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1 What are kinetic type equations

1.1 Taylor-Goldstein/telegraph equation

Functions f and g describe density of particles moving to the right/left with the
flow of velocity v and randomly choosing the direction of motion at a rate α and
lost from the system at a rate a:

∂tf = −af − b∂xf + αg − αf,

∂tg = −af + b∂xg − αg + αf, (1)

Introducing the total density v = f + g and the net current to the right w =

f − g, we have

∂tv = av − b∂xw,

∂tw = −b∂xv − dw, (2)

with d = 2α.

The system (2) is supplemented by initial conditions

v(0) =
o
v, w(0) =

o
w, (3)

and, say, the homogeneous Dirichlet conditions

v(−1, t) = v(1, t) = 0, t > 0. (4)

1.2 Ageing and vertical migration of sole

A seemingly similar system is offered by

∂tn = Sn +Mn + Cn, (5)
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where n = (n1, . . . , nN), S = diag{−∂a, . . . ,−∂a},M = diag{−µ1, . . . ,−µN},
C = {kij}1≤i,j≤N . Here ni is the population density of fish in patch i, a is the age,
µi(a) is the mortality rate, and the coefficients kij represent the migration rates
from patch j to patch i, j 6= i. The system was introduced to describe evolution
of a continuous age-structured population of sole The characteristic feature of the
population is daily vertical migration provoked by light intensity.

This system is supplemented by the boundary condition of the McKendrick-
Von Foerster type

n(0, t) =

∞∫
0

B(a)n(a, t)da (6)

where B(a) = diag{β1(a), . . . , βN(a)} gives the fertility at age a and patches 1

to N . The initial condition is given by

n(a, 0) = Φ(a). (7)

The transition matrix C is a typical transition matrix (of a time-continuous pro-
cess); that is off-diagonal entries are positive and columns sum up to 0.

1.3 Fokker-Planck equations

ut(x, ξ) = −ξ∂xu(x, ξ) + Cu(x, ξ). (8)

Here u is the particle distribution function in the phase space, x denotes the po-
sition and ξ the velocity of the particle. C is the transition operator, which is,
e.g.,

Cu(x, ξ) = ∂ξ(ξ + ∂ξ)u(x, ξ), x, ξ ∈ R3.

for the Brownian motion,

Cu(x, ξ) = ∂ξ((1− ξ2)∂ξu(x, ξ)), x ∈ R3, ξ ∈ [−1, 1],

for electron scattering in plasma, etc.
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1.4 Linear Maxwell-Boltzmann equation

We are interested in modelling the motion of a gas of test particles through a
background of field particles. The test particles are driven by an external force
F that depends on the position vector x and on the velocity v, but not on time
t, and are scattered by localized in space and instantaneous collisions with field
particles which are supposed to be fixed. This, together with the assumption of
low density of the test particles, makes the problem linear and the time evolution
of the one-particle distribution function f of test particles, depending on position
x, velocity v, and time t, is described by the linear equation

∂f

∂t
+ v · ∂f

∂x
+ E · ∂f

∂v
+ νf =

∫
R3

k(v,v′)f(t,x,v′)dv′. (9)

Here the independent variables (x,v) take values in a set Λ ⊆ R3 × R3, which is
called the phase space of the problem.

1.5 Semi-classical Linear Boltzmann equation

ft(t,x,v) = −v∂xf(t,x,v)

−4πλ(v)f(t,x,v) + λ(v)

∫
S2

f(t,x, vω′)dω′

−f(t,x,v)4π
(
n2
v+

v
ν(v+)n1H(v2 − 1)ν(v)

)
+n1

v+

v
ν(v+)

∫
S2

f(t,x, v+ω′)dω′

+n2ν(v)H(v2 − 1)

∫
S2

f(t,x, v−ω′)dω′

where S2 is the unit sphere in R3
v, v = vω with v ∈ [0,∞[, ω ∈ S2, where
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H is the Heaviside function, v± =
√
v2 ± 1. The Maxwell molecule assumption

yields
0 < λmin ≤ λ(v) ≤ λmax < +∞, v > 0.

and
0 < νmin ≤ ν(v) ≤ νmax < +∞ for v ∈ [1,∞[.

The common theme of the models introduced above is that they can be written
in a single form

∂tu = Au+ Su+ Cu (10)

where u is some type of a ’particle’ distribution function, the operator A (which
may be zero), S, C describe attenuation, transport in the phase space and transi-
tions between states, of particles, respectively. Thus, the evolution is driven by an
interplay of several different mechanisms which may be of different magnitude,
or act on different time scales.

2 Various singular scalings

2.1 Taylor-Goldstein/telegraph equation

Case 1. Small relaxation time in Cattaneo model

∂tv = av − b∂xw,

ε∂tw = −b∂xv − dw. (11)

Case 2. Random walk theory: very strong correlations, strong current.

∂tv = av − ε−1b∂xw,

ε∂tw = −ε−1b∂xv − ε−2dw. (12)
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Case 2. Random walk theory: strong correlations; vibrations: strong damping.

∂tv = av − b∂xw,

∂tw = −b∂xv − ε−1dw. (13)

2.2 Ageing and vertical migration of sole

∂tn = Sn +Mn +
1

ε
Cn, (14)

reflects the fact that vertical migration occur on a much faster time scale that the
demographic processes.

2.3 Fokker-Planck equations

ut(x, ξ) = −ξ∂xu(x, ξ) +
1

ε
Cu(x, ξ), (15)

expresses our interest what happens if the collisions are dominant.

2.4 Linear Maxwell-Boltzmann equation

Case 1. Weak external field.

∂f

∂t
= −v · ∂f

∂x
− E · ∂f

∂v
+

1

ε

νf − ∫
R3

k(v,v′)f(t,x,v′)dv′

 . (16)

Case 2. Strong external field.

∂f

∂t
= −v · ∂f

∂x
− 1

ε

E · ∂f
∂v

− νf +

∫
R3

k(v,v′)f(t,x,v′)dv′

 . (17)

8



2.5 Semi-classical Linear Boltzmann equation

ft(t,x,v) = − 1

εp
v∂xf(t,x,v)

− 1

εq

4πλ(v)f(t,x,v) + λ(v)

∫
S2

f(t,x, vω′)dω′


− 1

εr

(
f(t,x,v)4π

(
n2
v+

v
ν(v+)n1H(v2 − 1)ν(v)

)
+n1

v+

v
ν(v+)

∫
S2

f(t,x, v+ω′)dω′

+ n2ν(v)H(v2 − 1)

∫
S2

f(t,x, v−ω′)dω′


The the models introduced above can be written in a general form

∂tu = Au+ S1u+
1

εp
S2u+

1

εq
C1u

1

εr
C2u (18)

3 Singular perturbations and asymptotic analysis

The goal of this section is to give a concise explanation of concepts of asymptotic
analysis.

The aims of asymptotic analysis:

1. To provide link between different level description of the same phenomena
(e.g. Newton versus Boltzmann versus Navier-Stokes description of gases);

2. To provide efficient numerical techniques for solving equations by identi-
fying different regimes of evolution yielding to possibly simpler numerical codes.
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In order to introduce the ideas of asymptotic analysis, let us consider a partic-
ular case of a singularly perturbed value problem

∂fε

∂t
= Sfε +

1

ε
Cfε,

fε(0) = f0,
(19)

where the presence of the small parameter ε indicates that the phenomenon mod-
elled by the operatorC is more relevant than that modelled by S or, in other words,
they act on different time scales.

As elsewhere in these lectures, we are concerned with kinetic type problems
and the operator S describes some form of transport, whereas C is an interac-
tion/transition operator describing interstate transfers, e.g., they may be collision
operator in the kinetic problems or a transition matrix in the structured population
theory.

We are often interested in situations when the transition processes between
structure states are dominant. If this is the case, the population quickly becomes
homogenised with respect to the structure and starts to behave as an unstructured
one, governed by suitable equations (which in analogy with the classical kinetic
theory will be called hydrodynamic equations). It is expected that these equations
should be the limit, or approximating, equation for (19) as ε→ 0 (the parameter ε
in such a case is related to the mean free time between state switches).

To put this in a mathematical framework, we can suppose to have on the right-
hand side a family of operators {Cε}ε>0 = {S + 1

ε
C}ε>0 acting in a suitable

Banach space X , and a given initial datum. The classical asymptotic analysis
consists in looking for a solution in the form of a truncated power series

f (n)
ε (t) = f0(t) + εf1(t) + ε2f2(t) + · · ·+ εnfn(t),

and builds up an algorithm to determine the coefficients f0, f1, f2, . . . , fn. Then
f

(n)
ε (t) is an approximation of order n to the solution fε(t) of the original equation
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in the sense that we should have

‖fε(t)− f (n)
ε (t)‖X = o(εn) , (20)

for uniformly for 0 ≤ t ≤ T , where T > 0.

It is important to note that the zeroth-order approximation satisfies

Cf0(t) = 0

which is the mathematical expression of the fact that the hydrodynamic approx-
imation should be transition-free and that’s why the null-space of the dominant
collision operator is called the hydrodynamic space of the problem.

Another important observation pertains to the fact that in most cases the limit
equation involves less independent variables than the original one. Thus the solu-
tion of the former cannot satisfy all boundary and initial conditions of the latter.
Such problems are called singularly perturbed. If, for example, the approximation
(20) does not hold in a neighbourhood of t = 0, then it is necessary to introduce
an initial layer correction by repeating the above procedure with rescaled time to
improve the convergence for small t. The original approximation which is valid
only away from t = 0 is referred to as the bulk approximation.

Similarly, there approximation could fail close to the spatial boundary of the
domain as well as close to the region where the spatial and temporal boundaries
meet. To improve accuracy in such cases one introduces the so-called boundary
and corner layer corrections which will be in detail discussed later.

A first way to look at the problem from the point of view of the approxima-
tion theory is to provide a systematic way of finding a new (simpler) family of
operators, still depending on ε, say Bε, generating new evolution problems

∂ϕε

∂t
= Bεϕε,
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supplemented by appropriate initial conditions, such that the solutions ϕε(t) of the
new evolution problem satisfy

‖fε(t)− ϕε(t)‖X = o(εn) , (21)

for 0 ≤ t ≤ T , where T > 0 and n ≥ 1. In this case we say that Bε is a
hydrodynamic approximation of Cε of order n.

This approach mathematically produces weaker results than solving system
(19) for each ε and eventually taking the limit of the solutions as ε → 0. But in
real situation, ε is small but not zero, and it is interesting to find simpler operators
Bε for modelling a particular regime of a physical system of interacting particles.

A slightly different point of view consists in requiring that the limiting equa-
tion for the approximate solution does not contain ε. In other words, the task is
now to find a new (simpler) operator, say B, and a new evolution problem

∂ϕ

∂t
= Bϕ,

with an appropriate initial condition, such that the solutions ϕ(t) of the new evo-
lution problem satisfy

‖fε(t)− ϕ(t)‖X → 0, as ε→ 0, (22)

for 0 ≤ t ≤ T , where T > 0.

In this case we say that B is the hydrodynamic limit of operators Cε as ε→ 0.
This approach can be treated as (and in fact is) a particular version of the previous
one as very often the operator B is obtained as the first step in the procedure lead-
ing eventually to the family {Bε}ε≥0. For instance, for the nonlinear Boltzmann
equation with the original Hilbert scaling, B would correspond to the Euler sys-
tem, whereas Bε could correspond to the Navier-Stokes system with ε-dependent
viscosity, or to Burnett equation at yet higher level.

In any case the asymptotic analysis, should consist of two main points:
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- determining an algorithm which provides in a systematic way the approximat-
ing family Bε (or the limit operator B),

- proving the convergence of fε in the sense of (21) (or of (22)).

Even if the formal part and the rigorous part of an asymptotic analysis seem not
to be related, the formal procedure can be of great help in proving the convergence
theorems.

We will focus on the modification of the classical Chapman-Enskog proce-
dure. The advantage of it procedure is that the projection of the solution to the
Boltzmann equation onto the null-space of the collision operator, that is, the hy-
drodynamic part of the solution, is not expanded in ε, and thus the whole infor-
mation carried by this part is kept together. This is in contrast to the Hilbert type
expansions, where, if applicable, only the zero order term of the expansion of the
hydrodynamic part is recovered from the limit equation.

Hence the main feature of the modified Chapman-Enskog procedure is that
the initial value problem is decomposed into two problems, for the kinetic and
hydrodynamic parts of the solution, respectively. This decomposition consists in
splitting the unknown function into the part belonging to the null space V of the
operator C, which describes the dominant phenomenon, whereas the remaining
part belongs to the complementary subspace W .

Thus the first step of the asymptotic procedure is finding the null-space of the
dominant collision operator C; then the decomposition is performed using the
(spectral) projection P onto the null-space V by applying P and the complemen-
tary projection Q = I − P to equation (19). In this one obtains a system of
evolution equations in the subspaces V and W . At this point the kinetic part of
the solution is expanded in series of ε, but the hydrodynamic part of the solution
is left unexpanded. In other words, we keep all orders of approximation of the
hydrodynamic part compressed into a single function.
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In many classical approaches the initial/boundary/corner layer contributions
are neglected and thus transitional effects are not taken into account. To overcome
this, two time and space scales are introduced in order to obtain the necessary
corrections. In general, the compressed asymptotic algorithm permits to derive
in a natural way the hydrodynamic equation, the initial condition to supplement
it, and the initial layer corrections. Moreover the layers are matched to the bulk
solution at the boundary of the domain thus providing an approximation which is
valid over the whole domain.

4 First semigroups

Laws of physics and, increasingly, also those of other sciences are in many cases
expressed in terms of differential or integro–differential equations. If one models
systems evolving with time, then the variable describing time plays a special role,
as the equations are built by balancing the change of the system in time against its
‘spatial’ behaviour. In mathematics such equations are called evolution equations.

Equations of the applied sciences are usually formulated pointwise; that is,
all the operations, such as differentiation and integration, are understood in the
classical (calculus) sense and the equation itself is supposed to be satisfied for all
values of the independent variables in the relevant domain:

∂

∂t
u(t, x) = [Au(t, ·)](x), x ∈ Ω

u(t, 0) =
◦
u, (23)

where A is a certain expression, differential, integral, or functional, that can be
evaluated at any point x ∈ Ω for all functions from a certain subset S.

When we are trying to solve (23), we change its meaning by imposing various
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a priori restrictions on the solution to make it amenable to particular techniques.
Quite often (23) does not provide a complete description of the dynamics even if
it looks complete from the modelling point of view. Then the obtained solution
maybe be not what we have been looking for. This becomes particularly important
if we cannot get our hands on the actual solution but use ’soft analysis’ to find
important properties of it.

We will use one particular way of looking at the evolution of a system in which
we describe time changes as transitions from one state to another; that is, the
evolution is described by a family of operators (G(t))t≥0, parameterised by time,
that map an initial state of the system to all subsequent states in the evolution; that
is solutions are represented as

u(t) = G(t)u0, (24)

where (G(t))t≥0 is the semigroup and u0 is an initial state. Note that in this inter-
pretation the function of several variables (t, x) → u(t, x) is interpreted as a func-
tion of one variable t but taking values in the space of functions of x: t→ u(t, ·).

In other words, we forget about points in the state space Ω and ‘points’ are
states represented by functions u(x) in some abstract space X which is chosen
partially for the relevance to the problem and partially for mathematical conve-
nience. For example, if (23) describes the evolution of an ensemble of particles,
then u is the particle density function and the natural space seems to be L1(Ω) as
in this case the norm of a nonnegative u, that is, the integral over Ω, gives the total
number of particles in the ensemble.

It is important to note that this choice is not unique but is rather a mathematical
intervention into the model, which could change it in a quite dramatic way.

For instance, in this case we could choose the space of measures on Ω with
the same interpretation of the norm, but also, if we are interested in controlling
the maximal concentration of particles, a more proper choice would be some rea-
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sonable space with a supremum norm, such as, for example, the space of bounded
continuous functions on Ω, Cb(Ω). Once we select our space, the right-hand side
can be interpreted as an operator A : D(A) → X (we hope) defined on some
subsetD(A) ofX (not necessarily equal toX) such that x→ [Au](x) ∈ X . With
this, (23) can be written as an ordinary differential equation in X , as described in
the definition below.

These considerations lead to the semigroup theory which is concerned with
methods of finding solutions of the Cauchy problem.

Definition 1 Given a complex Banach space and a linear operator A with D(A),
ImA ⊂ X and given u0 ∈ X , find a function u(t) = u(t, u0) such that

1. u ∈ C0([0,∞)) ∩ C1((0,∞)),

2. for each t > 0, u(t) ∈ D(A) and

ut = Au, t > 0, (25)

u(0) = u0 ∈ X. (26)

are satisfied.

A function satisfying all conditions above is called the classical (or strict) solu-
tion of (25), (26).

If the solution to (25), (26) is unique, then, as suggested above, we can intro-
duce a family of operators (G(t))t≥0 such that u(t, u0) = G(t)u0. Ideally, G(t)

should be defined on the whole space for each t > 0, and the function t→ G(t)u0

should be continuous for each u0 ∈ X , leading to well-posedness of (25), (26).
Moreover, uniqueness and linearity of A imply that G(t) are linear operators. A
fine-tuning of these requirements leads to the following definition.
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Definition 2 A family (G(t))t≥0 of bounded linear operators on X is called a
C0-semigroup, or a strongly continuous semigroup, if

(i) G(0) = I;

(ii) G(t+ s) = G(t)G(s) for all t, s ≥ 0;

(iii) limt→0+ G(t)x = x for any x ∈ X .

A linear operator A is called the (infinitesimal) generator of (G(t))t≥0 if

Ax = lim
h→0+

G(h)x− x

h
, (27)

with D(A) defined as the set of all x ∈ X for which this limit exists. Typically the
semigroup generated by A is denoted by (GA(t))t≥0.

If (G(t))t≥0 is a C0-semigroup, then the local boundedness and (ii) lead to the
existence of constants M > 0 and ω such that for all t ≥ 0

‖G(t)‖X ≤Meωt. (28)

From (27) and the condition (iii) of Definition 2 we see that if A is the genera-
tor of (G(t))t≥0, then for x ∈ D(A) the function t→ G(t)x is a classical solution
of the following Cauchy problem,

∂tu(t) = A(u(t)), t > 0, (29)

lim
t→0+

u(t) = x. (30)

We noted above that for x ∈ D(A) the function u(t) = G(t)x is a classical
solution to (29), (30). For x ∈ X \ D(A), however, the function u(t) = G(t)x

is continuous but, in general, not differentiable, nor D(A)-valued, and, therefore,
not a classical solution.
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4.1 Around the Hille–Yosida Theorem

Theorem 1 A generates a strongly continuous semigroup (G(t))t≥0 satisfying
(28) if and only if

(a) A is closed and densely defined,

(b) there exist M > 0, ω ∈ R such that (ω,∞) ⊂ ρ(A) and for all n ≥ 1, λ > ω,

‖(λI − A)−n‖ ≤ M

(λ− ω)n
. (31)

4.2 Dissipative Operators

Let X be a Banach space (real or complex) and X∗ be its dual. From the Hahn–
Banach theorem, for every x ∈ X there exists x∗ ∈ X∗ satisfying

<x∗, x>= ‖x‖2 = ‖x∗‖2.

Therefore the duality set

J (x) = {x∗ ∈ X∗; <x∗, x>= ‖x‖2 = ‖x∗‖2} (32)

is nonempty for every x ∈ X .

Definition 3 We say that an operator (A,D(A)) is dissipative if for every x ∈
D(A) there is x∗ ∈ J (x) such that

< <x∗, Ax>≤ 0. (33)

Combination of the Hille–Yosida theorem with the properties of dissipative
operators gives a generation theorem for dissipative operators, known as the Lumer–
Phillips theorem ([10, Theorem 1.43] or [7, Theorem II.3.15]).
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Theorem 2 For a densely defined dissipative operator (A,D(A)) on a Banach
space X , the following statements are equivalent.

(a) The closure vA generates a semigroup of contractions.

(b) vIm(λI − A) = X for some (and hence all) λ > 0.

If either condition is satisfied, then A satisfies (33) for any x∗ ∈ J (x).

In particular, if we know that A is closed then the density of Im(λI − A) is
sufficient for A to be a generator. On the other hand, if we do not know a priori
that A is closed then Im(λI − A) = X yields A being closed and consequently
that it is the generator.

4.3 Nonhomogeneous Problems

Consider the problem of finding the solution to:

du

dt
(t) = Au(t) + f(t), 0 < t < T

u(0) = u0, (34)

where 0 < T ≤ ∞, A is the generator of a semigroup, and f : (0, T ) → X

is a known function. For u to be a continuous solution, f must be continuous.
However, this condition proves to be insufficient. We observe that if u is a classical
solution of (34), then it must be given by

u(t) = G(t)u0 +

t∫
0

G(t− s)f(s)ds. (35)

The integral is well defined even if f ∈ L1([0, T ], X) and u0 ∈ X . We call u
defined by (35) the mild solution of (34). For an integrable f such u is continuous
but not necessarily differentiable, and therefore it may be not a solution to (34).
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The following theorem gives sufficient conditions for a mild solution to be a
classical solution (see, e.g., [10, Corollary 4.2.5 and 4.2.6]).

Theorem 3 Let A be the generator of a C0-semigroup (G(t))t≥0 and x ∈ D(A).
Then (35) is a classical solution of (34) if either

(i) f ∈ C1([0, T ], X), or

(ii) f ∈ C([0, T ], X) ∩ L1([0, T ], D(A)).

4.4 Bounded Perturbation Theorem and Related Results

Theorem 4 Let (A,D(A)) is a generator of a semigroup and B ∈ L(X). Then
(K,D(K)) = (A+B,D(A)) is a generator of a semigroup.

Moreover, the semigroup (GA+B(t))t≥0 generated by A + B satisfies either
Duhamel equation:

GA+B(t)x = GA(t)x+

t∫
0

GA(t− s)BGA+B(s)xds, t ≥ 0, x ∈ X (36)

and

GA+B(t)x = GA(t)x+

t∫
0

GA+B(t− s)BGA(s)xds, t ≥ 0, x ∈ X, (37)

where the integrals are defined in the strong operator topology.

Moreover, (GA+B(t))t≥0 is given by the Dyson–Phillips series obtained by
iterating (36):

GA+B(t) =
∞∑

n=0

Gn(t), (38)
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where G0(t) = GA(t) and

Gn+1(t)x =

t∫
0

GA(t− s)BGn(s)xds. t ≥ 0, x ∈ X. (39)

The series converges in the operator norm ofL(X) and uniformly for t in bounded
intervals.

4.5 Spectral Mapping Theorem and Long Time Behaviour of
Semigroups

It is important to be able to determine the behaviour of solutions u(t) = G(t)
o
u as

t→∞.

We know that always
‖G(t)‖ ≤Meωt, (40)

for some M ≥ 1, ω ∈ R.

If the generator A of (G(t))t≥0 is dissipative, then (G(t))t≥0 is a semigroup of
contractions; that is,

‖G(t)‖ ≤ 1, t ≥ 0.

Let σ(A) denote the spectrum of A and define the spectral bound

s(A) = sup<σ(A).

If A is bounded then, by the Lyapunov theorem,

‖G(t)‖ ≤Meωt,

for any ω > s(A). In particular, s(A) < 0 yields ‖G(t)‖ ∼ e−ωt, ω > 0, as
t→∞. In general, however, the above is a delicate problem.
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A useful observation is that if (G(t))t≥0 generated by A satisfies (40), then the
semigroup (Ga(t))t≥0 generated by A− aI satisfies

‖Ga(t)‖ ≤Me(ω−a)t, (41)

Recall that for singularly perturbed problems (of resonance type) we assumed
KerC 6= {0}, hence 0 ∈ σ(A). Also typically we deal with dissipative C. As-
sumption/property of C which makes the asymptotic analysis work is that λ = 0

is an isolated dominant eigenvalue:

σ(C) = {0} ∪ σ(QCQ)

where P is the spectral projection onto the (hydrodynamic) subspace V and Q is
the complementary spectral projection onto the complementary (kinetic) subspace
W . Hence

C =

[
0 0

0 QCQ

]
, etC =

[
I 0

0 etQCQ

]
and we assume that

‖etQCQ‖ ≤Me−ωt

for some M ≥ 1, ω < 0.

5 Hydrodynamic limit–the sole equation

5.1 Age structured population model

Let us recall the model

∂tn = Sn +Mn +
1

ε
Cn, (42)
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or in the expanded version

∂tn1 = −∂an1 − µ1n1 +
1

ε
(c11n1 + . . .+ c1NnN),

...
...

...,

∂tnN = −∂anN − µ1nN +
1

ε
(cN1n1 + . . .+ cNNnN), (43)

supplemented by the boundary condition of the McKendrick-Von Foerster type

n1(0, t) =

∞∫
0

β1(a)n1(a, t)da

...
...

...

nN(0, t) =

∞∫
0

βN(a)nN(a, t)da

and initial condition

n1(a, 0) =
◦
n1 (a), . . . , nN(a, 0) =

◦
nN (a).

Recall, that the transition matrix C is a typical transition matrix (of a time-continuous
process); that is off-diagonal entries are positive and columns sum up to 0. We
further assume that it generates an irreducible (n-dimensional) semigroup. Thus,
0 is the dominant eigenvalue of C with a positive eigenvector e which will be fixed
to satisfy 1 · e = 1, where 1 = (1, 1 . . . , 1).

The vector e = (e1, · · · , eN) represents the so called stable patch structure;
that is, the asymptotic distribution of the population into the patches. Thus, it is
reasonable to approximate

ei =
ni

n
, i = 1, . . . , N

where n =
∑N

i=1 ni. Adding together equations in (43) and using the above we
obtain

∂tn = −∂an− µ∗(a)n (44)
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where µ∗ = 1 · Me =
∑N

i=1 µiei is the so-called ‘aggregate’ mortality. This
model, supplemented with appropriate averaged boundary condition is called the
aggregated model and is expected to provide averaged approximate description of
the population.

Using general terminology, (44) is the macroscopic and (43) the mesoscopic
description of the population.

Our aim is to show that the aggregated model (44) can be obtained as an
asymptotic limit of (43) as ε→ 0.

We recall that the method depends on the spectral properties of the operators
S and C. To be able to start, we must assume that λ = 0 is the dominant simple
eigenvalue of the operator C.

It is easy to see that this requirement is satisfied if C is the generator of a
semigroup having AEG. The fact that λ = 0 needs to be dominant ensures an
exponential decay of the initial layer. This assumption may, however, be relaxed
if we are not that interested in the properties of the layer.

Remark 1 In many cases we have several state variables and the operator C only
acts on some of them. Then the above requirement refers to the action of C in this
restricted space.

The assumptions allow to perform the asymptotic analysis in the compressed
(Chapman-Enskog) form. The spectral projections P ,Q : Rn → Rn are given by

Px = (1 · x)e, Qx = x− (1 · x)e (45)

which gives the hydrodynamical space V := Span{e} and the kinetic space

W = ImQ = {x; 1 · x = 0},
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as well as the solution decomposition

n = Pn +Qn = v + w = pe + w

where p = p(a, t) is a scalar function.

To simplify notation we shall consider the problem with M = 0 and with B
and C being a independent. Thus, consider

∂tnε = Snε +
1

ε
Cnε,

γnε = Bnε,

nε(0) =
◦
n,

(46)

The hydrodynamic space of C is thus one dimensional; we denote by P the spec-
tral projection of the state space onto this space. Let Q = I − P be the comple-
mentary projection. Accordingly, by Pn = v we denote the hydrodynamic part
of the solution n and by Qn = w its kinetic part.

Applying these projections to both sides of the equation (46) and noting that

PSPv = −∂ape,

QSPv = PSQw = 0,

we get

∂tv = PSPv
ε∂tw = εQSQw +QCQw, (47)

with the initial conditions

v(0) =
o
v, w(0) =

o
w,

where
o
v = P o

n,
o
w = Q o

n, and the boundary conditions are transformed into

γv = PBPv + PBQw,
γw = QBPv +QBQw. (48)
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Denoting b = (β1, . . . , βN) (independent of a), we get

PBPv = e(b · e)

∞∫
0

p(a)da,

PBQw = e

∞∫
0

((b · n(a))− p(a)(b · e))da, (49)

Let us consider the bulk part approximation

(v(t), w(t)) ≈ (v(t), w(t)). (50)

As noted earlier, we do not expand v(t) but put w = w0 + εw1 + . . . and insert
this expansion to the system above getting

vt = PSPv + . . . ,

w0,t + εw1,t + . . . = QSQw0 + εQSQw1 + . . .

+
1

ε
QCQw0 +QCQw1 + . . . ,

γv = PBPv + PBQw0 + εPBQw1 + . . . ,

γw0 + εγw1 + . . . = QBPv +QBQw0 + εPBQw1 + . . . ,

v(0) =
o
v,

w0(0) + εw1(0) + . . . =
o
w (51)

Comparing like powers of ε in the second equation, we get the following hier-
archy

QCQw0 = 0,

QSPv +QCQw1 = 0

which yields w0 = 0 and w1 = (QCQ)−1QSPv on account of invertibility of
QCQ in the kinetic subspace W . Then from the first equation, the first boundary
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condition and the first initial condition we find a closed system for v:

vt = PSPv,
γv = PBPv,

v(0) =
o
v . (52)

By earlier calculations, in real terms this reads

∂tp = −∂ap,

p(t, 0) = (b · e)

∞∫
0

p(t, a)da,

p(0, a) =
o
n1 (a)e1 + . . .+

o
nN (a)eN . (53)

However, we can easily see that the initial condition for w1 (and thus w) is
determined by v̄; also the boundary condition for w contains term QBPv which,
in general, is different from zero. Hence, we can expect that the approximation
will be not of the required ε order. Let us ascertain this by introducing the error
equation which also gives some ideas of how to move forward.

The error of the approximation (50) is defined as

E(t) = (e(t), f(t)) (54)

:= (v(t)− v(t), w(t)− w(t)) = (v(t)− v(t), w(t)− εw1(t)).

One can note an apparently inconsistent inclusion of an ε order term into the ap-
proximation which should be of ε order and thus such terms should appear as error
terms. However, inclusion of this term simplifies calculations below.

Hence, for the error we have the following equations

et = vt − vt = PSPv − vt

= PSPe (55)
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where we used the first equation of (52). Next

ft = wt − εw1,t

= QSQf +
1

ε
QCQf − εw1,t + εQSQw1 (56)

The error satisfies the following side-conditions

e(0) = 0,

f(0) =
o
w −εw1(0) =

o
w + ε(QCQ)−1QSP o

v

and

γe = γv − γv = PBPv + PBQw − γv

= PBPe+ PBQf + εPBQw1,

γf = γw − εγw1 = QBPv +QBQw − εγw1

= QBPe+QBQf +QBPv + εQBQw1 − εγw1.

Combining the above, we see that the error E is a solution of the problem

Et = SE +
1

ε
CE + εR1,

E(0) = R2 + εR3, (57)

γE = BE +R4 + εR5 (58)

where

R1 =

[
PSQw1

−w1,t +QSQw1

]
, R2 =

[
0
o
w

]
, R4 =

[
0

QBPv

]
and

R3 =

[
0

(QCQ)−1QSP o
v

]
, R5 =

[
PBQw1

QBQw1 − γw1.

]
.

We observe that the problem for error has the same structure as the original
one but it is inhomogeneous, both in the equation and in the side conditions.
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While the inhomogeneity of the equation can be in general dealt with by the
Duhamel formula (35), the inhomogeneity in the ‘boundary condition’ is more
complicated and there are various versions of trace theorems which can lift the
inhomogeneity at the boundary to the interior of the boundary. Here we shall
assume that there is a bounded solution operator Lε,λ of the stationary problem

λu = Su+
1

ε
Cu,

γu = g, (59)

which satisfies Lε,λg ∈ D(S) ∩ D(K) and ‖Lε,λ‖ → 0 as λ → ∞ uniformly in
ε ∈ (0, ε0) for some ε0 > 0.

We note that this assumption gives solvability of the following boundary value
problem

λu = Su+
1

ε
Cu,

γu = Bu+ f, (60)

whereB is a bounded operator between appropriate spaces, at least for sufficiently
large λ. Indeed, consider Lε,λg for an unspecified, for the time being, function g.
Then we obtain the boundary equation for g:

g = BLε,λg + f

and clearly, ‖BLε,λ‖ ≤ q < 1 provided λ is such that ‖Lε,λ‖ ≤ q/‖B‖. By
uniformity assumption, λ and q can be chosen independently of ε.

Then
g = (I −BLε,λ)

−1f

and, by the Neuman expansion, ‖Hε,λ‖ ≤ (1− q)−1. Hence, the solution u to (60)
is given by

u = Hε,λf = Lε,λg = Lε,λ(I −BLε,λ)
−1f (61)

with ‖Hε,λ‖ ≤ q/(‖B‖(1 − q)). The condition of uniformity with respect to ε is
not as unrealistic as it seems due to the properties of K.
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If we agree for this assumption, we can accept (as will be demonstrated below)
that ε order contribution to the inhomogeneities result in the ε order contributions
to the errors. If so, then (58) does not give us good estimates for the error due
to contribution in the initial and boundary conditions which are of lower order.
There are two ways to deal with this problem. One is to try to remove these
low order terms by introducing appropriate initial and boundary layer corrections,
and this will be the main topic of this lecture. The other is to adopt appropriate
assumptions which will eliminate the troublesome terms. We see that if the initial
condition satisfies

o
u= (

o
v, 0); that is, if we start from hydrodynamic subspace,

only ε order terms will be present in the initial condition. Eliminating the bad term
from the boundary condition requires an additional assumption on the mechanism
of the process, namely we need to assume that B commutes with P in which case
QBP = BQP = 0.

Example 5 In our case

QBPv = (b⊗ e− e(b · e))

∞∫
0

p(a)da

and we see that QBP = 0 if βi = b · e for each i or, in other words, fecundity is
constant in each patch.

Under these assumptions, the equation for error takes the following form

Et = SE +
1

ε
CE + εR1,

E(0) = εR3,

γE = BE + εR5 (62)

Using the operator Hε,λ and its properties of linearity and boundedness, we define
V (t) = E(t)− εHε,λR5 so that

Vt = Et − εHε,λR5,t = SE +
1

ε
CE + εR1 − εHε,λR5,t

= SV +
1

ε
CV + λεHε,λR5 + εR1(t)− εHε,λR5,t (63)
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and further
V (0) = εR3 − εHε,λR5(0),

and

γV = γE − εγ(BHε,λR5) = BE + εR5 − εBHε,λR5 −R5 = BV.

Since the semigroup (G(t))t≥0 generated by S + 1
ε
C on the domain {Bu = 0}

is contractive, formally we have

‖E(t)‖ ≤ ε‖Hε,λR5(t)‖+ ε‖G(t)(R3 −Hε,λR5(0))

+

t∫
0

G(t− s)(R1(s) + λHε,λR5(s)−Hε,λR5,s(s))ds‖

≤ ε‖Hε,λ‖ sup
0≤t≤T

‖R5(t)‖+ ε(‖R3‖+ ‖Hε,λ‖‖R5(0)‖

+εT ( sup
0≤t≤T

‖R1‖+ ‖Hε,λ‖ sup
0≤t≤T

(λ‖R5(t)‖+ ‖R5,t(t)‖)

which gives convergence, uniform on any finite time interval.

This result is, however, unsatisfactory for at least two reasons. Firstly, the as-
sumption that the kinetic part of the initial condition is zero means that we are
only allowed to start from equilibrium (averaged) data and we miss the transient
phenomena occurring when the system stabilizes. The second assumption im-
poses very stringent conditions on the system as demonstrated on the example
pertaining to our main model.

To remedy the situation we have to introduce corrections which will take care
of the transient phenomena occurring close to t = 0 and to the boundary a =

0. They should not ‘spoil’ the approximation away from spatial and temporal
boundaries and thus should rapidly decrease to zero with increasing distance from
both boundaries.
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5.2 Initial layer

We start with the initial layer corrector. The idea is to blow up the neighbourhood
of t = 0 by introducing new, fast, time

τ =
t

ε

and the initial layer corrections by ũ(τ) = (ṽ(τ), w̃(τ)). Thanks to linearity of
the problem, we will try approximate the solution u as the sum of the bulk part
obtained above and the initial layer which we construct below. We insert the
formal expansion

ṽ(τ) = ṽ0(τ) + εṽ1(τ) + . . . ,

w̃(τ) = w̃0(τ) + εw̃1(τ) + . . .

into the system (47) getting

ε−1(ṽ0,τ + εṽ1,τ + . . .) = PSP(ṽ0 + εṽ1 + . . .),

ε−1(w̃0,τ + εw̃1,τ + . . .) = QSQ(w̃0 + εw̃1 + . . .)

+
1

ε
QCQw̃0 +QCQw̃1 + . . . ,

γ(ṽ0 + εṽ1 + . . .) = PBP(ṽ0 + εṽ1 + . . .)

+PBQw̃0 + εPBQw̃1 + . . . ,

γw̃0 + εγw̃1 + . . . = QBP(ṽ0 + εṽ1 + . . .)

+QBQw̃0 + εPBQw̃1 + . . . ,

ṽ(0) = 0,

w0(0) + εw1(0) + . . . =
o
w (64)

where in the initial condition we have taken into account that the exact initial
condition for the hydrodynamic part is already satisfied by the bulk hydrodynamic
approximation but the bulk kinetic part cannot satisfy the exact initial condition.
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Comparing coefficients at like powers of ε, from the first equation we imme-
diately obtain ṽ0,τ = 0 which implies ṽ0 on account of the decay to zero of the
initial layer term. Then, at the same ε−1 level, we obtain

w̃0,τ = QCQw̃0

which yields
w̃0 = eτQCQ o

w .

We note that due to the assumption that λ = 0 is the dominant eigenvalue ofK and
Q is the complementary spectral projection corresponding to λ = 0, w̃0 decays
to 0 exponentially fast. We also note that the initial layer is fully determined by
the initial condition

o
w and thus no corrections to the boundary conditions can be

made at this level; on the contrary, as we shall see, the initial layer introduces an
additional error on the boundary.

Let us modify the approximation taking into account the initial layer:

u(t) = (v(t), w(t)) ≈ (v(t), εw1 + w̃0)

and define the new error

Ẽ(t) = (ẽ(t), f̃(t)) = (v(t)− v(t), w(t)− εw1(t)− w̃0(t/ε))

= (e(t), f(t)− w̃0(t/ε)) (65)

Using the fact that the problem is linear, we get from (55) and (56)

ẽt = PSP ẽ.

Next

f̃t = QSQf̃ +
1

ε
QCQf̃ +QSQw̃0 − εw1,t + εQSQw1

Similarly, we get

ẽ(0) = 0,

f̃(0) = −εw1(0) = ε(QKQ)−1QSP o
v
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and

γẽ = PBP ẽ+ PBQf̃ + PBQw̃0 + εPBQw1,

γf̃ = QBP ẽ+QBQf̃ +QBQw̃0 +QBPv
+εQBQw1 − εγw1 − γw̃0.

5.3 Boundary layer correction

We have seen that, as expected, the troublesome term QBPv in the boundary
condition has been unaffected by addition of the initial layer. To get rid of it we
introduce the boundary layer by blowing up the state variable a according to

α = a/α

and defining
û(t, α) = (v̂(t, α), ŵ(t, α)).

The operator S is a first order differentiation operator acting on the other state
variable, hence with the change of variables a→ α = a/ε we have

Saû =
1

ε
Sαû, (66)

where the subscripts denote the variable which S acts on.

Similarly, the nonlocal boundary operator has the rescaling property

γû = γu = Bû = εBαû (67)

Again, by the linearity of the problem we approximate the solution u by the
sum of the bulk and parts, obtained above, and the boundary layer which we
construct below. We insert the formal expansion of the boundary layer

v̂(t, α) = v̂0(t, α) + εv̂1(t, α) + . . . ,

ŵ(t, α) = ŵ0(t, α) + εŵ1(t, α) + . . .
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into the system (47) getting

v̂0,t + εv̂1,t + . . . =
1

ε
PSαP(v̂0 + εv̂1 + . . .),

ŵ0,t + εŵ1,t + . . . =
1

ε
QSαQ(ŵ0 + εŵ1 + . . .)

+
1

ε
QCQŵ0 +QCQŵ1 + . . . . (68)

This shows that the boundary layer satisfies

0 = PSαP v̂0,

0 = QSαQŵ0 +QCQŵ0

which is simply the stationary original equation

Sαû+ Cû = 0 (69)

and we have freedom of choosing the boundary conditions which will help to
eliminate the term QBPv. To find the proper boundary conditions, let us assume
that we have a solution to the above equation with for the moment unspecified
boundary condition and, as before, find the error of the approximation

u(t, a) = (v(t, a), w(t, a))

≈ (v(t, a) + v̂(t, a/ε), εw1(t, a) + w̃0(t/ε, a) + ŵ(t, a/e)).

and define the new error

Ê(t, a) = (ê(t, a), f̂(t, a)) (70)

= (ẽ(t, a)− v̂0(t, a/ε), f̃(t, a)− ŵ0(t, a/ε)).

Hence

êt = PSP ê− v̂0,t
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and

f̂t = QSQf̂ +
1

ε
QCQf̂ +QSQw̃0 − εw1,t + εQSQw1 − ŵ0,t

where we used (66) to eliminate terms in the last line.

For the boundary conditions we obtain

γê = PBP ê+ PBQf̂ + PBQw̃0 + εPBQw1 + PBP v̂0

+PBQŵ0 − γv̂0,

γf̂ = QBP ê+QBQf̂ +QBPv + εQBQw1 − εγw1

+QBP v̂0 +QBQŵ0 − γŵ0 +QBQw̃0 − γw̃0.

Thus, to eliminate the bad term QBPv, we solve the full boundary layer problem

PSαP v̂0 = 0,

QSαQŵ0 +QCQŵ0 = 0,

γv̂0 = 0,

γŵ0 = QBPv.

With this boundary condition for the boundary layer equation, the boundary
conditions for the error equation are

γê = PBP ê+ PBQf̂ + PBQw̃0 + εPBQw1 + εPBαP v̂0

+εPBαQŵ0,

γf̂ = QBP ê+QBQf̂ + εQBQw1 − εγw1 + εQBαP v̂0

+εQBαQŵ0 +QBQw̃0 − γw̃0.

We note that still we have terms depending on t/ε which, when lifted as in (63)
will, upon differentiation with respect to t, produce 1/ε on the right hand side.

For the initial condition we obtain

ê(0) = −v̂0(0, a/ε),

f̂(0) = −ŵ0(0, a/e)− εw1(0, a)
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5.4 Corner layer

As noted above, by (63), all terms apart from PBQw̃0 and γw̃0, which depend on
t/ε, give rise to ε order error. To eliminate this initial layer contribution on the
boundary, we need to introduce the corner layer by simultaneously rescaling time
and space:

τ =
t

ε
, α =

a

ε
.

As before we use linearity to approximate the solution u by the sum of the bulk,
initial and boundary layer parts, obtained above, and the corner layer which we
construct below. We insert the formal expansion of the corner layer

v̆(τ, α) = v̆0(τ, α) + εv̆1(τ, α) + . . . ,

w̆(τ, α) = w̆0(τ, α) + εw̆1(τ, α) + . . .

into the system (47) getting

1

ε
(v̆0,τ + εv̆1,τ + . . .) =

1

ε
PSαP(v̆0 + εv̆1 + . . .),

1

ε
(w̆0,τ + εw̆1,τ + . . .) =

1

ε
QSαQ(w̆0 + εw̆1 + . . .)

+
1

ε
QCQw̆0 +QCQw̆1 + . . . . (71)

This shows that the corner layer satisfies

v̆0,τ = PSαP v̆0, (72)

w̆0,τ = QSαQw̆0 +QCQw̆0 (73)

which is the unperturbed original equation

ŭ0,τ = Sαŭ0 +Kŭ0 (74)

and we have freedom of choosing the boundary and initial conditions which will
help to eliminate the problematic terms on the boundary. To find the proper side
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conditions, let us assume that we have a solution to the above equation with, for
the moment, unspecified boundary condition and, as before, find the error of the
approximation

u(t, a) = (v(t, a), w(t, a))

≈ (v(t, a) + v̂(t, a/ε) + v̆(t/ε, a/ε),

εw1(t, a) + w̃0(t/ε, a) + ŵ(t, a/e) + w̆(t/ε, a/ε))

and define the new error

Ĕ(t, a) = (ĕ(t, a), f̆(t, a)) (75)

= (ê(t, a)− v̆0(t/ε, a/ε), f̂(t, a)− w̆0(t/ε, a/ε)).

Hence

ĕt = PSP ĕ− v̂0,t

where we used (72). Similarly, for the kinetic part of the error, we get

f̆t = QSQf̆ +
1

ε
QCQf̆ +QSQw̃0 − εw1,t + εQSQw1 − ŵ0,t

where we used (73) to eliminate the corner layer terms in the last line.

For the boundary conditions, we obtain

γĕ = PBP ĕ+ PBQf̆
+εPBαP v̆0 + εPBαQw̆0 + εPBQw1 + εPBαP v̂0

+εPBαQŵ0 + PBQw̃0 − γv̆0,

γf̆ = QBP ĕ+QBQf̆ + εPBαP v̆0 + εPBαQw̆0 + εQBQw1

+εQBαP v̂0 + εQBαQŵ0 − εγw1

+QBQw̃0 − γw̃0 − γw̆0.
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Hence, to eliminate entries of order 1 at the boundary, we solve the equation
(74) subject to the boundary conditions

γv̆0 = PBQw̃0,

γw̆0 = QBQw̃0 − γw̃0.

This gives on the boundary

γĕ = PBP ĕ+ PBQf̆
+εPBαP v̆0 + εPBαQw̆0

+εPBQw1 + εPBαP v̂0 + εPBαQŵ0,

γf̆ = QBP ĕ+QBQf̆ + εPBαP v̆0 + εPBαQw̆0

+εQBQw1 + εQBαP v̂0 + εQBαQŵ0 − εγw1.

In compact form, this reads

Ĕt = SĔ +
1

ε
CĔ + S

[
0

w̃0(t/ε)

]

+εS

[
0

w1(t)

]
− ε

[
0

w1,t(t)

]
−

[
v̂0(t)

ŵ0,t(t)

]
γĔ(t) = BĔ(t) + εBαŭ0(t/ε) + εBαû0(t)

+εB

[
0

w1(t)

]
− ε

[
0

γw1(t)

]
= BĔ(t) + εR6(t/ε) + εR7(t).

The terms coming from the corner layer are of great importance. Let us look
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closer at the corner layer problem. We are to solve

v̆0,τ = PSαP v̆0, (76)

w̆0,τ = QSαQw̆0 +QCQw̆0 (77)

γv̆0 = PBQw̃0, (78)

γw̆0 = QBQw̃0 − γw̃0 (79)

v̆0(0) = w̆0(0) = 0. (80)

It would be tempting to believe that since the right hand sides behave as eQKQτ ,
which is of negative type, the corner layer (v̆0, w̆0) have the same negative type.
However, this is not always the case (as we shall see in the example). The reason
for this is that the first equation is, in general, only dissipative with no exponential
decay and lifting of the inhomogeneities (78) and (79) produces a nontrivial initial
condition which can evolve in a non-exponentially decaying way. Fortunately,
often one can prove that the term R6(τ) (and its derivative with respect to τ ) is
indeed of the form A+O(e−ωτ ) for some ω > 0 with A independent of τ . Lifting
this term according to (63)

Vt = SV +
1

ε
KV + λεHε,λR6(τ)−Hε,λR

′
5(t/ε) (81)

so we lost one ε due to differentiation.

However, consider the integral

‖
t∫

0

G(t− s)Hε,λR
′
5(s/ε))ds‖ ≤ ε‖Hε,λ‖

t/ε∫
0

‖R′5(σ))‖dσ ≤ εM

where M is finite on account of the exponential decay of R′5. In fact, it suffices
that R′5 be integrable.

In our situation equation (76) is decoupled from (77) and the problem for v̆0
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is of the form

v̆0,τ = −v̆0,α,

v̆0(0, α) = 0,

v̆0(τ, 0) = F (τ).

We immediately find the solution as

v̆0(τ, α) =

{
F (τ − α) for τ > α,

0 for τ < α,

which clearly does not have exponential growth even if F has.

Using the formulae for projections (45) we see that

PBQw̃0 = PBw̃0 − PBPw̃0 = e

∞∫
0

1 · [b⊗ eτQCQ o
w (a)]da

as Pw̃0 = 0. Hence,

v̆0(τ, α) =


∞∫
0

1 · [b⊗ e(τ−α)QCQ o
w (a)]da for τ > α,

0 for τ < α,

The term containing v̆0 in R6 is therefore
∞∫

0

[b · e]v̆0(τ, α)dα

=

τ∫
0

[b · e]

 ∞∫
0

1 · [b⊗ e(τ−α)QCQ o
w (a)]da

 dα

= ε[b · e]

∞∫
0

1 · [b⊗

 τ∫
0

e(τ−α)QCQ o
w (a)dα

]da

= ε[b · e]

∞∫
0

1 · [b⊗
(
(QCQ)−1(eτQCQ o

w (a)− o
w (a))

)
]da
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and, since eτQCQ is of negative type, we see that this term satisfies the assumption
on the behaviour of R6.

Let us consider the term Bw̆0. The kinetic part of the corner layer satisfies

w̆0,τ = QSαQw̆0 +QCQw̆0 (82)

γw̆0 = QBQw̃0 − γw̃0 (83)

w̆0(0) = 0. (84)

We have

QBQw̃0 = Q
∞∫

0

(b⊗ (w̃0 − Pw̃0)da = Q
∞∫

0

b⊗ w̃0da

=

∞∫
0

b⊗ w̃0da− P
∞∫

0

b⊗ w̃0da

=

∞∫
0

b⊗ w̃0da− e

∞∫
0

1 · [b⊗ w̃0]da

that is

[QBQw̃0](τ) =

∞∫
0

b⊗ eτQCQ o
w (a)da− e

∞∫
0

1 · [b⊗ eτQCQ o
w (a)]da,

so the boundary value can be written as

γw̆0(τ) = L(eτQCQ o
w)

where L is a bounded linear operator from interior to the boundary.

To convert the problem into homogeneous boundary problem, we introduce
Z(τ, α) = r(α)L(eτQKQ o

w) where r is a scalar sufficiently regular function with
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r(0) = 1. Then W = w̆0 − Z satisfies

Wτ = QSαQW +QCQW
+QSαQ(r(α)L(eτQCQ o

w)) +QCQ(r(α)L(eτQCQ o
w))

−r(α)L(QCQeτQCQ o
w)

γW = 0

W (0, α) = −r(α)L(
o
w).

We note that, since L(eτQCQ o
w)) does not depend on α, QSαQ acts only

on r which is supposed to be sufficiently smooth and hence this term remains a
bounded operator on the exponential. In fact, in our case we have

Sα(r(α)L(eτQCQ o
w)) = −r′(α)L(eτQCQ o

w).

DenoteAα = QSαQ+QCQ and (Gα(t))t≥0 the semigroup generated by it. Thus,
the inhomogeneity is a bounded linear operator given by

L1(e
τQCQ o

w)) = Aα(r(α)L(eτQCQ o
w))− r(α)L(QCQeτQCQ o

w).

Thus we have

w̆0(τ, α) = r(α)L(eτQCQ o
w)− Gα(τ)[r(α)L(

o
w)]

+

τ∫
0

Gα(τ − σ)L1(e
τQCQ o

w)dσ

and the contribution to R6 due to w̆0 is ε
∞∫
0

b ⊗ w̆0(τ, α)dα. To get estimates of

the derivative with respect to t required in the error calculations, we have
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ε

∞∫
0

b⊗ w̆0,t(τ, α)dα =

∞∫
0

b⊗ w̆0,τ (τ, α)dα

=

∞∫
0

b⊗Aαw̆0(τ, α)dα

=

∞∫
0

BAα

(
r(α)L(eτQCQ o

w)− Gα(τ)[r(α)L(
o
w)]

+

τ∫
0

Gα(τ − σ)L1(e
τQCQ o

w)dσ
)
dα

=

∞∫
0

b⊗
(
Aα

(
r(α)L(eτQCQ o

w)
)
− Gα(τ)[Aα(r(α)L(

o
w))]

+

τ∫
0

Gα(τ − σ)
(
AαL1(e

τQKQ o
w)dσ

))
dα.

Again, the action of the unbounded operator Aα is absorbed by the auxiliary
function r(α), and thus all the terms remain bounded with respect to the argument,
which is exponential term eτQCQ o

w, and we obtain the estimate

ε‖Hε,λ

∞∫
0

Bw̆0,t(τ, α)dα‖

≤ ε‖Hε,λ‖‖B‖
(
C1‖eτQCQ‖‖ o

w ‖+ C2‖Gα(τ)‖ o
w ‖

+C3‖
o
w ‖

τ∫
0

‖Gα(τ − σ)‖‖eσQCQ‖dσ
)

εe−ωτ (C4 + C5τ),

where we used for both (Gα(t))t≥0 and eτQKQ the negative type estimate by e−ωt.
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If the types are different, say ω1 and ω2 with ω2 < ω1, we obtain

τ∫
0

e−ω1(τ−σ)e−ω2σdσ =
e−ω1τ

ω1 − ω2

(e(ω1−ω2)τ − 1) =
e−ω2τ − e−ω1τ

ω1 − ω2

which again is of negative exponential growth. Hence, we see that in this case our
assumption for justifying the error estimates are satisfied.

6 Diffusion approximation

Consider the singularly perturbed telegraph equation

∂t

[
v

w

]
= S

[
v

w

]
+

1

ε
C

[
v

w

]
, (85)

where

S =

[
0 −b∂x

−c∂x 0

]
, C =

[
0 0

0 −d

]
.

or

∂tv + b∂xw = 0,

∂tw + c∂xv +
d

ε
w = 0, (86)

with constant coefficients b, c, d and a small parameter ε > 0, supplemented by
the initial conditions

v(0) =
o
v, w(0) =

o
w, (87)

and the homogeneous Dirichlet conditions

v(−1, t) = v(1, t) = 0, t > 0. (88)
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Clearly C, considered on C2, has a one dimensional hydrodynamic space
spanned by e = (0, 1). We have obvious spectral projections

P

[
v

w

]
=

[
v

0

]
,

Q

[
v

w

]
=

[
0

w

]
.

Then

PSP

[
v

0

]
= P

[
0 −b∂x

−c∂x 0

][
v

0

]
=

[
0

0

]
,

and, recalling the candidate for the limit equation as in (52), we obtain

vt = PSPv = 0, (89)

which gives trivial limit dynamics. Clearly, we do not have limit diffusion but
let us consider second order approximation and go one level higher using the
compressed expansion.

Recall that we are working with

∂tu = Su+
1

ε
Cu, (90)

in a Banach space X (which typically is Lp
x(Ω) ⊗X ′). Here we also assume that

the setting is such that no boundary (and thus corner) layer phenomena occur so
that we focus on temporal transient effects captured by the initial layer. However,
the analysis can be extended to more general situations.

By applying the spectral projections to both sides of (90) we get

∂tv = PSPv + PSQw
ε∂tw = εQSQw + εQSPv +QCQw, (91)

with the initial conditions

v(0) =
o
v, w(0) =

o
w,

46



where
o
v = P o

u,
o
w = Q o

u.

The projected operator PSP vanishes for the telegraph equation and for many
other (but not all!) types of linear equations. Hence, for simplicity of presentation,
we perform analysis for such a case. Thus, we obtain the following form of (91)

∂tv = PSQw

∂tw = QSPv +QSQw +
1

ε
QCQw (92)

v(0) =
o
v, w(0) =

o
w . (93)

As before, we represent the solution of (92) as a sum of the bulk and the initial
layer parts:

v(t) = v̄(t) + ṽ(τ), (94)

w(t) = w̄(t) + w̃(τ), (95)

where, in this case, the variable τ in the initial layer part is given by τ = t/ε.
Other scalings may require different formulae for τ .

Let us recall the algorithm describing main features of the compressed asymp-
totic procedure:

Algorithm 1

1. The bulk approximation v̄ is not expanded into powers of ε.

2. The bulk approximation w̄ is explicitly written in terms of v̄ and expanded
in powers of ε.

3. The time derivative ∂tv̄ and the initial value v̄(0) are expanded into powers
of ε.
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Thus

w̄ = w̄0 + εw̄1 +O(ε2),

ṽ = ṽ0 + εṽ1 +O(ε2), (96)

w̃ = w̃0 + εw̃1 +O(ε2).

Substituting the expansion for w̄ into (92) and comparing terms of the same
powers of ε yields

∂tv̄ = PSQ(w̄0 + εw̄1 +O(ε2)). (97)

and
w̄0 ≡ 0,

w̄1 = −(QCQ)−1QSP v̄.

Inserting the expressions for w̄0 and w̄1 into (97) gives the equation

∂tv̄ = −εPSQ(QCQ)−1QSP v̄ +O(ε2), (98)

which, as we shall see, is the approximate diffusion equation.

For the initial layer a similar procedure yields

ṽ0(τ) ≡ 0,

∂τ w̃0 = QCQw̃0, (99)

∂τ ṽ1 = PSQw̃0, (100)

∂τ w̃1 = QCQw̃1 +QSP ṽ0 +QSQw̃0. (101)

We observe that, due to w̄0 ≡ 0, the initial condition for w̃0 is w̃0(0) =
o
w.

Solving (99) with this initial value allows to integrate (100) which gives

ṽ1(τ) = PSQ(QCQ)−1eτQCQ o
w, (102)
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upon which ṽ1(0) = PSQ(QCQ)−1 o
w. This in turn allows one to determine the

initial condition for the diffusion equation: we have from (95) that
o
v = v̄(0) +

εṽ1(0) +O(ε2) so that

v̄(0) =
o
v −εPSQ(QCQ)−1 o

w +O(ε2). (103)

In what follows we adopt a uniform notation valid for all discussed examples.
In general, by ρ we shall denote a solution of the ‘diffusion’ equation determined
by discarding the O(ε2) terms in (98), that is,

∂tρ = −εPSQ(QCQ)−1QSPρ. (104)

Thus, ρ is expected to provide an approximation of v̄. By ρ̂ we denote the solution
of this equation with uncorrected initial condition ρ̂(0) =

o
v and by ρ̄ the solution

with the corrected initial value obtained by discarding the O(ε2) terms in (103),
that is, ρ̄(0) is given by

ρ̄(0) =
o
v −εPSQ(QCQ)−1 o

w . (105)

We shall see that for many cases the above formulae lead to the initial value prob-
lem for the diffusion equation.

6.0.1 Can we prove the convergence?

As before, we present a formal equation for the error to show that under reasonable
regularity we get O(ε2) approximation. The equation satisfied by the error, which
is defined as

y(t) = v(t)− [v̄(t) + εṽ1(t/ε)],

z(t) = w(t)− [w̃0(t/ε) + ε(w̄1(t) + w̃1(t/ε))], (106)
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is

∂ty = PSPy + PSQz + εPSP ṽ1 + εPSQw̃1,

∂tz = QSPy +QSQz +
1

ε
QCQz + εQSQw̃1

+εQSP ṽ1 + εQSQw̄1 − ε∂tw̄1, (107)

that is, denoting E(t) = y(t) + z(t), the error system (107) can be written as

∂tE =

(
S +

1

ε
C
)
E + εF̄ + εF̃

Denoting by (Gε(t))t≥0 the contractive semigroup generated by S + ε−1C, we
get

‖E(t)‖ ≤ ‖E(0)‖+ ε

t∫
0

‖F̄ (s)‖ds+ ε

t∫
0

‖F̃ (s)‖ds.

It is easy to see that E(0) = O(ε2) and so this equation yields the error of ap-
proximation to be O(ε), which is not good as we have ε order terms in the ap-
proximation. A closer look at the term involving F̃ shows that it contains e−t/ε

which, upon integration, produces another ε so that the initial condition and the
initial layer contribution to the error are O(ε2). The fact that the contribution of F̄
is also O(ε2) is highly nontrivial but can be proved for a large class of problems.

It is important to note that the above considerations show that the presented
asymptotic procedure potentially produces the convergence of the expected or-
der. Since in most cases we work with unbounded operators, every step must be
carefully justified.

6.1 Telegraph equation–final result

To avoid the effect of a boundary layer here, it is enough to assume that
o
v and

o
w

are three times differentiable and

∂x
o
v (±1) = 0 ,

o
w (±1) = 0 , ∂xx

o
w (±1) = 0. (108)
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To get explicit expression for the operator PSQ(QCQ)−1QSP we evaluate

QSP

[
v

0

]
= Q

[
0 −b∂x

−c∂x 0

][
v

0

]
=

[
0

−c∂xv

]
,

PSQ

[
0

w

]
= P

[
0 −b∂x

−c∂x 0

][
0

w

]
=

[
−b∂xw

0

]
,

The inverse (QCQ)−1 is given by

(QCQ)−1

[
0

w

]
=

[
0

−w/d

]
.

Then

PSQ(QCQ)−1QSP

[
v

0

]
= PSQ

[
0

c
d
∂xv

]
=

[
− bc

d
∂xx v

0

]
.

Hence the approximating diffusion equation, as given by (104), is

∂tρ = ε
bc

d
∂2

xxρ. (109)

The uncorrected initial condition is ρ(0) = ρ̂(0) =
o
v, whereas the corrected

one can be derived from (105) using PSQ and (QCQ)−1 as calculated above,
which gives

ρ̄(0) =
o
v −εPSQ(QCQ)−1 o

w =
o
v −ε b

d
∂x

o
w . (110)

The initial layer is derived from (102) and is given by

ṽ1(τ) = PSQ(QCQ)−1eτQCQ o
w =

b

d
e−dτ∂x

o
w, (111)

where τ = t/ε.

Let us denote

D3 = {u ∈ W 3
2 ([−1, 1]); u|x=±1 = 0, ∂2

xxu|x=±1 = 0}
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The following theorem is true.

Theorem 6 If
o
v,

o
w∈ D3 and the compatibility conditions (108) are satisfied.

Then there is a constant C such that

‖v(t)− ρ(t)− εṽ1(t/ε)‖ ≤ Cε2

uniformly on [0,∞)

Fig 1. Error for various approximations for the telegraph equation

6.2 Higher approximation for the sole equation

Performing the second order analysis of the sole equation, we shall not get a dif-
fusion equation but

∂tv̄ = P(S +M)P v̄ − εP(S +M)Q(QCQ)−1Q(H +M)P v̄.
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The explicit expressions for the involved operators can be calculated as

P(S +M)P v̄ = −(∂ap− p(1 · Me)e,

Q(S +M)P v̄ = −p(1 · Me−M)e,

P(S +M)Qx = −(1 · Mx− 1 · Mx)e,

and, denoting by h the unique solution in W = QX of

Ch = −(1 · Me−M)e

we obtain

P(S +M)Q(QCQ)−1Q(S +MP v̄ = p(1 · Mh).

Therefore
∂tp = −∂ap+ p(1 · Me + ε1 · Mh)

or, taking into account the form of M, we obtain

∂tp = −∂ap− µ∗p+ ε(1 · Mh)p.

6.2.1 Fokker-Planck equation of Brownian motion

We conclude with a brief discussion of a more complicated example of the
Fokker-Planck equation describing n-dimensional Brownian motion. The colli-
sion operator C now is given by the three-dimensional differential operator

(Cu)(x, ξ) = ∂ξ(ξ + ∂ξ)u(x, ξ), (1)

x, ξ ∈ Rn and the streaming operator S is of the form

(Su)(x, ξ) = ξ∂xu(x, ξ). (2)
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Here u is the particle distribution function in the phase space, x denotes the posi-
tion and ξ the velocity of the particle.

The Fokker-Planck operator can be transformed to the well-known harmonic
oscillator operator: for the function u(ξ) we define ξ =

√
2ζ ∈ Rn and

y(ζ) = (Anu)(ζ) := (
√

2)
n
2 e

|ζ|2
2 u(

√
2ζ). (3)

This is an isometry of the space L2(Rn, e
|ξ|2
2 dξ) onto L2(Rn, dζ) which transforms

the Fokker-Planck collision operator C into

C̃y =
1

2(
√

2)n/2
e−

|ζ|2
2

(
∂2

ζy − |ζ|2y + ny
)
. (4)

Dropping the normalizing factor we arrive at the harmonic oscillator operator in
L2(Rn), denoted hereafter by H ,

(Hy)(ζ) = ∂2
ζy(ζ)− |ζ|2y(ζ) + ny(ζ). (5)

To analyse this operator we introduce the sesquilinear form

h(φ, ψ) =

∫
Rn

(
∂ζφ∂ζψ̄ + |ζ|2φψ̄ + φψ̄

)
dζ, (6)

defined originally on C∞
0 (Rn) and the Hilbert space H1 defined as the closure of

C∞
0 (Rn) with respect to the norm ‖φ‖H1 =

√
h(φ, φ). Let Ah denote the operator

associated with h It follows that the spectrum of Ah consists only of eigenvalues
and the operator itself can be expressed in terms of the series of its eigenfunctions.
Using the separation of variables and the one-dimensional theory of the harmonic
oscillator we obtain the following expression for the eigenfunctions of Ah:

H(n)
α (ζ) =

(−1)|α|

(2|α|πn/2α!)1/2
e

|ζ|2
2 ∂αe|ζ|

2

=
n∏

i=1

H(1)
αi

(ζi), (7)

where ζ ∈ Rn and α = (α1, . . . αn) is a multi-index.
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H
(1)
m is the normalized one-dimensional Hermite function corresponding to the

eigenvalue λm = 2m+ 1

Hm(ζ) :=
(−1)m√√
π2mm!

e
ζ2

2 ∂m
ζ e

−ζ2

. (8)

Let C denote the Fokker-Planck collision operator obtained fromAh by the inverse
transformation (3), and thus corresponding to the differential expression (1). For
k = 1, . . . , n and the multi-index β = (β1, . . . , βk) we define

Φ
(k)
β := A−1

k H
(k)
β ,

that is,

Φ(n)
α (ξ) =

(−1)|α|

(2π)n/4
√
α!
∂αe−

|ξ|2
2 =

n∏
i=1

Φ(1)
αi

(ξi). (9)

Since Ak is an isometric isomorphism, the family
{

Φ
(n)
α

}
α∈Nn

forms an orthonor-

mal basis in L2(Rn, e
|ξ|2
2 dξ).

We have therefore

u =
∞∑

|α|=0

uαΦ(n)
α (10)

and

Cu = −
∞∑

|α|=1

|α|uαΦ(n)
α , (11)

so that it is clear that C is dissipative and satisfies all assumptions of the general
theory.

To conclude we derive the form of the diffusion equation. To this end we
express operator S in terms of eigenfunctions Φ

(n)
α . Let us adopt the following

convention
α(i,±1) = (α1, . . . , αi ± 1, . . . , αn).

The Hermite functions satisfy the following recurrence formula for Φ
(n)
α . Let i =

1, . . . , n, then

ξiΦ
(n)
α =

√
αi + 1Φ

(n)
α(i,+1)(ξ) +

√
αiΦ

(n)
α(i,−1)(ξ). (12)
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If some αi = 0, then naturally the second summand vanishes. By Eq. (12) we
obtain formally

Su = −
n∑

k=1

∂k

 ∞∑
|α|=0

(√
αkuα(k,−1) +

√
αk + 1uα(k,+1)

)
Φ(n)

α

 . (13)

The hydrodynamic space is clearly spanned by Φ
(n)
0 . Hence we denote v̄ =

ρ̄Φ
(n)
0 and ṽ1 = ρ̃Φ

(n)
0 . Introducing the notation

0(i; l) = (0, . . . , l, . . . , 0)

and
0(i, j; k, l) = (0, . . . , k, . . . , l, . . . , 0),

where l (resp. (k, l)) are in the i-th (resp. i-th and j-th) place, we get

S v̄ = −
n∑

k=1

∂kΦ
(n)
0(k;1)ρ̄

and further

SQ(QCQ)−1QSP v̄

= −
n∑

k=1

∂k

(
n∑

l=1,l 6=k

∂lΦ
(n)
0(k,l;1,1) + ∂k

(√
2Φ

(n)
0(k,2) + Φ

(n)
0

))
ρ̄.

Projecting this onto Φ
(n)
0 we get the diffusion operator in the form

PSQ(QCQ)−1QSP v̄ = −∆xv̄.

Similarly for the corrector of the initial value we obtain

PSQ(QCQ)−1 ◦
w= Φ

(n)
0

n∑
k=1

∂k
◦
u0(k;1)
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and the initial layer corrector ṽ1 will have the form

ṽ1

(
t

ε

)
= e−

t
ε Φ

(n)
0

n∑
k=1

∂k
◦
u0(k;1),

where
◦
u0(k;1) is the first moment of the initial value for u.

To formulate the final result of this section we introduce

%(t, x) :=

∫
R

u(t, x, ξ)dξ,

where u is the solution of the initial value problem for the Fokker-Planck equation
of the Brownian motion.

Let
◦
u∈ W 3

1 (Rn, L2(Rn, e
|ξ|2
2 dξ)), then∥∥∥∥%(t)− ρ̄(t)− ερ̃

(
t

ε

)∥∥∥∥
L2(Rn×Rn,e

|ξ|2
2 dxdξ)

= O(ε2) (14)

uniformly for t in bounded intervals of [0,∞[. Here ρ̄ is the solution of the fol-
lowing initial value problem

∂tρ̄ = ε∂2
xρ̄,

ρ̄(0) =
◦
u0 −ε

n∑
k=1

∂xk

◦
u0(k;1),

and the function ρ̃ in the initial layer corrector ṽ1 = ρ̃Φ0 is given by

ρ̃

(
t

ε

)
= e−t/ε

n∑
k=1

∂xk

◦
u0(k;1).
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7 Interplay of elastic and inelastic scattering oper-
ators in extended kinetic models and their hydro-
dynamic limits – reference manual

7.1 The Physical Model

We assume that the host medium is at thermodynamical equilibrium with temper-
ature T and we consider the

Lorentz gas limit m/M << 1,

in other words, the test particles collide with something like a rigid net – they can
be deflected (elastic collisions) or exchange quanta of energy with the background
(inelastic collisions). Furthermore, the background particles can occur in two
energy states:

• a ground level and

• an excited level,

spaced by an energy gap ∆E (which throughout the paper will be normalized to
one). The number densities of the particles in the ground and in the excited state
are assumed to be constant; we denote them by n1 and n2, respectively. They are
related through

the Boltzmann factor b := n2/n1 = e−
∆E
KT ,

where K is the Boltzmann constant.
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The elastic scattering operator is given by

(Cef)(x,v) = −4πλ(v)f(x,v) + λ(v)

∫
S2

f(x, vω′)dω′.

S2 is the unit sphere in R3
v, v = vω with v ∈ [0,∞[, ω ∈ S2.

The inelastic scattering operator is given by

(Cif)(x,v) = −f(x,v)4π
(
b
v+

v
ν(v+)

+ H(v2 − 1)ν(v)
)

+
v+

v
ν(v+)

∫
S2

f(x, v+ω′)dω′

+ bν(v)H(v2 − 1)

∫
S2

f(x, v−ω′)dω′

where

• H is the Heaviside function,

• v± =
√
v2 ± 1

• by Maxwell molecules assumption

0 < λmin ≤ λ(v) ≤ λmax < +∞, v > 0.

0 < νmin ≤ ν(v) ≤ νmax < +∞ for v ∈ [1,∞[.
Using the operators introduced above, we shall consider the kinetic equation

in the form:
∂f

∂t
+

1

Sh
Sf =

1

Kne

Cef +
1

Kni

Cif

where Su = −v · ∇xu.
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The numbers Sh, Kne, and Kni measure the relative importance of the stream-
ing, elastic collisions, and inelastic collisions in the balance equation for the test
particle distribution function.

We shall further simplify our considerations by requiring that these three num-
bers are functions of a single parameter ε, which might represent the chosen small-
ness parameter.

We assume that the three numbers are power functions of ε.

The time evolution of the distribution function f = f(x,v, t) of the test
particles is governed by the linear Boltzmann in the adimensionalized form

∂f

∂t
=

1

εp
Sf +

1

εq
Cef +

1

εr
Cif,

where p, q, r are integers.

All the reasonable hydrodynamic limits for this equation, when ε→ 0, will be
discussed in the sequel.

The collision operators are defined, with reference to the kinetic variables only,
by

Cef = −f(ξ,ω)

∫
S2

λ(ξ,ω · ω′) dω′

+

∫
S2

λ(ξ,ω · ω′)f(ξ,ω′) dω′
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and

Cif = −f(ξ,ω)

[
H(ξ − 1)

∫
S2

ν(ξ,ω · ω′)dω′+

+ b

(
ξ + 1

ξ

)1/2 ∫
S2

ν(ξ + 1,ω · ω′)

]

+

(
ξ + 1

ξ

)1/2 ∫
S2

ν(ξ + 1,ω · ω′)f(ξ + 1,ω′) dω′

+ bH(ξ − 1)

∫
S2

ν(ξ,ω · ω′)f(ξ − 1,ω′) dω′.

7.2 Formal Asymptotic Expansion

Let us consider the scaled equation

∂fε

∂t
=

1

εp
Sfε +

1

εq
Cefε +

1

εr
Cifε.

We are looking for the diffusive/hydrodynamic limits of this equation.

There are two possible hydrodynamic spaces: N(Ce) and N(C) = N(Ci) =

N(Ci + Ce). We can expect evolution

• in N(Ce) if the elastic collisions are dominant, and

• in N(C) if either inelastic collisions are dominant or both elastic and in-
elastic collisions are much stronger than the free-streaming.

Crucial point is to determine the hydrodynamic subspaces in all cases and the
complementary subspaces.
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Theorem 7 Under the adopted assumptions

a) The null-space of Ce is given by

N(Ce) = {f ∈ L1(R6
x,v); f is independent on ω}. (15)

and the spectral projection onto N(Ce) is given by

(Pf)(x, v) =
1

4π

∫
S2

f(x, vω)dω. (16)

b) The null-spaces of Ci and C = Ci + Ce coincide and are given by

N(C) = N(Ci) = {f ∈ L1(R6
x,v, (1 + v−1)dvdx);

f is independent of ω and satisfies (17)

f(x, v+) = bf(x, v) for a.a. x ∈ R3
x, v ∈ R+}.

The spectral projections onto N(C) and N(Ci) coincide and are given by

(Pf)(x, v2 + n) = bnψ0(x, v
2), x ∈ R3

x, v ∈ [0, 1[, n ∈ N ∪ {0}, (18)

where, for v ∈ [0, 1[,

ψ0(x, v
2) =

∞∑
j=0

√
v2 + j

∫
S2

f(x,
√
v2 + jω)dω

4π
∞∑

j=0

bj
√
v2 + j

. (19)

Thus
N(Ce) ⊃ N(C) = N(Ci),

and, in particular,
CeP = 0.

62



To find the possible limiting equations we use the compressed Chapman-
Enskog procedure.

Hence the idea we shall pursue is to separate the hydrodynamic part of the
solution to Boltzmann equation by means of the appropriate spectral projection
and then, by expanding the remaining part into a series of ε, to find and finally
discard terms of higher order in ε, getting (at least formally) the limit equation
satisfied by the hydrodynamic part.

Accordingly,

• in the first case we will be looking for the situations when the limit is the
projection onto N(Ce) , and

• in the second when the limit is the projection onto N(C).

The asymptotic expansion is

fε(t, τ) = f̄(t) + f̃(τ)

= ρ(t)

+w̄0(t) + εw̄1(t) + . . .

+ρ̃0(τ) + ερ̃1(τ) + . . .

+w̃0(τ) + εw̃1(τ) + . . .,

where τ = t/ε2, (or τ = t/ε). Terms

ρ, ρ̃0, ρ̃1 . . . ∈ N(Ce)

are the hydrodynamic part of the expansion, whereas

w̄0, w̄1, . . . , w̃0, w̃1, . . . ∈ N(Ce)⊥

and are the kinetic part of the expansion.
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• Terms depending on t are the bulk part of the expansion;

• terms depending on τ are the initial layer; they are to be determined inde-
pendently of each other.

7.3 Evolution in N(Ce): elastic collision dominance

To find possible limiting evolutions in N(Ce) we shall use the projection P de-
fined by

Pf =
1

4π

∫
S2

fdω.

Denoting Q = I − P, we operate with these projections onto our equation, and
denoting

vε = Pfε and wε = Qfε,

we obtain

∂tvε =
1

εp
PSQwε +

1

εr
PCiPvε +

1

εr
PCiQwε

∂twε =
1

εp
QSPvε +

1

εp
QSQwε +

1

εr
QCiPvε

+
1

εr
QCiQwε +

1

εq
QCeQwε, (20)

Since we assumed that the elastic collisions are dominant, we must assume
that q > max{p, r}. Since we are looking for the limiting equations, the equation
for the approximation of vε cannot contain ε. This yields r ≤ 0 and shows that p
must be less or equal to the index k of the first nonzero term in the expansion of
wε = w0 + εw1 + ε2w2 + . . .. Consider first the case when

p=k .
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Inserting the expansion into the second equation (20) we get

εq (∂tw0 + ε∂tw1 + . . .) = εq−pQSPvε + εq−pQSQ(w0 + εw1 + . . .)

+εq−rQCiPvε + εq−rQCiQ(w0 + εw1 . . .)

+QCeQ(w0 + εw1 + . . .),

Since q > r and q > p, we obtain

QCeQw0 = 0

which yields w0 = 0, because Q is the complementary spectral projection.

Clearly, the first nonzero term in the expansion of w will be wk with k satis-
fying k = min{q − p, q − r}. However, if q − p ≥ q − r, then r ≥ p, but r ≤ 0

yielding p ≤ 0 which contradicts the assumption that p = k. Thus k = q − p and
q = 2p. In any case we obtain wk = −(QCeQ)−1QSPvε (provided the inverse
exists). Changing now the notation from vε into ρ to emphasize the fact that the
forthcoming equation is an approximating (limiting) equation for vε, we obtain
the limiting equations, independent of ε, in the form

∂ρ

∂t
= −PSQ(QCeQ)−1QSPρ+ PCiPρ, if r = 0, (21)

and
∂ρ

∂t
= −PSQ(QCeQ)−1QSPρ, if r < 0. (22)

A typical scaling for which (21) is the limiting equation is

∂fε

∂t
=

1

ε
Sfε +

1

ε2
Cefε + Cifε ,

and for (22):
∂fε

∂t
=

1

ε
Sfε +

1

ε2
Cefε + Cifε .

Consider next
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p < k ,

then the power of the coefficient multiplying PSQ(QCeQ)−1QSPρ is positive
and therefore this term is negligible when ε tends to zero.

Then, the possible limiting equations are

∂ρ

∂t
= PCiPρ, if r=0 ,

for the scaling
∂fε

∂t
= Sfε +

1

ε
Cefε + Cifε ,

and
∂ρ

∂t
= 0, if r < 0 .

for the scaling
∂fε

∂t
= Sfε +

1

ε
Cefε + εCifε .

7.4 Evolution in N(C): inelastic collision dominance

The cases when either Ci, or Ci + Ce dominate have the same hydrodynamic
subspace N(C) and the same projectors onto it, (N(Ce) ⊃ N(Ci)):

(Pf)n(x, ξ) = b−nG−1(ξ)
∞∑

j=0

ξj(Pf)j(x, ξ),

where G(ξ) =
∞∑

j=0

bjξj .

Operating with P and Q = I − P and denoting

vε = Pfε and wε = Qfε,
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we obtain

∂vε

∂t
=

1

εp
PSQwε

∂wε

∂t
=

1

εp
QSPvε +

1

εp
QSQwε +

1

εr
QCiQwε +

1

εq
QCeQwε.

As before, we observe that p must be less or equal to the index k of the first
non-zero term wk in the expansion of wε.

If p < k ,

then the equation for ρ (the approximation to vε) will be trivially reduced to

∂ρ

∂t
= 0, (23)

independently of what is happening in the second equation (though the initial layer
corrector complementing the hydrodynamic equation changes slightly depending
on whether Ce and Ci are of the same or different magnitude).

Thus typical cases will be

∂fε

∂t
= Sfε +

1

εq
Cefε +

1

ε
Cifε .

with q ≤ 1.

If p = k > 0 ,

Here we have to distinguish two cases: r > q and r = q (in both cases we must
have of course r > p ).

Let us consider first the case r > q .
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The limiting equation for the approximation ρ of vε is of the form

∂ρ

∂t
= −PSQ(QCiQ)−1QSPρ,

provided the inverse exists.

Thus typical cases will be

∂fε

∂t
=

1

ε
Sfε +

1

εq
Cefε +

1

ε2
Cifε ,

with q < 2.

The case r = q is similar.

Due to the definition of Q we have as before w0 = 0. Let wk be the first non-zero
term of the expansion of w. wk is to be determined from

QSP% = −Q(Ci + Ce)Qwk

when r − p = k, that is r = q = 2p.

Consequently, the limiting equation is of the form

∂ρ

∂t
= −PSQ(Q(Ci + Ce)Q)−1QSPρ,

provided the inverse exists.

Here a typical cases is

∂fε

∂t
=

1

ε
Sfε +

1

ε2
Cefε +

1

ε2
Cifε .
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7.5 Reference manual

All the results are valid if the initial data are smooth with respect to x and decay
sufficiently fast to zero as v →∞.

The only additional assumption is that the kinetic part of the initial datum an-
nihilates constants over S2 in the case of dominant inelastic or elastic and inelastic
scattering.

We are dealing with the following Boltzmann equation

∂fε

∂t
=

1

εp
Sfε +

1

εq
Cefε +

1

εr
Cifε

=
1

εp
vω · ∂fε

∂x
+

1

εq

−4πλf + λ

∫
S2

fdω′


+

1

εr

(
−4π

(
Hν + b

v+

v
ν+

)
f

+
v+

v
ν+

∫
S2

f+dω
′ + bνH

∫
S2

f−dω
′

 ,

fε(0) =
◦
f (24)

where v± =
√
v2 ± 1, g± = g(v±) and H is the Heaviside function. Functions λ

and ν are functions of v variable only and ν+ = ν(v+).

In all the cases theO(ε) approximation in L1(R6
x,v), uniform on finite intervals

[0, t0], is given by

fε(t,x,v) = ρ(t,x,v) + w̃0(t/ε
k,x,v) +O(ε),

where k is equal to the highest power of ε in (24).
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7.5.1 Dominant elastic scattering: q > max{p, r}

Pf =
1

4π

∫
S2

fdω, Q = I − P.

1. p = min{q − p, q − r} (q = 2p), r = 0

The case p = 1, q = 2, r = 0

Hydrodynamic limit.

∂ρ

∂t
= ξd∆ρ

−

(
H(ξ − 1)m(ξ) + b

√
ξ + 1

ξ
m(ξ + 1)

)
ρ

+

√
ξ + 1

ξ
m(ξ + 1)ρ(ξ + 1)

+ bH(ξ − 1)m(ξ)ρ(ξ − 1),

ρ(0) = P
◦
f,

where m(ξ) = 4πν(ξ), d = 4π
3λ(v)

.

Initial layer corrector.

w̃0(t/ε
q,x,v) = e−λ(v)t/εqQ

◦
f (x,v).

2. p = min{q − p, q − r} (q = 2p), r < 0

The case p = 1, q = 2, r = −1
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Hydrodynamic limit. 
∂ρ

∂t
= ξd∆ρ,

ρ(0) = P
◦
f,

where d = 4π
3λ(v)

.

Initial layer corrector.

w̃0(t/ε
q,x,v) = e−λ(v)t/εqQ

◦
f (v,x).

3. p < min{q − p, q − r}, r = 0

The case p = 0, q = 1, r = 0

Hydrodynamic limit.

∂ρ

∂t
= −

(
H(ξ − 1)m(ξ) + b

√
ξ + 1

ξ
m(ξ + 1)

)
ρ

+

√
ξ + 1

ξ
m(ξ + 1)ρ(ξ + 1)

+ bH(ξ − 1)m(ξ)ρ(ξ − 1),

ρ(0) = P
◦
f,

where m(ξ) = 4πν(ξ).

Initial layer corrector.

w̃0(t/ε
q,x,v) = e−λ(v)t/εqQ

◦
f (x,v).

4. p < min{q − p, q − r}, r < 0

The case p = 0, q = 1, r = −1
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Hydrodynamic limit. 
∂ρ

∂t
= 0,

ρ(0) = P
◦
f,

thus
ρ(t) = P

◦
f .

Initial layer corrector.

w̃0(t/ε
q,x,v) = e−λ(v)t/εqQ

◦
f (x,v).

7.5.2 Dominant inelastic scattering: r > max{p, q − 1}

We use the sequential notation for functions: f = (fn)n≥0, where f(ξ + n) = fn(ξ)

for ξ ∈ [0, 1[ and n = 0, 1, . . ..

The spectral projection on either N(Ci) or N(Ci + Ce) is given by

(Pf)n(x, ξ) = b−nG−1(ξ)
∞∑

j=0

ξj(Pf)j(x, ξ),

where

b = n2/n1 < 1, ξj =
√
ξ + j,

G(ξ) =
∞∑

j=0

bjξj and

P is the projection defined above.

1. p = min{r − p, r − q} (r = 2p), r = q

The case p = 1, q = r = 2
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Hydrodynamic limit.

We have ρ = (ρn)n≥0 where

ρn = bnG−1%,

and % is the solution to 
∂%

∂t
=

B(ξ)

3G(ξ)
∆x%,

%(0) = P
◦
f,

where

B(ξ) =
ξ4
0

λ0(ξ)ξ0 + bξ1ν1(ξ)

+
∞∑

j=1

bjξ4
j

λj(ξ)ξj + bξj+1νj+1(ξ) + ξjνj(ξ)
.

Initial layer.

In all cases below we require that
◦
w satisfy P ◦

w= 0,and we use the standard
notation

pn(ξ) =

√
ξ + n+ 1

ξ + n
ν(ξ + n+ 1).

With these

w̃0,n(t/εr,x, ξω) =


e−(λ0(ξ)+bp0(ξ))t/εr ◦

w0 (x, ξ,ω),

e−(λn(ξ)+bpn(ξ)+νn(ξ))t/εr ◦
wn (x, ξ,ω)

forn ≥ 1.
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2. p = min{r − p, r − q} (r = 2p), r > q

The case p = 1, q = 1, r = 2

Hydrodynamic limit.

We have ρ = (ρn)n≥0 where

ρn = bnG−1%,

and % is the solution to 
∂%

∂t
=

B(ξ)

3G(ξ)
∆x%,

%(0) = P
◦
f,

where

B(ξ) =
ξ4
0

bξ1ν1

+
∞∑

j=1

bjξ4
j

bξj+1νj+1 + ξjνj

.

Initial layer.
w̃0,n(t/εr,x, ξω) =

e−bp0(ξ))t/εr ◦
w0 (x, ξ,ω),

e−(bpn(ξ)+νn(ξ))t/εr ◦
wn (x, ξ,ω)

forn ≥ 1.

3. p < min{r − p, r − q}, q = r

The case p = 0, q = r = 1

Hydrodynamic limit.
We have 

∂ρ

∂t
= 0,

ρ(0) = P
◦
f,
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thus
ρ(t, x,v) = P

◦
f .

Initial layer.

w̃0,n =

{
e−(λ0(ξ)+bp0(ξ))t/εr ◦

w0,

e−(λn(ξ)+bpn(ξ)+νn(ξ))t/εr ◦
wn for n ≥ 1.

4. p < min{r − p, r − q}, q < r

The case p = 0, q = 0, r = 1

Hydrodynamic limit.
We have 

∂ρ

∂t
= 0,

ρ(0) = P
◦
f,

thus
ρ(t, x,v) = P

◦
f .

Initial layer.

w̃0,n =

{
e−bp0(ξ))t/εr ◦

w0,

e−(bpn(ξ)+νn(ξ))t/εr ◦
wn for n ≥ 1.
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