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Avertissement au lecteur : complément 2008

Ce document rédigé tout d’abord en frangais (1995) puis en anglais (a Pise, en 1997)
servit de support de cours dispensé dans différents endroits. Depuis, de nombreux ré-
sultats s’y trouvant ont été publiés et souvent améliorés. Malgré la mauvaise qualité de
rédaction, je me suis décidée a le rendre public car des questions me parvenant y trouvent
leur réponse. Certains résultats ne sont toujours pas publiés (souvent refusés pour cause
de la mauvaise qualité de la langue anglaise ...). J’espére que mis en libre service les
anglo-saxons qui en auront besoin sauront décoder cet anglais approximatif.

Changements de terminologie

Désormais les idéaux de Galois sont dénommés des idéaux galoisiens, le stabilisateur
d’un idéal galoisien est appelé un injecteur.On peut se référencer a cet article pour en
savoir plus :

A. Valibouze Sur les relations entre les racines d’un polynome. Acta Arithmetica, 131, n¥
1,1-27, 2008. [Version préliminaire : Prépublication du Laboratoire LSTA 3 Mai 2006 |

Bases de données

Idéaux Galoisiens : http://docs.google.com/Doc?id=dd9djdwns4hgttks3d
Polynmesdedegr12 : http : | Jwww—spiral lip6. fr/ avb/ Bibliographies/ RapInt.htmldegrel2inv

Logiciels

La fonction SplittingField existe dans plusieurs logiciels mais n’est pas nécessairement
performante.
Le calcul du groupe de Galois existe dans maple (implanté par Soicher ; jusqu’en degré 7)
et pari (implanté par Eichenlaub) par les méthodes respectives de McKay-Soicher (calcul
de résolvantes particuliéres) et de Jordan (inclusion des sous-groupes) avec la méthode
numérique de Stauduhar pour calculer les résolvantes relatives.
De nombreuses résolvantes dont les algorithmes figurent dans ce document sont disponibles
sous Maxima (module SYM) :
http://maxima.sourceforge.net /docs/manual /en/maxima_ 32.htmlISEC125






Introduction

Let f be a univariate polynomial with coefficients in a perfect field k. The motivation
of the computational Galois theory is to compute in the splitting field of the polynomial
f, denoted by Dy. In all this lecture the polynomial f will be represented by € (or €y)
an ordered set of its roots in an algebraic closure of k.

Let z1,...,x, be n indeterminated and k[zy, ..., xz,], the ring of polynomials of coef-
ficients in k£ and in the variables x4, ..., z,.
The ideal I of Q-relations is the ideal of polynomials in k[x1, ..., z,] vanishing in the

roots of the polynomial f:
Io={R € klzxy,...,z,] | R(Q) =0}
The ideal of ()-relations is a maximal ideal of [z, ..., z,] which have been investigated
by many authors (see [61]).
The splitting field of the polynomial f is k-isomorphic to the quotient ring

k[l’l, c. ,.In]/IQ .
Thus, when the ideal I is computed it is possible to compute in Dy.

The Galois group of ) over k is the subgroup G, of &,,, the symmetric group of degree
n, which leaves invariant the relations among the roots of f:

Go={oce€es,| VRely) |oRely} .

Let © be a polynomial in k[z1, ..., x,] invariant only by the permutations of the Galois
group Ggq and not degenerated (© is called separable). A generating system of ideal I
can be computed using ©. Thus, when the Galois group G, is computed it is possible to
compute in the splitting field Dy.

This presentation studies the links between the fields, the ideals and the groups and
gives several results about the computational Galois theory for computing the Galois
group Gq and the ideal of (2-relations Iq,.

We consider the ideal I” of Q-relations which are invariant by a subset L of the
symmetric group:
I"={Recklz .. x| VoeL)oRecly} .
3



4 INTRODUCTION

The ideal I is a radical ideal. A useful tool in order to study the ideal I'” is its stabilizer,
denoted by Max(/1), which is the maximal subset M of the symmetric group which
satisfies I” = ™. In particular, Go =Max(lq) is as well the decomposition group of the
ideal of relations I.

Chapter 1 introduces the general informations (notations, definitions, ...).

Chapter 2 is devoted to recalls about characteristic and minimal polynomials of endo-
morphisms of a polynomial ring quotiented by a radical ideal.

One of tools of computational theory is the invariants associated with finite groups
(see Chapter 3).

The particular cases of the ideal of symmetric relations and of the ideal of relations
are studied in Chapter 4.

The classical Galois theory with the point of view of fields is described in Chapter 5
using the following simple fact. Let © be a multivariate polynomial, Mg j, be the minimal
polynomial of the endomorphism induced by © in the quotient ring k[xy, ..., z,|/Io and
Ming j, be the minimal polynomial over k of the evaluation 6 of © at (2. As the polynomials

Ming ;, and Mg j,, are equal and since k is perfect, the coefficients of Mingy ;, belong to the
field k.

Chapter 6 gives results about the ideals /7. The definition of the resolvent associated
with an ideal I” is introduced and compared with the characteristic and the minimal
polynomials.

One of the motivations of this lecture is to study the correspondence between the
radical ideals I” and its stabilizers. It is proved that the stabilizer of I” is:

* Max(It) = GoL :
Let L and H be two subgroups of the symmetric groups. The correspondence between
stabilizers and ideals is the following:

* % It c 1t if and only if GoH C GoL
If the group L contains the Galois group and a group H such that the decomposition

group of the ideal I'? also contains the Galois group then a generating system of the ideal
I is given by:

* * K " =1+ (Ryy) ,

where Ry ;, is some polynomial which characterizes the ideal I relatively to I” and is
called an L-primitive polynomial of 1.

Chapter 7 deals with the computational Galois theory. How to compute the ideal of
Q-relations In? The first idea is to compute a Grobner basis of I, which is possible using
factorizations of f in successive sub-extensions of D; (see [61] and [2] or Chapter 4).
However this computation is difficult. The second idea is to compute the Galois group
of the polynomial f and deduce from it generators of the ideal I, (see Chapter 4). This
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method is always possible using partitions and group matrices as introduced in [7] and in
[65]. The third idea is to simultaneously compute the Galois group Gg and the ideal of
relations [ using partition and group matrices: we find a group L containing the Galois
group G and we compute a generating system of the ideal I*. Computing modulo the
ideal I*, a new subgroup H is found that is included in the group L and contains the
Galois group Ggo. A generating system of the ideal I is given by the computation of an
L-primitive polynomial of the ideal I (see x x x). The situation is the following:

ISt c 1t c 1 cig

Next the group L is replaced by the group H and the construction goes on until it reaches
the ideal I of (2-relations.

The fundamental tool of this algorithm is the resolvent associated with the ideal I~
The irreducible factors over £k of a resolvent are minimal polynomials over £ of algebraic
numbers of the decomposition field D;. This minimal polynomials of elements of D; are
used for computing primitive polynomials of ideals. Chapter 10 gives an explicit example
for this algorithm.

Chapter 8 is devoted to the particular case in which f is reducible.
Chapter 9 describes some methods for computing resolvents.

In Chapter 11 are given all useful sub-matrices of groups and partitions up to degree
7.

The point of view presented here is indebted to Tchebotarev’s book (see [61]), K.
Yokoyama, M. Noro and T. Takeshima (see [67]), the beginning of the thesis of F. Rouiller
(see [56]), work with A. Machi about Tchebotarev’s book and some conversations with
C. Traverso and with J.M. Arnaudiés about endomorphisms associated with the ideal of
symmetric relations (see [6]).






CHAPTER 1

Preliminaries

1. Some preliminary notations and definitions
We consider as given:

- a perfect field k&,
- a univariate polynomial f of degree n whose coefficients belong to £,
- n + 2 indeterminates x1,...,x,,T and x.

1.1. General notations.

Let g be a univariate polynomial over k of degree n.

e kis an algebraic closure of the field £;

e k[zy,...,x,]is the ring of polynomials in the variables x1, . . ., z,, with coefficients
in the field k;
o k(xy,...,x,) is the fraction field of k[zy, ..., z,);

e &, is the symmetric group of degree n;

e [, is the identity group of &,;

e A(g) is the discriminant of g;

e (), is an ordered set, included in /2:”, containing the n roots of g; assume that
Qg - (ﬁla . "7671);

b k[Qg] = k[ﬁl? s 7ﬂn]:

o k(Q,) =k(B1,...,05,) is the splitting field of g;

o for P € kfzy,...,x,], P(Qy) = P(f1,...,0n);

o for o € &,, 00Qy = (Bo1),-- -, Bom));

® «1,...,q, are the n roots of the polynomial f in l%;

e Q=0Qr=(a,...,0p).

1.2. Actions of groups.

Definition 1.1. The action of the symmetric group &, on the field k(z1,...,x,) is
defined by:

Gn X k(x,...,2,) — k(xy,...,2,)

(0,P) = o P(x,...,0,) = P(To1),- -, To(m))

7



8 1. PRELIMINARIES

The notation 0.P(€,) is not ambiguous : 0.P(€2,) = (0.P)(2,). However, the follow-
ing lemma refines this notation:

LEMMA 1.2. Let 0,7 € &,, and P € k[x1,...,2,], then (0.P)(T0Q,) = P(to0§,).
PROOF. Let 0,7 € 6, and P be a polynomial in k[xy, ..., z,]. Then
(0. P)(@1,...,0,)(T08y) = P(To@)s - Tom))(Qra), s Qrn))
= P(ro0Q,) :

because the evaluation of x; is a,(; for all j € [1,n] and then one of the To(i) 18 Qrg(y) for
all i € [1,n] (setting j := o(3)). O

Now, let L be a subgroup of &,, and © € k(z1,...,x,).
Definition 1.3. The orbit of © under the action of L, denoted by L.©, is defined by:
LO={0c0O | celL}

Definition 1.4. The fraction © is called an invariant of L (or an L-invariant) if

L.O ={06}.
Notation 1.5. The field of L-invariants is denoted by k(x1, ..., z,)%.
Definition 1.6. The stabilizer of © on L, denoted by Staby(0), is defined by:
Stab,(©) ={c € L|© =00}
Notation 1.7. The stabilizer of a subgroup H of L will be denoted by Stab, (H).

Definition 1.8. Let H be a subgroup of &, and 01 H,...,0.H (resp. Hoy,...,Ho,)
the left (resp. right) cosets of H in &,. Then the set {o1,...,0,} is called a left (resp.
right) transversal of 6, mod H.

1.3. Ideals and ()-relations.

Definition 1.9. Let o € k". A polynomial P € klxq,...,x,] is called an a-relation if
P(a) =0.

Definition 1.10. . Let L be a subset of &,,. We denote by I the ideal of L-invariant
Q-relations defined by:

Iy = {Reklry,...,x,] | (Vo€L)o.R(Q) =0}

Definition 1.11. The ideal of Q)-relations, denoted by Iq, is defined by:

(1.1) Io=b={Rcklr,...,x,] | R(Q) =0}

Definition 1.12. The ideal 15" is called the ideal of symmetric relations among the
roots of the polynomaial f.

Remark 1. As the ideal 5" does not depend on the order of the roots of f it can be
denoted by 17"
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2. The Galois group and the direct Galois problem

Since the roots of the univariate polynomial f are algebraic over k, by induction we
have k[Q2] = k(Q2), the splitting field of f.

We will be interested in the algebraic numbers P(€2) of k£(€2) such that P is a polyno-
mial of klzy, ..., z,)].

The symmetric group &, acts faithfully on k(xq,...,z,). For o0 € &, and two fractions
P,Q € k(z1,...,x,), the equality P = @) implies that 0.P = ¢.Q). But, for P and Q €
klx1,...,z,], the equality P(2) = Q(2) does not necessarily imply that 0. P(Q2) = 0.Q(€2).
In other words, the group &,, does not act necessarily faithfully on the field £(2).

Example 2.1. Set f:= (z—1)(z—j)(z—j%) = (x = 1) (x> + 2+ 1), P := 13, Q := x3,
and o := (1,2), then P() = j2 = Q(N) and 0.P(Q) = 12 #£ 0.Q(N) = 52

Thus, the fundamental question of Galois theory is the following:

Which is the biggest subset G, of &, such that for all P,Q € k[zy,...,x,] and for all
o€ Gq

P(Q)=Q(Q) implies 0.P(Q) =0.Q(0Q)?
This question is equivalent to the following:

Which is the biggest subset G, of &,, such that for all R € k[zy,...,z,] and for all
o€ Gq

R(Q)=0 implies o.R(Q) =07

In order to answer at this last question we consider the ideal I, of Q2-relations. Thus,
Gq is a group (see Lemma 2.2 in Chapter 4) explicitly given by:

Definition 2.2. The Galois group of €2, denoted by Ggq, is defined by:

(2.1) Go={ce€e,| VRely) o.Rely}

In other words, the Galois group G, is the group which leaves invariant the ()-relations.
Remark 2. Often, the Galois group of (2 is called the Galois group of f.

Therefore, there is a faithful action of G, on the quotient ring Ay, := k[xy, ..., x,]/Iqg
which is defined by:

GQ X A]Q — A]Q
(0,P) — 0.P(Q)=P(ocoQ)
Now, consider the surjective k-algebra morphism of evaluation given by:

klxy,...,z,] — Kk(Q)
P —  P(Q)
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having I as kernel. Then the quotient ring Ay, is k-isomorphic to the field £(2). (The
ideal I is a maximal ideal of k[x,. .., z,| because k(2) is a field.) We will denote by ®
the induced k-isomorphism between Aj, and k(£2):

o A, — k(Q)
P — P
From the k-isomorphism @, a faithful action x of Gg on k() is induced by the one of
Ggq on Ap,:
(0,p) = oxp:=(a.P)(Q)
where P = &~ 1(p).

The effective problem of Galois theory is to compute the Galois group G and the
ideal I of Q-relations.



CHAPTER 2

Ideals and endomorphisms of quotient rings

This part is devoted to results about radical ideals in dimension 0 (i.e. the associated
algebraic variety is finite).

1. Definitions and notations
Let I be an ideal of k[zi,...,x,] of dimension 0 and let ©® be a polynomial of
klx1,...,z,). We adopt the following notations:
e A; is the quotient ring k[, ..., x,]/I;
e End(A) is the set of endomorphisms of Ar;
e V(I) is the algebraic variety of k), I in &:
V) ={sek"| (YPI) P(B)=0}
) g denotes the class of © in Ay;
o @A[ = {@P ‘ Pe A[},
e O is the endomorphism induced by the multiplication by © in A; as follows:
O:4;, — A
P — ©O.P ;
® éA[ = @.AI; R
o (o is the characteristic polynomial of the endomorphism © belonging to End(A;);
o Mg is the minimal polynomial of ©;
e SFp  is the monic polynomial whose roots are those of Cg ; not counted with
their multiplicities.

Remark 3. The polynomial SFg ; is the square free form of the characteristic poly-
nomial Cg ;. As the field k is perfect, the coefficients of SFg ; belong to k.

Definition 1.1. A set of ideals A, ..., A,, in a field R is said pairwise comazximal if
each A; # R and

Ai+A;j =R for i # j
If n = 2, we simply say that 4; and A, are comaximal.
Definition 1.2. An ideal I is said radical if it equals its radical /1 given by:
VI={Pecklz,...,x)]| GmeN)P* eI}

11
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2. Results about radical ideals
Stickelberger’s Theorem gives Cg ; in the following form:
(2.1) Cor(T) = [] (T—0(@)? k]
BeV(I)
where 4(53) is the multiplicity of 3. The degree d := > i, ;) u(83) of the characteristic

polynomial Cg ; is naturally dimy(A;) :dim];(l% ). Ar). The multiplicity 1(3) is the one
of the maximal ideal J = (21 — /1, ..., 2, — (3,) in the ring £ Q), k[z1,...,x,]/1.

LEMMA 2.1. If I is radical then for all 3 € V(I) its multiplicity u(3) equals one and
(2:2) Cou(T) = ] (T - 0(8) € kT

BeEV(I)

PROOF. Because card(V (1)) =dimg(A;) = d, the degree of the characteristic polyno-
mial. U

THEOREM 2.2. (Yokoyama-Noro-Takeshima) Let Q € k[xy,...,z,]|. Then
(2.3) Arvo) = Ar/QA;
and Ay is isomorphic to End(Aj).
PROOF. See [67]. O
COROLLARY 2.3. Let P € k[T].
(2.4) Ay oy = Ar/P(©)A;
so that P(©) € I if and only if P(©) = 0.
PROOF. Apply Equality (2.3). O

THEOREM 2.4. (Yokoyama-Noro-Takeshima) The ideal I is radical if and only if every
minimal polynomial M,, 1 (i € [1,n]) is square free because the radical of I is given by:

(2.5) VI =(SF, i(1),...,8F,, j(x,))+ 1
PROOF. See [67]. O

Now the minimal polynomial Mg ; is the monic polynomial in k[T] of smaller degree

such that Mg ;(©) = 0. We can also say that Mg ; is the monic polynomial in k[T] of
smaller degree such that Mg ;(©) € I. On the other hand, the polynomial SFg ; is the

square free form of Cg ; which belongs to k[T.

LEMMA 2.5. The polynomial SFg 1 is a factor of the polynomial Mg ;.
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A~

PROOF. For F' € k[T], the condition F'(©) = 0 is equivalent to F'(0) € I and then
F(©) = 0 implies that for all 3 € V/(I) there exists a root p of F' in k such that ©(3) = p
(by definition of V/(I), the converse is true if I = +/T). Then all roots of SFg ; are also
roots of F': SFg is a factor of F'. Applying this last result to /' = Mg ; the lemma is
proved. O

The following lemma gives a sufficient and necessary condition for which SFg ; = Mg ;.

LEMMA 2.6. The condition SFo 1 = Mo 1 is equivalent to SFg [(©) € I.

~

PROOF. Let F' € k[T]. The definition of Mg ; implies that F'(©) = 0 if and only if F
is a multiple of Mg ;. On the other hand, the polynomial SFg ; is a factor of Mg ;. As
Me,r and SFg ; are monic, the lemma is proved. O

LEMMA 2.7. The ideal I is radical if and only if each © € k[xq,...,x,] satisfies
SF@J = M@J.

PROOF. Assume that [ = v/I. As the polynomial SFe ;(©) vanishes at each 3 € V(I),
it belongs to I and therefore SFg; = Mg ;. The converse is provided by the Yokoyama-
Noro-Takeshima’s theorem (see Theorem 2.4). O

Example 2.8. Let L be a subset of &,,. Let us prove that the ideal I5 (see Definition
1.10 of Chapter 1) is radical. It is sufficient to prove that SFg ;.(©) € I5. By definition

of 15 the set {loQ |l € L} is included in V(I%) and then (VI € L) 1.O(Q) is a root of
SFg 1z which actually belongs to the ideal 1L






CHAPTER 3

Invariants

1. Primitive Invariants

Definition 1.1. Let L be a subgroup of &,, and H be a subgroup of L. A polynomial
© € Klxy,...,x,] is said to be L-primitive H-invariant if

H =Stab,(0)={c €L |06 =06}
If L = &, the polynomial © is said a primitive H-invariant.

Example 1.2. The Vandermond determinant 6, = [[{.,;<;(; — 2;) is a primitive
invariant of the alternating subgroup A, of &,.

Example 1.3. Let D4 be the dihedral subgroup of 4. The polynomial zix5 + 2324
is a &4-primitive Dy-invariant.

Example 1.4. The polynomials

x1+2x2+ - (n— 1)z, and

n—1

2
;L'lx2 .. .xn_l

are G,-primitive I,-invariants.

LEMMA 1.5. Let H and L be two subgroups of &,, such that L contains H and let © be
an L-primitive H-invariant. Then for each 7 € L the polynomial 7.0 is an L-primitive
(tHT1)-invariant.

PROOF. Take 7 € L and set A:={oc € L| o € THT'}. We have

A = {oelL| v 'ore H}
A = {oel]| 7 lor.0 =6}
A = {o€el]| 0.(r.0) =106}

O

The computation of invariants can be performed by Kemper’s package (see [39]) or
by Abdeljaouad’s package (see [1]).

15



16 3. INVARIANTS

2. Separable primitive invariants

Definition 2.1. Let H and L be two subgroups of &,, such that H C L. An L-primitive
H-invariant, ©, is said L-separable for ) if

H={ocelL| 0.06(Q)=0(Q)}

We say also that © is an L-primitive H-invariant separable for €.
A separable &,,-primitive H-invariant is simply said a separable primitive L-invariant.

Remark 4. For each subgroup L of &,,, a separable &,,-primitive H-invariant always
is an L-primitive H-invariant separable for €.

Remark 5. An L-primitive H-invariant separable for {2 is not necessarily separable
for 7 0 Q2, where 7 € L.

Remark 6. When L contains the Galois group Gg, © is L-separable for {2 if and only
if ©(12) is a simple root of the resolvent Lg ;1 (see Section 5.2 Chapter 9).

LEMMA 2.2. Assume that f is a separable polynomial and k is infinite. There exists
a separable primitive I,,-invariant.

PROOF. Let Ty, ..., T, be n independent variables and V(T')(X) = """ | Tiz;. For all
0 € &y, if 0 #id then V(T)(Q2) # >0 Ty = V(T)(0 0 Q) and, as k is infinite, there
exist t1,...,t, € k such that V(¢y,...,t,)(Q) # V(ty,...,t,)(0 0 Q) (equality occurs for
a finite number of ¢; € £(£2)). The polynomial V (¢,...,¢,)(X) is an I,-invariant and is
separable. O

LEMMA 2.3. Assume that f is a separable polynomial and the field k is infinite. There
exists a separable primitive H-invariant in k[z1,...,x,] for any subgroup H of &,.

PROOF. Let V be a separable primitive I,-invariant. Consider the separable polyno-

mial
o) = 1] (V)
oeGn
Let 7y =id, ..., 7. be a left transversal of &, mod H. For i € [1, ¢, we set
Ri(T) = Ri(T) (w1, . ...00) = [ [(T = m0.V)

ocH
We get C' = []_, Ri(T)(Q). As V is I,-separable, (Vi € [2,¢] ) Ri(T) (%) # Ri(T) ()
so that there exists u € k, which is infinite, such that Ry (u)(2f) # R;(u)(€2s). Now, let
T € 6,. If 7 € H then 7.R,(u) = Ry(u) else there exists i € [2,¢] such that 7.R;(u) =
R;(u). Thus polynomial R;(u) is a separable primitive H-invariant . O

In [22] is given another method for computing separable primitive invariants.

There exists polynomials which are separable for any univariate separable polynomial.
The Vandermonde determinant is a such invariant.
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Example 2.4. Let M; the metacyclic group of &;5. Assume that the polynomial f is
a separable polynomial of degree 5. The Cayley’s invariant
(2109 + Tox3 + T3T4 + 2425 + T5T1 — (X173 + T3T5 + TsTo + ToTy + T471))?

is a separable primitive Ms-invariant (see [19] and [7]).

3. Lagrange’s theorem

For H a subgroup of &,, we denote by k[z1,...,z,]" the algebra of polynomial in-
variants of H:

Elxy, ..., z.)" ={P €klxy,...,2,) | (Yo € H)o.P=P}

THEOREM 3.1 (Lagrange-Colin). Let two subgroups H and G of &,, such that H C G.
Let © be a G-primitive H-invariant, ©4,..., 0, be the distinct elements of the G-orbit of

O and
No= [] (©:i-8;)

1<i<j<n
The polynomial Ag is the discriminant of the minimal polynomial of © over the field
k(xy,...,2,)% (see 9.8 Chapter 5). Then klxy, ..., x,)" is a k[xy, ..., 2,]%-algebra given
by:
1
(3.1) klxy, ... 2" C ——k[x1,...,2,)°[0]
Ag

PROOF. see [41], |6] and |25], Remark 3.11. O






CHAPTER 4
The ideals of ()-relations and of symmetric relations

We have Q € k» containing the n roots of the polynomial f.

In Chapter 1 are defined the ideals fixed by sets of permutations. Two of them play
a particular rule. They are the ideal of symmetric relations among the roots of the
polynomial f:
7" ={Reklxy,...,z,] | (Vo€6&)0aR() =0}
and the ideal of the (2-relations:
Io ={R € klry,...,z,] | R(Q) =0}
This chapter is devoted to these particular ideals.

The Galois group G of €2 has been defined as follows:
Go={oc€a,| (VR e Iy) 0.R(Q) = 0}.

1. Definition of particular symmetric relations

Definition 1.1. A polynomial s of k[xq,...,z,] is said a symmetric polynomial if
Stabgn (S) = G,.

All symmetric polynomials belong to the ideal of symmetric relations IfG”. But f(z)
is not symmetric and belongs to the ideal IfG”.

Definition 1.2. Let ¢ € N. Set e; := e;(xy,...,2,), the i-th elementary symmetric
function on x1,...,x, is given by:
"+ Z el = H(m + 23)
i=1 k=1
For s > 0, the complete symmetric function, denoted by hi(z1,...,xs), is the sum of the
monomials z' - - - z’s of degree i =iy + - - - + i, and ho(xy,..., 1) = 1.

Remark 7. The elementary symmetric functions of the roots of a monic univariate
polynomial g are, up to a sign, its coefficients:

g(z) =" — el(Qg)xn_l +oot (_1)nen(Qg)

19
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Notation 1.3. Denote by J; the ideal generated by the following n symmetric poly-
nomials:

Jr=(e1—e1(),....e, —en(Q))
Definition 1.4. The n polynomials defined by induction as follows:
fulz) = f(2)
filr) = filz,xiq, ..., 2p)

_ Jir1(x) = fiz1(2ig1)

T = Tit1

forl1<i<n-1

are called the interpolating functions.

The interpolating functions, introduced by Ampére (see [3]), satisfy:

fz(wz) € k[l’l, Tit1s--- 7'7771] and degxl(fl(xJ) =1

2. Varieties

PROPOSITION 2.1. The variety of IfG" in k" is given by:
(2.1) V(") ={ooQ|o€6&,} =6,00 ,
the &,-orbit of Q. If f is separable then card(V (I7")) = card(&,) = n!.

PROOF. Set W = {c00Q | 0 € 6,}. We have f(z) = 2" — e (Q)z" ' + -+ +
(—1)"en,(Q) =], (x— ;). Then 8 € W if and only if e;(3) —€;(Q) =0fori € [1,...,n].

i=1
In other words, W = V(e; — e1(Q),...,e, — €,(2)). As for i € [1,n]| the polynomial
e; — ¢;(Q) belongs to the ideal 17", V(I7") C W. Conversely, take ¢ € &, and R € I7";

we have R(0 o) = 0.R(Q2) = 0, by definition of I7". Thus W C V(I7™"). O
PROPOSITION 2.2. The variety in kn of the ideal of the Q-relations is given by:
(2.2) V(lg)={00Q|oe€Gq}=Gqo :
the Go-orbit of Q. If f is a separable polynomial then card(V (Ig)) = card(Gg).
PROOF. By definition of Gg, we have G o Q C V(Ig). Conversely, as I;?" C Ig,
V(lg) ={00Q| (VReIg) R(coQ)=0}.

Let 0 € &,,. By definition of the Galois group Gg, if (VR € I) 0.R(2) = 0 then o € Gq.
Thus V(1) C Gg o €. O
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3. Characteristic and minimal polynomials
Assume that the roots of the polynomial f are distinct (i.e. f is separable).

For a radical ideal of k[x1, . . ., z,], the expressions of the characteristic and the minimal
polynomials of endomorphisms in End(k[zy,...,z,]/I) are given in Chapter 2. Let © €
k[xy,...,x,]. As the variety of the ideals of Q-relations is G o ), the characteristic and

the minimal polynomials of the endomorphism © of klxy,...,x,]/Iq are respectively given
by:

(3.1) Cory = |] (T —0c0(Q)

ceGq

(3.2) Mo, = I @-v= [ @-v

Ye{0.0(N)|ceGq PYeEGq*0

where x is the action of the Galois group Ggq on k(f2) and 6 = ©(f2). The polynomials
Co.1, and Mg p, belong to k[T] because the maximal ideal I, is radical (see Chapter 2).

In the same manner:
0'6677.
LEMMA 3.1. If © is a primitive Go-invariant then ©(Q) belongs to k.

PROOF. Let 0 := ©(Q). By hypothesis Co j, = (T — 0)@4(Ce) ¢ K[T]. As k is a
perfect field the proof is finish. O

4. Generators of 1}5" and Cauchy moduli
Recall the historical theorem of Cauchy (see [17]):

THEOREM 4.1. (Cauchy) Soit F(xi,...,x,) un polynéme a coefficients dans R et
symétrique en les variables x1,...,x,. Pour éliminer x,,...,x, dans le polynéme F', il
suffit de diviser successivement F' par les divers termes de la suite

fl(xl)v fQ(xQ)v R fn(xn) ’

en considérant chaque f; comme une fonction de x;. Le dernier reste obtenu sera in-
dépendant de x4, ..., x, et donnera la valeur F(oq,. .., a,) en fonction des coefficients de

f.

Definition 4.2. The polynomials fi(x1), fa(z2),..., fu(z,) = f(z,) are called the
Cauchy moduli of the polynomial f.

Remark 8. The Cauchy moduli are used for efficient computations of resolvents (see
Chapter 9).
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LEMMA 4.3. For 0 < r < n, the r-th Cauchy modulus associated with f is given by:

(4.1) Fown) = S () el @by, )
i=0
In particular f,(x,) = Z?:O(—l)iei(Q)hn_i(xn) = f(z,) and fi(z1) = hi(xq,...,2,) —
61(9).
Remark 9. Cauchy gives the formula for n = 4.
In modern terms Theorem 4.1 rounds as follows:

THEOREM 4.4. The set of Cauchy moduli is a reduced Gréobner basis of the ideal J;
for lexicographic order.

PROOF. The set of Cauchy moduli is a triangular set, it yields a reduced Grobner basis
for the lexicographic order of the ideal 7 it generates. By Cauchy’s Theorem J; C 7. Let
be the generic polynomial F(zy,...,2,)(z) = [[1L,(x —2;) = 2" —era™ P+ -+ (=1)",
and set u; := ¢; — €;(€2). Denote by F,.(z1,...,2,)(z) the r-th interpolating function of
F(zy,...,x,). We have F,.(x,) = F.(z1,...,2,) (T, ..., 2,) = 0 and F.(Q)(x,,...,z,) =
fr(@y, ..., x,). By Lemma 4.3,

fr(@p, .o yxn) = () (2, ... xn) — By, xn) (@, ooy )

T

— Z(_l)iuihr_i(xr, ) € T

1=0
Then 7 C J; and the theorem is proved. O

THEOREM 4.5. Let J; be the ideal defined as above then
[fgn = \/7]‘
and IJ(?" = Jr if and only if [ is separable.

Example 4.6. Let f be the square free form of f. Let g(z) = v — 1 = f(z) with
f(z) = g(z)* = 2> — 22+ 1. We have g(z1), g(z2) € \/T;. Setting uy := z1 + x5 — 2
and uy = x172 — 1, the ideal J; is given by J; = (u1,u2) and a Grébner basis for the
lexicographic order is (f(z2), %) = (f(x2),uy) (it is clear that f(x9) = —ug + xouy
is in a Grobner basis). The reduction of g(x1) by this Grébner basis gives: g(x;) =
0.f(z2)+uy+(—x2+1) = us+g(z2). Since g(xq) # 0, the polynomial g(x,) is not included

in J¢, and similarly g(xs) € J;. We conclude that Jr # (u1, ug, g(21), g(x2)) C /T+-
This example gives a hint for the following proof.

PROOF. The ideal J; is included in the ideal IfG” since its generators are symmetric
relations. We have also V(I7") C V(J;). Now, let 3 € V(Jy), then, by definition of
varieties, for all ¢ € [1,...,n] ¢;(8) — €;(Q) = 0. By definition of elementary symmetric
functions, we have [[",(z — 3;) = [[\_,(z — a;) so that 3 € V(I7"). We have proved
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I7" = /Ty because V(J) = V(I"). By Yokoyama-Noro-Takeshima Theorem, since J;
and IfG” have the same variety we obtain:

VT = (F@),..., flwa)) + Ty = 18"

Now, assume that f is a separable polynomial. Then f = f, and it is sufficient to prove
that f(x1) € Jy; this is the case by Theorem 4.4. Conversely, assume that f is not
separable. We know that if f is not separable we have f(z;) not in J, +, since a triangular
Grébner basis of J; contains f(x;) and f(z;) does not divides f(x;) for all i € [1,n]. O

Remark 10. Theorem 4.5 gives a simple proof that the set {z¥'z5> ... zf» | 0 < k; <
n — i} is a basis of the k-vector-space k[x1,...,2,]/Js. Actually, the monomials of this
set are those that are under the staircase of the initials monomials of the Cauchy moduli
(for the lexicographic order).
5. Decomposition of the symmetric relations ideal

The results of this section provide from [6].

5.1. Decomposition of variety V (/7).

Since the ideal of {2-relations, Iq, is prime (it is maximal), then its variety V (Ig) is
irreducible. We suppose that f is separable.

Let uy,...,u, be n independent variables and set F'(U, X) := (u1x1 + - - - + up2y,)-
Definition 5.1. The fundamental form ©y(T,U) of a variety V is:

ov(T.U) = [ [(T - F(U, )
peV

(Note the analogy between the fundamental form and the characteristic polynomial.)

When the polynomial f is separable the respective fundamental forms associated with
the symmetric relations ideal and the (2-relations ideal are given by:

(5.1) Sygsn(T,U) = [[T-FU,00Q)  and
0'6677.
(5.2) Uy (TU) = [[(T-FUo0Q)
ce€Gq
PROPOSITION 5.2. Let 1y,...,7. be a right transversal of &, mod Ggq. If f is sep-

arable, then the factorization of the fundamental form of V(IfG") into irreducible factors
over k is given by:

e
vy = [Tt
=1
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Consequently, the decomposition of the variety V(If”) wnto irreducible varieties is:

e

(5.3) V(I§") = V()

i=1

PROOF. Set Py := Wy (). For all 7 € &, we have 7G,.q = Gq7. The definition of
fundamental form and Lemma 4.2 imply:

PTOQ = H (T_F(UaTUOQ)): H (T_F(U7TUOQ)) )
d€G 100 cert—1GqT
- [ @-FUro0Q)= [] (T-FUco)
T0€EGQT ,0EG, ceGqT

The fundamental form P,.q is irreducible over £ since each ideal I, is prime.

A direct proof of the decomposition of V(IfG") is the following:

€ e

U V(len) = U{TiO' oQ| o€ Ti_lGQTZ‘}

i=1 =1

= U{TiO' o Q| o€ Gar} = V(I;‘?”)

i=1

5.2. Decomposition of the ideal /7.

The general properties used in this section can be found in the book of P. Samuel and
O. Zariski (see [57] Chap. III Section 13).

Let 7y,...,7. be a right transversal of &,, mod Gg,.

When our polynomial f is separable, it is clear that the e maximal ideals [ .o are
distinct (since their varieties are disjoint) and then the set A = {I,cq,...,lroq} iS
pairwise comaximal (see Definition 1.1 Chapter 2).

Decomposition (5.3) of the variety V(") into irreducible varieties gives the irre-
ducible primary decomposition of the ideal I;?":

(54) 19 = (Ve
=1

(The fact that each I,.q is prime gives a new proof that IfG" equals its radical.) As the
set A is pairwise maximal, identity (5.4) becomes

(55) If(?n - HITiOQ
=1
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and for all | € N the set {I' ¢, I,o0 ..., Ir.00} is also pairwise comaximal and then I.

is comaximal with (_, I,,cq and with [[_, I;,cq. (Here the notation I' is the standard
notation for a power of an ideal I.)

6. Generators of the ideal [ of ()-relations

Let Q= (a1, ...,ay,) € k™ containing the n roots of the univariate polynomial f.

6.1. Factorizing in successive extensions.

This section sketches the algorithm described in [61]| (Chapter III) and in [2] which
computes for the ideal I a Grobner basis for the lexicographic order.

We suppose that the polynomial f is separable (its roots are distinct).
Consider the following successive extensions fields of k:
k, ky = k(an), kno1 = ka1, a0), ..., k1 = k(aq, ..., ap)
We will define recursively the polynomials
In(T0)s Gn1(Tn_1,2n), -, q1(x1, ..., Tp)

belonging to the ring k[z1,...,z,]. Let g, an irreducible factor over k of the polynomial
f such that g,(a,) = o. The polynomial g, (z,) is called the first fundamental modulus
of the polynomial f. The field k, is k-isomorphic to the field k[z]/(g.(z)). Now, suppose
that for some i € [1,n — 1]:

1) the polynomials g, (z,), ..., gir1(%it1,...,2z,) are known;

2) the field k[z;y1,...,20)/(git1,- -+, gn) is k-isomorphic to the field k;;; and

3) gj(aj,...,a,) =0 for each j € [i +1,n].

Let g;(z, @1, ..., ay) be the polynomial which is an irreducible factor of the polyno-
mial f(x) over k;i1[x] such that «; is one of its roots. The polynomial

gi(wh Lit1y .- - 73711)
is called the i-th fundamental modulus of the polynomial f. The field k; is k-isomorphic
to the quotient rings k[z;, ..., x,]/(gi, - -, Gn)-

For ¢« € [2,n + 1], a;_1 is a k;-primitive element of the field k;_; and its minimal
polynomial over k; is the polynomial g; 1(x, cy, ..., ).

Remark 11. As soon as all factors are linear, the inductive method for computing
the fundamental modulus can be stopped.

The factorizations of the polynomial f over the fields k; can be replaced by the one of
the interpolating functions f,(z,), ..., fi(z1,...,x,) (see Definition 1.4) over the quotient
rings k[z;, ..., x,]/(gi, - ., gn). In [2] an efficient algorithm for this factorizations is given.
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THEOREM 6.1. The set of the fundamental moduli {g1(x1,...,2n), ..., gn(xn)} is a
reduced Grobner basis for the lexicographic order of the ideal of relations 1. In particular,
we have:

k(on, ... o) Zk[zy, ..o xn]/(g1, -5 Gn)
PROOF. see [2]. O
COROLLARY 6.2. card(Gq) =[]}, degs,(9;)-
PROOF. Because card(Gg) =card(V (Ig)). O

6.2. Computation of a generating system of the ideal of ()-relations.

Factorizations in extension fields are very expensive because the degrees depend on
the cardinality of the Galois group G, of the polynomial f. It is preferable to determine
G and compute such a Grébner basis using generating system of the ideal of ()-relations
I, given by the following theorem:

THEOREM 6.3. (Arnaudiés-Avb) Let Q be an ordered set of roots of a separable uni-
variate polynomial [ of k[z]. Let Gq be the Galois group of Q2 and let 1y ...7. be a right
transversal of &, mod Gq. Set J :=J;_, I,co and let g € Ig\J. Then

Ion = Ig"+<g>
- <f17"'7fnag>
where f1,..., f, are the Cauchy moduli of f.

PROOF. (see [6]) We first prove that the varieties are equal: It is clear that V(Ig) C
V(Ig"+ < g >). Let g € V(IJ"+ < g >); we have 3 = 70 and as g(7 0 Q) = 0, the
polynomial g vanishes over each irreducible variety V (I..q) so that g € ..o = I[(V(L;00))-
By the choice of g we have I, = I sothat 7 € G. As the varieties of I, and IS’HL <g>
are equal and the ring k[z1,...,z,] is Noetherian then there exists [ € N such that

I, C IS+ < g >C Iq

Now since J and I}, are comaximal (see Section 5.2), there exist u € I}, and v € J such
that u+v = 1. For z € I}, we have * = ru+zv, the polynomial zu is in I, C IJ"+ < g >
and zv € IoJ = [[i_; Inoo = NiZy Iroa = I7" C 15" + g (see Equality (5.5)). O

Example 6.4. Let Og, € k[x1,...,x,] such that Stabs, (O¢g,) = Gq (i-e. a primitive
Gg-invariant). Set 0 := O¢,,(€2); by Lemma 3.1 the algebraic number 6 belongs to k. If
O¢,, verify Gg = {0 € &,,) | 0.04,(2) =0} (i.e. O, is separable). then the polynomial
Rg, = O¢, — 0 € k[z1,...,x,] is convenient for Theorem 6.3.

In Chapter 6 this result is generalized to every ideal I where L is a subgroup of the
symmetric group &,. More precisely, Chapter 6 describes an inductive method designed
to compute a generating system of I, the ideal of ()-relations.



CHAPTER 5

Fields and groups

We will suppose in all this chapter that the polynomial f is separable (its roots are
pairwise distinct). We set

f= H(x — ;) € k] where o; € k
and Q= (aq,...,q,) € k™.

1. Recalls about ideals and groups

We recall some notations and results providing from previous chapters.
The ideal of Q2-relations is:

Io ={R € klxy,...,z,] | R(Q) =0}
and the Galois group of Q2 over £k is:
Gq = {U € 6, ’ O'(IQ) = IQ}

Put X = (x1,...,2,). The splitting field k£(€2) of the polynomial f is k-isomorphic to the
quotient ring k[X]/Iq by the following k-isomorphism (see Section 2 Chapter 1):

¢ KXl — k)
P —  P(Q)

The Galois group Gg acts faithfully on £(Q):
Ga X k() — k(Q)
(o,p) = oxp:=(0.P)()
where P = &~ 1(p).
The variety of the maximal ideal I is given by:
V(lg) = GqoQ and
card(V(Ig)) = card(Gg)
because the polynomial f is separable.

27
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Let © € k[X] and 60 = ©(Q2). The characteristic and minimal polynomials associated
with © in k[X]/I and in k[X]/IS" are the following polynomials of k[T7:

(1.1) Cory = |](T-0c0(Q)
oeGq

(1.2) Me 1, = I[I @-v=1]] @-v) and
$e{0.0(Q)|ceGq} PYEGa*b

(1.3) Cosen = | (T-06()
oeSigman

2. Algebraic numbers

Remark 12. If K is a field and L is a finite algebraic extension of K, then L is
included in the field K(€2,), where g is the polynomial over K of smaller degree such that
the generators of L over K are the roots of g. Thus we can expose the standard results
over the fields using the fields between k and k(£2). Moreover, as k is a perfect field, all
finite extensions of k are separable.

Definition 2.1. Let 6 € k(2). The minimal polynomial of 6 over k is the irreducible
monic univariate polynomial over k£ having 6 as root. This polynomial will be denoted by
Ming ;.. The roots of Ming ;, are called the conjugates of 6 over k.

LEMMA 2.2. Let g € k[x] and 0 be a root of g in k. Then the minimal polynomial of
0 over k is a factor of the polynomial g.

PROOF. Denote by m the minimal polynomial of 8 over k. Let h be the monic polyno-
mial of smaller degree having 6 as root. There exist two polynomials ¢ and r of k[z] such
that m = hq+r with deg(r) <deg(h). The polynomial r equals zero because r(6) = 0. As
m is irreducible over k, it equals h. Now, if g € k[z] such that g(f) = 0 then the degree
of the polynomial m is less than the one of g. Thus ¢ = gm + r where ¢,r € k[x] and
deg(r) <deg(m). As r(f) = 0 and the degree of m is minimal then r = 0. O

Definition 2.3. Let F' be an algebraic extension of k. An algebraic number 6 is a
k-primitive element of F if F' = k(6).

LEMMA 2.4. An algebraic number 0 over k satisfies:
(2.1) k0] = k(9) = k[z]/(Ming x(x))

PROOF. Let m € k[z] be the minimal polynomial of 6 over k. The principal ideal (m)
is the kernel of the surjective k-morphism:
P — P(0)

and as (m) is principal it is maximal in k[z] and k[z]/(m) is a field. O
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LEMMA 2.5. Let 0 € k(). The degree of the minimal polynomial of 6 over k equals
dimyk(6).

PROOF. Let d be the degree of the minimal polynomial of § over k. Then 1, z,..., 2% !
is a k-vector space basis of k[x]/(Ming x(z)). O

3. Minimal polynomials

We show that the minimal polynomial of an algebraic number 3 of k() over k co-
incides with the minimal polynomial of the endomorphism in End(k[X]/Iq) associated
with the image of 3 by ®~1.

PROPOSITION 3.1. Take o a root of the polynomial f and consider g its minimal
polynomial over k. Set I = {i € [1,...,n] | 4 = a}. Then, for each i € I, the
polynomial g is the square free form of the characteristic polynomial Cy, ,. Hence there
exists m € N such that

(3.1) gt)™ = Cu,, and
(3.2) o) = I @-»
Be{agyloeGa}

If f is irreducible, then g = [ and the integer m equals card(Gg)/n.

PROOF. Take ¢ € I. Since C,, j, is a polynomial over k£ and has a; as a root (Gg
contains the identity), the minimal polynomial g of «; is a factor of C,, ;,. Choose an
order of the roots such that Q, C Qc, , = (a4 | 0 € Ga). As g is irreducible and &
is perfect the roots of ¢ are distinct. Setting g(z1,...,z,) := g(z;) we have §(Q) =0 =
(Vo € Gq) (0.9)(2) = g(as@m)) = 0, by definition of the Galois group G. This proves
that the set {a,(;) | 0 € G} is a subset of the distinct roots of g and therefore equals the
set, of the roots of g. O

Remark 13. Let g; be the irreducible factor of f having «; as a root. The polynomial
gi(z;) belongs to the ideal I since g;(c;) = ¢;(z;)(2) = 0 and by the Yokoyama—Noro-
Takeshima’s Theorem (see Chapter 2), g;(z;) € I implies I = /I and g; = M,, .

More generally, we have
THEOREM 3.2. Let © € k[zy,...,x,] and 6 = O(Q) € k. Then
Me 1, = Ming
so that

Ming,k = H (T - 77Z)> = H (T - ¢>

Pe{O(coQ) | ceGq} PEGo*0
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PROOF. Since 0 is a roots of Mg j,, the set of the roots of the irreducible polynomial
Minyg ¢ is a subset of the set of the roots of Mg ;, which is {O(c 0 Q) | o € Gq}. Now
set P := Ming(©). We have P(£2) = Ming,(O(2)) = 0 and then, by definition of Gq,
(Vo € Gq) 0 = 0.P(2) = Ming 4 (O(0 0 Q)). Hence (Vo € Gg) 0.9(2) is a root of Ming
so that the set of roots of Mingy is {O(c 0 Q) | o € Gqo}. As the roots of Mg j, are
distinct, the theorem is proved. U

COROLLARY 3.3. Let 6 be an algebraic number over k. Then
deg(Min, ;) = card(Gqo x 0)

LEMMA 3.4. Let 0 € k(Q) and © = &~ 1(0) € k[zy,...,2,]/Io (then 6 = O(Q)). The
set of conjugates of 0 over k equals the set {0.0(Q) | 0 € Gq}.

PROOF. See Theorem 3.2. O

4. Primitive element theorem

THEOREM 4.1. Let K be a field and let L be a separable finite extension of K. Then
there exists 0 € K such that L = K[0).

PROOF. First suppose that the field K is finite. So that L is a finite field and the
multiplicative group L* is cyclic. Any generator of L* is a K-primitive element of the
extension L of K.

Now, suppose that K is infinite. The following proof is that of Lagrange (see [41],
Paragraph 100). As the field & is perfect and M is a separable extension of K, we can
put k£ := K and suppose that

L="Fk(ay,...,an)

where m < n and Q = (ay, ..., q,) is the n-tuple of the n distinct roots of the polynomial
f of k[x].
Let H =1I,, X G, and (A1,...,\,) € k" such that

W:)\lxl—l——l—)\mxm

is a primitive H-invariant. As the perfect field k& is infinite and the polynomial f is
separable, the invariant W can be supposed such that the polynomial

ﬁw,fz H (T—PSZ(Q))
ves,. W

is a separable polynomial (it is the absolute resolvent of f by W) (see Section 2 Chapter
3). Put e :=n!/(n—m)!, the index of the group H in the symmetric group &,, which equals
the degree of the polynomial Ly ;. Choose the order of the orbit &,.W = {W;,... , W.}
such that for j € [1,¢e] and @ € [i;_1 + 1,4;] (with iy = 0 and i,, = €)

€6, , Wi=aW B W =W and 0;.Tj = T
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For j € [0,e — 1], denote by A; the orbit &,.(W7z;) of the polynomial W7z, As
card(&,.W) = e, for j €]0,e — 1]
card(A;) = e
and card(Agp) = n. By the fundamental theorem of symmetric functions, for j € [0,e — 1]
there exists y; € k such that
pi= > P(Q)

PEAj
Now, let Y7,...,Y. 1 be e — 1 indeterminated and be the polynomials:

F(T,Y)=14+YT+---+Y. ;7"  and
M(Y) =e/np +mYr+ -+ pre1Ye s
We have:

M(Y) = 01 i:F(WG(Q),K, o 7}/6—1)

= ay Y F(W;(Q),Y1,...,Ye)

= a, Y F(Wi(Q),Y,....Ye)

j:in—l“rl

By interpolation, there exists y = (yi,...,%.—1) € k™ such that the polynomial F'(T,y) of
degree e — 1 satisfies the e equations:

F(WJ(Q)>y> =
FW(Q),y) #

because the determinant [[,.;_;.(W;(Q2) — W;(Q2)) of the absolute resolvent Ly ; does
not equal zero. Thus

0 forje[2e] and
0

M)
a0 = ———
EW(Q),y)
For ay, ..., a,, we choose z; W7 instead of z1W7 for i € [2,¢] and j € [0,e — 1]. O

5. Dimension and primitive elements of £({2)

We will suppose that the field £ is infinite.
Let L be an algebraic extension of k£ and 6 be a k-primitive element of L. Then

(5.1) dim; L = deg(Min, ;) = card(Gq x )
Let (A1,...,\,) € k" such that the polynomial
V=Mo1 4+ -+ Ao,
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is a primitive J,-invariant and the characteristic polynomial C; ;en (=Ly,y) is a separable
polynomial. Set

v:=V(Q).

By the proof of the theorem of the primitive element, the algebraic number v is a
k-primitive element of k(2). Thus

(5.2) k(Q) = k(v) = k[z]/(Min, ;)
As the polynomial f is separable and card(Gg * v) =card(Gg), we have
(5.3) dimy (k(?)) = card(Gq) = deg(Min,, )

Remark 14. We also can use another arguments. As the ideal I is radical the
dimension dimg(k(§2)) =dimgk[xy, ..., x,]/lo equals the cardinality of the variety V(Ig).
Thus, since the polynomial f is separable:

(5.4) dimgk(Q) = card(Gq)
Let V, as above. As
dimgk(v) = card(Gq)
and v € k(£2) we have
k(v) = k()
Thus the algebraic number v is a k-primitive element of k().
LEMMA 5.1. Let V and v be as above. Then
Cvi, = My, = Min, j,

PROOF. First proof. The set of roots of Cy, is S := {0.V(Q) | 0 € Ga}. As V is
invariant only by the identity and Cy, ;ex is separable, all roots of Cy,j,, are distinct and
Cv.i, = My, and My ,=Min, ; by Theorem 3.2.

Second proof. (Without using Theorem 3.2) The set of roots of Min, ; contains the
elements R := (0.V () | 0 € Gq) because Min, (V') € I and the variety of I is G o Q.
As V' is invariant only by the identity and CY, Sn is separable, all elements of R are
distinct. As card(R) =card(Gg) equals the degree of Min, ;, the set R equals the set of
the roots of Min, k. It is also the set of the roots of Cy, (see Identity 3.1 Chapter 4). O

THEOREM 5.2. Suppose that the polynomial f is separable. An algebraic number 0 is a
k-primitive element of the extension field k(QY) of k if and only if its minimal polynomial
over k is given by:

(5.5) Ming(T) = [ (T - 0.0(Q) = Co1,(T) |

ce€Gq

where © = ®71(0).
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PROOF. Let 6 be a primitive element of the splitting field k£(Q2) of f and v as above.
First, as v € k(f2), it can be written v = g(¢) where g is an univariate polynomial with
coefficients in k so that, by definition of Gg, (Vo € Gq) 0.V (Q2) = g(0.0(2)). Second, if
Co.1,, is not separable then 0.0(Q2) = ¢’.©(Q2) for some o and ¢’ two distinct permutations
in Gg. Consequently 0.V (Q) = ¢’.V(€2) which is impossible because V' is chosen such that
Cvy 1, is separable. We have proved that the characteristic polynomial Cg j, is separable;
thus

Co,1,, = Mo 1, = Ming ;.
Conversely, if Ming , = Cg s, then 6 is a primitive element of the extension field £(£2) of

k since the degree of its minimal polynomial over k equals card(Gg) the degree of the
extension field k(§2) of k£ and 0 € k(Q). O

6. Results of Galois
We prove the historical result of E. Galois (see [32]):

“Il existe un groupe de substitutions tel que toute fonction des racines dont les substi-
tutions n’alterent pas les valeurs numériques, soit rationnellement exprimable et récipro-
quement.”

We will suppose that the field £ is infinite.

Now we consider a polynomial V' of k[z1,...,x,] such that Stabs, (V') is the identity
group and such that Cy, je. is a separable polynomial (see Section 5). Set v := V()

which is a k-primitive element of the field k().

Notation 6.1. For v € k(Q) and U = &' (u) € k[xy, ..., x,]/Iq we denote by R, the
polynomial of k[T such that u = R,(v) and its degree is strictly less than the degree of
Min,, ;. We have

u=U(Q) = R,(V(Q))
LEMMA 6.2. (Galois) Let v € k() as above and u € k(S2). The condition
w=R,(V(Q) €k
18 equivalent to
(Vg € Ga) Ru(V(g0Q)) = Ru(V()) = u

PRrROOF. We prove this lemma using only the subset H of &, such that the set of
conjugates of v is the set {0.V () | 0 € H}. (We omit that H = Gq by Lemma 3.4.) Let
d be the degree of Min, ;. Set R := R, and

W(t) = R(t) — R(V(Q))

which is a univariate polynomial of k£(2)[t]. Now suppose that (Vh € H) R(V(hoQ)) =
R(V(Q)) = u; then W(h.V(€2)) = 0. Since f is separable, the polynomial W whose degree
is strictly less than d, has at least d distinct roots. The polynomial W is obviously zero
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so that u = R(V(Q2)) = R(1) € k. Conversely if u € k then W € k[t]. As V(Q) is a root
of W € k[t], the polynomial W has the same roots as Min, ; (since it is irreducible) and
therefore (Vh € H) R(V(hoQ)) = R(V(2)) = u. In order to finish, as H = Gq, the
lemma is proved. O

Remark 15. Part of Lemma 6.2 has been proved by Galois as follows: let 6 € k; if
(Vh € H) Ry(V(h o)) = Ry(V(2)) then
R(V(Q) = [[ PV(Q))/card(H) € k
TEH
by the fundamental theorem of symmetric functions.

Remark 16. We know that H = Gq by the essential equality My, ;, =Min, ;.

THEOREM 6.3. (Galois) Let u € k(Q2). We have u € k if and only if (Vo € Gq)
o * U= u.

PROOF. Let U = &~ !(u); we have 0 xu = 0.U(Q). If 0 € G then R,(V(Q)) = U(Q)
is equivalent to R,(V (o 0Q)) = U(c o Q). Thus, by Lemma 6.2, u = U(f2) € k if and
only if (Vo € Gq) 0.U(Q2) = U(Q) = u. O

7. Galois extensions and automorphism groups
In this section the polynomial f is supposed to be separable (its roots are pairwise
distinct).
we will prove that the action *x of Gg over k(f2) is the same as that of the group
Aut(k(£2)) of the k-automophisms over k(2).

Notation 7.1. The group of the k-automorphisms of an algebraic extension field
of k is denoted by Aut(E).

Consider the k-automorphism:
O k[ry,... 2]/l — k(Q)
P — P(Q
and for o € &,,, define the k-automorphism V¥, by
U, : klzy,...,x,] — K[z, 2]
P — oP

LEMMA 7.2. Let 0 € Gq. Then the morphism ¥, defined by:

U, k.. w0/l — klzy, ... z0)/Io
P — oP

Y

is a k-automorphism. Consequently the morphism ®U, & is a k-automorphism of k(Q)
which satisfies PV, P () = (i)
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PROOF. As the Galois group Gg is the decomposition group of I, the condition
o € (g is equivalent to o(lg) = Ig. Hence the k-automorphism ¥, induces the k-
automorphism VU, of k[zy,...,x,]/Iq. O

Notation 7.3. We denote by ¢, the k-automorphism ®U,d,

LEMMA 7.4. Set Q := (ay,...,qy,). If ¢ €Autp(k(Q)) then there exists o € &,, such
that ¢(cu) = as( for i € [1,n]. The k-automorphism ¢ will be denoted by ¢o.

PROOF. For i € [1,n] we have ¢(e;(2)) = €;(2) € k where ¢; is the i-th elementary
symmetric function (see Definition 1.2 Chapter 4). Thus
[z = é(a) = fz) = [](x — )
i=1 i=1

O

THEOREM 7.5. Set Q := (aq,...,ay). The group Auty(k(Y)) of the k-automorphisms
of k(Q) is isomorphic to the Galois group Gq of f by:

Go — Auty(k(Q))
o = ¢ ;

where ¢ (0;;) = ag(y fori € [1,n].
Ifr € k(Q) and R =®7'(r) (i.e. R(Y) =r) then

(7.1) VoeGq Go(r)=R(coQ)=0*r

PROOF. If ¢ € Auty(k(2)), then by Lemma 7.4, there exists 0 € &, such that
¢ = ¢,. For this o and for any R € Io we have 0.R(Q2) = r(ao@),...,0om) =
R(p(ar),...,0(an)) = d(R(a,...,ap)) = ¢(0) = 0, since ¢ is a k-automorphism of
k(Q) and R € Ig. Then ¢ = ¢, with 0 € Gg. Conversely if 0 € Gg, by Lemma 7.2,
¢, is a k-automorphism of k(€2). As ¢, € Aut,(k(2)), we have ¢,(r) = ¢, (R(Q)) =
R(¢o(a1), ..., ¢s(an)) = R(ao(), - -, o)) = R(00Q) =0 *7. O

Remark 17. By Theorem 7.5, when o € Gq, it is possible to write ¢,.R(Q2) or o(r)
instead of ¢,(R(€2)). This convention is strictly reserved to the elements of the Galois

group of f.
We give the standard definition of Galois groups of field extensions:

Definition 7.6. (Galois group) When an algebraic extension E of a field K is the
splitting field of a polynomial with coefficients in K, E is said a normal extension of K.
If, moreover, the extension F is separable then F is said a Galois extension of K, the
group Autg (F) is denoted by Galg(F) and is called the Galois group of the extension E
over K.

Remark 18. When K is perfect, F is always separable.
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Definition 7.7. Let E be a Galois extension of a field K and g be a polynomial of
K|[z] such that the field F is the splitting field of g. The Galois group of E over K is said
the Galois group of g and is denoted by Galg(g).

Theorem 7.5 indicates that if £ is a Galois extension of a field K, which is the splitting
field of an univariate polynomial g with coefficients in K, then, for each ordered set 2, of
the roots of g, the Galois group Gal (£) is isomorphic to the Galois group G, associated
with the Qg-relations ideal Io, = {R € K[xy,...,z,] | R(€,) = 0}.

Remark 19. A k-automorphism is completely defined by a unique element of B(£2, ),
the set of bijections of (2 in 2.We have

I = ];5”

if and only if each element of B(€, 2) defines an element of Aut(k(£2)). This means that
if there exists a relation among the roots of f which is not symmetric then some bijection
in B(£2, Q) does not define a k-automorphism of k((2).

Example 7.8. Set [ := (x — 1)(z — j)(z — j?) = 2° — 1. Set Q := (1,4,7%). The
Cauchy moduli of f are: f; = x3 + @9 + 1, fo = 23 + Tows3 + 23, f3 = 23 — 1. The
polynomial R = z2 — x5 is an {)-relation. The remainder of the division of R by f(z3) is
—12 — zow3 — x3. As this remainder depends on x5, the Q-relation R is not symmetric and
therefore the Galois group of f is not &3. Actually, it is obvious that the Galois group of
f is 61 X 69.

LEMMA 7.9. Let E be a normal extension of a field K, then all minimal polynomials
of elements of E split into linear factors in E.

PROOF. (due to M. Artin) By hypothesis, there exists a polynomial ¢ € K|x] such
that £ = K(Q,), where €, is an ordered set of the roots of g. Let # € E. Then there
exists © € k[z1,...,x,] such that § = ©(Q,). The coefficients of the polynomial

(1) = [ (T - o0.06(9))

belong to the field K by the fundamental theorem of symmetric functions and its roots
belong to F. Thus the minimal polynomial of 6 over the field K is a factor of the
polynomial C' and its roots belong to E. U

8. Galois duality
We refer also to Arnaudiés-Bertin’s or Artin’s books for Galois duality and other

results on the fields (see [5] and [11]).

We take K a Galois extension of k. Recall that Q € k™ contains the n roots of the
univariate polynomial f of k[z].
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Notation 8.1. Let H be a subgroup of the k-automorphisms group of K. The set of
the elements of K which are H-invariant is a subfield of K. We will denote it by Invy (H):

Invg(H) ={P € K| (V¢ € H) ¢(P) = P}

Notation 8.2. Let H be a subgroup of the Galois group G. The subfield of £(2) of
elements invariant by H is denoted by k(Q):

E)T ={rekQ)| Vo€ H)yoxr=r}
If H is a subgroup of G, and H' its image in Galg(k(£2)) (see Theorem 7.5). We have:
Invy o) (H') = k()"

THEOREM 8.3. (Galois duality) Suppose that K is a Galois extension of k. We have

(1) Let E be an extension of k in K. Then there exists a subgroup H of Gal(K) such
that E =Invk (H).

(2) Let H be a subgroup of the Galois group Galp(K). Then k Clnvk(H) C K.

PROOF. Set G :=Gali(K) =Auty(K).

(1) K is a Galois extension of E because it is one of k. Therefore, by Theorem 6.3,
E =Invg(H), where H =Autp(K)=Galg(K). Now, as k C F, the group Autg(K) is a
subgroup of Aut,(K) (i.e. each E-automorphism is trivially a k-automorphism).

(2) Let H be a subgroup of G. We choose a polynomial f such that K = k(2), where
) is a set of roots of f. By the isomorphism between Aut(k(f2)) and G, H can be view
as a subgroup of Gq and k(Q)? C k(Q). Let u € k; as (Vo € Gq) we have o xu = u, it is
true in particular for all 7 € H. Thus k C k(). O

LEMMA 8.4. Let f be a polynomial of klx]. Let H be a subgroup of Gq, and let
E =k(Q)". Let 0 be a k-primitive element of E: E = k(0). We have:
(i) H={o € Gq, | ox0=10};
(17) the minimal polynomial of 6 over k is given by:
(8.1) Mingy, = | [(T —7%6)

i=1

where Ty, ..., T, is a left transversal of Go, mod H;
(iii) the degree of the extension field E over k is the index of H in Gq,.

PROOF. (i) We have u € F if and only if (Vo € H) 0 xu = u and o € H if and only
if (Vu € E) 0 xu = u. Let 0 € H such that o x§ = 6. For each v € E there exists a
polynomial P € k[z]| such that u = P(f). Thus o xu = 0 x P(§) = P(oc x0) = P(0) = u,
and o € H.
(17) We have

Ming, = [[ (T—9¢)

¢EGQf*9
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Let 71, ..., 7. be aleft transversal of G mod H. For all i, j € [1,e] we have 1;h%x0 = 7,%x0
and 7; %0 = 7; % 0 is equivalent to 7, '7; € H because 7; ' € Gq, and by (i). We have the
result because Tj_ln € H if and only if 7; = 7;.

(77) The degree of an algebraic extension extension over k is the one of the minimal
polynomial over k of its k-primitive elements. O

COROLLARY 8.5. Let H and L be two subgroups of Galy(K) such that H C L. Then
the degree of the extension field Invgx (H) of Invgk (L) equals the [L : H|, the index of H in
L. If 0 is an Invk (L)-primitive polynomial of the field Invi(H) then:

e

(8.2) Mingy, = [[(T —7%0) |
i=1
where 11, ...,T, 1s a left transversal of L mod H.

PROOF. Let Q2 be the set of the roots of an univariate polynomial such that K = k(£2).

As K also is a Galois extension of Invg (L), we can use Lemma 8.4 with L instead of
Gal,(K) (or Gq) and Invk (L) instead of k =Invg (Galg(K)). O

THEOREM 8.6. Suppose that K is a Galois extension of k. Let H be a subgroup of
Galy,(K) and let E =Invk(H). Then

(a) E is a Galois extension of k if and only if H is a normal subgroup of Galp(K);

(b) in this case the Galois group of the extension field E/k is isomorphic to the group
Galy,(K)/H.

PROOF. As K is a Galois extension of k, there exists a separable polynomial f € k[z]
such that K = k(Q2), where Q is a set of the distinct roots of f. Let 6 be a k-primitive
element of F.

(a) the field E is a Galois extension of k if and only if (V7 € Gg) 7x6 € E. This
is equivalent to (V7 € Gq) (Vo € H) o7 x0 = 7x0. As 77! € Gq, this is equivalent to
(Vr € Gq) (Vo € H) 77'or x 0 = 6, which in turn is equivalent to (V7 € Gq) (Vo € H)
77 'oT € H because 0 is a k-primitive element (see (i) of Lemma 8.4). Thus F is a Galois
extension if and only if H is a normal subgroup of Gg,.

(b) As H is a normal subgroup of G, then the set of left cosets of G, mod H is the
group denoted by Ggq/H. Thus, by (ii) of Lemma 8.4, we have:

(8.3) Ming, = [[ (T —7x6)
TEGQ/H

But as 6 is a k-primitive element of E which is also the splitting field of its minimal
polynomial, the Galois group of Ming  is isomorphic to Go/H by Theorem 5.2. 0
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9. Invariants and fields

Definition 9.1. Put K = k(f2). Let § € K and L, H be two subgroups of Gq such
that H C L. If H =Stab(0) then 6 is said an L-primitive H-invariant for Q.

Applying the definition with k(z1,...,2,)°" instead of k and Q = (xq,...,x,) (i.e
Gqo = 6,), an L-primitive H-invariant for {2 is an L-primitive H-invariant.

Let L and H be two subgroups of Gg such that H C L. If © € kf[zy,...,z,] is
an L-primitive H-invariant separable for Q (see Section 2 Chapter 3) then O({2) is an
L-primitive H-invariant for €.

THEOREM 9.2. Let L and H be two subgroups of Gq such that H C L. An algebraic
number 0 € k(Q) is an L-primitive H-invariant for Q if and only if 0 is a primitive
element of the field extension k() over k(Q)L.

PROOF. Let 7, ..., 7, be a left transversal of L mod H. If § € k() is an L-primitive
H-invariant for Q then 6 € k(Q)" and the conjugates of 6 over k(Q)* are the distinct
elements of Lx# by Galois theory. This conjugates are the e elements 7,%6 , i € [1,n|. Thus
0 is a primitive element of the field extension k(Q)# over k()" because e = [L : H] equals
the degree of the extension k(2) of the field k(€2)L. Conversely, if the conjugates of an
element 6 of k() are the e distinct elements 7; 6 , i € [1,n] then Stabz(0) = H. [

COROLLARY 9.3. Let K = k(xq,...,2,)°" and let © be an L-primitive H-invariant.
The minimal polynomial of © over the field K; = K(x1,...,x,)" is the L-relative resol-
vent by O, denoted by L, and

e

(9.1) Mino i, = L& =]][(z = 0:.0) € K(21,...,2,)"[a]
i=1
where 01, ...,0. 1s a left transversal of L mod H.

PROOF. See the proof of Theorem 9.2 : we have Ming x, = L&, by definition of
generic resolvents (see Definition 5.6 of Chapter 6). O






CHAPTER 6
Ideals and groups

We take f € k[z]| a polynomial of degree n and 2 € k™ containing the n roots of the
polynomial f.

For L be a subset of the symmetric group &, the ideal of L-invariant ()-relations is
given by

Ik = {Reklry,...,x,) | (Vo€L)oR(Q)=0}
LEMMA 0.4. The ideal 1% is radical: 15 = \/I5.

PROOF. First Proof. Let n € N and P € k[zy,...,2,] such that P" € I5. Let
o € L; then (0.P") = (0.P)" and 0 = (0.P)"(Q2) = (¢.P(2))". Since k is a field we have
0.P(2) = 0 and then P € I}.

Second Proof. See Example 2.8 Chapter 2. O

1. First inclusions
LEMMA 1.1. If L contains the identity then
15 c I
LEMMA 1.2. Let H and L be two subsets of &,, such that H C L. Then I C IY.

PROOF. Let R € I(%. If HC Land o.R € I for all 0 € L then 0.R € Io. This occurs
in particular for all 0 € H and therefore R € I} . O

Remark 20. The converse of Lemma 1.2 is not always true.

We have Ig" # I when there exists ¢ € &, such that I # [,.q. The following
proposition gives links between /.o and Iq.

PROPOSITION 1.3. Let o be a permutation in &, and let L be a subset of &,,, we have:

(Z> IgOQ - I!%L )
(i) Igrcly
(i) ISy =1I3" and

iv) if L contains the identity then Ig¥ = IE, C I,0q

PROOF. (i) Let R € k[z1,...,x,]. We have R € I%,," if and only if for all [ € L then
[.R(Q) =o' .R(0 0 Q) = 0. The other relations are trivial. O

41
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Remark 21. The previous proposition shows that the ideal of symmetric relations
IS = IfG" does not depend on the choice of the order of the roots of f.

2. The stabilizer and the decomposition group
LEMMA 2.1. A subset of &,, stable by composition is a group.

LEMMA 2.2. Let I be an ideal of k[x1,...,x,] and H be the following set of permuta-
tions:

H:={ce€e, | oI)CI}
Then H is a group and H = {0 € &,, | o(I) = 1}. In particular, the Galois group Gg is
actually a group.

PROOF. For o, 7 € H 70 € H since 0.1 C 7.1 C I. Then H is a stable by
composition and, by Lemma 2.1, it is a group. O

LEMMA 2.3. Let 'H be a set of subsets of &,,, then
(2.1) e = M 1l
HeH
PROOF.
Pel"" & (Yoe | H)oP(Q)=0
HeH
& (VHeH)(VoeH)o.P(2) =0
& Pe )1
HeH

O

Let £, ={H € &, | I} =I5}. Then by Lemma 2.3 the largest element of Fy, exists
and equals the set Jycp, H-

Definition 2.4. Let L be a set of permutations. The stabilizer of the ideal I5, denoted
by Max(7}), is the largest subset of &, satisfying:

(2.2) IE = Mea)

Definition 2.5. The decomposition group, Gr(I), of an ideal I C klxy,...,x,] is
defined by:

(2.3) Gr(I)={oc€es, | c(I)=1}
PROPOSITION 2.6. Let L be a subgroup of &,,. Then
(2.4) L c Gr(1§) and obviously
Gr(1)

(2.5) I, c 15
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PROOF. In order to prove (2.4), suppose that 7 € L and R € I&. By Lemma 2.2, it is
sufficient to prove that 7(/5) C I5. Forallo € L o7.R € I since o7 € L. Thus 7.R € I
(ie. 7 €Gr(I§)). O

The stabilizer Max(I%) is not necessarily a group. Further, Proposition 3.9 of Chapter
7 gives necessary and sufficient conditions for which Max(1%) is a group. At this step, we
have:

LEMMA 2.7.
(2.6) Go = Maz(lg) = Gr(lg) and
(2.7) &, = Maz(I5") = Gr(I3")

The ideals Iq and IS" are equal if and only if Go = &,,.
PROOF. Obvious. O
But what happens for other subgroups of &,, 7
PROPOSITION 2.8. Let I be an ideal of klxy, ... ,x,|. If I C I then

(2.8) 1cIgth
and in particular if I = I%, where L is a subgroup of &,, then
(2.9) [ = [k — 8D _ pMasth)

and L CGr(I) CMax(I). Moreover, if Maz(I5) is a group then Gr(15) =Max(15).

PROOF. First, take R € k[xq,...,2,]. If R € I then, by definition of the decomposi-
tion group, (Vo € Gr(I)) we have o.R € I C I, and finally R € I3"". Now, let L be a
subgroup of &, and set [ := I} C I ( since L contains the identity). By the inclusion

L
(2.8), 1§ Igr(lﬂ).Conversely, since L is stable by composition, by Proposition 2.6 the
L
group L is a subgroup of Gr(I%) and then Igr(lﬂ) C IL by Lemma 1.2. Now if Max([I) is
a group, then Proposition 2.6, applied with Max([) instead of L, gives Max(I) C Gr(I),
and by definition of Max(/) and using (2.9) the inverse inclusion is proved. O

The Galois group depends on the choice of ) for the set of the roots of f:

PROPOSITION 2.9. Let 7 € &,,, the Galois group of T 0 Q2 is given by:
(2.10) Groo = 7 'Gar |
(2.11) Groo = {o0€6, | (VP € L) P(too) =0}

PROOF. Set G := Gq. We have 7 € 07 'Go if and only if o707 € G. Let 7 € 0 'Go
and R € I,.n. We have 0.R(Q) = 0 and then 0.R € I,. Since oro~! € G, we have
0= (o707 Ho.R(Q) = o7.R(N) = 7.R(0 0 Q) and then 7 € G,on. Conversely suppose
that 7 € Goon. Let R € I then 0.(c71.R)(Q2) = 0 and since 7 € Goon, we have
0=r71(0""R)(c0Q) = 070 L. R(Q) and then 7 € 07 'Go. Prove identity (2.11): by
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definition of G,.q we have G,oq = {0 € 6, | (VP € L;0q) (0.P)(70£2) = 0} and the
result follows from Lemma 1.2. O

At present it is possible to give a partial correspondence between groups and ideals;
it will be completed in Theorem 3.7:

THEOREM 2.10. If L and H are two subsets of &,, we have:

(2.12) if HCL then IS5cCIf  and
(2.13) if IS c 1Y then Max(IE) ¢ Max(1k)
PROOF. Equation (2.12) provide from Lemma 1.2. Now, let o € Max([{) and R € 1.

We will prove (2.13). By hypothesis R €C I{f. Thus 0.R(2) = 0 and o € Max([}) by
definition of Max(7}). O

Remark 22. We have H C Max([}) if, and only if, Max (/) C Max(15).

COROLLARY 2.11. Let H be a subset of &, which contains the identity. If H C Gq
then

(2.14) I =1=15"
(2.15) Max(IE) = Gr(1}]) = Gq.
If H is a group and Gr(IY]) = Gq then H C Gq.

PROOF. As H contains the identity, then I} C I = Ié". If H C Gq then I = Ig” C
14 and therefore I} = Io = IS®. If H # Gq then H # G = Max(I}) = Gr(I}!). Now,
suppose that H is a group and Gr(I4) = Ggq. Then by Proposition 2.6 H CGr(I}) =
Gq. O

Remark 23. Corollary 2.11 gives an example in which Max([J) # H # Gr(I).

3. Identification of the stabilizer and primitive polynomials of ideals

We suppose that the field £ is infinite.
We start with the following standard result (see, for example [60]):

LEMMA 3.1. Let M be a subgroup of &,, such that Go C M, L a subgroup of M and
Or be an M -primitive L-invariant. We have the following:
(i) if Go C L then ©,(Q) € k ;
(i) if ©L(Q) € k and if O is M-separable for Q then Gq C L.

PROOF. (i) holds because the minimal polynomial Mg ;, which belongs to k[T'] equals
T—0p.
(ii). If 0 = ©,(Q) € k then Ry := O, — 0 € 1§ C I, since L contains the identity.
Let 0 € Gq such that o & L; then 0.R,(Q2) = 0.0, — 6 # 0, since 0 € M and O is
M-separable for ). Thus Ry ¢ Ig” = Ig. O
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Remark 24. If one of hypothesis of i or i of Lemma 3.1 is valid then L =Max(I%).
Because, when £ is infinite, we always can choose a separable primitive L-invariant O,
and the polynomial Ry := O — ©(2) belongs to the ideal I5.

But what can we say in case in which G, is not contained in L 7 The following sheds
some light on this general situation.

LEMMA 3.2. Let M be a subgroup of &, and let H be a subset of &,,. Suppose that
Go C M. Then there exists Ry € 13 such that Ry, € I if and only if H C M.

PROOF. Pick ©), a separable primitive M-invariant which exists (see Lemma 2.3
Chapter 3). By hypothesis, the polynomial Ry, = ©; — O,,(2) belongs to k[xy, ..., z,].
Let 0 € 6, if 0 & M then 0.0, # Oy and 0.0 ,,(Q) # O,,(R) since O, is separable. [

PROPOSITION 3.3. Let M be a subgroup of &, such that Go C M and let H be a
subset of &,,.
(i) If 1Y C I then H C Max(1}) C M.
(ii) If, moreover, H is a subgroup of &, then Gr(If) c M.

Max(1F

PROOF. It is sufficient to prove H C M since I4 = I, ) and if H is a subgroup

T H . .
of &, : Il = Ig T9) Let Ry be as in Lemma 3.2. By hypothesis, Ry, € I so that
HC M. O

Let © € k[xy,...,z,] and 0 := ©(Q). Recall the expression of the minimal polynomial
Mo p,, of the endomorphism © of k[xy, ..., x,]/Iq:

(3.1) Mo, = ] (T—9¢) = 11 (T —9)
PeGa*b pe{T.0(Q)|TeGa}
By Theorem 3.2 Chapter 5 we have:
Min(c),k = M@JQ

THEOREM 3.4. Let L and M be two subgroups of &,, such that L and Gq are included
in M. Let © be an M-primitive L-invariant separable for Q. Put Ry = Mo 1,(0).
Then the polynomial Ry, s satisfies the following:

a) RL,M € Ié’;

b) GoL ={oc € M| 0.R, () =0};
PROOF. a) For o € L, as © is a primitive L-invariant we have:
o.Rpym = Mo 1,(0.0) = Mo 1,(©) = R m
Therefore, 0. Ry, 0 () = Mo 1,(O(£2)) = 0.



46 6. IDEALS AND GROUPS
b) Put A:={c e M| o.R,nu(Q2) =0}. By (3.1),
A = {oeM| (31 €Gq)oO()=1.06(Q)}
= {ceM| 31€Gq) 7 '0.0(Q) =6(Q)}
since 77! € Gq. Eventually, as © is M-separable for 2 and 7710 € M,
A={oceM| 3re€Gq) o€ L} =GqlL

COROLLARY 3.5. The stabilizer is given by
Max(I5) = GoL

PROOF. Letr € I§,7 € Ggand [ € L. Since l.r € I and by definition of Gq, 7.(1.7) €

I and by consequence 71 €Max(I}). Conversely, let o eMax(I%). By Proposition 3.3
Max(1f) € M. By a) of Theorem 3.4, 0.R;, 1(©)(2) = 0. Finally, by b) of Theorem 3.4,
we have o € GqL. O

Theorem 3.4 and Corollary 3.5 prove that there exists a polynomial R, 5, which char-
acterizes the ideal I§.

Definition 3.6. Let M and L be two subgroups of &, such that L C M and M
contains the Galois group Gg. A polynomial F' satisfying

GoL ={ce M| o.F(Q) =0}

is called an M -primitive polynomial of the ideal I5. In case M = &, the polynomial F
will be called a primitive polynomial of the ideal 15.

When £ is infinite, the polynomial Ry, p; of Theorem 3.4 is an M-primitive polynomial
of the ideal I§.

This following theorem is the same correspondence given in Theorem 2.10:

THEOREM 3.7 (Correspondence between Stabilizers and Ideals). Under the same hy-
pothesis of Theorem 3.4 and if H a subgroup of the symmetric group &, then

HC GoL  ifand only if 15 c I,
Note that H C GqL if and only if GoH C GoL.

The decomposition group of an ideal is not necessary equal to the maximal set GqL.
It is so case when Gq CGr(/}) and L is a group because L CGr(I§). The following
proposition gives a condition for which equality holds:

PROPOSITION 3.8. Let L be a subgroup of &,,. If L is contained in the normalizer of
Gq in &, then Go CGr(I5) and consequently Max(15) = GqL is a group equal to Gr(I§).
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PROOF. Suppose that L is as in the hypothesis of Proposition 3.8. Let o € Gq, r € I5;
we prove that o.r € I5. For | € L we have l.(0.r) = lo.r = o'l.r, where 0’ € Gq because
L is included in the normalizer of G € &,,. We have [.r(£2) = 0 and the definition of the
Galois group Gg gives 0 = o’.(1.r)(2) = 1.(0.7(€2)). The first assertion is proved.

When L is group the decomposition group Gr(I}) is always included in Max(15) =
GqL. By hypothesis, G and L are contained in Gr(/%), which is a group, GqL is in turn
contained in Gr(1}). O

The following proposition gives necessary and sufficient conditions in which GqL is a
group:

PROPOSITION 3.9. There exists a group G such that IS = IS and G contains the
Galois group Gq if, and only if, one of the following equivalent conditions is satisfied:
(i) GoL is a group ;

(i) LG C GoL ; (this holds under the hypothesis of Proposition 3.8 of Chapter 6);
(iii) Gr(1%) = GoL ;

(iv) Go CGr(I%).

In particular, Gq is a subgroup of the decomposition group Gr(15) when Gq is a subgroup
of L.

PROOF. As Gr(/}) contains all subgroup G such that IS = I, the hypothesis of the
proposition is equivalent to (iv).

We must prove that (i) is equivalent to (). If (i) holds then the group GqL is stable
under composition and contains Gg: we have (GoL)Gq C GoL and as G is a group
then LGo C GqL and (ii) holds. Now, suppose that (i) holds; then (GoL)(GqL) C
Go(GoL)L C GqL. We are left with proving that (7v) implies (i), the equality be-
tween the decomposition group and the stabilizer of the ideal I5. As L CcGr(1}),
GolL C GoGr(I§) =Gr(I), when (iv) holds. If L is a group then we always have
Gr(If) cMax(I4) = GoL. The other equivalences holds (see Proposition 2.8 Chapter
6). 0

COROLLARY 3.10. If a subgroup H of &,, contains the Galois group Gq then
GoH = Gr(1f) =H .

4. Varieties
In Chapter 4 the following is proved:
(4.1) V(i) ={o0oQ|o€6&,} =6,00Q :

PROPOSITION 4.1. Let L be a subset of &,. The variety in k()™ of its associated
tdeal 1s given by:

(4.2) V() ={00Q |0 & Mazx(I§)} = Maz(I5) o Q2 = GaLoQ |
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the G L-orbit of 2. In particular
(4.3) V(o) ={00Q|oecGq}=Gqo

PROOF. Let 3 € V(If). Then 8 = 00, where o € &,, since V(1) C V(I5") . Let
o € &,. By definition of Max(/}), the condition (VP € I}5) 0.P(Q2) = 0 is equivalent to
o € Max(I§). O

The variety of the ideals I, where 7 € &,, is given by:
LEMMA 4.2. ForTt € 6,
V(loq) = {1700Q | 0 €Gron} ={00Q | 0 €Gar}=Gqro ,
where Gt o () is the orbit of Q) under the action of GaT.

PROOF. The variety V(Ig) is given in Proposition 4.1. Now o € Gq < VP €
Io 0.P(Q) =0 & 00 € V(I§?). Now, by definition V(I,.q) = {poQ | p €
&, and VP € I,.q P(po Q) = 0}. Let 0, € &, such that p = 70,, we have V(l..q) =
{r0,0Q | 0, € &, and VP € [,.q P(10,0) = 0}. By Proposition 2.9 and Equality
(2.11) the lemma is proved. O

5. Endomorphism of the quotient ring k[, ..., z,]/I&

In this section, L is supposed a subset of &,,.

5.1. Characteristic and minimal polynomials.

We refer to notations and definitions of Chapter 2. For L a subset of &,,, we set

AIS% = k[xh cee 7xn]/]fli

PROPOSITION 5.1. Take © € klzy,...,x,]. Let the endomorphism © € End(Ap)

associated with ©. The characteristic polynomial of O is given by:

(5.1) Cor = [T @-6o-)

00QE Maz(15)o

= H (T —0.0(02)) because f is separable.

c€GqlL
The minimal polynomial of O is given by:

(5.2) M@,IS% = SF@,IS% = H (T —9) =

p€e{0.0(Q)|ce Maz(1§)}

= I @-v

Ye{0.0(Q)|ceGE}
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PROOF. This is because the ideal I} is radical (see Lemmas 2.1 and 2.7 Chapter 2)
and V(15) = Max(I5) o Q. O

LEMMA 5.2. Let L be a subgroup of &, and ¥ € k[xy, ..., z,]| such that L.V = {¥}.
Then the minimal polynomials of ¥ relative to I5 and of v = ¥(Q) over k are equal:

(5.3) My jp = My g, = Ming, = [ (T-9¢)
pEGa*

PROOF. Obvious. U

Remark 25. We have seen that, by linear algebra and since k is perfect, this two
above polynomials belong to k[T]. However, this also follows from the fact that their
coefficients are invariant under the Galois group Gg,.

LEMMA 5.3. Let L be a subgroup of &,,. If Go C L then L = Maz(I}) o Q.

PROOF. Let ©f, be a separable primitive L-invariant. If G C L then Go.0, = {O}.
The minimal polynomial Mg, s, belongs to k[T] and equals T'— ©,(2). Thus ©,(Q2) € k
and the polynomial ©; — ©7(Q) belongs to I5. By the separability of ©; we have
L = Max(I%). O

Suppose that there exists methods for testing if a group contains the Galois group.
By the previous theorem we know that, if L is a subgroup containing the Galois group
Gq, we have all elements for computing the characteristic polynomial Cg 1%~ But, if the
Galois group is not known it is not possible to compute the minimal polynomial Mg 1%
for any polynomial ©.

The following lemma shows that we need compute a characteristic polynomial for
testing the inclusion of G, in a group.

LEMMA 5.4. Suppose that there exists a known group L containing the Galois group
Gq (by example L = &,,) and a group H. Let ©y be an L-primitive H-invariant. Then

(1) If G C H then Oy () € k.

(17) If Oy 1is L-separable for Q and Oy (Q) € k then G C H.

The H-invariant O is L-separable for ) if the multiplicity of the root © () of C@Jé
equals card(H).

PROOF. (i) See Proof of Lemma 5.3 or by Galois Theorem (see Theorem 6.3 Chapter
5).

(ii) If O is L-separable for Q and Oy (Q) € k then H = Max(I}) (see proof of
Lemma 5.3). As H is a group, then I} C I so that Go C Max(I{).
For the test of the separability, see Lemma 5.5. 0
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LEMMA 5.5. Let be a group L containing the Galois group Gq (by example L = &,,)
and a group H. Let Oy be an L-primitive H-invariant. Then

€
Cop = [1(T = 7@u(@)=r i = T (@ - w(g))=®
i=1 VEL.O
where 11, ..., T is a left transversal of | mod H. Moreover, fori € [1,¢], the polynomial
7;.9p is an L-primitive 7, H Tifl—invarz’ant.
PROOF. Exercise. ]

Lemma 5.5 and Lemma 5.4 give the following informations:
- If the characteristic polynomial Cg 1% has a linear simple factor then a conjugate of H
in L contains the Galois group;
- It is sufficient to compute the following polynomial of k[T| (because k is a perfect field):

[T (- wo)
Vel
This previous polynomial is called the Lagrange resolvent. When a characteristic polyno-
mial can be computed, it is possible to compute a Lagrange resolvent and not necessary
a minimal polynomial.

5.2. Resolvents.

The resolvent was introduced by Lagrange in [41]. In this section is given a new pre-
sentation of this fundamental tool of Galois theory.

Take © € k[xy,...,x,] and L a subgroup of &,,. Set K := k(xy,...,x,)".
The standard definition of the generic resolvent is the following:

Definition 5.6. The L-relative resolvent by © is the univariate polynomial £ defined
by:

(54) e =1 -v |
VEL.©
Remark 26. The generic resolvent £ is the minimal polynomial of © over the field
K(xy,...,7,)* because L is the Galois group of the extension field K(xy,...,7,) of
K(xy,...,2,)%. (See also Section 9 Chapter 5.)

PROPOSITION 5.7. Let H be a subgroup of L. The L-relative resolvent by © belongs
to the field K (zy,...,7,) 2] and if © is an L-primitive H-invariant then the L-relative
resolvent by © satisfies:

e

(5.5) L =1[T-00)

i=1
where oy, ...,0. 15 a left transversal of L mod H.



5. ENDOMORPHISM OF THE QUOTIENT RING k[z1,...,2.]/15 51

PRrOOF. Exercise. O

Definition 5.8. The resolvent by © associated with the ideal I is the univariate
polynomial Lg 1% defined by:

(5.6) Lop= I @-w)
VeMax(15).©

Remark 27. If the group L contains the Galois group then the invariant © is L-
separable for (2 if, and only if, ©(€2) is a simple root of the resolvent Lg I%-

LEMMA 5.9. Let the group H =Stabyqysz)(©) which is the stabilizer of © on the sta-
bilizer of the ideal 1. Set d =card(H). Then
(5.7) Coug =L 11
and Lo ;1 C k[T7.

PRrROOF. The set H is a group because it is finite and is stable by composition. The
equality is obvious. The resolvent belongs to k[T'] because k is a perfect field. 0J

LEMMA 5.10. If the resolvent EGJ}% 18 a separable polynomial then it equals the minimal
polynomial Mg r.

PROOF. Because Mg ;v is the square free form of the characteristic polynomial (the
ideal I} is radical and k is a perfect field). O]

PROPOSITION 5.11. Assume that the stabilizer Max(1%) is a group and choose L such
that L = Max(1}). Let H = Stabr(©) (i.e. the polynomial © is an L-primitive H-
invariant). We have:

!

(5.8) Loy =][(T-0i0(Q)
i=1
where o1, ...,0, 1S a left transversal of L. mod H.
PROOF. See Proposition 5.7. O

Definition 5.12. The resolvent Lg 1sn; which were introduced by Lagrange, is called
the absolute resolvent of f by ©. We will denote it by Lg ;. When L =&, x --- X &, is

a product of symmetric groups, the resolvent Lg ;z is called the absolute multi-resolvent
of Q by O©.

The multi-resolvents has been introduced in [35]. They are used for reducible poly-
nomials (see Chapter 8).

Notation 5.13. Suppose that f = f;--- f; where f; is a polynomial of k[z] of degree
n; > 0 for i € [1,d]. Set L := &,, X -+ x &,,. The absolute multi-resolvent Lg ;s is
denoted by Le (f,,....1.)-
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Remark 28. For all i € [1,n],
(5.9) Ly gn = f(T) so that

(510) M i,Ig’” = Sin,IS" = f(T) )

where f is the square free form of f.
5.3. Examples of resolvents.

Example 5.14. Let V' be a &,-primitive [,-invariant. The absolute resolvent Ly ¢ is
called a Galois resolvent of the polynomial f. Galois used it for proving the existence of
the Galois group (see [32]). We can choose:

V = z+2x+--(n— 1)z, or

_ 2 n—1
V = za5---2,

Example 5.15. Let D4 be the dihedral subgroup of &4 whose ¥ = x,29 4+ 2324 is a
G&4-primitive Dy-invariant. The resolvent
L\I;,f == (T — (041042 - (130(4))(T — (041043 - 062064)>(T — (a1a4 — OégOé4))
is known under the name of the dihedral resolvent of the polynomial f.
Example 5.16. Suppose that the polynomial f is monic and denote by A(f) its
discriminant. Choose M = &, and L = A,, the alternating subgroup of &,. The

Vandermonde determinant, 6, = [],«;_;<,(¥; — 7;), is a &,-primitive A,-invariant. We
have

Ls, ;= (a* = A(f))
This resolvent is separable when the polynomial f is separable.

Example 5.17. Let £ # 1 be a primitive unit n-th root. Set © = &z + 29 + - -+ +
£" 'a, 1+ x,. The absolute resolvent Le ; is called the Vandermonde-Lagrange resolvent

6. Generators of the ideal 1§

We suppose that the field £ is infinite for existence of separable primitive invariants.

We take a subgroup M of &, containing a group L and the Galois group Gq (for
example M = &,,). We have the following situation:

Ifm 1§ c 1§ C I

Let © be an M-primitive L-invariant. We denote by Ag the discriminant of the
generic resolvent £g. The discriminant of the resolvent Lg u equals Ag(€2). We have

(see Theorem 3.1 Chapter 3):

(6.1) K, aa]t C Ai@k[xl,...,xn]M[@]
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Set
Rpn = M@Jéu(@)
(see Proposition 5.1). When © is M-separable for €2 the polynomial Ry, is an M-
primitive polynomial of the ideal I5 (see Definition 3.6).

Remark 29. The minimal polynomial of ©(2) over k equals Mg jar and is an irre-
ducible factor over k of the resolvent Lg jur (see Lemma 5.2).

For computing the resolvents and consequently the Galois group G and the ideal I,
we must determine a generating system of the ideal I5.
Recall that if U is separable primitive Gg-invariant then (see Theorem 6.3 of Chapter
4)
Io =Ig" + (¥ — ¥(Q) = Ig' + (¥ — ()
The following lemma gives a first approach:

LEMMA 6.1. If F' be an M-primitive polynomial of the ideal I5 then

(6.2) 15 =\ IY + (F)

PROOF. We have /15 = \/I} + (F) because they are the same variety, by definition
of M-primitive polynomials and the ideal 15 is radical. O

LEMMA 6.2. If Q € k[zy,...,2,]™ then Q(Q) € k and
Q=Q(Q) mod I}
PROOF. We have Q(2) € k because Go C M. Therefore @ — Q(f2) belongs to the
ideal 12 U

LEMMA 6.3. Let © be an M-primitive L-invariant such that the resolvent Lo jur is
a separable polynomial. Let us a polynomial P in 15 which is M-separable for Q0 (i.e.
Staby (P)={oc e M| 0.P(Q) = P(Q)}). Then
Pe i+ <Ry >
PROOF. Let H :=Stab,(P). Since the polynomial P is M-separable for 2 and for all
[ € L we have [.P(Q2) = P(Q) (=0), then L C H. Thus (see Theorem 3.1 Chapter 3):
1
kloy, ..z Ckloy, ... a0t € ——Fk[zy,. .., 2,]7[O)]
Ag
There exists a polynomial F(xy,...,z,) € k[z1,...,2,]M[T] such that
Ag.P = F(z1,...,2,)(0)
As Gq C M, there exists a polynomial g € k[T such that F(Q)(T) = g(T). Moreover,
P(Q) = 0 because P € I C Iy. Then

F(2)(0(Q)) = g(6(Q)) =0
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Thus ¢ is a multiple of the minimal polynomial of § = ©(Q2) over k which equals the
minimal polynomial Mg ;,. Thus the polynomial Ry, 5 is a factor of g(©). Denote by U
the class of a polynomial U in the quotient ring Ajy = kfzy, ... ,z,] /15T By Lemma 6.2,

Ao = Ao(2) = X € k. As the coefficients of F' belong to k[xy,...,7,]", we have (see
Lemma 6.2):

AP =86 P =4(0) = Frn @
where Q € k[xy,...,2,]. As A # 0 we have
P=RLuQ
where @ € k[xy,...,z,]. For every ideal I we have
ka1, ..., z.)/(I + (R)) = Ar/RA;
where A; = k[x1,...,2,]/I (see Equality (2.3) Chapter 2). Thus
P=0 mod mAISI)W

and finally P € Ig[—l— < Rpm>. O

But the previous lemma does not give information about the no separable polynomial
of the ideal I5. The following theorem gives this information:

THEOREM 6.4. Suppose that the polynomial f is separable. Let L and M be two
subgroups of &,, such that

Go C Gr(I5) c M
Let F be an M-primitive polynomial of 15 (i.e. GoL = {0 € M| 0.F(2) =0}). Then

(6.3) 1=+ < F>
In particular, if L C Gq then
(6.4) Io=I5=1+<F>

PROOF. If the theorem is valid with Gr(I5) = L then it holds also for each subgroup
L
L which verifies the hypothesis of theorem because I = IST(IQ). Thus we can suppose
that Gr(I5) = L, so that L = GqL because the Galois group Gg, is supposed a subgroup
of the decomposition group Gr(7}).
Let 7y =1d, ..., 7. be a right transversal of M mod L and set

e

[:=1} and J.=| 15" = I['="" .

i=2
Using Lemma 6.5, the ideals T and J are comaximal because the ideals I5™,..., I5™
are pairwise comaximal. A polynomial g is an M-primitive polynomial of I} if and only

geI\J.
By Lemma 6.1, there exists an integer [ > 0 such that

I'cif'+<F>clI
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As the ideals I and J are comaximal, the ideals I' and J are too. Now, let = € I then
there exist v € I' and v € J such that

T =2xUu -+ 2V

We have vu € I}/+ < F > and xv € IJ = M because the ideals I5™,... I5™ are
pairwise comaximal so that:

e

1J = ﬁ]{;” =i =M
=1

=1

O
LEMMA 6.5. Let 1y, ..., 7. be a right transversal of M mod L and L such that GoL =

L. If f is separable then the ideals I{;“, ey ]éfe are pairwise comaximal.
PROOF. Let i,j € [1,n]. We have V(I5™) = L7, o Q because GoL = L. If f is
separable then V(157 + I57) = vk OV (I5™) = 0. O






CHAPTER 7

Computational Galois theory

This chapter explores recent techniques for computing the ideal of (2-relations I, and
the Galois group Gg. For existence of separable primitive invariants we must suppose
that k is infinite and f is a separable polynomial.

1. The Ideals /5 and resolvent roots

In using resolvents, we search relations among the roots of a minimal polynomial
Ming j,, where 0 € k.

In this section we suppose that M and L are two subgroups of &,, such that M contains
L and the Galois group Ggq. In this situation, the stabilizer Max(I}) equals the group
M.

Let ¢d = 11,...,7 be a left transversal of M mod L.

Notation 1.1. The set {r L, ..., 7;L} of the left cosets of M mod L will be denoted
by (M/L)g.

Let ©f be an M-primitive L-invariant separable for Q2 (see Definition 2.1 Chapter 3)
and set 0 := O.(2). Denote by e the degree of the minimal polynomial Ming, . As
Ming, » = Me, ;z is a (simple) factor of the resolvent Lo, ry, we can choose an order of

the transversal such that 7, ..., 7. (where e <) is as follows (see Proposition 5.7 Chapter
6 and Lemma 5.2 Chapter 6):

e

(1.1) Ming, » = [[(T - m0L() = [] (T-9)

i=1 PEGaHL,

LEMMA 1.2. For i € [l,e] we have 7, € GoL. We can choose 7, € Ggq so that

PROOF. By definition of 7,...,7. and by Equality (1.1), for each ¢ € [1,e¢] there
exists ¢ € Gq such that 7,.0.(Q) = ¢.0.(Q). As g~! belongs to Gg, it is equivalent
to ¢7'71:.0(Q) = O.(R2). Now, this is equivalent to g~ '7; € L, since O is a separable
M-primitive L-invariant and g~'7; belongs to M. O

LEMMA 1.3. Fori € [1,¢] the M-primitive (7L, ")-invariant 7;.© is M-separable for
Q as well as ©.

57
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PROOF. Exercise. Recall that for VU € k[xy,...,z,] and 0 € Gq, the equality
V() = U(Q2) does not imply that 0.V (Q) = 0.U(Q). O

Recall the following lemma proved in Chapter 6:
LEMMA 1.4. Let 'H be a set of subgroups of &,,. Then
(1.2) e = N 1l
HeH

PROPOSITION 1.5. Let M and L be two subgroups of &,, such that M contains L and

Gq. Let ©p be an M-primitive L-invariant separable for Q and 0, = ©5(). Setting
Ripm :=Ming, 1,(©r) = [[;_1(© — 7,.0.(Q)) we have

(1.3) Rp € 1§ = (155 = () 12en
=1

i=1
More precisely, for o € M, o € \J;_, i L if and only if 0.Ry, y () = 0.
PrROOF. We chose the permutations 7y,...,7. such that they belong to the Galois

group Ggq. It is possible by Lemma 1.2. Set A := {0 € M | 0.R, m(2) = 0}. By
definition of the polynomial Ry, »; we have

A={oce M| (Fiele])oO6(Q) =710(Q)}
As 7; € G and Oy, is M-separable for €2:
A = {oceM| Bie(le)r 0.0 =06} :
{ceM| (Fie[le])oenl}
since © is an M-primitive L-invariant. 0

The polynomial Ry, s in Proposition 1.5 is an M-primitive polynomial of the ideal
I} (see Definition 3.6 Chapter 6). For © a separable primitive L-invariant we obtain the
following equality:

=1

where 71.0(Q), ..., 7..9(Q) are the conjugates of O(2) over k. In other words {1 L, ..., 7. L}
is the Gg-orbit of L in (M/L),, the left cosets of M mod L.

THEOREM 1.6. Let M and L be two subgroups of &,, such that M contains L and Gq
(in particular GoL C M). Let 1, ..., be a left transversal of M mod L and T,...,T.
in Go (e <1 ) such that GoL = \J;_, nL. Then 7,...,7. is a left transversal of Gq
mod L N Gq, i.e. Gq s the following disjoint union:

(1.5) GQ:Tl(LﬂGQ>+"'+Te(LmGQ)

The set {mL,...,T.L} is the Gq-orbit of L in (M/L),.
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PROOF. By definition of a transversal we have Go = M N Gq = Uﬁzl(TiL N Gq)
and this union is disjoint for the no empty subset. As Gqo C Ule L = GqL, we have
Go = ;_,(LNGq). Now, for each i € [1,¢], since 7,Gq = Gq, ;,LNGq = 7;,(LNGq) # 0
because L and G, are groups. U

THEOREM 1.7 (Preservation of the primitive element). (Arnaudiés-Avb) Let M and
L be two subgroups of &,, such that M contains L and Gq and let © a M-primitive L-
invariant separable for Q. Then 6 = O(Q) is a Gq-primitive (LN Gq)-invariant relative to
Q. In other words, if © is M-separable for ) and is a primitive element of the extension
field K (zy,...,2,)" of K(xq,...,2,)™, where K = k(z1,...,2,)°", then 0 is a primitive
element of the extension field E = k(Q)*"“e of k. It follows that, the Galois group of
k(Q) over E is L N Gq.

PROOF. As k = k(Q2)%2, § is a primitive element of the extension k(Q)X"“2 of the
field kif LNGg = {0 € Gq | ox0 = 0}. As © is an M-primitive L-invariant and G C M
we have:

GogNL = {TGGQ’T.@ZG}
{reGq|7.0(Q)=06(Q)}
because © is M-separable for Q. Finally, Go N L ={r € Go | 7x 0 = 6}. O

Remark 30. Let © be an M-primitive L-invariant. This invariant is M-separable for
Q if and only if the minimal polynomial of ©(£2) is a simple factor of the resolvent Lg ;z.

THEOREM 1.8. (Arnaudiés-Avb) Let M and L be two subgroups of &, such that M
contains L and G and © be an M -primitive L-invariant separable for ). Then the degree
of the minimal polynomial of ©(Q) over k is the index of LN Gq in Gg which is also the
cardinality of the Gq-orbit of the class of L in (M/L),. If {11 L, ..., 7.L} is this orbit then
71.0(Q),...,7..0(Q) are the conjugates of () over k.

We have now the following fundamental theorem:

THEOREM 1.9. (Arnaudiés-Avb) Let M and L be two subgroups of &, such that M
contains L and Gq and © be an M-primitive L-invariant. If the resolvent E@JSJ)W IS
separable, then the degrees of its irreducible factors over k are the cardinalities of the
Gq-orbits of (M/L),. More precisely, for each simple root 0; := 7,.0(2) of this resolvent,
the degree of its minimal polynomial is the length of the Go-orbit of T,L in (M /L), which
equals the index of (1;L7; ') N Gq in Gq. The Galois group of the extension field k() of
k(0;) is (L7, ") N Gq.

PROOF. The result of Theorem 1.8 holds for each 7.0, where 7 € T := {m,..., 7}
is our left transversal of M mod L whose the order is not fixed at this moment. The set
{r1.0(Q0),...,7.0(Q)} is the set of the roots of the resolvent L, ;u counted with their

multiplicities. We investigated the minimal polynomial of 7.0(Q2) = ©(c 0 Q) for 7 € M.
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For that, consider the ideal I,.q instead of Io. If © is M-separable for 702 (see Definition
2.1 Chapter 3), by (1.4) there exists an order of the transversal of M modL such that:

LTJTZ'L = GTOQL )
=1

where 71 = id and {7.©(T1 0 Q),...,7,.0(T 0 Q)} = {77.0(Q),...,77,.0(Q)} are the
distinct conjugates of O(7 0 Q) over k. As G,.q = 7 'Gq7 we have

O 71, L = GqrL
i=1

Now since TM = M,

U o;L =GqrL ,

j=1
where 01 = 7, {0,.0(Q),...,0,.O(2)} are the conjugates of 7.0(2) over k and the set of
r distinct classes {o;L | j € [1,€]} is the Gg-orbit of 7L in (M/L),. O

Definition 1.10. Let F' be a polynomial of k[7"] of degree m. The list of its irreducible
factors over k ordered in increasing order is called the partition of the polynomial F'. This
is a partition of the integer m. This partition will be denoted by part(F).

Example 1.11. Let us k = Q and F(T) = (2?2 + 1)(2” + 2)(z + 1)3(2* + 1)3(2* + 2)2.
The partition of F' can be written in the two following manners:

part(F) = (1,1,1,2,4,4,4,7) = (1%,2,4%,7)

Remark 31. Let P = Zle t17;.0, where tq,...,t, are distinct permutations. If
0.P = P then for all i € [1,¢] we have ¢ € 7;L7; ' and then 0 € N,_, L7, . If P
is separable then P(() is a primitive element of the field extension k(Q)” of k where
H =N;_, L7, ' N Ggq. Since k(Q)H is the splitting field of Ming; the polynomial P is a
primitive element over k of this splitting field.

2. Partition Matrices

All the results of this section are from the papers [6] and [7]. The first partial partition
matrices were introduced in [13] (see also (9], [14], [16], [31], [33], [51], [52], [59] and
65]).

Consider a subgroup L of &,, and two subgroups G, H of L.

2.1. Solving direct Galois problem using partition matrices.

Let L, G, H be subgroups of &,, such that L contains the groups H and G.

LEMMA 2.1. The G-orbits of (L/H), only depend on the conjugacy classes of G and
H in L.
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PROOF. (see [7]) O

Notation 2.2. Let G and H be the conjugacy classes of G and H in L, respectively.
We denote by OL(G, H) or Or(G,H) the set of the G-orbits of (L/H),.

Now, we give an order for the set of conjugacy classes of subgroups of L:
L=C,....,C,=1d

by decreasing cardinality (for the same cardinality we choose an arbitrary ordering).
Recall that the degree of an L-relative H-resolvent is the index [L : H].

Definition 2.3. Let the r conjugacy classes of subgroups of L ordered as bellow. The
partition matriz relative to L is the r x r matrix P~ such that for each i,j € [1,7]

(2.1) Pl = {card(0) | O € OL(C;,C;)} ,

where card(O) is the cardinality of the orbit O. The list of integers P/; is ordered in
increasing order and is called a partition of the index [L : H] where H is any group of the

class C;.

Definition 2.4. In the partition matrix P~ the conjugacy classes of groups indexing
the columns (C; in (2.1)) are called the testing classes and the conjugacy classes of groups
indexing the rows (C; in (2.1)) are called candidate classes. A group of a testing class is
called a testing group and a group of a candidate class is called a candidate group.

LEMMA 2.5. The rows of the partition matrixz relative to L are pairwise distinct.
PROOF. (see [7]) O

THEOREM 2.6. Suppose that Gq is a subgroup of the group L. Then the partition
matriz PF is sufficient in order to determine the Galois group Gq. In particular, it is
always possible to determine G with absolute resolvents.

PRrROOF. Let L be a subgroup of &,. For each subgroup H of L there exists an L-
primitive H-invariant © such that the resolvent Fyy := Lg 1% is separable (see Lemma 2.3
Chapter 3). If G is included in L we can apply Theorem 1.9. If the partition of the
matrix PL, computed with a candidate group G and the testing group H, does not equal
the partition part(Fy) (see Definition 1.10) then the group G and all other groups of its
conjugacy class in L can not be the Galois group Gg. Computing a separable L-relative
H-resolvents for each H in the set of testing groups of matrix P, we determine the Galois
group G, since the rows of this matrices are pairwise distinct by Lemma 2.5.

In particular the Galois group is always included in &,,. 0

Remark 32. In practice, it is not necessary to compute an H-resolvent for each
subgroup representing a conjugacy class in the group L for determining the Galois group
Gq. Firstly, it suffice to consider the smallest submatrix of P’ containing the testing
groups with largest cardinality (with small index in L) such that its rows are pairwise
distinct. Secondly, if we determine a subgroup L; of L containing the Galois group Gq,



62 7. COMPUTATIONAL GALOIS THEORY

we can change of partition matrix. We use then the matrix P*'. Hence the degrees of the
resolvents are smaller than the degrees of resolvents necessary in order to use the matrix
PL: the degree of a resolvent relative to a group M is majored by card(M) and it must
be computed and factorised.

2.2. Computation in GAP.

The logicial Groups Algorithms and Programming (see [36]) is very useful for com-
puting with groups. In GAP, left actions becomes right actions.
The computation of partition O (G, H) can be realized by GAP-function Partitions:

Partitions := function(L,G,H)
local orbits;
orbits:=0rbits(G,Right-Cosets(L,H), On-Right);
return List(orbits,D->Length(D));
end;

But it is also possible to compute the partition O (G, H) using each index [G :
GNrH7 ' for 71,...,7, aleft transversal of L mod H:

Partitions := function(L,G,H)
local transversale, lesconj,lesindices;
tranversale := List(RightCosets(L,H),
rc->Representative(rc));
lesconj := List (transversale,tau->H"tau);
lesindices:=List(lesconj,
Hi->Index(G,Intersection(G,Hi)));

return List(Collected(lesindices),

doublet ->[doublet[1],

doublet[2]/doublet[1]1]);

end;

where lesconjs is the list of the conjugates 7, H 7, ' of H (i € [1,¢]). This conjugates
are not necessarily distinct.

3. group matrices

We introduce a new matrix containing information about the Galois groups of the
factors (irreducible or not) of resolvents over k. This new matrix contains the informations
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of the partition matrix. It can be use for computing some polynomials with a Galois group
which is a given group.

We denote by €2¢ n-tuple of the roots of the polynomial f. We take L and H two
subgroups of &, such that L contains the group H and the Galois group Ggq, of the
polynomial f.

3.1. The Galois group of a resolvent factor.

We will find the Galois group of a factor irreducible over & of an H-resolvent Lg ;z in
1

function of the Galois group Gg, of f and of the group H associated with the invariant ©.

Let
-L:={nH,... ,7.H} be the Gq,-orbit of H in (L/H),;
- Oy be an L-primitive H-invariant separable for {;
-0, :=T1,0(Qy) fori € [1,¢;
-g :Mingl,k .

The polynomial g is an irreducible simple factor over £ of the resolvent Lg 1% -
!

As Oy is L-separable for {1y, the left action of Ggf on {6,...,0.} is the same as that
on the Gg,-orbit £. We have:

€ €

g=Ming, = [[(T - 7.04(Q)) = [[(T - 6:)

i=1 i=1
We choose €, := (6,...,0.) and e indeterminated Xi,..., X.. The ideal I, of
k[X1,..., X, containing the (2 -relations is:

In, = {Peck[Xy, ..., X]
= {Pek[Xy,...,X]
Now, define a k-morphism &£ by:
k[ Xy, .., X — Elxy, ...,
Xi = 1.0(x1,..., 1)

P, ....0,) = 0}

|
‘ P(Tl.@H(Qf),. .. ,Te.@H(Qf)) = O}

We have {(Iq,) C Io, because
(3.1) P(by,...,0.) =&(P)ay,...,an)

Then the k-morphism ¢ induces an injective k-morphism & of k[X,..., X.] /1o, into
klz1,...,2n)/Io,. The k-morphism ¢ induces a natural injection of k(€,), the splitting
field of the polynomial g, into k(€2s) given by identity (3.1).
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Define the morphism p between the Galois group Gg, and &, the symmetric group
of degree e. Let o € Gq,, its image p(0) by p is the permutation of &. defined by: for
i,j€l,€

plo)(i) =17 if oL =1L
Recall that for o € Gq, then o7;L = 7;L is equivalent to o x0; = 0;. We have for i € [1, ]
(3.2) To(0))-On = 0.(7:.On)
Then for all o € Gq, and P € k[X},..., X.| we have
0&(P) = P(om.On,...,07,.0p)
= (p(0).P)(11.On,...,7:.On)

Finally:
(3.3) 0.£(P)=¢&(p(o).P) so that
(3-4) (0.£(P))(2) = (p(0)-P)(€y)

PROPOSITION 3.1. We have:
(Cl) p(GQf) = GQQ;
(b) the left action of Gq, on L is the same as the one of G, on 0y, ..., 0c;
(c) let U = ﬂleStabGQf (L) = Ni_(Go, NTHT,'); then U = Ker(p) and Gq, /U is
isomorphic to Gq, .

PROOF. (b) is a direct consequence of (a).
(a) p(Ga;) C Gq, because {(Iq,) C In,. Let V € k[Xy,..., X.] be a separable primitive
I.-invariant and set v := V (€,). We have v = £(V)(€2s) by (3.1). By the choice of V, we
have:

(3.5) Cv,1q, = Min, , = H (T = t.V(&y))

tEGQg
and as v € k()
(3.6) Min,, = [] (T-9¢)

¢€Ggf*v

Thus, for all t € Gg, there exists o € Gg, such that t.V(£),) = o xv. But v = £(V)(€y)
and for o € Gq,, identity (3.4) applied to P := V implies:
(3.7) oxv=p(c).V(,)

Therefore for all £ € G, there exists 0 € Gq, such that t.V(€,) = p(c).V(€,). Now, as
t~! belongs to the Galois group Gq,, the equality ¢.V(€,) = p(c).V (§y) is equivalent to
V(Q,) =t 'p(0).V(£,). The assumption of the separability of V' which is invariant only
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under the identity implies that ¢ = p(o) and part (a) of our proposition is proved.
(¢) For each T € 6,,, G and H subgroups of &,,, we have Stabg(7H) = GNTHT ! so that

(3.8) (VG NrHr " =) Staba(r:H)
i=1 =1

First proof. p is not injective. Let g € Gq,, the equality p(g) = id is equivalent to
(Vi € [1,¢]) griH = 7, H if and only if g € ﬂfZIStabGQf (r;L).

Second proof. For i € [1,¢],, 0; is a k-primitive element of k(Q)GQf%HT;1 (see Theorem 1.7

Chapter 6). Then the splitting field of ¢ is k()Y (see Equality (3.8)). This splitting field
is a Galois extension of k, U is normal subgroup of &,, and by the Galois correspondence,
the Galois group of g is isomorphic to Gg, /U. O

COROLLARY 3.2. (Arnaudiés-avb) Suppose that n # 4 and let H be a proper subgroup
of &,, which is not the alternating subgroup A,,. Let © be a separable primitive H -invariant
(i.e. the absolute resolvent Lo ¢ is separable). Then the splitting field of the absolute
resolvent Lo s s the same as that of f. In other words, the Galois group of Lo is
isomorphic to the one of f.

PROOF. For n # 4 the only subgroup of &, which are normal in &, are &,,, A,
and the identity group. The Galois group of Leg  is isomorphic to Gq,/U, where U =
ﬂle(GQf NrH7 ') and 7,..., 7. is a left transversal of &, mod H. As U is a normal
subgroup of H not equal to &, and A, it is the identity group. U

Remark 33. Proposition 3.1 indicates how to compute a priori the Galois group of
a factor of a resolvent which is irreducible over k. In order to compute the Galois group
of any factor over k (i.e. not necessary irreducible) it suffices to consider the unions of
Gq f—orbits.

3.2. The group matrix and computation in GAP.

Definition 3.3. The group matriz relative to L, denoted by G, is defined as follows:
let C; and C; be two conjugacy classes in L of two subgroups G and H of L respectively.
Then gfj is the list of Galois groups of irreducible factors over k of any L-relative H-
resolvent separable for 2, of a polynomial h of k[z] having G as Galois group over k.

In order to compute the element gfj of the group matrix, we have following function
of GAP given by C. Quitté:

Groups := function(L,G,H)
local orbits;
orbits:=0rbits(G,RightCosets(L,H), OnRight);
return List(orbits,
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D->AsSubgroup (SymmetricGroup(Length(D),
Operation(G,D,0OnRight));
end;

The group matrix G contains all the informations of the partition matrix P”. The
Galois group of f can be determined not only from the degrees, but also from the compu-
tation of the Galois groups of its factors. This is useful in the cases in which the degree
of a factor of a resolvent is smaller than the one of f or when it is sufficient to compute
the discriminant of f (see Chapter 11).

4. Inductive construction of the ()-relations ideal

We want to find an algorithm computing a generating system of the ideal I of -
relations.
An ideal 15 is said known when a generating system of this ideal is known.

Example 4.1. The ideal I3 of symmetric relations is known. The set of polynomials
e1—e1(Q), ..., e,—e,(Q) is a generating system of I5". Moreover, the set of the n Cauchy
moduli of polynomial f is a reduced Grébner basis for lexicographic order of the ideal
IS (see Section 4 Chapter 4).

There exist finite increasing chains of ideals:
IS"=0LCl,C---Cl,=Iq

where each ideal I; (j € [1,m]) has the form [}/ with H a subset of &,,.
We search to construct one such chain by an inductive computation of generating
systems of ideals I5, ..., I,,. Recall Theorem 6.4 of Chapter 6:

THEOREM 4.2. Let L and M be two subgroups of &,, such that
Gq C GR(I{;) cCM
and let F' be an M-primitive polynomial of 15. Then

(4.1) I§ = I3 + (F)
In particular, when L C Gg
(4.2) Io=Ig = 1§ + (F)

4.1. Hypothesis.

Suppose that M is a subgroup of &, containing the Galois group Gq (i.e. which
verifies the hypothesis of Theorem4.2) and such that the ideal I} is known. At beginning
the only known ideal is /5" and the Galois group is effectively included in &,,.

Let L be a subgroup of M. We have the following situation:

(4.3) Ipr c 1§ c I C Ig
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Choose © an M-primitive L-invariant separable for {2 and set
Rp v = Mg 12(©)

which is an M-primitive polynomial of I5 (see Definition 3.6 Chapter 6). The minimal
polynomial of ©(2) over k is an irreducible (simple) factor of the resolvent Lg jar. As the

ideal 73! is known, this resolvent can be computed (see Chapter 9).

4.2. Theoretical results.

We search the conditions in which the construction of the chain (4.3) can be continued.
By Theorem 4.2, if GoL is a group then the ideal I} is known with:

[g%:Ig%/[+<RL,M>

Proposition 3.9 Chapter 6 gives sufficient and necessary conditions for which GoL is a
group.

PROPOSITION 4.3. Let © be an M -primitive L-invariant separable for ). There is an
equivalence between the following conditions:
(i) Ig = 1§
(ii) GoL = M; and in this case Gr(I§) = GoL;
(i17) the resolvent Loy is irreducible over k; and in this case equals Ming(qo) -

Suppose that L is a mazrimal subgroup of M. One conjugate H of L in M 1is such that
GaoH is a group if, and only if, one of the following conditions holds:
(a) the resolvent L jar is irreducible over k ; and in this case Gr(I§) = GoL = M;

(b) the resolvent Lo jar has a simple factor which is linear in k[z].

PROOF. Prove the first three equivalences. If I = I3 then GoL = GoM = M (and
Gr(15) =Gr(1j!) = M). Conversely, if GoL = M then, by definition of the stabilizer,
I = 131, Therefore (i) is equivalent to (ii). If GoL = M then

Lo 1y = Le 11 = Mine(o) k
because © is M-separable for Q. Conversely, if (ii7) holds then
Ga+O(Q) ={vY(Q) | e MO}

Let m € M. There exists g, € Gq such that ¢,,.0(Q) = m.O(Q). As g,! € Gq,
g.lm.0(Q) = 6(Q2). We have m € GqL since the M-primitive L-invariant © is M-
separable for Q and ¢, 'm € M. Thus GoL = M because the inverse inclusion always is
true. Therefore (i7) is equivalent to (ii).

Now, suppose that L is a maximal subgroup of M.
We know that Gr(I5) = GoL = M is equivalent to (a) for all subgroup L of M.
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Suppose that Gr(1§) = GoL # M. As L cGr(If) C M and L is a maximal subgroup
of M, L =Gr(I}) = GoL. Then Gq C L and (b) holds. Conversely, if (b) is valid then
Go C 7L7! with 7 € M (see Lemma 3.1 Chapter 6). O

In case in which the group L is not a maximal subgroup of M, if the resolvent Lg I
reducible over k£ and has no simple linear factor over k[x] then it is not possible to test
one of conjugates of L in M verifies the condition of Theorem 4.2. But omit this problem
and search to exploit the computation of the resolvent L q) .

Let 7q,...,7. be permutations of the left transversal of M mod L such that:

O = (7—1.@, . ,Te.@)
is the Gq-orbit of © and
L= (nL,...,7.L)

is the Gg-orbit of L (the correspondence between these two sets has be given for the first
time by Berwick in [13]). The e distinct elements

71.9(Q),...,7..0(Q)
of k are the conjugates of ©(Q) over k (i.e. the roots of the minimal polynomial of ©(()
over k). Recall that the Gg-orbit of ©(£2) is the following:
Ga*0(Q) = (1n.0(92),...,7..0(Q))
Set
S = StabM(O) = StabM(E) = StabM(GQL)
In |6] for M = &,, it is proved that :

GQCSCO’TZ'L: ULZ

i=1 LieL
The following lemma extends this result to a group M containing the Galois group Gg,.
LEMMA 4.4. If L is a group, then G C S C GoL and:
(4.4) I =15°" c IS C I
On the other hand, L CGr(15) C GoL and S =Gr(I§) = GqS, since Maz(I3) = S is a
group.

PROOF. As Gqo.L = L then G C S, by definition of S, so that GoS =Gr(I§) = S.
And S C GqL because L is a group and SL C SGoL C GqL, by definition of S. ]

Complete Proposition 3.9 Chapter 6 for testing hypothesis of Theorem and for con-
structing the chain (4.3):

PROPOSITION 4.5. The stabilizer GoL s a group if, and only if, one of the following
equivalences holds:
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i
GolL = S (we always have GoS = S) ;

) S =Gr(I§) .

PROOF. Obvious. U

Remark 34. We have GoL = M if, and only if, S = M. Thus, by Proposition 4.3, the
resolvent Lg J is irreducible over k if, and only if, S = M. If L is a maximal subgroup
of M then it is possible to test the equality I5 = I5 (or S = GqL): either the resolvent
Lo, 118 irreducible over k and, in this case, S = M or it has a linear factor over k and, in
this case, S equals L (for an order of 2). In case for which L is not a maximal subgroup of
M it is possible that G L is a group and the group S does not equal M or L. Effectively,
suppose that the polynomial f does not split over k (Ggq is not the identity group) and
choose M = &,, # Gg. Take for L the identity group. Then [} = Ig” =Ig and S = Gq.
Thus S # M and S # L.

This remark introduces the following proposition useful to stop our construction:

PROPOSITION 4.6. The following assertions are equivalent:

(Z) GQ =5 = GQL;
(ll) L C Gg;
(iii) Io = IM + (Ryp).
The equivalence between (i) and (iii) of Proposition 4.6 has been proved for S = &, in
[6].
PROOF. The condition GoL =Max(I}) = Gq is equivalent to Ig = I = I+ (R )
which is equivalent to L C Gg. O
Remark 35. If V be a separable primitive I,,-invariant (where [, is the identity group
in &,,) then:
(4.5) Io = I7" + (Miny o) x(V))

However, the problem is to compute £, 1sns the Galois’s resolvent whose degree is n!.

We have the following equality (see [6] for M = &,,)

(4.6) [S:Gal=[SNL:GoNL]
We have:
(4.7) rcibcii=1"+<F>c.---Cly
where F' is an M-primitive polynomial of I5. Set Ag = k[x1,...,,]/I§ for each subset

G of &,,. The chain (4.7) induces the following about the quotiented algebras:
As, DAy D As D Ag, = k()
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with, by Theorem 2.2 Chapter 2,:
As = kloy, .. 0] /UM + < F>)= Ay /FAy .

If the resolvent Lg ;i has a simple linear factor (T'— \) over k, we can choose an order
of ) such that S = GoL = L and

I§=15=1I+<0-)x>

Otherwise, we must compute an M-primitive polynomial of the ideal I} using the resolvent
Lo, 1L

Let ©g s be an M-primitive S-invariant which is M-separable for 2. As the minimal
polynomial of ©g/(€2) over k is T — Og 1/ (€2) (we have G C S), the polynomial

Rsar = Osr — Os1(Q)

is an M- primitive polynomial of our new ideal I5. In order to compute an M-primitive S-
invariant, A. Colin take for ©g j; a symmetric functions on O the Gg-orbit of O (see [24]).
As ©g(2) is a symmetric polynomial of the roots of the minimal polynomial Mingq) x,
its computation is carried out using the fundamental theorem of symmetric functions with
coefficients of Ming ; (see [24] and [64] for computation of symmetric polynomials). There
exists an elementary symmetric function and a power symmetric function which give an
M-primitive L-invariant ©g s which is M-separable for 2 (see [46]).

Putting z = (z1,...,2,) and K = k(zy,...,2,)°" the field point of view is the
following (see [24]):

(4.8) Kc K@M ¢ K@M©sy) =K(@)® c K(z)¢

and such that Og (12) is known as a value in k.
4.3. First Algorithm.

For the sake clarity, this first algorithm, called GaloisIdeall, is given without parti-
tion and group matrices.

The algorithm GaloisIdeall is presented under the form of a recursive function. It
starts with

GaloisIdeall(f,n,S,, ,Generators)

where

- n is the degree n of polynomial f represented by f ;

- Generators is a list containing the symmetric group &, and the n Cauchy moduli of
polynomial f.

In each recursive call

GaloisIdeall(f,n,M,Generators) ,
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- M is a subgroup of &,, containing the Galois group Gg;
- Generators is a list containing the Cauchy moduli of f, distinct subgroups

My=6,DM;D>---D M,

of &,, and polynomials Ry, ..., R, of k[z1,...,x,] such that for i € [2,m] the polynomial
R; is an M(;_y)-primitive polynomial of the ideal Ié/[

The result of the function GaloisIdeall is the list Generators such that
I = I

with Mm - GQ

Define two functions used in the algorithm.
- The function Return returns a result and ends the algorithm. For this reason the alter-
nation Else does not appear.
- Let S be the group Staby/(GoL) and V' the minimal polynomial of ©(2) over k; the
function R(M,S,V) computes an M-primitive polynomial of the ideal IS using the funda-
mental theorem of symmetric functions with the coefficients of polynomial V.

Function GaloisIdeall(f, n, M, Generators)

(A) Choose L a subgroup of M
*  Compute O an M-primitive L-invariant
Compute And factorize F the M-relative L-resolvent Lg ju
(suppose that F 1is separable)
x% IfF is irreducible (case G L=M)
Then Choose another subgroup L of M
(B) Ifall subgroups L of M are tested
Then Return Generators (we have Gq =M)
Go to * with L
Choose V an irreducible factor of F over k
If L is a subgroup of the Galois group (L = [,)
Then Add V(O) to the list Generators and Return Generators
*x*xx If the degree of V is 1
Then Add L and V(©) to the list Generators
GaloisIdeall(f,n,L,Generators)
(an exit will be produced)
(C) Compute the orbit associated with the polynomial V
(D) Compute S the stabilizer of this orbit
Add S and R(M,S) to the list Generators
GaloisIdeall(f,n,S,Generators)
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Comments about algorithm GaloisIdeall

(A) When a Galois resolvent is computable, we apply Proposition 4.6 in order to stop
the algorithm : the identity group is chosen. Otherwise the group L is chosen such that
the algorithm converges on I, with few steps and with easy computation and factorization
of resolvents. In order to have few steps, the cardinality of the group L must be small
and, for rapid computations and factorizations of resolvents, this cardinality must be big.
Recall that two subgroups of the same conjugacy class in m give the same results. Then
only one subgroup by conjugacy class will be used.

(B) In this case I}f = IL = IS (i.e. the resolvent is irreducible). If M# Gg then there
is the group L= G of M which does not satisfy this equality.

(C) The elements of the orbit associated with V are the classes 7, L, ..., ;. L of (M/L),
such that 7;,.9(Q2),...,7,.0(Q) are the roots of the factor V.

(D) The union of elements of the orbit is: U = U§:1 7, = GqL the union of the
orbit associated with V; if U is a group, then S= U else me must compute the stabilizer
S; when the polynomial V is linear or the polynomial F is irreducible over k£, S= U. These
cases are traited in ** and in ***. When L is a maximal subgroup of M and if F is not
irreducible over k£ or has not a linear factor over k, we are sure that for each conjugate H
of L in M the stabilizer GoH is not a group and S # GoH.

When V is not linear and F is not irreducible over %, the unknown Galois group Gg
is necessary for computing the stabilizer S. However, in order to avoid many candidate
groups, we can perform it using partition and group matrices. More about this in the
follows section.

4.4. Second Algorithm.

We have a first algorithm GaloisIdeall which needs the impossible computation of
a G-orbit. We search a new algorithm.

Suppose that the group M contains the Galois group G and we know a generating
system of the ideal I}!. We have chosen a subgroup L of M and we have compute the
resolvent Lg ;ar where © is an M-primitive L-invariant separable for €.

Suppose that we have computed a set Sy, of groups which are candidate for the Galois
group (only one by conjugacy class in M). By example, when M = &,, and none resolvent
has been computed, the set Sg is the conjugacy classes of subgroups of &,,. As the Galois
group is included in the group M, the Sy, contains only subgroups of M.

By partition matrices and using the factorization of the resolvent Lg v We determine a
set S of groups of Sy, which are candidate for the Galois group Gg. Let GG be the minimal
subgroup of M which contains the union of groups of S and let H be the intersection of
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the groups of S:
G=<|JH>adH=()H
H'eS H'eS
As the set S is known, the groups GG and H too and they satisfy:

HcGqCG

Proposition 4.6 will be applied in order to stop our algorithm: if there exists a subgroup
H' of H such that an H'-resolvent can be computed rapidly then the algorithm is stopped
using:
I = Ig—i- < RH/,M >

Remark 36. As the group G is known and contains the Galois group, it is possible to
apply Theorem 4.2 with G at the place of M. But in this case, an M-relative G-resolvent
(or ©4(2)) must be computed. Unless a such resolvent can be computed quickly, it is
preferable to use the resolvent Lg iy which is already computed.

Take the idea of algorithm GaloisIdeall. As the groups G and L are known, the
set GL = {gl | g € G ,l € L} is also known and it is possible to compute the group
Staby/(GL), the stabilizer of GL in the group M. Set S’ :=Stab;(GL). The group S’
contains the Galois group G (see Figure (4.9)). It is then possible to apply Theorem 4.2
with the group S’ at the place of the group M.

We will replace the group S =Stab,(GqL) of Algorithm GaloisIdeall which is not
always computable by the group S’. The point of view of groups is the following:

L C GqlL C GL c M
U U
(49) S = StabM(GQL) c S = StabM(GL)
U U
H C Gq - G

where H,G, L, M and S’ are known subgroups of &,,.
The considered chains of ideals are as the following:

ISrco.cIycriciSc---clp=18 .

Now, it is necessary to find an M-primitive polynomial of the ideal IS/ as we have

found an M-primitive polynomial of the ideal I3.
Let G.L the G-orbit of L in (M/L),:

G.L={nL,...,7sL} C (M/L),

Define W the univariate polynomial associated with this orbit:

S

(4.10) w(T) =[(T - n.0(%)

=1
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As Go € G C M, the polynomial W is a factor of the resolvent E@’IS]{[ and its
coefficients, invariant under the group Ggq, belong to the field k. As the invariant © is
separable for €2, we have:

(4.11) E@,Ig = H (T -9(Q) =Leor, = Mo, = Mine o),k
VeGL.©
We have GoL C GL. Then the resolvent Lg ;z is a (simple) factor of the polynomial
W and is irreducible over the field k.
But if GL and G L are not identical then the polynomial W is different to the resolvent
Le ;z and is not irreducible over k. Give an example where the stabilizer GoL does not
equal the set GL:

Example 4.7. Suppose that G and M are equal so that GL = M. If M = GL = GqL
then

Lo = Lo 1 = Mineg(o)x

by (4.11). This situation happens only if the resolvent Lg 1y is irreducible over the ground
field k. In this case the stabilizer GoL of the ideal I is a group acting transitively on
(M/L),, the left classes of M mod L. But, it is possible that the testing group L gives
any information (i.e. G = M) and that the separable M-relative L-resolvents are not
irreducible over the field k.

The G-orbit G.L is known and correspond with the polynomial W of k[T, a factor over
k of the resolvent Lg - The stabilizer in M of the G-orbit G.L is supposed computed.
It rests to identify the polynomial 1. In case in which the Galois groups of factors of the
resolvent Lg [ gives any information, we have the proposition 4.8:

PROPOSITION 4.8. Suppose that the resolvent £@71é4 18 separable and V' one of its
factors. Then the condition V =W is equivalent to V(0) € I§.

PROOF. By definition of W we have W(0©) € I§. Now, suppose that V(0) € I§.
Then (V7 € G) V(7.9(€2)) = 0 and there exists i € [1,¢] such that 7.0(Q) = 7,.0(Q2). As
7:.0(Q) is a simple root of the resolvent, we have 7.0 = 7,.0. Now, as 7, '7 € M and ©
is an M-primitive L-invariant we have 7; € 7L. Finally 7, € GL. O

But as the ideal I§ is unknown, this proposition is not useful.
Now, an M-primitive polynomial of the ideal IS/ is computable using the polynomial
W in the same manner than for the ideal I using the polynomial Ming .

All elements are given in order to describe the algorithm GaloisIdeal derived from
the algorithm GaloisIdeall.

The algorithm GaloisIdeal is presented under the form of a recursive function. It
can be executed by calling:
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GaloisIdeal(f,n, S, ,Generators,Candidates)
where
- n is the degree n of the polynomial f represented by f;
- Generators is a list containing the symmetric group &, and the n Cauchy moduli of
the polynomial f generating the ideal 15";
- Candidates contains all conjugacy classes of subgroups of &,,.

In each recursive call
GaloisIdeal(f,n,M,Generators,Candidates) ,
- M is a subgroup of &,, containing the Galois group Gg;
- Generators is a list containing the Cauchy moduli of the polynomial f, distinct sub-
groups
My=6,DM; D DM,
of 6,, and polynomials Ry, ..., R, of k[xy, ..., z,] such that for each i € [2, m] the poly-
nomial 1?; is an M(;_)-primitive polynomial of the ideal Iéﬂ;
- Candidates is a list of subgroups of M containing the groups which are candidate for
the Galois group Gg (only one group by conjugacy class in M).

At each call of the algorithm, the list Candidates decreases and the list Generators
increases. The first one converges to the Galois group by elimination of conjugacy classes
and the second one converges to the maximal ideal of (2-relations by construction of an
ascending chain of ideals. The result of the algorithm is the list Generators. The smaller
group M, containing in the result Generators verifies:

Io = I)™

with M,, C Gq. When M,, # Gq, it is easy to deduce the Galois group G from the
ideal I (see Proposition 5.1.

We now define two functions used in algorithm.
- The function Return stops the execution of the function GaloisIdeal returning a result.
For this reason, the alternation Else is absent in the tests If-Then-Else.
- Let S” be the group Stab,,;(GL) and W the polynomial defined in (4.10); the function
R(M,S",W) compute an M-primitive polynomial of the ideal [5' applying the fundamental
theorem of symmetric function over the coefficients of the polynomial V.

Hypothesis. In the first step, it is to expensive to compute an absolute I,,-resolvent
(I, is the identity group in &,). This resolvent, called the Galois resolvent determines
immediately the ideal I (see Proposition 4.6).
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Function GaloisIdeal(f, n, M, Generators, Candidates)
(A) Choose L a subgroup of M
*  Compute © an M-primitive L-invariant
Compute And factorize F the M-relative L-resolvent [,@’Ig[
(suppose F' is separable)
Choose V a factor of F irreducible over k
If L is a subgroup of the Galois group
Then Add V(O) to Generators And Return Generators
Take back from the list Candidates the excluded groups
(by group matrices or other methods)
If Candidates contains only one group G (i.e. G=Gg)
Then If M=G Then Return Generators
Compute P an M-primitive polynomial of the ideal of ()-relatiomns
Add P and G to Generators And Return Generators
Let H be the intersection of groups of the list Candidates
If for a subgroup SH of H
it is easy to compute an M-relative SH-resolvent
Then L:=SH And Goto * with L (L is a subgroup of Gq)
Compute G a minimal subgroup of M containing the groups of Candidates
If G=M (the testing group L is not a good choice)
(B) Then Choose another subgroup L of M
Goto * with L (an exit will be produced)
Compute the G-orbits of (M/L), (we have G# M)
** Choose a G-orbit Or
(C) Determine the factor W of F corresponding to Or
If it is not possible
Then Change the orbit
If all orbits are tested
(B) Then Choose another subgroup L of M
Goto * with L
Goto ** with the new orbit
(D) Compute S the stabilizer of Or in M
If S=M for each orbit Or
(B) Then Choose another subgroup L of M
Goto * with L
Add R(M,S,W) And S to the list Generators
(E) Change the conjugacy classes of groups in Candidates

GaloisIdeal(f,n,S,Generators,Candidates)

PROOF. The algorithm finishes because it includes the one of group matrices. 0
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Comments about the algorithm GaloisIdeal
- (A) The good choice of a subgroup L of M depends on the complexity of the computation
of M-relatives resolvents, on the informations given by the group matrix relative to the
group M and on the length on the chain of ideals which must be small as much as possible.
- (B) It is not possible that all subgroups of M have been used as testing groups because
before the Galois group is determined. Effectively, when all subgroups of M are used as
testing groups, the group matrices relative to M suffices in order to determine the Galois
group.
- (C) In order to determine the factor associated with an orbit, it must use the degree or
the Galois groups of the factors or Proposition 4.8.
- (D) The stabilizer S of the orbit equals the union of groups of this orbit if this union is
a group.
- The step (E) is indispensable since two conjugate subgroups in the group M are not
necessary conjugate in its subgroup S.

Variant of algorithm GaloisIdeal.
The computation of a relative resolvent needs a Grobner basis (see Chapter 9). Therefore,
before to replace the group M by its subgroup S, it is possible to use many testing groups
in M because the Grobner basis of the ideal 13! is already computed. The advantage of
the subgroup S is that the degrees of the S-relative resolvents is smaller than the degrees
of the M-relative resolvents.

5. Compute the decomposition group of an ideal

PROPOSITION 5.1. Let (fi, ..., fm) be n-variate polynomials over the field k generating
an ideal I of k[xy,...,x,]|. Suppose that Gr(l), the decomposition group of the ideal I, is
included in a subgroup M of the symmetric group &, (it is always included in &, ). Then
Gr(I) is the subgroup of M such that for each generator T of Gr(I) and for each i € [1,m]
we have T.f; € I.

ProOOF. Obvious. O

6. Galois inverse problem

The group matrices can be used for computing polynomials for a given group (see
[65]). Consider C; and C; two conjugacy classes in L such that: C; is the conjugacy class
of the Galois group of a known univariate polynomial f and C; is the conjugacy class of a
subgroup H of L. When computing an L-relative H-resolvent of f, the Galois groups of
its separable irreducible factors over k are given by QZLJ. In [34] polynomials of degree 12
using group matrices are computed. As it is noted in remark 33 it is possible to consider
also the non transitive subgroups associated to the factors over k£ which are not irreducible.

An explicit example is given in Section 4.4 Chapter 9.






CHAPTER 8

Reducible polynomials

In all this chapter we will suppose that the field k& is infinite.

1. Inclusion of Galois group of a reducible polynomial
In the following all is well known.

The Galois group over k£ of a univariate polynomial is transitive if, and only if, it is
irreducible over k. In this section, we precise the type of non transitive Galois groups.
The transitive subgroups of &,, can be characterized by the following lemma:

LEMMA 1.1. A subgroup of &, is transitive if, and only if, it is not contained in the
direct product of two symmetric groups.

PROOF. If G C &, X &,,_,, G acts on [1,m] and [m + 1,n — m], no one element of
G can take a digit of [1,m] into one of [m + 1,n — m]. Conversely, if one orbit of G is of
size m, then G acts separately on [1,m] and [m + 1,n — m|, i.e. G C &,, X G_pp- O

LEMMA 1.2. For g and h two distinct separable polynomials of respective degrees m
and p, we have G(q, 0,) C Gm X 6p.

PROOF. Set f := gh and Q; = (€,,). Let 0 € Gq,, if 0 € &,, X &, then there
exists i € [1,m] such that o(i) € [I,m]. We have g(z;) € Io, and 0.g(x;) € Io,. Since f
is separable and a, ;) & €1, it is impossible that 0.g(z;) € Io,. Thus o € &, X &), O

THEOREM 1.3. We have the following assertions:
1. Let g and h be two distinct separable polynomials. Then

G(Qg,Qh) C GQg X GQh .

2. Let f be a separable polynomial of k[z|. If there ezist two groups G C &,, and
H C &, such that Gq, C G X H then there exist two polynomials g and h over
k of respective degrees m and p such that f = gh and, up to a permutation,
Go, CG C 6, and G, C H C 6,

PROOF. 1.Set f := ghand Qf = (€, ). Let R € I, as polynomial in k[x1, ..., z,],
the polynomial R also belongs to the ideal I, o, = Io,. Let 0 € Gq,. By Lemma 1.2,
since f is a separable polynomial, we have ¢ = (7,7') where 7 € &, and 7" € &,. As
0. R(€y, Q) = 0 for all R € I, we have in particular 7.R(€,) = 0 for all R € Io,. Thus

79
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o € Gg, X 6,. By the same process we have o € &, X Gq,. Thus 0 € Gq, X Gq,. (We
can also use the theorems about the group and partition matrices).

2. We set H := &, x &,,_1 and we assume that
GQfCGxHCGmXGP

Each (&,, x &,)-orbit of &, mod H contains a Gg,-orbit of &, mod H. Thus, the
separable absolute H-resolvent f has two factors g and h over k of respective degrees m
and p. Let U be the union of Gg f—orbits of 6, mod H associated with the polynomial
g- With an adequate order of the Gq -orbits of &, mod H, the action of G x H on U
equals the action of G on U and, on the other hand, the action of G, on [1,m] equals
the action of Gq, on U Therefore G, C G because Go, C G x H. In the same way
GQh C H. O

Now, if f = gh is reducible over k with deg(g) = m and deg(h) = p then the Galois
group of f is included in L = &,, X &,. Thus it is sufficient to compute absolute multi-
resolvents of degree [L : H| instead of absolute resolvents of degree [&, : H]. As, the
computation of (absolute) multi-resolvents is quick, the case in which f is a reducible
polynomial over k is a very nice situation. The computation of Galois groups G and H
of g and h can also be used for computing the Galois of f with Theorem 3.4 given in
Section 3. Effectively, for computing (G x H)-relative resolvents of (£2,,€2;), a Grobner
basis of the ideal I(%jféh) must be computed (see [12]). With Theorem 3.4, we deduce
this Grébner basis from the Grobner basis of the ideals Igg and If (see [30] for fast
computations of Grébner basis).

2. Primitive polynomial

Let L and H be two subgroups of &, such that L contains the group H and the Galois
group Gg of the univariate polynomial f.

Notation 2.1. Let E be set of polynomials in k[z1,...,z,] (m € [1,n]), the ideal
generated by F in k[zy,...,x,] will be denoted by < E >.

Give Theorem 6.4 of Chapter 6:

THEOREM 2.2. If the decomposition group Gr(I]) contains the Galois group Gq then
there exists a polynomial Ry, i in the polynomial ideal IY such that

(2.1) Ig = I{f—f— < RL,H >
Such a polynomial verifies:
Gr(If)={oc € L| o.RLu(Q) =0} .

The polynomial R; y of Theorem 2.2 is called an L-primitive polynomial of the ideal
1.
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Notation 2.3. Let 6 € k(Q2), the polynomial Mingy is the minimal polynomial of 6
over k.

When the field k is infinite, a construction of primitive elements is as follows: let ©
be an L-primitive H-invariant separable for {2 (which exists because k is infinite) and
6 = O(Q); the polynomial Ry, i =Ming x(0) is an L-primitive polynomial of the ideal I.

LEMMA 2.4. Let g, h € k[z] of respective degrees m and p. Let two subgroups G C &,,
and H C &, be given such that

GQg aye and GQh C H .

If Rg € k[xq, ..., 2Ty] is a &,-primitive polynomial of the ideal Igg then R, as a polyno-
mial in K[z, ..., Tyip), 15 a (&, X H)- primitive polynomial of the ideal I(%zléh).

PROOF. As G, C G and Gg, C H, we have G(q,,) C G x H (see Theorem 1.3).
Thus Gr([gg) = G and Gr([%jféh)) =G x H. Let Rg € k[zy,...,x,] be a &,,-primitive
polynomial of the ideal ]gg. Then (Vo € &,,) the condition ¢.Rz(€2;) = 0 is equivalent
to 0 € G (see Theorem 2.2). Now, let 7 € &,, x H, we can write 7 = (7, 72) where
T € &, and 7, € H. As 7.R¢ = 711.Rg, the condition 7.R¢(£,,Q2,) = 0 is equivalent to
the condition 7 € G x H. Therefore R is a (&, x H)- primitive polynomial of the ideal

GxH
I(Qg,ﬂh)' O

3. Ideals and groups
In |21] it is proved that for g and h two univariate polynomials over k there is

(3.1) GQgh =Gq X GQh if, and only if, IQgh =< ]Qg, ]Qh >

g

This section generalizes this equivalence.

Notation 3.1. For E a subset of k[xy,...,z,], we will denote by < E > the ideal
generated in k[xy, ..., z,]| by the polynomials of E.

LEMMA 3.2. Let g and h be two univariate polynomials over k of respective degree m

and p and n = m+p. Assume that Io, C k[zy,...,xy] and I, C k[Tmi1, ..., Tpgp). Put
Qi = (4, Q). Then each subgroups G C &, and H C &, verify:
(3.2) < IG5 I, > C G

PROOF. Set B =< Igg,[gh >= k[xl,...,xn][gg + klzy, .. I Let 0 € G x
H. We embed k[zy,...,2,] in k[xy,...,2z,]. For all r € Igg, by definition of ]gg, we
have 0.r(Q,, Q) = 0.7(Qy) = 0. Therefore, for all r € kfzy,...,x,]IG we also have
0.7(Qy,8,) = 0. In the same way, if r € K[z, .. .,xn]lgh then 0.r(Q,, Q) = 0. Thus, if
r € B then 0.r(,, Q) = 0 so that r € ](%zléh). O
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LEMMA 3.3. Let g and h be two univariate polynomials over k of respective degree m
and p and n =m+p. Assume that lo, C klx1, ..., 2] and Ig, C Kk[Zpmi1, ..., Tpop). Set

X = (wla ce >xm); Y= ($m+17 cee axn>:
Ty =<ei(z) —e1(Qy),...,em(z) — en(y) > and
Th =< 61(9) - el(Qh)a cey €p(y) - ep(Qh) >

where e; denotes the i-th elementary symmetric function (see Definition 1.2 Chapter 4).
Then

Sm XS m 7S
](Qg’?zhf = < Igg ’IQ: >
= klzy, ...,z )Ty + k[z1, .. 2]V T
If, moreover, gh is a separable polynomial then
Sm X6
Ly oy = ko, + ko, 2] T

PROOF. Put B :=< I5", 1" >, and Qg = (2, ). By Lemma 3.2 it is enough to

m

prove that Igghxep C B. Let us the polynomials

P:H(x—xi), Q:. (x — ;) and R=P/Q

As P=QR
Z(—l)kek(xl, I Z(—l)kx”’k Z ei(z)e;(y)z™ "
k=0 k=0 i+i=k -

Thus, for k =1,... n:
er(mr, . mn) —en(Qp) = D (eil@)ej(y) — ei(Q)e ()

itj=k

We have ey(z1,...,2,) — ex(Qy) € B because for i € [1,m] and j € [1,p] e;(z)e;(y) —
ei(Qy)e; () = (ei(z) — ei(g))e; (y) + (e (y) — €;())ei(2y). Thus I" C B (see Section
4 Chapter 4). Now, as k is infinite and gh is separable, there exists © a &,-primitive
(&, X &p)-invariant separable for Q. By fundamental theorem of symmetric functions,
we have A = ©(Qy;,) € k and the minimal polynomial of © over k is T'—\ so that R = ©—\
is a primitive polynomial of the ideal Igg”;xgﬁ (see Definition 3.6 Chapter 6). The primitive
polynomial R belongs to the ideal B because it is symmetric in variables of x and of the
variables of y and R(€,) = 0. In other words IS;XGP = IS;h+ < R>CB. O

Remark 37. The Galois group G(q,q,) of gh is included in &,, X &, because the
separable resolvent Lo ,, has T — A as simple linear factor over k (see Proof of Lemma
3.3).
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Since the group &,, X &, and its subgroup Gq, X Gq, contain the identity, we have

GQgXGQh

Sm X6
(3-3) Laron €l o) " Cl@gan -
Now, the following theorem generalizes the result given in (3.1):

THEOREM 3.4. Let g and h be two univariate polynomials over k of respective degree
m and p and n =m+p. Put Qg = (Qy, ). Assume that the product gh is a separable

polynomial, Io, C k[x1, ..., %] and I, C k[Zpmi1, ..., Tmip). Then all subgroups G C &,
and H C &, such that &,, X H or G X &, contains the Galois group G, verify:
GxH G 7H
L0 =< 1o, 1o, >

. . Ga, xG
and in particular I(ngjsjh)ﬂh =<lIq,, Ia, > C Ilq,q,)-

PROOF. Put B =< Igg,[{i > and Qg = (,,€). Lemma 3.2 gives the inclusion
B C IgthH . Conversely, suppose that &,, X H contains the Galois Gg,,. Let Rg be a
primitive polynomial of the ideal Igg and Ry be a primitive polynomial of the ideal I{i .
Using at first Lemma 2.4 and at last Lemma 3.3, we have
GxH mx H
I = <Ign*" Rg>
SmX6p
= <o, " Ru,Rg >
= <Igm 13", Ry, Rg >
= B
by definition of the polynomials Rs and Ry. U
Therefore (3.1) is a consequence of Theorem 3.4:

COROLLARY 3.5. For g and h two univariate polynomials over k the condition

Gog,xGq, . .
I, 0, = Qoyyy 15 equivalent to Gq, q,) = Ga, X Gq,.

PROOF. Set €2 := (g, €2,). We always have I = IgQgXGQh when Gq = Ggq, x Gg,.
Conversely, the inclusion G C Gg, X Gg, is given by lemma 1.2 and the reverse inclusion
is given by the definition of the Galois group Gg, which is the maximal subgroup of &,
stabilizing Iq. U

COROLLARY 3.6. Under the same hypothesis as Theorem 3.4, a Grobner basis for the

lexicographic order of the ideal I(C;;;Iéh) s the union of the Grobner basis for the lexico-

graphic order of the ideals Igg and I{i.

PROOF. Let L be a subgroup of &, and () be a list of the roots of an univariate
polynomial over k of degree n. A Grobner basis for the lexicographic order of the ideal I5
of k[z1,...,x,] is a triangular system fi(x1),..., fu(x1,...,z,) where, for lexicographic
order, the leading monomial of each polynomial f; (i € [1,n]) has the form zf* with u; > 0
(see [12]). O
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4. Groups, ideals and fields
The following theorem is a collection of well known results:

THEOREM 4.1. Let f be a separable polynomial of k[z] of degree n such that f
fay oo Jog and Qp = (Qy, ..., Qy, ). Set Gay, = G, and D; := k(S2y, ) fori e 1,
The following conditions are equivalent:

(1) card(Gq,) =card(Gp,) % ... x card(G,,);

(2) Ga, = Gpy X ... X Gpy;

(3) Dink(Qy, .., Qyp, )=k foralli€[2,d];

(4

Gq Gy X...XG
_ f_ n ng

i

PROOF. Equivalence between 1. and 2. : Theorem 1.3.

Equivalence between 4. and 2. : see Corollary 3.5

Equivalence between 3. and 2. : suppose that d = 2; we have k:(anl , an2) = D1 UDsy
; but Dy N Dy = k if, and only if, [k : Dy U Dy] = [k : Dy} x [k : Ds]; by the Galois
correspondence, it is equivalent to write

card(Gal, (D U Dy)) = card(D;) x card(D3) .
We conclude by induction on d. O

5. Multi-resolvents

Let fi,..., fs be several polynomial of k[x] of respective degrees ny,...,n, strictly
greater that 1 and such that the polynomial f is the product f; --- f;.

For i € [1,d], we choose ), an ordering of the roots of the polynomial f;. Set Q; =
(Qp,,...,Qy,). Let L be a subgroup of &, x---x&,,. The resolvent by O € k[zy,...,z,]
associated with [éf is following polynomial:

(5'1) E@,I{g = H (T_ qj(Qf17"'7Qfd)>
T were
If the group L contains the direct product G 5 X Go 54 of the Galois groups of fi,..., f4
then the resolvent Lg ;- belongs to K[T] because L contains the Galois group Go;.
f

,,,,, )T does not depend on the order

of the roots of each polynomial f; (i € [1,d]).

Definition 5.1. The resolvent £® o XOng is denoted Lo (y,,.. s, and called the

@y p)

multi-resolvent of (f1,..., fa) by ©.

The computation of multi-resolvents is a simple generalization of the one of resolvents.
When f = f;--- f; is a reducible polynomial over k£ the partition and group matrices
relative to S = &,,, X - -+ X &,,, are sufficient for computing the Galois group of f because
it is containing in L. But the efficiency of the computation of the Galois group of a
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polynomial depends on the degree of resolvents. The computation of the Galois group of
f requires computations of multi-resolvents of degree [S : H], where H is a subgroup of
S, instead of resolvents of degree [&,, : H| for an irreducible polynomial.

Example 5.2. We suppose that the polynomials are monic. Let L = &5 X &y C &4.
Suppose that f is a monic reducible separable polynomial of degree 4: f = f; f5, where
f1 and f5 are irreducible univariate polynomials over k of degree 2. Choose the order of
roots of f such that Q; = (Qy,,Qy,). If f; and f5 are irreducible over & then the Galois
group G, is L or a conjugate of H = [I4, (1,2)(3,4)]in L. Now, an L-relative H-resolvent
separable for €); is irreducible if and only if the Galois group of f is L. The polynomial
© = (z1 —x2)(x3 — x4) is an L-primitive H-invariant. The multi-resolvent of (f1, f2) by ©
is Lo (1,1, = (@® — A(f1)A(f2)) where A(f;) is the discriminant of f; (i = 1,2). Thus the
Galois group of f is L if and only if the product A(f1)A(f2) is a square. The advantage of
the multi-resolvent is clear: the computation of the multi-resolvent is instantaneous and its
degree is 2 whereas the degree of an absolute H-resolvent is 12. This difference of degrees
between resolvents and multi-resolvents increases with the degree of the polynomial f.
Moreover, The polynomial f; is irreducible in Dy, if and only if the Galois group of f;
over Dy, is &, and this is the case if and only if the Galois group of f is L.

Let L be a subgroup of &,. Two subgroups which are conjugate in &,, are not nec-
essarily conjugate in L. This remark has a consequence for relative resolvents. For the
candidate groups, this problem appears when f has two factors of the same degree. For
a testing group this problem appears only when it is included in a product of more than
two symmetric groups. Example 1.1 of Chapter 11 explains a method which allows one
to avoid this problem for the candidate groups.

6. One factor has an alternating Galois group : Gal(f) C &, x A4,,

LEMMA 6.1. Denote by A,, the alternating group in &,,. Let m > 3, let h be a
polynomial whose Galois group is A,, and let g be an irreducible polynomial of degree 2.
Then the Galois group of hg is &3 X A,,.

PROOF. If m > 5 : If this is not the case, g splits into two linear factors in D, and
D,, the splitting field of g is a field between £ and D;. Thus the Galois group of g is a
proper normal subgroup of A,,. Contrary to the fact that A,, is simple for m > 5. For
m < 5 see Sections concerning degrees 5 and 6 in Chapter 11. OJ






CHAPTER 9

Computation of resolvents

1. Different methods

The computation of resolvents can be done in many ways:

e using invariants (see [13] and [23]))

e by interpolation (see [33] )

e by successive resultants (see [41] and [59])

e by Grobner basis and successive resultants in k[x, ..., z,]/I5 (see |55], [48] and
12)

e by generating functions (see [18])

e by symmetric functions (see [42] and [63])

e by linear algebra and trace (see [4] and [22])

e by numerical methods (see [60] and [27])

We will explain the method with linear algebra and trace (see Section 2), the method
with triangular sets (see Section 3), the computation of some particular resolvents (see
Section 4) and the computation of multi-resolvents (see Section 5).

In this chapter, we consider f a univariate polynomial of k[z]| of degree n and 2 an
ordered set of its roots.

2. By linear algebra and traces
Let My, M and L be three subgroups of &, such that:
GoCLCMC M,

Set K :=k(zy,...,2,)%", Ky, := K(z)M, Ky := Ky, ()™ and u := [M : M]. Assume
that U is a K-primitive element of the field K, such that the value ¥ () of k is already
computed (the polynomial ¥ is an My-primitive M-invariant). The set (1,¥,..., ¥“ 1)
is a Kp,-vector space basis of K.

If © is an M-primitive L-invariant, then the coefficients of the generic resolvent £
belong to K, (see Definition 5.6 Chapter 6). We search to compute their evaluation at
§) for computing the resolvent Lg ;z.

Let F' € Kjs which can be do a coefficient of the resolvent £&. Then F is a linear
combination of the WU’ and its evaluation F({2) depends on that of the W’. Thus, the
problem is to compute the coefficients of this linear combination.

87
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A method is the following: Let By,..., B, be a Kj,-vector space basis of K);. We
search u values vy, ..., v, in Ky, such that:

Denote by Tr:=Try, s the trace function of K, over Ky, and, for each i, j € [1,u], set
¢; :=Tr(FBj) and q; ; :=Tr(B;B;). Equality (2.1) induces

(22) Cj = ylaLj + -t yuauﬁj

which produces the linear system C' = AY, where C' = (¢;) ecpuy, A = (@ij)i<ij<u and
the unknown vector Y = (Y;);cf1,,)- This system which has only one solution (yi,...,.)
and can be solved by linear algebra.

However, as the resolvent has u = [M, : M] coefficients, it is much more efficient
to make a precomputation of an orthogonal basis by Gram-Schmidt classical algorithm.
Then for a such basis, Tr(FB;) = ¢; = y;a;; = y;Tr(B;, B;) so that

7=0

3. Grobner basis and successive resultants

Let M and L be two subgroups of &, such that Go C Gr(I§) C M. Let F be an
M-primitive polynomial of the ideal I5. By Theorem 6.4 of chapter 6, we have:

IE=1+<F>

Then if a generating system of the ideal I} is computed, it is possible to compute a
Groébner basis of the ideal I5. We will suppose that L = Gr(15).

This section shows how it is possible to compute the characteristic polynomial Cg 1%
where © is an L-primitive invariant of a subgroup of L when some Grobner basis of the
ideal I} is computed. The computation of the resolvent Lo, 1% s deduced from the one of
the characteristic polynomial from reductions in the quotient ring

A = klz, . .. L x,] /15
and by computations of some r-th roots.

Notation 3.1. The resultant of two polynomials u(z) and v(z) in the variable = will
be denoted by Res, (u(x), v(x)).

3.1. Case L =6,,.

Denote by fi, ..., f, the Cauchy moduli of the polynomial f (see Definition 4.2 Chap-
ter 4).
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THEOREM 3.2. For r € [0,n — 1], define the polynomials V, € k[T|[x;11,...,2,] and
U,, € k[T for ¥,,) by induction:

(3.1) Uy = T-0
(3.2) U, = Resp (fr(zp, ... xn), Vorr(2r, ..., 2y))
Then
U, = Cg son
PROOF. see [55]. O

In [48] is given the algorithm extracted from Theorem 3.2 for computing the absolute
resolvent Lg jen. If the algorithm of [48] is realized in the quotient ring Ase. then
it computes a polynomial a power of which is the absolute resolvent (see [55|). The
computation in A;s. is much more efficient because it avoids computations of a few
resultants and bounds the degree of each variable x; by ¢, the degree of x; in the i-th
Cauchy modulus (i € [1,n]).

3.2. General case.

The method described in Section 3.1 can be generalized for any subgroup L of &,
which contains the Galois group Ggq (see [12]). The complete proof of the result is not
given because it contains many technical notations and definitions.

Let £ ={fi(z1),..., fu(z1,...,2,)} be a set of polynomials in k[z,. .., x,].

Let K be a field extension of k such that K N k[xy,...,z,] = k. Take ¥ a polynomial

in K[z1,...,x,] and define recursively the n + 1 polynomials Wq, ¥y, ..., ¥, relative as
follows:
(3.3) U, = VeKx,. .. v and for i € [1,n — 1]
LIJZ',l = Resxi(fi(xl, e ,.Z'Z'), \Iji(.’lj'l, e ,.Z'Z)) ~ K[xl, e ,.Z'Z',l]
For I an ideal of k[z1, ..., x,], its algebraic variety V(I) in k" and i € [1,n], we set

Vi:=V({I) Nk (we have V,, = V(I)).

The following theorem gives the computation of the characteristic polynomial Cg ; for
some particular ideals:

THEOREM 3.3. (Aubry-Avb) Let I be a zero-dimensional radical ideal of k[x1, ..., z,)].
Suppose that there exist n polynomials fi(x1), ..., fu(z1,...,2,) of I such that

V; = Z];z(fl(xl), .. .,fi(l'l, c. ,ZEZ)) fO’I" each i € [1,71]
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and such that for each 8 = (01,...,0i-1) € Vi_1, the polynomial f;(B1,...,Bi—1,x;) as
polynomial in k[z;] is monic and has no multiple root. Let VU, defined as in 3.3. Then

(3.4) v, = [ v

pev(I)
In particular, when © € kl[zy,...,x,] and V = (T — O) € k[T|[z1,...,x,], we have
(3.5) Uy = Cou(T)

PROOF. Start with Wy =Res,, (fi(z1), V1(21)) = [Is,ev;, ¥Y1(61). By induction, we
prove that for each j € [1, n]

Uy = H ‘Ilj(ﬁlwwaﬂj)

BeV;

Supposing that our assertion holds for j =i — 1, we have

Uy = H Ui (B, -, Biz1) (%)

BeEVi_1

By definition of W, i, identity (%) becomes
\IlO = H Resxi(fi(ﬂla s 7ﬁi71a xi)7 \Iji(ﬂb s aﬂifbxi))

BeVi1

Since V; = Zui(f1,..., fi) and f;(B1, ..., Bi—1, ;) is separable in l%[a:l], the result follows.
]

If I satisfies the conditions of Theorem 3.3 then a reduced Grobner basis for the
lexicographic order of the ideal I is a set of polynomials fi,..., f, which satisfies the
conditions.

When I = I%, where L is a subgroup of &, which contains the Galois group Gg then
I satisfies the conditions of Theorem 3.3 (see [12]). As the case of L = &, the algorithm
given in [48] realized in the quotient field k[zy, ..., z,]/I% computes a polynomial S(T')
such that the resolvent Lg L= S™ where m € N*. In the case m # 1, any factor of the
resolvent is separable and the polynomial S is not useful for the computation of Galois
group Gg.

In Chapter 10, an explicit example will illustrate the computation of resolvents.

4. Compute Particular absolute resolvents

There exists many formulas for computing particular resolvents. For example, the
product resolvent (the invariant is a product x;---z,) can be rapidly computed using
resultants. For this section, we choose to explain the computation of absolute resolvents
which depend on the Vandermonde determinant because their are not famous but very
useful for the determination of Galois group.
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For r € [1,n], we denote by d,(x,,, ..., z,,) the Vandermonde determinant:
O (Tuyy vy y,) = H (Tu, — Tu;)
1<i<j<r
and we set 6, := d,(xy,...,2,). The Vandermonde determinant 9,, is a &,-primitive A,,-

invariant, where A, is the alternating subgroup of the symmetric group &,,.

Notation 4.1. For P € k[zy, ..., x,], we set P := P(Q).
4.1. Computation with invariants ¢, 0.

THEOREM 4.2. Let f be an univariate polynomial with leading coefficient a,, and let
Disc(f) be its discriminant. Let © € k[, ..., x,] such that 0.© # —© for all 0 € G,,.
The resolvent Ls, o, s given by the following resultant:

o Disc(f)

(4.1) Ean@,f(y) = Resx(ﬁ&f(x)a ?JQ - a2(n—1)

)

and its degree is twice the degree of the resolvent Lo .

PROOF. Let 0,...,0, be the s roots of Lg ¢, each being repeated as many times as
its multiplicity. We have

Ls,or(y) = H(y — 000;)(y + 0,0;)

= J]w*- 2.6

i=1
= Res,(Los(x),y* —2°A,)
where A, = 62 satisfies Disc(f) = a2 "V A,.. O

Remark 38. Theorem 4.2 allows to compute the resolvent Ls, o ¢ very fast, since it is
obtained directly from an ordinary resultant.

Remark 39. Since the computation is obtained from a resultant, the factorization of
Lo ¢ gives a partial factorization of the resolvent Ls,0 r. We even can compute only the
needed factors of this last resolvent. Namely, let ¢ be a factor of Lg f; then Res,(q(z), y*—

att ™ 22 Disc(f ) is a factor of Ls,e ;. This remark is very important, since to search the
Galois group of a polynomial, it is not always necessary to know all the factors of the
considered resolvent. It will generally be sufficient to study some irreducible factors which
are minimal polynomials of primitive elements of intermediate fields between k and the
splitting field of f (see [7],[65] and the examples at the end of this paper).

Remark 40. If the polynomial © is a primitive invariant of &,, X &, (for example
© = x1---Ty), then §,0 and & 0p_m(Tmi1,...,2,) (i = 1 or i = —1) are primitive
invariants of the same group. (See [62] for the computation of symmetric resolvents.)
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Remark 41. If the polynomial © is a primitive invariant of I,,, X &,,_,, (for example
© = zyx5---2™), then 4,0 is a primitive invariant of I, x A,_,,. (See [18] or [59] or

|62] for the computation of monomial and linear resolvents.)
The following theorem gives another formula for our resolvent:

THEOREM 4.3. Under the same assumptions as in Theorem 4.2, denoting by g the
resolvent of Lo by x3, we get

2
~n

Y
4.2 En , :An s y
(4.2) 6,0, (An)

where Disc(f) = ar™ VA,

PROOF. The proof of Theorem 4.2 implies

S

Lsory) = [[0? - 2u62)

i=1

— H__92

This formula also works for the factorization, since g = Res, (Lo f,y — 2%).

Remark 42. Let us recall that a polynomial and any of its separable Tschirnhaus
resolvent have the same Galois group. We also know that the Galois group of a simple
factor of an H-resolvent of a polynomial ¢ is determinated, up to conjugation, only by
H and by the Galois group of g (see [65]). Let £ = Lo y; since Ls,0. 5 = Lo,z,,c, W€
may transform L rather than f by a Tschirnhaus resolvent when an interesting factor g
of Ls,e.5 is not square free. It will be sufficient to compute the Tschirnhaus resolvent of
the factor of Lg s corresponding to the factor g of L5, e ;.

THEOREM 4.4. Let f be an univariate polynomial with leading coefficient a,, and let
Disc(f) be its discriminant. Let U € k[zy,...,x,] for which there exists o € 6,\A,, such
that 0. W = —V (see remark 45). Let F be the polynomial such that F(x?) = Ly ;(z), the
resolvent Ls,w ¢ s given by the following resultant:

xDisc(f)

(4.3) Ls,0./(y) = Res,(F(z),y* — W)

and it has the same degree as the resolvent Ly .
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PROOF. Suppose that the degree of Ly ¢(x) is 2s and let ¢y, =1, ..., s, —1)s be its
roots (by assumption this resolvent is even). We have F(z) = [[\_,(z — ¢?), thus
Ls,wyp(y) = H(y — i0) (Y + Yin)
i=1
= [Je*- A
i=1

- Resa:(F(x)ay2 - xAn)
O

Remark 43. We also may apply remark 39 concerning the invariant §,,0. The in-
variant 0, ¥ generates a resolvent which can be computed and factorized quickly. But
in this case we use a polynomial @) such that Q(2?) is a factor of Ly ;(x). Hence if the
resolvent Ly s(x) has an irreducible factor ¢; which is not even, we must multiply ¢
by other irreducible factors ¢s, ..., q, of this resolvent in order to obtain an even factor
q = q1--qs- Next we put Q(z*) = ¢(z) and we obtain a factor of the resolvent L; ¢ f
using the following resultant:

(1.4) Ls.o(0) = Res. (@) o7 — 20

Remark 44. Suppose that m > 1 and that U = §,, = [[\",(x; — x;). The polynomial
dm is a primitive invariant of A,, X &,, (of index (:1) in 6,), and d,0,, is a primitive
invariant of A,_,, X &,,. This remark is very important. For example, for n > 4 it is
much easier to compute the resolvent associated with 0, = 1 — x5 than to compute the
resolvent associated with ¢,,_». By Theorem 4.4 it is possible to compute an (A,,_5 X G3)-
resolvent.

The following theorem gives another formula for computing our resolvent:

THEOREM 4.5. Under the same hypothesis as in Theorem /.4, denoting by g the re-
solvent of L2 , we have:

4.5 Ls,wr=2A, g(= ;
(4.5) 50, f (An)

where Disc(f) = ai™ VA,
PROOF. clear O

Remark 45. If we have 0. ¥ # —VU for all 0 € &,\A,, and if there exists 0 € A,
such that 0. = —W, then V is a primitive invariant of A, and 9,V is a symmetrical

polynomial in 21, ..., x,. In this case, we have Ls,¢ s = (z — m)
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THEOREM 4.6. Let [ be an wunivariate polynomial with leading coefficient a, and
Disc(f) be its discriminant. Let i € N* and g be the univariate polynomial g(z) =

[, (z— m), where o, . .., «, denote the roots of f. Then

(4.6) ﬁan_i(zH_I ..... zn)’f(y) = O(l)ﬁmxhg(—) s

where C' = 2iseld)

2(n—i—1) *
20D

PROOF. Consider the generic polynomial F(x) = A, [[_,(x — x;), where A,, denotes
a new variable. The notation F’ stands for the derivative of I relative to the variable z.
The following identity:

Sni(Tigts o) F (20 F' (@) - F' () = (—1)" T~ AL5,6,
shows that we can use the result of Theorem 4.3; so we obtain:
2

N Y
Lonstoisron (1) = (@B Ly, g(—=)

5 ’ (Z%i An

O

Remark 46. We also can use Theorem 4.2 and deduce a similar formula to compute
this resolvent.

To compute the polynomial g the method is follows: the polynomial ¢ whose roots
are the squares of the values of [’ at the roots of f may be written as:

n

(4.7) p(y) = [ 1w = () = Res, (f(2),y — f(x))

k=1
Taking ¢ = ¢(0), we obtain: g(z) = (—=1)"Z¢(1/z).

Remark 47. For i € N*, the functions M, On—i(Tiv1, ..., xp)0; and 6,1 . . . 2
are primitive invariants of the same group.

4.2. The invariants ¢,r; and 6,,_;.

These two polynomials are primitive invariants of A, _; X &1, a subgroup of index 2n
in &,.
With © = 24, formula (4.1) of Theorem 4.2 entails

(18) Ls.an(y) = Res, (f(2), o — 2* et

(079
In the other hand, since ;(x,) = 1, with ¢ = 1 the Formula (4.6) of Theorem 4.6
implies that

2

n Y
(4.9) Ls, p(y)=C 9(5) :
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where C' = I;i%@ and g(z) = [[5_, (2 — f’Q(ak))

Now, give examples taken from [65]. The notation 77 corresponds to the group 7}
of &, given in [16]. In our examples, we suppose that the resolvents are all square free.
Otherwise, we use a Tschirnhaus transformation (see Remark 42).

4.3. Example for the direct Galois problem.

Our family of resolvents is useful in many situations. In the following example, we
apply the Theorem 4.2.

Let i,j € N. For a subgroup of the symmetric group &;, the notation 7;(j) refer to
the classification of [16].

Let f be an irreducible monic polynomial of degree 10 such that its discriminant
D is a square and whose resolvent L, ,, ; of degree 45 has an irreducible factor h of
degree 5 and two irreducible factors of degree 20. Suppose that the Galois group of h
is the group T2(5). Then the one of f is the group Tl(éo) or the group T2(§0). Now with
our method we compute directly the factor g of degree 10 of L, ,, s by the formula
g(y) =Res,(h(x),y* — z* Disc(f)). If the Galois group of g is the group 73" then the
Galois group of f is the group T1(6 , if it is the group TQ( the Galois group of g is the

group TQ%O). To determine the Galois group of g, it suffice to compute the resolvent £, ,, 4.
If this resolvent has more than one irreducible factors of degree 5 the Galois group of g is

the group Tt 3(10) otherwise it is the group T2(10).

4.4. Example for the inverse Galois problem.

We have many examples where our family of resolvents are useful to compute poly-
nomial of degree 12 with a fixed Galois group. We now give an example in degree 10
applying the Theorem 4.4.

Note H the subgroup of & such that d;0(x; — x2) is a primitive invariant of it. From
[65] we have the following result: if f is a polynomial of degree 10 whose the Galois
group is the group TQ(;O), then the Galois group of the simple irreducible factor of an
H-resolvent of f is the group T2(410). The Galois group of f( ) = 210 + 102% + 1027 +
2028 + 262° + 302" + 2023 + 2022 + 10z + 2 is the group T29 With SYM we compute in
only 15 seconds the resolvent Exl Zo.p (of degree 90) whose the simple irreducible factor

of degree 10 is q(y) = y'° + 20y® + 140y° + 120y* — 560y* + 1052. We compute instantly
7 the simple irreducible factor of degree 10 of the resolvent Ls,,(z,—x,), by our formulae:
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7(z) = Resultant, (subst(y, ¥, ¢), 2 — yDisc(f)). We obtain

m(z) = 20— 827169756222284398289069295001602° +
23947343196309168966405701015245260150976691558521271636040089602°
—84893648716553297860791415569795434646216702599856530145726010984
103751263268429115827840614402*
—1638500703319471557440672625759646043938356750415479972334638579336986
120037915157664572783255945749263734586396453652502937602 2
—127303104924662399986657547394107422562675408527606258516890454022528
7250294647381619874184354688204126597846034056433183540123181199547551230
530390050471936

The polynomial 7 has Tg(io) as Galois group (it can be simplified, but it isn’t the preoc-
cupation for our example).

5. Computation of multi-resolvents

Suppose that f is a reducible polynomial:

=5 Ja
with deg,.(f;) =n; #0and n =ny + -+ - + ng. Set
(5.1) Qp = (Qypy, ..., Q) and
(5.2) L:=6, x--%X6,, C6,

We have G C L (see Chapter 8).

The computation of the multi-resolvent LQ,IS% = Lo,(f,..1, (see Definition 5.12 Chap-
ter 6). is a generalization of computation of absolute resolvent.

For example, in order to compute a multi-resolvent of (fi, fo) we must consider that
we compute, at first, an absolute resolvent of f; with coefficients in k(€2s,) and after an
absolute resolvent of f, (see [62], [35] or [55] for explicit algorithms). The following
example illustrates the algorithm using Cauchy moduli:

Example 5.1. Suppose that n = 6 and f = uv where u and v are polynomials of degree
3 over k. The polynomial ts = 2124 + o5 + 376 is a (&3 X &3)-primitive Ty -invariant
(see Section 5 Chapter 11). The absolute multi-resolvent Ly, () can be computed as
an absolute resolvent using Cauchy moduli (see Section 3.1): let uy(z1), us(z1, 23) and
ug(z1, xe, x3) be the Cauchy moduli of u and vy (x4), va(xy, x5) and vs(xy, x5, x6) those of
v; let

U(ZL’l, T2, T3, T) = Resu (Ul, RGS% (Ug, }{GS;B6 (Ug, T— tﬁ))) )
and let be T given by W?(z1,T) = Res,, (us, Resg, (uz, U)). Then we have

E?@,(u,v) = Resm (Ul, W)
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We have powers of the polynomial W and of the resolvent. Those powers are removed

by using a specific algorithm (see [48]). In practice, the computation of resultants are

realized modulo the ideal [ (%ifgf) =< uq, Uz, U3, V1, V2, U3 >.

We will describe some methods for computing particular multi-resolvents.

5.1. Projection.

Suppose that f = gh where g,h € k[z] and deg(g) = m. Set Q; = (€, Q). Let
© € k[zy,...,x,], be such that it depends only on the variables xy,...,z,,. Let G be a
subgroup of &,, and H be a subgroup of &,,_,,,. Then

(5.3) L@,IngH = L@Jgg
5.2. Product of discriminants.

Suppose that f = f;--- f; such that each f; is a monic polynomial of k[z] of degree
n; > 0 for ¢ € [1,d]. Let us consider the following invariant:

0= 51,“15711-1-1,711—1—712 o '5n1+~~~+nd—1+17n

where, for i <j <mn, §;; = [[;c,,<;(¥p — 7,) is a Vandermonde determinant. Then the
multi-resolvent of (f1,..., fq) by © is:

(5-4) Lo (it = (@ = A(f)A(f2) - Alfa)) .

where A(g) denotes the discriminant of a univariate polynomial g.

5.3. Product by a Vandermonde.

Suppose that f can be factored as f = gh where g and h are monic univariate polyno-
mial over k of respective degree m and p. Putting Qf := (€, 2),) we have G, C &, X &),.
Let © € k[zp41, ..., 2, and let H be a subgroup of &, which contains Gg,. We want to
compute the relative (&,, x H)-resolvent L; o g

Case (—0O) does not belong to the orbit H.O.

We have:
(5.5) Lseagr<n(y) = Ress(Lopp (), y> — A(g)z?)
Indeed:
EJmG,IS;"XH(y) = H (Y = 6m V) (y + 0, V)
VEH.©
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The degree of the resolvent L emxm 18 twice of the degree of the resolvent Ly ;u
g b OIS g ,1f,

Case (—0) belongs to the orbit H.O.

The resolvent Lg ;n is even. Suppose that its roots are given by: Lgu (y) =
CeS el

[T, (3% — 62), where 6; € k and set F(y®) = Lo (y). We have:

(56) EénggfmxH(y) = Res$(F(;p)7y2_A(g)fL’>
Indeed:
Ly osemn(y) = [[—=0mb)+5m6) [[ v —06267)
! i=1 VeH.©

The degree of the resolvent L smxu equals the one of the resolvent Lg ;# .
g 5mO.IS" o1,

Example 5.2. Let f = hohy and © = 0s(x3wy — w576). Setting ¥y = w314 — 576,
‘112 = X35 — TyaTg, ‘113 = T3Tg — T4T5 and F(ZZ) = E‘I’l,h4 (Z), the multi-resolvent of (hg, h4)
by © is given by:

Loy = (27— Alho)UT)(2® — A(h) V5)(2* — A(ha) V)
= Res.(F(2),2* — zA(hg))

Partial Computation.

If the resolvent Lg I is partially factorized, we can compute only some factors of the
T
resolvent Ls, o.s,.xH.0 ; since it is computed using a resultant.



CHAPTER 10

An explicit example

We give an example in which a relations ideal is computed. The motivation of this
example is essentially the illustration of
- the method of Section 3 Chapter 9 for computing resolvents;

- the algorithm GaloisIdeal of Chapter 7 for computing the Galois Ideal.

Notation 0.3. For a subset £ C Q[zy,...,x,], we will denote by < E > the ideal
generated by E in Q[z1, ..., x,].

We consider the polynomial f = 2% + 2 which is irreducible over Q. Denote by  an
ordered set containing the 6 roots of f. We will compute the ideal I of the ()-relations
by computing an increasing chain of ideals between I°, the ideal of symmetric relations
among the roots of f and Ig.

The first step consists in computing a triangular set which generates the ideal 13! for
M = &¢. This set is given by the Cauchy moduli of the polynomial f:

IS* = <@g+ x5+ x4+ 23+ 2 + 21,
x% + 425 + T3T5 + Xox5 + L1705 + wi + X304 + Toxy + X124
+3 + Tox3 + 1173 + 5 + 2179 + 23,
T+ 1377 + To; + 1127 + T304 + ToT3Ty + T1T3T4 + TIT4 + T1TTy + 25Ty
+x§ + @x% + xw% + .T%[Bg + 12973 + .T%[Bg + w%’ + xlx% + x%a:z + xi’,
x§ + xgxg + xlxg + x%x% + $1x2x§ + x%x% + .T%[Bg + xlxga:g
+x%x2x3 + ZE?I?, + x% + xlxg + x%x% + xi’xg + x‘f,
Th + mwy + iws + 2ry + afry + b 28 2 >
Choose L = &; X &5. The polynomial ©; = x; is a primitive L-invariant. The absolute
resolvent Lo, ¢ equals f. As f is irreducible over Q, its Galois group is transitive. Thus,
the candidate groups are the transitive subgroups of &g.
Choose L = Ag, the alternating subgroup of &g. Denote by ©5 the Vandermonde
determinant which is a primitive Ag-invariant. Since the discriminant of f is not a square,
the Galois group of f is not contained in Ag.

Now, let L. =PGL2(5) be the transitive maximal subgroup of &,, of degree 120. We
denote by O3 the primitive L-invariant given in [33] (this invariant is very big). The
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computation of the absolute resolvent of f by ©j3 is realized by the method of [55] (see
Theorem 3.2 Chapter 9). Its factorization over Q is the following:

Lo, ro0 = Log s = (T = 42)(T — 24)*(T + 6)°

In this case, the partition matrix method (see [7] or Section 2 Chapter 7) indicates that
the Galois group of f is one of the following groups: PGLy(5), PSLy(5), the dihedral group
Dg or the cyclic group Cg which are included in PGLy(5). By Theorem 6.4 of Chapter 6,
we have

I§ = I+ < O3 — 42 >

where 42 is the value given by the linear factor over Q of the resolvent Lg, s. The logicial
FGb (see [30]) computes the triangular set which generates the ideal I}:

IE = < 24w+ odxde, + Sadada? + 6xdwead + Sadat + 8xladat + dalada? + 8xdwyn]
+6232528 + S8warie] — dwswox® + 1223 + badx] + 1224 + 14y,

3,4 3,3 3,22 3, .3 3,4 2, 4 2,32
24xs — drywy — Tasxyry — 16252507 — Tr5wex] — dx57] — ST3w5x1 — 12250577

—12z3252% — Sa3wox] — 12232527 — 16w3252 — 12230507 + Sw3 — Saja’s
—brir] — 2wy — 2wy,
24z, + brixy + 6xiwiw) + Srha5a? + TaText + 8¥iwawy + dwiaiat + 8wy
+12x37577 + 10237527 + dasrsx] + 4vswen’ + das + Sayas + 1day + 1274,
x§ + xgxg + xgxl + xgxg + x%mxl + x%x% + 2373

+T37571 + T3T9T% + T3X5 + Ty + THT) + T5XT + Tox + 77,

T) + wawy + rawt + wart + wox] + 28 28 +2 >
Denote by f; the generator of I5 given in the previous formula; f; € k[zy,...,z;] and
derivative(f;, x;) # 0.
Now, set M :=PGL(2,5) and choose L = Dg. The situation is the following:

Ipe C Sl LRl
The polynomial primitive Dg-invariant

@4 = XXy + T4T5 + T5To + ToT3 + T3Tg + Ty

is a fortiori a PGL(2, 5)-primitive Dg-invariant. We must compute a PGL(2, 5)-relative
resolvent of f by ©, whose degree is 10 the index of the group L in the group M. Let

V()(T,xl,...,xﬁ) Z:T—@4

The reduction of V; modulo the ideal 13! (given by successive Euclidian divisions) elimi-
nates the variables x4, x5 and x4 in V. Let Wy (T, z1, 22, 23) be the result of this reduction
and

Vi(T, z1, m2) := Res,, (f3, Wo)
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The reduction of V; modulo the ideal Ig does not eliminate the variables x; and s of
respective degree 32 and 28 in V; but produces a new polynomial Wi (T, x1, z5) of degree
4 in each variable x; and x5.

The elimination of the variable x5 is given by

Vo(T, 1) := Resy, (f2, W1)
The reduction of V, modulo the ideal I} produces a univariate polynomial of degree 20
whose factorization (in fact the square free form) is the following polynomial :

T*(T3 — 2)%(T3 + 2)*
Then the factorization over Q of the Dg-resolvent is:

Lo, =T(T° =2)(T +2)*

The partition matrix relative to M indicates that the Galois group of f is Dg or Cg. The
ideal fixed by Dg is given by:

Do = 15 <o, —0> |
where 0 is the value given by the simple linear factor over Q of the resolvent Lg, M- A
triangular set of generators of our ideal, computed by FGb, is the following:

156 =< 2¢ — T3 — T1,T5 + X3 + T1, Ty + T3, T3 + 173 + 27, o + 11,20 +2 >
Now, set M := Dg and choose L = Cg. Let
O5 = x4x§ + xgxg + T573 + x2x§ + w22 + 2127

be an M-primitive L-invariant. The degree of an M-relative L-resolvent is 2, the index
of Cg in Dg. The reduction of O5 modulo the ideal 15 ¢ produces the value 0. We are in a
degenerated case: the resolvent equals 72 and the computation of the resolvent modulo
the ideal [g ¢ produces the polynomial 7. Many Dg-primitive Cg-invariants computed by
Abdeljaouad’s package are in this case. In order to find a Dg-primitive Cg-invariant which
is not degenerated, we adopt the Colin’s method (see [22]). We replace the invariant
O©s(z1,...,x¢) by the invariant

U = @(p(%), ce 7p(x6))

where p(z) = 2 + 1. The computation of the Dg-relative resolvent of f by ¥ is realized
using two reductions modulo the ideal 15° and one resultant. It is the following irreducible
polynomial:

2
Ly oo =T% = 24T + 252

Since this resolvent is irreducible over Q, the Galois group of f over Q is Dg and the ideal
I of relations among the roots of f is Ig“.






CHAPTER 11

Computation of Galois groups up to degree 7

We consider f a separable monic univariate polynomial over the field k& of degree
n € [3,7].

In the present chapter are presented the results of a complete investigation of partition
and group matrices carried out for the purpose of computing the Galois group of the
polynomial f over k.

The matrices of partitions and of groups are computed using the software GAP ([36]).

Previous results about irreducible polynomials are included in our tables. The references
are the following: in [52] the linear resolvents are used for irreducible polynomials of
degree less than 7 and 13|, [14], [31] and [33| use maximal groups as testing groups for
irreducible polynomials of degree respective 5,6,7, and 6. The given partition matrices
relative to the symmetric groups are taken from [9].

The research is completed by some considerations about factorizations in extension fields.

The computation of Galois groups for degrees bigger than 7 is possible (see [9], for example
for irreducible polynomials) but a presentation on a paper will be very complicated.

1. The problem of the conjugacy classes

Let L be a subgroup of &,. Two subgroups which are conjugate in &,, are not nec-
essarily conjugate in L. For the candidate groups, this problem appears when f has two
factors of the same degree. For a testing groups this problem appears only when L is
a product of more than two symmetric groups. Example 1.1 explains a method which
allows one to avoid this problem for the candidate groups. For testing groups there is an
example in Remark 48.

Example 1.1. Suppose that n = 6 (see Section 5). The groups T} = [(1, 2), (3,4)(5, 6)],
TE = [(3,4),(1,2)(5,6)] and Ts5 = [(5,6),(1,2)(3,4)] are conjugate in & and not in
Ths = &9 X &9 X &9. If f splits over k into three irreducible factors fi, fo and f3 of degree

103
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f=nhhlfs

then the three testing groups Tys, Tis and Tj induce the same partitions and each poly-
nomial
Li(z) = (2% = A(f)A(fr))

(i # j # k # 1) is a Tys-relative Tys-resolvent. In order to know if G, is included in one
of the groups Ty, it is necessary to compute the three products A(f;)A(f;) and check
if one of them is a square. After this computation, it is still possible to partially fix an
ordering of the roots of f. For example, if A(f1)A(f2) is a square then the Galois group
Gq, is included in T3, and Q; = (Q,,Qy,,Qy,) with j,k = 1,2 (i.e. the evaluation of
x5, ¢ must be performed at the roots of f3).

Another example is the group Tj9 C 63 X &3 in G¢ (see Section 5).

2. Notations for tables
The decomposition field of a polynomial A will be denoted by Dj,.

The alternating group in &, is denoted by A, and D,, and C,, denote respectively a
conjugate of the dihedral and the cyclic groups in &,,.

Let 1 <1 < j, the Vandermonde determinant in the variables x;, z;11, ... z; is denoted
by 52‘,3‘2

Oij = 0joiy1(Tiy Tign,s - oo, 75) = H (2 — )

i<u<v<j

and we set d; := d; ;. The discriminant of f, denoted by A(f), equals 4§, ()%
The dihedral invariant is denoted by b;:
bi = x1xy + Loz + - - + i + ;i

In general H is the generic name for testing groups, © denotes a primitive H-invariant.
In our partition and group matrix the location of the testing groups is variable: if we have
an entry with “ H: 7, then the testing groups are in the same row as “ H:”, if it is“ H”
then the testing groups are in the same column as “ H ”.

We identify a subgroup of &,, and its conjugacy classes in &,,. In a submatrix of the
group matrix relative to a proper subgroup of L, we refer to example 1.1 for the candidate
groups and we notify the chosen conjugate if it is necessary for the testing groups.

The notations i;, H ](-;2), H ](-23) x H ](-24) for the factors of a resolvent has this meaning: our

resolvent has 3 factors over k, one irreducible of degree i;, one of degree i, and of Galois

group H ](22) and one reducible factor of degree i3 + i, and of Galois group H ;;3) x H J(Z“).

For 7 € N, the polynomial h; is a monic irreducible univariate polynomial over k.
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3. Degrees 3 and 4

There exist 11 conjugacy classes of subgroups in &4 and the case of degree 4 includes
the one of degree 3. At first we have this following submatrix of group matrix relative to
&, in which the candidate groups are in the first row, their types in the second one and
the testing groups are 73,7, and Tg.

s Ty, T3 Ty T Ts Tz T Ty Ty Tn
Sy .,44 D4 C4 V4 Il X 63 S9 X 69 .Ag x Id GP) Idg X B9 I4
Te | Ty Tw T3 To Ty 1,63 22 1,A3 2 12,2 1%
vl 2 12 2 2 12 2 2 12 12 2 12
Ty | 65 Az 1,2 1,2 13 S3 1,2 As 13 1,2 13

The polynomials d4, by and z; are primitive invariants of Ty, T3 and T, respectively.

This submatrix of partitions in &, is not sufficient for determining the groups 73 and
TQ, T7 and Tg.

A separable Ts-relative Ts-resolvent is irreducible if and only if G, = T3 and otherwise
Gq, = Tz. A closed formula of the discriminant of a T3-relative Ty-resolvent is given in
[5] (see also [22] or [12] for an automatic computation). This relative resolvent is always
separable.

Now, if f = hyhi with Qp = (1, Q3), then the Galois group of f is 77 or Ty. There
are two more ways for determining the Galois group of f. The first is by computing of
a Tr-primitive To-resolvent and the second by factorizing in an extension (see Example
5.2).

Using a resolvent a Tr-primitive Ty-resolvent: Let ©g = 01 203 4 which is a Tr-primitive
Ty-invariant. We have the following multi-resolvent (see Section 5 of Chapter 9):

E%,(h;,hg) = (IQ - A(hé)A(hg))

If the product of the discriminant of hi and h3 is a square then the Galois group of f is
Ty, otherwise it is T7.

Using a factorization in algebraic extension: we have Dyy = Dz ifand only if Go, = Ty
and Dy N Dyz = k it and only if Go, = T7.

4. Degree 5

There exist 19 conjugacy classes of subgroups in &5 with 5 classes of transitive sub-
groups. If f has a linear factor, we go back to the degree 4.
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Case [ = hj; is irreducible.

We have the following submatrix of the partition matrix relative to &5 in which the
candidate groups are in the first row and the testing groups are in the first column with
an associated invariant in the second column:

T o 1, T, Ty 17

I; x Gh_1 I T5 T4+ T3 T2+ T1+
Ms ©5/6 6 1,515 1,5

IQ X B3 62 20 42, 1220 102 54

A3 x &y 63120 20 20 5% 102

where O3 is a T3-primitive invariant given by: (x1x9 + 2223 + 2314 + 2425 + T3 —
(1173 + T3T5 + T5T9 + Toxy + 1471))? (see [19]). This resolvent computed by Cayley and
tabulated in SYM is obtained instantaneously (its computation using Cauchy moduli needs
20 seconds and many hours by symmetric functions). In order to distinguish the dihedral
and the cyclic groups (resp. T, = D5 and T; = Cy), it is also possible to compute an
Ty-relative Ti-resolvent of degree 2 (T} is a subgroups of T3).

Case f = hohg and Qf = (Qp,, Q).

The Galois group of f is either Ty = &y x &3, or 77 = [(3,4,5),(1,2)(4,5)] or Ty =
Go X .A3.

The partition matrix relative to the group Tg gives the following: if A(h3) is a square
then G, = Tk else if the product A(hy)A(hs3) is a square then Gq, = T7 else it is T5. We
remark that the computation of the discriminant of f is not necessary.

Instead of using the partition matrix, the following lemma can be applied:

LEMMA 4.1. If Gq, 1is T7 then [ has an irreducible factor over k of degree 3 which
can only be As. Thus, if the Galois group of a polynomial h € k[z] of degree 3 is A3 and
if g is an irreducible polynomial over k of degree 2 then the Galois of the polynomial gh
18 Tg = 69 X .A3.

PROOF. If h3 and hy are irreducible factors over k of degrees 3 and 2 of f then the
Galois group of f must be 7§, 77 or Tg. If the Galois group of hj is the alternating group,
then the Galois group of f must be do a subgroup of Ty = &5 x A3. The group 77 which
has the same order of T3 is not a subgroup as Tg. ]

We can also use factorization in an algebraic extension : Dy, N Dy, = () if, and only
if, GQf is Ty or T3. Hence Dy, C Dy, if and only if GQf is T7. We have Dy, C Dy, if and
only if hs is reducible over Dy, .
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5. Degree 6

There exist 56 conjugacy classes in &g.
When f has one linear factor over k, its Galois group is determinated by the degrees
less than 6.

Case [ = hg is irreducible.

The group matrix shows that a T}4-resolvent of degree 6 solves the problem for all but
4 transitive subgroups of &g using the resolution of reducible polynomials. (Therefore,
this resolvent can be also used for computing many polynomials of degree 6 whose Galois
group is not transitive.) The formal computation of an 7} 4-resolvent is quick using Noether
normalization (see [23|) and primitive invariants are computed by [33] or Berwick or
Abdeljaouad’s package.

The part of the group matrix of &4 concerning 77,4 as testing group is the following:

Candidates : T1 TQ T3 T5 T6 Tg Tg T11
T14 : 1, T8(5) 13, 63 1, TéS) T19 ng 12, 64 T17 T27
Candidates : | Ty3 Twa T T, T T, T T
Thy : Tiz 1,65 Ty 12 A4 Trs T 1A Tis

For the groups Ty, Ti3, Tit and Ty we have the following result: if a Ti3-resolvent of
J is irreducible then Gg, is Tyt or Tys and otherwise its partition is 1,9 and the Galois
group of f is T} or Ti3. The Tyz-resolvent L, ; can be computed using formulae given
in [8]. As a Tys-relative Tjg-resolvents has the same degree than a Tjs-resolvent, it is not
necessary to compute this relative resolvent.

Case [ = hzh3 and Qf = (Qp1,Qz)-

The possible Galois groups of f are given in the first column of the following table.
The third column gives the types of the factors of f. The next two give the partitions with
Tis and T3 as testing groups and the last column gives informations about the splitting
fields:

candidates order factors |Tis 15 splitting fields

117 36 G3 X B3 |2 6 Dh% N Dh§ =k

Tk 18 G3, 63 12 32 D =+ Dy N Dy #+k
T19 18 Ag X &3 | 2 6 Dh% N Dhg =k

TQJE 6 G3,63 12 1,2,3 Dh% = Dhg

T2—’(—) 9 Az x As |12 32 Dh% N Dh§ =k

T 3 Az, As |12 13,3 Dyy = Dy
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The third column also gives the types of the groups which are direct products of groups.
The generators of three groups which are not product of groups are:

Ty [(4,5,6),(1,2,3),(2,3)(5,6)] .
T = [(1,2,3)(4,5,6), (2,3)(5,6)] and
TQE [(1,2,3)(4,5,6)]

The polynomial O3 = d3(x1, T2, x3).03(24, 5, T6) is a Ti7-primitive Tig-invariant and the
associated multi-resolvent is

Loy myn2) (@) = (27 — Ahz) A(h3))

In order to compute a T)7-relative Th;-resolvent, we fix the choice of h: if one of the factors
of f has Aj as Galois group then we denote it by hi. The polynomial t5 = z124+T275+ 1376
is a Ty7-primitive Tyi-invariant. (See Example 5.1 Chapter 9 for the computation of the
associated resolvent.)

Case f = h%h%h% and Qf = (Qh%7 th, th).
In the following table, the first column contains the candidate groups, the second

their respective orders, the third the type of the factorization of f and the last one gives
informations about the splitting fields:

Candidates O factors of f splitting fields

Tos 8 B9 X 69 X Gy DhéﬂDhj:kfor1§i<j§3andDhg;ZDh%UDh%
2

T, 4 G3,69,6 Dy, N D,y =k and Dyz C Dy U Dy

Tos 1 1Y x 8, Dys N Dy, =k for i =1,2 and Dy = Dys

Th 2 TW. &, Dyy = Dyz = Dy

We have Thy = [(3,4)(5,6), (1,2)(5,6)] and Tos = [(1,2)(3,4)(5, 6)].

In the case in which the Galois group of f is included in one of the conjugate of

Ths = T9(4) X G, the factor of degree 4 of f whose Galois group is included in Tg(4

) must

be identified (see Example 1.1). In the following table, the first column contains our
candidate groups, the last column contains the partitions associated with the absolute
I; x As-resolvents and the others the partitions associated with T53-relative resolvents:

H: Tos T25 T7(4) X Idg T26 T9(4) X ]dg I x A5
O : 51,253,455,6 51,253,4 T1T2T5T6  T1T3T5 1 TaTyTe 51,253,4955 0671
Tos 2 2 2 4 4 20
Toy 12 2 2 4 22 26
Tos 2 12 2 22 4 22,42
The 2 12 2 14 22 26
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The computation of an (Id x Aj)-resolvent with the invariant dgx; is preferable to a

Ths-relative (T9(4) x Idy)-resolvent because the (Id x As)-resolvent can be computed and
factored easily as follows:

Lssar,s(2) = Resy (hy(y), 2°=A(f).y*)Resy (h3(y), 2° = A(f).y*)Res, (h3(y), 2* = A(f).y7)
Putting h3 = 2% — g1x + g» we have the following multi-resolvents:
£®247(h17h2,h3) = (xQ - A(h%)A(h%)A(hg))
Loy (hnohs) = (27— A(hy)A(h3)) with Dy = Dy if Go, C Ths
£51,253,4I5,(h1,h2,h3) = 134 - A(h%)A(h%)(g% - 292)1’2 + (A(h%)A(hg)QQ)Q

Case f = hohy and Qf = (Qp,, Qp,)-

The possible Galois groups of f are given in the first column of the following table.
The table gives groups and partitions associated with the testing groups I; X &5 and
I; x As with respective invariants x; and dgz;.

candidates O 6L x65 I xAs; splitting fields
To7 48 G2 X 64 4.8 Dy, N Dy, =k
Toi = [(3:4)(5,6),(3,5)(4,6),(4,5,6),(1,2)(5,6)] 24 2,84 22,42 Dy, C Dy,
Thg 24 Gyx Ay 228 Dp,NDp, =k
T30 16 &9 x Dy 48 Dy, N Dy, = k
T31 =[(3,4)(5,6),(3,5:4,6),(1,2)(5,6)] 8 2Dy 4,42 Dy, C Dy,
T3h =1(3,4)(5,6),(3,5)(4,6),(1,2)(5,6)] 8  2,Dy 22,42 Dy, C Dy,
T33 8 G9 xCy 4.8 Dh2 N Dh4 =k
T3y 8 Gy xVy 22,42 Dy, N Dy, =k
T35 =[ (5,6),(3,4),(1,2)(3,5)(4,6)] 8 2,D, 48 Dy, C Dy,
Toh= 1 (3,4)(5,6),(1,2)(3,5,4,6)] 4 2,C4 22,42 Dy, C Dy,
T37 = [(3,4)(5,6),(1,2)(3,5)(4,6) ]| 4 2,Vy 22 42 Dy, C Dy,

The group Thg is determined by the Galois group of hy. For the other candidate groups,
factorization of the Tyr-relative Thg-resolvent Ls, ,s, 5.0, 15 = (22 — A(hg)A(hy)) is given
by:

Candidates : T27 T;é T30 T31 Tg—; T35 T33 T;é T34 T37
Tho : 2 1212 2 12 2|2 1*|2 2

The computation of the product of the discriminant of h, and hy is better than the
computation of the discriminant of f.

We now complete our work with this submatrix of the partition matrix relative to Ts7:
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H:| Ty Ty TP x Id Iy x &
©: | O3 0o (953554 — $5IB6) 51,255,6 T1T3
T3 | 2,4 2,4 8 8
Ts | 12,4 2,4 42 8
T35 | 2,4 12,4 8 42

Here O3 = mom422 + 112677 + Towx3 + 110372 + Tox572 + T 2472 + Tow3x2 + 217575
has been computed by Abdeljaouad’s package. For computation of the multi-resolvent of
(ha, hy) by O35 and 91 205 6 see Section 5 of Chapter 9).

6. Degree 7

There exist 96 conjugacy classes of subgroups in &;. We avoid subgroups for which f
has one factor of degree 1.

Case f = hy is irreducible.

We have the following submatrix of the partition matrix of &; in which the testing
groups are in the first row and the candidate groups are in first column:

H: | 1 x A@ T26 T27 Tg T5

O: 56 19 (571’1.(52 T1X2T3 @5

17 | 14 21 42 35 30
TS | 7 21 212 35 15
T | 72 21 212 728  1,7.8,14
T, | 14 291 42 1421 2,142
T, | 7 21 212 72,21 1274
T, |14 143 P14 2,142
T | 72 (GO G 75 12,74

(The columns of Ty and Ty have been computed by [51].) For the invariant ©5 we can
choose the one computed in [31]. If the Galois group of f is Ts or T3 a Ts-relative Tz-
resolvent of degree 8 is sufficient for determining it: the Galois of f is 75 if and only if
this resolvent has a linear (separable) factor.

Case f = hyhs and Qf = (Q,, Qpy)-

At first there are five groups which can be identified only by the type of the fac-
torization of fl T21 = G4 X Ag, T22 = A4 X 63, T23 = D4 X Ag, T24 = 04 X Ag and
T;g = ‘/4 X ./43.

For the other cases, the Galois group of f is one of the subgroups given at first
column in the following table. The second column gives the Galois groups of factors of
an (Id x &g)-resolvent (the polynomial f is one of them) and the third column gives the
partitions of an (/d x Ag)-resolvent. The others columns give a submatrix of the partition
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matrix of Ty with the testing groups Ty,770,739,112,714 and Ty. In order to choose the
testing groups in the partition matrix of T3, we have taken the testing groups of index
less than 9 in Ty and we have avoided the groups which do not give useful results.

H: | I x6 I1xAs| Ty Tio Tig Tio T4 Ty
O: T d7x1 | 014057 ©10 Oa+057 Ora  Os7(vix0 —x374) X5b4
Tz |64 x63 68 2 6 4 6 6 9
T | 64,65  3%,42 12 32 22 6 6 9
T | 64,65  3%42 12 1,2,3 22 6 6 3,6
T11 | Dy % G3 6,8 2 6 4 2,4 2,4 3,6
Tia | Dy, &3 42,6 2 6 4 12,4 2,4 3,6
Ti5 | D4,63  3%42 12 32 22 2,4 2,4 3,6
Tis | Dy, &3 6,8 2 6 4 2,4 12,4 3,6
Ti5 | Cy4 X B3 6,8 2 6 4 2,4 2,4 3,6
T | CyG3 3242 12 32 22 2,4 12,4 3,6
Ti7 | Vi x 63 6,8 2 6 22 23 23 33
Tig | Vi, 63 426 2 6 22 12,22 12,22 33
T | Ay x Ay 3%,4° 12 32 14 6 6 9
Ty | Ag, A 3242 12 13,3 14 6 6 33
Where

T41:Id><62XD4,

Ty =1(1,2)(3,4),(1,4)(2,3),(2,3,4)(5,6,7),(2,3,4),(3,4)(6,7)],
Ti0 = [(172)(374)7 (1)4)( 73)7( 7374)( ) ’7)7 (374)(677)]a

Ti9 = [(57 67 7)7 (37 4)(67 7)7 (17 2)(67 7)7 (17 3)(27 4) (67 7)]7

T3 = [(57 6, 7)7 (37 4)(67 7)7 (17 2)(67 7)7 (17 3)(27 4)]a

T14 = [(17 2)7 ( >4)7 (57 ) 7)> (67 7)(17 3)(274)]>

T16 = [(57 6’ 7)7 (17 2)(3a 4)> (17 37 27 4)(6> 7)]7

Tig = [(57 6, 7)7 (17 2)(3a4)> (17 3)( 74)(6> 7)]

and Tho = [(4,5)(6,7), (4,6)(5,7), (1,2, 3)(5,6,7)].

The following invariants are computed using Abdeljaouad’s package:

O10 = X3TaTs + ToXaTe + Tal3Ty + T1TaT7 + T1X3%6 + T1TaTs and
2,2 2,2 2,2 2,2 2,2 2,2
O12 = ToXeX T7 + TyT7T5%g + Tol7XTiTs + T4T5T527 + TolsT Tg + TaTeToTs
2,2 2,2 2,2 2,2 2,2 2,2
FXoX7T3TG + T3TeXoT7 + ToT5T3T7 + T3T7THT5 + ToTeT3Ty + T3T5X5T
2,2 2,2 2,2 2,2 2,2 2,2
FT1X7T3 T + TyTeX1T7 + T1T5T4T7 + TaT7T1T5 + T1T6T4T5 + T4T527 T

2,2 2,2 2,2 2,2 2,2 2,2
+T1X6T3T7 + T3T7X1 Ty + T1T7X3T5 + T3T5TIT7 + X1 T5T3T5 + T3TeX Ty
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Some closed formulas for the multi-resolvent of (hy, h3) are the following:

Loy thuiny = (@*—A(h3)A(hy))
Lo hans) = 2 —22°A(h3)A(ha) + (A(hs) — A(hy))?
Loy mihahy) = Res,(ha(2),2” — 2°A(hs))
Losbaihang = Ress(hs(2), 2’ Logni(2/2))

For the computation of the Tg-relative T} 4-resolvent see Section 5 of Chapter 9.

Case f = h5h2 and Qf = (Qh5>Qh2)-

Two groups can be identified only by the type of the factorization of f: T3, = A5 X &9
and T33 = 05 X Gas.

After we take the testing groups of index less than 20 in Ty = &5 X &5 and we avoid
the groups which do not give any useful information. In the following table, we process
as the previous section: the three last columns are associated with Thg-relative resolvents
(which are multi-resolvents).

Remark 48. The groups &2 X T7(5) and T7(5) X &y are conjugate subgroups in &7 but
not in Ths. As testing group we chose the conjugate &y x T7(5) because T7(5) X &y gives no
useful information.

H: SG1 X Gg T27 T29 Go X T7(5)
O:| 1 05067 /Ms5067 035067
T26 G5 X 6o 2 12 20

Ty | 65,69 || 12 62 20

ng M5 X Go 2 2, 10 20

T | M5, G || 12 12,52 20

Ty | D5 x &g || 2 2,10 102

T3 | D5, &9 2 2,10 54

where /ms is deduced from the Cayley-invariant given in degree 5 :
Vs = T12T9 + Ta%3 + T304 + 425 + 571 — (2103 + X305 + TpTo + Toky + T4q)

Remark 49. In order to determine the group 75; it is preferable to compute the
product of the determinant of h5 and h, instead of the determinant of f.

We can use factorizations in extensions. For example, if hj5 is irreducible in ), then
Ga, € {12, Tos, T30, T31, T32}. Now suppose that hs is reducible in Kj,. If Go,(hs) = &5
then Go,(f) = 15, if Go, (hs) = M5 then Gq, = Ty and if G, = D5 then Go, = Ty.
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6.1. Case [ = hyhihs and Qp = (1, Yz, Qny)-

The Galois group of f is one of those in first column of the next table. The last column
contains a submatrix of the partition matrix relative to 734.

H: | I X & T35 T3¢ 137 T3g
O: |1 5354,556,7 54,556,7 5354,5 d3
T34 | B3 X Gy X Gg || 2 2 2 2
Ti | 63,69, 69 12 2 2 2
Ty | &3 x T\ 2 12 2 2
Ty | TP x &, 2 2 12 2
Tss | As X 69 X 9 || 2 2 2 12
Ty | &3 x T\ 2 12 12 2
Ty | As x T 12 12 2 12

We have T35 = [(1,2,3), (1,2)(4,5), (1, 2)(6,7)].
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