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Chapter 1

Brownian motion and heat equation

One of the first idea of continuous-time stochastic model go back to a botanist Robert Brown in
1827 when he discribed random movements of particles supended in a fluid. This explains the
name Brownian motion given to the stochastic process that is the subject of this first lecture.
In fact the first who have studied the Brownian Motion with a mathematical point of vue was
probably Louis Bachelier in his famous thesis on the modelisation of the stock prices, defended
in Paris in 1900. And many other well known scientists have contributed to the theory among
them A. Einstein (1905), N. Wiener (1923), A. Kolmogorov (1933), P. Levy (1939) and K. Ito
(1948). Brownan motions are also named Wiener Processes.

1.1 Brownian motion : definition and main properties

To model the dynamic of stock prices the idea is to consider the trajectory not as the trajectory
of a deterministic dynamic but as one trajectories among a (possibly infinite) set of trajectories
that could be realized, and to put on this set a probability measure. More precisely, a stochastic
process is a map T → L0(Ω,F , P) from a time set T (for continuous time process T = R+) to the
space of bounded mesurable functions for a probability space (Ω,F , P) to R. For a fixed t ∈ T,
ω 7→ Xt(ω) is a random variable on Ω and for a fixed ω, t 7→ Xt(ω) is a trajectory of the process.

Definition: A stochastic process is a (standard, one dimentional) Brownian motion Bt :
R+ × Ω → R if

1. B0 = 0

2. For all 0 ≤ s < t, Bt − Bs has a gaussian distribution N (0,
√

t − s)

3. For all 0 < t1 < t2 < . . . < tn, the random variables {Bti+1 − Bti , i = 0, . . . , n − 1} are
independant

4. Bt has continuous trajectories.
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6 CHAPTER 1. BROWNIAN MOTION AND HEAT EQUATION

The main properties of the Brownian motion (BM) are :

1. Symetry property : if (Bt) est un BM then (−Bt) is also a BM.

2. Scale property : if (Bt) is a BM than for all c > 0, the process 1
c (Bc2t) is also a BM.

3. Translation property : if (Bt) is a BM than for all h, (Bt+h) − (Bh) is a BM.

4. Reversal property : if (Bt) is a BM on [0, T ] than (BT ) − (BT−t) is also a BM on [0, T ].

5. Behaviour at infinity : if (Bt) is a BM than (tB1/t) is a BM and a.s. : Bt
t → 0.

Despite the fact that the trajectories of a Brownian motion are continuous by definition, they
are a.s. nowhere differentiable. And we have also the two following caracteristics. First, if
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = t is a subdivision σ of the interval [0, t], than the total variation,
defined by

Vt(ω) := sup
σ

∑

i

|Bti+1(ω) − Bti(ω)|

satisfy Vt(ω) = +∞ a.s. Second, if σn is a sequence of partitions of [0, t] such that limn→∞ ‖σn‖ :=
supi |ti+1 − ti| = 0, than

lim
n→∞

∑

i

|Bti+1(ω) − Bti(ω)|2 = t.

1.2 Heat equation and Brownian motion

As for all t > 0 the probability distribution of Bt is N (0,
√

t), than it is easy to compute the
expectation :

E(Bt) =
1√
2πt

∫

R
ye−

y2

2t dy =
∫

R
yg(t, y)dy

where g(t, y) = 1√
2πt

e−
y2

2t is the gaussian pdf. But as the function g(t, x) satisfies the Heat
equation (easy to check by direct computations) :

∂u

∂t
=

1
2

∂2u

∂x2
(1.1)

we have the following proposition (also easy to check by direct computations) :

0

0.1

0.2

0.3

0.4

0.5
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x

Proposition 1.1 Let f : R → R be a bounded continuous function and let u(t, x) := Ef(x+Bt)
than, for all t > 0, u(t, x) is C∞ and satisfies the equation (1.1) with u(0, x) = f(x).
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1.3 Geometric Brownian motion

The model introduced by Bachelier in 1900 for the stock prices is what we call now the Brownian
motion with drift, just replacing the low of the increments N (0,

√
t − s) by N (µ, σ

√
t − s). One

of the drowback of this model is that the prices can become negative. The work of Bachelier was
overlocked by scientists during more than sixty years and one has had to wait until the Nobel
Price Samuelson to overcome this difficulty. Since Samuelson the usual model of stock prices is
no longer a Brownian motion with drift but a geometric Brownian motion.

Definition: Let (Bt) a Brownian motion and let µ and σ two real numbers. The stochastic
process

Xt := µt + σBt

is called a Brownian motion with drift. One has E(Xt) = µt and V ar(Xt) = σ2t.

It is not difficult to generalize to Xt the previous proposition : for u(t, x) = Ef(t, x + Xt) =
Ef(t, x + µt + σBt), the Heat equation (1.1) has to be replace by the equation

∂u

∂t
=

σ2

2
∂2u

∂x2
+ µ

∂u

∂x
(1.2)

with still the initiale condition u(0, x) = f(x).
To go from the Brownian motion with drift to the geometric Brownian motion, the idea of

Samuelson was to consider the dynamic of the returns (or relative increments
Sti+1−Sti

Sti
) instead

of the dynamic of the prices themself. And more precisely he decided to measure the returns
between two dates by the difference of the logarithm of the prices ln

Sti+1

Sti
.

Definition: A process (Yt) is a geometric Brownian motion with parameters µ and σ if the
process lnYt is a Brownian motion with drift, namely (for standard geometric Brownian motion)
if Y0 = 1 and if

lnYt = (µ − σ2

2
)t + σBt or Yt = exp

(
(µ − σ2

2
)t + σBt

)
.

It is easy to show that E(Yt) = eµt and E(Y 2
t ) = e(2µ+σ2)t.

Theorem 1.2 Let f : R → R be a continous bounded fonction and let v(t, y) = Ef(yYt), where
Yt is a geometric Brownian motion with parameter µ et σ. Than v(t, y) satisfy v(0, y) = f(y)
and the equation

∂v

∂t
=

1
2
σ2y2 ∂2v

∂y2
+ µy

∂v

∂y
. (1.3)

Stochastic process PDE PDE’s solution

Bt

{
∂u
∂t = 1

2
∂2u
∂x2

u(0, x) = f(x)
u(t, x) = Ef(x + Bt)

Brownian motion Heat equation

Xt = µt + σBt

{
∂u
∂t = 1

2σ2 ∂2u
∂x2 + µ∂u

∂x
u(0, x) = f(x)

u(t, x) = Ef(x + Xt)

Brownian with drift

Yt = exp((µ − σ2/2)t + σBt)

{
∂v
∂t = 1

2σ2y2 ∂2v
∂y2 + µy ∂v

∂y

v(0, y) = f(y)
v(t, y) = Ef(yYt)

Geometric Brownian motion
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Chapter 2

Black-Scholes model for stock prices

We will describe now the most important continuous time model in finance, the Black-Scholes
model, and explain how one can price european Call and Put in such a model.

2.1 The model

The Black-Scholes model for a stocks price is the continuous version of the CRR discret model.
One begins with a constant interest rate, r, and an asset (St)t≥0 that will be the underlying asset
of an option (Ct)t≥0. One assume that the dynamic of St is St = S0Yt where Yt is a geometric
Brownian motion with parameters r and σ (σ is also chosen constant). Thus at time t the stock
price is

St = S0 exp

(
(r − σ2

2
)t + σBt

)
(2.1)

The reason to take the interest rate r as drift parameter of lnYt is because we want the
present value of St, denoted S̃t = e−rtSt, to be a martingale (we will explain this point later).
Now if CT = ϕ(ST ) is the payoff of a european option (for example, ϕ(ST = (ST − K)+ for
a Call option) written on St, than the fundamental formula of option pricing is given by the
following theorem :

Theorem 2.1 In a Black-Scholes model (2.1) for St with constant interest rate r, the price Ct

at time t of an european option (T, ϕ(ST )) is given by

Ct = e−r(T−t)E(ϕ(ST )/Ft). (2.2)

For the moment, we will not prove this theorem. We will come back later on it to explain
why the price is indeed, as in the discret case, equal to this expectation. Now we will only see
how to compute this price in the cas St follows such a model.

2.2 The PDE

To derive the Black-Scholes PDE, we will first transform the expectation of the theorem 2.1.
Assume that at t = 0, St = y. The value of the option at time t and knowing that St = y is

C(t, y) = e−r(T−t)Eϕ(
yST−t

S0
).

Indeed ST = S0exp(rT +σBT ) = S0exp(rt+σBt)exp(r(T − t)+σ(BT −Bt)) = yexp(r(T − t)+
σ(BT −Bt)), and, as BT −Bt has the same low as BT−t according to the definition of Brownian
motion, ST can be replace in the expectation by yST−t

S0
.

9



10 CHAPTER 2. BLACK-SCHOLES MODEL FOR STOCK PRICES

Now let τ = T − t. Using the fact that ySτ

S0
is a geometric Brownian motion and the theorem

1.2, v(τ, y) := erτC(τ, y) = E(ϕ(ySτ

S0
)) satisfies the following PDE :

∂v

∂τ
=

1
2
σ2y2 ∂2v

∂y2
+ µy

∂v

∂y

with v(0, y) = ϕ(y). Thus C(τ, y) = e−rτv(τ, y) satisfies

∂C

∂τ
= −rC +

1
2
σ2y2 ∂2C

∂y2
+ µy

∂C

∂y

with C(0, y) = ϕ(y). And finaly, replacing τ by T − t (but without changing the notation for
C), we obtain the famous Black-Scholes PDE :

∂C

∂τ
= −1

2
σ2y2 ∂2C

∂y2
− µy

∂C

∂y
+ rC

with C(T, y) = ϕ(y).

Stochastic process PDE PDE’s solution{
St = S0 exp((r − σ2/2)t + σBt)
CT = ϕ(ST )

{
∂C
∂t = −1

2σ2y2 ∂2C
∂y2 − ry ∂C

∂y + rC

C(T, y) = ϕ(y)

{
C(t, y) = e−rτ Eϕ(y ST

S0
)

τ = T − t

Black-Scholes model Black-Scholes EDP

2.3 The Black-Scholes formula

The explicite computation of the expectation of the formula (2.1) or the computation of the
explicite solution of this partial differential equation gives the famous Black-Scholes formula :

Proposition 2.2 In a Black-Scholes model, the price of a Call option at time t if the value of
the underlying asset is x, the exercice date T and the exercice price K, is given by

C(t, x) = xN (d1) − Ke−r(T−t)N (d2) (2.3)

where d1 = 1
σ
√

T−t
(ln x

K + (r + σ2

2 )(T − t)), d2 = 1
σ
√

T−t
(ln x

K + (r − σ2

2 )(T − t)) and N is the

gaussian distribution fonction N (d) = 1√
2π

∫ d
−∞ e−

ξ2

2 dξ. Moreover the delta (derivative of the
option price with respect to the stock price), also called hedge ratio, is given by

∂C

∂x
= N (d1).

Remark: To apply this formula to compute really an option price, one has to know several
parameters. The parameters T and K are written in the contract of the option, the parameters
t and x are known (t is today and x the time t value of the underlying stock). It remains
the parameter r and σ. For r, one assume that it remain constant between t and T which is
already a big simplification (it is not true at all..). But the major problem comes from σ, called
volatility, that can not be observed (and varie a lot !). The way the practitioner used to choose
the volatility when they want to price a new option is to deduce it from the market prices of
the other traded options on the same underlying stock. Indeed from the formula (2.3) one can
deduce that the option price is a non decreasing function of the volatility and thus at each
market price corresponds a unique value of σ (inverse image of it by the formula). This value
of the parameter σ, called the implied volatility, corresponds to the anticipations of this value
by the market. Unfortunately, it appears that the implied volatility is not constant (it changes
with T and K) as it was assumed in the model !



Chapter 3

Stochastic integral

To understand the results of the Black-Scholes theory and go further in the study of the contin-
uous time models in finance we need more tools in stochastic calculus and first of all we need to
define stochastic integrals.

3.1 Stochastic integral

In the discret models, one define the Profit and Loss of a strategy αt on a stock St as the
quantity :

P&LS
t (α) =

∑

s∈]0..T ]δt

αsδSs , where δSs := Ss − Ss−δt.

The financial meaning is quite natural : if at time s− δt you take a position of αs stocks at
the price Ss−δt, at time s the price of the stock has changed of δSs = Ss −Ss−δt, so you made a
profit (or loss) of αsδSs, and then you take a new position αs+δt for the next time step with the
information available, represented by FS

s . So P&LS
t (α) is just the total profit and loss up to

time t of the part of your portfolio invested in the stock St. Actually, St − S0 is just P&LS
t (1),

the profit and loss of the buy-and-hold strategy.
If we try to extend this definition to the case of continuous time models (for example if St

is a Brownian motion), then it is not clear that it will be possible because this sum corresponds
to the total variation of α along the trajectories of St and we know that this total variation is
a.s. infinite. Indeed we are in a hopeless situation if we try to give a meaning to this for each
trajectory separatly. But, it was the discovery of Itô in 1048, if we relax our demand, then a
Stochastic integral

P&LS
t (α) =

∫ t

0
αsdSs

should be defined trajectorywise.
To this aim, considere first the space of square integrable stochastic process :

Definition: Let H2(Ω × R+) the set of all square integrable stochastic process Xt (i.e. such
that E

∫
X2(t, .)dt < ∞), adapted1 to the filtration (Ft).

This set is an Hilbert space for the inner product < Xt, Yt >= E
∫

XtYtdt. The most
simple processes in this Hilbert space H2(Ω×R+), called elementary processes, are the processes
ϕ(t, ω) =

∑n−1
0 Xi(ω)I]ti,ti+1](t), where t0 < t1 < . . . < tn is a discretization and (Xi)i=0..n a

family of FB
ti -mesurable and square integrable rv. Other exemples are the deterministic functions

1A stochastic process Xt is said to be adapted to a filtration (Ft) if, for all t ∈ R+, Xt is Ft−mesurable. And a
filtration is a increasing family (Ft, t ∈ R+) of right continuous, in the sens where Ft =

⋂
ε>0

Ft+ε, subalgebra of

Ω ; for any stochastic process Xt, one can define the associated natural filtration by FX
t =

⋂
ε>0

σ(Xs, s ≤ t + ε),

where σ(X) is the subalgebra generated by the rv X (in particular, FB
t denotes the natural filtration of the

Brownian motion (Bt)).

11



12 CHAPTER 3. STOCHASTIC INTEGRAL

of Bt such as f(t, Bt). The sub set of all elementary processes is important because it is dense in
H2(Ω×R+) (i.e. all square integrable process is the limit of a sequence of elementary processes).
The following theorem is also a definition of the stochastic integral.

Theorem 3.1 Let Bt a Brownian motion and (FB
t ) its natural filtration. To any stochastic

process Xt ∈ H2(Ω × R+), is associated a square integrable rv I(Xt), denoted I(Xt) =
∫

XtdBt,
such that E(I(Xt)) = 0 and E(I(Xt))2 = E(

∫
X2

t dt). The process I(Xt) is call a stochastique
integral or Itô intégrale.

The idea of the proof is simple : the integral is first defined on the subset of elementary processes
and, as the application I is an isometry, it can be extended to all H2(Ω × R+) by density.

This integrale can also be defined, as usual, as a function of it upper bound by
∫ t
0 XtdBt :=∫

XtI]0,t]dBt. The main properties are :

1.
∫ t′

t XtdBt =ps
∫ s
t XtdBt +

∫ t′

s XtdBt (Chasles relation)

2.
∫ t′

t (αXt + Yt)dBt =ps α
∫ t′

t XtdBt +
∫ t′

t YtdBt (linearity).

3. E
(∫ t′

t XtdBt

)
= 0 and Var

(∫ t′

t XtdBt

)
=
(∫ t′

t X2
t dt
)
.

4.
∫ t′

t XtdBt is a rv FB
t′ −mesurable.

3.2 Martingales

We have already understood through the discret models approach that martingales play a crucial
role in Finance. The intuitive idea goes back to Bachelier : he explained in 1900 that as the
stock prices (or any prices) correspond to an agreement between two parties (market prices),
and as their anticipations on the unknown future prices probably differ, the only fair price for
both parties is equal to the expectation of all the future prices, given the information available
today.

Definition: A integrable process (Mt) (i.e. such that E(|Mt|) < +∞ for all t) adapted to the
filtration Ft is

• a (Ft−) martingale if E(Mt/Fs) = Ms for all s ≤ t

• a (Ft−) surmartingale if E(Mt/Fs) ≤ Ms for all s ≤ t

• a (Ft−) sousmartingale if E(Mt/Fs) ≥ Ms for all s ≤ t

Notice that if Mt is a martingale than for all t, E(Mt) = E(M0).

Easy computations with conditional expectation show that if FB
t is the natural filtration of

the Brownian motion Bt than the processes Bt, B2
t − t and exp(σBt − σ2

2 t) are FB
t −martingales.

An other important example of FB
t −martingale is the stochastic integral

∫ t
0 XtdBt.

It is not difficult to prove that indeed a stochastic integrale is a martingale but what is true
also, and more difficult to prove, is that any martingale is in fact a stochastic integral.

Theorem 3.2 Let Mt be a square integrable martingale with respect to the natural filtration of
a Brownian motion FB

t . There exists a square integrable adapted process αt such that for all t
one has a.s. :

Mt = M0 +
∫ t

0
αsdBs.
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3.3 Itô processes

We have already meet three examples of Itô processes, the Bronian motion, the Brownian motion
with drift and the geometric Brownian motion. They all belong to the following family :

Definition: Let Xt be a stochastic process. If there exist two adapted processes µt and σt

such that E(
∫ t
0 |µs|ds) < +∞ et E(

∫ t
0 σ2

sds) < +∞ a.s. and if

Xt = X0 +
∫ t

0
αsds +

∫ t

0
ϕsdBs (3.1)

than Xt is an Itô process.
The first terme

∫ t
0 µsds is the finite variation part and the second terme

∫ t
0 σsdBs is the

martingale part. The decomposition in these two parts is unique and thus an Itô process is a
martingale if and only if its finite variation part is zero.

The equation (3.1) can also be written simply dXt = µtdt + σtdBt.
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Chapter 4

Itô formula

The Itô formula is the first and the main tool of the stochastic calculus. It allows to answer to
the following question : if Xt is an Itô process such that dXt = µtdt + σtdBt and f a function,
what can we say about the process Yt = f(Xt) ? Is it still an Itô process and how to compute
it ?

The Itô formula corresponds for stochastic process to the Taylor formula for deterministic
dynamics but in some sens one can say that it is easier because it has only three terms (and
indeed no remainder).

4.1 The formula

Theorem 4.1 (Itô Formula) Let Xt be an Itô process defined by (3.1), i.e. such that dXt =
µtdt + σtdBt and let f : R+ × R → R be a function with first and second order continuous
derivatives in t and x. Than the process Yt := f(t,Xt) is still an Itô process and a.s. :

Yt = Y0 +
∫ t

0

∂f

∂t
(s,Xs)ds +

∫ t

0

∂f

∂x
(s,Xs)dXs +

∫ t

0

ϕ2
t

2
∂2f

∂x2
(s,Xs)ds.

Notice that in the formula, the stochastic integral
∫ t
0

∂f
∂x (t,Xt)dXt is to be understood as

a simplified notation of
∫ t
0

∂f
∂x(s,Xs)αsds +

∫ t
0

∂f
∂x(s,Xs)ϕsdBs. This is the way to extend the

stochastic integral from the Brownian motion to any Itô process. In fact, stochastic integral can
be generalized to a large classe of processes, the semi-martingales (sum of a (local) martingale
and a process with (locally) bounded variation.

Notice that the Itô formula can be written simply

dYt =
∂f

∂t
dt +

∂f

∂x
dXt +

ϕ2
t

2
∂2f

∂x2
dt.

For example for Xt = Bt and f(x) = x2,

d(B2
t ) = 0dt + 2BtdBt +

1
2
(2)dt

and than d(B2
t ) = 2BsdBs + dt. The “additional” term dt is called the Itô term. In the

stochastic calculus, one also have a integration by part formula :

Proposition 4.2 Let Xt and Xt be two Itô processes such that dXt = µtdt + σtdBt and dX t =
µtdt + σtdBt. Then

XtX t = X0X0 +
∫ t

0
XsdXs +

∫ t

0
XsdXs +

∫ t

0
σsσsds.

Ther proof is straightforward. One apply the Itô formula to (Xt + Xt)2, (Xt)2 and (X t)2

and than one make the difference between the first square and the next two.

15
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4.2 The Black-Scholes model

We have introduced the Black-Scholes model of stock prices St = S0 exp((µ− σ2

2 )t+σBt) saying
that we have chosen µ = r because we wanted the discounted prices S̃t to be a martingale. Now
we can explain this point. Indeed, if Yt is the geometric Brownian motion Yt = (µ− σ2

2 )t + σBt

than its differential is simply dYt = (µ − σ2

2 )dt + σdBt and thus the Itô formula applied to
St = S0expYt gives

St = S0 +
∫ t

0
SsdYs +

σ2

2

∫ t

0
Ssds.

Replacing dYt by its expression, one get

St = S0 +
∫ t

0
µSsdt + σ

∫ t

0
SsdBs

we obtain dSt = µStdt + σStdBt. Notice that if µ 6= 0, then St is not a martingale. But its
discounted value, S̃t = e−rtSt will be a martingale if and only if µ = r. Indeed, using the
integration by part rule (4.2), applied to the stochastic process St and the deterministic function
e−rt (in this case the Itô term is zero), one has

dS̃t = d(e−rtSt) = −re−rtStdt + e−rtdSt = (µ − r)Stdt + e−rtdSt.

Thus if one choose, as we did, St = S0 exp((r− σ2

2 )t+σBt) as a model for the stock prices, then
the discounted stock prices S̃t is a martingale.

4.3 Stochastic differential equation

Definition: A stochastic differential equation (SDE) is an equation such that

dXt = µ(t,Xt)dt + σ(t,Xt)dBt (4.1)

where the solutions (Xt) are adapted to the natural filtration of Bt stochastic processthat satisfy
a.s. the equation for all t in [t0, t+[. The initial condition X0 could be a given number or, in
general, a r.v..

Examples:

• The solution of dXt = Xt(µdt+σdBt) such that X0 = 1 is the standard geometric Brownian
motion Xt = exp(µt + σBt).

• More generally, the solutions of the SDE dXt = Xt(µ(t)dt+σ(t)dBt) are Xt = X0 exp(
∫ t
0 (µ(s)−

1
2σ2(s))ds +

∫ t
0 σ(s)dBs).

• The solutions of the SDE dXt = −aXtdt + σdBt, called Langevin equation, are the
processes Xt = X0e

−at + σ
∫ t
0 e−a(t−s)dBs, called Ornstein-Uhlenbeck processes.

•

As for the ordinary differential equations, we also have for SDE an existence and unicity theorem :

Theorem 4.3 Consider a stochastic differential equation (4.1) and assume that the two func-
tions µ et σ are continuous and that it exists a constant C such that

1. |µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ C|x − y|

2. |µ(t, x)| + |σ(t, x)| ≤ C(1 + |x|)

Than for all T > 0, the equation (4.1) has a unique solution FB
t −adapted in [0, T ] (unique

means that if Xt and Xt are two solutions, than ∀t ∈ [0, T ], Xt =ps Xt).



Chapter 5

Arbitrage pricing

In this lecture, we will come back to the fondamental option pricing formula (2.1) for a Black-
Scholes model. There is various way to derive this formula, we propose here two of them, the
first use the Itô formula to prove that the price must be a solution of the Black-Scholes PDE. The
second shows the existence of an hedging portfolio having this value and claims that, because
of no arbitrage asumption, this value must be the good one.

5.1 The Black-Scholes market

Let St = S0 exp((r− σ2

2 )t+σBt) the Black-Scholes model of a stock prices and Ct the price of an
option (T, ϕ(T )) on St. In our market, we need a second asset, denoted S0

t with a deterministic
dynamics given by S0

t = S0
0ert, with usually S0

0 = 1.
Let (Ω, P,FB

t ) be the filtered probability space where the Brownian motion Bt is defined.
We already notice that the discounted value of the stock price, S̃t, is a martingale with respect
to this filtration FB

t .

Definition: A european option (T, ϕ(ST )) on the stock (St), is simply a FB
T -mesurable and

positive r.v.. For example, ϕ(ST ) = (ST −K)+ for a european Call and ϕ(ST ) = (K −ST )+ for
a european Put.

Recall that in a Black-Scholes model, the following fondamental pricing formula holds :

Theorem 5.1 (Fondamental pricing formula) In this Black-Scholes market, the value Ct

at time t ∈ [0, T ] of a european option (T, ϕ(ST )) on the stock (St) is given by

Ct = E(e−r(T−t)ϕ(ST )/Ft).

Definition: In our model a hedging strategy is a couple (α0
t , αt) of two FB

t -adapted r.v.
corresponding to the investment into the two non risky and risky assets S0

t and St. With such
a strategy, one build a portfolio Π with the time t value given by Πt = h0

t S
0
t + htSt. We only

consider strategies having positive and square integrable componantes.

Definition: A strategy (α0
t , αt) corresponding to the portefolio Π is called self-financing if for

all t ∈ [0, T ], dΠt = α0
t dS0

t +αtdSt. If a self-financing strategy (α0
t , αt) satisfies ΠT = ϕ(ST ), one

says that it duplicate the option (T, ϕ(ST )). A portfolio that is self-financing and that duplicate
an option is called an hedging portfolio for this option.

It is easy to show that :

Proposition 5.2 A strategy (α0
t , αt) of a portfolio Πt is self-financing if and only if Π̃t =

Π̃0 +
∫ t
0 αsdS̃s (or using the simplified notation dΠ̃t = αtdS̃t).

17
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5.2 Delta hedging

Assume that the option value Ct can be written as a function Ct = C(t, St) of t and S and that
this function has continuous second derivatives.

Theorem 5.3 In a Black-Scholes model, the price of an european option C(t, S) is equal to the
value of an hedging portfolio Πt with a componante ∆t in the underlying stock and that satisfies

{
∂C
∂t (t, S) + σ2

2 S2 ∂2C
∂S2 (t, S) + rS ∂C

∂S (t, S) − rC(t, S) = 0
C(T, S) = ϕ(S)

(5.1)

and the quantity ∆(t, S) in the underlying stock is C(t, S) = ∂C
∂S (t, S).

Consider a portfolio Πt of one long option Ct position and one short position in some quantity
∆t of the underlying stock St :

Πt = C(t, St) − ∆tSt

If the quantity ∆t can be chosen in such a way that the corresponding strategy is self-financing
and completely hedge the risk of the portfolio (such a dynamic hedging is called a delta hedging),
then the resulting portfolio will satisfy

dΠt = rΠtdt.

Now, using the Itô formula applying to the function C and the previous proposition 5.2, one
has :

dΠt = dC(t, St) − ∆tdSt =
∂C

∂t
dt +

∂C

∂S
dSt +

σ2

2
S2

t

∂2C

∂S2
dt − ∆tdSt

Thus, to have no stochastic term (in dS) and only deterministic term (in dt)), we find that
{

∂C
∂S = ∆t

dΠt =
(

∂C
∂t + σ2

2 S2 ∂2C
∂S2

)
dt.

(5.2)

But as dΠt = rΠtdt = r(C(t, St) − ∆tSt)dt = rC(t, St)dt − r ∂C
∂S St, the Black-Scholes PDE

follows.
The existence of a (even explicite !) solution of this equation shows the quantity ∆(t, St)

can be computed in such a way that the portfolio Πt builded with exactly ∆(t, St) underlying
stocks (and rebalancing continuously) will perfectly hedge the option (T, ϕ(ST )). Now the price
of such a portfolio must be equal to the option price because it will take the same final value,
and thus must take the same time t value for all t < T (no arbitrage).

5.3 Existence of an hedging portfolio

There is a completely different way to derive the fundamental pricing formula that we will
consider now.

Let us first assume that an self-financing strategy that duplicate the option exists. Using
the proposition 5.2, we know that the correspondfing portfolio Π̃t satisfies Π̃t = Π̃0 +

∫ t
0 αsdS̃s.

As dSt = rStdt+σStdBt, we have dS̃t = σS̃tdBt. Thus Π̃t = Π̃0 +
∫ t
0 αsσS̃sdBs. Now, using the

fact that as a stochastic integrale the portfolio Π̃t is a martingale, it follows that Π̃t = E(Π̃T /Ft)
and thus Πt = E(ϕ(ST )/Ft).

As we know now that if a self-financing strategy that duplicate the option exists, the price
of the corresponding portfolio has to be equal to the formula, it remains to prove the existence
of such a portfolio, namely the existence of such a strategy. From the final value of the portfolio
ΠT = ϕ(ST ), one define Π̃t = E(Π̃T /Ft) as a FB

t −martingale closed by it final values. Now
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using the martingale representation theorem 3.2, we know that there existe a (square integrable)
stochastic process βt such that

Π̃t = Π̃0 +
∫ t

0
βsdBs.

If αt := βt

σS̃t
and if α0

t := Π̃t − αtS̃t then (α0
t , αt) is indeed a hedging strategy for the option we

were looking for.
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Chapter 6

Arbitrage probabilities

6.1 Uncomplete markets

6.2 Arbitrage-free markets

6.3 The two fundamental theorems

21



22 CHAPTER 6. ARBITRAGE PROBABILITIES



Bibliography

[1] M. Baxter and A. Rennie. Financial calculus. Cambridge University Press, 1999.

[2] T. Björk. Arbitrage Theory in Continuous Time. Oxford University Press, 2004.

[3] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81:637–659, 1973.

[4] J. Cox, S. Ross, and M. Rubinstein. Option pricing : A simplified approach. Journal of
Financial Economics, 7:229–263, 1979.

[5] J. Hull. Options, Futures, and other derivatives. Prentice-Hall, 1997.

[6] J. Jacod and P. Protter. Probability Essentials. Springer, 2000.

[7] I. Karatzas and S. E. Shreve. Methods of mathematical finance, volume 39 of Application
of Mathematics, stochastic modelling and applied probability. Springer, 1998.

[8] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance.
Chapman and Hall / CRC, 2000.

[9] M. Musiela and M. Rutkowski. Martingale methods in Financial modelling, volume 36 of
Applications of mathematics. Springer, 1997.

[10] B. Oksendal. Stochastic Differential Equations. Universitext. Springer, 2000.

[11] S. R. Pliska. Introduction to mathematical finance, discrete time models. Blackwell pub-
lishers, 1997.

[12] A. N. Shiryaev. Essentials of stochastic finance, volume 3 of Advanced series on statistical
science and applied probability. World scientific, 1999.

[13] P. Wilmott. Derivatives. John Wiley and sons, 1998.

[14] P. Wilmott, S. Howison, and J. Dewynne. The mathematics of financial derivatives. Cam-
bridge University Press, 1995.

23


