in the multiplicative group ((Z/NZ)∗,×) (invertible
elements of Z/NZ for the product).

If b = 0 (the most common case), one speaks of homogenous generator.

One will choose N as large as possible given the computation capacity of the computers (with
integers) (N = 231−1 for a 32 bits architecture, etc).

Still if b = 0, the length of the sequence will be settled by the period τ := min{t / at ≡
1 mod. N} of a in ((Z/NZ)∗, +).

Since card(Z/NZ)∗ =ϕ(N) where ϕ(N) := card{1≤ k≤N−1, tq pgcd(k, N)=1} is the Euler
function, it follows from Lagrange theorem that:

τ = card(<a>) |ϕ(N)
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(where <a> := multiplicative sub-group of (Z/NZ)∗ generated by a). Let us recall

ϕ(N) = N
∏

p|N, p prime

(
1 − 1

p

)
.

The (difficult) study of ((Z/NZ)∗,×) when N is a primary integer leads to the following theorem:

Theorem 1 Let N = pα, p prime, α ∈ N∗.

(a) If α = 1 (i.e. N = p prime), then ((Z/NZ)∗,×) (whose cardinality is p − 1) is a cyclic group.
This means that there exists a ∈ {1, . . . , p − 1} s.t. (Z/pZ)∗ =<a>. Hence the maximal period is
τ = p − 1.

(b) If p = 2, α ≥ 3, (Z/NZ)∗, (whose cardinality is 2α−1 =
N

2
), is not cyclic. The maximal period

is then τ = 2α−2 with a ≡ ±3 mod. 8.

(c) If p 6= 2, then (Z/NZ)∗, (whose cardinality is pα−1(p − 1)), is cyclic, hence τ = pα−1(p − 1).
It is generated by any element a whose class ã in (Z/pZ) spans the cyclic group ((Z/pZ)∗,×).

However, one should be aware that the length of a sequence, if it is a necessary asset of a
sequence, provides no guarantee or even clue that a sequence is a good as a sequence of pseudo-
random numbers! Thus, the generator of the FORTRAN IMSL library does not fit in the formerly
described setting: one sets N := 231 − 1 (which is a prime number), a := 75, b := 0 (a 6≡0 mod.8).

Another approach to random number generation is based on shift register and relies upon the
theory of finite fields.

1.2 The fundamental principle of simulation

Theorem 2 Let (E, d) be a Polish space (complete and separable) and X : (Ω,A, P) → (E, ) be a
random variable with distribution P

X
. Then there exists a Borel function ϕ : ([0, 1],B([0, 1]), λ[0,1]) →

(E,Bor(E), P
X

) such that
P

X
= λ ◦ ϕ−1

where λ ◦ ϕ−1denotes the image of the Lebesgue measure λ[0,1] by ϕ.

As a consequence this means that, if U denotes a uniformly distributed random variable on a
probability space, then

X
d
= ϕ(U).

The interpretation is that any E-valued random variable can be simulated from a uniform
distribution. In practice this turns out to be a purely theoretical result which is of no help for
practical simulation.

1.3 The distribution function method

Let µ be a probability distribution on (R,B(R)) having a continuous increasing distribution function
F . Then F has an inverse function F−1 defined (0, 1).

Proposition 1 If L(U) = U((0, 1)), then X := F−1(U)
d
= µ.

Proof. : Let x ∈ R, P(X ≤ x) = P(F−1(U) ≤ x). Now F−1 is increasing, hence {F−1(U) ≤ x} =
{U ≤ F (x)}. Hence P(X ≤ x) = F (x). ♦
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Remark. • If µ has a probability density f satisfying {f = 0} has an empty interior, then

F (x) =

∫ x

−∞
f(u)du is continuous, increasing.

• One can replace R by any interval [a, b] ⊂ R.

• When F is simply non-decreasing (or discontinuous at some points), one defines the canonical
right continuous inverse F−1

r by:

∀u ∈ (0, 1), F−1
r (u) = inf{s/F (s) ≥ u}.

One shows that F−1
r is non-decreasing, right continuous and

F−1
r (u) ≤ x ⇒ F (x) ≥ u et F (x) > u ⇒ F−1

r (u) ≤ x.

Hence X
d
= F−1

r (U) since

P(X ≤ x) = P(F−1
r (U) ≤ x)

{
≤ P(F (x) ≥ U) = F (x)
≥ P(F (x) > U) = F (x)

}
= F (x).

If X takes finitely many values in a R, on retrieves the standard simulation method.

• One could have considered the left continuous inverse defined by

∀u ∈ (0, 1), F−1
l (u) = inf{s/F (s) > u}.

with the same result.

Examples : • Simulation of an exponential distribution.

Let X
d
= E(λ), λ > 0. Then

∀x∈ (0,∞), F
X

(x) = λ

∫ x

0
e−λξdξ = 1 − e−λx.

Consequently, for every y ∈ (0, 1), F−1(u) = − log(1 − u)/λ. Now, using that U
d
= 1 − U if

U
d
= U((0, 1)) yields

X = − log(U)/λ
d
= E(λ).

• Simulation of a Cauchy(c), c > 0, distribution.

We know that PX(dx) =
c

π(x2 + c2)
dx.

∀x ∈ R, FX(x) =

∫ x

−∞

c

u2 + c2

du

π
=

1

π

(
Arctan(

x

c
) +

π

2

)
,

hence F−1
X (x) = c tan(π(u − 1/2)). It follows that

X = c tan(π(U − 1/2))
d
= Cauchy(c).

• Simulation of a Pareto(θ), θ > 0, distribution.

We know that PX(dx) =
θ

x1+θ
1{x≥1}dx. F

X
(x) = 1 − x−θ so that

X = U− 1
θ

d
= Pareto(θ).
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• Simulation of a purely discrete distribution supported by E ⊂ R.
Let E := {x1, . . . , xN

} and X : (Ω,A, P) → E an E-valued r.v. with distribution P(X = xk) =
pk, 1 ≤ k ≤ N . Then, one checks that

∀u∈ (0, 1), F−1
X (u) =

N∑

k=1

xk1{p1+···+pk−1<u≤p1+···+pk}

so that

X
d
=

N∑

k=1

xk1{p1+···+pk−1<U≤p1+···+pk}.

The yield of the procedure is r̄ = 1 but when implemented naively its complexity – which corre-
sponds to (at most) N comparisons for every simulation – may be quite high. See [17] for some
considerations (in the spirit of quick sort algorithms) which lead to a O(log N) complexity. Fur-
thermore, this procedure underlines that the pk are known (as real numbers) which is not always
the case even in a priori simple situations

• Simulation of a Bernoulli random variable B(p), p∈ (0, 1).
This is the simplest application of the previous method since

X = 1{U≤p}
d
= B(p).

The yield of the method is 1.

• Simulation of a Binomial random variable B(n, p), p∈ (0, 1), ≥1.
One relies on the very definition of the binomial distribution as the law of the sum of n inde-

pendent B(p)-distributed random variables i.e.

X =
n∑

k=1

1{Uk≤p}
d
= B(n, p).

where (U1, . . . , Un) are i.i.d. B(p)-distributed r.v. Note that this procedure has a very bad yield,
namely 1

n and needs n comparisons like the standard method (without any shortcut). Its asset is
that it does not require the computation of the probabilities pk’s.

1.4 The rejection method (Von Neumann)

Let f, g : (Rd,B(Rd)) −→ R+ be two probability densities with respect to a nonnegative measure
µ on (Rd,B(Rd)). Assume g > 0 µ-a.s. and

∀x∈ R
d, f(x) ≤ cg(x).

Proposition 2 Let (Un, Yn)n≥1 be a sequence of i.i.d. r.v. with distribution U([0, 1]) ⊗ PY (inde-
pendent marginals) defined on (Ω,A, P). Assume PY (dy) = g(y)µ(dy)

Let
τ := min{k ≥ 1 | cUkg(Yk) < f(Yk)}.

Then, τ has a geometric distribution G∗(p) with parameter p := P(cU1g(Y1) < f(Y1))) and

X := Yτ
d
= f(x)µ(dx).
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In practice, one needs

– to simulate the distribution of Y ,

– to compute the functions f and g,
ms on a computer at a reasonable cost.

The yield of the method is obviously 1
τ and its mean yield

E
1

τ
= − p

1 − p
logp.

Proof. Step 1: Let ϕ : Rd → R be a bounded Borel test function. By Fubini’s Theorem,

E

(
ϕ(Y )1{c Ug(Y )≤f(Y )}

)
=

∫

Rd
ϕ(y)

∫ 1

0
1{cug(y)≤f(y)}g(y)µ(dy)

=

∫

Rd
ϕ(y)

∫ 1

0
1{cug(y)≤f(y)}∩{g(y)>0}g(y)µ(dy)

=

∫

Rd
ϕ(y)

∫ 1

0
1{u≤ f(y)

cg(y)
}∩{g(y)>0}g(y)µ(dy)

=

∫

{g(y)>0}
ϕ(y)

f(y)

cg(y)
g(y)µ(dy)

= c

∫

Rd
ϕ(y)f(y)µ(dy).

If ϕ ≡ 1, then c = P(Uf(Y ) ≤ cg(Y )), hence, elementary conditioning yields

E (ϕ(Y )|{cUg(Y ) ≤ f(Y )}) =

∫

Rd
ϕ(y)f(y)µ(dy)

i.e.
L (Y |{cUg(Y ) ≤ f(Y )}) = f(y)µ(dy).

Step 2: Let B∈ B(Rd). Then

P(X ∈ B) =
∑

n≥1

E

(
1{τ=n}1{Yn∈B}

)

=
∑

n≥1

P({cU1g(Y1) ≥ f(Y1)})n−1
P({c U1g(Y1) < f(Y ), Y1 ∈ B})

where we used that the sequence (Un, Yn)n≥1 is i.i.d.. Hence

P(X ∈ B) =
∑

n≥1

E

(
1{τ=n}1{Yn∈B}

)

=
∑

n≥1

P({cU1g(Y1) ≥ f(Y1)})n−1
P({cUg(Y ) < f(Y1), Y1 ∈ B})

= P(Y ∈ B | c U1g(Y1) ≤ f(Y1)).

Combining this with Step 1 yields P
X

= f.µ. ♦
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Corollary 1 Set by induction for every n ≥ 1

τ1 := min{k ≥ 1 | c Ukg(Yk) < f(Yk)} and τn+1 := min{k ≥ τn + 1 | cUkg(Yk) < f(Yk)}.

then the sequence
Xn := Yτn

is an i.i.d. P
X
-distributed sequence of r.v.

The easy proof is left to the reader

Remark. The average yield of the rejection method is defined by r̄ := P(cU1g(Y1) ≤ f(Y1)): this
means that in average one needs to simulate 1

r̄ to obtain one PX -distributed number.

Applications. ✄ Uniform distributions on bounded domains D. Let D ⊂ [−M, M ]d, λd(D) > 0

and let Y
d
= U([−M,M ]d) and τ := min{n |Yn∈ D}. Then,

Xτ
d
= U(D).

This follows (exercise) from the above proposition with

g(u) := (2M)−d 1[−M,M ]d(y).λd(dy)
︸ ︷︷ ︸

µ(dy)

and

f(x) =
1

λd(D)
1D(x)λd(dx) ≤ (2M)d

λd(D)
g(x).

A standard application is to consider the unit ball of Rd, D := Bd(0; 1). When d = 2, this is
involved in the so-called polar method, see below, for the simulation of N (0; I2) random vectors.

✄ The γ(α)-distribution Let α > 0 and P
X

(dx) = fα(x)λ(dx) where

fα(x) =
1

Γ(α)
xα−1e−x1(0,+∞)(x).

(Keep in mind Γ(a) =
∫ +∞
0 ua−1e−udu). Note that when α = 1 the gamma distribution is but the

exponential distribution.
– If 0 < α < 1, one uses the rejection method, based on the probability density

gα(x) =
αe

α + e

(
xα−11{0<x<1} + e−x1{x≥1}

)
.

First, one checks that fα(x) ≤ cαgα(x) where

cα =
α + e

αeΓ(α)
.

Then, one uses the inverse distribution function to simulate the random variable with distribution
P

Y
(dy) = gα(y)λ(dy). Namely, if Gα denotes the distribution function of Y , one checks that, for

every u∈ (0, 1),

G−1
α (u) =

(
α + e

e
u

) 1
a

1{u< e
α+e

} − log

(
(1 − u)

α + e

αe

)
1{u≥ e

α+e
}
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– If α ≥ 1, Then X = X ′ + X ′′, with X ′ and X ′′ are independent and X ′ has a gamma
distribution with parameter [α] and X” has a gamma distribution with parameter {α} = α − [α].
Consequently one may assume that α = n∈ N. Then,

X = ξ1 + · · · + ξn

where ξk are i.i.d. with exponential distribution. Consequently, if U1, . . . , Un are i.i.d. uniformly
distributed random variables

X
d
= log

(
n∏

k=1

Uk

)
.

1.5 The Box-Müller method for normal vectors

1.5.1 d-dimensional Normal vectors

One relies on the Box-Müller method, which is probably the most efficient method to simulate
couples of bi-variate normal distributions.

Proposition 3 Let R2 et Θ : (Ω,A, P) → R be two independent r.v. with distributions L(R2) =
E(1

2) and L(Θ) = U([0, 2π]) respectively. Then

X := (R cos Θ, R sinΘ)
d
= N (0, I2)

where R :=
√

R2.

Proof. : Let f be a bounded Borel function.
∫ ∫

R2
f(x1, x2)exp(−x2

1 + x2
2

2
)
dx1dx2

2π
=

∫ ∫
f(ρ cos θ, ρ sin θ)e−

ρ2

2 1R∗
+
(ρ)1]0,2π[(θ)ρ

dρdθ

2π

using the standard change of variable: x1 = ρ cos θ, x2 = ρ sin θ. Setting now ρ =
√

r, one has:

∫ ∫

R2
f(x1, x2)exp(−x2

1 + x2
2

2
)
dx1dx2

2π
=

∫ ∫
f(
√

r cos θ,
√

r sin θ)
e−

r
2

2
1

R
+
∗
(ρ)1]0,2π[(θ)

drdθ

2π

= IE
(
f(
√

R2 cosΘ,
√

R2 sin Θ)
)

= IE(f(X)). ♦

Corollary 2 One can simulate a distribution N (0; I2) from a couple (U1, U2) of independent r.v.
with distribution U([0, 1]) by setting

X :=

(√
−2 log(U1) cos(2πU2),

√
−2 log(U1) sin(2πU2)

)
.

The yield of the simulation is ρ = 1.

Proof. Simulate the exponential distribution using the inverse distribution function and note that
if U ∼ U([0, 1]), then L(2πU) = U([0, 2π]). ♦

To simulate a d-dimensional vector N (0; Id), one may assume that d is even and “concatenate”
the above process using a d-tuple (U1, . . . , Ud) of i.i.d. U([0, 1]) r.v..

Exercise (Polar method) Let (U1, U2)
d
= U(B(0; 1)). Set

X := (U1

√
−2 log(R2)/R2, U2

√
−2 log(R2)/R2).

Show that X
d
= N (0; I2). Derive a simulation method for N (0; I2) combining the above identity

and some rejection algorithm.
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1.5.2 d-dimensional Gaussian vectors (with general covariance matrix)

Let Σ be a covariance matrix and X
d
= N (0; Σ). Σ is a symmetric nonnegative so there exists a

unique symmetric nonnegative matrix commuting with Σ, denoted
√

Σ such that
√

Σ
2

= Σ. A
straightforward computation shows that if

Z
d
= N (0; Id) then

√
ΣZ

d
= N (0; Σ)

One can compute
√

Σ by diagonalizing Σ in the orthogonal group: since if Σ = P ∗Diag(λ1, . . . , λd)P
then

√
Σ = P ∗Diag(

√
λ1, . . . ,

√
λd)P where P stands for the transpose of the orthogonal matrix

P .

However, one will prefer usually rely on the Cholevsky method (see e.g. Numerical Recipes [37]
by decomposing

Σ = TT ∗

where T is an lower triangular matrix. Then

TZ
d
= N (0; Σ).

1.6 Vanilla options pricing in a Black-Scholes model by Monte Carlo

1.7 Premium computation

For the sake of simplicity, one considers a 2-dimensional correlated Black-Scholes model (under its
unique risk neutral probability)but a general d-dimensional can be defined likewise.

dX0
t = rX0

t dt, X0
0 = 1,

dX1
t = X1

t (rdt + σ1W
1
t ), X1

0 = x1
0,

dX2
t = X2

t (rdt + σ1W
2
t ), X2

0 = x2
0,

with the usual notations (r interest rate, σ1, σ2 volatility. In particular, W = (W 1,W 2) denotes a
correlated bi-dimensional Brownian motion such that <W 1,W 2 >t= ρ dt. The filtration F is the
augmented filtration of W .

Then, for every t∈ [0, T ]
X0

t = ert

X1
t = x1

0e
(r−σ2

1
2

)t+σ1W 1
t ,

X2
t = x2

0e
(r−σ2

2
2

)t+σ2W 2
t .

A European vanilla option with maturity T > 0 is an option related to a European payoff

h
T

:= h(X
T
)

which only depends on X at time T . In such a complete market the option premium at time 0 is
given by

V0 = e−rT
E(h(X

T
))

and more generally at any time t∈ [0, T ]

Vt = e−r(T−t)
E(h(X

T
) |Ft).

The fact that W has independent stationary increments implies that X1 and X2 have indepen-
dent stationary ratios so that if

V0 := v(x0, T )
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then

Vt = e−r(T−t)
E(h(X

T
) |Xt)

= e−r(T−t)
E


h




(
Xi

T

Xi
t

× Xi
t

)

i=1,2


 |St




= e−r(T−t)
E(h((xi X

i
T−t

Xi
0

)i=1,2)xi=Xi
t

= v(Xt, T − t).

Examples. • Vanilla call: h(x1, x2) = (x1 − K)+. There is a closed form for this option which is
but the celebrated Black-Scholes formula

CallBS
0 = C(x0, K, T, r, σ) = s0Φ0(d1) − e−rT KΦ0(d2)

with

d1 =
log(x1

0/K) + (r +
σ2
1
2 )T

σ1

√
T

, d2 = d1 − σ1

√
T .

(Φ0 denotes the distribution function of the N (0; 1)-distribution.

• Best of call with strike price K:

h
T

= (max(X1
T
, X2

T
) − K)+.

A quasi-closed form is available involving the distribution function of the bi-variate (correlated)
normal distribution. It may be interesting to price it by MC (although PDE is also quite appro-
priate).

• Exchange Call Spread:
h

T
= ((X1

T
− X2

T
) − K)+.

For this payoff no closed form is available. One has the choice between a PDE approach (quite
appropriate in this 2-dimensional setting) and a Monte Carlo simulation.

We will illustrate on this last example the regular Monte Carlo procedure.

Pricing by Monte Carlo : the regular procedure A crude Monte Carlo amounts to
writing

e−rT h
T

d
= ϕ(Z1, Z2) :=

(
s1
0 exp (

σ2
1

2
T + σ1

√
TZ1) − s2

0 exp−σ2
2

2
T + σ2

√
TZ2) − Ke−rT

)

+

where Z = (Z1, Z2)
d
= N (0; I2) (the dependence of ϕ in xi

0, etc is dropped). Then, simulating a
M -sample (Zm)1≤m≤M of the N (0; I2) distribution using e.g. the Box-Müller yields the estimate

ExchSpread0 = e−rT
E((X1

T
− X2

T
) − K)+) = E(ϕ(Z1, Z2)) ≈ ϕM :=

1

M

M∑

m=1

ϕ(Zm).

One computes an estimate for the variance using the same sample

V
M

(ϕ) =
1

M − 1

M∑

k=1

ϕ(Zm)2 − M

M − 1
(ϕM )2 ≈ Var(ϕ(Z))
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since M is large enough. Then one designs a confidence interval for E ϕ(Z) at level α∈ (0, 1) by
setting

IM =


ϕM − aα

√
V

M
(ϕ)

M
,ϕM + aα

√
V

M
(ϕ)

M




where aα is defined by P(|N (0; 1)| ≤ aα) = α (or equivalently 2Φ0(aα) − 1 = α. Some approxima-

tions are hidden in what precedes from a statistical viewpoint, in particular the fact that
ϕ

M
−E ϕ(Z)√
V

M
(ϕ)

does have a normal distribution, which is in fact only true asymptotically. However, within the usual
range of simulation implemented for numerical purpose, this approximation is quite satisfactory, in
fact more satisfactory than in many statistical applications where it is usually made.

1.8 Greeks (sensitivity to the option parameters: the elementary approach)

The greeks or sensitivities denote the set of parameters obtained as derivatives of the premium of
an option with respect to some of its parameters: the starting value, the volatility, etc. In many
reasonably elementary situations, one simply needs to apply some more or less standard theorem
like

Theorem 3 (Inverting differentiation and expectation) (a) Let Ψ : I × (Ω,A, P) → R where I
denotes a nonempty interval of R. Let x∞ ∈ I. If the function Ψ satisfies

(i) for every x∈ I, the r.v. Ψ(ξ, .)∈ L1
R
(P),

(ii) P(dω)-a.s.,
∂Ψ

∂x
(x∞ , ω) exists,

(iii) There exists Y ∈ L1
R+

(P) such that for every x∈ I,

P(dω)-a.s. |Ψ(x, ω) − Ψ(u∞ , ω)| ≤ Y (ω)|x − x∞ |,

then, the function ψ(x) :=E(Ψ(x, .)) is defined at every ξ∈ I, differentiable at x∞ with derivative

ψ′(x∞) = E

(
∂Ψ

∂x
(x∞ , .)

)
.

(b) If Ψ satisfies (i) and

(ii)glob P(dω)-a.s.,
∂Ψ

∂x
(x, ω) exists at every x∈ I,

(iii)glob There exists Y ∈ L1
R+

(P) such that for every x∈ I,

P(dω)-a.s.

∣∣∣∣
∂Ψ(x, ω)

∂x

∣∣∣∣ ≤ Y (ω),

then, the function ψ(x) :=E(Ψ(x, .)) is defined and differentiable at every ξ∈ I, with derivative

ψ′(x) = E

(
∂Ψ

∂x
(x, .)

)
.

Remarks. • This is a special case of a general result of Integration theory and one can replace
the probability space (Ω,A, P) by any measured space (E, E , µ).

• Some variants of the result can be established to get a theorem for differentiability of functions
defined on Rd or for holomorphic functions, etc.
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1.8.1 Working with the random process

To illustrate the different methods to compute the sensitivity, we will consider the 1-dimensional
case of the Black-Scholes and temporarily change our notation by setting

dXx
t = Xx

t (rdt + σdWt), Xx
0 = x > 0

so that Xx
t = x exp ((r − σ2

2 )t + σWt). Then we consider, for every x∈ (0,∞),

f(x) = E(ϕ(Xx
T
)),

where ϕ : (0,+∞) → R is in L1(PXx
T
). We will first work on the scenarii space (Ω,A, P), because

this approach contains the seed of methods that can be developed in much more general settings
in which the SDE has no explicit solution like in the Black-Scholes model. However, as soon as a
closed form is available for the density of Xx

T
, it is more efficient to use the next paragraph.

Proposition 4 (a) If ϕ is differentiable with polynomial growth, then f is differentiable and

f ′(x) = E

(
ϕ′(Xx

T
)
Xx

T

x

)
.

(b) If ϕ is simply Borel function with polynomial growth, then f is still differentiable and

f ′(x) = E

(
ϕ(Xx

T
)

W
T

xσT

)
.

Proof. (a) This straightforwardly follows from the explicit expression for Xx
T

and the above
differentiation Theorem 3.

(b) Now, still under the assumption (a) (with µ := r − σ2

2 ),

f ′(x) =

∫

R

ϕ′(x exp (µT + σ
√

Tu)) exp (µT + σ
√

Tu) − u2

2

du√
2π

=

∫

R

∂ϕ(x exp (µT + σ
√

Tu))

∂u

exp (−u2/2)

xσ
√

T

du√
2π

=

∫

R

ϕ(x exp (µT + σ
√

Tu))u
exp (−u2/2)

xσ
√

T

du√
2π

where we used an integration by part in the last line. Finally, coming back to Ω,

f ′(x) =
1

xσT
E

(
ϕ(Xx

T
)W

T

)
. (1.1)

When ϕ is not differentiable, let us sketch the extension by density when ϕ has compact support.
Then ϕ can be approximated in every Lp(P) by differentiable functions ϕn with compact support
(use a mollifier and a convolution approximation). Then, with obvious notations, f ′

n(x) converges
uniformly on compact sets of (0,∞) to f ′(x) defined by (1.1). Furthermore fn(x) converges toward
f(x). Consequently f is differentiable with derivative f ′.

Remark. Using item (a) of Theorem 3 and the fact that P(Xx = y) = 0 for every y > 0, one
derives that claim (a) in the proposition may remain true if ϕ is not differentiable at countably
many points. This extends e.g. the first formula to the case of functions ϕ(x) = (x − K)+ or
(K − x)+.

13



✄ Exercise: Application to the computation of the γ. As a result

f”(x) :=
1

x2σT
E

(
ϕ′(Xx

T
)W

T
Xx

T
− ϕ(Xx

T
)W

T

)

if ϕ is differentiable with a derivative having linear growth, and

f”(x) :=
1

x2σT
E

(
ϕ(Xx

T
)

(
W 2

T

σT
− W

T
− 1

σ

))
.

if ϕ is simply Borel with linear growth.

✄ Computation of the vega. One shows likewise the expression for the vega i.e. the derivative of
the premium with respect to the volatility parameter σ under the same assumptions on ϕ, namely

∂

∂σ
E(ϕ(Xx

T
)) = E

(
ϕ′(Xx

T
)(W

T
− σT )Xx

T

)
=

1

σT
E

(
ϕ(Xx

T
)W

T

)

if ϕ is differentiable with a derivative with polynomial growth. An integration by part then shows
that

∂

∂σ
E(ϕ(Xx

T
) = E

(
ϕ(Xx

T
)

(
W 2

T

σT
− W

T
− 1

σ

))
.

1.8.2 A direct approach based on differentiation on the state space

In fact, one can also carry on the computations directly on the state space of the process without
specifying the Black-Scholes model provided the solution at time t, Xx

t , has an explicit probability
density pt(x, y)µ(dy) with respect to a reference measure µ on the real line. If θ denotes a real
parameter of interest of the structure equation that defines Xx (which may turn to be x itself),
one has at least formally

f(θ) = E(ϕ(Xx
T
)) =

∫

R

ϕ(y)p
T
(θ, x, y)µ(dy)

so that

f ′(θ) =

∫

R

ϕ(y)
∂p

T

∂θ
(θ, x, y)µ(dy)

=

∫

R

ϕ(y)

∂p
T

∂θ

pt(θ, x, y)
(θ, x, y)p

T
(θ, x, y)µ(dy)

= E

(
ϕ(Xx

T
)
∂ log(p

T
)

∂θ
(θ, x, Xx

T
)

)
(1.2)

Of course, the above computations need to be supported by appropriate assumptions (domina-
tion, etc).

Exercise (a) Compute the probability density pT (x, y) of Xx
T
.

(b) Re-establish all the above formulae using this approach.

A multi-dimensional version of this result can be established the same way round. However,
this straightforward and simple approach to “greek” computation remains marginal outside the
Black-Scholes world since it needs to have access to an explicit form for the probability density of
the asset at time T . When dealing with path-dependent options (or even worse American options),
this approach already fails even in a Black-Scholes model.
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This is why we are lead to “go back” on the “scenarii” space Ω. Then, some extensions of the
first approach are possible: if the function and the diffusion coefficients (when the risky asset prices
follow a Brownian diffusion) are smooth enough, one usually relies on the so-called tangent process.
A more sophisticate method is to introduce some Malliavin calculus methods which correspond to
a differentiation theory with respect to the generic Brownian paths. This second topic is beyond
the scope of the present course.

1.8.3 The tangent process method

In fact if the coefficients of the SDE are regular enough, one can differentiate directly the processes
with respect to a given parameter. We refer to section 4.

2 Variance reduction

2.1 Static control variate

Let X, X ′∈ L2
R
(Ω,A, P) satisfying

E X = E X ′ = m∈ R, Var(X), Var(X ′), Var(X − X ′) > 0

✄ The parameter m is to be computed by a Monte Carlo simulation. Let Xk, k ≥ 1 be a sequence
of i.i.d. copies of X. Then (SLLN)

m = lim
M→∞

XM P-a.s., with XM :=
1

M

M∑

k=1

Xk

with a convergence ruled by the Central Limit Theorem (CLT )

√
M

(
XM − m

) L−→ N (0;Var(X)) as M → ∞.

so that

P

(
m∈

[
XM − a

σ(X)√
M

, XM + a
σ(X)√

M

])
≈ 2Φ0(a) − 1.

where σ(X) :=
√

Var(X) and Φ0(x) =
∫ x
−∞ e−

ξ2

2
dξ√
2π

.

✄ Question: Which random vector (distribution. . . ) is more appropriate?

A natural answer is : if both X and X ′ can be simulated with an equivalent cost (complexity),
then the one with the lowest variance is the best choice i.e.

X if Var(X) < Var(X ′), X ′ otherwise.

provided this is known a priori.

✄ Practical implementation. Usually, the problem appears as follows: there exists a random
variable Ξ∈ L2

R
(Ω,A, P) such that

(i) E Ξ can be computed at a very low cost by a deterministic method (closed form, numerical
analysis method)

(ii) the r.v. X − Ξ can be simulated with the same cost (complexity) than X.
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(iii) the variance Var(X − Ξ) < Var(X).

Then, the random variable
X ′ = X − Ξ + E Ξ

can be simulated at the same cost as X, EX ′ = E X and Var(X ′) < Var(X).

✄ In option pricing the payoffs are usually nonnegative. In that case, any r.v. Ξ satisfying (i)-(ii)
and

0 ≤ Ξ ≤ X

can be considered as a good candidate to reduce the variance, especially if Ξ is not too far from
X in some way. However, note that it does not imply (iii) (if X ≡ 1, then Var(X) = 0 whereas a
uniformly distributed random variable Ξ on [1 − η, 1] has clearly a nonzero variance. . . ).

2.1.1 Jensen inequality and variance reduction

Jensen inequality is an efficient tool to design control variate when dealing with path-dependent
exotic option pricing as illustrated by the following examples:

Examples: • Asian options and Kemna-Vorst control variate in a Black-Scholes dynamics (see [29])

Let h
T

= ϕ
(

1
T

∫ T
0 Xx

t dt
)

where ϕ is nonnegative and non-decreasing and

Xx
t = x exp ((r − σ2

2
)t + σWt), x > 0

is a Black-Scholes dynamics with volatility σ and interest rate r. Then, Jensen inequality applied
to the probability measure 1

T 1[0,T ](t)dt implies

1

T

∫ T

0
Xx

t dt ≥ x exp

(
1

T

∫ T

0
(r − σ2/2)t + σWt)dt

)

= x exp

(
1

2
(r − σ2/2)T +

σ

T

∫ T

0
Wtdt)

)
.

Now ∫ T

0
Wtdt = T W

T
−

∫ T

0
sdWs =

∫ T

0
(T − s)dWs

so that
1

T

∫ T

0
Wtdt

d
= N

(
0;

1

T 2

∫ T

0
s2ds

)
= N

(
0;

T

3

)
.

Hence
1

T

∫ T

0
Xx

t dt ≥ e−(r/2+σ2/12)T x exp ((r − (σ2/3)/2)T + (σ/
√

3)
√

TZ)

for some normally distributed r.v. Z, so that

h
T
≥ hKV

T

d
= ϕ

(
xe−(r/2+σ2/12)T exp ((r − (σ2/3)/2)T + (σ/

√
3)W

T
)
)

Rule: If the vanilla option with payoff ϕ(Xx
T
) has a closed form, so is the case for the Kemna-Vorst

payoff hKV
T

.
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• Basket option. One considers a payoff on a basket of options (e.g. an index), say a call

h
T

=

(
N∑

k=1

αkX
k,xk

T
− K

)

+

where (X1, . . . , Xd) is d-dimensional basket of risky assets and all the weights αk > 0,
∑

1≤k≤d αk =
1. Then the convexity of the exponential implies that

e
∑

1≤k≤d
αk log(X

k,xk
T

) ≤
d∑

k=1

αkX
k,xk

In a d-dimensional Black-Scholes model,
∑

1≤k≤d αk log(Xk,xk
T

) still has a normal distribution so

that the payoff k
T

:= (e
∑

1≤k≤d
αk log(X

k,xk
T

) − K)+ gives raise to a closed form. The extension to
more general payoffs of the basket is straightforward provided a closed form is available when the
basket is replaced by a single B-S risky asset.

• Best of call option. The payoff is given by

h
T

= (max(X1
T
, X2

T
) − K)+

Using that
√

ab ≤ max(a, b), a, b > 0, its is clear that

h
T
≥ k

T
=

(√
X1

T
X2

T
− K

)

+

and that, still in a 2-dimensional Black-Scholes model, the option with payoff k
T

has a closed form.
One may improve the procedure by noting that more generally aθb1−θ ≤ max(a, b) when θ∈ (0, 1).

2.2 Negatively correlated variables with the same expectation and variance

When Var(X) = Var(X ′), choosing X or X ′ seems of little interest. however, it may be possible to
take advantage of this situation to induce a variance reduction.

Assume Var(X) = Var(X ′), X and X ′ can be simulated with the same complexity κ. Then set

Ξ =
X + X ′

2

It is reasonable (when no further information on (X, X ′) is available) to assume that the simulation
complexity of Ξ is twice that of X and X ′, i.e. 2κ. On the other hand

Var (Ξ) =
Var(X) + Cov(X, X ′)

2

The size of the simulation using X (or X ′) and Ξ respectively to enter a given interval [m −
ε,m + ε] with the same confidence level 2Φ0(a) − 1 > 0 (a > 0) is

MX =
a2Var(X)

ε2
with X and MΞ =

a2Var(Ξ)

ε2
with Ξ.

Taking into account the complexity, that means essentially the computation CPU time, one should
better use Ξ if and only iff 2κMΞ < κMX i.e.

2Var(Ξ) < Var(X)

which amounts finally to
Cov(X,X ′) < 0.

To use this remark in practice, one may rely on the following simple result.
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Proposition 5 Let X = ϕ(Z) ∈ L2
R
(Ω,A, P), where ϕ : (R,B(R)) → (R,B(R)) is a monotone

function. Assume that there exists a non-increasing transform T : (R,B(R)) → (R,B(R)) such

that Z
d
= T (Z). Then

Cov(f(Z), f(T (Z))) ≤ 0.

Proof. Without loss of generality one may assume f non-decreasing. Let Z, Z ′ two independent
random variables defined on the same probability space with distribution P

Z
. Then T being non-

increasing
(f(Z) − f(Z ′)(f(T (Z)) − f(T (Z ′)) ≤ 0

hence its expectation. Consequently

E(f(Z)f(T (Z))) + E(f(Z ′)f(T (Z ′))) − E(f(Z)f(T (Z ′)) − E(f(Z ′)f(T (Z))) ≤ 0

so that using that Z ′ d
= Z and Z Z ′ are independent

2E(f(Z)f(T (Z))) ≤ E(f(Z))E(f(T (Z ′)) + E(f(Z ′))E(f(T (Z))) = 2E(f(Z))E(f(T (Z))

that is
Cov(f(Z), f(T (Z))) = E(f(Z)f(T (Z))) − E(f(Z))E(f(T (Z)) ≤ 0 ♦

The classical situation in which such an approach successfully applies is when T (z) = −z.

Example. European option Pricing in BS model. Let h
T

= h(Xx
T
) with h monotone (like for

Calls, Puts, spreads, etc). Then h
T

= h(x exp (r − σ2

2 T +
√

TZ)), Z
d
= N (0; 1). The function

z 7→ h(x exp (r − σ2

2 T +
√

Tz)) is monotone as the composition of two monotone functions and

W
T

d
= −W

T
.

2.3 Adaptive control variate

The situation of two square integrable r.v. X and X ′, X 6≡ X ′ having the same expectation

E X = E X ′ = m

(and nonzero variances Var(X) and Var(X ′)) can be reformulated by setting

Y := X − X ′ with E Y = 0 and Var(Y ) > 0

We saw that if Var(X − Y ) ≪ Var(X), one will choose X − Y to implement the Monte Carlo
simulation and we provided several classical examples in that direction.

However there is a way to optimally use this idea which is to parametrize the problem as follows.
For convenience, set

Xλ = X − λY .

Then
Φ(λ) = λ2Var(Y ) − 2λ Cov(X,Y ) + Var(X)

reaches its minimum value at λmin with

λmin :=
Cov(X, Y )

Var(Y )
= 1 − Cov(X ′, Y )

Var(Y )
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and (if ρX,Y denotes the correlation coefficient of X and Y )

σ2
min := Var(Xλmin) = Var(X) − (Cov(X,Y ))2

Var(Y )
= Var(X ′) − (Cov(X ′, Y ))2

Var(Y )
.

Hence

σ2
min ≤ min

(
Var(X), Var(X ′)

)

and

σ2
min = Var(X)(1 − ρ2

X,Y ) = Var(X ′)(1 − ρ2
X′,Y ).

A more symmetric expression for Var(Xλmin) is

σ2
min =

Var(X)Var(X ′)(1 − ρ2
X,X′)

(Var(X) − Var(X ′))2 + 2
√

Var(X)Var(X ′)(1 − ρX,X′)

≤
√

Var(X)Var(X ′)
1 + ρX,X′

2
.

2.3.1 Implementation of the adaptive Variance reduction

Let Xk, X
′
k, k ≥ 1, be (simulated. . . ) independent copies of (X, X ′).

Set, for (a large enough fixed) integer M ≥ 1:

V
M

:=
1

M

M∑

k=1

(Xk − X ′
k)

2 C
M

:=
1

M

M∑

k=1

(Xk − X
M

)(Xk − X ′
k)

λ
M

:=
C

M

V
M

[can be updated recursively]

✄ The “batch” approach (Glasserman, [20])
Then λ

M
→ λmin P-a.s. so that one derives by elementary arguments that

1

M

M∑

k=1

XλM

k
a.s.−→ EX = m

Not recursive at all. . . And what about rates ?. . .

✄ Recursive approach/implementation

Theorem 4 If X ∈ Lp(P) for any p ≥ 1 and 1
Y = 1

X−X′ ∈ L1+η(P) for some η > 0 then the
expected variance reduction does occur in the following sense:

√
M

(
1

M

M∑

k=1

X ′′
k − m

)
L−→ N (0;σ2

min)

where X ′′
k

= X
k
− λ

k−1
Y

k
= (1 − λ

k−1
)X

k
+ λ

k−1
X ′

k
and λk is defined as above.
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The rest of this paragraph can be omitted at the occasion of a first reading.

Proof. • Assume (temporarily) that

λ
M

=
C

M

V
M

L2(P)−→ λmin as M → ∞.

Note that (C
M

, V
M

) can be recursively computed from (C
M−1 , VM−1) and (X

M
, X ′

M
).

Let Fk := σ(X1, X
′
1, . . . , XM

, X ′
k
), k ≥ 1, denote the filtration of the simulation and set for

every k ≥ 1,

X ′′
k

= X
k
− λ

k−1
Y

k
= (1 − λ

k−1
)X

k
+ λ

k−1
X ′

k
.

∀ k ≥ 1, E(X ′′
k
| F

k−1
) = E(X

k
| F

k−1
) − λ

k−1
E(Y

k
| F

k−1
) = m

Var(X ′′
k
) = E

(
E((X ′′

k
− m)2 | F

k−1
)
)

= E

(
Var(Xλ

k
)|λ=λ

k−1

)

= E
(
Φ(λ

k−1
)
) k→∞−→ Φ(λmin) = min

λ
Φ(λ).

• Now, set for every M ≥ 1,

N
M

:=
M∑

k=1

X ′′
k − m

k
.

(N
M

)M≥1 is an L2((Fk)k, P)-martingale since X ′′
k , k ≥ 1 is a sequence of Fk-martingale increments

and

E(N2
M

) =
M∑

k=1

E((X ′′
k − m)2)

k2
=

M∑

k=1

Var(X ′′
k )

k2
≤ C

∑

k≥1

1

k2
< +∞.

Hence N
M

→ N∞ ∈ L2(P) (P-a.s. and in L2(P)) as M → ∞. Consequently, by the Kronecker
Lemma (see below),

1

M

M∑

k=1

X ′′
k − m

a.s.−→ 0

=⇒ X
′′
M

:=
1

M

M∑

k=1

X ′′
k

a.s.&L2(P)
−−−−−→ m as M → ∞.

Lemma 1 Kronecker Lemma Let (an)n≥1 be a sequence of real numbers and let (bn)n≥1 be a
non decreasing sequence of positive real numbers with limn bn = +∞. Then




∑

n≥1

an

bn
converges in R as a series


 =⇒

(
1

bn

n∑

k=1

ak −→ 0 as n → ∞
)

.

• (Weak) Rate of convergence: One applies the Lindeberg CLT (see Hall & Heyde) to the array
of martingale increments defined by

XM,k :=
X ′′

k − m√
M

, 1 ≤ k ≤ M.
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One checks that

M∑

k=1

E(X2
M,k | Fk−1) =

1

M

M∑

k=1

E((X ′′
k − m)2 | Fk−1)

=
1

M

M∑

k=1

Φ(λk−1)

−→ σ2
min := min

λ
Φ(λ)

+ Lindeberg condition. . . which needs supM E(λ2+η
M

) < +∞. . .

=⇒
√

M

(
1

M

M∑

k=1

X ′′
k − m

)
L−→ N (0;σ2

min)

• Remaining task : a criterion for the assumption supM E(λ2+η
M

) < +∞.

λ
M

=

∑M
k=1(Xk − X

M
)(Xk − X ′

k)∑M
k=1(Xk − X ′

k)
2

so that λ2
M

≤
∑M

k=1(Xk − X
M

)2
∑M

k=1(Xk − X ′
k)

2
(Schwarz Inequality)

=
1

M

M∑

k=1

(Xk − X
M

)2 × M
∑M

k=1(Xk − X ′
k)

2

≤ 1

M

M∑

k=1

(Xk − X
M

)2 × 1

M

M∑

k=1

1

(Xk − X ′
k)

2

where we used the convexity inequality

M∑
1≤k≤M ak

≤ 1

M

∑

1≤k≤M

1

ak
.

By Hölder Inequality with conjugate exponents p, q∈ (1, +∞)

∀ ε > 0,
∥∥∥λ2

M

∥∥∥
1+ε

≤
∥∥∥∥∥

1

M

M∑

k=1

(Xk − X
M

)2
∥∥∥∥∥

p(1+ε)

∥∥∥∥∥
1

M

M∑

k=1

1

(Xk − X ′
k)

2

∥∥∥∥∥
q(1+ε)

≤
∥∥∥X1 − X

M

∥∥∥
2

2p(1+ε)

∥∥∥∥
1

|X − X ′|

∥∥∥∥
2

q(1+ε)

≤ 4 ‖X‖2
2p(1+ε)

∥∥∥∥
1

|X − X ′|

∥∥∥∥
2

q(1+ε)

.

2.3.2 Application to option pricing: using parity equations

One often starts form the (intuitive and well-known) Parity equations. Furthermore these relations
are model free so they can be applied for various dynamics for the underlying asset.

We denote in this example by Xt the risky asset (with X0 = x0) and set X0
r = ert.

✄ Vanilla Call-Put parity (d = 1):

Call0 = e−rT
E ((X

T
− K)+) and Put0 = e−rT

E ((K − X
T
)+)
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Call0 − Put0 = x0 − e−rT K

so that Call0 = E(X) = E(X ′) with X := e−rT (X
T
−K)+ and X ′ := e−rT (K−X

T
)++x0−e−rT K.

As a result on set
Y = e−rT XT − x0

which turns out te be the terminal value of a martingale

✄ Asian Call-Put parity:

At T0∈ [0, T ) starts the averaging interval [T0, T ].

Call0 = e−rT
E

((
1

T − T0

∫ T

T0

Xtdt − K

)

+

)

Put0 = e−rT
E

((
K − 1

T − T0

∫ T

T0

Xtdt

)

+

)
.

Using that X̃t = e−rtXt is a P-martingale and Fubini’s theorem yield

CallAs
0 − PutAs

0 = x0
1 − e−r(T−T0)

r(T − T0)
− e−rT K

so that
CallAs

0 = E(X) = E(X ′)

with

X := e−rT

(
1

T − T0

∫ T

T0

Xtdt − K

)

+

X ′ := s0
1 − e−r(T−T0)

r(T − T0)
− e−rT K + e−rT

(
K − 1

T − T0

∫ T

T0

Xtdt

)

+

.

which leads to

Y = e−rT 1

T − T0

∫ T

T0

Xtdt − s0
1 − e−r(T−T0)

r(T − T0)
.

Remarks. • In both cases, this relies on the P-martingale property of S̃t.

• Vanilla Call & Put (model-free): The assumptions of the theorem are satisfied as soon as

X
T
∈ Lp(P), p∈ [1 + ∞) and ∀x ≥ 0,

1

X
T
− x

∈ L1+η(P) for some η > 0

This is satisfied by the B-S model.

• Asian Call & Put (in any model-free): Same condition involving

1

T − T0

∫ T

T0

Xt dt.
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Figure 1: Black-Scholes Calls: Error= Reference BS−(MC Premium). K = 90, . . . , 120.
–o–o–o– Crude Call. –∗–∗–∗– Synthetic Parity Call. –×–×–×– Interpolated synthetic Call.

2.3.3 Complexity:

In practical implementation, one often neglects the cost of the computation of λmin since one only
needs a rough estimate or it: this leads to stop its computation after the first 10% or 20% of the
simulation.

– In the examples derived form “Parity equations” developed in the above subsection, the r.v.
Y is involved in the simulation of X, so the complexity of the simulation process is not increased:
updating λ

M
and (the empirical mean) X

′′
M

is (almost) costless. Subsequently, in that setting, the
complexity remains the same!

– Warning ! This no longer true in general . . .When the complexity is doubled, the method
is efficient iff

σ2
min <

1

2
min(Var(X), Var(X ′)).

if one neglects the cost of the estimation of the coefficient λmin.

2.3.4 Some Simulations

✄ Vanilla B-S Calls

Model parameters:

T = 1, x0 = 100, r = 5 %, σ = 20 %, K = 90, . . . , 120.

MC parameter: M = 106.
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Figure 2: Black-Scholes Calls: K 7→ 1 − λmin(K), K = 90, . . . , 120, for the Interpolated
synthetic Call.
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Figure 3: Black-Scholes Calls. Standard Deviation(MC Premium). K = 90, . . . , 120.
–o–o–o– Crude Call. –∗–∗–∗– Parity Synthetic Call. –×–×–×– Interpolated Synthetic Call.
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Figure 4: Heston Asian Calls. Standard Deviation (MC Premium). K = 90, . . . , 120.
–o–o–o– Crude Call. –∗–∗–∗– Synthetic Parity Call. –×–×–×– Interpolated synthetic Call.

✄ Asian Heston Calls

– The dynamics: Let ϑ, k, a s.t. ϑ2/(2ak) < 1.

dXt = Xt(r dt +
√

vt)dW 1
t , X0 = x0 > 0, (risky asset)

dvt = k(a − vt)dt + ϑ
√

vtdW 2
t , v0 > 0 with <W 1,W 2 >t= ρ t, ρ∈ [−1, 1].

– The payoff and the premium: no closed form available for Asian payoffs!

AsCallHest = e−rT
E

((
1

T

∫ T

0
Xsds − K

)

+

)
.

Note however that (quasi-)closed forms do exist for vanilla European options in this model
(see [27]) which is the origin of its success.

– Parameters of the model:

x0 = 100, k = 2, a = 0.01, ρ = 0.5, v0 = 10%, ϑ = 20%.

– Parameters of the option portfolio:

T = 1, K = 90, · · · , 120 (31 strikes).

Exercise. One considers a 1-dimensional Black-Scholes model with market parameters

r = 0, σ = 0.3, x0 = 100, T = 1

1. One considers a vanilla Call with strike K = 80. The r.v. Y is defined as above. Estimate the
λmin (one should be not far from 0.825). Then compute a confidence interval for the Monte
Carlo pricing of the Call with and without the linear variance reduction for the following sizes
of the simulation: M = 5 000, 10 000, 100 000, 500 000.

2. Proceed as above but with K = 150 (true price 1.49). What do you observe ? Provide an
interpretation.
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Figure 5: Heston Asian Calls. K 7→ 1 − λmin(K), K = 90, . . . , 120, for the Interpolated
Synthetic Asian Call.
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Figure 6: Heston Asian Calls. M = 106 (Reference: MC with M = 108). K = 90, . . . , 120.
–o–o–o– Crude Call. –∗–∗–∗– Parity Synthetic Call. –×–×–×– Interpolated Synthetic Call.
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2.4 Multidimensional case

✄ Let X := (X1, . . . , Xd), Y := (Y 1, . . . , Y q) : (Ω,A, P) −→ Rq, square integrable random vectors.

E X = m∈ R
d, E(Y ) = 0∈ R

q

Let D(X) := [Cov(Xi, Xj)]1≤i,j≤d and D(Y ) denote the covariance (dispersion) matrices of X and
Y respectively.

D(X) and D(Y ) > 0

i.e. positive definite symmetric.

✄ Problem Find a matrix Λ∈ M(d, q) solution of the optimization problem

Var(X − Λ Y ) = min {Var(X − LY ), L∈ M(d, q)} .

✄ Solution
Λ = (D(Y ))−1(C(X, Y ))

where
C(X, Y ) = [Cov(Xi, Y j)]1≤i≤d,1≤j≤q.

✄ Examples: Traded assets Xt = (X1
t , . . . , Xd

t ), t ∈ [0, T ].

– Options on various baskets

Xi =




d∑

j=1

θi
jX

j
T
− K




+

, i = 1, . . . , d

Remark. Also produces an optimal asset selection (PCA) which helps for hedging.

– Portfolio of forward start options

X i,j =
(
Xj

Ti+1
− Xj

Ti

)

+
, i = 1, . . . , d

2.5 Importance sampling (introduction to)

The basic principle of importance sampling is the following: let X : (Ω,A, P) → (E, E) be an E-
valued r.v. . Let µ be a σ-finite measure on (E, E) satisfying P

X
≪ µ i.e. there exists a probability

density f : (E, E) → (R+,B(R+)) such that

P
X

= f.µ

In practice this means that one has to simulate several r.v. , whose distributions are all absolutely
continuous with respect to this reference measure µ. For a first reading one may assume that E = R

and µ is the Lebesgue measure but what follows can also be applied on more general measured
spaces like the Wiener space, etc. Then

Eh(X) =

∫

E
h(x)P

X
(dx) =

∫

E
h(x)f(x)µ(dx).

Now for any probability distribution g defined on (E, E) (with respect o µ), one has

Eh(X) =

∫

E
h(x)f(x)µ(dx) =

∫

E

h(x)f(x)

g(x)
g(x)µ(dx).
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One can always enlarge (if necessary) the original probability space (Ω,A, P) to design a random
variable Y : (Ω,A, P) → (E, E) having g as a probability density with respect to µ. Then, going
back on the probability space yields

E h(X) = E

(
h(Y )f(Y )

g(Y )

)
. (2.3)

So, in order to compute E h(X) on can also implement a Monte Carlo simulation based on the
simulation of independent copies of the r.v. Y i.e.

Eh(X) = E

(
h(Y )f(Y )

g(Y )

)
= a.s. lim

M→∞
1

M

M∑

ℓ=1

h(Yℓ)f(Yℓ)

g(Yℓ)
.

✄ Necessary conditions . . . to undertake the simulation. To proceed it is necessary to simulate
Y and to compute the ratio of density functions f/g at a reasonable cost (note that only the ratio
is needed which can make useless the computation of some “structural” constants ).

✄ Sufficient conditions . . . to undertake the simulation. Once the above conditions are fulfilled,
the question is: is it profitable to proceed like that? So is the case if the complexity of the simulation
for a given accuracy (in terms of confidence interval) is lower with the second method. If one assume
for simplicity that simulating X and Y on the one hand and computing h(x) and (hf/g)(x) on the
other hand is comparable the question amounts to comparing the variances.

Now

Var

(
h(Y )f(Y )

g(Y )

)
= E

(
h(Y )f(Y )

g(Y )

)2

− (E h(X))2

=

∫

E

(
h(x)f(x)

g(x)

)2

g(x)µ(dx) − (E h(X))2

=

∫

E

(h(x)f(x))2

g(x)
µ(dx) − (

∫

E
h(x)µ(dx))2

As a consequence simulating Y will reduce the variance iff

∫

E

(h(x)f(x))2

g(x)
µ(dx) <

∫

E
h2(x)f(x)µ(dx).

Remarks. • In fact, theoretically, one may reduce the variance of the new simulation to . . . 0.
Assume E h(X) 6= 0 and g(x) > 0 µ(dx)-a.s.. As a matter of fact, using Schwarz Inequality one
gets,

(

∫

E
h(x)µ(dx))2 =

∫

E

h(x)f(x)√
g(x)

√
g(x)µ(dx)

≤
∫

E

(h(x)f(x))2

g(x)

√
g(x)µ(dx) ×

∫

E
g dµ

=

∫

E

(h(x)f(x))2

g(x)
µ(dx)
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since g is a probability density. Now the equality case in Schwarz inequality says that the variance
is 0 iff

√
g(x) and h(x)f(x)√

g(x)
are µ(dx)-a.s. proportional i.e. h(x)f(x) = cg(x) µ(dx)-a.s. for some

(deterministic) nonnegative real constant c. Finally this leads to

g(x) = f(x)
h(x)

Eh(X)
µ(dx) a.s.

This condition is clearly impossible to reach, the simplest argument being that if it were, this
would mean that Eh(X) is known since it is involved in the formula. . . and would then be of no
use. A contrario this may suggest a direction to design the (distribution) of Y .

• The intuition that must guide the user when calling upon some importance sampling method is to
replace a r.v. X by another r.v. which is closer to their common mean. When pricing derivatives,
the r.v. is a payoff like (X

T
−K)+ which is very often equal to 0 as soon as x0 ≪ K i.e. the option

is deep-out-of-the money at the origin of time. So the idea is to change the dynamics of the risky
asset so that, endowed with its new distribution, it turns to be more often larger than K.

As concerns vanilla option in simple models, one usually work on the state space E = R+ and
importance sampling amounts to a change of variable in integrals. In a more general framework,
one works on the scenarii space i.e. one sets (in some way) E = Ω and use Girsanov theorem.

Example (option pricing). (a) In a 1-dimensional Black-Scholes model

Xx
T

= x exp (µt + σW
T
) = x exp (µT + σ

√
TZ), Z

d
= N (0; 1).

Then, a standard change of variable, shows

E ϕ(Xx
T
) = E h(Z)

=

∫

R

h(x exp (µT + σ
√

Tz)) exp (−z2/2)
dz√
2π

=

∫

R

h(x exp (µT + σ
√

T (u + θ)) exp (−θ2/2 − θu − u2/2)
du√
2π

= exp (−θ2/2) E (exp (−θZ)h(Z + θ))

= exp (θ2/2) E (exp (−θ(Z + θ))h(Z + θ)) .

This identity is sometimes known as the Cameron-Martin formula. Viewed through the above
notations related to “abstract” importance sampling, it corresponds to switch from X to Y with

X ←− Z, Y ←− Z + θ

in (2.3) (with the related probability densities). It is to be noticed that there is need to know a
numerical value for π. We leave the computations an exercise.

At this stage the underlying idea is to choose a “good” θ. This choice highly depends on the
function h as emphasized above.

• If ϕ(x) = (x − K)+ i.e. h(z) = (x exp (µT + σ
√

Tz) − K)+, with x ≪ K (deep-out-of-the-
money), most simulations of h(Z) will produce 0 as a result. So, one idea can be to re-center the
simulation of Xx

T
around K i.e. choose θ satisfying

E

(
x exp (µT + σ

√
T (Z + θ)

)
= K

which yields θ :=
log(K/x)

σ
√

T
− µT . This choice is not optimal but reasonable.
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Exercise. Set r = 0, σ = 0.2, X0 = x = 70, T = 1.One wishes to price a Call with strike price
K = 100 (i.e. deep-out-of-the-money). The true Black-Scholes price is 0.248.

– Make a “crude” Monte Carlo simulation and then

– apply the above importance sampling

Several methods have been developed to approximate the optimal θ i.e. solution to the mim-
imization problem

min θE

(
exp (θ2/2) exp (−θ(Z + θ))h(Z + θ)

)2
.

One is based on large deviations techniques (see [20]) seems to be strongly dependent on the regu-
larity of the function h (or say the payoff). Another approach based on stochastic approximation
techniques has been recently introduced by Arouna in [1]. Although quite promising, one faces a
problem: the resulting procedure does not fit (at all) in the regular theory of recursive stochastic
algorithms. Practical implementation then often lead to exploding behaviours. To overcome this
problem, some further developments are needed, like those developed in [1] which are essentially
based on the so-called projection “à la Chen”.

(b) When dealing with path-dependent options, one usually relies on the Girsanov theorem to
modify in an appropriate way the drift of the risky asset dynamics. Of course all this can be
implemented for multi-dimensional models. . .

3 Euler scheme(s) of a Brownian diffusion

One considers a d-dimensional Brownian diffusion process (Xt)t∈[0,T ] solution of the following S.D.E.

(SDE) ≡ dXt = b(t,Xt)dt + σ(t,Xt)dWt, (3.4)

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → M(d × q) are continuous functions and (Wt)t∈[0,T ]

denotes a q-dimensional Brownian motion defined on a probability space (Ω,A, P) (the filtration
satisfying the usual conditions). We assume that b and σ are Lipschitz continuous in x uniformly
with respect to t i.e., if | . | denotes any norm on Rd and ‖ . ‖ any norm on the matrix space,

∀ t∈ [0, T ], ∀x, y∈ R
d, |b(t, x) − b(t, y)| + ‖σ(t, x) − σ(t, y)‖ ≤ K|x − y|.

The starting random variable X0 is defined on (Ω,A, P), square integrable and independent of W .
Let F := (Ft)t∈[0,T ] the (augmented) filtration generated by X0 and σ(Ws, 0 ≤ s ≤ t).

Then, one shows that the above SDE has a unique strong solution X with initial value X0 (at
time 0). When X0 = x∈ Rd one denotes the solution of (SDE) by Xx.

Remark. By adding the component t to X i.e. be setting Yt := (t,Xt) one may always assume
that the (SDE) is homogenous i.e. that the coefficients b and σ only depend on the space variable.
This is often enough for applications although it induces some uselessly stringent assumption on
the time variable in many theoretical results. Furthermore, when some ellipticity assumptions are
required, this way of considering the equation no longer works since the equation dt = 1dt + 0dWt

is completely degenerate.
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3.1 Euler-Maruyama schemes: stepwise constant and continuous schemes.

Except for some very specific equations, it is impossible to process an exact simulation of the
process X even at a fixed time T (by exact simulation, we mean writing X

T
= χ(U), U ∼ U([0, 1]))

(nevertheless, when d = 1 and σ ≡ 1, see [13]). Consequently, to approximate E(f(X
T
)) by a

Monte Carlo method, one needs to approximate X by a process that can be simulated (at least at
a fixed number of instants). To this end one first introduces the stepwise constant Brownian Euler
scheme X̄ = (X̄ kT

n
)0≤k≤n with step T

n associated to the SDE.

✄ Stepwise constant Euler scheme. It is defined by

X̄tn
k+1

= X̄tn
k

+ b(tnk , X̄tn
k
)
T

n
+ σ(tnk , X̄tn

k
)

√
T

n
Uk+1, X̄0 = X0, k = 0, . . . , n − 1, (3.5)

where tnk = kT
n , k = 0, . . . , n − 1 and (Uk)1≤k≤n denotes a sequence of i.i.d. N (0; 1)-distributed

random vectors given by

Uk :=

√
n

T
(Wtn

k
− Wtn

k−1
), k = 1, . . . , n.

Moreover, set for convenience
t := tnk if t∈ [tnk , tnk+1).

The stepwise constant (sometimes called “discrete”) Euler scheme is defined by

X̃t = X̄t, t∈ [0, T ].

✄ Continuous Euler scheme. At this stage it is natural to extend the definition of the Euler scheme
at every real instant t∈ [0, T ] by setting

X̄t = X̄t + b(t, X̄t)(t − t) + σ(t,Xt)(Wt − Wt).

This continuous Euler scheme satisfies (SDE) with frozen coefficients, namely

dX̄t = b(t,Xt)dt + σ(t,Xt)dWt, X̄0 = X0

i.e.

X̄t = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs.

Then, it is classical background that under the above assumptions on the coefficients b and σ
mentioned above, supt∈[0,T ] |Xt − X̄t| goes to zero in every Lp(P), 0 < p < ∞. Let us be more
specific on that topic by providing error rates under slightly more stringent assumptions.

How to use this continuous for practical simulation seems not obvious, at least not as obvious as
the stepwise constant Euler scheme. However this turns out to be an important method to improve
the rate of convergence of MC simulations e.g. for option pricing. Using this scheme in simulation
relies on the so-called diffusion bridge method and will be detailed further on.

3.2 Strong error rate

Theorem 5 Assume b and σ satisfies for some index α∈ (0, 1),

∀ t∈ [0, T ], ∀x, y∈ R
d, |b(s, x) − b(t, y)| + ‖σ(s, x) − σ(t, y)‖ ≤ C(|t − s|α + |x − y|) (3.6)

and if X0∈ Lp (p ≥ 2).
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(a) Then, for every n ≥ 1,

‖ sup
t∈[0,T ]

|Xt − X̄t|‖p ≤ Cb,σ,pe
Cb,σ,pT (1 + ‖X0‖p)

(
T

n

) 1
2
∧α

.

In particular if b and σ are Lipschitz in (t, x) the Lp-rate is O(n− 1
2 ).

(b) Then, for every n ≥ 1,

‖ sup
t∈[0,T ]

|Xt − X̃t|‖p ≤ Cb,σ,pe
Cb,σ,pT (1 + ‖X0‖p)

√
log n

n
.

Remarks. • Note that the second rate is universal since it holds as a sharp rate for the Brownian
motion itself

‖ sup
t∈[0,T ]

|Wt − Wt|‖p = ‖ max
k=0,...,n−1

sup
t∈[tn

k
,tn

k+1
)
|Wt − Wtn

k
|‖p

=

√
T

n
‖ max

k=0,...,n−1
sup

t∈[k,k+1)
|Wt − Wk|‖p by scaling

≈
√

T

n
Cp

√
log n.

• It follows from the above theorem that the continuous Euler scheme (and the stepwise constant
one as well) converge P-a.s. to X. This straightforwardly follows from the Borel-Cantelli Lemma
since for large enough p

∑

n≥1

E sup
t∈[0,T ]

|Xt − X̄t|p) ≤ c
∑

n≥1

n−p( 1
2
∧α) < +∞

which implies that ∑

n≥1

E sup
t∈[0,T ]

|Xt − X̄t|p) < +∞ P-a.s.

One derives likewise some a.s. convergence n−( 1
2
∧α−η)-rate or any η small enough.

Beyond these rates, it is often useful to have at hand the following bounds for solutions of
(SDE) and its Euler schemes.

Proposition 6 If

∀ t∈ [0, T ], ∀x∈ R
d, |b(t, x)| + ‖σ(t, x)‖ ≤ C(1 + |x|)

then, for every p∈ (0, +∞), there exists a real constant Cp,b,σ∈ (0,∞) such that, for every n ≥ 1,

E sup
t∈[0,T ]

|Xt|p + E sup
t∈[0,T ]

|X̄t|p ≤ Cp,b,σ(1 + E|X0|p)eCp,b,σT .

We provide below a partial proof of these results, in the 1-dimensional homogenous case, for
the continuous Euler scheme with p = 2 without optimization of the behaviour of the constants (a
complete proof can be found e.g. in [14]).
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Lemma 2 (Gronwall Lemma) Let f : R+ → R+, a Borel non-negative locally bounded function
and ψ : R+ → R+ a non-decreasing function satisfying

(G) ≡ f(t) ≤ α

∫ t

0
f(s) ds + ψ(t)

for some α > 0. Then
∀ t ≥ 0, sup

0≤s≤t
f(s) ≤ eαtψ(t).

Proof. It is clear that the non-decreasing (finite) function ϕ(t) := sup0≤s≤t f(s) satisfies (G)

instead of f . Now the function e−αt
∫ t
0 ϕ(s) ds has right derivative at every t ≥ 0 and that

(
e−αt

∫ t

0
ϕ(s)ds

)′

r
= e−αt(ϕ(t+) − α

∫ t

0
ϕ(s) ds)

≤ e−αtψ(t+)

Then, it follows from the fundamental theorem of calculus that

e−αt
∫ t

0
ϕ(s)ds −

∫ t

0
e−αsψ(s+) is non-increasing

so that, applying that between 0 and t yields

∫ t

0
ϕ(s) ≤ eαt

∫ t

0
e−αsψ(s+)ds

Plugging this in the above inequality implies

ϕ(t) ≤ αeαt
∫ t

0
e−αsψ(s+)ds + ψ(t)

= αeαt
∫ t

0
e−αsψ(s)ds + ψ(t)

≤ eαtψ(t)

where we used successively that a monotone function is ds-a.s. continuous and that ψ is non-
decreasing. ♦

Now we are in position to prove the theorem. For the sake of simplicity, we will assume that
d = 1, p = 2 and that the diffusion is homogenous with Lipschitz coefficients. Furthermore, we will
not try dealing with the constants in an optimal way.

Doob’s Inequality. (see e.g. [33]) Let M = (Mt)t≥0 be a continuous time martingale. Then, for
every T > 0,

E

(
sup

t∈[0,T ]
M2

t

)
≤ 4 E M2

T
= 4 E <M >

T
.

Proof of Theorem 5 (partial). Step 1. Let τ
L

:=∈ {t : |Xt − X0| ≥ L}, L∈ N \ {0}. It is a

positive F-stopping times and |Xτ
L

t | ≤ L + |X0| for every t∈ [0,∞). Then, using the local feature
of standard and stochastic integral leads to

X
τ
L

t = X0 +

∫ t∧τ
L

0
b(X

τ
L

s )ds +

∫ τ
L

0
σ(X

τ
L

s )dWs.
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The continuous local martingale M
(n)
t :=

∫ t∧τ
L

0 σ(X
τ
L

s )Xτ
L dWs is a true square integrable martin-

gale since

<M (L) >t=

∫ t∧τ
L

0
σ2(X

τ
L

s )ds ≤ C(1 + L2 + X2
0 )t∈ L1(P)

where we used that |σ(x)| ≤ Cσ(1+ |x|). Consequently, using that b also has at most linear growth,
that t ∧ τ

L
≤ t, one derives that

sup
s∈[0,t]

(X
τ
L

s )2 ≤ 3

(
X2

0 +

(∫ t∧τn

0
Cb(1 + |Xτ

L
s |)ds

)2

+ sup
s∈[0,t]

|M (L)
s |2

)
.

Consequently, using Schwarz inequality to make the square “shift down” inside the “time” integral
and Doob Inequality for the stochastic integral yield

E( sup
s∈[0,t]

(X
τ
L

s )2) ≤ Cb,σ,T

(
EX2

0 +

∫ t

0
(1 + E( sup

u∈[0,s]
(X

τ
L

u )2))ds + E

∫ τ
L
∧t

0
(Cσ(1 + |Xτ

L
s |))2ds

)
.

This can be rewritten (using that τ
L
∧ t ≤ t),

E( sup
s∈[0,t]

(X
τ
L

s )2) ≤ Cb,σ,T

(
1 + EX2

0 +

∫ t

0
E( sup

u∈[0,s]
(X

τ
L

u )2)ds

)
.

Gronwall Lemma implies that

E( sup
s∈[0,t]

(X
τ
L

s )2) ≤ Cb,σ,T (1 + EX2
0 )eCb,σ,T t.

This holds or every L ≥ 1 so that Fatou’s lemma implies

E( sup
s∈[0,T ]

X2
s ) ≤ Cb,σ,T (1 + EX2

0 )eCb,σ,T T = C ′
b,σ,T (1 + EX2

0 ).

The same approach works for the Euler scheme (introduceτ̄
L

for X̄ and note that supu∈[0,s] |X̄u| ≤
supu∈[0,s] |X̄u|. This yields

sup
n≥1

E( sup
s∈[0,T ]

(X̄s)
2) ≤ Cb,σ,T (1 + EX2

0 )eCb,σ,T T .

Step 2: Combining the equations satisfied by X and its (continuous )Euler scheme yields

Xt − X̄t =

∫ t

0
(b(Xs) − b(X̄s))ds +

∫ t

0
(σ(Xs) − σ(X̄s))dWs

Consequently, using that b and σare Lipschitz and Doob Inequality lead to

E sup
s∈[0,t]

|Xs − X̄s|2 ≤ 2E

(∫ t

0
[b]Lip|Xs − X̄s|ds

)2

+ 2E sup
s∈[0,t]

(∫ s

0
((σ(Xu) − σ(X̄u))dWu

)2

≤ 2E

(∫ t

0
[b]Lip|Xs − X̄s|ds

)2

+ 8E

∫ t

0
((σ(Xu) − σ(X̄u))2du

≤ 2E

(∫ t

0
[b]Lip|Xs − X̄s|ds

)2

+ 8[σ]2
Lip

∫ t

0
E|Xu − X̄u|2du

≤ Cb,σ,T

∫ t

0
|Xs − X̄s|2ds

≤ Cb,σ,T

∫ t

0
E sup

u∈[0,s]
|Xu − X̄u|2ds + Cb,σ,T

∫ t

0
E|X̄s − X̄s|2ds.
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Consequently, it follows from Gronwall Lemma (at t = T ) that

E sup
s∈[0,T ]

|Xs − X̄s|2 ≤ Cb,σ,T

∫ T

0
E|X̄s − X̄s|2ds eCb,σ,T T .

Now
X̄s − X̄s = b(X̄s)(s − s) + σ(X̄s)(Ws − Ws) (3.7)

so that, using Step 1, and the fact that Ws − Ws and X̄s are independent

E|X̄s − X̄s|2 ≤ Cb,σ(1 + E sup
t∈[0,T ]

|X̄t|2)
(

(T/n)2 + E sup
tn
k
≤u≤tn

k
+T/n

|Wu − Wtn
k
|2

)

= Cb,σ(1 + E sup
t∈[0,T ]

|X̄t|2)
(

(T/n)2 + E( sup
0≤u≤T/n

W 2
u )

)

= Cb,σ(1 + E sup
t∈[0,T ]

|X̄t|2)((T/n)2 + T/n)

= Cb,σ,T T/n.

Step 3: Item (b) of the theorem follows from the following bound

E sup
t∈[0,T ]

|X̄t − X̄t|2 ≤ C
log n

n
.

It follows from (3.7) that

sup
t∈[0,T ]

|X̄t − X̄t|2 ≤ Cb,σ,T (1 + sup
t∈[0,T ]

|X̄t|2)
(

(T/n)2 + sup
t∈[0,T ]

|Wt − Wt|2
)

so that, using Schwarz Inequality,

‖ sup
t∈[0,T ]

|X̄t − X̄t|‖2 ≤ Cb,σ,T (T/n + ‖ sup
t∈[0,T ]

|Wt − Wt|‖4).

Now, as already mentioned in the above remark that follows Theorem 5,

‖ sup
t∈[0,T ]

|Wt − Wt|‖4 ≤ C

√
T

n

√
log n

which completes the proof. ♦

Remarks. • The proof in the general Lp framework follows exactly the same lines, except that one
replaces Doob’ Inequality for continuous (local) martingale (Mt)t≥0 by the so-called Burkholder-
Davis-Gundy Inequality (see e.g. [46]) which holds for every exponent p > 0 (in the continuous
setting)

‖ sup
s∈[0,t]

|Ms|‖p ≤ cp ‖ <M >t ‖ p
2

• In some so-called mean-reverting situations one may even get boundedness over t∈ (0,∞).
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3.3 Path-dependent options II: Asian, Lookback and barrier options, first ap-
proach

Let
D([0, T ], Rd) :=

{
ξ : [0, T ] → R

d, càdlàg
}

.

(cà dlàg is the French acronym for “right continuous with let limits”). The above result shows that
if F : D([0, T ]) → R is a Lipschitz functional for the sup norm i.e. satisfies

|F (ξ) − F (ξ′)| ≤ CF sup
t∈[0,T ]

|ξ(t) − ξ′(t)|

then
|E(F ((Xt)t∈[0,T ]) − E(F (X̄t)t∈[0,T ])| ≤ Cn− 1

2

and
|E(F ((Xt)t∈[0,T ]) − E(F (X̄t)t∈[0,T ])| ≤ Cn− 1

2

√
log n.

(keep in mind that X̃t = X̄t).

Typical example in option pricing. Assume X = (Xt)t∈[0,T denotes the dynamics of a single
risky asset.

– The Lookback and partial lookback options:

h
T

:=

(
X

T
− λ min

t∈[0,T ]
Xt

)

+

where λ = 1 in the regular Lookback case and λ > 1 in the so-called “partial lookback” case.

– Vanilla Option on extrema (like Calls and Puts)

h
T

= ϕ( sup
t∈[0,T ]

Xt).

– Asian options of the form

h
T

= ϕ

(
1

T − T0

∫ T

T0

Xsds

)

where ϕ is Lipschitz on R. In fact such payoffs are continuous with respect to the pathwise L2-norm

i.e. ‖f‖L1
T

:=
√∫ T

0 f2(s)ds.

3.4 Milshtein scheme

In this section we deal with homogenous diffusion for notational convenience. However the extension
to general non homogenous diffusions is straightforward (in particular it adds no further terms to the
discretization scheme). The Milshtein scheme has been designed to produce a O(1/n)-error (in Lp)
like standard schemes in a deterministic framework. This is a higher order scheme. In 1-dimension,
its expression is simple and it can easily be implemented, provided b and σ have enough regularity.
In higher dimension some theoretical and simulation problems make its use more questionable,
especially when compared to the results about the weak error in the Euler scheme described below.
The starting idea is the following. For small t, one has for the (homogenous) diffusion starting at
x at time 0

Xx
t = x +

∫ t

0
b(Xx

s )ds +

∫ t

0
σ(Xx

s )dWs
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One has in mind that EW 2
t = t i.e. ‖Wt‖2 =

√
t so that in a scheme a Brownian term is

somewhat equivalent to the square root of dt. As t → 0,
∫ t
0 b(Xx

s )ds is O(t). Then by Itô’s Lemma

σ(Xx
s ) = σ(x) +

∫ s

0
(σ′(Xx

u)b(Xx
u) +

1

2
σ′′(Xx

u)σ2(Xx
u))du +

∫ s

0
σ(Xx

u)σ′(Xx
s )dWu

so that

∫ t

0
σ(Xx

s )dWs = σ(x)Wt +

∫ t

0

∫ s

0
σ(Xx

u)σ′(Xx
s )dWudWs + “o(t)”

= σ(x)Wt + σσ′(x)

∫ t

0

∫ s

0
WsdWs + “o(t)”

= σ(x)Wt +
1

2
σσ′(x)(W 2

t − t) + “o(t)”.

Using the Markov property of the diffusion, one can reproduce this on each time step [tnk , tnk+1]
which leads to

X̃mil
tn
k+1

= X̃mil
tn
k

+

(
b(X̃mil

tn
k

) − 1

2
σσ′(X̃mil

tn
k

)

)
T

n
+σ(X̃mil

tn
k

)

√
T

n
Uk+1 +

1

2
σσ′(X̃mil

tn
k

)
T

n
U2

k+1, X̃mil
0 = X0,

where Uk =
√

n
T (Wtn

k
− Wtn

k−1
), k = 0, . . . , n − 1. The following theorem gives the rate of strong

pathwise convergence of the Milshtein scheme.

Theorem 6 Assume b and σ are C2 on R with bounded derivatives. Then, for every p ∈ (0,∞)
such that X0∈ Lp(P), one has

max
0≤k≤n

‖X̃mil
tn
k

− Xtn
k
‖p = O

(
T

n

)

In higher dimension, i.e. when the Brownian motion W is q-dimensional, the same reasoning
leads to the following scheme

X̃mil
tn
k+1

= X̃mil
tn
k

+b(X̃mil
tn
k

)
T

n
+σ(X̃mil

tn
k

)∆Wtn
k+1

+
∑

1≤i,j≤q

∫ tn
k+1

tn
k

(W i
s−W i

tn
k
)dW j

s ∂σ.iσ.j(X̃
mil
tn
k

), X̃0 = X0,

k = 0, . . . , n − 1 where

∂σ.i σ.j(x) =
d∑

ℓ=1

∂σ.i

∂xℓ
(x)σℓj(x).

If one has a look at this formula when d = 1 and q = 2, that simulating the Milshtein scheme
in a general setting amounts to be able to simulate

(
W 1

t , W 2
t ,

∫ t

0
W 1

s dW 2
s

)
.

(at time t = tn1 ). No convincing (i.e. efficient) method to achieve that is known so far.

One can of course notice that when the “rectangular” terms commute i.e.

∀ i 6= j,
∂σ.i

∂xℓ
σℓj =

∂σ.j

∂xℓ
σℓi
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then the Milshtein scheme reduces to

X̃tn
k+1

= X̃tn
k

+

(
b(X̃tn

k
) − 1

2

d∑

ℓ=1

∂σ.iσ
′
.iX̃tn

k
)

)
T

n
+ σ(X̃tn

k
)∆Wtn

k+1
(3.8)

+
1

2

∑

1≤i,j≤q

∆W i
tn
k+1

∆W j
tn
k+1

∂σ.iσ.i(X̃tn
k
), X̃0 = X0,

since, if i 6= j,
∫ tn

k+1

tn
k

(W i
s − W i

tn
k
)dW j

s +

∫ tn
k+1

tn
k

(W j
s − W j

tn
k
)dW i

s = ∆W i
tn
k+1

∆W j
tn
k+1

and ∫ tn
k+1

tn
k

(W i
s − W i

tn
k
)dW i

s =
1

2

(
(∆W i

tn
k+1

)2 − T

n

)
.

The scheme (3.8) can easily be simulated since it only involves some Brownian increments.

3.5 Weak error for the Euler scheme

Usually, one introduces a discretization scheme X̄ = (X̄t)t∈[0,T ] of a diffusion process X = (Xt)t∈[0,T ]

in order to compute by a Monte Carlo simulation an approximation E F (X̄) of E F (X). This
suggests that the rates of strong convergence established above may turn to be inappropriate.

The special case of the approximation of E(f(X
T
)) by its counterpart with the Euler scheme

has been extensively investigated in the literature (after being initiated by Talay-Tubaro in[48] and
Bally-Talay in [3], etc), leading to an expansion of the time discretization error at an arbitrary
accuracy. Then the same kind of question has been investigated with some functionals F of the
path of X with some applications to path-dependent option pricing. These results show that the
resulting weak rate is the same as the strong rate obtained with the Milshtein scheme.

As a second step, Romberg extrapolation methods provide an approach to take optimally ad-
vantage of this weak rate, including in their higher order form.

3.5.1 Main results for E(f(X
T
)) : Talay-Tubaro Theorem, Bally-Talay Theorems

We adopt the notations of the former paragraph. For notational convenience we assume the diffusion
is homogenous.

Theorem 7 Assume b and σ are 4 times continuously differentiable with bounded existing partial
derivatives (this implies that b and σ are Lipschitz with at most linear growth). Assume f : Rd → R

is 4 times differentiable with polynomial growth (as well as its existing derivatives). Then

E f(Xx
T
) − E f(X̄x

T
) = O

(
1

n

)
as n → ∞. (3.9)

Sketch of proof. Assume d = 1 for notational convenience. We also assume T = 1, b ≡ 0 and f
has bounded existing derivatives, for simplicity. The diffusion (Xx

t )t∈[0,T ],x∈Rd is a Markov process
with transition semi-group (Pt) given by

Pt(g)(x) := E g(Xx
t ).

On the other hand, the Euler scheme (X̄x
tn
k
)0≤k≤n is a discrete time homogenous Markov (indexed

by k) chain with transition

P̄ g(x) = Eg(x + b(x)/n + σ(x)Z/
√

n), Z
d
= N (0; 1).
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Now
Ef(Xx

T
) = P

T
f(x) = Pn

T/n(f)(x)

and
Ef(X̄x

T
) = P̄n(f)(x)

so that

Ef(Xx
T
) − Ef(X̄x

T
) =

n∑

k=1

Pk/n(P̄n−kf)(x) − (P(k−1)/n(P̄n−(k−1)f)(x)

=
n∑

k=1

P(k−1)/n((P̄ − PT/n)(P̄n−(k−1)f))(x). (3.10)

Now, Let g : R → R be a four times differentiable function g with bounded existing derivatives.
First, Itô’s formula yields

Pt(g)(x) := g(x) + E

∫ t

0
(g′σ)(Xx

s )dWs

︸ ︷︷ ︸
=0

+
1

2
E

∫ t

0
g′′(Xx

s )σ2(Xx
s )ds

where we used that g′σ has linear growth which ensures that the stochastic integral is a true
martingale. A Taylor expansion then yields for the transition of the Euler scheme

P̄ (g)(x) = g(x) +
1

2n
(g”σ2)(x) +

σ4(x)

4!
E(g(4)(ξ)(Z/

√
n)4)

= g(x) +
1

2n
(g”σ2)(x) +

σ4(x)

4!n2
‖g(4)‖∞εn(g)

with |εn(g)| ≤ E|Z4|, where we used that EZ = EZ3 = 0. Consequently

P1/n(g)(x) − P̄ (g)(x) =
1

2

∫ 1
n

0
E((g”σ2)(Xx

s ) − (g”σ2)(x))ds +
σ4(x)

4!n2
‖g(4)‖∞εn(g).

Applying again Itô’s formula to the C2 function γ := g′′σ2, yields

E((g′′σ2)(Xx
s ) − (g′′σ2)(x)) =

1

2
ε

∫ s

0
γ′′(Xx

u)σ2(Xx
u)du.

Now elementary computations show that

|γ′′(y)| ≤ C max(‖g(4)‖∞ , ‖g(3)σ′‖∞ , ‖g(2)σ(2)‖∞ , ‖g(2)(σ′)2‖∞)(1 + |σ(x)|)

where C does not depend on g and σ. Since we know that supt∈[0,T ] E|Xx
t |p ≤ Cp(1 + |x|p)eCp,σT ,

one derives (with p = 3) that

|P1/n(g)(x) − P̄ (g)(x)| ≤ Cσ max(‖g(4)‖∞ , ‖g(3)‖∞ , ‖g(2)‖∞)
1

n2
.

In order to plug this estimate in (3.10), we need now to control the first four derivatives of P̄ kf .
Let us consider again the generic function g and its fourth bounded derivatives.

(P̄ g)′(x) = E(g′(x + σ(x)Z/
√

n)(1 + σ′(x)Z/
√

n)).
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so that

|(P̄ g)′(x)| ≤ ‖g′‖∞‖1 + σ′(x)Z/
√

n‖1

≤ ‖g′‖∞‖1 + σ′(x)Z/
√

n‖2

= ‖g′‖∞

√
1 + (σ′)2(x)/n

≤ ‖g′‖∞(1 + (σ′)2(x)/(2n)).

Hence
|(P̄ ℓf)′(x)| ≤ ‖g′‖∞(1 + (σ′)2(x)/(2n))ℓ ≤ ‖g′‖∞e‖σ

′‖2
∞ .

Then
(P̄ g)′′(x) = (P̄ )′(g′)(x) + E(g′(x + σ(x)Z/

√
n)(σ”(x)Z/

√
n))

and
|E(g′(x + σ(x)Z/

√
n)(σ′′(x)Z/

√
n))| ≤ ‖g”‖∞‖σσ′′‖∞E(Z2)/n

so that
|(P̄ g)′′(x)| ≤ ‖g′′‖∞(1 + (‖σσ′′‖∞ + ‖σ′)2‖∞)/(2n)).

which implies the boundedness of |(P̄ ℓ)′′f(x)|. The same reasoning finally yields the bounded ness
of |(P̄ k)(i)(g)|, i = 1, 2, 3, 4, k = 0, . . . , n.

Plugging these estimates in each term of (3.10), finally yields

|Ef(Xx
T
) − Ef(X̄x

T
)| ≤ Cσ,f

n∑

k=1

1

n2
≤ Cσ,f

n

which completes the proof. ♦

If one assumes more regularity on the coefficients or some uniform ellipticity on the diffusion
coefficient σ it is possible to obtain an expansion of the error at any order.

Theorem 8 (see [48])(a) Assume b and σ are infinitely differentiable with bounded partial deriva-
tives. Assume f : Rd → R is infinitely differentiable with partial derivative having polynomial
growth. Then, for every R ≥ 1

(E
R+1) ≡ E f(X̄

T
) − E f(X

T
) =

R∑

k=1

ck

nk
+ O(n−(R+1)) as n → ∞, (3.11)

where the real coefficients ck depend on f , T , b and σ.

(b)(see [3]) If b and σ are bounded, infinitely differentiable with bounded partial derivatives and if
σ is uniformly elliptic i.e.

∀x∈ R
d, σσ∗(x) ≥ ε0Id for some ε0 > 0

then the conclusion of (a) holds true for any bounded Borel function.

One method of proof for (a) is to rely on the PDE method i.e. considering the solution of the
parabolic equation (

∂

∂t
+ L

)
(u)(t, x) = 0, u(T, .) = f
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where Lg = g′(x)b(x) + 1
2g”(x)σ2(x) denotes the infinitesimal generator of the diffusion. It follows

from the Feynmann-Kac formula that (under some appropriate regularity assumptions)

u(0, x) = Ef(Xx
T
).

so that

Ef(X
T
) − E f(X̄x

T
) = E(u(0, x) − u(T, X̄x

T ))

=
n∑

k=1

E(u(tnk , X̄x
tn
k
) − u(tnk−1, X̄tn

k−1
)).

The proof consists in applying Itô’s formula to show that

E(u(tnk , X̄x
tn
k
) − u(tnk−1, X̄tn

k−1
)) =

Eφ(tnk , Xx
tn
k
)

n2
+ o(n−2).

for some continuous function φ.

Remark. The last important information about weak error is that the weak error induced by
the Milshtein scheme has exactly the same order as that of the Euler scheme i.e. O(1/n). So
the Milshtein scheme seems of little interest as long as one wishes to compute E(f(X

T
)) with a

reasonable framework like the ones described in the theorem, since, even when it can be implemented
without restriction, its complexity is higher than that of the standard Euler scheme. Furthermore,
the next paragraph about Romberg extrapolation will show that its is possible to take advantage
of the higher order time discretization error expansion which become dramatically faster than
Milshtein scheme.

3.6 Standard Romberg extrapolation and multistep Romberg extrapolation

3.6.1 Application to Romberg extrapolation (with consistent increments)

Assume that (EV
2

) holds. Let f ∈ V where V denotes a vector space of continuous functions
with linear growth. The case of non continuous functions is investigated in the next section. For
notational convenience we set W (1) = W and X(1) := X. A regular Monte Carlo simulation based
on M independent copies (X̄(1)

T
)m, m = 1, . . . ,M , of the Euler scheme X̄(1)

T
with step T/n induces

the following global (squared) quadratic error

‖E(f(X
T
))− 1

M

M∑

m=1

f((X̄(1)
T

)m)‖2
2

= |E(f(X
T
)) − E(f(X̄(1)

T
))|2

+‖E(f(X̄(1)
T

))− 1

M

M∑

m=1

f((X̄(1)
T

)m)‖2
2

=
c2
1

n2
+

Var(f(X̄(1)
T

))

M
+ O(n−3). (3.12)

This quadratic error bound (3.12) does not take fully advantage of the above expansion (E2). To
take advantage of the expansion, one needs to make an Romberg extrapolation. In that framework
(originally introduced in [48]) one considers a second Brownian Euler scheme, this time of the
solution X(2) of a “copy” of Equation (3.4) a priori written with respect to a second Brownian
motion W (2) defined on the same probability space (Ω,A, P). In fact, one may chose this Brownian
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motion by enlarging Ω if necessary. This second Euler scheme has a twice smaller step T
2n and is

denoted X̄(2). Then, assuming (EV
2

)to be more precise,

E(f(X
T
)) = E(2f(X̄(2)

T
) − f(X̄(1)

T
)) − 1

2

c2

n2
+ O(n−3).

Then, the new global (squared) quadratic error becomes

‖E(f(X
T
))− 1

M

M∑

m=1

2f((X̄(2)
T

)m)−f((X̄
T
)m)‖2

2
=

c2
2

4n4
+

Var(2f(X̄(2)
T

) − f(X̄(1)
T

))

M
+O(n−5). (3.13)

The structure of this quadratic error suggests the following question: is it possible to reduce the
(asymptotic) time discretization error without increasing the Monte Carlo error? To what extend
is it possible to control the variance term Var(2f(X̄(2)

T
) − f(X̄(1)

T
))?

It is shown in [39], that if W (2) = W (1) (= W ) then

Var(2f(X̄(2)
T

) − f(X̄(1)
T

))
n→∞−→ Var(2f(X

T
) − f(X

T
)) = Var(f(X

T
))

and that this choice is optimal among all possible choice of correlated Brownian motions W (1) and
W (2). This result can be extended to Borel functions f when the diffusion is uniformly elliptic (and
b, σ bounded, infinitely differentiable with bounded partial derivatives).

From a practical viewpoint, one first simulates an Euler scheme with step T
2n using a white

Gaussian noise (U
(2)
k )k≥1, then one simulates an Euler scheme with step T

n using the white Gaussian
white noise

U
(1)
k =

U
(2)
2k + U

(2)
2k−1√

2
, k ≥ 1.

Note that if one adopts the “lazy” approach based on independent Gaussian noises U (1) and
U (2) the asymptotic variance is

Var(2f(X(2)
T

) − f(X(1)
T

)) = 4Var(f(X(2)
T

)) + Var(f(X(1)
T

)) = 5Var(f(X(1)
T

)).

3.6.2 Toward a multistep Romberg extrapolation

In [39], a more general approach to multistep Romberg extrapolation with consistent Brownian
increments is developed. Given the state of the technology and the needs, it seems interesting up
to R = 4. We will sketch the case R = 3 which may also work for path dependent options (see
below). Set

α1 =
1

2
, α2 = −4, α3 =

9

2
.

(Note that
∑

i α
2
i = 73

2 which would correspond to the variance term if the extrapolation is imple-
mented with independent Brownian motions). Then, easy computations show that

E

(
α1f(X̄(1)

T
) + α2f(X̄(2)

T
) + α3f(X̄(3)

T
)
)

=
c
(3)
3

n3
+ O(n−4).

where X̄(r) denotes the Euler scheme with step T
rn , r = 1, 2, 3, with respect to the same Brownian

motion W . Once again this choice induces a control of the variance of the estimator. However, this
choice is theoretically no longer optimal although natural.
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In practice the three Gaussian white noises can be simulated following the following consistency

rules: We give below the most efficient way to simulate the three whites noises (U
(r)
k )1≤k≤r on one

time step T/n. Let U1, U2, U3, U4 be four i.i.d. copies of N (0; Iq). Set

U
(3)
1 = U1, U

(3)
2 =

U2 + U3√
2

, U
(3)
3 = U4,

U
(2)
1 =

√
2U1 + U2√

3
, U

(2)
2 =

U3 +
√

2U4√
3

,

U
(1)
1 =

U
(2)
1 + U

(2)
2√

2
.

A general formula for the weights α
(R)
r , r = 1, . . . , R as well as the consistent increments tables

are provided in [39].
Guided by some complexity considerations,one shows that the parameters of this multistep

Romberg extrapolation should satisfy some constraints. typically if M denotes the size of the MC
simulation and n the discretization parameter, they should be chosen so that

M ∝ n2R.

For details we refer to [39]. The practical limitation of these results about Romberg extrapolation
is that the control of the variance is only asymptotic (as n → ∞) whereas the method is usually
implemented for small values of n. However it is efficient up to R = 4 when for Monte Carlo
simulation of sizes M = 106 to M = 108.

Exercise: We consider the simplest option pricing model, the (risk-neutral) Black-Scholes dynam-
ics, but with unusually high volatility. (We are aware that this model used to price Call options
does not fulfill the theoretical assumptions made above). To be precise

dXt = Xt (rdt + σdWt),

with the following values for the parameters

X0 = 100, K = 100, r = 0.15, σ = 1.0, T = 1.

Note that a volatility σ = 100% per year is equivalent to a 4 year maturity with volatility 50% (or
16 years with volatility 25%). The reference Black-Scholes premium is CBS

0 = 42.96.

• We consider the Euler scheme with step T/n of this equation.

X̄tk+1
= X̄tk


1 + r

T

n
+ σ

√
T

n
Uk+1


 , X̄0 = X0,

where tk = kT
n , k = 0, . . . , n. We want to price a vanilla Call option i.e. to compute

C0 = e−rT
E((X

T
− K)+)

using a Monte Carlo simulation with M sample paths, M = 104, M = 106, etc.

• Test now the standard Romberg extrapolation (R = 2) based on Euler schemes with steps
T/n and T/(2n), n = 24 6, 8, 10, respectively with

– independent Brownian increments

– consistent Brownian increments

Compute an estimator of the variance of the estimator.
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3.7 Weak error for path-dependent functionals: the Brownian bridge method

In this section we will consider some path-dependent (European) options i.e. related to some payoffs
F ((Xt)t∈[0,T ]) where F is a functional defined on the set D([0, T ], Rd) of right continuous left-limited
functions x : [0, T ] → R. It is clear that all the asymptotic control of the variance obtained in the
former section for the estimator

∑R
r=1 αrf(X̄(r)

T
) of E(f(X

T
)) when f is continuous can be extended

to functionals F : ID([0, T ], Rd) → R which are PX -a.s. continuous with respect to the sup-norm
defined by ‖x ‖sup := supt∈[0,T ] |x(t)| with polynomial growth (i.e. |F (x)| = O(‖x‖ℓ

sup
) for somme

natural integer ℓ as ‖x‖sup → ∞). This simply follows from the fact that the (continuous) Euler
scheme X̄ (with step T/n) defined by

∀ t∈ [0, T ], X̄t = x0 +

∫ t

0
b(X̄s)ds +

∫ t

0
σ(X̄s)dWs, s = ⌊ns/T ⌋

converges for the sup-norm toward X in every Lp(P).
Furthermore, this asymptotic control of the variance holds true with any R-tuple α = (αr)1≤r≤R

of weights coefficients satisfying
∑

1≤r≤R αr = 1, so these coefficients can be adapted to the structure
of the weak error expansion.

On the other hand, in the recent past years, several papers provided some weak rates of con-
vergence for some families of functionals F . These works were essentially motivated by the pricing
of path-dependent (European) options, like Asian, lookback or barrier options. This corresponds
to functionals

F (x) := Φ(

∫ T

0
x(s)ds), F (x) := Φ(x(T ), sup

t∈[0,T ]
x(t), inf

t∈[0,T ]
x(t)), F (x) = Φ(x(T ))1{τ

D
(x)≤T}

where Φ is usually at least Lipschitz and τ
D

:= inf{s∈ [0, T ], x(s±)∈ cD} is the hitting time of cD
by x (1). Let us briefly mention two well-known examples:

– In [23], it is established that if the domain D has a smooth enough boundary, b, σ∈ C3(Rd),
σ uniformly elliptic on D, then for every Borel bounded function f vanishing in a neighbourhood
of ∂D,

E(f(X̃
T
)1{τ(X̃)>T}) − E(f(X

T
)1{τ(X)>T}) = O

(
1√
n

)
as n → ∞. (3.14)

If furthermore, b and σ are C5, then

E(f(X̄
T
)1{τ(X̄)>T}) − E(f(X

T
)1{τ(X)>T}) = O

(
1

n

)
as n → ∞. (3.15)

Note however that these assumptions are not satisfied by usual barrier options (see below).

– it is suggested in [47] (including a rigorous proof when X = W ) that if b, σ ∈ C4
b (R), σ is

uniformly elliptic and Φ∈ C4,2(R2) (with some partial derivatives with polynomial growth), then

E(Φ(X̃
T
, min
0≤k≤n

X̃tk)) − E(Φ(X
T
, min
t∈[0,T ]

Xt)) = O

(
1√
n

)
as n → ∞. (3.16)

A similar improvement – O( 1
n) rate – as above can be expected when replacing X̃ by the continuous

Euler scheme X̄.

1when x is stepwise constant and càdlàg, one can write “s” instead of ”s±”.
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3.7.1 The Brownian bridge and its application to simulation

To take advantage of the above rates (even in a crude simulation), one needs to simulate the the
continuous Euler scheme or at least some quantities related to this continuous scheme between to
discretization points tnk and tnk+1.

Lemma 3 Let W = (Wt)t≥0 be a standard Brownian motion.
(a) Let T > 0. Then, the standard Brownian bridge on [0, T ] defined by

Y W,T
t := Wt −

t

T
W

T
(3.17)

is a (FW
t )0≤t≤T -measurable centered Gaussian process independent of (WT+s)s≥0 characterized by

its covariance

E YsYt =
(s ∧ t)(T − s ∨ t)

T
, 0 ≤ s, t ≤ T.

(b) Let 0 ≤ T0 < T1 < +∞. Then

L
(
(Wt)t∈[T0,T1] |Ws /∈ (T0, T1)

)
= L

(
(Wt)t∈[T0,T1] |WT0

, W
T1

)

is independent of σ(Ws, s /∈ (T0, T1)) and

L
(
(Wt)t∈[T0,T1] |WT0

= w0,WT1
= w1

)
d
= w0 +

t − T0

T1 − T0
(w1 − w0) + (Y W (T0),T1−T0

t−T0
)t∈[T0,T1].

where W
(T )
t := WT+t − W

T
, t ≥ 0 is a standard Brownian motion (independent of FW

T
).

Proof. (a) Elementary computations based on EWsWt = s∧ t, having in mind that independence
and non correlation are equivalent in a Gaussian space.

(b) This is a consequence of item (a). First note that for every t∈ [T0, T1],

Wt = W
T0

+
t − T0

T1 − T0
(W

T1
− W

T0
) + Y W (T0),T1−T0

t−T0
.

It follows from (a) that the process Ỹ := (Y W (T0),T1−T0

t−T0
)t∈[T0,T1] is a Gaussian process independent

of FW
T0

and of W
(T0)
T1−T0+s, s ≥ 0. Since (W, Ỹ ) is a Gaussian process, this is equivalent to the

independence of Ỹ with σ(Ws, s /∈ (T0, T1)) since WT1+s = W
(T0)
T1−T0+s + W

T0
. ♦

Proposition 7 Assume that σ(t, x) 6= 0 for every t∈ [0, T ], x∈ R.

The processes (X̄t)t∈[tn
k
,tn

k+1
], k = 0, . . . , n − 1 are conditionally independent given the σ-field

σ({X̄tn
k

= xk, k = 0, . . . , n}).
Furthermore, the conditional distribution L

(
(X̄t)t∈[tn

k
,tn

k+1
] | X̄tn = xk, X̄tn

k+1
= xk+1

)
is given by

xk +
t − tnk

tnk+1 − tnk
(xk+1 − xk) + σ(tnk , xk)Y

W, T/n
t−tn

k

where (Y
W, T/n
s )s∈[0,T/n] is a Brownian bridge as defined by (3.17). This formula is sometimes called

a diffusion bridge.
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Proof. Elementary computations show that for every t∈ [tnk , tnk+1],

X̄t = X̄tn
k

+
t − tnk

tnk+1 − tnk
(X̄tn

k+1
− X̄tn

k
) + σ(tnk , X̄tn

k
)Y

W
(tn

k
)
,T/n

t−tn
k

(with in mind that tnk+1 − tnk = T/n) Consequently the conditional independence claim will follow

if the processes (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n], k = 0, . . . , n − 1, are independent given σ(X̄tn
ℓ
, ℓ = 0, . . . , n).

Now, it follows from the assumption on σ that

σ(X̄tn
ℓ
, ℓ = 0, . . . , n) = σ(X0, Wtn

ℓ
, ℓ = 1, . . . , n).

So we have to establish the conditional independence of the processes (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n], k =
0, . . . , n − 1, given σ(X0, Wtn

k
, k = 1, . . . , n) or equivalently given σ(Wtn

k
, k = 1, . . . , n) since X0

and W are independent (note all the above bridges are FW
T

-measurable). First note that all the

bridges (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n], k = 0, . . . , n − 1 and W live in a Gaussian space.

We know from Lemma 3(a) that each bridge (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n] is independent of both Ftn
k

and σ(Wtn
k+1

+s − Wtn
k
, s ≥ 0) hence in particular of all σ({Wtn

ℓ
, ℓ = 1, . . . , n}) (we use here a

specificity of Gaussian processes). On the other hand, all bridges are independent since they are

built from independent Brownian motions (W
(tn

k
)

t )t∈[0,T/n]. Hence, the bridges (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n],
k = 0, . . . , n − 1 are i.i.d. and independent of σ(Wtn

k
, k = 1, . . . , n).

Now X̄tn
k

is σ({Wtn
ℓ
, ℓ = 1, . . . , k})-measurable consequently σ(Xtn

k
,Wtn

k
, X̄tn

k+1
) ⊂ σ({Wtn

ℓ
, ≤=

1, . . . , n}) so that (Y
W

(tn
k

)
,T/n

t )t∈[0,T/n] is independent of (Xtn
k
,Wtn

k
, X̄tn

k+1
). The conclusion follows. ♦

Proposition 8 The distribution of the supremum of the Brownian bridge arriving at y at time T ,

defined by Y
(0,y)
t = t

T y + Wt − t
T W

T
on [0, T ] is given by

∀u > y, P( sup
t∈[0,T ]

Y
(0,y)
t ≤ u) = 1 − exp

(
− 2

T
u(u − y)

)
.

Proof. The key is to have in mind that Y (0,y) is the conditional distribution of W given W
T

=
y. So, we compute we can derive the result from an expression of the joint distribution of
(supt∈[0,T ] Wt,WT

), e.g. from
P( sup

t∈[0,T ]
Wt ≥ u, W

T
≤ y).

It is well-known from the symmetry principle that

P( sup
t∈[0,T ]

Wt ≥ u, W
T
≤ y) = P(W

T
≥ 2u − y).

One introduces the hitting time τu := inf{s > 0 |Ws = u}. Then τu is a.s. finite, Wτu = u a.s. and
Wτu+t − Wτu is independent of Fτu . As a consequence

P( sup
t∈[0,T ]

Wt ≥ u, W
T
≤ y) = P(τu ≤ T, W

T
− Wτu ≤ y − u)

= P(τu ≤ T,−(W
T
− Wτu) ≤ y − u)

= P(τu ≤ T, W
T
≥ 2u − y) since u > y

= P(W
T
≥ 2u − y).
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Hence, since the involved functions are regular, one has

P( sup
t∈[0,T ]

Wt ≥ u |W
T

= y) = lim
η→0

(P(W
T
≥ 2u − (y + η)) − P(W

T
≥ 2u − y))/η

(P(W
T
≤ y + η) − P(W

T
≤ y))/η

= −
∂P(W

T
≥2u−y)

∂y

∂P(W
T
≤y)

∂y

.

Elementary computations yield the result. ♦.

Simulation of the maximum of the continuous Euler scheme and application
First we wish to simulate the distribution of the supremum over [0, T/n] of some bridges staring

at x and arriving at y, i.e. of the form x + t
(T/n)(y − x)Y

W,T/n
t . In view of the above proposition 8,

we will use the distribution function inverse method to proceed. Elementary computations show
that

L
(

sup
t∈[0,T/n]

(
x +

t

(T/n)
(y − x)Y

W,T/n
t

))
d
= G−1

x,y(U), U
d
= U([0, 1])

where

G−1
x,y(u) =

1

2

(
x + y +

√
(x − y)2 − 2Tσ(x) log(u)/n

)
.

Now, we derive from Proposition 7 that

L( max
t∈[0,T ]

X̄t | {X̄tk = xk, k = 0, . . . , n}) = L( max
0≤k≤n−1

G−1
xk,xk+1

(Uk))

where (Uk)0≤k≤n−1 are i.i.d. uniformly distributed random variables over the unit interval.

Once one can simulate supt∈[0,T ] X̄t (and its minimum, see exercise below), it is easy to price by
simulation the exotic options mentioned in the former section (lookback, options on maximum) but
also the barrier options since one can decide whether or not the continuous Euler scheme strikes or
not a barrier (up or down). Brownian bridge is also involved in the methods designed for pricing
Asian options.

Exercise Using the symmetry W
d
= −W , one derives a similar formula holds for the minimum

using now the inverse distribution function

F−1
x,y (u) =

1

2

(
x + y −

√
(x − y)2 − 2Tσ(x) log(u)/n

)
.

3.7.2 Weak errors and Romberg extrapolation for path-dependent options: results
and experiments

For both classes of functionals (with D as a half-line in 1-dimension in the first setting), the practical
implementation of the continuous Euler scheme is known as the Brownian bridge method.

At this stage there are two ways to implement the (multistep) Romberg extrapolation with con-
sistent Brownian increments in order to improve the performances of the original (stepwise constant
or continuous) Euler schemes. Both rely on natural conjectures about the existence of a higher order
expansion of the time discretization error suggested by the above rates of convergence (3.14), (3.15)
and (3.16).

• Stepwise constant Euler scheme: As concerns the standard Euler scheme, this means the
existence of a vector space V (stable by product) of admissible functionals satisfying

(E
1
2
,V

R ) ≡ ∀F ∈ V, E(F (X)) = E(F (X̃)) +
R−1∑

k=1

ck

n
k
2

+ O(n−R
2 ). (3.18)
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still for some real constant ck depending on b, σ, F , etc For small values of R, one checks that

R = 2 : α
( 1
2
)

1 = −(1 +
√

2), α
( 1
2
)

2 =
√

2(1 +
√

2).

R = 3 : α
( 1
2
)

1 =

√
3 −

√
2

2
√

2 −
√

3 − 1
, α

( 1
2
)

2 = −2

√
3 − 1

2
√

2 −
√

3 − 1
, α

( 1
2
)

3 = 3

√
2 − 1

2
√

2 −
√

3 − 1
.

Note that these coefficients have greater absolute values than in the standard case. Thus if

R = 4,
∑

1≤r≤4(α
( 1
2
)

r )2 ≈ 10 900! which induces an increase of the variance term for too small
values of the time discretization parameters n even when increments are consistently generated.
The complexity computations of the procedure needs to be updated but grosso modo the optimal
choice for the time discretization parameter n as a function of the MC size M is

M ∝ nR.

• The continuous Euler scheme: The conjecture is simply to assume that the expansion (E
R
)

now holds for a vector space V of functionals F (with polynomial growth with respect to the
sup-norm). The increase of the complexity induced by the Brownian bridge method is difficult to
quantize: it amounts to computing log(Uk) and the inverse distribution functions F−1

x,y and G−1
x,y.

The second difficulty is that simulating (the extrema of) some of continuous Euler schemes using
the Brownian bridge in a consistent way is not straightforward at all. However, one can reasonably
expect that using independent Brownian bridges “relying” on stepwise constant Euler schemes with
consistent Brownian increments will have a small impact on the global variance (although slightly
increasing it).

To illustrate and compare these approaches we carried some numerical tests on partial lookback
and barrier options in the Black-Scholes model presented in the previous section.

✄ Partial lookback options: The partial lookback Call option is defined by its payoff functional

F (x) = e−rT

(
x(T ) − λ min

s∈[0,T ]
x(s)

)

+

, x∈ C([0, T ], R),

where λ > 0 (if λ ≤ 1, the ( . )+ can be dropped). The premium

CallLkb
0 = e−rT

E((X
T
− λ min

t∈[0,T ]
Xt)+)

is given by

CallLkb
0 = X0CallBS (1, λ, σ, r, T ) + λ

σ2

2r
X0PutBS

(
λ

2r

σ2 , 1,
2r

σ
, r, T

)
.

We took the same values for the B-S parameters as in the former section and set the coefficient λ
at λ = 1.1. For this set of parameters CallLkb

0 = 57.475.
As concerns the MC simulation size, we still set M = 106. We compared the following three

methods for every choice of n:

– A 3-step Romberg extrapolation (R = 3) of the stepwise constant Euler scheme (for which a

O(n− 3
2 )-rate can be expected from the conjecture).

– A 3-step Romberg extrapolation (R = 3) based on the continuous Euler scheme(Brownian
bridge method) for which a O( 1

n3 )-rate can be conjectured (see [23]).

48



– A continuous Euler scheme (Brownian bridge method) of equivalent complexity i.e. with
discretization parameter 6n for which a O( 1

n)-rate can be expected (see [23]).

The three procedures have the same complexity if one neglects the cost of the bridge simulation
with respect to that of the diffusion coefficients (note this is very conservative in favour of “bridged
schemes”).

We do not reproduce the results obtained for the standard stepwise constant Euler scheme which
are clearly out of the game (as already emphasized in [23]). In Figure 3.7.2, the abscissas represent
the size of Euler scheme with equivalent complexity (i.e. 6n, n = 2, 4, 6, 8, 10). Figure 3.7.2(a)
(left) shows that both 3-step Romberg extrapolation methods converge significantly faster than
the “bridged” Euler scheme with equivalent complexity in this high volatility framework. The
standard deviations depicted in Figure 3.7.2(a) (right) show that the 3-step Romberg extrapolation
of the Brownian bridge is controlled even for small values of n. This is not the case with the 3-
step Romberg extrapolation method of the stepwise constant Euler scheme. Other simulations
– not reproduced here – show this is already true for the standard Romberg extrapolation and the
bridged Euler scheme. In any case the multistep Romberg extrapolation with R = 3 significantly
outperforms the bridged Euler scheme.

When M = 108, one verifies (see Figure 3.7.2(b)) that the time discretization error of the 3-step
Romberg extrapolation vanishes like for the partial lookback option. In fact for n = 10 the 3-step
bridged Euler scheme yields a premium equal to 57.480 which corresponds to less than half a cent
error, i.e. 0.05% accuracy! This result being obtained without any control variate variable.

The Romberg extrapolation of the standard Euler scheme also provides excellent results. In
fact it seems difficult to discriminate them with those obtained with the bridged schemes, which is
slightly unexpected if one think about the natural conjecture about the time discretization error
expansion.

As a theoretical conclusion, these results strongly support both conjectures about the existence
of expansion for the weak error in the (n−p/2)p≥1 and (n−p)p≥1 scales respectively.

✄ Up & out Call option: Let 0 ≤ K ≤ L. The Up-and-Out Call option with strike K and
barrier L is defined by its payoff functional

F (x) = e−rT (x(T ) − K)+ 1{maxs∈[0,T ] x(s)≤L}, x∈ C([0, T ], R).

It is again classical background, that in a B-S model

CallU&O(X0, r, σ, T ) = CallBS(X0,K, r, σ, T ) − CallBS(X0, L, r, σ, T ) − e−rT (L−K)Φ(d−(L))

−
(

L

X0

)1+µ(
CallBS(X0, K

′, r, σ, T )−CallBS(X0, L
′, r, σ, T )−e−rT (L′−K ′)Φ(d−(L′))

)

with

K ′ = K

(
X0

L

)2

, L′ = L

(
X0

L

)2

, d−(L) =
log(X0/L) + (r − σ2

2 )T

σ
√

T
and Φ(x) :=

∫ x

−∞
e−

ξ2

2
dξ√
2π

and µ =
2r

σ2
.

We took again the same values for the B-S parameters as for the vanilla call. We set the barrier
value at L = 300. For this set of parameters CUO

0 = 8.54. We tested the same three schemes. The
numerical results are depicted in Figure 3.7.2.

The conclusion (see Figure 3.7.2(a) (left)) is that, at this very high level of volatility, when
M = 106 (which is a standard size given the high volatility setting) the (quasi-)consistent 3-step
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Figure 7: B-S Euro Partial Lookback Call option. (a) M = 106. Romberg extrapolation (R = 3)
of the Euler scheme with Brownian bridge: o−−o−−o. Consistent Romberg extrapolation (R = 3): ×—×—×.
Euler scheme with Brownian bridge with equivalent complexity: + − − + − − +. X0 = 100, σ = 100%,
r = 15 %, λ = 1.1. Abscissas: 6n, n = 2, 4, 6, 8, 10. Left: Premia. Right: Standard Deviations. (b) Idem
with M = 108.
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Figure 8: B-S Euro up-&-out Call option. (a) M =106. Romberg extrapolation (R=3) of the Euler
scheme with Brownian bridge: o−−o−−o. Consistent Romberg extrapolation (R = 3): —×—×—×—. Euler
scheme with Brownian bridge and equivalent complexity: +−−+−−+. X0 =K =100, L = 300, σ=100%,
r = 15%. Abscissas: 6n, n = 2, 4, 6, 8, 10. Left: Premia. Right: Standard Deviations. (b) Idem with
M = 108.

Romberg extrapolation with Brownian bridge clearly outperforms the continuous Euler scheme
(Brownian bridge) of equivalent complexity while the 3-step Romberg extrapolation based on the
stepwise constant Euler schemes with consistent Brownian increments is not competitive at all: it
suffers from both a too high variance (see Figure 3.7.2(a) (right)) for the considered sizes of the
Monte Carlo simulation and from its too slow rate of convergence in time.

When M = 108 (see Figure 3.7.2(b) (left)), one verifies again that the time discretization error
of the 3-step Romberg extrapolation almost vanishes like for the partial lookback option. This
no longer the case with the 3-step Romberg extrapolation of stepwise constant Euler schemes. It
seems clear that the discretization time error is more prominent for the barrier option: thus with
n = 10, the relative error is 9.09−8.54

8.54 ≈ 6.5% by this first Romberg extrapolation whereas, the
3-step Romberg method based on the quasi-consistent “bridged” method yields a an approximate
premium of 8.58 corresponding to a relative error of 8.58−8.54

8.54 ≈ 0.4%. These specific results
(obtained without any control variate) are representative of the global behaviour of the methods
as emphasized by Figure 3.7.2(b)(left).
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3.7.3 The case of Asian options

The family of Asian options is related to the payoffs of the form

g(

∫ T

0
Xsds).

This kind of options need some specific treatments to improve the rate of convergence of its time
discretization. This is due to the continuity of the functional f 7→ ∫ T

0 f(s)ds in L1([0, T ], dt).
This problem has been extensively investigated (essentially for a Black-Scholes dynamics) by

E. Temam in his PHD thesis (see [34]). What follows comes from this work.

Let

Xx
t = x exp (µt + σWt), µ = r − σ2

2
.

∫ T

0
Xx

s ds =
n−1∑

k=0

∫ tn
k+1

tn
k

Xx
s ds

=
n−1∑

k=0

Xx
tn
k

∫ T/n

0
exp (µs + σW

(tn
k
)

s )ds

Roughly speaking W
(tn

k
)

s is proportional to
√

T/n so that

exp (µs + σW
(tn

k
)

s ) = 1 + µs + σW
(tn

k
)

s +
σ2

2
(W

(tn
k
)

s )2 + “O(n− 3
2 )”.

Hence
∫ T/n

0
exp (µs + σW

(tn
k
)

s )ds =
T

n
+

µT 2

2n2
+ σ

∫ T/n

0
W

(tn
k
)

s ds +
σ2

2

T 2

2n2
+

σ2

2

∫ T/n

0
((W

(tn
k
)

s )2 − s)ds + “O(n− 5
2 )”

=
T

n
+

rT 2

2n2
+ σ

∫ T/n

0
W

(tn
k
)

s ds + “O(n−2)”

since
∫ T/n
0 ((W

(tn
k
)

s )2−s)ds is a centered with a quadratic norm proportional to n−2 [this is of course
heuristic, but can be made rigorous, see [34]].

Now, using the results about Brownian bridges, we know (see Lemma (3.17)) that the (W
(tn

k
)

t )t∈[tn
k
,tn

k+1
],

k = 0, . . . , n − 1, are independent processes given σ({Wtn
k
, k = 1, . . . , n}) and, owing to Lemma 3,

the random vectors
∫ tn

k+1

tn
k

(Ws−Wtn
k
)ds are conditionally i.i.d. given {Wtn

k
= wk, k = 1, . . . , n} with

a conditional Gaussian distribution given by

L
(∫ T/n

0
Ws ds |WT

n
= y

)
= N

(
T

2n
y;

T 3

12n3

)
.

The parameters of this normal distribution can be computed using again Lemma 3:

E

(∫ T/n

0
Wsds |WT

n

)
=

n

T

∫ T
n

0
t dt WT

n
+ E

(∫ T/n

0
Y W,T/n

s ds |WT
n

)

=
T

2n
WT

n
+

∫ T/n

0
E(Y W,T/n

s )ds

=
T

2n
WT

n
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and

E




(∫ T/n

0
Wsds − T

2n
WT

n

)2

|WT
n


 = E




(∫ T/n

0
Y W,T/n

s ds

)2



=

∫

[0,T/n]2
E(Y W,T/n

s Y
W,T/n
t ) ds dt

=
n

T

∫

[0,T/n]2
(s ∧ t)(

T

n
− (s ∨ t)) ds dt

= (
T

n
)3

∫

[0,1]2(
u ∧ v)(1 − (u ∨ v))dudv

=
1

12

(
T

n

)3

.

Exercise. Use stochastic calculus to show directly that

E

(∫ T

0
Wsds − T

2
W

T

)2

=

∫ T

0
(
T

2
− s)2ds =

T 3

12
.

Using that scheme, one derives the following proposition (we refer to the original paper for a
detailed proof).

Proposition 9 (cf. [34]) If g is Lipschitz continuous, then

‖g(A
T
) − g(Ā

T
)‖p = O(n− 3

2 ).

More generally, one has for real valued Lipschitz functions G on R2

‖G(Xx
T , A

T ) − g(G(Xx
T
, Ā

T
)‖p = O(n− 3

2 ).

4 Back to sensibility computation : the tangent processes

In a general setting, no closed form are available to compute sensibility. One approach is to rely
on the tangent processes (when dealing with the δ and the γ). The main result on which we rely
is due to Kunita (see [32])

Theorem 9 Let b, σ ∈ C1
b (continuously differentiable on with bounded partial derivatives). Let

Xx denote the unique strong solution of the SDE

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x∈ R
d. (4.19)

where W is q-dimensional Brownian motion defined on a probability space (Ω,A, P). Then at every
t∈ R+, the mapping x 7→ Xx

t is a.s. continuously differentiable and its gradient ∇xXx
t satisfies the

linear equation

∇xXx
t = Id +

∫ t

0
∇b(Xs).∇xXx

s ds +

∫ t

0
(∇σ(Xx

s )∇xXx
s ).dWs

Remark. This embodies the non homogenous case by considering (t, Xt) instead of (Xt).

Example. If q = d = 1, then an elementary computation shows that

∇xXx
t = exp (b′(Xx

s ) − (σ′(Xs))
2/2)ds +

∫ t

0
σ′(Xx

s )dWs

so that, in the Black-Scholes model (b(x) = rx, σ(x) = σx), one retrieves that

d

dx
Xx

t =
Xx

t

x
.
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4.1 Application to sensibility computation

The tangent process and the δ are closely related. Assume a basket is made up of d risky asset
with dynamics given by (Xx

t )t∈[0,T ] with starting value x∈ (0,+∞)d at time 0, solution to (4.19).
Assume the interest rate is 0 for simplicity. Then the premium of the payoff g(Xx

T
) on the basket

is given by
v(x) := E(g(Xx

T
)).

The δ of this option (at time 0) is given by v′(x). Under natural (domination) assumption on
g, one shows that

∇v(x) = E(∇g(Xx
T
)∇Xx

T
)

One can also consider a forward start payoffs g(XT1 , . . . , XTn). Then, its premium v(x) is
differentiable and

∇v(x) =
n∑

i=1

E(∇g(Xx
Ti

)∇Xx
Ti

).

4.2 Extension to a parameter θ

Assume b = b(θ, .) and σ = σ(θ, .) and the initial value x = x(θ), θΘ ⊂ Rq. One can also differentiate
a SDE with respect to this parameter θ, namely

(DθXt(θ)) = (Dθx(θ)) +

∫ t

0
∇θb(X(θ)s)Dθ(X(θ)s)ds +

∫ t

0
(∇θσ(X(θ)s)Dθ(X(θ)s)).dWs.

This yields some expressions for the vega, etc.

4.3 Computation by simulation

One uses these formulae to compute some sensibility by Monte Carlo simulations: it suffices to
consider the Euler scheme of the couple made up by the SDE and its tangent (or pseudo-tangent)
processes.

5 Multi-asset American/Bermuda Options

in this section we will shift to slightly different notations: St will denote the price of (a vector of)
asset(s) at time t and X = (Xk) will denote a discrete time “structure” Markov process.

✄ d Traded risky assets: St = (S1
t , . . . , Sd

t ) t ∈ [0, T ] with natural (augmented...) filtration
FS = (FS

t )t∈[0,T ].

✄ Discounted price: S̃i
t =

Si
t

S0
t

= e−rtSi
t , i = 1, . . . , d, is a (P,FS)-martingale under the risk-neutral

probability (if AOA holds) where r is a riskless asset and Mathematical interest rate.

✄ American Payoff process: (ht)t∈[0,T ] is a nonnegative, FS-adapted process.

✄ American option on (ht)t∈[0,T ]:

Choose to receive ht once within 0 and T

✄ Bermuda option on (ht)t∈[0,T ]:

Choose to receive htk once, k = 0, . . . , n.
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usually with tk =
kT

n
, k = 0, . . . , n.

Examples:

✄ Call/Put Option: Right to buy/sell once the asset S at the strike price K

American: once at t∈ [0, T ] vs Bermuda: once at a time t = tk =
kT

n
, k = 0, . . . , n.

ht = (S1
t − K)+ or ht = (K − S1

t )+.

✄ “Vanilla” American Options:

Right to receive once ht = h(t, St) ≥ 0 within time 0 and T

vs Bermuda: once at a time t = tk =
kT

n
, k = 0, . . . , n.

Example: Exchange American/Bermuda options (Villeneuve):

ht = (S1
t − λS2

t )+.

✄ “Exotic” American/Bermuda Options: ht 6= h(t, St).

/ms Example: American/Bermuda Asian options: ht =
(

1
t

∫ t
0 Ssds − K

)

+
.

American/Bermuda Lookback options, etc.

✄ “Shout” Options:

Right to “shout” once within time 0 and T

vs Shout Bermuda: once at a time t = tk =
kT

n
, k = 0, . . . , n.

to receive (a non adapted) ht at T .

5.1 Pricing Bermuda options: the dynamical programming principle

5.2 Markov structure process

(Replace tk = kT
n by k) Let (Xk)0≤k≤n be a Markov structure process.

with transition Pk−1,k(g)(x) = E (g(Xk+1 |Xk = x) such that

– FX
k = FS

tk

– Risky asset vector satisfies

Stk = (S1
tk

, . . . , Sd
tk

) = G(Xk)

– Payoff process satisfies
htk = h(k,Xk).

– Simulability: (Xk)0≤k≤n can be simulated (at a reasonable cost).

• Typical structure processes (for American/Bermuda “Vanilla” options) :

Xk :=





Stk (Ex : Xk = Wtkthe multi-dim B-S model)
log(Stk)
S̄tk (Euler scheme)
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• For path-dependent options (Asian, lookback, etc)

Xk :=





(Stk , 1
tk

(S0 + · · · + Stk))

(S̄tk , 1
tk

(S̄0 + · · · + S̄tk)),

(Stk ,max0≤i≤k Sti),
etc.

5.3 Arbitrage and value function

Step 1 



Vn := h(n, Xn)

Vk := max
(
h(k,Xk), E(Vk+1|FX

k )
)

.

Step 2 Backward induction based on the Markov property

Markov =⇒ Conditioning given FX
k = Conditioning given Xk.

Vk = vk(Xk), k = 0, . . . , n.

5.4 Arbitrage and optimal exercise

• Set for convenience Zk = ϕ(k,Xk) (“the obstacle”)

Step 1 Backward induction on “local” optimal stopping times

{
τn := n
τk := k1{Zk>E(Zτk+1

| FX
k
} + τk+11{Zk≤E(Zτk+1

| FX
k

)}

Markov =⇒ Conditioning given FX
k = Conditioning given Xk.

Step 2 Fundamental theorem of Optimal Stopping Theory says

V0 = E(Zτ0) i.e. V(0, X0) = E(ϕ(τ0, Xτ0)).

6 Toward Numerical methods

6.1 Regression method (Longstaff-Schwarz, 1999)

Approximation 1: Dimension Truncation

✄ At time k, one considers “a” basis

(e1(Xk), e2(Xk), . . . , eN (Xk), . . .) of L2
R
(Ω, σ(Xk), P).

✄ Truncate at level N

e[N ](Xk) := (e1(Xk), e2(Xk), . . . , eN (Xk)).

and set
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✄ τ
[N ]
n := n,

✄ α
[N ]
k := argmin

{
E(Z

τ
[N ]
k+1

− α.e[N ](Xk))
2, α∈ RN

}
, i.e.

α
[N ]
k = (Gram(e[N ](Xk))

−1
(

< Z
τ
[N ]
k+1

| e[N ]
ℓ (Xk) >

)

1≤ℓ≤N

where < . | . > denotes the canonical inner product in L2
R
(Ω, σ(Xk), P) and Gram(e[N ](Xk)) denotes

the so-called Gram matrix of e[N ](Xk) defined by

Gram(e[N ](Xk)) =
[
< e

[N ]
ℓ (Xk) | e[N ]

ℓ′ (Xk) >
]

1≤ℓ,ℓ′≤N

✄ τ
[N ]
k := k1{Zk>α

[N ]
k

.e[N ](Xk)} + τ
[N ]
k+11{Zk≤α

[N ]
k

.e[N ](Xk)}.

Approximation 2 :

Backward recursive approximation of Forward MC simulation of (Xk)0≤k≤n and backward

computation of τ
[N ]
0 :

✄ Simulate M independent copies X(1), . . . , X(m), . . . , X(M) of the structure process X =
(Xk)0≤k≤n.

✄ For every m∈ {1, . . . ,M},
τ [N,m,M ]
n := n

✄ α
[N ],M
k := argminα∈RN

(
1
M

∑M
m=1 Z

(m)

τ
[N ],m,M

k+1

− α.e[N ](X(m))

)2

so that

α
[N ],M
k = (Gram(e[N ](Xk))

−1

(
1

M

M∑

m=1

Z
(m)

τ
[N ],m,M

k+1

e
[N ]
ℓ (X

(m)
k )

)

1≤ℓ≤N

✄ τ
[N ],m,N
k+1 := k1{Z(m)

k
>α

[N ],M
k

.e[N ](Xk)} + τ
[N ],m,N
k+1 1{Z(m)

k
≤α

[N ],M
k

.e[N ](Xk)}. (*)

✄ V0 ≈ E(Z
τ
[N ]
0

) ≈ 1
M

∑M
m=1 Z

τ
[N ],m,M
0

.

Theorem 10 (Clément-Lamberton-Protter (2003), see [15]) The Monte Carlo approximation sat-
isfies a CLT

(
1√
M

M∑

m=1

Z
(m)

τ
[N ],m,M

k

− E(Z
τ
[N ]
k

),
√

M(α
[N ],M
k − α

[N ]
k )

)

0≤k≤n−1

L−→ N (0; Σ).

✄ Pros & Cons of the regression method:

• The method is “natural” : Approximation of conditional expectation by (affine) regression
operator on a truncated basis of L2(σ(Xk), P).

• But :
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Figure 9: An “optimal” quantization of the bi-variate normal distribution with size N = 500

– Almost all computations are made on-line. However, note that the Gram matrix of (e
[N ]
ℓ (Xk))1≤ℓ≤N

can be computed off-line since it only depends on the structure process.

– The choice of the functions ek(x) k ≥ 1 is crucial and needs much care and intuition.
In practical implementations it may vary at every times step. Furthermore, it may have a biased
effect in and out of the money.

A natural idea can be to consider an orthonormal basis for the underlying Markov structure
process like e.g. the Hermite polynomials for the Brownian motion.

– Huge need of RAM (induces swapping).

• Furthermore : Strongly pay-off dependent.

6.2 Vector Quantization approach

Based on the value function.

Approximation 1: Quantization

Substitution by the nearest neighbour projection on grids Γk:

X̂k = πk(Xk) ←− Xk

where πk : Rd → Γk, Γk is a grid of size Nk, Γk = {x1
k, . . . , x

Nk

k } ⊂ Rd.

But loss of the Markov property. . .

Approximation 2: Markov approximation

Quantized obstacle : h(k, X̂k), k = 0 . . . , n.

The Markov property is forced: one defines V̂k by a backward induction

(QDPP-I) ≡
{

V̂n := h(n, X̂n)

V̂k := max(h(k, X̂k), E(V̂k+1 | X̂k)), k = 0, . . . , n − 1.

Again a Backward induction
V̂k = v̂k(X̂k), k = 0, . . . , n.
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where

(QDPP-II) ≡





v̂n(xi
n) = h(n, xi

n), i = 1, . . . , Nn

v̂k(x
i
k) = max


h(k, xi

k),
Nk∑

j=1

p̂ij
k v̂k+1(x

j
k+1)


 , i = 1, . . . , Nk

k = 1, . . . , n − 1.

Numerical Task(s) Optimize and Compute off-line

– Task 1: (good) grids Γk including the quantization error.

and

– Task 2: (accurate) quantized transitions p̂ij
k :=

P(X̂k+1 = xj
k+1, X̂k = xi

k)

P(X̂k = xi
k)

.

Conclusion

(QDPP-II) is instantaneous for the on line computation of any portfolio of options.

Interpretation Global Transition operators approximation

Grids Γk+ quantized transitions p̂ij
k

⇓
P̂k−1,k(x

i
k, dy) =

∑
j p̂ij

k δ
xj

k

with

P̂k−1,k(x
i
k, dy) ≈ Pk−1,k(x, dy), k = 1, . . . , n.

6.3 Quantization tree (I)

• For every k∈ {0, . . . , n}, |Γk| = Nk.

• Theoretical complexity of a tree descent: κ
n−1∑

k=0

Nk Nk+1.

• Global size of the tree (constraint) :
n∑

k=0

Nk = N .

The theoretical complexity is minimal when (Schwarz Inequality)

Nk =
N

n + 1

with complexity
n

(n + 1)2
N2. Not so important in practise since

Most connections p̂ij
k are negligible =⇒ pruning. . .
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Theorem 11 (a) (Bally-Pagès, 2001 (MCMA) to 2005 (Math.F in.)) Scheme of order 0 (de-
scribed above, to be compared to non conformal finite elements of order 0). If h(k, .) are Lipschitz,
the transitions Pk,k−1 are Lipschitz, the

‖V0 − v̂0(X̂0)‖2 ≤ CX,ϕ

n∑

k=0

‖Xk − X̂Γk

k ‖2.

(b) (Bally-Pagès-Printems, (Math.F in.), 2003) Scheme of order 1 (to be compared to non confor-
mal finite elements of order 1). If (. . . )

‖V0 − v̂0(X̂0)‖2 ≤ CX,ϕ

n∑

k=0

‖Xk − X̂Γk

k ‖2
2.

These results show the interest to have access to optimal quantization grids i.e., k being fixed,

a grids Γ∗
k which minimizes the induced quantization error ‖Xk − X̂

Γ∗
k

k ‖2
2.

6.4 Optimal quantization

6.4.1 Existence and rate of vector quantization

Let X temporarily denote a single random vector taking its values in Rd. The fact that for every
size N tehre exist a grid Γ∗,N with at most N elements which minimizes

‖X − X̂Γ∗,N‖2 = min
|Γ|≤N

‖X − X̂Γ‖2

is true as soon as X∈ L2(P) (see [38, 25]). Then it is rather simple to show that N 7→ ‖X−X̂Γ∗,N‖2

is a non-increasing sequence that goes to 0 as N goes to ∞. The rate of convergence to 0 is a much
more challenging problem. An answer is provided by the so-called Zador Theorem stated below.

This theorem was first stated and established for distributions with compact supports by Zador
(see [50, 51]). The first mathematically rigorous proof can be found in [25], and relies on a random
quantization argument (Pierce Lemma).

Theorem 12 (a) Sharp rate. Let r > 0 and X ∈ Lr+η(P) for some η > 0. Let P
X

(dξ) =

ϕ(ξ) dξ
⊥
+ ν(dξ) be the canonical decomposition of the distribution of X (ν and the Lebesgue measure

are singular). Then (if ϕ 6≡ 0),

e
N,r

(X, Rd) ∼ J̃r,d ×
(∫

Rd
ϕ

d
d+r (u) du

) 1
d
+ 1

r× N− 1
d as N → +∞. (6.20)

where J̃r,d∈ (0,∞).

(b) Non asymptotic upper bound (Luschgy-P. 06). Let d ≥ 1. There exists Cd,r,η∈(0,∞) such
that, for every Rd-valued random vector X,

∀N ≥ 1, e
N,r

(X, Rd) ≤ Cd,r,η‖X‖r+ηN
− 1

d .

Remarks. • The real constant J̃r,d clearly corresponds to the case of the uniform distribution over
the unit hypercube [0, 1]d for which a slightly more precise statement, namely

lim
N

N
1
d e

N,r
(X, Rd) = inf

N
N

1
d e

N,r
(X, Rd) = J̃r,d.
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The proof is based on a self-similarity argument. The value of J̃r,d depends on the reference norm

on Rd. When d = 1, elementary computations show that J̃r,1 = (r + 1)−
1
r /2. When d = 2, with

the canonical Euclidean norm, one shows (see [36] for a proof, see also[25]) that J̃2,d =
√

5
18

√
3
. Its

exact value is unknown for d ≥ 3 but, still for the canonical Euclidean norm, one has (see [25])
using some random quantization arguments,

J̃2,d ∼
√

d

2πe
≈

√
d

17, 08
as d → +∞.

6.4.2 Numerical aspects

The procedures that minimizes the quantization error are usually stochastic (except in 1-dimension).
The most famous ones are undoubtedly the so-called Competitive Leaning Vector Quantization
algorithm (see [38, 43] or [41]) and the Lloyd’s I procedure (see [43, 40, 19]

Some algorithmic details are also available on the website

www.quantize.maths-fi.com

On this website are also available some (free access) grids for the d-variate normal distribution.

6.5 Optimal design of the quantization tree

Idea: optimal integral allocation problem
From item (a) of the theorem & non asympotic Zador’s Theorem

‖V0 − v̂0(X̂0)‖2 ≤ CX,ϕ

n∑

k=0

‖Xk − X̂Γk

k ‖2

≤ CX,ϕCδ

n∑

k=0

‖Xk‖2+δ|Γk|−
1
d

= CX,ϕCδ

n∑

k=0

‖Xk‖2+δ
N

− 1
d

k

Amounts to solving the

min
N0+···+Nn=N

n∑

k=0

‖Xk‖2+δ
N

− 1
d

k

i.e. denoting the (upper) integral part of x by ⌈x⌉,

Nk =




(‖Xk‖2+δ
)

d
d+1

∑
0≤ℓ≤n(‖Xℓ‖2+δ

)
d

d+1

N




, k = 0, . . . , n

so that

‖V0 − v̂0(X̂0)‖2 ≤ CX,ϕCδ

(
n∑

k=0

(‖Xk‖2+δ
)

d
d+1

)1− 1
d

Ñ− 1
d .

with Ñ = N0 + · · · + Nn (usually > N).
Examples:
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• Brownian motion Xk = Wtk : Then Ŵ0 = 0 and

‖Wtk‖2+δ
= Cδ

√
tk, k = 0, . . . , n.

Hence N0 = 1 and

Nk ≈ 2(d + 1)

d + 2

(
k

n

) d
2(d+1)

N, k = 1, . . . , n;

|V0 − v̂0(0)| ≤ CW,δ

(
2(d + 1)

d + 2

)1− 1
d n1+ 1

d

N
1
d

= O(
n

N̄
1
d

)

with N̄ = N
n . Useful but theoretically not crucial. Numerically. . . . . .

• Stationary process (ex: Xk = OUtk):

– Essential feature: Only needs

one optimal grid . . . and one quantized transition matrix

– ‖Xk‖2+δ
= ‖X0‖2+δ

hence

Nk =

⌈
N

n + 1

⌉
, k = 0, . . . , n.

‖V0 − v̂0(X̂0)‖2 ≤ CX,δ
n1+ 1

d

N
1
d

= CX,δ
n

N̄
1
d

with N̄ = N
n .

6.6 Computing the quantized transitions p̂
ij
k

6.6.1 Standard Monte Carlo estimation

• As a companion procedure of grid updating:

– Nearest neighbour search at every time step to update the grid Γk ⊂ Rd via CLV Q and
the transition frequency estimators.

– or “batch” estimation via randomized Lloyd’s I procedure.

• Freeze the grids and carry on the MC estimation of the transitions.

– M independent copies Xm = (Xm
0 , Xm

1 , . . . , Xm
n ), m = 1, . . . , M “passing through” the quan-

tization tree.

6.6.2 Alternative methods

• Fast tree quantization for Gaussian structure processes ([11] for swing options, see further on).

• The “spray” method (“gerbes” in French) ([42] for filtering by optimal quantization).
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6.7 δ-Hedging, higher order schemes. . .

6.7.1 Computing the δ-hedge, Xk =Stk (B-S) or S̄tk (local vol).

• Quantized δ-Hedging:

• ζ̂n
k :=

n

Tc2(Ŝtk)
Êk

(
(v̂n

k+1(Ŝtk+1
) − v̂n

k (Ŝtk))(Ŝtk+1
− Ŝtk)

)
.

• Similar formulae for the Euler scheme. . . (H) ≡ (i) σ ∈ C∞
b (Rd), (ii) σσ∗ ≥ ε0 Id, (iii)

∥∥xσ′(x)
∥∥
∞ <

+∞.

• Bermuda Error:

E

∫ T

0
|c∗(Su)(Zu − ζn

u )|2 ds ≤ Ch,σ
(1 + |s0|)q

ε0

1

n
1
6

.

• Quantization Error:

E

∫ T

0
|ζn

u − ζ̂n
u |du ≤ C(1 + |s0|)|

n
3
2

(N/n)
1
d

.

6.8 Numerical experiments (with quantization)

6.8.1 Numerical experiments I: Exchange geometric options

• Exchange American options on geometric assets.

• Reference: [49] Villeneuve-Zanette, 1998 Finite differences for 2-Dim exchange American
options with dividends.

• Model: Standard 2d-dim (B & S) model with non correlated Brownian Motions (The most
“hostile” to quantization. . . ).

• Maturity: T = 1 year. Volatility : σi =
20%√

d
, i = 1, . . . , d.

• 2d-dim pay-Off: h(t, x) =




d∏

i=1

e−µitSi
t −

2d∏

i=d+1

e−µitSi
t




+

.

• Initial values:

∏d
i=1 Si

0 = 40,
∏2d

i=d+1 Si
0 = 36 (in-the money), µ1 := 5 %, µ2 = 0, . . .∏d

i=1 Si
0 = 36,

∏2d
i=d+1 Si

0 = 40 (out-of-the money), µd+1 := 0%, . . .

6.8.2 Results: Premium and δ-hedge: 0-order scheme

6.8.3 0-order scheme vs 1-order scheme

Computation velocity: Pentium II, 800 MHz, 500 MO RAM [2003. . . ]

d = 5 N = 2.104 n = 10

• Design of the quantization tree (grid/weights) : 3 seconds;

• (Premium+ δ-Hedge) (QBDPP): 3 per second.
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Maturity 3 months 6 months 9 months 12 months

AMref 4.4110 4.8969 5.2823 5.6501
Price Error (%) Price Error (%) Price Error (%) Price Error (%)

d = 2 4.4111 0.0023 4.8971 0.0041 5.2826 0.0057 5.6505 0.0071

d = 4 4.4076 0.08 4.9169 0.34 5.3284 0.82 5.7366 1.39

d = 6 4.4156 0.1 4.9276 0.63 5.3550 1.38 5.7834 2.20

d = 10 4.4317 0.47 4.9945 2.00 5.4350 2.89 5.8496 3.53

Table 1: American Premium & Relative error. Different maturities and dimensions.
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Figure 10: d = 2, n = 25 and N̄ = 300. (a) American premium as a function of the maturity. (b) Hedging
strategy on the first asset. The cross + depicts the premium obtained with the method of quantization and
– depicts the reference premium (V & Z).
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Figure 11: d = 4. American premium as a function of the maturity. (a) In-the-money. (b) Out-
of-the-money. + depicts the premium obtained with the method of quantization and – depicts the reference
premium (V & Z).
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Figure 12: Exchange option 10D (S1 · · ·S5 − S6 · · ·S10)+: out-of-the-money
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Maturity 3 months 6 months 9 months 12 months

AMref 4.4110 4.8969 5.2823 5.6501
Price Error (%) Price Error (%) Price Error (%) Price Error (%)

d = 4
AM0 4.4076 0.08 4.9169 0.34 5.3284 0.82 5.7366 1.39
AM1 4.4058 0.1 4.8991 0.04 5.2881 0.08 5.6592 0.13

d = 6
AM0 4.4156 0.1 4.9276 0.63 5.3550 1.38 5.7834 2.20
AM1 4.4099 0.02 4.8975 0.01 5.3004 0.34 5.6557 0.10

d = 10
AM0 4.4317 0.47 4.9945 2.00 5.4350 2.89 5.8496 3.53
AM1 4.4194 0.19 4.8936 0.07 5.1990 1.58 5.4486 3.56

Table 2: Relative errors of AM0 and AM1 with respect to a reference price for different maturities
and dimensions.
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Figure 13: Exchange option 4D (S1S2 − S3S4)+: In-the-money. Dimension d = 4, n = 25
and N25 = 500. American option function of the maturity T . The crosses denote the quantized
version with order 0 (+) and order 1 (×)
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Figure 14: Quantized version order 0 (+), order 1 (×). (a) Dimension d = 6, n = 25, N25 = 1000,
In-the-money case. Value of the American option function of the maturity T .

6.9 Swing Options (a word about)

Take or Pay contract on gas (with firm constraints)

– Spot or day-ahead delivery contract Stk assumed to Markov (for convenience) i.e.

Xk = Stk

– Local volume constraints: Buy daily qtk ∈ [qmin, qmax] m3 of natural gas at price Kk

– Global volume constraints Qmin ≤ q0 + qt1 + · · · + qtn−1 ≤ Qmax.

P (Qmin, Qmax, s0) = sup
(qtk

)0≤k≤n−1∈AQmin,Qmax

E

(
n−1∑

k=0

qtke−r(T−tk)(Stk − Kk)

)

where the set of admissible daily purchased quantities is given by

AQmin,Qmax =



(qtk)0≤k≤n−1, qtk∈FS

tk
, 0 ≤ qtk ≤ 1, Qmin ≤

∑

0≤k≤n−1

qtk ≤ Qmax





6.9.1 Pricing swing by (optimal) Quantization

It is a stochastic control problem.

✄ Dynamic programming principle on the price P (tk, Stk , Qtk)

P (tk, Stk , Qtk) = max
{
q(Stk−K) + E(P (tk+1, Stk+1

, Qtk +q)|Stk), (6.21)

q∈ [qmin, qmax], Qtk + q∈ [(Qmin − (n − k)qmax)+, (Qmax − (n − k)qmin)+]} .

✄ Bang-bang control (see [11]).

If
Qmax − Qmin

qmax − qmin
∈ N, then the optimal control is bang-bang i.e. {qmin, qmax}-valued.
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✄ Quantized Dynamic programming principle Let Ŝtk be an (optimal) quantization of Stk taking

values in Γk := {s1
k, . . . , s

Nk

k }, k = 0, . . . , n.





P (tk, s
i
k, Q̂tk) = max

q∈A
Q̂tk
k

[q(si
k − K) + E(P (tk+1, Ŝtk+1

, Q̂tk + q)|Ŝtk = si
k)]

AQ̂tk

k = {q∈ {qmin, qmax}, Q̂tk +q∈ [(Qmin−(n − k)qmax)+, (Qmax−(n − k)qmin)+]}
i = 1, . . . , Nk,

P (T, si
T , Q̂T ) = P

T
(si

T , Q̂T ), i = 1, . . . , Nn.

(6.22)

Since Ŝtk takes its values in Γk, we can rewrite the conditional expectation as:

E(P (tk+1, Ŝtk+1
, Q)|Ŝtk = si

k) =

Nk+1∑

j=1

P (tk+1, s
j
k+1, Q)p̂ij

k

where
p̂ij

k = P(Ŝtk+1
= sj

k+1|Ŝtk = si
k)

• Technical Parameters:

◦ Optimal quantization approach n = 365 (1 year), Nk = N̄ = 100

◦ Longstaff-Schwartz approach (following [10]: MC size, M = 1000).

• Processor: Céléron, CPU 2,4 GHz. RAM 1,5 Go
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Figure 15: Price Surface (as a function of global constraints) by Optimal Quantization

6.10 Quantization vs L-S for Swing options

• First results:

◦ 1 contract:

L-S Quantization: Quantization:
Transitions + pricing Pricing alone

160 sec 65 sec 5 sec
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Figure 16: Price Surface by L-S like procedure (dotted lines) and by Optimal Quantization (solid
lines)

◦ 10 contracts:
L-S Quantization

1600 sec 110 sec

• If less RAM available:

◦ Quantization is unchanged

◦ L-S slows down because the computers “swaps”. . .
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[16] É. Clément, P. Protter, D. Lamberton (2002). An analysis of a least squares regression
method for American option pricing, Finance & Stochastics, 6, n0 2, 449-47.

[17] L. Devroye, Non uniform random variate generation, Springer. Available as a pdf file on
Luc Devroye’s web page webpage at cg.scs.carleton.ca/ luc/books-luc.html.

[18] A. Friedman (1975). Stochastic differential equations and applications. Vol. 1-2. Probability
and Mathematical Statistics, Vol. 28. Academic Press [Harcourt Brace Jovanovich, Publishers],
New York-London, 528p.

[19] A. Gersho and R.M. Gray (1992). Vector Quantization and Signal Compression. Kluwer,
Boston.

[20] P. Glasserman (2003). Monte Carlo Methods in Financial Engineering, Springer-Verlag,
New York, 596p.

[21] E. Gobet, G. Pagès, H. Pham, J. Printems (2005). Discretization and simulation for a
class of SPDE’s with applications to Zakai and McKean-Vlasov equations, to appear in SIAM
Journal on Numerical Analysis.

[22] E. Gobet, S. Menozzi (2004): Exact approximation rate of killed hypo-elliptic diffusions
using the discrete Euler scheme, Stochastic Process. Appl., 112(2), 201-223.

[23] E. Gobet (2000): Weak approximation of killed diffusion using Euler schemes, Stoch. Proc.
and their Appl., 87, 167-197.

[24] E. Gobet, R. Munos (2005). Sensitivity analysis using Itô-Malliavin calculus and martin-
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