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Chapter 1

Partial Differential Equations in
Mathematical Finance

1.1 Black-Sholes analysis

The purpose of theses notes is to introduce some numerical tools based on P.D.E. for the
pricing of one of the most popular derivative products based on equities, i.e. the options.
Most of this introduction is taken from [8] (chapter 3).

The simplest financial option, a European call option, is a contract with the following
conditions:

• At a prescribed time in the future, known as the expiry date, the owner of the
option may

• purchase a prescribed asset, known as the underlying asset or, briefly, the under-
lying, for a

• prescribed amount, known as the exercise price or strike price.

The word may in this description implies that for the owner (the holder) of the option,
this contract is a right and not an obligation. One of our main concerns throughout theses
notes is to find:

• How much would one pay for this right ?

The option to buy an asset as described above is known as a call option. The right to sell
an asset is known as a put option.

Let us derive now the original Black & Scholes partial differential equation for the price
of the simplest options, so-called vanilla options. Let us introduce some simple notation.

• We denote by V the value of an option; V is a function of the current value of the
underlying asset, S, and time, t: V = V (S, t). The value of the option also depends
on the following parameters:

• σ, the volatility of the underlying asset;
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6 CHAPTER 1. PDE IN MATHEMATICAL FINANCE

• K the exercise price;

• T , the expiry or maturity;

• r the interest rate.

First we consider what happens just at the moment of expiry of a call option, i.e. at time
t = T .

If S > K at expiry, it makes financial sense to exercise the call option, which cost an
amount K to obtain an asset worth S. The profit os such a transaction is S − K. On the
other hand, if S < K at expiry, we should not exercise the option because we would make
a loss of E − S > 0. In this case, the option expires valueless. Thus, the value of the call
option at expiry can be written as

V (S, T ) = max(S − K, 0).

More generally, suppose that we have an option whose value V (S, t) depends only on S
and t (regardless whether V is a call or a put). Let us also suppose that the asset price S
follows the lognormal random walk

dS

S
= µdt + σ dB,(1.1.1)

where B is a Wiener process. Using Itô’s lemma, we can write

dV =
∂V

∂t
dt +

∂V

∂S
dS +

1

2
σ2S2 ∂2V

∂S2
dt(1.1.2)

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2

)
dt + σS

∂V

∂S
dB.

This is the random walk followed by V . Note that such an equation need V to be regular
enough.

Let us now consider a portfolio Π which contains the option and a ratio −∆S of the
asset S the option is based on, namely

Π = V − ∆S.(1.1.3)

Using (1.1.1) and (1.1.2) together gives the random walk followed by Π:

dΠ = dV − ∆dS,

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− µ∆S

)
dt + σS

(
∂V

∂S
− ∆

)
dB,

where we have used the self-financed feature of the portfolio, i.e. d(∆)S = 0 (it means that
∆ is held fixed during the time-step dt).

We can then eliminate the random component in this random walk by choosing

∆ =
∂V

∂S
.(1.1.4)
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This result in a portfolio whose increment is now deterministic

dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2

)
dt.(1.1.5)

The concepts of arbitrage and supply and demand tell us that the right hand side of (1.1.5)
must be equal to rΠdt. Thus, we have

rΠ dt =

(
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2

)
dt.(1.1.6)

Then substituting (1.1.3) and (1.1.4) into (1.1.6) leads to

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.(1.1.7)

This is the Black & Scholes partial differential equation.
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Chapter 2

Finite Difference Methods for PDE

2.1 Introduction

2.1.1 Taylor’s expansion: a formal framework

The Finite Difference (FD) method is based on the properties of the Taylor’s expansion and
on the application of the definition of derivatives. It is the simplest method when the mesh
is uniform but it needs the mesh to be regular enough. Indeed, in dimension n, the nodes
of the mesh are located at the intersection of n families of curves, each of them belonging
to a unique curve of each family.

Its purpose is to approximate differentials equations. Indeed, it allows to construct
approximations of the derivative operator D = ∂

∂x acting on differentiable functions of the
real variable x.

Following [5], we can present shortly the method in dimension 1 in a (very) formal framework. Let us
consider a spatial discretization

−∞ < · · · < xi−1 < xi < xi+1 < · · · < +∞,

which is regular in the sense that xi+1 − xi = ∆x is supposed to be constant. Let v a function regular
enough on R (let say v ∈ C∞

b ). We set for any i ∈ Z, vi = v(xi) and we introduce the operators

Evi = vi+1,(2.1.1)

δ+vi = vi+1 − vi,

δ−vi = vi − vi−1,

δvi = vi+1/2 − vi−1/2,

δ̄vi = (vi+1 − vi−1)/2,

µvi = (vi+1/2 + vi−1/2)/2,

where we noted vi±1/2 = v(xi±1/2) with xi+1/2 = (xi+1 − xi)/2.

Let D be the derivative operator on the functions : Dv(x) =
∂v

∂x
(x). The FD method essentially exploits

the Taylor formula in a way which can be summarized like that:

vi+1 = vi + ∆xDv(xi) +
∆x2

2
D2v(xi) +

∆x3

3!
D3v(xi) + · · · + ∆xn

n!
Dnv(xi) + · · · ,

which allows to write

Evi = exp(∆x D)vi, and E = exp(∆x D).

9



10 CHAPTER 2. FINITE DIFFERENCE METHODS FOR PDE

We will prefer this formulation :

D =
1

∆x
ln(E).(2.1.2)

2.1.2 Forward Finite Difference for the first derivative

The formula (2.1.2) allows to express D in function of δ+:

D =
1

∆x
ln(1 + δ+)(2.1.3)

=
1

∆x

∞∑

k=1

(−1)k+1 (δ+)k

k
,

=
1

∆x

(
δ+ −

(δ+)2

2
+

(δ+)3

3
+ · · ·

)

Of course, this expansion should be restricted to analytic functions. For polynomial
functions, the right member of the expansion has only a finite number of terms. Since
δ+ = O(∆x), the truncated expansion with n + 1 first terms yields an approximation
O(∆xn) of D. This gives:

Dvi =
vi+1 − vi

∆x
−

∆x

2
vxx(xi) + · · ·(2.1.4)

=
vi+1 − vi

∆x
+ O(∆x)

Dvi =
−3vi + 4vi+1 − vi+2

2∆x
+

∆x2

3
vxxx(xi) + · · ·(2.1.5)

=
−3vi + 4vi+1 − vi+2

2∆x
+ O(∆x2)

(useful for the approximation of the derivative at the frontier of a domain)

2.1.3 Backward Finite Difference for the first derivative

Again (2.1.2) and (2.1.1) yield to:

D = −
1

∆x
ln(1 − δ−)(2.1.6)

D =
1

∆x

(
δ− +

(δ−)2

2
+

(δ−)3

3
+ · · ·

)
.

The formulæ are of the same kind:

Dvi =
vi − vi−1

∆x
+ O(∆x)(2.1.7)

Dvi =
3vi − 4vi−1 + vi−2

2∆x
+ O(∆x2)(2.1.8)
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2.1.4 Centered Finite Difference for the first derivative

In a first time, we write D with respect to δ. It comes

δ = 2 sinh

(
∆xD

2

)
,

and then

D =
2

∆x
argsinh

(
δ

2

)
=

2

∆x
ln

(
δ

2
+

√
1 +

δ2

4

)
,

or

D =
2

∆x

(
δ

2
−

1

6

(
δ

2

)3

+
3

40

(
δ

2

)5

−
5

112

(
δ

2

)7

+ · · ·

)
.(2.1.9)

Nevertheless, this formula gives an expression of D with respect to the value of v at the
middle of the mesh and not at the nodes. In order to obtain an expression in function of
δ̄, we use the following relation between µ and δ:

µ2 = 1 +
δ2

4
,

which can be easily derived from the relations (2.1.1).
Multiplying (2.1.9) by the relation 1 = µ(1 + δ2/4)−1/2, we obtain

D =
1

∆x
µ

(
δ −

1

6
δ3 +

1

30
δ5 −

1

140
δ7 +

1

630
δ9 · · ·

)
.(2.1.10)

Finally µδ = δ̄ gives:

Dvi =
ui+1 − ui−1

2∆x
−

∆x2

6
uxxx + · · ·

Dvi =
ui−2 − 8ui−1 + 8ui+1 − ui+2

12∆x
+

∆x4

30
u5x + · · ·

and so on.

2.1.5 FD approximations for the second derivative

We end this subsection by FD schemes for D2. Such approximations can be derived from
Eqs (2.1.3), (2.1.6) and (2.1.9) squared.

• First order forward FD :

D2vi =
vi+2 − 2vi+1 + vi

∆x2
+ O(∆x)

• First order backward FD :

D2vi =
vi − 2vi−1 + vi−2

∆x2
+ O(∆x)

• Second order centered FD :

D2vi =
vi+1 − 2vi + vi−1

∆x2
+ O(∆x2)(2.1.11)
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2.1.6 FD approximations in dimension 2

Let v be a regular enough function of the variables x and y. We focuse here on the

approximation of the second deriviative of v with respect to x, y:
∂2v

∂x2
,

∂2v

∂y2
and

∂2v

∂x∂y
.

Approximations of the first two is simply the corresponding approximation of the second
derivative of v(·, y) viewed as a function of x or v(x, ·) viewed as a function of y.

Particular attention has to be paid for the the mixed derivative. A first try leads to the
second order approximation:

(
∂2u

∂x∂y

)

i,j

=
1

∆x∆y
δ̄xδ̄yui,j + O(∆x2, ∆y2),(2.1.12)

with obvious notations. This is represented by the following figure 2.1

1

1 −1

−1

Figure 2.1: Representation of formula (2.1.12).

Other consistant examples (i.e. approximation of order greater or equal to one) are

(
∂2u

∂x∂y

)

i,j

=
1

∆x∆y
δ̄xδ+

y ui,j + O(∆x2,∆y),(2.1.13)

(
∂2u

∂x∂y

)

i,j

=
1

∆x∆y
δ+
x δ+

y ui,j + O(∆x,∆y),(2.1.14)

(
∂2u

∂x∂y

)

i,j

=
1

∆x∆y
δ−x δ−y ui,j + O(∆x,∆y),(2.1.15)

whose representations are in Fig.2.2. The truncature errors in the last two approximations
(2.1.14) and (2.1.15) are of opposed sign, it means that the arithmetic mean will be second
order approximation in both x and y:

(
∂2u

∂x∂y

)

i,j

=
1

2∆x∆y

(
δ+
x δ+

y + δ−x δ−y
)
ui,j + O(∆x2,∆y2).(2.1.16)

The same is also true for
(

∂2u

∂x∂y

)

i,j

=
1

2∆x∆y

(
δ+
x δ−y + δ−x δ+

y

)
ui,j + O(∆x2,∆y2).(2.1.17)
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Figure 2.2: Representation of formulæ (2.1.13)–(2.1.15).

−2

1

−1

−1

11

1

2

−1

−1

1

−1−1

1

Figure 2.3: Representation of formulæ (2.1.16)–(2.1.17).
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More generally, every convex linear combinaison of the last two approximations leads to
a second order approximation. We will see that (2.1.17)–(2.1.16) are stable approximation
of the mixed derivative whereas (2.1.12) is not.

2.2 Short study of the heat equation. Stability and precision

In order to illustrate the basic concepts of numerical analysis, such as stability and accuracy,
in the framework of finite difference methods, we will consider the heat equation. Let us
recall that the Black & Scholes PDE under suitable change of varaibles can be transformed
into the heat equation.

Let α > 0. We consider the following PDE:

∂u

∂t
(x, t) = α

∂2u

∂x2
(x, t), (x, t) ∈] − L,L[×]0, T [,(2.2.18)

with the following boundary and initial conditions:

u(x, 0) = h(x), x ∈] − L, L[,(2.2.19)

and

u(−L, t) = l1(t), u(L, t) = l2(t), t ∈]0, T [.(2.2.20)

Computation domain : cartesian grid xi = i∆x, tn = n∆t for 1 ≤ i ≤ M and 0 ≤ n ≤ N
with

∆t = T/N, ∆x = 2L/(M + 1),

for N et M two integer ≥ 1.

The operator
∂2

∂x2
is approached by (2.1.11) at the points xi ∈] − L,L[ by

∂2u

∂x2
(xi, tn) = α

u(xi+1, tn) − 2u(xi, tn) + u(xi−1, tn)

∆x2
+ O(∆x2)(2.2.21)

As regards the time integrator, we use a so-called θ-scheme which can be found from (2.1.4)
and (2.1.5) applied to u(xi, t) at time t = tn (resp. at time t = tn+1) and a convex linear
combinaison:

u(xi, tn+1) − u(xi, tn)

∆t
= θ

∂u

∂t
(xi, tn+1) + (1 − θ)

∂u

∂t
(xi, tn) + O(∆t),(2.2.22)

= θα
∂2u

∂x2
(xi, tn+1) + (1 − θ)α

∂2u

∂x2
(xi, tn) + O(∆t),

where θ ∈ [0, 1].

When θ = 0, we recover the Explicit Euler-scheme, θ = 1, the Implicit Euler Scheme
and when θ = 1/2, the Crank–Nicolson scheme. Let us note that in the case where θ = 1/2,
the truncation errors in (2.1.4) and (2.1.5) are opposite, so that the term in ∆ vanishes and
we recover a second order scheme in time. Any other choice of θ leads a first order scheme
in time.
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We replace u(xi, tn) par un
i et O by 0 and then (2.2.21)–(2.2.22) gives the following

system of difference equations:

(Σ)





un+1
i − un

i

∆t
=

αθ

∆x2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
+

α(1 − θ)

∆x2

(
un

i+1 − 2un
i + un

i−1

)
,

1 ≤ i ≤ M, 0 ≤ n ≤ N.

We define now the consistancy error of the scheme Σ.

Definition 2.2.1 We call consistance error the remaining terms when you replace un
i in

the scheme by the exact solution u(xi, tn), denoted by εn
i .

Eqs (2.2.21)–(2.2.22) leads easily to the bound

|εn
i | ≤ C

(
∆tβ + ∆x2

)
,(2.2.23)

where C depends on the higher order derivatives of u with respect to x and t and where
β = 1 si θ 6= 1/2 and β = 2 otherwise.

Let us make now an important remark which is at the center of Numerical Analysis :
the smallness of εn

i gives us a clue about the degree of approximation of the equation, not
about the approximation of the unknown u. We will say that (Σ) is consistant iif εn

i tends
to 0 when ∆t, ∆x tend to 0. So a scheme is consistant when it approximates the equation.

Before going further, let us use the matrix notation. We set Un =




un
1
...

un
M


 ∈ R

M .

Then the scheme (Σ) can be written as
(

I + αθ
∆t

∆x2
L

)
Un+1 =

(
I − α(1 − θ)

∆t

∆x2
L

)
Un + ∆tFn,(2.2.24)

where

L =




2 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2




∈ R
M×M and Fn =




αθ ∆t
∆x2 l1(tn+1) + α(1 − θ) ∆t

∆x2 l1(tn)
0
...
0

αθ ∆t
∆x2 l2tn+1) + α(1 − θ) ∆t

∆x2 l2(tn)



∈ R

M .

Eq. (2.2.24) can be written under the following ”integrated” form :

Un = An
θ U0 + ∆t

n−1∑

k=0

An−k−1
θ

(
I + αθ

∆t

∆x2
L

)−1

F k,(2.2.25)

with U0 =




u(x1, 0)
...

u(xM , 0)


 (e.g.), and where

Aθ =

(
I + αθ

∆t

∆x2
L

)−1 (
I − α(1 − θ)

∆t

∆x2
L

)
.
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Eq. (2.2.25) suggests that at each time step, one has to inverse a linear system (except
when θ = 0). We do not precise in theses notes the way we are doing that. Let us say
that we can use in the context of the heat equation in dimension 1, the Gauss elimination
algorithm without encounter any problems (as storage, efficiency, . . . ).

We are going to show now that the scheme (Σ) is convergent in some sense, i.e. that
un

i tends to u(xi, tn) in some sense when ∆t and ∆x tend to 0. We can imagine that the
smallness of εn

i is not sufficient for that. Indeed, the formulation (2.2.25) says that the
consistancy errors are accumulating in time in order to form the global error. We need one
more assumption : the stability.

Hypothesis 1 Let us suppose that Aθ is such that

‖Aθ‖2 ≤ 1.(2.2.26)

We have denoted by ‖B‖2, for a matrix B, the operator norm based on the Euclidean norm
in R

M . It means that
‖B‖2 = sup

x∈RM , ‖x‖2=1

‖Bx‖2.

We will say that the scheme is L2-stable if Aθ satisfy the assumption (2.2.26). We can
now state :

Proposition 2.2.2 Under the assumption (2.2.26), (Σ) is convergent in the sense where

lim
N,M−→+∞

max
0≤n≤N

∆x

M∑

i=1

|u(xi, tn) − un
i |

2 = 0.

Proof

We set Ũn =




u(x1, tn)
...

u(xM , tn)


, En = Un − Ũn, the vector of the (global) errors et En = t[εn

1 , . . . , εn
M ] the

consistancy error (or local errors) at time tn.
Due to the definition 2.2.1 of the local errors, we have directly:

(
I + αθ

∆t

∆x2
L

)
En+1 =

(
I − α(1 − θ)

∆t

∆x2
L

)
En + ∆t En.(2.2.27)

The stability criterion (2.2.26) allows us to bound the global error at time tn since we can control the
accumulation of the local errors. Indeed, the time integrated version of (2.2.27), i.e. (2.2.25) where Un

replaced by En and F n replaced by En yields

‖En‖2 ≤ ‖E0‖ + ∆t

n−1∑

k=0

∥∥∥∥∥

(
I + αθ

∆t

∆x2
L

)−1
∥∥∥∥∥ ‖Ek‖.(2.2.28)

We show now that the operator norm in the last inequality can be majorized by 1. Let Y ∈ RM and let us
consider X ∈ R

M such that (
1 + αθ

∆t

∆x2
L

)
X = Y.

It is sufficient to show that ‖X‖2 ≤ ‖Y ‖2. Indeed, taking the scalar product of the last equality by X, leads
to

‖X‖2
2 + αθ

∆t

∆x2
(LX, X) = (Y, X).
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We note now that L is a positive (even definite positive) operator. Indeed,

(LX, X) =

M∑

i=1

(2zi − zi−1 − zi+1) zi

=

M∑

i=1

(zi+1 − zi)
2 + z2

1 + z2
M (by discrete integration by part),

where we set z0 = zM+1 = 0. We conclude by the Cauchy-Schwarz inequality.
Now (2.2.28) is reduced to

‖En‖2 ≤ ‖E0‖ + ∆t

n−1∑

k=0

‖Ek‖.(2.2.29)

Plugging (2.2.23) in (2.2.29) yields

‖En‖2 ≤ C∆t

n−1∑

k=0

√
M(∆tβ + ∆x2) ≤ CT

√
M(∆tβ + ∆x2),

which is the desired result since
√

M ≤ ∆x−1/2.

Remark 2.2.3 We have shown the convergence in the functional space L∞(0, T, L2(R)).
Indeed, we note the analogy between

max
0≤n≤N

∆x
M∑

i=1

|en
i |

2 and sup
t∈[0,T ]

∫ L

0
|e(x, t)|2 dx.

What are now the conditions on the parameters (α, θ and especially ∆t and ∆x)
under which Σ is L2-stable ? We can answer by the following spectral study. In fact,
the eigenvectors and eigenvalues of L can be found to be (using trigonometric formulæ for
example)

Xk =




sin
(

kπ
M+1

)

...

sin
(

Mkπ
M+1

)


 , λk = 4 sin2

(
kπ

2(M + 1)

)
, 1 ≤ k ≤ M.

So the eigenvalue of Aθ are

µk =
1 − 4α(1 − θ) sin2

(
kπ

2(M+1)

)

1 + 4αθ sin2
(

kπ
2(M+1)

) , 1 ≤ k ≤ M.

It is easy to verify that the function ψ : t 7→ (1− 4α(1− θ)∆t/∆x2t)/(1 + 4αθ∆t/∆x2t) is
non increasing on [0, 1]. Moreover, ψ(1) = (1− 4α(1− θ)∆t/∆x2)/(1 + 4αθ∆t/∆x2). Now
we note that ψ(0) = 1. In order to have |ψ(t)| ≤ 1 and hence |µk| ≤ 1 for any k, we have
to show that ψ(1) ≥ −1. This gives us the L2-stability criterion:

α(1 − 2θ)
∆t

∆x2
≤

1

2
.(2.2.30)
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We are going now to numerically test whetever these conditions of stability (and hence
of convergence) are ”sharp” or not in the case θ = 0 (Explicit Euler scheme). In order to
do that we choose α = 1 a piecewise constant initial condition h on [0, 1] :

h(x) = u(x, 0) =

{
1 si x ∈ [0.25, 0.75]
0 sinon.

Let us fix ∆x = 0.01. The stability criterion (2.2.30) gives a theoretical limit for the time
step: ∆t = 0.5 × 10−4.

The following scilab script simulate the scheme (Σ) with a time discretization just
below and just beyond the theoretical limit. We can see in Fig 2.4 that the condition
(2.2.30) have to be satisfied and is a necessary condition when θ = 0.

// Discretization parameters

M=99;

N=22000; // Stable case

//N=18000; // Instable case

nmax=15;

// Parameters

alpha=1;

theta=0;

// Do not edit below

L=2*diag(ones(M,1))-diag(ones(M-1,1),-1)-diag(ones(M-1,1),1);

I=eye(M,M);

Deltat=1/N;

Deltax=1/(M+1);

A=inv(I + alpha*theta*Deltat/Deltax^2*L)*(I - (1-theta)*alpha*Deltat/Deltax^2*L);

// Initialisation of U^n

x=linspace(0,1,M+2);

y=1*((x>=0.25)&(x<=0.75));

U=y(2:100)’;

// time iteration

for i=1:nmax,

U=A*U;

end

xbasc(); plot(x(2:100),U)

Before the end of this paragraph, let us mention another important notion of stability
: the L∞-stability. We will say that the scheme (Σ) is L∞-stable iff

‖Aθ‖∞ ≤ 1,(2.2.31)

where we have used here the notation ‖B‖∞, for a matrix B, for the operator norm based
on the supremum norm in R

M . It means that

‖B‖∞ = sup
x∈RM , ‖x‖∞=1

‖Bx‖∞, where ‖x‖∞ = max
1≤i≤M

|xi|.
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Euler explicite (theta = 0) Cas stable | Delta t = 0.45(-4) | Delta x = 0.01
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 1

 1.5
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Euler explicite (theta = 0), cas instable | Delta t = 0.55(-4) | Delta x = 0.01
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Figure 2.4: Excplit Euler scheme (θ = 0) after 15 iterations in time for α = 1, M = 99,
N = 22000 a), N = 18000 b).

What are the conditions on the parameters under which the scheme is L∞-stable ? And
does it converge in this case ?

Proposition 2.2.4 Let ∆t > 0 and ∆x > 0 such that

2α(1 − θ)
∆t

∆x2
≤ 1.(2.2.32)

Then the scheme (Σ) is L∞-stable and moreover it converges in the following sense:

lim
N,M−→+∞

max
0≤n≤N

max
1≤i≤M

|u(xi, tn) − un
i | = 0.

Proof

First let us prove stability. Let X ∈ R
M , ‖X‖∞ = 1 and Y = AθX. We have

(
I − α(1 − θ)

∆t

∆x2
L

)
X =

(
I + αθ

∆t

∆x2
L

)
Y,

or, for any 1 ≤ i ≤ M ,

(
1 − 2α(1 − θ)

∆t

∆x2

)
zi + α(1 − θ)

∆t

∆x2
(zi+1 + zi−1) =

(
1 + 2αθ

∆t

∆x2

)
yi − αθ

∆t

∆x2
(yi+1 + yi−1),(2.2.33)

where we have set z0 = zM+1 = y0 = yM+1 = 0.

Let i0, j0 be the indices such that yi0 = max1≤i≤M yi and yj0 = min1≤j≤M yj . The system of equations
(2.2.33) imply

yi0 ≤ zi0 + 2α(1 − θ)
∆t

∆x2
(1 − zi0),

yj0 ≥ zj0 + 2α(1 − θ)
∆t

∆x2
(−1 − zj0).

Thus a sufficient condition of stability is (2.2.32). Morevover, if we consider Ineq. (2.2.28) where ‖ · ‖2 is
replaced by ‖ · ‖∞, then we will have convergence of the scheme in the same techniques than in Proposition
2.2.2 provided we show that the norm operator in the sum of (2.2.28) is bounded. Indeed, we already have
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done this. In fact, let us consider again X and Y with ‖X‖∞ = 1 and X = (I + αθ∆t/∆x2L)Y . The same
ideas as above can by applied here and we get

yi0 ≤ zi0 ≤ 1, and yj0 ≥ zj0 ≥ −1,

with the same notations. Hence ‖Y ‖∞ ≤ 1.

We sum up in the table 2.1 the sufficient conditions of stability of θ–schemes applied to
the heat equation.

Table 2.1: Sufficient conditions of L2 and L∞-stability of θ–schemes.

θ–schemes L∞ L2

θ = 0 2α∆t ≤ ∆x2 2α∆t ≤ ∆x2

θ = 0.5 α∆t ≤ ∆x2 no conditions
θ = 1 no conditions no conditions

θ ∈ [0, 1] 2α(1 − θ)∆t ≤ ∆x2 2(1 − 2θ)∆t ≤ ∆x2

We will now test the stability conditions in the case of the Crank–Nicolson scheme
(θ = 1/2). We set ∆x = 0.01 (M = 99 points). The critical value of ∆t is 10−4. Figure 2.5
(a) shows the result obtained at time t = 0.001 in the two cases (stable and instable) and
(b) at time t = 0.01. We can see that the differences vanishes with time.

We have used the previous scilab script.
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Crank-Nicolson (theta = 0.5) | t=0.001 | Delta x = 0.01

Cas stable Delta t = 0.5(-4)
Cas instable Delta=0.5(-3)
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Crank-Nicolson (theta = 0.5) | t = 0.01 | Delta x = 0.01

Cas stable Delta t = 0.5(-4)
Cas instable Delta t = 0.5(-3)

Figure 2.5: Crank–Nicolson scheme (θ = 0.5) for α = 1 and N = 99. a) t = 0.001 : the
dash line represent the instable case (∆t = 0.5 × 10−3) and the solid line, the stable case
(∆t = 0.5 × 10−4). Same notations for b) at time t = 0.01.
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2.3 General parabolic case

One can easliy see that results of stability of the previous section can be generalized to the
case where the discrete Laplacian −L is replaced by a matrix B such that the following
holds: 




bi,i ≤ 0,
bi,j ≥ 0, i 6= j,
M∑

j=1

bi,j = 0.
(2.3.34)

The scheme (Σ) can be written in this case as
(

I − αθ
∆t

∆x2
B

)
Un+1 =

(
I + α(1 − θ)

∆t

∆x2
B

)
Un + ∆tFn.

What are the new L∞-stability criterion ? With the same notation than in the previous
section, we have

yi0−αθ
∆t

∆x2
bi0,i0yi0−αθ

∆t

∆x2

∑

j 6=i0

bi0,jyj = xi0+α(1−θ)
∆t

∆x2
bi0,i0xi0+α(1−θ)

∆t

∆x2

∑

j 6=i0

bi0,jxj .

The conditions [M ] implies that the left member of the previous equation is bounded by
below by yi0 . Same techniques apply and give as stability’s criterion:

α max
1≤i≤M

|bi,i|(1 − θ)
∆t

∆x2
≤ 1.(2.3.35)

More generally, if X = t[z1, . . . , zM ] ∈ R
M and Y = AθX then the same computations as

above give

yi0 ≤ xi0 + α(1 − θ)
∆t

∆x2
|bi0,i0 |

(
max

1≤i≤M
xi − xi0

)
.

Condition (2.3.35) leads to
min

1≤i≤M
xi ≤ yi ≤ max

1≤i≤M
xi.

It is the discrete maximum principle. If we replace (2.3.34) by




bi,i ≤ 0,
bi,j ≥ 0, i 6= j,
M∑

j=1

bi,j ≤ −λ < 0,
(2.3.36)

where λ > 0, then B satisfies the strong discrete maximum principle:

BX ≥ 0 ⇒ X ≤ 0.

Remark 2.3.1 There are other properties satisfied by the matrices such that (2.3.36) holds:
if B satisfies (2.3.36) then B is inversible and B−1 has positive coefficients.

We can sum up this section by saying that (2.3.34) (or (2.3.36)) and (2.3.35) are the
two stability criterion in the case of L∞-stability. The first is spatial and the second one
is temporal. From now on, we will try to be in this case when we will discretize Black &
Scholes type PDE.
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2.4 Numerical computation of options in dimension 1

2.4.1 European case

We test our FD scheme on the pricing of a European Put (cf. appendix A.1.) with r = 0.1,
σ = 0.2, K = 1 and T = 1. The inversion of the linear system are done by means of standart
direct methods which can be found in scilab software (e.g.) (see [4] for a complete reference
of the subject of linear system inversion).

We can see below different effect of discretization on the error with respect to the real
price (computed owing to Black & Scholes formula) and on the implied volatilities computed
thanks to a Newton algorithm (see Appendix A for a Scilab script).
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Figure 2.6: Different spatial discretization (∆t = 1e − 2). (a), (c) ∆x = 0.5. (b), (d)
∆x = 0.05. Curves (c) and (d) described in both cases the implicit volatility as a function
of the spot.
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2.5 Numerical computation in dimension 2

We will consider for the sake of simplicity the following two dimensional model of assets:

dSi

Si
= µi dt + σi dBi, i = 1, 2,

where again the parameter µi and σi are supposed to be constant and where B1 and B2

are two Brownian motion whose correlation is denoted by ρ ∈] − 1, 1[. It means that there

exists B̃2 independant from B1 such that

B2 = ρB1 +
√

1 − ρ2B̃2.

Suppose that we are given an option whose value V (S1, S2, t) depends only on t and S1

and S2. Using the same technique than in section 1.1 (the same delta-hedging strategy), it
is easy to show that V is solution whose PDE can be written

∂V

∂t
+

1

2
σ2

1x
2 ∂2V

∂x2
+

1

2
σ2

2y
2 ∂2V

∂y2
+ ρxyσ1σ2

∂2V

∂x∂y
+ r(x

∂V

∂x
+ y

∂V

∂y
) − rV = 0,

where r > 0 is the interest rate and where (x, y) ∈ R
+ and t ∈ (0, T ). We will consider

the time changed version of this equation (t → T − t) and will discretize it using finite
differences. Le us set

∆x =
L1

M1 + 1
, ∆y =

L2

M2 + 1
, ∆t =

T

N
.

Here M1 and M2 are such that we have exactly M1 ×M2 points strictly inside the compu-
tation domain (cf. figure 2.7).

(xi, yj) = (i∆x, j∆y), (i, j) ∈ {2, . . . , M1 + 1} × {2, . . . , M2 + 1}.

u(xi, yj , tn) −→ un
i,j

∂2u

∂x2
(xi, yj , tn) −→

1

∆x2
(un

i+1,j − 2un
i,j + un

i−1,j)

∂2u

∂y2
(xi, yj , tn) −→

1

∆y2
(un

i,j+1 − 2un
i,j + un

i,j−1)

∂2u

∂x∂y
(xi, yj , tn) −→

1

∆x∆y

(
2un

i,j + un
i−1,j+1 + un

i+1,j−1 − un
i,j+1 − un

i,j−1 − un
i+1,j − un

i−1,j

)
)

Choice for the first order operator:

(Cx)
∂u

∂x
(xi, yj , tn) =

1

2∆x
(un

i+1,j − un
i−1,j)

(D+
x )

∂u

∂x
(xi, yj , tn) =

1

∆x
(un

i+1,j − un
i,j)

(D−
x )

∂u

∂x
(xi, yj , tn) =

1

∆x
(un

i,j − un
i−1,j)
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With the same notations for the derivatives with respect to y.
Numerotation of the nodes:
We choose here to integrate the outer nodes (nodes that are on the frontier) in the

global numerotation of the unknowns.

1 2 3 5 6 7 8 9

1810

28

19

4

11 17

36

27

43 4438 4537

Figure 2.7: M1 = 7, M2 = 3

More precisely the unknowns {un
i,j}1≤i≤M1+2,1≤j≤M2+2 are represented by a vector Un =

t[Un
1 , . . . , Un

(M1+2)(M2+2)] where

Un
k = un

i,j ⇐⇒ k = (M1 + 2)(j − 1) + i.(2.5.37)

Time scheme : θ-scheme, θ ∈ [0, 1].

Un+1 − Un

∆t
= (1 − θ)BUn + θBUn+1.

The matrix B has a “block structure” (which is typical). Its computation and storage will be
done in two independant steps: a matrix Bint for the inner nodes (which represent the PDE)
and a matrix Bext for the outer nodes (which take into account the boundary conditions).
Let us start with Bint. The storage of Bint are done following the local description of the
finite differences used:

∂2

∂x2

∂2

∂x∂y

∂2

∂y2

−2 11

1

−1

−11

2

−1

−1 −2

1

1

∂

∂x

∂

∂y

1/2−1/2

1/2

−1/2



2.5. NUMERICAL COMPUTATION IN DIMENSION 2 25

The step from local numerotation to global one are done using:

k+M1+1

k−M1−3 k−M1−2 k−M1−1

k+M1+2 k+M1+3

kk−1 k+1

We are doing a loop (i,j) over the inner nodes of the mesh. We compute the correspond
number k thanks to (2.5.37). This number corresponds to the number of the line of the
matrix we compute. Non vanishing term of the matrix are hence placed and computed
thanks to the coefficients of the local grids. Sparse storage is done using special functions
of scilab1. Hence, we have computed Bint.

Now, we will add line in the matrix in order to take into account the boundary condi-
tions. Lines will be different depending on what boundary conditions we use. Let k be a
number corresponding to an outer points (ex: 9,18,27,36 and 45 on Fig. 2.7).

• Dirichlet boundary condition : Suppose that the value of u is set at the node k, then
the line k contains 1 on the diagonal and zero everywhere else.

• Neumann condition : Suppose that the value of
∂u

∂n
has to be set at this node. For

example,
∂u

∂y
= 0. Then the line k contains 1/∆y and −1/∆y at the appropriate

nodes.

Hence, we have computed a matrix Bext.
The reader can refer to Appendix A.2 where a scilab script compute the two matrices.
We give an example of the matrix which discretize the operator ∂2

∂x∂y for M1 = M2 = 2
:

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. - 1. 1. 0. - 1. 2. - 1. 0. 1. - 1. 0. 0. 0. 0. 0. 0. !

! 0. 0. - 1. 1. 0. - 1. 2. - 1. 0. 1. - 1. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. - 1. 1. 0. - 1. 2. - 1. 0. 1. - 1. 0. 0. !

! 0. 0. 0. 0. 0. 0. - 1. 1. 0. - 1. 2. - 1. 0. 1. - 1. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

1Voir le lien http://scilabsoft.inria.fr/ for the official web page.
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Only 4 lines has non nul element : it corresponds to the inner points of the domain.
Example of matrix Bext with the same data:

-->full(Bext)

ans =

! 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. - 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. - 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. - 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. - 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1. 1. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1. 0. 0. 0. 1. 0. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1. 0. 0. 0. 1. 0. !

! 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1. 1. !

The linear system can be written in a first step:

(Iint − θ∆tBint)U
n+1 = Fint,

with
Fint = (Iint + (1 − θ)∆tBint)U

n.

But written like that, there are more unknowns (number of columns = total number
of points) than equations (number of line = number of inner points where is written the
equation). We complete the system in

(Iint − θ∆tBint + Bext)U
n+1 = Fint + Fext,

where Fext contains the values of u or its derivatives that are to be set for the outer nodes.

2.5.1 European case

We are now going to compute the price of an European Put over the minimum of two
assets. Here the payoff function h(S1, S2) = (K−min(S1, S2))+. We use the scilab script in
Appendix A.2. We show in Fig. 2.8 the solution V at time T = 1 as a function of S1 and S2.
Parameters of the models has been set to r = 0.1, σ1 = σ2 = 0.2, K = 10 = S1(0) = S2(0),
rho = 0.5, T = 1.
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Figure 2.8: Value of the Put over the minimum of two assets in a 2d Black & Scholes model.
Here, parameters are r = 0.1, σi = 0.2, ρ = 0.5, K = 10 = S1(0) = S2(0) and T = 1.
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Chapter 3

Finite Elements Methods for PDE

References about Finite Element Methods: [1], [7] for the fundamentals. A good introduc-
tion: [3].

3.1 Toy model 1: Dirichlet problem

Let be f be a continuous function on (−1, 1). We are faced to three problems: to find the
solution u of each of the three following cases.

(D)





u twice differentiable such that
−u′′(x) = f(x), for any x ∈ (−1, 1),
with the boundary conditions u(−1) = u(1) = 0.

(V)





u ∈ E

(u′, v′) = (f, v), for any v ∈ E ,

(M)





u ∈ E

infv∈E F (v) = F (u),

where we have set

E = {v : (−1, 1) → R | v(−1) = v(1) = 0, v, v′ continue and piecewise continue},

and where (f, g) denotes the scalar product in L2(−1, 1) the space of squared integrable
functions on (−1, 1), i.e.

(f, g) =

∫ 1

−1
f(x)g(x) dx,

and where F (v) =

∫ 1

−1
|v(x)|2 dx −

∫ 1

−1
f(x)v(x) dx =

1

2
(v′, v′) − (f, v) for any v ∈ E .

Theorem 3.1.1 Under suitable regularity assumptions on the solution u, the problems (D),
(V) and (M) are equivalent.

29
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Proof

We can first show that (D) and (V) are equivalent. Indeed starting from (D), multiplying
the differential equation by v ∈ E and integrating by part leads to (V). Conversely, starting
from (V), if we know moreover that u is twice differentiable (in fact we can demonstrate
this : it is a regularizing property) then we can do the IPP in the other sense.

Let us now show that (M) implies (V). Let u be such that (M) holds. By definition,
the function g(ε) = F (u + εv) has a minimum in ε = 0. By calculus, g is differentiable and
g′(0) = (u′, v′) − (f, v). Hence g′(0) = 0. Conversely, let u be such that (V) hold and let
v ∈ E . We set w = v − u or v = u + w. Expanding the term F (v) = F (u + w) leads to

F (v) =
1

2
(u′, u′) + (u′, w′) +

1

2
(w′, w′) − (f, u) − (f, w)

= F (u) + (u′, w′) − (f, w) +
1

2
(w′, w′)

= F (u) +
1

2
(w′, w′)

where we have used that E is a linear space, i.e. w = v − u ∈ E and hence satisfies (V).
Finally, since (w′, w′) ≥ 0, we can conclude.

We are making now some important remarks. The problem (V) is called the variational
formulation of the differential problem (D). Getting from (V) to (D) required regularity
results about the solution and also the fact that

∫ 1

−1
(u′′ + f) v dx = 0 ∀v ∈ E implies u′′ + f = 0.

Saying it differently, it means that the space E must be “larger enough”.

Giving a variational formulation relies here on the construction of the space E . We
are no more looking after approximated values of the solution at some nodes (as we do in
Finite Difference Methods) but we search a function as an element (i.e. a point) belonging
to some functional space. It is the main feature of the Finite Element Method that we will
briefly describe hereafter.

In order to go further, we will change a bit the functional framework and give a more
general setting. Indeed, when f is no more enough regular (let say continuous), the space E
is not large enough with respect to the topology induced by the L2 norm on (−1, 1). Thus
we have to deal with its completion: an Hilbert space.

3.2 Abstract framework and discretization

Let V be a real Hilbert space whose scalar product is denoted by (·, ·) and its norm by
‖ · ‖V . Let a : V ×V → R be a blilinear symmetric continue V -elliptic form on V . It means
that the following holds:

(i) a(u, v) = a(v, u) for any u and v in V ;

(ii) a(λu + µv, w) = λa(u,w) + µa(v, w) for any λ, µ ∈ R and (u, v, w) ∈ V 3;
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(iii) There exists M > 0 such that |a(u, v)| ≤ M‖u‖V ‖v‖V for any (u, v) ∈ V 2;

(iv) There exists α > 0 such that a(u, u) ≥ α‖u‖2
V , for any u ∈ V .

We call V -ellipticity the last assumption. Let L : V → R be a continuous linear form on
V . It means that

(i) |L(v)| ≤ Λ‖v‖ for any u in V ;

(ii) L(λu + µv) = λL(u) + µL(v) for any λ, µ ∈ R and (u, v) ∈ V 2.

Following the beginning of the previous section, we set two problems

(V)





u ∈ V

a(u, v) = L(v), for any v ∈ V,

(M)





u ∈ V

infv∈V F (v) = F (u),

where F (v) =
1

2
a(v, v) − L(v) for any v ∈ V .

It is not difficult to see that we recover the previous section’s framework by setting
V = H1

0 (−1, 1) = {v, v′ ∈ L2(−1, 1), v(−1) = v(1) = 0} and a(u, v) =
∫ 1
−1 u′(x)v′(x) dx. In

this case the V -ellipticity on a relies on the Poincaré Lemma.
We have the following result whose proof relies deeply on the Hilbert structure of the

functional space V (Lax-Milgram Theorem):

Theorem 3.2.1 Problems (V) and (M) are equivalent and there exists an unique solution
u for these two problems. Moreover, we have

‖u‖V ≤
Λ

α
.

Let now discretize the problem (V). Let h > 0 and let Vh be a finite dimensional
subspace of V (we say that the approximation is V -conform) such that dim(Vh) tends to
infinity when h tends to 0. To be specific, we set

Vh = span(ϕ1, . . . , ϕM ).

The problem (V) is replaced by

(Vh)





uh =
∑M

i=1 uiϕi

a(uh, ϕj) = L(ϕj), for any j ∈ {1, . . . , M}.

It gives a linear system
AU = b,

where A = [a(ϕi, ϕj)], U = t[u1, . . . , uM ] and b = t[L(ϕ1), . . . , L(ϕM )]. Then we have easily
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Theorem 3.2.2 A is positive definite. There exists an unique solution uh ∈ Vh and

‖uh‖V ≤
Λ

α
.

This is a stability result. Hence, a Finite Element Method is stable in this case as soon as
soon the continuous problem is elliptic. Note that it is not necessarly the case for Finite
Different Methods.

We study now the error between u and uh. Indeed, we have

Theorem 3.2.3 For any vh ∈ Vh, we have

‖u − uh‖V ≤
M

α
‖u − vh‖V .

Proof
First, since a is in the two formulation (V) and (Vh), we have by substraction:

a(u − uh, vh) = 0 for any vh ∈ Vh.

We can do that because the approximation is V -conform (vh ∈ Vh ⊂ V ). We see that u−uh

is orthogonal to Vh with respect to the scalar product a.
Now, the result relies on the relation a(u− uh, u− uh) = a(u− uh, u− vh + vh − uh) =

a(u − uh, u − vh) since vh − wh ∈ Vh. We conclude by continuity of a (assertion (iii)) and
V -ellipticity (assertion (iv)).

This last result is fundamental. It says that the error ‖u − uh‖V can be controlled by
any other approximation vh of u in Vh, its interpolant for example. Something which do
not depend on the original problem but only on the space Vh and the way it “approaches”
V .

3.3 Toy model 2: Obstacle problem

As we have seen in the introduction, the problem of the valuation of an American option is
very similar with a free boundary problem for the associated Black & Scholes PDE. Indeed,
the domain R

+ × (0, T ) can be separated in two region, the first where one should exercise
the option and the case where one should hold the option. Nevertheless, any frontier
cannot be chosen. In fact, we can show that at each time t there exists an unique asset
price, called the optimal exercise price which divide R

+ (i.e. the S-axis) into these two
regions. Moreover, V (S, t) must be greater than the payoff function otherwise arbitrage
possibilities can occur.

In the case of the American put option, one can show that at each time t, we must
divide the S axis into two regions: one where one should exercise and

V = K − S,
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV < 0,

(since r > 0) and the other where V (S, t) satisfies locally the Black & Scholes PDE

V > K − S,
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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We will discuss in this section about a canonical version of this problem: the obstacle
problem. The main simplifications are that the problem will be time independant and
the PDE will be reduced to the second derivative in space. We will see that this can be
written in another form: a variational inequality. We will see that this new formulation
is particularly well suited for the Finite Element method. The reason for this is that such
a formulation eliminates the explicit dependance of the solution with respect to the free
boundary during the solution process.

Let f be a regular enough function defined on (−1, 1) such that f
′′

< 0. We are looking
for the solution of the following problem: find u, regular enough, defined on the same
interval such that u(−1) = u(1) = 0, u ≥ f on (−1, 1) and such that u > f implies u′′ = 0.
One can write this problem as a so-called linear complementary problem,

u
′′

(u − f) = 0, −u′′ ≥ 0, u ≥ f,(3.3.1)

with the condition
u(−1) = u(1) = 0.(3.3.2)

We now give a variational formulation of (3.3.1)–(3.3.2). Let F be the set

F = {v : (−1, 1) → R | v(−1) = v(1) = 0, v ≥ f, v, v′ continue and piecewise continue}.

Then for any v ∈ F , we multiply −u′′ by v − f and integrate it over the interval (−1, 1),
we obtain

∫ 1
−1 −u′′(v − f) dx ≥ 0. Moreover, one has

∫ 1
−1 −u′′(u − f) dx = 0. Hence, by

addition and integration by part, we get
∫ 1

−1
−u′′(v − u) dx =

∫ 1

−1
u′(v′ − u′) dx ≥ 0.

The linear complementary problem implies the following variational problem (in fact, one
can show that there are equivalents): find u such that

(IV)





u ∈ F

(u′, v′ − u′) ≥ 0, for any v ∈ F .

Again, as in the previous section we will write (IV) in a more general setting:

(IV)





u ∈ K

a(u, v − u) ≥ L(v − u), for any v ∈ K,

where a and L are the same as in Section 3.2 and where K is a nonempty closed convex
subset of V .

Then we can show

Theorem 3.3.1 (Stampacchia) Under suitable assumptions on a and L (see Section
3.2), we can show that there exists an unique u solution of (IV). Moreover, u solves the
following constrained optimization problem:

inf
v∈K

F (v) = F (u),(3.3.3)

where F (v) = 1
2a(u, u) − L(v).
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Proof

We give the proof since it will give some clues about the choice of the numerical algo-
rithms used to approximate a solution of (IV).

Since L is linear continuous on V , by the Riesz theorem, we know that there exists
f ∈ V such that

L(v) = (f, v), ∀v ∈ V.

Moreover, for the same reasons, one can easily construct a linear operator A from V into
V ′ such that

a(u, v) = (Au, v) ∀u, v ∈ V.

We are looking for u ∈ K such that

(Au, v − u) ≥ (f, v − u)∀v ∈ K,

or identically such that

(ρ(f − Au) + u − u, v − u) ≤ 0 ∀v ∈ K,

where ρ > 0 will be chosen later. The last inequality is precisely the caracterization of u
as the orthogonal projection of ρ(f − Au) + u on K, it means with obvious notation

u = PK(ρ(f − Au) + u).

The solution u seems to be a fixed point of φ(v) = PK(ρ(f − Av) + v). We show now that
we can choose a parameter ρ > 0 such that the application φ : V → V is contractante.
Indeed, we can write for any v, w ∈ V :

‖φ(v) − φ(w)‖2
V = ‖PK(ρ(f − Av) + v) − PK(ρ(f − Aw) + w)‖2

V

≤ ‖ρA(w − v) + v − w)‖2
V

= ρ2(A(v − w), v − w) − 2ρ(A(v − w, v − w) + ‖v − w‖2
V

≤ Mρ2‖v − w‖2
V − 2ρα‖v − w‖2

V + ‖v − w‖2
V

= ‖v − w‖2
V

(
Mρ2 − 2αρ + 1

)
,

where we have used the symmetry of a in the third line and the assumption of continuity
and V -ellipticity in the fourth line. Now it is possible to find ρ = α/M > 0 e.g. such that
φ is V -contractante.

The last result can justify the use of Projected Gradient Method applied to the opti-
mization (3.3.3) (See subsection 3.4.2).

3.4 Numerical implementation of options in dimension 1

Two numerical experiments about options are introduced in this section. There are written
as problems. We can find in Appendix C, scilab scripts which compute options prices in
dimension 1 using some examples of finite element methods.
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3.4.1 The European case

We recall that the price u(x, t) of an European Put is obtained by resolving the following
PDE:

(
∂u

∂t
−

1

2
σ2x2 ∂2u

∂x2
− r(t)x

∂u

∂x
+ r(t)u

)
(t, x) = 0, (t, x) ∈]0, T ] × R

+,(3.4.4)

with the initial condition

u(0, x) = max(K − x, 0), x ∈ R
+.(3.4.5)

Let L > 0. We want to solve numerically (3.4.4)–(3.4.5) on the interval [0, L] by means
of a finite element method using piecewise second order polynomial functions, suitable
Dirichlet boundary conditions and an Euler scheme in time.

For any t > 0, we denote by at the following bilinear symmetric form

at(ϕ,ψ) =
1

2

∫ L

0
σ2(t, x)x2 ∂ϕ

∂x

∂ψ

∂x
dx +

∫ L

0
rϕψ dx,

and by bt the bilinear form

bt(ϕ,ψ) =

∫ L

0

(
σ(t, x)

∂σ

∂x
(t, x)x2 + σ2(t, x)x − rx

)
∂ϕ

∂x
ψ dx.

Let M an integer. We set M + 1 points on [0, L] : 0 = x0 < x1 < . . . < xM = L. We
set hi = xi+1 − xi, h = maxhi, and

Vh = {v continuous on [0, L], v(L) = 0, ∀i, v|[xi,xi+1] piecewise parabolic}.

Let also N an integer, we set ∆t = T/(N + 1) et tk = k∆t.
1. a) Show that if v ∈ Vh, v|[xi,xi+1] can be found by its values at the points xi, xi+ 1

2

, xi+1

where xi+ 1

2

= (xi + xi+1)/2.

1. b) Give the expressions of the second order polynomial functions {fi, i = 1, 2, 3} on
the interval (0, 1) such that fi(αj) = δi,j where αj = 0, 1/2, 1, i.e. fi(αj) = 0 if i 6= j et 1
otherwise.
1. c) Show that Vh is a finite dimensional linear space whose dimension is 2M . Show a
basis {ϕi}i=1,...,2M for Vh.
2. a) We want to approximate u at time tk by a function uk

h ∈ Vh. We denote by
{uk

i }i=1,...,2M the composants of uk
h in the basis {ϕi} and Uk the column-wise associated

vector.
Write an implicit Euler scheme for (3.4.4) and its variational formulation in Vh.

2. b) Write a fully discretization of (3.4.4) by means of finite elements such as

Ak+1U
k+1 = MUk, 0 ≤ k ≤ N,

where Ak+1i a matrix and where M is the mass matrix (i.e. associated to the bilinear form

(ϕ,ψ) 7→
∫ L
0 ϕψ dx).

2. c) How discretize (3.4.5) by means of finite element ?



36 CHAPTER 3. FINITE ELEMENTS METHODS FOR PDE

3.4.2 The American case : projected Gradient method

We consider the solution (t, x) 7→ u(t, x) of the problem




∂u

∂t
−

σ2(t, x)

2
x2 ∂2u

∂x2
− r(t)x

∂u

∂x
+ r(t)u ≥ 0,

u(t, x) ≥ (K − x)+,

(
∂u

∂t
−

σ2(t, x)

2
x2 ∂2u

∂x2
− r(t)x

∂u

∂x
+ r(t)u

)
(u − (K − x)+) = 0,

(3.4.6)

for any (t, x) ∈]0, T ]×]0, L[ where L > K > 0 et T > 0.
It is well known that u(T, S0) is the price of an American put whose maturity is T > 0,

the strike price K and the spot S0.
We add the following boundary conditions:

u(0, x) = (K − x)+, x ∈]0, L[,

and
u(t, L) = 0, t ∈]0, T ].

We are given the points x0 = 0 < x1 < · · · < xM = L and we set h = max(xi+1 − xi) and

Vh = {v continuous on [0, L], v(L) = 0 et ∀i, v |[xi,xi+1] linear.}.

Finally, we set ∆t = T/(N + 1) et tk = k∆t.
1. Show that Vh is a linear space whose dimension is M and describe a nodal basis

{ϕi}1≤i≤M of Vh, i.e. the functions of Vh whose value at node i is 1 and 0 everywhere else.
2. We seek for an approximation of u at time tk by a function uk

h of Vh. Let us denote
by {Uk

i }1≤i≤M the composants of uk
h in the previous basis of Vh et Uk = t[Uk

1 , . . . , Uk
M ] the

associated R
M vector. We can write

uk
h(x) =

M∑

i=1

Uk
i ϕi(x).

Write an Euler scheme for the discretization of (3.4.6) by means of finite elements which
can be written under the matrix form





Ak+1U
k+1 + BkU

k ≥ 0, in R
M ,

Uk+1 ≥ H, in R
M ,

(Ak+1U
k+1 + BkU

k, Uk+1 − H) = 0,

U0 = H.

(3.4.7)

where U ≥ V means Ui ≥ Vi for every choice of i and where (·, ·) denotes the euclidean
scalar product scalaire in R

M . Be careful to choose a scheme in time such that Ak+1 be a
symmetric matrix (positive definite). Describe the vector H.
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3. We set K = {X ∈ R
M | X ≥ H}. Show that solving (3.4.7) is equivalent to find

Uk+1 in K such that

(−Ak+1U
k+1 − BkU

k, V − Uk+1) ≤ 0, for any V ∈ K.(3.4.8)

4. (a) Let W k+1 be the vector of R
M solution of the linear system Ak+1W

k+1 =
−BkU

k. Proove that owing to (3.4.8), Uk+1 can be interpreted as the orthogonal projection
of W k+1 on K for the scalar product associated to the matrix Ak+1. It means the product
(X, Y )A = (Ak+1X, Y ).

(b) Explain why such a projection exists.
5. Let J : R

M → R defined by J(X) = 1
2‖X − W k+1‖2

A, where we set ‖X‖A =

(Ak+1X, X)1/2. Show that J ′(X) = Ak+1(X − W k+1) and that (3.4.7) is equivalent to

{
Uk+1 ∈ K,
J(V ) ≥ J(Uk+1), ∀V ∈ K.

(3.4.9)

6. Show that there exists an unique solution to the problem (3.4.9).
7. At each time step, we want to approximate the solution of (3.4.9) by the following

scheme: a vector U0 de R
M to be chosen being given together with a positive real α > 0

to be chosen later, we set, for every n ≥ 0, Un+1 = ΠK(Un − αJ ′(Un)), where ΠK is the
orthogonal projetion in R

M on K for the canonical scalar product (·, ·).
Show that Y = ΠK(X) is such that yi = max(xi − hi, 0) + hi for any i.
8. We denote by 0 < λ1 < · · · < λM the eigenvalue of Ak+1 in the non decreasing order.
(a) Show that if α < λ1/λ2

N then the application S : X → X − αJ ′(X) is strictly
contractante. Show that this result remains true under the weaker hypothesis α < 1/λN .

(b) Show that under this last hypothesis, the series {Un} converges toward Uk+1.
9. We find Uk+1 at each time step the problem (3.4.7) with the initial data Uk by

means of the gradient algorithm given at the question 7. We set Uk+1 = Un after some
iteration of this algorithm. Is this algorithm stable whatever the choice of ∆t is made ?

3.4.3 Some numerical results

We show here some numerical results derived from the Finite Element Methods applied to
European and American options in dimension 1. Two types of finite elements were used:
“hat” functions and cubic splines. We see on Figures (3.1)–(3.2) that the Finite Element
Method based on the cubic splines (with the same size of the mesh) computes price much
better (in the sense of the implicit volatilities) than “hat functions” does.

We present just below numerical results about the convergence of the projected gradient
method for the American options using the same finite elements as in the European case
just above. In Fig. 3.3, we can the error of the “inner” iterate Un (see question 7 in
Subsection 3.4.2) as respect to n. At each time step, we can see that the line is broken.
It means that the gradient is restarted with the new updated second member. We can see
also that more iteration is needed in the cubic spline case than in the “hat” functions case.
Indeed more precision gives more information about the free frontier at each time step. It
is why we need more iteration.
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Figure 3.1: Implicit Volatility as a function of the spot in the case: (a) “hat” functions;
(b) cubic splines. European put option r = 0.1, σ = 0.2, K = 10, T = 1. In both case
M = 200 elements on (0, 20).
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Figure 3.2: Implicit Volatility as a function of the spot in the case: (a) “hat” functions;
(b) cubic splines. European put option r = 0.1, σ = 0.4, K = 10, T = 1. In both case
M = 200 elements on (0, 20).
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Figure 3.3: Error ‖Un+1 − Un‖2 with respect to n: iteration of the projected gradient
method described at question 7 in Subsection 3.4.2.
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Chapter 4

Asian options

We end these notes by an example of path-dependant exotic options: the Asian options
and try to give some clues about its numerical implementation. This problem is derived
from [2]. See also [6] for the original derivation of the equation.

Let K and T be two positive real. We are interested by the pricing of an Asian op-
tion with fixed strike K and maturity T (European contract). Hence, the payoff function
depends now on the whole trajectory of the risky asset S = (St) (6= Vanilla options):

Vt = E

(
e−r(T−t)

(
1

T

∫ T

0
St dt − K

)

+

| Ft

)
,(4.0.1)

where Ft denotes the filtration of B = (Bt).
We set for any t ≥, S̄t = 1

t

∫ t
0 Ss ds. The same techniques which has allowed us to

derive the Black & Scholes PDE in the first Chapter show here that Vt = v(t, St, S̄t) where
v = v(t, x, y) satisfies the PDE:

∂v

∂t
+ rx

∂v

∂x
+

σ2x2

2

∂2v

∂x2
+

(
x − y

t

)
∂v

∂y
− rv = 0, (x, y) ∈ R

∗
+, t ∈ [0, T [,(4.0.2)

with the terminal condition:

v(T, x, y) = (y − K)+, x > 0, y > 0.(4.0.3)

1. We set for any t ∈ [0, T ] and x, y > 0,

z =
K − yt/T

x
, and f(t, z) =

1

x
v(t, x, y).

Show that f is the solution of the following PDE:

∂f

∂t
+

σ2z2

2

∂2f

∂z2
−

(
1

T
+ rz

)
∂f

∂z
= 0, z ∈ R,(4.0.4)

with the terminal condition:

f(T, z) = z− = max(0,−z).(4.0.5)
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Figure 4.1: Domaine de calcul

3. (a) We set now g(t, x) = f(t, x − t/T ). Show that g satisfies the following PDE:

∂g

∂t
+

σ2

2

(
x −

t

T

)2 ∂2g

∂x2
− r

(
x −

t

T

)
∂g

∂x
= 0, x ∈ R, t ∈ [0, T [,(4.0.6)

with the terminal condition:
g(T, x) = (1 − x)+.(4.0.7)

3. (b) Let f̃ the solution of (4.0.4) obtained with the terminal data f̃(T, z) = −z. Show
that

f̃(t, z) =
1

rT

(
1 − e−r(T−t)

)
− z e−r(T−t).

Deduce from this that for any x ≤ t/T , we have

g(t, x) =
1

rT

(
1 − e−r(T−t)

)
−

(
x −

t

T

)
e−r(T−t).(4.0.8)

4. We remark that (4.0.6) is equivalent to

∂g

∂t
+

σ2

2

∂

∂x

((
x −

t

T

)2 ∂g

∂x

)
− (r + σ2)

(
x −

t

T

)
∂g

∂x
= 0, x ∈ R, t ∈ [0, T [,(4.0.9)

Let N ≥ 1 an integer and ∆t = 1/N . We discretize (4.0.9) by means of a Crank–
Nicolson scheme with uniform time step ∆t. As regard the space, we want to exploit the
fact that we know the solution at the left of the line x = t/T (cf (4.0.9). Therefore, we
discretize (0, L) as shown in Figure 4.1 and we set ∆x = 1/N in order to numerically
capture the line x = t/T . We complete between 1 and L by adding J intervals in order to
have L = (N + J)∆x.

We set xi = i∆x for 1 ≤ i ≤ N + J et xi±1/2 = (i ± 1/2)∆x.
What are the order of approximation of the following finite differences ?
(a)

1

∆x

{(
xi+1/2 − t/T

)2 g(t, xi+1) − g(t, xi)

∆x
−

(
xi−1/2 − t/T

)2 g(t, xi) − g(t, xi−1)

∆x

}

for
∂

∂x

(
(x − t/T )2

∂g

∂x

)
(t, xi) and

(b)
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1

2

{(
xi+1/2 − t/T

) g(t, xi+1) − g(t, xi)

∆x
+

(
xi−1/2 − t/T

) g(t, xi) − g(t, xi−1)

∆x

}

for (x − t/T )
∂g

∂x
(t, xi) ?

5. We choose Dircihlet boundary conditions on the frontier x = t/T and Neumann type
boundary conditions on x = L compatible with the terminal data. Give a second order
approximation of the Neumann boundary condition on x = L for (4.0.7)–(4.0.9).
6. Derive the following matrix formulation

(I + ∆tBk)G
k+1 = (I − ∆tB̃k)G

k, 0 ≤ k ≤ N,

where Gk is the vector whose composants are g(tk, xi).

Give details about the matrices Bk and B̃k (in particular their sizes).
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Appendix A : Some useful Scilab
scripts (volimp.sci file)

function [y]=myerf(x)

y=0.5*(1+erf(x/sqrt(2)));

endfunction

////////////////////////////////////////

// Put BS closed form : scalar version

////////////////////////////////////////

function [p,p_sig]=BSPut_s(x,K,r,sig,theta) // scalar definition

if (theta<=%eps) then

p=max(K-x,0);

p_sig=0;

else

d1=(log(x/K)+(r+sig^2/2)*theta)/(sig*sqrt(theta));

d2=d1-sig*sqrt(theta);

p=K*exp(-r*theta)*myerf(-d2) - x(~(x==0)).*myerf(-d1) // Prix Put

p_sig=x*exp(-d1^2/2)*((r+sig^2/2)*theta-log(x/K)) ... // Drive Put/Vol

- K*exp(-r*theta-d2^2/2)*((r-sig^2/2)*theta-log(x/K))

p_sig=p_sig/(sqrt(2*%pi*theta)*sig^2)

end

/////////////////////////////////////////////

// Put BS closed form : vectorized version

/////////////////////////////////////////////

function [p,p_sig]=BSPut_v(x,K,r,sig,theta) // vectorized def

// x Vecteur des spots

// sigma vecteur des vol

// p en sortie : vecteur des prix de Puts

sig=abs(sig);

p=zeros(x);

p_sig=zeros(x);

un=ones(x);

zer=zeros(x);

if (theta<=%eps) then
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p = max( K - x, 0)

else

p(x==0) = K*exp(-r*theta)*un(x==0); // Cas x==0

p_sig(x==0) = zer(x==0);

p(sig==0) = max(K*exp(-r*theta) - x(sig==0),0); // Cas sig=0

p_sig(sig==0) = zer(sig==0);

reste=~(x==0 | sig==0);

signo=sig(reste);

xno=x(reste);

d1=(log(xno/K)+(r+signo.^2/2)*theta)./(signo*sqrt(theta));

d2=d1-signo*sqrt(theta);

p(reste)=K*exp(-r*theta)*myerf(-d2) - xno.*myerf(-d1) // Put Price

p_sig(reste)=xno.*exp(-d1^2/2).*((r+signo.^2/2)*theta-log(xno/K)) ... // Put Delta

- K*exp(-r*theta-d2^2/2).*((r-signo.^2/2)*theta-log(xno/K))

p_sig(reste)=p_sig(reste)./(sqrt(2*%pi*theta)*signo.^2)

end

endfunction

//////////////////////////////////////////

// Implicit volatility from Put prices

//////////////////////////////////////////

function [s,y,ind,iternwt,err]=volimpP_v(x,K,r,sig0,theta,Put,tol)

// x vecteur des spots

// sig0 vecteur des vol initiales du Newton

// Put vecteur des prix de Put

// Mme taille pour les trois ( + tous vecteurs lignes) !

sig=abs(sig0);

sig1=zeros(sig0);

err=ones(x);

imxnwt=100;

stop=(norm(err)<=tol);

iternwt=1;

while (iternwt<=imxnwt)&(~stop)

[p,p_sig]=BSPut_v(x,K,r,sig,theta);

tronc=(abs(p_sig)<=tol);

err(~tronc)=abs(p(~tronc)-Put(~tronc));
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sig(~tronc) = sig(~tronc) - (p(~tronc) - Put(~tronc))./p_sig(~tronc);

stop=(norm(err(~tronc))<=tol)

iternwt=iternwt + 1;

end

s=sig(~tronc)

y=x(~tronc)

ind=~tronc

endfunction
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Appendix B : Scilab scripts for
Finite Difference methods for
pricing

B.1. European and American, dimension 1

////////////////////////////////////////////////////

// CIMPA HANOI 23/04/2007 - 4/05/2007

// Finite Difference Method for American options

////////////////////////////////////////////////////

clear;

/////////////////////////////

// MODEL PARAMETER (BS)

/////////////////////////////

r=0.1;

sigma=0.2;

////////////////////////////////////////

// OPTION PARAMETER

////////////////////////////////////////

// Cf. Option Pricing, Wilmott et al, p. 335

T=1;

K=10;

deff(’[payoff]=h(x)’,[’payoff=max(K-x,0)’]);

// Spatial discretization

M=200;

L=2*K;

Deltax=L/(M+1);

// Time discretization

N=100;

Deltat=T/N;

theta=0.5;

imxtmp=N;

// Centrage, dcentrage des drives d’ordre 1 en x

centrex=%T;

// Conditions aux bords
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D = spzeros(M+2,M+2); // Dirichlet

N = spzeros(M+2,M+2); // Neumann

D(1,1) = 1.0; // Dirichlet Boundary Conditions at x=0

N(M+2,M+2) = 1.5; // Neumann 2nd order at x=L

N(M+2,M+1) = -2.0;

N(M+2,M) = 0.5;

//N(M+2,M+2) = 1.0; // Neumann 1st order

//N(M+2,M+1) = -1.0;

//D(M+2,M+2) = 1.0; // D. B. C. at x=L

////////////////////////////

// DO NOT EDIT BELOW

////////////////////////////

// Elementary matrices

x=linspace(0,L,M+2);

xint=x(2:M+1);

// Sparse definition of the elementary matrices

Lx = spzeros(M+2,M+2);

Gd = spzeros(M+2,M+2);

Gc = spzeros(M+2,M+2);

auxLx = -2.0/Deltax^2*speye(M+2,M+2) + ...

1.0/Deltax^2*diag(sparse(ones(M+1,1)),1) + ...

1.0/Deltax^2*diag(sparse(ones(M+1,1)),-1);

auxGd = 1.0/Deltax*diag(sparse(ones(M+1,1)),1) - ...

1.0/Deltax*speye(M+2,M+2);

auxGc = 0.5/Deltax*diag(sparse(ones(M+1,1)),1) - ...

0.5/Deltax*diag(sparse(ones(M+1,1)),-1);

Lx = [ zeros(1,M+2) ; auxLx(2:M+1,:) ; zeros(1,M+2)];

Gd = [ zeros(1,M+2) ; auxGd(2:M+1,:) ; zeros(1,M+2)];

Gc = [ zeros(1,M+2) ; auxGc(2:M+1,:) ; zeros(1,M+2)];

Bext = D + N;

Idint = speye(M+2,M+2) - spones(diag(spones(diag(Bext))));

Bint = 0.5*sigma^2*diag(sparse(x.*x))*Lx - r*Idint;

if centrex==%F then

Bint = Bint + r*diag(sparse(x))*Gd;

else

Bint = Bint + r*diag(sparse(x))*Gc;

end;

// Matrix to be inversed

A = Idint - theta*Deltat*Bint + Bext;

[hh,rk]=lufact(A);

[P,L,UU,Q]=luget(hh);

// Donne initiale
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U0=h(x)’;

// Cash-or-Nothing Call

//U0=1*(x>K)’;

/////////////////////

// Time iterates

/////////////////////

itertmp=1;

U=U0; // European price

V=U0; // american price

while itertmp<=imxtmp

// Second member updated at each time iteration (European case)

Fint = Idint*U + (1 - theta)*Deltat*Bint*U;

Fext = zeros(M+2,1);

Fext(1) = K*exp(-r*Deltat*itertmp);

// European price

U=lusolve(hh,Fint + Fext);

// Second member updated at each time iteration (American case)

Fint_am = Idint*V + (1 - theta)*Deltat*Bint*V;

Fext_am = zeros(M+2,1);

Fext_am(1) = U0(1);

Fext_am(M+2) = U0(M+2);

// Projected LU : American price

V = P’*(Fint_am + Fext_am);

PU0 = P’*U0;

V = L\V;

for i=M+2:-1:1,

V(i) = max(PU0(i),V(i) - sum(UU(i,i+1:M+2)’.*V(i+1:M+2)));

end

V = Q’*V;

xbasc();

//plot2d(xx,v,leg="Iter="+string(itertmp*Dt),rect=[a,ymin,b,ymax])

plot2d(x,[V,U,U0],leg="Iter="+string(itertmp*Deltat))

itertmp = itertmp + 1;

end

A.2. European dimension 2

////////////////////////////////////////////////////////

// CIMPA HANOI 23/04/2007 - 4/05/2007

// Finite Difference Method for 2D European options

//

// Ex : Put on the minimum of two assets

////////////////////////////////////////////////////////

clear
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L1=20;

L2=20;

M1=50;

M2=50;

centrex=%T;

centrey=%T;

///////////////////////////////////////////

// Loading of the elementary DF matrices

///////////////////////////////////////////

load(’BS2d_assemb_DF_centrex’ + string(centrex) + ...

’_centrey’ + string(centrey) + ...

’_L1-’ + string(L1) + ...

’_L2-’ + string(L2) + ...

’_Mx’+string(M1) + ...

’_My’+string(M2) + ’.save’);

/////////////////////////

// BS MODEL PARAMETER

/////////////////////////

s1 = 0.2;

s2 = 0.2;

mu1 = 0.;

mu2 = 0.;

rho = 0.5;

r = 0.1;

///////////////////////////

// OPTION PARAMETER

///////////////////////////

T=1;

K=10;

deff(’[payoff]=h(x,y)’,[’payoff=max(K - min(x,y),0)’]);

////////////////////////////

// MATRICES

////////////////////////////

wLx=matrix(x’*ones(1,M2+2), (M1+2)*(M2+2),1)^2*s1^2/2;

wMxy=matrix(x’*y, (M1+2)*(M2+2),1)*rho*s1*s2;

wLy=matrix(ones(M1+2,1)*y, (M1+2)*(M2+2),1)^2*s2^2/2;

wGx=r*matrix(x’*ones(1,M2+2),(M1+2)*(M2+2),1);

wGy=r*matrix(ones(M1+2,1)*y, (M1+2)*(M2+2),1);

// BOUNDARY CONDITIONS

D = spzeros((M1+2)*(M2+2),(M1+2)*(M2+2)); // Dirichlet

N = spzeros((M1+2)*(M2+2),(M1+2)*(M2+2)); // Neumann

Fext=zeros((M1+2)*(M2+2),1);

i=M1+2;

for j=2:M2+1 // x = L1

k=i+(j-1)*(M1+2);

N(k,k) = 1.5;
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N(k,k-1) = -2.0;

N(k,k-2) = 0.5;

end

i=1; // x = 0

for j=1:M2+2

k=i+(j-1)*(M1+2);

D(k,k) = 1.0;

end

j=M2+2; // y = L2

for i=2:M1+1

k=i+(j-1)*(M1+2);

N(k,k) = 1.5;

N(k,k-M1-2) = -2.0;

N(k,k-2*M1-4) = 0.5;

end

j=1; // y = 0

for i=2:M1+2

k=i+(j-1)*(M1+2);

D(k,k) = 1.0;

end

Bext = D + N;

// MATRICES OF THE BS OPERATOR

Idint=speye((M1+2)*(M2+2),(M1+2)*(M2+2)) - spones(diag(spones(diag(Bext))));

Bint=diag(sparse(wLx))*Lx + diag(sparse(wLy))*Ly ...

+ diag(sparse(wMxy))*Mxy + diag(sparse(wGx))*Gx ...

+ diag(sparse(wGy))*Gy ...

- r*Idint;

///////////////////////////

// TIME ITERATIONS

///////////////////////////

N=100

Deltat=T/N;

theta=0.5;

imxtmp=100;

// Matrix to be inversed

A = Idint - theta*Deltat*Bint + Bext;

[hh,rk]=lufact(A);

// Initial data

U0=matrix(h(x’*ones(1,M2+2),ones(M1+2,1)*y),(M1+2)*(M2+2),1);

itertmp=1;

U=U0;
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while itertmp<=imxtmp

Fint=Idint*U + (1-theta)*Deltat*Bint*U;

Fext(1+(0:M2+1)*(M1+2)) = K*exp(-r*Deltat*itertmp); // Non homogeneous Dirichlet at x=0

Fext(1:M1+2) = K*exp(-r*Deltat*itertmp); // Non homogeneous Dirichlet at y=O

U=lusolve(hh,Fint+Fext);

itertmp=itertmp+1;

end

// Plotting of the solution

m=228;

n= fix(3/8*m);

rr=[(1:n)’/n; ones(m-n,1)];

g=[zeros(n,1); (1:n)’/n; ones(m-2*n,1)];

b=[zeros(2*n,1); (1:m-2*n)’/(m-2*n)];

hhh=[rr g b];

xset("colormap",hhh)

v=matrix(U,M1+2,M2+2);

xbasc(); plot3d1(x,y,v);



Appendix C : Scilab scripts for
FEM methods (dimension 1)

Script for the elementary matrices computations (case of the
cubic splines functions)

clear;

a=0;

b=20;

M=199; // Spatial discretization

nbbase=4

function [y]=base(i,x)

select i,

case 1 then y=x.^3/6.0;

case 2 then y=-x.^3/2.0 + 0.5*x.^2 + 0.5*x + 1.0/6.

case 3 then y=0.5*x.^3 - x.^2 + 2.0/3.

case 4 then y=-x.^3/6.0 + 0.5*x.^2 - 0.5*x + 1.0/6.

end

endfunction

function [y]=dbase(i,x)

select i,

case 1 then y=0.5*x.^2

case 2 then y=-1.5*x.^2 + x + 0.5

case 3 then y=1.5*x.^2 - 2*x

case 4 then y=-0.5*x.^2 + x - 0.5

end

endfunction

//////////////////////////////////////////////////////////////////////////////

// Integration points of Gauss-Legendre on (0,1)

// n=5 --> compute exactly integrals of polynomial whose degree <= 2*n-1 = 9

//////////////////////////////////////////////////////////////////////////////

glx=[0.5-1./42*sqrt(245+14*sqrt(70)),...

0.5-1./42*sqrt(245-14*sqrt(70)),...

0.5,...

0.5+1./42*sqrt(245-14*sqrt(70)),...

0.5+1./42*sqrt(245+14*sqrt(70))];
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glp=[161/900-13/1800*sqrt(70),...

161/900+13/1800*sqrt(70),...

64./225,...

161/900+13/1800*sqrt(70),...

161/900-13/1800*sqrt(70)];

x=linspace(a,b,M+2);

A=spzeros(M+2,M+2); // Mass matrix

L=spzeros(M+2,M+2); // BS Laplacian matrix

G=spzeros(M+2,M+2); // BS Gradient matrix

// Assemblage of A, L and G

for k=1:M+1 // M+1 elements in the mesh !

ja = x(k+1)-x(k);

for i=1:nbbase

is = k - i + 3;

if (is<=M+2) & (is>=1) then

for j=1:nbbase

js = k - j + 3;

if (js>=1) & (js<=M+2) then

A(is,js) = A(is,js) + ja*glp*( base(i,glx).*base(j,glx) )’;

L(is,js) = L(is,js) + glp*(((x(k)*(1-glx)+x(k+1)*glx).^2).*dbase(i,glx).*dbase(j,glx))’/ja;

G(is,js) = G(is,js) + glp*((x(k)*(1-glx)+x(k+1)*glx).*base(i,glx).*dbase(j,glx))’;

end

end

end

end

end

save(’BS1d_assemb_s3_’+string(a)+’-’+string(b)+’_M’+string(M)+’.save’,a,b,M,x,glx,glp,A,L,G);

Script for the option valuation using FEM

///////////////////////////////////////////////////

// CIMPA HANOI 23/04/2007 - 4/05/2007

// Finite Element Method for American options

////////////////////////////////////////////////////

clear

//////////////////////////////////////

// SPATIAL DISCRETIZATION

//////////////////////////////////////

M = 199; // Number of element - 1

load(’BS1d_assemb_s3_0-20_M’+string(M)+’.save’)

nbbase = 4;
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//ymin=-1;

//ymax=3;

////////////////////////////////////////

// OPTION PARAMETER

////////////////////////////////////////

r=0.1;

sig=0.2;

Maturity=1.0;

strike=10;

deff(’[payoff]=h(x)’,[’payoff=max(strike-x,0)’]);

///////////////////////////////////

// TIME DISCRETIZATION

///////////////////////////////////

T=Maturity;

N=100;

Dt=T/N;

imxtmp=100;

// Algorithme gnral

xx=linspace(a,b,M+2);

tt=linspace(0,imxtmp*Dt,imxtmp+1);

///////////////////

// INITIAL DATA

///////////////////

rough = %T;

select rough

case %T, // Rough intial data

u0 = h(xx)’;

case %F, // Regular initial data

u0 = BSPut_v(x,strike,r,sig*ones(x),Dt)’;

imxtmp = imxtmp - 1;

end

// Interpolation in the S3 space

Interp = 2./3.*speye(M+2,M+2) + ...

1./6.*diag(sparse(ones(M+1,1)),1) + ...

1./6.*diag(sparse(ones(M+1,1)),-1);

u0 = Interp\u0;

// Matrix to be inversed at each time step (European case)

DF = (1 + 0.5*r*Dt)*A + 0.25*Dt*sig^2*L + 0.5*Dt*(sig^2 - r)*G;

// Matrix used in the projected gradient method (American case)

DFsym = (1 + 0.5*r*Dt)*A + 0.25*Dt*sig^2*L;

////////////////////////////////////////////////////////

// TIME ITERATES (Crank-Nicolson scheme)

////////////////////////////////////////////////////////

v=u0;

amer=u0;

// Projected Gradient Parameters



58 CHAPTER 4. ASIAN OPTIONS

tolam=1e-5;

eigen=spec(full(DFsym));

//rho= 1/max(eigen);

rho=1/1.6121822;

iterammax=100;

iterglob = 1;

for itertmp=1:imxtmp

// Solve for v = u^{n+1/2} (Dt --> Dt/2)

u = v;

F = A*u;

v = DF\F;

v = 2*v - u; // u^{n+1} = 2*u{n+1/2} - u^{n}

// Projected Gradient Method for the American Price

iteram = 1;

Famer = A*amer - 0.5*Dt*(sig^2 - r)*G*amer;

amerold = amer;

err = 1;

while (iteram<=iterammax & err>tolam),

amernew = amerold - 2*rho*(DFsym*amerold - Famer);

amernew = max(amernew,u0);

err = norm(amernew - amerold);

errglob(iterglob) = err;

iteram = iteram + 1;

iterglob = iterglob + 1;

amerold = amernew;

end

amer = 2*amernew - amer;

xbasc();

//plot2d(xx,v,leg="Iter="+string(itertmp*Dt),rect=[a,ymin,b,ymax])

plot2d(xx,[Interp*amer,Interp*v,h(xx)’],leg="Iter="+string(itertmp*Dt));

end
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