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Moment graphs and representations
Jens Carsten Jantzen™

In a 1979 paper Kazhdan and Lusztig introduced certain polynomials that nowadays
are called Kazhdan-Lusztig polynomials. They conjectured that these polynomials de-
termine the characters of infinite dimensional simple highest weight modules for complex
semi-simple Lie algebras. Soon afterwards Lusztig made an analogous conjecture for the
characters of irreducible representations of semi-simple algebraic groups in prime charac-
teristics.

The characteristic 0 conjecture was proved within a few years. Concerning prime
characteristics the best result known says that the conjecture holds in all characteristics p
greater than an unknown bound depending on the type of the group.

In both cases the proofs rely on the fact (proved by Kazhdan and Lusztig) that the
Kazhdan-Lusztig polynomials describe the intersection cohomology of Schubert varieties.
It was then quite complicated to link the representation theory to the intersection coho-
mology. In the characteristic 0 case this involved D-modules and the Riemann-Hilbert
correspondence. The proof of the weaker result in prime characteristics went via quantum
groups and Kac-Moody Lie algebras.

In these notes I want to report on a more direct link between representations and
cohomology. Most of this is due to Peter Fiebig. An essential tool is an alternative
description of the intersection cohomology found by Tom Braden and Robert MacPherson.
A crucial point is that on one hand one has to replace the usual intersection cohomology
by equivariant intersection cohomology, while on the other hand one has to work with
deformations of representations, i.e., with lifts of the modules to a suitable local ring that
has our original ground field as its residue field.

Braden and MacPherson looked at varieties with an action of an (algebraic) torus;
under certain assumptions (satisfied by Schubert varieties) they showed that the equivari-
ant intersection cohomology is given by a combinatorially defined sheaf on a graph, the
moment graph of the variety with the torus action.

Fiebig then constructed a functor from deformed representations to sheaves on a
moment graph. This functor takes projective indecomposable modules to the sheaves
defined by Braden and MacPherson. This is then the basis for a comparison between
character formulae and intersection cohomology.

In Section 4 of these notes I describe Fiebig’s construction in the characteristic 0 case.
While Fiebig actually works with general (symmetrisable) Kac-Moody algebras, I have
restricted myself here to the less complicated case of finite dimensional semi-simple Lie
algebras. The prime characteristic case is then discussed in Section 5, but with crucial
proofs replaced by references to Fiebig’s papers.

* Mathematics Institute, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark



2 J. C. Jantzen

The two middle sections 2 and 3 discuss moment graphs and sheaves on them. I de-
scribe the Braden-MacPherson construction and follow Fiebig’s approach to a localisation
functor and its properties.

The first section looks at some cohomological background. A proof of the fact that
the Braden-MacPherson sheaf describes the equivariant intersection cohomology was be-
yond the reach of these notes. Instead I go through the central definitions in equivariant
cohomology and try to make it plausible that moment graphs have something to do with
equivariant cohomology.

For advice on Section 1 I would like to thank Michel Brion and Jgrgen Tornehave.
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1 Cohomology

For general background in algebraic topology one may consult [Ha]. For more infor-
mation on fibre bundles, see [Hm]. (I actually looked at the first edition published by
McGraw-Hill.)

1.1. (A simple calculation) Consider the polynomial ring S = k[z1, z2, 3] in three
indeterminates over a field k. Set &« = x1 — x9 and § = x5 — x3. Let us determine the
following S-subalgebra of S22 = S x § x S:

Z ={(a,b,c) € S® | a=b(modSa), b=c(modSp3), a=c(modS(a+73)}. (1)
We have clearly (c,c,c) € Z for all ¢ € S; it follows that Z =5 (1,1,1) ® Z" with
7' ={(a,b,0) € S® |a=0b(modSa), be SB3, ac S(a+p)}.

Any triple (b(a+ 3),b3,0) with b € S belongs to Z’. This yields Z' = S (a+ 3, 3,0) & Z"
where Z" consists of all (a,0,0) with a € San S (a+ §). Since o and « + 3 are non-
associated prime elements in the unique factorisation domain S, the last condition is
equivalent to a € S (o + ). So we get finally

Z=5S1,1,1)®S(a+03,8,0)® S (a(a+3),0,0). (2)

So Z is a free S—module of rank 3.

Consider S as a graded ring with the usual grading doubled; so each x; is homogeneous
of degree 2. Then also S? and Z are naturally graded. Now (2) says that we have an
isomorphism of graded S—-modules

Z~8dS(2)®S(4) (3)

where quite generally (n) indicates a shift in the grading moving the homogeneous part of
degree m into degree n 4+ m.

The point about all this is that we have above calculated (in case k = C) the equi-
variant cohomology H$(P?(C); C) where T is the algebraic torus T = C* x C* x C*
acting on P?(C) via (t1,t2,t3) - [z : y : 2] = [t1@ : t2y : t32] in homogeneous coordinates.
Actually we have also calculated the ordinary cohomology H*(P?(C); C) that we get (in
this case) as Z/mZ where m is the maximal ideal of S generated by the z;, 1 <i < 3. So
we regain the well-known fact that H?"(P?(C);C) ~ C for 0 < r < 2 while all remaining
cohomology groups are 0.



4 J. C. Jantzen

1.2. (Principal bundles) Let G be a topological group. Recall that a G-space is a
topological space X with a continuous action G x X — X of G on X. If X is a G—space,
then we denote by X/G the space of all orbits Gz with z € X endowed with the quotient
topology: If m: X — X/G takes any = € X to its orbit Gz, then U C X/G is open if and
only if #7}(U) is open in X. It then follows that 7 is open since 7~ (7 (V)) = Ugea 9V
for any V C X.

A (numerable) principal G-bundle is a triple (E,p, B) where F is a G-space, B a
topological space and p: E — B a continuous map such that there exists a numerable
covering of B by open subsets U such that there exists a homeomorphism

pu:Ux G —p '(U)  withpopy(u,g) =uand py(u,gh) = gev(u,h) (1)

for all w € U and g, h € G. (The numerability condition is automatically satisfied if B is a
paracompact Hausdorff space. We assume in the following all bundles to be numerable.)

Note that these conditions imply that the fibres of p are exactly the G—orbits on E,
that each fibre p~!(b) with b € B is homeomorphic to G, and that G acts freely on E:
If g € G and z € E with gz = z, then ¢ = 1. It also follows that Gx — p(z) is a
homeomorphism from E/G onto B and that p is open.

For example the canonical map p: C"*1\ {0} — P"(C) is a principal bundle for the
multiplicative group C*. If we restrict p to the vectors of length 1, then we get a principal
bundle $?*+! — P"(C) for the group S! of complex numbers of length 1.

If G is a Lie group and H a closed Lie subgroup of G, then the canonical map
G — G/H is a principal bundle for H acting on G by right multiplication. This is a
fundamental result in Lie group theory.

If (E,p, B) is a principal bundle for a Lie group G and if H is a closed Lie subgroup
of G, then (E,p, E/H) is a principal bundle for H where p: ¥ — E/H maps any v € E to
its H-orbit Hwv.

1.3. (Universal principal bundles) Let (E,p, B) be a principal bundle for a topo-
logical group G and let f: B’ — B be a continuous map of topological spaces. Then one
constructs an induced principal bundle f*(E,p, B) = (E’,p’, B'): One takes E’ as the fibre
product

E'=B'xgE={(v,z)€e B xE| f(v)=p(z)}

and one defines p’ as the projection p’(v,2) = v. The action of G on E’ is given by
g (v,x) = (v, gx); this makes sense as p(gx) = p(z) = f(v). Consider an open subset U
in B such that there exists a homeomorphism ¢y as in 1.2(1). Then V := f=1(U) is open
in B’, we have (p/)"(V) C V x p~}(U) and idy x¢y induces a homeomorphism

{(v,u,9) eV XU G| flv)=u} — () (V),

hence using (v,g) — (v, f(v),g) a homeomorphism ¥y : V x G — (p/)~}(V) satisfying
p oy (v,g9) =v and gy (v, h) =y (v,gh) for all v € V and g,h € G.

One can show: If fi1: B” — B and fy: B — B are homotopic continuous maps, then
the induced principal bundles f;(FE,p, B) and f5(FE,p, B) are isomorphic over B’. Here
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two principal G-bundles (E1,p1, B) and (Es, ps, B) are called isomorphic over B if there
exists a homeomorphism ¢: E1 — FEs with py o ¢ = p; and p(gx) = g(z) for all z € F.

A principal bundle (Eg, pg, Bg) for a topological group G is called a universal prin-
cipal bundle for G if for every principal G-bundle (E, p, B) there exists a continuous map
f: B — Bg such that (E, p, B) is isomorphic to f*(Eq, pa, Bg) over B and if f is uniquely
determined up to homotopy by this property.

Milnor has given a general construction that associates to any topological group a
universal principal bundle. A theorem of Dold (in Ann. of Math. 78 (1963), 223-255) says
that a principal G-bundle (F, p, B) is universal if and only if E is contractible.

In case G = S! Milnor’s construction leads to the following: Consider for any positive
integer n the principal G-bundle p,: E% = S?"*! — BZ = P"(C) as in 1.2. We have
natural embeddings E¢ — Eg“ and B¢ — Bg“ induced by the embedding C* — C"+!
mapping any (z1,xa,...,Ty) to (x1,22,...,2y,,0). These embeddings are compatible with
the action of G and with the maps p,, and p,+1. Take now the limits

Eqg=1lmE: =5 and Bg =lim B = P> (C)

with the inductive topology. We get a map pg: F¢ — B¢ inducing all p,,, and (Eg, pg, Bg)
is then a universal principal bundle for G = S*.

For the multiplicative group G = C* one can get a universal principal bundle by a
similar procedure: One sets now EZ = C"1\ {0} and BZ = P"(C) with the canonical
map p,, and takes the limit as above. So one gets now Eg = C>* \ {0} and Bg = P*°(C).
Since S*° is a deformation retract of C> \ {0} and since S is contractible (e.g., by
the preceding example and Dold’s theorem™), also C> \ {0} is contractible. Therefore
(Fa,pa, Be) is a universal principal bundle for G = C*.

Remarks: 1) Let (Eg,p, Bg) be a universal principal bundle for a topological group G.
Dold’s theorem implies that Bg is pathwise connected. Furthermore one gets from the long
exact homotopy sequence of this fibration: If G is connected, then B¢ is simply connected.

2) Let G be a Lie group and H a closed Lie subgroup of G. If (Eg, p, Bg) is a universal
principal G-bundle, then (Fq,p, Eq/H) with p(z) = Haz for all x € Eg is a universal
principal H-bundle: We noted at the end of 1.2 that we get here a principal H—bundle; it
is universal by Dold’s theorem.

1.4. (Equivariant cohomology) Let G be a topological group and X a G-space. We
can associate to each principal G-bundle (F,p, B) a fibre bundle (Xg,q, B): We let G
act on X x E diagonally, i.e., via g (x,y) = (g9, gy), and set X equal to the orbit space
(X x E)/G. We define q by ¢(G(z,y)) = p(y). Let m: X x E — Xpg denote the map
sending each element to its orbit under G.

Consider an open subset U in B with a homeomorphism ¢y: U x G — p~1(U) as in
1.2(1). We have ¢ 1 (U) = (X x p~}(U))/G and 7~ (¢~} (U)) = X x p~1(U). Now

@U:X xUxG— W_l(q_l(U)), (x,u,g) — (92, 90vu(u, g))

* At en.wikipedia.org/wiki/Contractibility_of unit_sphere_in Hilbert_space
you can find the standard proofs.
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is a homeomorphism (the composition of (z,u,g) — (gx,u,g) with idx xpy) that is G-
equivariant if we let G act on X x U x G via h(z,u,g) = (z,u, hg). For this action X x U
is homeomorphic to (X x U x G)/G, mapping (z,u) to G(z,u,1). It follows that we get
a homeomorphism

Yu: X xU — ¢ 1 (U) =7"*q¢ 1 (U))/G, (z,u) — G (z,pu(u,1)).

This shows that (Xg, g, B) is a locally trivial fibration with all fibres homeomorphic
to X. We get also that (X x E, 7, Xg) is a principal G-bundle: For any open subset U as
above ¢y o (5" xidg) is a homeomorphism from ¢~ (U) x G onto 7! (¢~} (U)) satisfying
the conditions in 1.2(1).

Apply this construction to a universal principal G-bundle (E¢g,p, Bg). In this case
we use the notation Xg = (X X Eg)/G and get thus a fibre bundle (X¢, q, Bg). We then
define the equivariant cohomology Hg.(X; C) of the G-space X as the ordinary cohomology
of X G.

Hy(X;C) = H*(X: C). (1)

(We could of course also use other coefficients than C.)

At first sight it looks as if this definition depends on the choice of the universal
principal G-bundle (Eg,p, Bg). Let us show that this choice does not matter. Suppose
that (E,p’, B;) is another universal principal G-bundle. Consider X x Eg x E[, as a
G—space with G acting on all three factors. We get natural maps

q1: (X X Eg X E)/G — (X X Eg)/G and q2: (X x Eg x E;)/G — (X x E)/G

These are locally trivial fibrations with fibres homeomorphic to E(, (for ¢;) or to Eg
(for ¢2). For example the construction above of a fibre bundle yields ¢; if we start with the
G-space E(, and the principal G-bundle given by the orbit map X x Eg — (X x Eg)/G.

Since the fibre E(, of the locally trivial fibration ¢; is contractible, the long exact
homotopy sequence of the fibration shows that ¢; induces isomorphisms of all homotopy
groups. Now a result of Whitehead implies that ¢f is an isomorphism of cohomology
algebras H*((X x Eg)/G;C) — H*((X x Eg x E;)/G;C). The same argument applies
to g2 and get thus an isomorphism

(g3)~" o g H*((X x Eg)/G; C) — H*((X x Eg)/G; C).

Denote this isomorphism for the moment by a(E(,, Eg). If now (EZ,p”, Bl) is a third
universal principal G-bundle, then one checks that a(E(:, Eq) = a(El, Ef) o a(Eg, Eg).
We can now formally define H¢,(X; C) as the limit of the family of all H*((X x Eq)/G; C)
and of all a(E¢, Eg) over all universal principal G-bundles (Eq, p, Ba).
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1.5. (Elementary properties) Let again G be a topological group and (F¢g,p, Bg) a
universal principal G-bundle. If f: X — Y is a morphism of G—spaces (i.e., a continuous
G—equivariant map), then f xid is a morphism X x Eg — Y x Eg of G—spaces and induces
a continuous map f: Xg — Yg, G(x,2) — G(f(z),2) of the orbit spaces. We get thus a
homomorphism

fHL(Y;C) — Hy(X;C) (1)

in the equivariant cohomology.
If X is a point, then (X x Eq)/G = ({pt} x E¢)/G identifies with E¢/G ~ Bg. We
get thus
Hg(pt; C) ~ H*(Bg; C), (2)

an isomorphism of algebras.

More generally, if G acts trivially on a topological space X, then (X x Eg)/G is
homeomorphic to X x (Eg/G) under G(z,y) — (z,Gy). So the Kiinneth formula yields
an isomorphism H¢,(X;C) ~ H*(X;C)® H*(Bg; C).

For an arbitrary G—space X the map sending all of X to a point is a morphism
of G-spaces. Therefore we get a homomorphism H*(Bg;C) — H(X;C) that makes
H(X;C) into an H*(Bg; C)-algebra. Any F asin (1) is then a homomorphism of
H*(Bg; C)-algebras.

If H is a closed subgroup of G, then we can regard G/H as a G—space. We get then
a homeomorphism

(G/H x Eg)/G — Eg/H, G(gH,z)— Hg 'z

The inverse map takes any H-orbit Hz to G(1H,z). If G is a Lie group and if H is a
closed Lie subgroup of G, then Eg — E¢g/H is a universal principal H-bundle, as noted
in 1.3. So in this case we can take By = F¢/H and get an isomorphism

Hy(G/H;C) — H*(By; C). (3)

The structure as an Hg (pt; C)-algebra on H(G/H;C) is induced by the homomor-
phism ¢* with ¢: Eq/H — Bg, q(Hz) = p(x).

1.6. (Tori) If G and G’ are topological groups, if (E, p, B) is a (universal) principal G—
bundle and if (E’,p’, B) is a (universal) principal G’'~bundle, then (E x E’,p x p', B x B’)
is a (universal) principal (G x G’)-bundle.

Consider an (algebraic) torus ' = C* x C* x --- x C* (d factors). Then we get
principal T-bundles (E}, p,, B}) setting EZ = (C"*1\ {0})¢ and B} = P"(C)?, cf. 1.3,
and we get a universal principal T-bundle (Er,pr, Br) with Er = (C*> \ {0})¢ and
Br = P>®(C)4. As in 1.3 we can identify E7 and Br as inductive limits of all EZ and
all B} respectively.

If X is a T—space, then X = (X x Ep)/T is the inductive limit of all X} = (X x
ER)/T. Since we are looking at cohomology with coefficients in a field, we get therefore

HL(X;C) =1lim H'((X x E})/T;C)  forallic N, (1)
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cf. [Ha], Thm. 3F.5.
We get in particular that each H?(Br; C) is the inverse limit of the H!(P"(C)%; C),
n € N. There is an isomorphism of graded rings

Clr1, w2, ..., zq) /(7T ab T 2T = H(P™(C)%; ). (2)

Here Clx1,Z2,...,xq] is the polynomial ring over C in d indeterminates, graded such
that each z; has degree 2. So for n > 1 the map in (2) sends Ele Cz; bijectively to
H?(P"(C)%; C). Furthermore the inclusion ¢,,: P"(C)? — P"*1(C)4 induces for n > 1 an
isomorphism ¢*: H2(P"+1(C)%; C) — H?(P"(C)% C). (Recall that one gets P"*1(C)
from P"(C) by adjoining a (2n + 2)-cell and use the cell decomposition to compute the
cohomology.) It follows that we get an isomorphism of graded rings

Cla1, 22, ..., 2q] — H*(Br; C). (3)

Consider the maximal compact subgroup K = S1 x 81 x ... x S! (d factors) of T.
Setting E% = (S?"*1)d C EZ and B}Y = B} we get principal K-bundles (E%,p’, B%)
with p!, the restriction of p,,. Similarly we get a universal principal K-bundle (Ek,pk, Bx)
with Ex = (S*°)% C Er and Bx = Br. As in the case of T we get for any K-space X
that H3-(X; C) is the inverse limit of all H*((X x E%)/K;C).

We can regard any T—space X as a K—space by restricting the action of T" to K. The
inclusion of E% = (§?"+1) into ER = (C™*1\ {0})? induces a continuous map of orbit
spaces

V: (X X ER)/K — (X x E})/T.

We can cover B, by open subsets U such that there exists a homeomorphism ¢y : U x T —
p,, 1(U) as in 1.2(1) and such that ¢ restricts to a similar homeomorphism ¢;: U x K —
(p,,)"1(U). Then the inverse images of U both in (X x E%)/K and in (X x E})/T identify
with X x U, cf. 1.4. Under this identification 1/ corresponds to the identity map. Therefore
1 is a homeomorphism and induces an isomorphism of cohomology groups. Taking inverse
limits (or working directly with EFx and Er) we get thus an isomorphism

H3(X;C) — Hj(X;C). (4)

1.7. (Line bundles) We need a more canonical description of the isomorphism 1.6(3).
This involves (complex) line bundles and their Chern classes.

Let G be a topological group and (E, p, B) a principal G-bundle. We associate to any
continuous group homomorphism A\: G — C* aline bundle £(A) = L(\; E') on B as follows:
Denote by C, the G—space equal to C as a topological space such that ga = \(g) a for all
g€ Gandae€C. Set L(A) = (Cy x E)/G and define gy: L(A) — B by qx(G(a,x)) = p(z).
Then (L()), gx, B) is a fibre bundle as described in 1.4. It is in fact a line bundle: Each fibre
¢y ' (p(w)) with = € E gets a vector space structure such that C — ¢, ' (p()), a — G(a, 7)
is an isomorphism of vector spaces. This structure is independent of the choice of x
in p~1(p(z)) = Gz since G acts linearly on C,. The homeomorphisms ¢y as in 1.4 are
compatible with this structure.
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If also p is a continuous group homomorphism G — C*, then one gets an isomorphism
of line bundles
L) © L(p) — LA+ p) (1)

where we use an additive notation for the group of continuous group homomorphisms
from G to C*; so we have (A + u) (9) = A(g) 1(g).

Let also G’ be a topological group with a principal G’~bundle (E’,p’, B'). Suppose
that we have continuous maps ¢: B’ — B and ¢: E/ — E and a continuous group homo-
morphism a: G’ — G such that poy = pop’ and ¢¥(hy) = a(h)Y(y) for all h € G' and
y € E’. Then the pull-back ¢*L(\) of the line bundle £(\) under ¢ is isomorphic to the
line bundle L£(\ o a):

L(Noa) — o"L()N). (2)

Recall that the pull-back ¢*L£(\) is the fibre product of B’ and L£(\) over B, hence consists
of all pairs (', G(a,z)) with ' € B’, a € C, and x € E. The isomorphism in (2) sends any
orbit G'(a,y) with a € C and y € E’ to (p(y), G(a,(y))).
This result implies in particular for any inner automorphism Int (g): h — ghg~—! of G
that
LA oInt(g)) — L(N). (3)

Take above G = G and (E',p’,B’) = (E,p, B). Then the assumptions are satisfied by
¢ =1idp and a = Int (g) if we set ¥(z) = gx for all z € E.

Consider for example G = C* and the principal bundle (C"*1\ {0}, 7, P"(C)) with
the canonical map . Choose A: C* — C* as the map g — ¢~ !. Then the map

C, x (C""1\ {0}) — C""! x P"(C), (a,v) — (av, Cv)
is constant on the orbits of G and induces an isomorphism of line bundles
L) = {(w,Cv) € C"" x P"(C) | w e Cv}. (4)

Here the right hand is usually known as the tautological line bundle on P™(C). In algebraic
geometry this bundle is usually denoted by O(—1).

1.8. (Chern classes) If ¢: L — B is a (complex) line bundle on a topological space B,
then the Chern class of £ is an element c¢;(£) € H?(B;C). (Actually it is an element
in H?(B;Z) that we here replace by its image in H?(B;C).) Isomorphic line bundles
have the same Chern class. If £’ is another line bundle on B, then we have ¢;(£L ® L") =
c1(L)+ (L), If f: BY — B is a continuous map, then one gets f*(c1(L£)) = ¢1(f*L) in
H?(B’;C).

Let G be a topological group and (F, p, B) a principal G-bundle. Given a continuous
group homomorphism A\:G — C* we get a line bundle £(\) on B as in 1.7, hence a
Chern class c¢;(A) = c;(£()\)) in H?(B;C). If also u:G — C* is a continuous group
homomorphism, then we get

(A +p) =) +a) (1)
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from 1.7(1).

We can apply this construction to a universal principal G-bundle and get thus via
1.5(2) a class ¢1(\) in HZ(pt; C). This class is independent of the choice of the universal
principal G-bundle used in 1.5(2): If (Eq,p, Bg) and (E(,p’, B;) are two such bundles,
then we identify H*(Bg;C) with H*(BJ;C) by (¢3)~! o ¢ where ¢1: (Fg x EL)/G —
E¢/G ~ Bg and q2: (Eg x Ef;)/G — E{ /G ~ B(, are the obvious maps, cf. 1.4. Now
1.7(2) shows that

GGt L(N Eg) = L(N; Eg x Eg) ~ ¢;L(\; Eg)

which yields the claimed independence. (Note that Eq x Ei, — (Eq x E(;)/G is a universal
principal G—bundle.)

Return now to our torus 7' = C* x C* x --- x C* (d factors). Denote by ¢; the
projection onto the i—th factor of the product. So ¢; is a continuous group homomorphism
T — C*. We claim that we can choose the isomorphism in 1.6(3) such that x; is mapped
to c1(—g;) for all 4, 1 < i < d.

Let ¢ denote the inclusion of B = P}(C)¢ into By = P>°(C)% from the inductive
limit construction of By. Then t* maps c;(—¢;) taken in H?(Br; C) to c¢1(—¢;) taken in
H?(BX;C). (Use 1.7(2).) Therefore it suffices to show that we can choose the isomorphism
in 1.6(2) for n = 1 such that the coset of z; is mapped to ¢1(—¢;) for all i, 1 <i < d.

Let 7; denote the projection from B} = P!(C)? to the i-th factor. The isomorphism
in 1.6(2) arises from the Kiinneth theorem and maps the coset of x; to the image under ¢*
of a standard generator of H?(P!(C); C). Such a generator is the Chern class ¢; (£) where
L is the tautological bundle on P!(C). Now 1.6(4) combined with 1.6(2) shows that

e1(L) =1 (L) = e1(L(—€;)) = c1(—€;)

as claimed.

Let X (T') denote the subgroup generated by e1,¢3,...,&4 in the (additive) group of
all continuous group homomorphisms from 7" to C*. This is a free abelian group of rank d
with the &; as a basis. Our result above shows that the ¢ (g;) are a basis for H?(Br; C). So
the group homomorphism c;: X (T) — H?(Br; C) induces an isomorphism of vector spaces
X(T)®z C — H?*(Br; C). Now we can restate 1.6(3): We have an algebra isomorphism

S(X(T) ®z C) — H*(Br; C) (2)

where we use the notation S(V') for the symmetric algebra of a vector space V. This is an
isomorphism of graded algebras if we double the usual grading on the symmetric algebra
putting X (7') ®z C into degree 2.

1.9. (Homogeneous spaces for tori) Let G be a Lie group and H a closed Lie
subgroup of G. Fix a universal principal G-bundle (F¢,p, Bg). As observed in 1.3 we
get a universal principal H-bundle (Eg,p’, By) by setting Ey = Eg and By = Eq/H
with p/(z) = Hx for all x € Eg. Denote by ¢: By — Bg the map given by ¢(Hz) = p(x)
such that ¢ o p’ = p. Then ¢* yields the H¢ (pt; C)-algebra structure on Hg(G/H; C),
see 1.5(3).
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If \:G — C* is a continuous group homomorphism, then we get from 1.7 (2)
¢"(c1(N) = e1(Am) (1)

taking ¢ = idg, and ¢ = ¢ in 1.7 together with a equal to the inclusion of H into G.
Denote by H? the connected component of the identity in H. This is a normal closed
Lie subgroup of H. Note that we can factor p as follows:

Eq 2% Eq/H® = By, 2% Eq/H = By —% Bg

such that ps o p; = p. The group H/H acts freely on Eg/H" via (hH?) - H'z = Hhx
for all h € H and x € Eg. The orbits of H/H" are precisely the fibres of p. The local
triviality of p implies that of ps.

Assume for the moment that H/H" is finite. Then p, is a covering with group H/H®.
Since we are working with coefficients in a field of characteristic 0, we get now that p3
induces an isomorphism

p: H*(Bii; C) = H*(Byo; C) /1 ¢ H*(Bypo; C) (2)

where the exponent H/H means that we take the fixed points under this group.

Let h € H and denote by ¢, the action of hH® on Eg/H° = Byo, i.e., o,(H2) =
HChz. Then the action of hH is given by (p, ')*. If u: H — C* is a continuous group
homomorphism, then this action satisfies

(en ) (er(p) = er(po Int(h™1) o), (3)
cf. 1.7(2).

Suppose now that G = T is an (algebraic) torus as in 1.6 and that H is a Zariski
closed subgroup. Then the theory of algebraic groups tells us that H/H" is finite and
that H? is a torus. It follows that the Chern class ¢; induces an isomorphism between
S(X(H®) ®z C) and H*(Bpo;C). Since H is commutative, (3) implies that H/H? acts
trivially on H*(Bpgo; C). So (2) and 1.5(3) imply that we have an isomorphism

S(X(H®) ®z C) = H3(T/H;C). (4)

The theory of algebraic groups says also that A — | go is a surjective group homomorphism
X(T) — X(HY). The map H4(pt;C) — H$(T/H;C) defining the algebra structure
identifies with ¢*, hence by (1) with the map

S(X(T)®z C) — S(X(H) ®z C) (5)

coming from the restriction map X (7)) — X (H?).

Any A € X(T) is a homomorphism of Lie groups; its differential is then a linear
form on the Lie algebra LieT of T. Mapping A to its differential induces an isomorphism
X(T)®zC — (LieT)*. The same applies to H" and we can identify (5) with the natural
map S((LieT)*) — S((Lie H®)*).
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1.10. (Simple examples) Let again T be a torus. We set S = S(X(T) ®z C) and
identify this graded algebra with H.(pt; C). Here the grading on S is chosen such that
X(T) ®z C is the homogeneous component of degree 2.

Consider the T-space CX = Cy \ {0} for some A € X(T), A # 0. Then t — t1
induces an isomorphism of G-spaces T'/H — C5 where H = ker \ is Zariski closed. The
restriction map X (T) — X (H?) is surjective with kernel equal to X (T") N QX where the
intersection is taken inside X (7T') ®z Q identifying any p € X (7T') with g ® 1. Therefore
the induced map X(T') ®z C — X (H) ®z C is surjective with kernel equal to C\. Now
1.9(4),(5) say that we have an isomorphism

S/SA — Hy(C5;C) (1)

of S—algebras.

Consider next the T-space Cy with A as above. Then ({0} x Er)/T is a deformation
retract of (Cy x E7)/T. (There is a map ®: (Cy x Ep)/T x[0,1] — (Cy x E7)/T such that
O(T(x,y),a) =T(azx,y) for all a € [0,1], z € C, and y € Ep.) Therefore the inclusion ¢ of
({0} x E7)/T ~ By into (Cy x Ep)/T induces an isomorphism in cohomology. The inverse
of «* is equal to 7* with 7(T'(z,y)) = T(0,y) since 7 o ¢ is the identity on ({0} x Ep)/T.
Since 7* is also the map defining the S—algebra structure on H3(Cy; C), we see that we
this map is an isomorphism

S = H%(Cy; C). (2)

The inclusion j of C5 into C) induces a homomorphism of S—algebras H4.(Cy; C) —
H3.(C5; C). Under the identifications (1) and (2) this is just the natural map S — S/SA.
(The identifications are induced by ¢i: Cx — {pt} and ¢2: C — {pt}; we have go = ¢10j.)

As a third example consider (for A as above) the T-space X = P!(C) with the action
given by t [z : y] = [A(t) z : y] in homogeneous coordinates. Then U; := P}(C) \ {[1: 0]}
and Uy := P1(C) \ {[0: 1]} and V := U; N Uy are T—stable open subsets of X. It follows
that (Uy x Ep)/T and (Uz x E7)/T form an open covering of (X x Er)/T with intersection
equal to (V' x Ep)/T. Therefore we have a long exact Mayer-Vietoris sequence

o= Hy Y(V) — Hp(X) — Hp(Uy) ® Hy(Uz) — Hp(V) — HiPH(X) — -
where we have dropped the coefficients equal to C.
We have obvious identifications U; ~ Cy and Uy ~ C_y and V ~ C;. So we get the

equivariant cohomology of these spaces from (1) or (2). Since the odd degree parts of S
vanish, it follows that the long exact sequence above breaks up into finite exact sequences

0— HF(X) — S* @ 5% 25 (S/SN)% — HEH(X) -0

where ¢ maps any pair (a, b) to the residue class a —b+ SA. This map is clearly surjective.
It follows that the odd equivariant cohomology of X vanishes. So we get an isomorphism
of graded algebras

H%(P'(C);C) = {(a,b) € S* | a = b (mod SN) }. (3)
Arguing as in 1.1 one checks that
H5(PY(C);C) = S(1,1)®S()\0)~S®S(2)

is free of rank 2 as an S—module.
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1.11. (Some relative equivariant cohomology) Keep the assumptions on 7" and S.
If Z is a T-stable subset of a T—space X, then we can define the relative equivariant
cohomology H% (X, Z;C) as H*((X x E1)/T,(Z x Er/T); C). One has then the usual long
exact sequence linking H$. (X, Z; C) to H3(X; C) and H$(Z; C). (This remark generalises
of course from T to all topological groups.)

Take for example X = P!(C) with the T—action given by some A € X(T), A # 0
as in 1.10. Set Z = {[1 : 0],[0 : 1]}. Both H$(X;C) and H%(Z;C) ~ S @ S vanish in
odd degrees. The natural map H%(X;C) — H$(Z; C) identifies with the embedding of
H3%(X;C) into S? as in 1.10(3). Therefore all H¥ (X, Z; C) vanish whereas there are short
exact sequences

0— HZ(X;C) L §2% g §% £, g2H(X, Z,C) — 0.

Here 1) is the component of degree 2i of the map from 1.10(3). Therefore H7 (X, Z; C)
is isomorphic to (5/5)? and ¢ identifies with the map (a,b) — a — b+ SA. We get thus

Hp (X, Z;C) = (5/5A)(1). (1)

Let us generalise this example. Consider a T-space X such that X7 is finite, say
XT ={xy,29,...,2, }, and such that X is a union X7 U P, UP, U---U P, where each P;
is a closed T—stable subspace isomorphic as a T-space to P1(C) with T acting on P1(C)
via t[x : y] = [Ni(¢) x : y] for some \; € X(T'), A\; # 0. Each P; contains exactly two fixed
points, say z4(;) and x.(;); we assume that x,¢;) goes to [0 : 1] and z(; to [1 : 0] under
the isomorphism between P; and P1(C).

We claim that in this case the inclusions (P;, PT) C (X, XT) induce an isomorphism
of S—modules

Hy (X, XT5C) = P H* (P, BT C) = €D(S/50)(1) (2)

where the second isomorphism follows from (1). We prove this by induction on r = | XT|.
If r =1, then s =0 and X = X7. So all terms in (2) are equal to 0.

Suppose now that r > 1. Pick an arbitrary fixed point z € X”. Set X’ equal to the
union of X7 \ {z} and of all P, with ¢ P;. This is a closed T-stable subspace of X
satisfying the same assumptions as X, but with [(X’)T| =7 — 1. So we may assume that
we have an isomorphism for H4.(X’, (X')T; C) asin (2). Set U; = X\ X’ and Uy = X\ {z}
and V = Uy NU;y. These are open T—stable subsets of X with X = U; U U;. We get now
a long exact Mayer-Vietoris sequence of the form

o HI (V) = H) (X, XT) — H)(U, UL @ Hj (U, UT) — HiL(V) — -

where we have dropped the coefficients equal to C. Here we have used that V7 = ().

As a T-space V is isomorphic the disjoint union of all C;fi over all ¢ with x € P;.
Therefore we get H3(V;C) ~ @,cp S/SAi. In particular H7.(V;C) vanishes in odd
degrees.
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On the other hand, we have Ul = {z} and U] = (X’)T. Furthermore, we can
construct retracting homotopies (U; x Er)/T — ({z} x Ep)/T and (U x Ep)/T —
(X' x E7)/T. We get thus isomorphisms H$(Uy,U{;C) ~ Hs({z},{z};C) = 0 and
H3.(Up, UL C) ~ H3.(X', (X")T; C). By our induction assumption we know that H3$.(X’,
(X")T; C) vanishes in even degrees.

Now our long exact sequence shows that also H%(X, X T, C) vanishes in even degrees.
We get now short exact sequences and a commutative diagram

0 — H (V) - HPT(XXT) - HPT(XL(X)T) = 0

l l l

S S
0 - pHFVnP) - PHT (PP - @ HTP.P) — 0
i=1 =1 ¢ P;

Here the lower row arises from the Mayer-Vietoris sequences corresponding to the covering
of each P; by Uy N P; and Uy N P;.

Now the right vertical map is an isomorphism by induction. Since V is the disjoint
union of all V'N P; ~ CJ with x € P; whereas VN P; = () for = ¢ P;, also the first vertical
map is an isomorphism. ‘Now the five lemma yields the desired isomorphism in (2).

Let us look at the long exact (equivariant) cohomology sequence for the pair (X, X7T).
Since H$(XT; C) ~ S™ vanishes in odd degrees and since H4.(X, X7; C) ~ S” vanishes by
(2) in even degrees, the long exact sequence breaks up into exact sequences of the form

0— HIQ“j<X§C) — H%j(XT;C) — H%ﬂ_l(X,XT;C) — H%ﬂ_l(X;C) — 0. (3)

The maps in the middle add up to a map

5" ~ Hp(XT:C) — H3(X, XT:C)(—1) ~ )(S/5N,). (4)

=1

It maps any r—tuple (ai,as,...,a,) € S” to the family of all a,(;) — a.) + SA; with 1 <
i < s. This follows from the corresponding result for P(C) above and the commutativity

of the diagram
Hy(X";C) — Hp(X, X1 C)(-1)

! !

EBHT (Pl Cc) — éH} P, Pr.C)

It follows that the even equivariant cohomology H$Y(X;C) (the direct sum of all
H?I(X;C)) is given by

H7 (X;C) ~{(a1,as,...,a,;) € 8" | ag) = azi) (mod SA;) for alli, 1 <i<s}. (5)

And the odd equivariant cohomology is a torsion module for S being a homomorphic image

of ;i (S/5X:)(1).
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1.12. Suppose now that T" acts algebraically on a projective variety X over C such that
both the set X7 of fixed points and the set of (complex) one dimensional orbits of T on X
are finite. Write X7 = {z1,22,...,2, } and denote by Py, P, ..., P, the closures of the
one dimensional T—orbits on X. Assume* also that each P; is isomorphic as a T—space
to P}(C) with T acting as above via some \; € X(T), \; # 0. (This is an isomorphism in
the category of topological spaces, not of algebraic varieties.) We use again the notation
Tq(i) and x,(; for the points in PT. Now Theorem 7.2 in [GKM] states:

Theorem: If H3(X;C) is a free S—module, then the map HY(X;C) — H3(XT;C) in-
duced by the inclusion of XT into X is injective and induces an isomorphism

H3(X;C) — {(a1,a2,...,ar) € S" | ag(i) = az(y (mod SX;) foralli, 1 <i<s} (1)
of S—algebras.

This result follows in [GKM] from the calculations described in 1.11 and from the
existence of an exact sequence

0 — HHWX;C) — H3(XT,C) — HH(X1,XT;C) (2)

where X is the union of X7 and all P;. The exactness of (2) is a special case of the more
general Theorem 6.3 in [GKM].

If we want to apply this theorem, we have to know in advance that H3.(X; C) is a free
S—module. This condition is (e.g.) satisfied if the ordinary cohomology H*(X; C) vanishes
in odd degrees: The Serre spectral sequence associated to the fibration (X x Er)/T — Br
with fibre X has the form

EPY = HP(Bp; C) @ HY(X; C) = HET(X; C) (3)

because Br is simply connected and because we are working with coefficients in a field
of characteristic 0. Since also H*(Bp;C) vanishes in odd degrees and since the r—th
differential in the spectral sequence has bidegree (r,1 — r), we see that all differentials
are 0 so that E29 = EP? Now the abutment H%(X;C) has a filtration with factors
Byt =@, B ~ Hy(Br; C)® H1(X; C). Each factor is free over S ~ H7.(Br; C), hence
so is the total module.

Take for example T = (C*)3 acting on X = P?(C) as via (t1,to,t3) - [z : y : 2] =
[t12 : toy : t3z]. The fixed points for this action are [1:0: 0], [0:1:0], and [0:0 : 1].
There are three one dimensional orbits. For example all [z : y : 0] with  # 0 # y form
one such orbit; the fixed points in its closure are [1:0: 0] and [0 : 1 : 0]. The action of T
on this orbit closure is given by (t1,t2,t3) - [ :y: 0] = [tyx : tay : 0] = [t1t5 2 : y : 0]. So
this closure is isomorphic to Pl(C) with T acting via €1 — 2 where €1, €5, €3 are the three
coordinate functions. The other two orbits arise by permuting the indices.

Since H*(P?(C);C) vanishes in odd degrees, we can now apply the theorem. A
comparison of (1) in this case with 1.1(1) shows that the algebra Z defined there in case
k = C is isomorphic to H$(P?(C); C). (Identify the algebra S in 1.1 with our present S
by mapping each z; to &;.)

This example can of course be generalised to any P™(C).

* This condition holds automatically when there exists a T—equivariant embedding of X
into some P™(C) such that the T—action on P"(C) arises from a linear action of T on C"*1.
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1.13. (Flag varieties) Let G be a connected reductive algebraic group over C. Choose
a Borel subgroup B in G and a maximal torus 7' C B. Denote by ® C X(7T') the set of
roots of T in G and by ®* the set of roots of T in B. Then one has 0 ¢ ® and @ is the
disjoint union of ®* and —®™.

For each a € ® choose a corresponding root homomorphism z, from the additive
group of C into G. This homomorphism is injective and satisfies t z,(a)t™! = z4(a(t)a)
for all t € T and a € C. Set U, = 2,(C). One has U, C B if and only if « € ®*.

Set W = Ng(T)/T; this is a finite group called the Weyl group of G. It acts on T by
conjugation and hence on X (7"). This action permutes ®. For each w € W let w € Ng(T)
denote a representative for w. We have then wU,w ™! = U, for all a € ®.

If one chooses the root homomorphisms suitably, then one gets for each a € ® a
homomorphism ¢,: SLy(C) — G such that for all a € C and b € C*

eol(p § P =mat  wal(h P P=rat@n ey NPT W

and such that

eal( 5§ )€ N, @

Denote by s, the class in W of the element in (2). It is an element of order 2 and satisfies
Sa(@) = —a.

One calls X := G/B the flag variety of G. This is a projective algebraic variety. For
each w € W set C, = BwB/B C X; these subsets are called the Bruhat cells in X. Now
X is the disjoint union of all C,, with w € W. So mapping w to C,, is a bijection from W
onto the set of all B—orbits in X. The closure of a B—orbit is the union of that orbit
and of some B-orbits of strictly smaller dimension. Therefore one can define a partial
ordering on W such that w’ < w if and only if C,s C C,,. This ordering was determined
by Chevalley and is usually called the Bruhat order.

For each w € W set ®(w) = {a € &+ | w™la € —®* } and n(w) = |®(w)|. For any
ordering o, @z, . .., Qy(y) of the roots in ®(w), the map

(a1,a2, ... ap(w)) = Tay (A1) Tay(a2) - Ta, ) (Qnw)) WB
is an isomorphism C™®) — C,, of varieties. Therefore the action of T on C,, is given by

tTa,(a1) - Ta, ) (Anw) WB = o, (a1(t) a1) - .. Ta, ) (Qnw) (t) Gnw)) WB. (3)

Since x,, is injective and since « # 0 for all a € ®, we see: The fixed points of T on X are
exactly all wB with w € W.

The equation (3) implies for each w € W and each a € ®(w) that all z,(a)wB with
a € C* form a one dimensional T—orbit. These are in fact all one dimensional T—orbits
on X: Any T—orbit is contained in a B—orbit, hence in some C,,. We have to show: Take
an element as in (3); if we have a; # 0 # a; for some i # j, then the dimension of its
T—orbit is at least 2. This follows from the fact that a; # a; implies that Ca; # Co; by
a property of the root system and that therefore ¢ — (c;(¢), a;(t)) maps T onto C* x C*.
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So X = G/B satisfies the assumptions at the beginning of 1.12. Furthermore, the
cohomology H*(G/B; C) vanishes in odd degrees; this follows from the paving of X by
the affine spaces C,,, w € W. Therefore we can apply Theorem 1.12 once we know the
closures of the one dimensional T—orbits.

Let w € W and o € ®(w). The closure of the orbit consisting of all x,(a) wB with
a € C* contains certainly z,(0) wB = wB. In order to find the other fixed point in the
closure look at the equation in SLy(C)

) (o) (o ) 6= )

Now « € ®(w) implies that w 'z _,(a"1)w € U_,~1, C B and thus
Tola N WwB =2_4(a) $,0B.

Therefore $,wB is the other fixed point in the closure of our orbit.

Note that this result means that each fixed point wB of T on X belongs to the closure
of exactly |®*| one dimensional T-orbits: For each a € ®* there is one such T-orbit
containing wB and $,wB as the fixed points in its closure. This is clear by the result
above in case @ € ®(w), i.e., when wla € —®*. In case w™la € ®F one observes
that a € ®(s,w) since (sqw)la = wlsaa = —w™la € —®T; so there exists a one
dimensional T—orbit containing $,wB and $,5,wB = wB in its closure.

Theorem 1.12 therefore implies that
H3(G/B;C) ~ { (aw)wew € S| ay = as_ 0 mod Sa for all w € W and o € & }. (4)

Here we use the notation S| to denote the direct product of |WW| copies of S while we
reserve the notation SV for the algebra of W-invariants in S. A more classical approach
to the equivariant cohomology of G/B (cf. [Br], Prop. 1) yields an isomorphism

H%(G/B, C) ~ S Kgw S. (5)

These two results are of course compatible: There exists an isomorphism from S ®gqw S
onto the right hand side of (4) mapping any a ® b with a,b € S to the family of all w(a)b,
weW.
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1.14. (Equivariant Intersection Cohomology) In a 1980 paper Goresky and MacPher-
son constructed intersection (co)homology groups for pseudomanifolds. This class of topo-
logical spaces includes algebraic varieties over C. In the following we consider only inter-
section cohomology groups with respect to middle perversity and we work with coefficients
in C.

Let X be an algebraic variety over C. The intersection cohomology groups IH%(X)
can be described as the hypercohomology groups IH(X) = HY(IC*(X)) of a complex
IC*(X) in the bounded derived category of sheaves on X. The direct sum IH*(X) of these
groups has a natural structure as a graded module over the usual cohomology H*(X; C).

If i:Y — X is the inclusion of a subvariety of X, then we set

IC*(X)y =4 IC*(X) and ITH%X)y =HYIC*(X)y) (1)

where ¢* is the induced map on the derived categories. We use i, in a similar sense. Since
i is right adjoint to i*, we have a natural adjunction morphism IC*(X) — ,i*IC*(X);
it induces natural maps

THY(X) =HYIC* (X)) — H(4,i"IC* (X)) = IHY(X)y (2)

where the second equality follows from the exactness of i,.
If j: Z — Y is another inclusion of varieties, then (i o j)* = j* o ¢* implies that

IC*(X), = j*IC*(X)y.

Therefore the adjunction IC*(X)y — 5,5*IC*(X)y induces a homomorphism of intersec-
tion cohomology groups

THY(X)y = HY(IC*(X)y) — HYIC* (X)) = [HY(X)5. (3)

The inclusion i: Y — X is called normally nonsingular if there exists an open neigh-
bourhood W of Y in X (in the complex topology) that admits a projection m: W — Y
that is a locally trivial fibration with fibres isomorphic to some C*.

If 7 is normally nonsingular, then there exists a canonical isomorphism i*IC(X) ~
IC(Y). So in this case (2) yields canonical maps ITH*(X) — [H*(Y).

Note: If X and Y are non-singular projective varieties, then the inclusion ¢ is normally
nonsingular; in this case one has always what is usually called a tubular neighbourhood.

Now suppose that our algebraic torus 7" acts on X. Recall the principal bundles
ph: B — BZ from 1.6 with EZ = (C"*1\ {0})¢ and B} = P*(C)¢ where d = dimT.
Recall also the embeddings E7}. — E?“ and B} — B?H induced by the embedding of
C"*1 into C"*?2 as the subspace where the last coordinate is equal to 0. It is easy to see
that all embeddings B} < Bi:t! are normally nonsingular. Set X2 = (X x ER)/T for all
n € N.

Using the local triviality of the maps X7 — B one can show that also the embeddings
Xp— X%H are normally nonsingular. So we get canonical maps

THY XY — THYXR) (4)
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that we use to define the equivariant intersection cohomology:
THL(X) = lim THH(XR). (5)

Each IH*(X?7}) is a graded module over H*(X7; C), hence via the map X7 — B also a
graded module over H*(B%; C). The maps in (4) are compatible with the natural maps
H*(B3t';,C) — H*(B};C). In this way the (graded) inverse limit IH3(X) becomes a
module over S ~ H*(Br;C), the inverse limit of all H*(B%; C). Note that EY identifies
with T, hence X% with X. So our equivariant intersection cohomology comes with a
natural map

TH(X) — TH*(X9) ~ TH*(X)
which yields a homomorphism
IH}(X)®s C — IH*(X) (6)

where we identify C ~ S/m.

Let Y be a T-stable subvariety of X. Consider the inclusions ,: X} — X%H and
Jn: Y — Y;H and o, Y] — X7; we have apy1 0 jp = i, 0 oy, Using adjunction maps
we get now morphisms

IC* (X7 )yn = ap  ICT(XE™) — () winan 1 ICT (X7 ) = (Jn) < iy IC* (X7H)

~

— (Jn)0nIC* (X ) = (jn)-IC* (X7)yy
hence a homomorphism
TH* (X7 )yne = H'IC (X7 )ynn) — HY(IC*(X})yy) = TH* (X})vy.
We can now take the limit and set
TH3(X)y =lim TH*(X7)vp. (7)

We have by (2) natural maps [H*(X}) — [H*(X})yp. If Z C Y is another T-stable
subvariety, then we have by (3) natural maps IH*(X7)yr» — [H*(X7)zn. We can then
take limits and get natural maps

THHNX) = THN(X)y  and  THNX)y — THWX)z. (8)

Also each I H%(X)y has a natural structure as a graded module over S ~ H*(Brp; C); the
maps in (8) are homomorphisms of graded S—modules.
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1.15. Consider as in 1.12 a projective variety X over C with an algebraic action of T’
such that both the set X7 of fixed points and the set of (complex) one dimensional orbits
of T'on X are finite. Let us make two additional assumptions:

(A) Each fixed point € X7 is contracting. This means that there exists a homomorphism
v,: C* — T of algebraic groups and a (Zariski) open neighbourhood U of x in X such
that lim, vy (a)u =z for all u € U.

(B) There exists a Whitney stratification X = (J,.yr Cp where the C, are T-stable

subvarieties isomorphic to C™*) for some n(z) € N such that = € C, for each z € X7

A theorem of Bialynicki-Birula implies then that one can choose the isomorphism C, —
C™®) guch that z is mapped to 0 and such that the action of T on C, corresponds to
a linear action on C™®). Then one checks that the homomorphism v as in (A) satisfies
lim, o v(a)u =z for all u € C,.

Any one dimensional orbit P of T on X is contained in one of the strata C.. The
preceding remarks show that € P. On the other hand, the closure of P is a projective
variety and cannot be contained in the affine space C,. So there exists a second fixed
point y in the closure of P. It satisfies y € C \ C,. So P is homeomorphic to P*(C).

Under these assumptions Braden and MacPherson give in [BM] a combinatorial de-
scription not only of the equivariant cohomology, but also of the equivariant intersection
cohomology. Their procedure involves besides TH(X) also all TH.(X)(,y with z € X7
and all TH$.(X)p with P a one dimensional T-orbit. Furthermore one needs maps

TH3H(X )2y — TH3(X)p (1)

whenever a fixed point = belongs to the closure of a one dimensional orbit P. In this
situation we have by 1.14(8) natural maps

IH%(X)pU{w} — IH%(X){w} and IHI.“(X)PU{x} — IH%(X)p

Here the first map turns out to be an isomorphism; so we can compose its inverse with the
second map to get (1).

This set-up leads to the notion of a sheaf on a moment graph to be discussed in the
next section. Afterwards we return to the theorem proved by Braden and MacPherson.

1.16. Return to the flag variety X = G/B asin 1.13. We want to show that the conditions
A) and (B) from 1.15 are satisfied in this case. We know that X7 = {wB | w € W}.
Denote by Y (T') the group of all homomorphisms v: C* — T of algebraic groups. For
each A € X(T') and v € Y(T') there exists an integer (\,v) € Z such that

Av(a)) =a™  for all a € C*.
The Weyl group W acts on Y (T') such that (wv) (a) = wv(a)w™?! for all a € C*. One

gets then (\,v) = (wA,wv) for all A € X(T), v € Y(T), and w € W. The theory of root
systems shows that there exists § € Y(T') with («,d) > 0 for all « € O
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Choose some ordering o, o, . ..,ay of ®*. Then the map CV — X with

(a1,a2,...,aN) — Wr_q, (a1) T_n,(a2) ... x_o,(an)B (1)

is an isomorphism onto an open neighbourhood of wB in X. If we apply any v(a) with
v € Y(T) and a € C* to the right hand side in (1), then we get

WT_q, (a9 a2, (a7 ay) L g (@ YNV aN) B, (2)

If we choose v = —wd, then all exponents of a in (2) are positive and the limit for a going
to 0 is equal to wB. Therefore (A) is satisfied.

In order to check (B) we want to take Cyyp = C,, = BwB/B for each w € W. We
observed in 1.13 that X is the disjoint union of all (', and that the closure of any C,,
is the union of certain C), with v € W. Since clearly wB € C,, it suffices to check the
Whitney property.

Suppose that C,, C C,- for some w,w’ € W. The set Y of all points in C,, not
satisfying the Whitney condition with respect to C, has codimension at least 1, see
Thm. 2 in [Ka]. On the other hand, both C,, and C,, are B-orbits. Therefore Y is B
stable, hence either equal to (', or empty. The first possibility is excluded by the result
on codimension. So the Whitney condition holds everywhere.
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2 Sheaves on moment graphs

2.1. (Moment graphs) Let £k be a field and V' a finite dimensional vector space over k.
Denote by S = S(V) the symmetric algebra of the vector space V. We consider S as a
graded algebra with the usual grading doubled such that V' is the homogeneous component
of degree 2 and such that the components of odd degree are 0.

An unordered moment graph over V is a triple G = (V, £, «) where (V, ) is a graph
with set of vertices V and set of edges £ and where « is a map that associates to each
edge a one dimensional subspace in V|, i.e., an element in the projective space P(V). We
usually denote the line a(F) associated to some E € £ by kap with a suitable ap € V,
ap 7& 0.

Each F € £ joins two vertices in V; we usually denote these vertices by ar and zg.
We say that an edge F is adjacent to a vertex z if x € {ag, zg}.

For example, in the set-up at the beginning of 1.12 we get an unordered moment
graph over X (T) ®z C such that ¥V = X7 and such that £ is in bijection with the one
dimensional orbit closures P; as in 1.12. If E € £ corresponds to P;, then F joins x,;)
and 7,(;). And we set then Cap = C);.

2.2. (Sheaves on moment graphs) Keep k, V and S as in 2.1 and let G = (V, &, )
be an unordered moment graph over V. Let A be an S—algebra. An A-sheaf M on G is
a collection of the following type of data:

(A) For each x € V an A-module M,.

(B) For each FE € £ an A—module Mg such that ap Mg = 0.

(C) For each x € V and for each E € £ adjacent to # a homomorphism p};: My — Mg
of A-modules. (We usually write just p, g instead of p;}’lE)

In (B) we have to interpret ag as its image in A under the homomorphism S — A that
makes A into an S—algebra.

For example, we get an A-sheaf 4 = Ag, called the structure sheaf of G, setting
A, = A for all z, setting Ap = A/A ag for all E, and setting any pﬁE: A — A/Aag equal
to the canonical map.

In the following we keep A fixed and say just sheaf instead of A—sheaf when it is clear
which A we consider.

We say that a sheaf M on G has finite type if all M, and all Mg are finitely generated
graded A-modules.

The sheaves on G form a category. A morphism f: M — N between two sheaves is
by definition a pair of families ((fz)zev, (fE)pee) where fr: M, — N, and fp: Mg — Ng
are homomorphisms of A-modules such that

fEOPi\,/IE:PQ,/EOfw (1)

for any x € V and any edge E adjacent to x.
We denote by Hom (M, N) the set of all morphisms M — N of sheaves on G; this set
has a natural structure as an A-module.
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2.3. (Sections) Let M be a sheaf on G. For any subset Z of VUE set M(Z) equal to the
set of all pairs of families ((uz)zczny, (VE)Eezne) With u, € M, for all x and vg € Mg
for all £ such that p, g(uy) = vg for all x and E with E adjacent to z. Elements of M(Z)
are called sections of M over Z.

Any M(Z) is an A-submodule of the direct product [], . -, Mo X [[geyne M. If
M is of finite type, if A is noetherian, and if Z is finite, then M(Z) is a finitely generated
A-module.

In the case of the structural sheaf A each A(Z) is an A-algebra. For arbitrary M
then any M(Z) is an A(Z)-module under componentwise action, i.e., each u € A, = A
acts with the given A-module structure on M, and each v € Mg = A/Aag acts as given
on Mg.

If f: M — N is a morphism of sheaves on G, then f induces for each subset Z of VUE
a homomorphism f(Z): M(Z) — N(Z) of A-modules, in fact: of A(Z)-modules. It is the
restriction of the product of all f, with z € ZNV and of all fg with F € ZNE.

We call
Z(G) = { (uz)zey € AY | Uq, = u.,, (mod Aag) for all E € £} (1)

the structure algebra of G over A.
If G is constructed as in 2.1 from a T—space X as in 1.12 and if A = S, then we get
by Thm. 1.12 Z(G) ~ H%(X; C) if the right hand side is a free module over H*(Bp; C).
Note that we have for general G a natural isomorphism of A-algebras

2(9) — AVue) (2)
mapping any family (u;)zep to the pair of families ((ug)zev, (Pap,E(Uay))Eee)-

2.4. (Sheaves and sheaves) Call a subset Y of VU E open if Y contains with any
x € YNV also all edges adjacent to . One checks easily that YV UE becomes a topological
space with this definition. A subset Z of V U & is then closed if Z contains with any
E € ZN¢& also the two vertices joined by E. In this case we can regard Z again as an
unordered moment graph equal to (ZNV,ZNE, ajzne)-

We can now regard any sheaf M on G as a sheaf of A—-modules on the topological
space VUE mapping any open subset Y to M(Y'). For Y’ C Y we get a natural restriction
map induced by the obvious projection

IT Max J] Me— J] Mex [ Me.

€Y NV EcYynéE zeY’'NY EcY’'nE

For any open covering Y = [ J,.; Y; one checks easily that the sequence

MY) — [[ME) = [ MinY))

iel i,5€l

is exact.
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Note that we can recover M from this sheaf on VUE: For each E € £ the subset {E'}
of VU E is open and we have Mg = M({E}). For any x € V let 2° C V U £ denote the
set consisting of x and all ¥ € £ adjacent to x. Then x° is open in V U £ and we have an
isomorphism

Ma = M%), wr (4, (pa.6(u))E)

where E runs over the edges adjacent to x. Finally we recover p, g under this identification
as the restriction map M(z°) — M({E}).

Applying this construction to the structural sheaf A we get a sheaf of A-algebras
on VUE. The action of any A(Y) on M(Y') turns the sheaf on V U E corresponding to a
sheaf M on G into an A-module. It is now easy to see that this construction induces an
equivalence of categories between sheaves on G and A-modules.

2.5. (Subsheaves & Co) A subsheaf of a sheaf M on G is a sheaf N such that each
N, with z € V is a submodule of M, each N with E € £ a submodule of Mg, and any
p/x g the restriction of pﬁj‘E.

For example, if f: M — M’ is a homomorphism of sheaves, then we get subsheaves
ker f C M and f(M) C M’ defined by

(ker f), = ker(fz) and fM)y = f2(My) for allz € V

and

(ker f) g = ker(fE) and fM)E = fE(ME) for all E € &.

Using 2.2(1) one checks that pJ;(ker f,) C ker fg and p%é(fm(/\/lw)) C fe(Mg) for any
vertex x and any edge E adjacent to x.
If \V is a subsheaf of M, then we can define a factor sheaf M /N setting

(M/N)y = Mu/N,  and  (MJN) g = Mu/Ne
for all vertices x and all edges F. Any pr/N is defined by

p;\,/l]éN(u'i'Nw) :Pé\’/lE(U)-l‘NE for all u e M.

This makes sense since p2'5(N;) C Ng.

We get then a canonical homomorphism m: M — M /N with 7, (u) = u + N, for all
u € M, and mg(v) = v+ Ng for all v € Mpg. It is clear that then kerm = N. And
we have the usual universal property: If f: M — M’ is a homomorphism of sheaves with
N C ker f, then there exists a unique homomorphism f: M/N — M’ with f = fo .
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2.6. (Truncation) Let M be a sheaf on G. For any subset Z C VU E we define a sheaf
M|[Z] on G setting for all z € V and E € &

My, ifxrezZnNV,

0, otherwise,

Mg, itEeZnNE,

0, otherwise;

M[Z]xz{ and M[Z]E:{

we set pﬁ/lb[ﬂz] = pi\”lE in case x € ZNV and E € ZNE; otherwise pﬁ/lb[ﬂz] = 0. We call M[Z]
the truncation of M to Z. ’

Note that M — M|[Z] is a functor: Any morphism f: M — N of sheaves on G induces
a morphism f[Z]: M[Z] — N[Z] setting f[Z]. = f. (vesp. f[Z]g = fg) forallz € ZNV
(resp. E € ZNE) whereas all other components of f[Z] are equal to 0. (We have to check
equations of the form pivJ[EZ] o flZ]s = flZ]g o p; ]é Well, if « ¢ Z or E ¢ Z, then both
p—terms are equal to 0; if € Z and E € Z, then the equation reduces to 2. 2(1) )

If Z is open in VU E, then M[Z] is a subsheaf of M. If Z is closed in V U &, then we
have a natural homomorphism

M(Z]: M — M([Z] (1)

such that any 7™ [Z], with € ZNV and any 7M[Z]g with E € Z N & is the identity
while all remaining 7 [Z], and 7™ [Z]g are equal to 0. It induces an isomorphism

M/MIVUE)\ Z] = M|[Z] (Z closed). (2)
One has in this case for any Y C V U £ an obvious isomorphism
MIZ)(Y) = M(Y N 2) (Z closed). (3)

2.7. (Base change) Let A’ be a commutative A-algebra. It is clear that we have a
forgetful functor from the category of A’—sheaves on G to the category of A-sheaves on G
by regarding all A’~modules as A-modules.

On the other hand we can associate to any A-sheaf M on G an A’-sheaf M @ A’
on G setting ( M@ A"), = M, ®4 A" for all x and ( M@ A")g = Mg ®4 A’ for all E and

pyg)A = p;\’/lE ®id 4 for all x and all E adjacent to x.

Lemma: Suppose that A" is flat as an A-module. Let M be an A-sheaf on G.
(M@ ANY) of A'~modules for any

~

(a) We have a natural isomorphism M(Y)®4 A" —
finite subset Y C YV UE.

(b) Suppose that V U & is finite, that A is noetherian, and that M has finite type. Then
we have for any A-sheaf N on G a natural isomorphism

Hom(M,N)®4 A" = Hom(M @4 A", N @4 A")

of A’-modules.
Proof: (a) We have by definition of M(Y') an exact sequence of A-modules

0— MY H M, X H ME—>HME

zeY Ny EcYyné
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where the last product is over all pairs (z, F) with z € YNV and E an edge in Y adjacent
to x; the map ¢§ takes a pair of families ((uy)4, (vE)E) to the family of all p, g(uy) — vE.

This sequence remains exact when tensoring with A’ over A because A’ is flat over A.
Since Y is finite, tensoring with A" commutes with the direct product. We get thus an
exact sequence

0—MY)oad — [[ MoA)x [[ Med)s -5 [[MeA)s.

zeYyny EecYyné&

Now ¢’ can be described like d; in particular the kernel of ¢’ identifies with (M ® A’)(Y').
The claim follows.

(b) By definition Hom(M,N) is the kernel of the homomorphism of A-modules

[ Homa (M, Ny) x [ Homa (Mg, Ne)— [ (HomA(MaE,NE) xHomA(MZE,NE))

zeV EcE Ecg

mapping a pair of families ((f)zev, (fE)Eeeg) to the family of all

M N M N
(fE OpaE,E - paE,E © faE7fE Osz,E - sz,E © fZE)

There is a similar description for Hom(M @4 A, N ®4 A).
Now the claim follows from the flatness of A’ and the fact that

HOIDA(M, N) XA A~ HOIDA/(M XA AI,N(X)A Al>

for all A—modules M and N with M finitely generated.

Remark: Consider Y and A’ as in part (a) of the lemma. Assume in addition that the
image in A’ of each ap with E € YN & is a unit in A’. (For example, this holds when A’
is the field of fractions of S.) Then agMpg = 0 implies (M @ A')g = Mg ®4 A’ =0 for
all E € YNE. Tt follows that (M ®A") (V) — [[,eyrp(M®A"),. So the lemma implies
that the natural map M(Y) — ], cyny Mo induces an isomorphism

MY @A = [ M. 2a4). (1)

zeY Ny

2.8. (Global sections) Assume from now on that the unordered moment graph G is
finite. The general case requires extra care and extra assumptions that I do not want to
discuss here. We also assume from now on that A is the localisation of S with respect to
some multiplicative subset. So A is an integral domain contained in the field ) of fractions
of S; it is integrally closed and noetherian.

Let M be a sheaf on G. For any closed subset Z C VU E set I'(Z, M) equal to
the set of all families (uy)zezny with each u, € M, such that p,,(us,) = psp(u.,) for
all E € ZNE. We have obviously an isomorphism M(Z) — T'(Z, M) forgetting the
components in all Mg with F € ZN¢E.
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We simply write I'( M) =T (VUE, M). We call elements in I'(M) the global sections
of M. In case of the structure sheaf we get thus I'(A) = Z(G), cf. 2.1(1). For general M
each I'(Z, M) is a module over I'(Z, A). In particular, I'(M) is a module over Z(G). It is
clear that I' defines a functor from sheaves on G to Z(G)-modules.

Since I'(M) is an A-submodule of [, ., M., the following properties of I are clear: If
each M, is torsion free as an A-module, then so is I'(M). If each M, is finitely generated
as an A-module, then so is I'(M). (Here we use that G is finite and that A is Noetherian.)

In general, a sheaf on G is not determined by its global sections. For example, we can
add to any Mg a direct summand without changing I'(M). On the other hand, if E joins
the vertices = and y, then we can replace M, by p_ &(p, 2(M,)) without changing T'(M).

We want to associate to any Z(G)-module M (torsion free over A) a sheaf £(M) on G.
By the observations above, this cannot lead to an equivalence of categories. But it will
turn out that we get such an equivalence once we restrict to suitable subcategories.

First an observation that will motivate part of the construction later on. Consider
an edge E of G. Denote by = and y the vertices joined by E. Then E = {z,y, E} is the
closure of {E'} in VU &£. We have

F(E,M) = {(uacauy) € My x M, | pm,E(Um) = py,E(“y) }. (1)
Denote by 7,:I'(E, M) — M, and 7,:T'(E, M) — M, the two projections.
Claim: We have an isomorphism of A-modules
(Mo & My)/{ (1a(v), =7y (v)) | v € T(E, M) } — po,p(Ma) + py.s(My) C Mp  (2)
mapping the class of any (uz,uy) € My ® My to py g (ug) + py.E (Uy).

Proof: Consider the homomorphism
p: My & My — Mg, (Uz, Uy) = po,B (Uz) + py,E (Uy).

The image of ¢ is equal to p; g (Mg)+py.E (My). Anelement (ug, u,) € M;HM, belongs
to the kernel of ¢ if and only if p, g (us) = py,& (—uy) if and only if (u,, —u,) € T(E, M)
if and only if there exists v € I'(E, M) with (uyz,uy) = (75 (v), —my(v)).

2.9. (Pushouts) In the situation of Claim 2.8 we can replace Mg by p, g (M) +
py.E (M) without changing I'(M). If we do so, then this claim says that Mg is the
pushout module determined by 7, and m,. Let me recall some properties of pushout
modules.

Consider two homomorphisms f: L — M and g: L — N of modules over some ring.
The pushout module of these data is the module

P=(MoN)/{(f(z),-g(x))|zeL}

It comes with two homomorphisms f: N — P and g: M — P given by f(z) = [0, 2] and
9(y) = [y, 0] where we denote by [y, z| the class in P of (y,z) € M @ N. Then the diagram

L Lowm

of |7 1)

N —
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is commutative and has the following universal property: If p: M — @ and ¢: N — @ are
homomorphisms with ¢ o f =1 o g, then there exists a unique homomorphism &: P — @
such that ¢ = £ oG and ¥ = £ o f. In fact, the homomorphism M & N — Q with
(y, z) — @(y) + ©(z) annihilates all (f(z),—g(z)) with x € L and induces &.
Note that
ker f = g (ker f) and kerg = f (kerg). (2)

For example, consider y € M. We have y € kerg if and only if there exists x € L with
(y,0) = (f(x), —g(x)), i.e., with y = f(x) and g(z) = 0. This is equivalent to y € f(ker g).
Note next that

f surjective = f surjective and g surjective = g surjective. (3)

Indeed, consider [y, z] € P and assume, for example, that f is surjective. Then there exists
v € Lwithy = f(z). We get then [y, 2] = [y— f(z), 2+ g(2)] = [0, 2+ g(2)] = F(=+g(x)).
Consider finally the homomorphism §: L — M @& N with §(z) = (f(z), g(z)). We claim

that B
6(L) = {(y,z2) e M@ N |g(y) = f(2) } (4)

Well a pair (y, z) € M @ N belongs to the right hand side in (4) if and only if [y, 0] = [0, z] if
and only if [y, —z] = 0, hence if and only if there exists x € L with (y, —z) = (f(z), —g(x)).
The last identity is equivalent to (y, z) = (f(z), g(z)). The claim follows.

2.10. (Localisation) In the next subsections we write ® short for ® 4. Let @ denote
the field of fractions of A. Set Z = Z(G). Recall that we assume G to be finite. So we get
from 2.7(1) an isomorphism

2o = U2 =]]@ (1)

zeY zeV

Decompose the one element 1 =1 ® 1in 2R Q as 1 = erv e, with each e, € A, ® Q.
This is a decomposition into orthogonal idempotents. We have e,(Z ® Q) = A, ® Q for
allz € V. If N is a (£ ® Q)-module, then N =@, e. V.

Let M be a Z-module that is torsion free as an A—module. We want to associate
to M a sheaf L(M) on G that we call the localisation of M. Since M is torsion free, we
can identify M with M ® 1 C M ® Q. Now M ® @ is a (£ ® Q)-module, so we have a
direct sum decomposition M ®@ Q = P,y €. (M ® Q). Set for each x € V

LOM)y = exM = e,(M®1) C en(M Q). (2)

Since e, commutes with the action of A (after all Z ® @ is commutative), we see that e,
is an A-submodule of M ® @, hence torsion free. It is also a homomorphic image of M.
So, if M is finitely generated over A, then so is each £(M),.

Consider now E € &; write « = ag. Denote by x and y the vertices joined by E.
Then E = {z,y, E} is the closure of {E} in VU &.
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Set
M(E) = (ez +ey) M +ae, M = (ey +ey) M+ aey,M C e,(M@Q) B ey,(M®Q). (3)
Denote by 7, and 7, the projections from e, (M ® Q) @ e, (M ® Q) onto the two summands;
they are given by 7, (2) = e, z and 7y (2) = ey 2. We have e, (e, +e,) = e, and ey (e, +e,) =
ey, hence
r(M(E) = £(M),  and  m(M(E)) = £(M),. )

We now define L(M)g and p, g = pi%w) and p, g = pg’%w) by the pushout diagram

| [7ee (5)
L(M)y =5 L(M)
It remains to show that our construction satisfies the condition (B) in 2.2, i.e., that
aL(M)g = 0. Since 7, and 7, are surjective by (4), we get from 2.9(3) that
pa, e and p, g are surjective. (6)
So it suffices to show (e.g.) that a L(M), = aey, M C ker p, g = my(ker ), cf. 2.9(2). But
this is clear since ae, M C M(E) and 7, (e, M) = 0 while 7, (e, M) = e, M.
Note that (6) implies: If all £L(M), are finitely generated over A, then so are all
L(M)g. It follows that £(M) has finite type if M is finitely generated over A.
Remarks: 1) We get from 2.9(4) that u — (7, (u), 7,(u)) is an isomorphism
M(E) — I'(E, L(M)), (7)
cf. 2.8(1). Since M(E) contains (e, + e,) M, this implies that (e,v,e,v) € T(E, L(M)) for
all v € M. Applying this to all £ € £ we get that we have a homomorphism of Z—modules
g": M — T(L(M)), v (eaV)sev (8)
This map is injective since v = erv €xv.
2) Consider a homomorphism ¢: M — N of Z-modules, both torsion free over A. Then ¢
induces a homomorphism ¢g = ¢ ®idg: M ® Q — N ® Q of (Z ® Q)-modules. It maps
each e, (u® 1) with u € M and = € V to e, (p(u) ® 1) and induces thus a homomorphism
L(p)e: L(M)z = €z (M @1) — ez (N®1) = L(N),

of A-modules.

One gets similarly that ¢g maps any M (E) with E € £ to N(FE). Using the universal
property of the pushout one checks now that g induces a homomorphism of A-modules
L(p)g: L(M)g — L(N)g that is compatible with the p—maps.

This shows that M +— L(M) is a functor. It is now elementary to check that the map
M s gM as in (8) is a natural transformation from the identity functor to the composition
I'o L, i.e., that

gV 0 = T(L(¢)) 0 6 (9)
for any ¢ as above. But this is just the fact that I'(L(¢)) =[], £(¢), maps any family
(e4V)zey with v € M to the family (e,p(v))zey.
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2.11. (Localisation and truncation) Let Z C VU& be closed. Set ez = ) ., €z
Let M be a Z-module that is torsion free as an A—module. Then ez M is a Z—submodule
of M ® Q; it is of course again torsion free as an A-module.

Lemma: Suppose that Z contains with two vertices x and y also all edges joining x and y.
Then we have L(ez M) = L(M)[Z].

Proof: Given x € V we have eey = e, if v € Z and e ey = 0 otherwise. This shows that

e.M = L(M)[Z], ifzeZ,
LlezM)e = exez M = {0 = L(M)[Z], if v ¢ Z.
Consider now E € &; write x = ag and y = zg. In case F € Z both x and y belong
to Z because Z is closed. It follows that (e, +ey)ezM = (ey +e,)M and ezez M = e, M,
hence (ezM)(E) = M(FE) and finally L(ezM)g = L(IM)g = L(M)[Z]E.
Suppose on the other hand that E ¢ Z. Then our assumption on Z implies that x ¢ Z
ory ¢ Z, hence L(ez M), =0 or L(ez M), = 0. Now 2.10(6) applied to ez M yields that

Remark: The map M — ez M, v — ezv, is a homomorphism of Z-modules. It is mapped
under the functor £ to the morphism 72M)[Z]: L(M) — L(M)[Z]. (Note for each z € ZNV
that the induced map e, M — e ez M is the identity.)

2.12. (The image of £) We say that a sheaf M on G is generated by global sections™
if the projection I'(M) — M, is surjective for each z € V.

Let M be a sheaf on G such that each M, with « € V is torsion free over A. If
M is isomorphic to L£L(M) for some Z-module M as in 2.10, then M has the following
properties:

(A) M is generated by global sections.
(B) Any map pi,\j‘E: M, — Mg is surjective.
(C) We have _
P(E,M) = (7 + my)(T(M)) + apms(T'(M))

for each E' € £. Here x and y are the vertices joined by E while 7,:T'(M) — M, and
my: ' (M) — M, denote the natural projections.

Indeed, 2.10(6) yields (B), we get (A) using 2.10(2) and 2.10(8), and (C) follows from
2.10(7) and 2.10(3).

Proposition: Let M be a sheaf on G such that each M, with x € V is torsion free over A.
There exists a natural homomorphism fM: L(T'(M)) — M of sheaves on G. If M satisfies
(A)—(C) above, then f™ is an isomorphism.

Proof: Recall the decomposition 1 =% e, in Z®Q. A family (u;)zcy in Z acting on
a family (v, )zey in I'(M) yields the family of all u,v,. So a family (u; @ 72).cy in Z2QQ
(with each u, € A, and r, € Q) acting on a family (b, ® s;).cy in ['(M) ® Q (with each

* Here my terminology differs from Fiebig’s.
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vy € My and s, € Q) yields the family of all u,v, ® rys,. Therefore any e, with y € V
acts on I'(M) ® Q C [], (Mo ® Q) as the projection to the factor M, ® Q.
This shows that

L(T(M)), =e, T (M) M, for each x € V. (1)

We set fM = (fM), equal to the inclusion of £L(I'(M)), into M,. If M satisfies (A),
then each £ is an isomorphism.
Consider an edge E € &; denote by = and y the vertices joined by E. We have

L(M) (B) = (g + my)(T(M)) + apme(T(M)) € T(E, M). (2)

If M satisfies (C), then we get equality in (2).
It follows that the inclusion f @ fM: L(T'(M)), & L(D(M))y, — My & M, maps

I:={(mz(u), —my(u)) |[u € T(M) (E)} into J:={(ms(u), —my(u))|ueT(E,M)}
and thus induces a homomorphism f#* from L(T'(M))g = (L(T'(M)). & L(T(M)),)/I to
(Mo ® My) /T = pplp(Ma) + pyp(My) C M,

cf. 2.8(2). If M satisfies (A)—(C), then f&* is an isomorphism.
It remains to check that f#*o pi(]g(M)) = pﬁj‘E o fM. Consider u € L(T'(M)),. Then
pi(]g(M))(u) is the coset (u,0)+ I in £(I'(M))g. It is mapped under f#* to the image if

the coset (u,0) + J = (fM(u),0) + J in Mg, hence to p;\j‘E o fM(u). The claim follows.

Remarks: 1) Take for example the structure sheaf A. It satisfies (A): For any u € A the
family (ug)zey with uy, = u for all z € V belongs to I'(A) = Z. The condition (B) holds
obviously for A. Finally (C) is satisfied since (1,1) € (7, + m,)(I'(A)) yields

N(E,A) ={(u,u) |lue A} + {(au,0) |ue A} = (my + m,)(T'(A)) + am,(T(A)).

So we have a natural isomorphism f4: £(Z) -~ A.

2) Let ¢: M — N be a homomorphism of sheaves on G such that all M, and N, are
torsion free over S. One checks now that

Yo fM=fNorL(Tw)). (3)

This means that M — fM is a natural transformation from the composition £ oI to the
identity functor.
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2.13. (Adjointness) Let C denote the category of all Z—modules that are torsion free
over A. Let S denote the category of all sheaves M on G such that each M, with x € V
is torsion free over A.

We have functors IS — C and L:C — S together with natural transformations
f:Lol' —ids and g:id¢ — ' o L.

Proposition 2.12 shows that f£(M): L(T'(L(M))) — L(M) is an isomorphism for any M
in C. Note that its inverse is given by

(fED) 7 = L(g™). (1)

For example, any £(g™), with z € V maps L(M), = e, M to L(T'(L(M))), = e, T'(L(M))
sending any e,v with v € M to e, g™ (v). Now g™ (v) is the family of all e,v with y € V, and
e, acts on this family as the projection to the x—component. We get thus e, g™ (v) = e,v.
So L(gM), is just the identity map, hence equal to the inverse of the inclusion ff ) One
argues similarly for any £(g™)g.

Lemma: For any M in S the morphism g" M) : T (M) — T(L(T'(M))) is an isomorphism
with inverse equal to T'(fM).

Proof: Consider the commutative diagram
M) = TLheMe = JLeMa®@Q)

gF(M)J( J{id

PLTM)) = TLey £LOM))e = [leyMe @ Q)

r | | [

(M) - erVMw - erv(Mw ® Q)

The middle vertical map is equal to the product ], fM. The lower square on the right
hand side commutes by the definition of the f, the lower square on the left hand side
commutes by the definition of T'(f™). An element in T'(M) is a family u = (uz)zey
with each u, € M,. One has e, u = u, for all x € V. On the other hand, we have
g"M)(u) = (e, u)zey by definition of g. This shows that the upper half of our diagram is
commutative.

Looking at the total diagram we get now that I'(f™)og

fM is injective, so is T'(fM). The claim follows.

rm) — idF(M)- Since each

2.14. Proposition: The functor L:C — S is left adjoint to the functor I''S — C.

Proof: We have for any M in C and any N in S natural maps
Homs (L(M),N') — Homz(M,T(N)), ¢+ T(p)og" (2)

and

Homz(M,T(N)) — Homg(L(M),N), = NoL(y). (3)
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The compositions of these maps are given by

p = N o L(T(p) o L(gM) =po fFMD o L(gM) =

and
= T(fN)oT(L®)) o g™ =T (fV) 0 g™ oy = y.

Here we use the natural transformation property of f or g (see 2.12(3) and 2.10(9)) together
with (1) or the lemma.

It follows that the maps in (2) and (3) are inverse isomorphisms. Since they induce
natural transformations between Homg(L(-),--) and Homz(-,I'(--)), we get the claim.

Remark: Let 8" denote the subcategory of all M in § isomorphic to some L£(M) with M
in C. Let C' denote the subcategory of all M in C isomorphic to some I'(M) with M in S.
Then the results in this subsection show that I' and £ induce equivalences of categories
between S’ and C’.

2.15. (GKM-graphs) Let p be a prime ideal in A of height 1, i.e., an ideal that is
minimal among the non-zero prime ideals. Recall that we assume that A is the localisation
of S with respect to some multiplicative subset. This implies that p NS is a prime ideal
in S of height 1 and that p = A(pN.S). Because S is a unique factorisation domain, there
exists an irreducible element v € S such that p NS = S7, hence with p = A~.

Denote by A, the local ring of A at p. So this is the localisation of A where we invert
all elements in A\ p.

Consider a sheaf M on G. If E is an edge of G with ap ¢ k-~ then we get (by the
irreducibility of ag) that ag ¢ Sy =p NS, hence ap ¢ p. So ag is a unit in A,. Now
apMpg =0 implies Mg ® A, = 0. This shows: When we calculate I'(M ® A ), then the
condition pgp E(tay) = pP2p,E(us,) is automatically satisfied for all £ with ag ¢ k1.

Definition: We call a moment graph a GKM-graph if kag # kag: for all pairs (E, E’) of
edges, E # E’, such that there exists a vertex x adjacent to both F and E’.

For example, the moment graph associated as in 2.1 to a flag variety as in 1.13 is a
GKM-graph: Recall that the vertices wB correspond to the elements w of the Weyl group.
There is then a bijection between & and the set of edges adjacent to wB. The edge E
corresponding to o € ®T satisfies a(E) = Ca. So the GKM-property follows from the fact
that Ca # Cpf for any o, 3 € ®T with o # 3.

Lemma: Suppose that G s a GKM-graph. Let M be a Z-module that is torsion free
over A. Then g™ induces an isomorphism g™ ®id: M @ A, — T'(L(M)) ® A,.

Proof: Denote by Ei, Es, ..., E, the edges of G with ag, € k. Denote by z; and y; the
vertices joined by E;. We have {x;,y;} N {z;,y;} = 0 whenever i # j; this follows from
the assumption that G is a GKM-graph.

This implies: If M is an A,-sheaf on G, then I'(M) consists of all (us)zey € [[,c Ma
such that pg, g, (uz,) = py,.E; (uy,) for all i. Setting V' = V\ {z;,y; | 1 < i < r} we get
thus

r) = [ 1B M) x [ Mo (1)

zeV’
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Let us apply (1) to M = L(M) ® A,. We have by 2.7 isomorphisms
D(L(M))® Ay — T(L(M) ® Ayp) and  D(E;, L(M))® A, —T(E;, L(M)® A,).

So we get by (1) an isomorphism

D(E(M)) © Ay = [[T(En £OD) @ Ay x [ L0, © 4y )
i=1 zeV’
mapping any u ® 1 with v € I'(L(M)) to the family of all (e;, +e,,) (u®1),1 <7 <,
and of all e, (u® 1), z € V.
Set Z; =T'(E;, A) = (ex, +ey,) Z+ae,, Z. We apply (2) to M = Z where L(Z) = A
and I'(E;, L(Z)) = Z;; we get an isomorphism

Zod, = [[2i@4, x [ A 4. (3)
i=1 eV’
It follows that Z; ® A, = (e;, +ey,) (Z® Ay).

We know by 2.10(7) that M (E;) — I'(E;, £L(M)). On the other hand 2.10(3) yields
M(E;) = Zi(es, +ey,) M. This implies that

D(Ei, LIM))® Ap ~ M(E;) ® Ay = Zi (g, + €4,) M ® Ay
~ (2, ® Ap) (en, + ) (M ® 4y)
~ (er, +e4) (20 Ay) (en, +e) (M ® 4y)
>~ (ez, +€y,) (ZM ® Ap) = (e, +€y,) (M @ Ap).

We therefore can rewrite (2) as

L(L(M)) @ Ay = [](ea, (M@ Ay) x ey, (M@ Ap) x ] eo (M@ 4,).  (4)

i=1 zeV’

Recall that g™ maps any u € M to the family of all e,u with = € V. So g™ ®id maps
any v € M ® A, to the family of all e,v with x € V. Therefore M ® A, is mapped onto
the right hand side of (4). The claim follows, because with ¢™ also ¢™ ® id is injective.

2.16. (Reflexive modules) An A-module M is called reflezive if the natural map
M — (M*)* = Homa(Homa (M, A), A) is an isomorphism. Any free A-module of finite
rank is reflexive. Any reflexive A-module is torsion free. Let J(A) denote the set of all
prime ideals of height 1 in A. A finitely generated torsion free A-module M is reflexive if
and only if
M= (] (M®A) (1)
pER(A)

where the intersection is taken inside M ® @, cf. [Bourbaki, Alg. comm., ch. VII], § 4, n° 2.
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Proposition: Let M be a Z-module that is finitely generated and reflexive over A. If G
is a GKM-graph, then gM: M — T(L(M)) is an isomorphism.

Proof: We have a commutative diagram:

M - N M®A,)
pEP(A)

| l
DLM)) =[] (DLM)© Ap)
peP(A)
where the vertical map on the right hand side is the restriction of g™ ®idg. By Lemma 2.15

this map is an isomorphism. Since we assume M to be reflexive over A, the upper inclusion
is an identity. This shows that ¢ has to be surjective, hence bijective.

2.17. Lemma: Let M be a sheaf on G such that all M, with x € V and all T(E, M)
with E € & are finitely generated reflexive A—modules. Then T'(M) is a finitely generated
reflerive A—module.

Proof: Since I'(M) is an A-submodule of [] ., M., it is finitely generated and torsion
free over A. So it suffices to show that I'(M) = (), cq(4)(I'(M) ® Ap). This intersection
is taken inside '(M) @ Q =[], (M. ® Q).

Consider an element v in the intersection of all I'(M)® A,. So this is a family (uy)zey
with each u, € M, ® @ and there exists for each p € P(A) an element a, € A\ p such
that the family apu of all apu,, € V, belongs to I'(M).

This implies for each = € V that ayu, € M,, hence that u, € M, ® A, for all
p € PB(A). Since M, is reflexive, this implies that u, € M,.

Consider now an edge E € £. Denote by x and y the vertices joined by E. Since ayu
belongs to I'(M), we get (apuy, apuy) € I'(E, M). It follows that (us,u,) € T'(E, M)® A,
for all p € P(A). Since I'(E, M) is reflexive, this implies (u,,u,) € T'(E, M). Because
this holds for all E € &€, we get u € I'(M).

Remarks: 1) The same proof shows for any closed subset Z of VU E that I'(Z, M) is a
finitely generated reflexive A-module.

2) Consider an edge E € £ and denote by x and y the vertices joined by E. We claim: If M,
and M, are free of finite rank over A and if p, g induces an isomorphism M, /apM, =
Mg, then also I'(E, M) is free of finite rank over A. (We shall use this claim later on to
check the assumptions in the lemma in a special case.)

Because p,. g is surjective and because M, is a projective A-module, there exists an
A-linear map f: M, — M, with p, go f = p, g. It follows that

L(E,M)={(apu+ f(v),v) |veE M, ueM,}. (1)

The map (u, v) — (agu+f(v),v) is an isomorphism M, ®M, —— T'(E, M) of A-modules.
The claim follows.
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2.18. (Localisation and base change) Let A’ C @ be the localisation of A with
respect to some multiplicative subset. It follows that A’ is flat when considered as an A—
module. If X is an A-submodule of a Q—module Y, then the map X ® A’ - Y, u®t+— tu
is injective with image equal to the A’—submodule of Y generated by X. (Both this image
and X ® A’ are the localisation of the A—module X with respect to the multiplicative set
used to define A’.)

Let M be a Z-module that is torsion free as an A-module. Then M ® A’ isa (Z®A")-
module that is torsion free over A’.

Lemma: We have a natural isomorphism
LMy A = LM A
of A’ —sheaves on G.
Proof: We have for any z € V
LM@A), =e,(M®@A)=Ae,(M®1)=ALM), C M®Q.
Therefore the natural map £(M),® A’ — M ®(Q induces an isomorphism £(M),® A"

LM A),.
For any edge F (joining vertices = and y) we see that

(M @A) (E)=(es +ey)(M®A) + ape,(M e A)

is the A’~submodule generated by M (E) = (e, +ey) + age,M in M ® Q. We get thus an

isomorphism M(E)® A" — M(E®A’) induced by the natural map M (EF)®A" — M Q.
We get next an isomorphism

{(ma(u), —my(u) |u € M(E)} @ A" — {(ma(v), —my(v)) | v € (M ® A')(E)}
and finally an isomorphism
LMo A — LM® A)E

compatible with the p-maps.

Remark: Under the identifications T'(L(M ® A’)) — T(L(M) ® A’) — T(L(M)) ® A’
arising from the lemma and from Lemma 2.7.a the homomorphism g A Mo A —
T(L(M ® A')) is identified with ¢™ ®id 4. Similarly fM®A" identifies with fM @idys for
any sheaf M on G such that all M, are torsion free over A.
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2.19. (Graded objects) In this and the next two sections we work with A = S. A
graded sheaf on G is a sheaf M on G such that all M, and all Mg are graded S—modules
and such that each p, g is a homomorphism of graded S-modules. For example, we can
regard the structure sheaf A as a graded sheaf giving each A, = S the same grading as S
and giving each Ap = S/Sag the induced grading. (Recall that we consider S as a graded
algebra with the usual grading doubled.)

If M is a graded sheaf on G, then each M(Y') with Y € VUE has an induced grading
as an S—submodule of [] .y~ Mo X [[geyne MEe. And for each closed subset Z C VUE
the S-module I'(&, M) is a graded submodule of [ . ,~, Ma.

In the case of the structure algebra A any A(Y) and any I'(Z,.A) is a graded S-—
algebra. For general graded M any M(Y) is a graded module over A(Y), any I'(Z, M) a
graded module over I'(Z, M). In particular, I'(M) is a graded Z(G)-module.

A homomorphism of graded sheaves is a homomorphism f: M — N of sheaves such
that all f, and all fg are homomorphisms of graded S—modules. If so, then I'(f): '(M) —
I'(NV) is a homomorphisms of graded Z-modules. We can regard I' as a functor from
graded sheaves on G to graded Z—modules.

Lemma: Let M be a graded Z-module that is torsion free as an S-module. Then L(M)
has a unique structure as a graded sheaf on G such that the map M — L(M),, u — ezu,
1s a homomorphism of graded S—modules for each x € V.

Proof: The uniqueness is obvious: Since M — L(M), is surjective for all x, our condition
determines the grading on each L£(M),. The same follows for all L(M)g because all p, g
are surjective.

In order to prove the existence of the grading, we look first at each £(M),. We can
give L(M), a grading such that u — e,u is a homomorphism of graded S—modules if and
only if the kernel of this map is a graded submodule of M.

Set 8 =1] pee OE € S. This is a non-zero and homogeneous element in S because
each ag is non-zero and homogeneous. For each x € V the element €, := e, is the family
in Z®Q = Hyev A, ® Q with z—component equal to 3 and all other components equal
to 0. The definition of Z implies that €, € Z. Since M is torsion free over S, we get

{ueM|e;u=0}={ueM|e,u=0}.

Here the right side is a graded submodule of M because €, is a homogeneous element in Z.
So we get our graded structure on each £(M),.

Consider now an edge E joining two vertices x and y. The same argument as above
shows that (e, + e,)M has a grading such that u — (e, + e,)u is a graded homomor-
phism.Then (e, + e,)M and age, M are graded submodules of L(M), & L(M),, hence
so is M(FE). The projection maps 7, and 7, are compatible with the gradings. So also
{(mz(v), =my(v)) | v € M(E)} is a graded submodule. This yields now the grading on
L(M)g compatible with the p—maps.

Remarks: Tt now follows that any isomorphism M (E) — T'(E,L(M)) as in 2.10(7) is
compatible with the grading. So is the homomorphism g from 2.10(8).
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If p: M — N is a graded homomorphism of graded Z-modules, both torsion free
over S, then L(y) is easily checked to be a homomorphism of graded sheaves. So we can
regard L as functor between the graded categories.

Let M be a graded sheaf on G. Running through the construction one sees that f
as in Proposition 2.12 is a homomorphism of graded sheaves.

It follows that the isomorphisms in 2.13(2) and 2.13(3) map graded homomorphisms
to graded homomorphisms. So L is also left adjoint to I' when we regard both as functors
between the graded versions of the categories C and S from 2.13.

2.20. (Krull-Schmidt) If M and N are graded S-modules, then we write Hom% (M, N)
for the space of all homomorphisms M — N as graded S—modules. If M and N are graded
sheaves on G, then we write Hom” (M, N) for the space of all homomorphisms M — N
as graded sheaves. We write End$ (M) = Hom%(M, M) and End’(M) = Hom® (M, M).

If M is a finitely generated graded S—-module, then all homogeneous components M;,
1 € Z, are finite dimensional. This implies: If M and N are finitely generated graded S—
modules, then Hom%(M , V) is finite dimensional. Indeed, choose generators vy, v, ..., v,
for M. We may assume that each v; is homogeneous, i.e., that v; € M) for suitable
s(i) € Z. We get now an injective k-linear map from Hom% (M, N) into the direct sum of
all Ny(;), 1 <1 <r, mapping any homomorphism ¢ to the r—tuple of all p(v;).

Recall that a sheaf M on G has finite type if all M, and all M g are finitely generated
graded S—-modules. Using the fact that VUE is finite, we get now: If M and N are graded
sheaves of finite type on G, then Hom®(M,N) is finite dimensional.

Let M be a finitely generated graded S—module. Consider ¢ € End%(M ). We claim
that there exists an integer m > 0 such that ¢ (M) = @™ (M) for all n > m and that
M = ker ¢ @™ (M) for any such m. Indeed: For any homogeneous component M; of M
the chain of subspaces p(M;) D p?(M;) D p*>(M;) D - - - stabilises since dim M; < oo. So
there exists an integer m(i) > 0 such that ™@ (M;) = ©™(M;) for all n > m(i). There
exist integers r < s such that M = >"°_ S M,. Set m equal to the maximum of all m(s)
with 7 <4 < s. We get then ¢™(M) = i_ Se™(M;) = >2._ Se™(M;) = ¢"(M) for
all n > m. On the other hand suppose that we have (M) = ¢" (M) for all n > m. We
have then ™ (M;) = ¢"(M;) for all ¢ and all n > m. Therefore the restriction of ¢™ is
a surjective linear map @™ (M;) — ©?™(M;) = ¢™(M;). So the kernel of ©™ intersects
any " (M;) in 0. This implies by dimension reasons that M; = (ker o™ N M;) & @™ (M;).
Taking the sum over all ¢ we get M = ker o™ & ¢ (M).

If M is indecomposable as a graded S—-module, then we get that any graded endo-
morphism of M is either nilpotent or bijective. So End%(M ) is a local ring. It follows
that the Krull-Schmidt theorem holds for the decomposition of finitely generated graded
S—modules into indecomposables.

Let M be a graded sheaf of finite type on G. Given ¢ € Endo(/\/l) we can find
an integer m > 0 such that M, = ker(p,)™ @ ¢"(M,) for all z € V and Mg =
ker(op)™ @ ¢ (Mpg) for all E € £. (Here we use that V U € is finite.) This implies
that M = ker o™ & ¢ (M).

This implies: If M is indecomposable as a graded sheaf on G, then any graded endo-
morphism of M is either nilpotent or bijective. So EndO(M) is a local ring. It follows that
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the Krull-Schmidt theorem holds for the decomposition of graded sheaves of finite type
on G into indecomposables.

2.21. (Projective covers) In this subsection let C denote the category of all finitely
generated graded S—modules. It is clear that S and any S(r) with » € Z is a projective
object in C. Any M in C is a homomorphic image of a finite direct sum of modules of the
form S(r;), hence of a projective object in C.

A projective cover of an object M in C is a pair (P, ) where P is a projective object
in C and 7: P — M a surjective homomorphism in C such that 7(N) # M for any graded
submodule N of P with N # P.

For example, the natural map S — k with kernel m = P, S; is a projective cover
in C because any graded submodule N of S, N # S is contained in m.

If (P,7) is a projective cover of some M in C, then any (P(r), ) with r € Z is a
projective cover of M (r).

For any M in C denote by rad¢ M the intersection of all maximal graded submodules
of M. For example, we have rade S = m. Any proper graded submodule of M is contained
in a maximal graded submodule of M. This implies: If N is a graded submodule of M
with M = N 4+ rade¢ M, then M = N.

Lemma: (a) We have rad¢ M = mM for any M in C.

(b) Let m: P — M be a homomorphism in C such that P is projective. Then (P,7) is a
projective cover of M in C if and only if the induced map

m P/mP — M/mM

s an 1somorphism.

Proof: (a) We have mM # M for any non-zero M in C. (If r is minimal for M, # 0, then
M,NmM = 0.) This implies: If M in C is simple, then mM = 0. So M is a graded module
over S/mS, i.e., a graded vector space over k. Now the simplicity means that dimy M = 1.
So the simple objects in C are all k(r) with r € Z.

If N is a maximal graded submodule of some M in C, then M /N is simple in C, hence
m(M/N) = 0 and N D mM. This yields the inclusion “D” in (a). On the other hand,
M/mM is an S/mS-module, hence a semisimple module. This yields the other inclusion
in (a).

(b) If (P,) is a projective cover, then 7 is surjective, hence so is 7. On the other hand,
if 7 is surjective, then M = 7(P) + mM = w(P) + rad¢ M, hence n(P) = M and 7 is
surjective.

Suppose now that 7 is surjective. The usual arguments show now that (P, 7) is a
projective cover if and only if ker 7 C rade P. (Assume that 7 is surjective. Any proper
graded submodule of P is contained in a maximal graded submodule of P. This shows that
(P, ) is a projective cover if and only if 7(N) # M for any maximal graded submodule N
of P. This is then equivalent to N +ker m # P, hence by the maximality of N to kerm C N.)

So we have to show for surjective m that 7 is injective if and only if ker 7 C rad¢ P.
Well, assume first that 7 is injective. Then any = € ker 7 satisfies © + mP € ker 7, hence
x € mP; this yields ker  C rade P by (a).
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Suppose on the other hand that ker 7 C rade P. Consider x € P with 7(x +mP) = 0.
We get then 7(x) € mM. Since 7 is surjective, we have mM = mn(P) = 7(mP), and get
thus y € mP with n(z) = 7(y). Now x —y € kern implies z —y € rade P = mP. As
already y € mP, we get x + mP = 0.

Remarks: 1) It is now clear that projective covers exist and how to construct them: Given
M in C we can find integers n1,na, ..., n, for some r > 0 such that M /mM is isomorphic
to the direct sum of all k(n;). Fix a surjective homomorphism f: M — @;_, k(n;) such
that ker f = mM. We have a natural surjective homomorphism ¢ from the direct sum
P=@,_, S(n;) onto @,_, k(n;) with kerg = mP =rad¢ P. Since P is projective, there
exists a homomorphism 7: P — M such that ¢ = f o 7. Then 7 is an isomorphism by
construction.

2) If (P, ) and (P’,n’") are projective covers of some M in C, then there exists an isomor-
phism v: P — P’ with 7’ oy = 7.
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3 More sheaves on moment graphs

3.1. (Moment graphs) An (ordered) moment graph is a quadruple G = (V, €, a, <)
where (V, €, a) is an unordered moment graph as in 2.1 and where < is a partial ordering
on V such that for any edge ' € £ the two vertices joined by E are comparable with
respect to <. From now on we denote these two vertices by agp and zg such that ap < zg.

Ezxample: In the set-up of 1.15 (which is a special case of the set-up of 1.12) we get such
an (ordered) moment graph. Asin 2.1 the vertices are the fixed points of 7" on X and the
edges are in bijection with the one dimensional T—orbits on X. We now define a partial
ordering < on the set of fixed points setting = < y if and only if the corresponding strata
satisfy C, C C'_y If an edge E corresponds to a one dimensional T—-orbit P, then there
exists a stratum C, with P C C,. Then x is one of the fixed points in the closure of P.
Since P C C,, the other fixed point y in the closure of P satisfies y € C,, hence C, C C,,
and y < x. Because x and y are the two vertices joined by F, we see that the condition
on < is satisfied. (We could alternatively have defined <y if and only if C} C C..)

A full subgraph of a moment graph G = (V, €, «, <) is a moment graph H = (V', &', o/,
<) such that V' C V and &' C &, such that o (resp. <’) is the restriction of « (resp. of <)
to & (resp. to V') and such that for all z,y € V' any edge E € £ joining z and y actually
belongs to £’. (The inclusion & C & should be interpreted as follows: If E € &£’ joins z
and y in H, then it joins the same vertices in G.)

It is clear that a full subgraph H = (V', &', a’, <’) of G is completely determined by the
subset V' of V. For any x € V denote by G, the full subgraph with V' ={y €V |y < z}
and by G<, the full subgraph with V' ={y eV |y < z}.

IfH =, Ea,<)is a full subgraph of G, then V' U¢&’ is a closed subset of VU E
in the sense of 2.4. We call now H an F-open subgraph if it has the following property:
If x € V and y € V with y < z, then also y € V'. In other words: We require that H
is the union of all G<, with = € V. Clearly all G, and all G<, are F-open. (This is of
course the usual topology on the partially ordered set V. I want to use a slightly different
terminology in order to avoid confusion with the topology from 2.4.)

3.2. (Flabby Sheaves) Fix a moment graph G = (V, £, a, <) and an S—algebra A that
is the localisation of S with respect to a multiplicative subset; we say sheaf instead of
A-sheaf.

If M is a sheaf on G, then set

T'(H, M) =T(V', M) (1)

for any full subgraph H = (V',&’,a’/,<’) of G.
A sheaf M on G is called flabby if for each F-open subgraph H of G the restriction
map

(M) — I'(H, M) (2)
is surjective. If so, then the restriction map
G, M) — T'(Ga, M) (3)

is surjective for any two F-open subgraphs G; and Gy with G, C G;.
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Lemma: A sheaf M on G is flabby if and only if for each x € V the restriction map

18 surjective.

Proof: If M is flabby, then the surjectivity in (4) is a special case of the surjectivity in (3).
One direction in the lemma is therefore obvious. So let us assume that the map in (4) is
surjective for all x.

We want to show that M is flabby. Working inductively, we see that is enough to
check that the map in (3) is surjective whenever G; contains one vertex more than Gs. In
this case denote by V; the set of vertices of G; for i = 1,2 and let © € V; denote the vertex
with Vo = V1 \ {z}.

Consider a family v = (uy)yecy, in I'(G2, M) = I'(V2, M). Then the family (uy)y<q
belongs to I'(G<,, M). By assumption there exists u, € M, such that the family (uy)y<q
belongs to I'(G<,, M). We claim that the family v’ = (uy),ecy, belongs to I'(Gy, M). This
will yield the desired surjectivity since u’ restricts to w.

We have to check that

paE,E<uaE) = IOZE:E(U/ZE) (5)
for any edge E of G;. In case E belongs to Gs this equality follows from u € I'(Gy, M). So
suppose that E does not belong to G5. Then = has to be one of the vertices joined by FE.
We cannot have x = ag because otherwise x < zg contradicts the assumption that G is

F-open since zg € Vo and ¢ V5. So we have = zp; now ag < z implies that E belongs
to G<,. Therefore in this case (5) follows from (uy)y<e € I'(G<z, M).

Remark: A direct sum of two sheaves is flabby if and only if both summands are flabby.

3.3. For any x € V set D, equal to the set of all edges E with x = zp and U, equal to
the set of all edges F with = ag. (The letters D and U stand for down and up.)
Let M be a sheaf on G. Consider for each x € V the homomorphism of A-modules

PPT(Ger, M) — D Mp (1)

EED,

that maps any family (uy)y<g in I'(G<z, M) to the family of all p,, £(ua,) with E € D,.
Denote the image of this map by

Moy C @ Mg. (2)

EeD,

Consider also the homomorphism of A-modules

pep = papiMe — @ Mp,  ur (pop()pen, . (3)

EED,
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Lemma: (a) The restriction map I'(G<y, M) — T'(G<y, M) is surjective if and only if
Max C px,D(Mx>
(b) The restriction map I'(G<z, M) — My, is surjective if and only py p(My) C May.

(c) We have py,p(My) = Mo, for all x € V if and only if M is flabby and generated by
global sections.

Proof: Note that I'(G<,, M) consists of all families (uy)y<g in []
belongs to I'(G~,, M) and such that

y<xz My such that (Uy)y<a

Pw,D(Ux) = pr((uy)zK:c)-

This yields easily the claims in (a) and (b).

If M is flabby, then M is generated by global sections if and only if the restriction
map ['(G<z, M) — M, is surjective for all € V. Therefore (c) follows from (a), (b),
and Lemma 3.2.

3.4. Lemma: Let M be a sheaf on G such that each M, with x € V is torsion free
over A. Suppose that M is generated by global sections and that p, g induces an isomor-
phism

M /ag My — Mg (1)

for each x € V and each E € U,. Then f™:L(T(M)) — M is an isomorphism.

Proof: We see as in the proof of Proposition 2.12 that f is an isomorphism £(I'(M)), —
M, for each x € V. (In fact, it is the identity.)
Consider now an edge E and set x = ag. We have a commutative diagram

fM
LOM)). 5 M,
pf’gw))l lpr
b8

The assumption (1) says that pi\”lE is surjective and has kernel ag Mpg. Since fM is

bijective, also f4'o pi(]g(M)) is surjective and it has kernel ag L(I'(M)),. It follows that

also 1S surjective. urtnermore, since 1S surjective (CI. 4. , We ge a e
Iso f# is surjective. Furth ince p ") is surjective (cf. 2.12), we get that th

kernel of f! is the image under pg’g(M)) of the kernel of fa'o pf’(]g(M)), hence equal to

PG (ap LOM))) = ap ph 5™ (LIT(M))e) = ap LI(M))E = 0.

So fg/‘ is also injective, hence an isomorphism.
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3.5. (Braden-MacPherson sheaves) In the next two subsections we are going to
work with A = S. We are now going to construct for each vertex a graded sheaf B(z) of
finite type on G, the Braden-MacPherson sheaf associated to z. This sheaf will have the
following properties:

We have B(z), =S (with the usual grading). (1)
If x € V with z Z z, then B(z), = 0. (2)
(3)

pz.1 induces an isomorphism B(z),/agB(z), — B(z)g for any x € V and E € U,.. (4)

Each B(z), is a free S—module of finite rank.

We construct inductively the restriction of B(z) to each G<, assuming that we know
already the restriction of B(z) to all G<, with y < . This assumption implies of course
that we already know the restriction of B(z) to G<,.

The edges in G<, that do not belong to G-, are the edges F in D,. For these we have
ap < x = zg, 50 B(2)a, is already known. We can thus define

B(2)p = B(2)ar/aBB(2)a

with the obvious grading and set p,, g equal to the canonical map to the factor module.
This part of the construction ensures that (4) is satisfied for all E € D, (with ag instead
of z).

If 2 = z, then we use (1) to define B(2), and we set p, g = 0 for all E € D,. Suppose
next that = # z. Since we know the restriction of B(z) to G, we know also I'(G, B(z)).
Using the first step of the inductive construction we also know the map p2 as in 3.3(1),
hence its image B(z)s,. Using (3) for the vertices y < z, we see that B(z)g, is a finitely
generated graded S—module. We now choose B(z), as a projective cover of B(z)g, in the
category of graded S—modules. Then B(z), is a free S—module of finite rank and it comes
with a surjective homomorphism m,: B(2), — B(2)ss. Recall that B(z)s, is a submodule
of @Eer B(z)g. We finally define any p, g with E € D, as the composition of m, with
the projection B(2)s. — B(2)E.

Note: If = 2 z, then y # z for all y < . Then we have by induction B(z), = 0 for all
these y, hence I'(G,, B(z)) = 0 and then B(z)g, = 0 and finally B(z), = 0. So (2) holds
also for z.

We have by construction

pz.0(B(2)2) = B(2)ox (5)

for all x # z. But this equation holds also for z = z, where B(2)s, = 0 by (2) and where
pz,p = 0 by construction.

Proposition: (a) The sheaf B(2) is flabby and generated by global sections.
(b) The map fB3): L(T'(B(z))) — B(z) is an isomorphism.

(¢) For each closed subset Z C VU E the S—module T'(Z,B(z)) is finitely generated and
reflexive.

(d) The sheaf B(z) is indecomposable. So is the Z—module T'(B(2)).
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Proof: Here (a) follows from (5) and Lemma 3.3.c whereas (b) follows from (4) and
Lemma 3.4. We get (c¢) from Lemma 2.17 and its remarks. In (d) the second claim follows
from the first one using (b).

It remains to prove that B(z) is indecomposable. Suppose that B(z) = M @& N for
some sheaves M and N on G. We have S = B(z), = M, & N.. Because S is an integral
domain, it is indecomposable as an S—module. So we may assume that M, = S and
N, = 0. We want to show that A’ =0 and M = B(z).

It suffices to show inductively for all x € V that N, =0 and Ng =0 for all £ € D,.
This is obvious for x = z as B(z)g = 0 for all E € D,. Let now = # z and suppose that
we know our claim already for all y < .

If ¥ € D,, then y = ag satisfies y < x, hence

B(2)r = py,p(B(2)y) = py,e(My) C M.
It follows that Mg = B(2)g and Ng = 0.
Furthermore, we have I'(G<,, M) = I'(G<,, B(z)) and conclude that B(2)s, = Mas,
hence Ny, = 0. This implies that p,; p(N;) = 0. Since p, p induces an isomorphism

B(2),/mB(z), — B(2)ss/mB(2)a, we get now N, /mN, = 0. Because N, is a finitely
generated projective S—module, this implies N, = 0.

3.6. (Sheaves and intersection cohomology) Let us return for the moment to the
set-up from 1.15. So we consider a complex projective variety X with an algebraic action
of a complex torus T such that the set X7 of fixed points and the set of one dimensional
orbits are finite. The fixed points are supposed to be contracting and there is a Whitney
stratification X = J, . yr C; with certain properties.

As described in 2.1 and 3.1 we get in this situation a moment graph G with ¥V = X7
and with £ equal to the set of one dimensional T—orbits on X. The order relation we
consider now is the one where x < y if and only if C,, C C,. Note that we have

Hp(X) ~ Z2(9) (1)
by Theorem 1.12. The main result in [BM] says now:

Theorem: We have for each x € X* isomorphisms

TH}(Cy) =T (B(x)) (2)

and

TH3(Cy)gyy =~ B(x)y and ITHY(C)g =~ B(x)g (3)

for ally € XT and E € £. Regarding C as an S-algebra isomorphic to S/m we have
further isomorphisms B o
IHY(C,)®s C~1H*(C}) (4)

and

TH3(Cy)gyy ®s C = TH*(Cy) 4 and  TH3(C,)p®sC~IH*(C,)r (5)
forally € XT and E € €.
In fact, the maps in (4) and (5) come from maps as in 1.14(6).
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3.7. (Truncation) Return to more general A as in 3.2. Recall from 2.6 the definition
of the truncated sheaf M[Z] for any subset Z C VU and any sheaf M on G. If H =
(V', &', o/, <') is a full subgraph of G, then we now write M[H] = M[V'UE’]. Since V' UE’
is closed in V U &, we have by 2.6(3) a canonical isomorphism

P(M[H]) — T(H, M). (1)

If M is generated by global sections, then so is M[H]. If M is flabby and if H is F-open,
then also M[H] is flabby.
We have by 2.6(1) a natural morphism

™™ [H]): M — M[H)]. (2)
By 2.6(4) it has the following universal property: For any sheaf N' on G the map
Hom(M[H],N') — Hom(M,N), ¢ 1 ox™[H] (3)

is injective; its image consists of all morphisms p: M — N with ¢, = 0 for all vertices
xr ¢V and with g = 0 for all edges E ¢ £'. We get in particular that ¢ — 1) o 7 [H] is
an isomorphism

Hom (M [H], N[H]) — Hom(M, NH]). (4)

More generally, if G; and Gs are full subgraphs of G with G5 contained in Gy, then we
have a natural restriction map M[G1] — M]Gs]. Since M[Gs] = (M][G1])[G2], this reduces

to the case already considered.

If M is a graded sheaf, then M[H] has a natural grading such that 7M[H] is a
morphism of graded sheaves. Then (M [H], 7[H]) has a corresponding universal property
for morphisms of graded sheaves. We can replace Hom in (3) and (4) by Hom.

Recall that M — M[H] is a functor. If f: M — N is a morphism of sheaves on G,
then f[H]: M[H] — NTH] is by(4) uniquely determined by the condition f[H]onx™[H] =
7N[H] o f. In case f is a graded morphism of graded sheaves, so is f[H].

3.8. We want to show that the sheaves B(z) ®g A are projective in a suitable category
of sheaves. For the time being, we say that a sheaf P on G is F-projective if

(A) P is flabby and generated by global sections.

(B) Each P, with x € V is a projective A-module.

(C) Any p, g with z € V and E € U, induces an isomorphism P, /apP, — Pg.

(F stands for Fiebig.) It follows from 3.5(3),(4),(a) that any B(z) ®g A is F-projective. A
direct sum of two sheaves is F-projective if and only if both summands are F-projective.
If P is an F-projective sheaf, then f7: L(T'(P)) — P is by Lemma 3.4 an isomorphism.

Lemma: Let P be an F-projective sheaf on G. Let M be a sheaf on G that is flabby and
generated by global sections. Fix a vertex x € V and denote by m the natural morphism

M[G<y] = M[G<,]|. Then the map
HOIIl(P, M[QSIE]) - Hom(P, M[g<:r])7 premTop
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18 surjective.

Proof: Let ¢ € Hom(P, M[G.,]). We have to find ¢ € Hom(P, M[G<,]) with ¢ = 7o .
It is clear that we have to take ¢, = v, for all y < « (since 7, = id) and we have to take
wr =Yg for all edges E belonging to G, (since g = id). It is also clear that ¢, = 0
for all y £ = (since M[G<,], = 0) and that ¢ = 0 for all edges E not belonging to G<,
(since M[G<z|E = 0). So we only have to define ¢, and all o with E € D,.

Consider first £ € D,.. Set y = ag. The composition pé\”‘Eowy: P, — Mg maps ag Py,
into ap Mg = 0. Since P satisfies (C) we get now a unique morphism pp: Pr — Mg
making the following diagram commutative:

Py = My
pzﬁEl lpzyE (1)
Pe 5 Mg
Combining these diagrams for all £ € D, we get a commutative diagram

[(Gew,P) 22 T(Gew, M)

! |

Do
EBEGDUE P — @E‘GDCE MEg

where ¢, is the restriction of P,_, ¢. to I'(G<z,P) and where the vertical maps are
the p? for the two sheaves involved. It follows that ) ¢r maps Ps, (the image of the
left vertical map) into Mgy, (the image of the right vertical map). The assumption that
M is flabby and generated by global sections implies that p;\”lD(Mx) = Mgy,. As P, is
projective, there exists a homomorphism ¢,: P, — M, such that the diagram

P, N

P M
poc,DJ/ J{px,D

is commutative. This implies in particular that pﬁj‘E 0Py = QPE O pf’ g forall E € D,.
Together with the commutativity of (1) this shows that ¢ is a morphism of sheaves.

3.9. If M is a sheaf on G, then we set for all z € V

My =kerp, p = ﬂ ker p (1)

EE€D,

cf. 3.3(3). This is an A-submodule of M,; if M is a graded sheaf (in case A = S), then
M, is a graded submodule.
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If f: M — N is a morphism of sheaves on G, then f induces for each x € V a
homomorphism

fla Mpz) — Ny (2)

of A-modules. Indeed, pﬁ{ gpOfo = fro pé\j‘E implies f,(ker pﬁj‘E) C ker pﬁ{ g for each
E € D,, hence f,(Mipy) C N So we define fi,) as the restriction of f,. In case f is a
graded morphism of graded sheaves on G (for A = ), then f|,) is a graded homomorphism
of S—modules.

Proposition: Let P be an F-projective sheaf on G. Let f: M — N be a morphism of
sheaves on G that are flabby and generated by global sections. If flu: My — /\/’[x] i
surjective for all © € V, then

Hom (P, M) — Hom (P, N), p— fop (3)
18 surjective.

Proof: Let ¢ € Hom(P,N). We have to find ¢ € Hom(P, M) with ¢y = f o . For
any © € V let f<, = f[G<,] denote the morphism M[G<,] — N|[G<,] induced by f.
Similarly, <, = ¥[G<,] denotes the morphism P[G<,] — N[G<,] induced by 1. We want
to construct inductively a morphism p<,: P[G<,| — M[G<;] such that Y<, = f< 0 p<,.
In order to glue these maps together to a morphism ¢: P — M, we require for all y < x
that the diagram

P<zx

P[géw] - M[gﬁw]

l | “

P<y

Plg<y] — MG<,]
is commutative. Here the vertical maps are the natural restrictions.
Fix x € V and assume by induction that we already have p<, for all vertices y < x.
We glue these maps together to get a morphism ¢.,: P[G,] — M[G.,]. By Lemma 3.8
we can extend ¢, to a morphism @: P[G<,] — M[G<,]. Set

r‘vbl - fﬁm o @_ ¢§m: P[ggx] _)N[ggx]

We want to find a morphism ¢’: P[G<,] — M[G<,] with ¢ = f<, 0¢'; then <, := o — ¢
satisfies <, = f<z 0 p<s.

We have ¢, = 0 for all y < x since (f<z)y 0 Py — (V<z)y = fy o (p<y)y =¥y =0
since Y<, = f<y, 0 <, by induction. Using 3.8(C) we get that also ¢}z = 0 for all edges E
belonging to G-, or to D,. So we set gpg =0 for all y < z and ¢y = 0 for all E € D, and
for all E belonging to G.,. These definitions ensure also later on that the restriction of
<z to any G<, with y < z is equal to the restriction of @, hence equal to ¢<,. Therefore
(4) will commute.

It remains to define ¢,: P, — M. It has to satisfy f o ¢}, = ¢ and p}y 0 ¢, =
¢lp o pl p =0 for each E € Dy. Since pA'y o), = ¢} 0 pZ 5 =0 for all E € D,, we have
Y (Py) C Njpj. As we assume that fg(M[)) = Nz}, we now use the projectivity of P,
to find a morphism ¢} : P, — M, with fiz) 0 ¢, = 9}. Since fi;) is the restriction of f,
we can rewrite this equation as f, o ¢, = ¢!. And we get p;\j‘E o/ =0forall £ €D,
from ¢, (Py) C My
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Remark: If P, M, and N are graded sheaves, then we can replace Hom by Hom" in the
proposition; a similar statement holds for Lemma 3.8.

3. 10 Lemma: Let ‘H be an F-open full subgraph of G. Let M be a sheaf on G. Then
MIH](2): M) — M[H] ) is surjective for each z € V.

Proof: If x does not belong to M, then M[H];; = 0 and the claim is obvious. If x
belongs to H, then so do all E € D, since H is F-open. It follows that M, = M[H], and
Mg = M[H]g for all E € D,, hence M) = M[H](;). And mM[H]},; is the identity.

Remark: More generally: Let G; and G be F-open full subgraphs of G with G5 contained
in G;. Denote by m: M[G1] — M([G,] the natural restriction. Then 7, is surjective for all
x € V. This observation shows that Lemma 3.8 is a special case of Proposition 3.9.

3.11. (Verma sheaves) For each = € V let V4(x) denote the (skyscraper) sheaf on G
with Va(z), = A and Va(z), = 0 for all vertices y # x and with V4(x)g = 0 for all edges
Ee& Al pVA( “) are of course equal to 0. We call V4(x) the Verma sheaf at x.

It is clear that I'(Va(z)) = A. Any family (uy)yev, € Z acts on I'(Va(z)) as multi-
plication by u,. One checks easily that V4 (x) satisfies the conditions (A)—(C) in 2.12. So
fY4@) is an isomorphism L£(T'(Va(x))) —— Va(z).

Note that pv’}ﬂ(x) =0 for all E € D, implies that V4(z);y) = Va(z). = A; we have of
course VA (z), = 0 for all y # .

If M is any sheaf on G, then we have an isomorphism

Hom (M, Va(z)) — Hom (M, A), [ fo (1)

Indeed, the map is injective since any f € Hom (M, V4(z)) satisfies f, = 0 for all vertices
y # x and fg = 0 for all edges £ € £. On the other hand, any ¢ € Hom (M, A) can
be extended to a morphism f: M — V4 (x) with f, = g setting all other Components of f
equal to 0. We do not have to worry about conditions of the form fg o py = p;’jg(‘r) o fy
since both sides always are 0.

In case A = S we regard V(x) = Vg(z) as a graded sheaf on G giving V(x), = S the

here usual grading. Then (1) restricts for graded M to an isomorphism
Hom? (M, V(z)) == Hom%(M,, S), f— fo (2)

3.12. Proposition: Suppose that A = S. Let P be a graded F-projective sheaf of finite
type on G. Then there exists an isomorphism of graded sheaves

P~ B(z1)(r1) ® B(z2)(r2) @ - @& B(zs)(rs) (1)

with suitable vertices z1, za, . .., zs and integers r1,ra,...,rs. The pairs (z;,1;) are deter-
mined uniquely up to order by P.

Proof: The uniqueness part follows from 2.20. For the existence we use induction over the
sum over x € V of the rank of P, as a free S—module. If the sum is 0, then P = 0 and the
claim holds with s = 0.
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If P # 0, then we choose z € V minimal for P, # 0. Choose a direct sum decompo-
sition P, = A @ B as graded S—module such that A ~ S(r) for some r € Z. In order to
simplify notation, let us assume that r = 0. One gets the general case by replacing P by
P(—r).

We get now from 3.11(2) a morphism f € Hom®(P, V(%)) such that

f2P.,=A®B —V(2),=5

is the projection to the summand A followed by an isomorphism A — S. Note that all
fi21: Plo] — V(2)[o) With 2 € V are surjective: This is clear for x # 2z where V(2) = 0.
For x = z the minimality of z with P, # 0 implies P = 0 for all E € D,. (Recall that
P satisfies (C) in 3.8.) It follows that Pp,; = P., hence that V(2)(.,) = V(2). = f.(P:) =

We have similarly a morphism g: B(z) — V(z) such that g,: B(z), — V(z), is an iso-
morphism. Furthermore, each g, is surjective, by the same argument as for f. Now Propo-
sition 3.8 and its remark yield morphisms ¢ € Hom®(B(2), P) and ¢ € Hom®(P, B(z)) with
go = fand fop=g. It follows that go op = g, hence go (1p o)™ = g for all n € N.
Since g # 0 this implies that 1o is not nilpotent. It follows therefore by Proposition 3.5.d
and Section 2.20 that 1 o ¢ is bijective. This yields that P = ker ¢ @ ¢(B(2)) and that
¥(B(z)) is isomorphic to B(z). Now apply the induction hypothesis to ker ¢.

3.13. Let H= (V',&, a',<’) be an F-open full subgraph of G. Let x € V' be a maximal
element in V’. Set H., denote the full subgraph of G with set of vertices equal to V' \ {z}.
The maximality of z in V' implies that H, again is F-open. If M is a flabby sheaf on G,
then we get now a short exact sequence

0— M[m] — (K, M) — T'(Hpz, M) — 0 (1)

of S—modules.

Lemma: (a) Let M be a flabby sheaf on G. Then all My with x € V are projective
as modules over A if and only if T'(H, M) is a projective A—module for each F-open full
subgraph H of G.

(b) Let f: L — M and g: M — N be morphisms of flabby sheaves on G with go f = 0.
Then
0= Lig) — Mgy — Npzp = 0 (2)

is exact for all x € V if and only if
0—-T(H,L) —T(H,M)—T(H,N)—0 (3)

1s exact for all F-open full subgraphs H of G.

Proof: (a) If all M|, are projective, then we prove the projectivity of I'(H, M) using
induction on the number of vertices in H. Given a non-empty H we choose a maximal
vertex x and get a short exact sequence as in (1). By induction I'(Hx,, M) is projective;
s0 is M) by assumption. It follows that also I'(H, M) is projective.
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On the other hand, suppose that all I'(H, M) are projective. Then we apply (1) with
H = G<, and get the projectivity of M.

(b) If H is an F-open full subgraph of G and if z is a maximal vertex of H, then we have
a commutative diagram

0 — Ly — TMH,L) — T(HpgL) — 0

0 — My — T(HM) — T(Hze, M) — 0

0 — Ny — T'(H,N) — T(HgN) — 0

0 0 0

where the rows are exact by (1).

If we assume that all sequences as in (3) are exact, then the second and third columns
in our diagram are exact. Then the 9-lemma yields the exactness of the first column. We
get thus (2) working with H = G<,.

If we assume that all sequences as in (2) are exact, then we want to prove the exactness
of (3) using induction on the number of vertices in H. Given a non-empty H we choose
a maximal vertex x and apply induction to H.,. Now the first and third columns in our
diagram are exact. Then the 9-lemma yields the exactness of the second column because
we assume that go f = 0.

3.14. If H = (V' &, d/,<)is a full subgraph of G, then we set ey = Y .\ €x. So we
have by Lemma 2.11
L(en M) = L(M)[H] (1)

for any Z-module M that is torsion free over A.

Proposition: Suppose that G is a GKM-graph. Let M be a finitely generated Z-module
that is torsion free over A. Suppose that exyM is a reflexive A—module for each F-open full
subgraph H of G. Then L(M) is a flabby sheaf on G; we have a natural isomorphism

erM > T(H, L(M)) (2)

for each F-open full subgraph 'H of G.

Proof: Proposition 2.16 says that we have for each F-open full subgraph H of G an iso-
morphism
geH: €HM - F(C(eHM))
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By (1) and 3.7(1) we have a natural isomorphism
(G, L(enM)) = T(L(M)[H]) — T(H, L(M)).

Composing these maps we get (2).

Going through the construction one checks that the map in (2) sends any eyv with
v € M to the family of all e, e v = e, v with  running over all vertices belonging to H.
So we have a commutative diagram

ML T

| !

where the lower horizontal map is the one from (2), the left vertical map sends any v € M
to env, and the right vertical map is the restriction of sections for the sheaf £L(M). The

two horizontal maps are isomorphisms and the left vertical map is clearly surjective. It
follows that also the right vertical map is onto for all H. So £(M) is flabby.

3.15. (Base change) Let A’ C @ be the localisation of A with respect to some mul-
tiplicative subset of A. Let M be an A-sheaf on G. If M is flabby, then Lemma 2.7.a
shows that M ® A’ is flabby. Furthermore p? and p, p for M ® A’ identify with p ®ida/
and p, p ®idas where p2 and p, p denote the maps for M. We get for all vertices x that
M@ Ao = Mo, @ A" and M@ A')jy) = My @ A

If M is an A-sheaf, then (M ® A")[H] = M[H]® A’. If an A-sheaf P is F-projective,
then P ® A’ is an F-projective A’—sheaf. We get Va/(z) ~ V(z) @ A'.

3.16. Set Sy equal to the localisation of S at the maximal ideal m = S(V)V.

Lemma: Let z € V and let f € Hom(B(2) ® Sy, B(2) @ Sw). If f. is bijective, then f is
an isomorphism.

Proof: We want to show inductively for all x € V that f, and all fgp with £ € D, are
bijective. By assumption this holds for z = z since (B(z) ® Sm)g =0 for all E € D,.

Take now = # z and suppose that the claim holds for all y < x. Consider some
E € D, and set y = ag; we have y < z. The construction of B(z) shows that p, g induces
an isomorphism

(B(2) @ Sm)y/ap(B(2) ® Sm)y — (B(2) @ Sm)E, (1)

cf. 3.5(4). By induction f, is bijective. Therefore f, induces a bijection on the left hand
side of (1). This bijection corresponds to fg under the isomorphism in (1). Therefore also
fE is bijective.

We get also that f induces bijections on I'(G.,, B(z) ® Sn) and on (B(z) ® Sm)sz-
Now p, p induces an isomorphism

(B(2) @ Sm)a/m(B(2) ® Sm)a — (B(2) ® Sm)oa/m(B(2) ® Sm)oa- (2)
This isomorphism is compatible with the maps induced by f on both sides. We know
already that f induces a bijection on the right hand side. Therefore f, induces a bijection

on the left hand side. It follows that f, is bijective because Sy, is a local ring with maximal
ideal mS,, and because (B(z) ® Sy ). is a free Syy—module of finite rank.
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Remark: The lemma implies that B(z) ® Sy, is an indecomposable Sy,—sheaf. Indeed, if
B(z) ® Sy = M @ N, then we may assume that M, = (B(z) ® Sy ). and N, = 0 because
Sm =~ (B(2) ® Sm) - is indecomposable. Define now f € Hom(B(2) ® Sm, B(2) ® Sm) as the
projection B(z) ® Sy, — M with kernel N followed by the inclusion of M into B(z) ® Sy.
The lemma implies that f is an isomorphism. It follows that AV = 0.

3.17. Proposition: Let P be an F-projective Sy, —sheaf of finite type on G. Then there
exists an isomorphism of sheaves

P~B(21)®Sm ® B(22) @ Sm DD B(2s) @ S (1)

with suitable vertices z1,zo, ..., 2s.

Proof: One proceeds as in the proof of Proposition 3.12 ignoring all statements involving
the grading. In the last paragraph a modification is needed. Since g, is an isomorphism,
the equation g = g o 1) o ¢ implies that (¢ o ), is an isomorphism. Then Lemma 3.16
yields that 1) o ¢ is an isomorphism and we can conclude as in 3.12.

Remark: One can show that the z; in the proposition are uniquely determined by P up to
order: Look at the ranks of all P,.
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4 Representations

For the background on semi-simple Lie algebras assumed in 4.1 you can consult [Hul]
or ch. 1 of [Di]. For Verma modules, see ch. 7 in [Di] or ch. 1 in [Ja] or the forthcoming
book [Hu2] by Humphreys.

4.1. (Semi-simple Lie algebras) Let g be a finite dimensional semi-simple Lie algebra
over C and let h be a Cartan subalgebra of g. If a is a Lie subalgebra of g, then we denote
by U(a) its universal enveloping algebra.

If M is an h—module and if A € h*, then we call

My :={veM|hv=Ah)vforal hebh}

the weight space of M for the weight A\. We say that \ is a weight of M if M, # 0.

Let ® C bh* denote the root system of g with respect to . So these are the non-
zero weights of g considered as an h—module under the adjoint action. We fix a positive
system ®* in ® and set nt = @ o+ 9o and 17 = P g+ 9o and b = h @ n". These
subspaces are Lie subalgebras of g; we have g = n~ @ h @& nt (as a vector space) and
[b,b6] = nT. We denote by < the partial ordering on h* such that A < y if and only if there
exist non-negative integers n,, o € ®*, such that g — \ = Y acot Nal

Let W denote the Weyl group of g with respect to h. This is a group acting on §
and bh*. It is generated by reflections s,, a € ®. The action of W on h* is determined by
Sa(A) =X — (N, a¥)a for all « € & and X € h* where o¥ € § is the coroot corresponding
to a. We often consider the dot action given by

WA =w(A+p) —p for all w e W and A\ € h*

where p = (1/2) > cot -

4.2. (Verma modules) For any A € h* let C, denote the b-module that is equal to C
as a vector space, where each h € h acts as multiplication by A(h) and any x € n™ as 0.
The induced g-module

M(\) =U(g) ®u(p) Ca

is called the Verma module with highest weight A. It is the direct sum of its weight
spaces M (X),, p € b*, and all weights p of M(A) satisfy p < A. All weight spaces are
finite dimensional and M (A)y = C(1 ® 1) has dimension 1. The map v — u ® 1 is an
isomorphism of U(n™)-modules U(n™) — M(\).

It is easy to show that M ()A) has a unique simple factor module; it will be denoted
by L(A). This simple g—module is characterised by the fact that it is the direct sum of its
weight spaces, that all weights p of L(A) satisfy p < A\ and that L(\)y has dimension 1.

Using the structure of the centre of U(g) it is not difficult to show that each Verma
module has finite length. All composition factors have the form L(u) with p < A and
w € Wek. We denote by [M(N) : L(p)] the multiplicity of L(u) as a composition factor
of M(\). We have [M(\) : L(\)] = 1.
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A theorem, conjectured by Verma and proved by Bernstein, Gel’fand, and Gel’fand,
gives precise information as to when [M(X\) : L(u)] # 0. For the sake of simplicity I shall
formulate the result only in a special case.

One calls X\ € b* integral if (\,a") € Z for all « € ®. One calls A € b* regular if
(A+ p,a¥) # 0 for all @ € ®; this is equivalent to the condition that the map w — we
is a bijection W — WA, If A is regular (resp. integral), then so are all elements in WeA.
An integral and regular element A\ € h* is called antidominant if (A + p,a) < 0 for all
a € T, If u € h* is integral and regular, then W.u contains exactly one antidominant
element.

Fix A € h* that is integral, regular, and antidominant. The result proved by Bernstein,
Gel'fand, and Gel’fand says for any w,w’ € W that [M(ws)) : L(w’s\)] is non-zero if and
only if w’ < w in the Bruhat ordering < on W, cf. 1.13.

While this result was proved using only methods from representation theory, the
determination of the exact values of the multiplicities required quite different techniques.
Kazhdan and Lusztig conjectured that [M(ws)\) : L(w’sA)] should be the value at 1 of a
certain Kazhdan-Lusztig polynomial. This conjecture was proved by Brylinski & Kashiwara
and independently by Beilinson & Bernstein. We shall return to this point in 4.23 and
shall not use the result until then.

One special case of the conjecture was easy: If A € h* is integral, regular, and an-
tidominant, then

[M(weA) : L(N)] =1 (1)
for all w € W. For example, this follows from Satz 2.23.b in [Ja].

4.3. (Category O) Bernstein, Gel'fand, and Gel'fand introduced a nice category, the
category O, containing all M (u) and L(u). It consists of all g-modules M such that
(A) M is finitely generated over U(g).
(B) M = @)\eh* M)\-
(C) We have dimU (n") v < oo for all v € M.
These conditions imply that M has a finite chain of submodules M = M; D My D --- D
M, D M, 11 = 0 such that each factor M;/M; 1, 1 < i <r, is a homomorphic image of a
Verma module. It follows that M has finite length and that the simple modules in O are
exactly all L(u) with u € h*.

One says that a module M in O has a Verma flag if there exists a finite chain of

submodules
M:MlDMQD"'DMTDMT+1:O

such that there exists for each i a weight p; € b* with M;/M; 1 ~ M(u;). Looking at
dimensions of weight spaces one checks for each p € h* that the number of ¢ with u; = u
is independent of the choice of the chain. We denote this number by (M : M (u)).

The main result in [BGG| says that the category O contains enough projectives. For
each A € h* there exists a projective cover P(A) of L(A) in O. Furthermore, each P(\)
admits a Verma flag and we have the reciprocity law

(P(A) s M(p)) = [M () : L(N)] (1)
for all A\, u € h*.
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4.4. (Deformed Verma modules) If A is a (commutative and associative) C—algebra,
then we set g4 = g ®c A and, more generally, a4 = a ®c A for any Lie subalgebra a of g.
The enveloping algebra U(ga) of the Lie algebra as over A can then be identified with
U(a) ®c A. We identify h* = Homu(ha, A) with h* ®c A.

Set S = U(h); since b is commutative, S coincides with the symmetric algebra of b.
Let A be a (commutative) S—algebra (and hence by transitivity a C—algebra). Let 7:h — A
denote the composition of the inclusion h — S(h) = S with the homomorphism S — A
that makes A into an S—algebra. Then 7 is C—-linear and we extend 7 to an A-linear map
ha = h®c A — A; we denote this extension again by 7.

Any X\ € h* defines an A-linear map A®ida:ha = hRc A — C®c A = A. By abuse
of notation we write again A for this element of h%. We then denote by Ay the bs—module
that is equal to A as an A-module, where each h € 4 acts as multiplication by (A+7)(h)
and where each x € nj acts as 0. Note the occurrence of 7; so we do not get Ay from Cjy
by extension of scalars. We then call

Ma(A) =U(ga) ®usa) Ax

a deformed Verma module. The map u — u ® 1 is an isomorphism of U(n},)-modules
Ulny) — Ma(N).
In this set-up it is appropriate to define weight spaces in an h4—module M by setting

My={veM|hv=A+7)(h)viorall hebha}.

Then M () is the direct sum of all M4 (\), with © € b*, and M4(X), # 0 implies p < A
All M4(X), are free A-modules of finite rank; in particular M4(A\)y = A(1 ® 1) is free
of rank 1. We have M4(\) = U(ga)Ma(\)x; therefore any endomorphism of M4()) is
determined by its restriction to M4(\)x. It follows that

EndgA MA(A) = AidMA()\)

as Ma(M\)y ~ A.
Note: If we take A = 5/Sh ~ C, then 7 = 0. In this case the present definition of M)
coincides with that from 4.1 and M4 () is just the old Verma module from 4.2.

4.5. (Deforming O) Let again A be an S—algebra. We generalise the definition of
the category O and define now a category O4 that contains all M4(\). It consists of all
ga—modules M such that

(A) M is finitely generated over U(ga).

(B) M = @,y M.

(C) Each dimU(n})v < oo with v € M is finitely generated over A.

These conditions imply that M has a finite chain of submodules M = M; D My D --- D
M, D M, ; = 0 such that each factor M;/M;,1, 1 < i <r,is a homomorphic image of a
deformed Verma module M4 (). It follows that all M) are finitely generated over A. If
M and N are two modules in O4, then Homg, (M, N) is a finitely generated A-module.
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The category Q4 is closed under submodules, factor modules, and finite direct sums.
An extension of two modules in O 4 belongs again to O4 if the extension satisfies (B).

We denote by OXY the full subcategory of all M in O 4 admitting a Verma flag, i.e.,
a finite chain of submodules

M:MlDMQD"'DMTDMT_H:O

such that there exists for each i a weight p; € b* with M;/M; 1 ~ M4 (p;). If so, then we
have (M;41)x C (M;)x for all i and all A € b*, hence M; /M1 = @y (Mi)a/(Mit1)a
and thus (M;/M;11)x = (M;)x/(M;y1)x for all A. It follows that each M) is a free A—
module of finite rank and that each short exact sequence

O_>Mi—|—1 %MZ %MA(/LZ) —>0

splits as a sequence of A—modules. Furthermore, one gets as in 4.3 for each A € h* that
the number of ¢ with A\; = X is independent of the choice of the chain. We denote this
number by (M : Ma()\)).

If A is an integral domain, then Homg, (M, N) is a torsion free A-module for any M
and N in O} because N is torsion free.

If A" is a (commutative) A—algebra, then A’ is naturally an S—algebra. We can then
identify ay ® 4 A’ with a4 for any Lie subalgebra a of g. We get then for each A\ € h* a
natural isomorphism M4 (A) ®4 A" ~ M4/(\) of ga-—modules. If M is a g4—module in Oy,
then M ®4 A’ is a ga-—module in O 4/ and we have (M ®4 A"), = M,, @4 A’ for all 1 € h*.
If M belongs to OYF, then M ®4 A’ belongs to O%F and we have (M @4 A’ : Ma/(N)) =
(M : M4(N)) for all A € h*. (Here we use that any Verma flag splits over A.)

4.6. (The field case) Suppose that K is a field that is an A-algebra. In this case one
can proceed as over C. The point is that everything in 4.1-4.3 works equally well over
any field of characteristic 0 if one replaces g with a split semi-simple Lie algebra over that
field, cf. [Ja].

So one gets that each Mg () has a unique simple factor module; it will be denoted
by Li(A). Each Mg (u) and each M in Ok has finite length and all its composition factors
have the form Lg(A) with A € h*. The category Ok contains enough projectives. The
projective cover Px () of L (\) belongs to OYF and satisfies

(P (A) : Mg () = [Mk () = Lic(A)] (1)

for all p € b*.
We can in particular take K = S/Sh ~ C. In this case Ok is just the category O
from 4.3; we have Li (p) = L(p) and Pg(u) = P(p) for all p € b*.

As another extreme, consider a field K such that for each a@ € ® the image of o
in K does not belong to C. Then one gets Mg () = Lx(p) = Pg(u) for all p € b*.
Any module in Ok is semi-simple, and we have OYF = Og. This applies in particular to
K = @, the fraction field of S.
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Consider finally the following case: Suppose that there exists a positive root a such
that the image of o in K is 0 whereas for any other positive root 3 # « the image of 3V
in K does not belong to C. In this case one gets: If \ € h* satisfies (A + p,a¥) ¢ Z or
A+ p,a¥) =0, then Mg(N\) = Lrx(\) = P (\). If (A + p,aV) is a negative integer, then
Mg (M) = Lg()\) and we have a short exact sequence of gx—modules

0 — Mg (sqeA) — Pr(A) — Mg (A) — 0. (2)

If (A\+p, @") is a positive integer, then Mk (\) = Pk (\) and we have a short exact sequence
of gr—modules
0— LK<Sao)\) — MK()\) — LK()\) — 0. (3)

Here the description of the composition factors of Mg () follows from [Ja], Satz 1.8 and
Satz 2.16.b. Then one uses (1) to get the Px(\).

4.7. (The local case) We now consider the case where our S—algebra A is a local ring.

We also assume that A is noetherian and an integral domain. Let K denote the residue
field of A.

Proposition: (a) There exists for each X\ € h* a projective object P4(\) in O such that
Py(A\) @4 K ~ Pg(\). This module is indecomposable; it has a Verma flag and satisfies

(Pa(A) : Ma(p)) = [Mk (1) : Lic(A)] (1)

for all p € b*.
(b) Each projective object in O, is isomorphic to a finite direct sum of modules of the
form Pa(X\) with A € h*.

(¢) Let A" be an A-algebra. If P is a projective object in O 4, then P ®4 A’ is a projective
object in O 4 and the natural map

Homg , (P, M) ®4 A" — Homg ,, (P ®4 A", M ®4 A') (2)

is an isomorphism for any M in O4.

For a proof let me refer you to [F1], Thm. 2.7 and Prop. 2.4. Actually there one
deals with more general Kac-Moody algebras instead of just with our finite dimensional g.
This makes it necessary to work in [F1] with certain truncated categories OEV. We can
get rid of them here because the category O 4 splits into blocks and because in our finite
dimensional case each block is contained in a suitable (9%”.

Corollary: Fach object in O4 is a homomorphic image of a projective object.

Proof: Let m denote the maximal ideal in A. We have for each p € h* surjective homo-
morphisms

frMa(p) — Ma(p)/mMa(p) — Mg (u) — Li(p)

and
9: Pa(p) — Pa(p)/mPa(p) — P (n) — L (n).
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So there exists a homomorphism h: Py () — Ma(p) with foh = g. As f induces an iso-
morphism Ma(j1),,/mMa (), — Lic(w), and as Lic(w)s = g(Pa(),) = F(h(Pa(),)
we get Ma(p), = h(Pa(p)y) +mMa(p),, hence Ma(p), = h(Pa(p),) by the Nakayama
lemma. It follows that h is surjective because of Ma(u) = U(ga) Ma(p),.

Let now M be an arbitrary module in O4. Recall that M has a finite chain of
submodules M = My D My D -+ D M, D M,41 = 0 such that each factor M;/M; 1,
1 <4 <r, is a homomorphic image of a deformed Verma module M4 (u;), cf. 4.5. We get
now a surjective homomorphism f1: Pa(p1) — Ma(p1) — My /Ms, hence a homomorphism
91: Pa(p1) — My with g1(v) + My = fi(v) for all v € Pa(p1). It follows that M =
g1(Pa(p1)) + Ms. Now we use induction on 7 to get homomorphisms g¢;: Pa(p;) — M;
with M =371 gi(Pa(p)).

Ezamples: Suppose that A = S, is the local ring of S at a prime ideal p of height 1. So we
have p = S~ for some irreducible polynomial v € S. Assume in addition that the constant
term of v is 0. Recall that Ap is the maximal ideal in A.

We look first at the case where v ¢ CaV for all « € ®. Then each " is a unit in A.
Let us show that the residue class of ¥ in K does not belong to C. Well, assume that
z € C with a¥ — z € Ap. We get then oV — 2 € SN Ap = p = Sv. Both a¥ and ~ have
constant term 0. This implies that z = 0 and hence oV € Sy contradicting our assumption.
Now we get from 4.6 that Px(u) = Mk (p), hence that Pa(p) = Ma(p) for all p € bh*.

Consider now the case where p = SaV for some o € ®*. Now the image of " in the
residue field K of A is 0. On the other hand the argument above shows for all 3 € T
with 8 # « that the image of 3V in K does not belong to C.

Now the discussion at the end of 4.6 yields: Let u € b*. If (u + p, ") is a negative
integer, then there is an exact sequence

0 — Ma(saep) — Pa(p) — Ma(p) — 0. (3)
In all other cases one has Pa(u) = Ma(p).

4.8. (Hom spaces) Suppose that A C @ is the localisation of S with respect to some
multiplicative subset. So A is noetherian and integrally closed. If M is an object in OYF,
then M) is a free A-module of finite rank for each A € h*. So we can identify M) with the
A-submodule M) ® 1 of M) ®4 @ and we have, cf. 2.16(1)

MA = ﬂ M)\ ®a Ap
peP(A)

where P(A) is the set of all prime ideals in A of height 1 and where A, denotes the local
ring at p. Here also each M) ®4 A, is identified with a submodule of M) ®4 Q.
It follows that we can identify M and each M ®4 A, with a submodule of M ®4 @
and that
M= () M®aA,. (1)
peR(A)



60 J. C. Jantzen

Let also N be an object in O%¥. We get then
Homg, (M, N) = {¢ € Homg, (M ©4 Q, N ®4 Q) | o(M) C N }

and for all p
Homg, (M®aAp, N®aAp) ={p € Homg,(M®4Q, N®AQ) | p(M®4Ap) C N®aAy }.

Now (1) shows that

HomgA (M7 N) = ﬂ HomGAp (M ®A APv N ®A AP) (2)
pEP(A)

where the intersection is taken inside Homg, (M ®4 Q, N ®4 Q).
Note also that we have natural isomorphisms

Homg, (M, N) ®4 Ay — Homg, (M ®4 Ay, N ®4 Ay) (3)
and

Homg, (M, N) ®4 @ — Homg, (M ®4 Q, N ®4 Q). (4)

Here one has to be a bit careful since M is not finitely generated over A. However, we can
find finitely many weights A1, A2, ..., As € h* such that M =37, U(ga)M),. If we have
now ¢ € Homg, (M ®4Q, N®4Q), then we can find t € A, t # 0 such that ¢ p(M,) C Ny,
for all 4. It follows that to(M) C N and ¢ = (t¢) @t~ € Homg, (M, N) ®4 Q. One
argues similarly with the A,.

Remark: Consider for example A = S, where p = Sa¥ for some a € &+. Choose u € h*
such that (u + p,a") is a negative integer. Then 4.7(3) implies that Pa(p) ®4 @ is an
extension of Mg(u) = Pg(p) by Mg(sqept) = Po(Saep). It follows that Pa(p) ®4 Q =~
Mq(p) & Mg(sqep), hence that

(EndgA PA(M)) ©4 Q > Endg,, (MQ(M) @ MQ(SQ.M)> L0 xQ. (5)
One can show that this map induces an isomorphism
Endg, Pa(p) — {(u,v) € Ax A|u=vmodAa" } (6)

see [F1], Cor. 3.5.
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4.9. (Blocks) Suppose that A C @ is the localisation of S with respect to some
multiplicative subset. Assume in addition that A is a local ring (possibly the field Q).
The blocks over A are the equivalence classes for the smallest equivalence relation ~
on h* such that A ~ p whenever Homg, (Pa()), Pa(pt)) # 0. The equivalence class con-
taining a given p € h* will be called the block of u.
If A is a block over A and if M is a module in O 4, then we set

My = Z Z @ (Pa(p)). (1)

REA pc€Homg , (Pa(p),M)

One gets then

M =P M (2)
A

where A runs through the blocks over A. (Of course only finitely many summands are
non-zero.) If ¢o: M — N is a homomorphism in Oy, then clearly ¢(Mjy)) C Npa for all
blocks A. We get thus an isomorphism

Homyg , (M, N) = | [ Homg,, (Ma], Nia))- (3)
A

For any block A let O4 4 denote the full subcategory of all M in O 4 with M = M.
Then the category O, is the direct sum of all subcategories O4 a. These subcategories
are usually called the blocks of O4. A module M in OXF belongs to O4 4 if and only all
factors in a Verma flag of M have the form M4 (u) with p € A.

Ezamples: 1) In case A = @ then each Pg(p) = Mg(p) = Lg(p) is a simple module. It
follows that Homg,, (Po(u), Po(v)) # 0 if and only if 4 = v. Therefore the block of any
€ bh* is equal to {u}. The decomposition in (2) takes the form

M = P My, (4)

neD*

(after a minor simplification in the notation). Each M, is a direct sum of copies of Mg (u);
it is an isotypic component of the semi-simple module M.

2) Consider as in 4.7 the case A = S, where p = S7 is the prime ideal in S generated by
an irreducible polynomial v such that the constant term of ~ is 0.

If v ¢ CaV for all @ € @, then we saw in 4.7 that Pa(u) = Ma(u) for all p € h*. Tt
follows that Pa(u) ®4 @ ~ Mg (), hence for all p, v € h* using 4.8(4)

Homg , (Pa(p), Pa(v)) = Homg, (Mq(1), Mo(v)) = 0.

This shows for all € h* that the block of u is equal to {u}. If M is a module in OYF,
then each M, with € h* is a direct sum of copies of M(pu).

Suppose next that v = o for some o € ®*. Then 4.7(3) shows: If (1 + p,aY) is a
negative integer, then there is an injective homomorphism from M4 (Sqept) = Pa(Sqept) to
P4 (). So in this case p and s,ep belong to the same block. Tensoring with @ one checks
more precisely: If (u+p,a) ¢ Z or if (u+ p, ") = 0, then the block of y is equal to {u}.
If (u+ p, ") is a non-zero integer, then the block of u is equal to {u, Sqep}-



62 J. C. Jantzen

Remark: Let A again be general. Consider a block A over A and a module M in OYF.
Then one gets

Mpn®aQ=PMe4Q)y and My =MnEPMesQ)- (5)
HEA HEA

4.10. Suppose that A C @ is the localisation of S with respect to some multiplicative
subset. Assume in addition that A is a local ring. Denote by K the residue field of A.
If M is a module in O%F, then we can apply 4.9(4) to M ® 4 Q and get a decomposition

M®asQ= @ (M ®a Q)[u] with (M ®a Q)[u] ~ MQ(N)(MZMA(M)) (1)
HED*

for all p € b*.

Proposition: Let P be a projective object in Oy, let p € h*. Then Homg , (P, Ma(p)) is
a free A—module of rank (P : Ma(p)).

Proof: We know by Proposition 4.7 that there exists an isomorphism P ~ ;_; Pa(\;)
with suitable \; € h* and that P has a Verma flag. Furthermore we get

S S

(P:Ma(p) =) (Pa(A) : Ma(u) = > [Mx(u) : Lc(A)]

i=1 =1
— Z dim Homg, (Pr (\;), Mk (1))

i=1
= dim Homyg, (P ®4 K, Ma(p) ®4 K).
We get from Proposition 4.7 also that
Homg, (P ®a K, Ma(pn) ®4 K) >~ Homg , (P, M4(11)) ®a K
~ Homyg,, (P, Ma(p)) /m Homg , (P, M (1))
where m is the maximal ideal of A. We can now choose fi, fo, ..., fr in Homg, (P, M4 (1))

such that their residue classes modulo m form a basis for Homg, (P ®4 K, Ma(p) ®4 K).
We have r = (P : M 4(p)); the Nakayama lemma implies that

Homg, (P, Ma(p)) = > A fi.
=1

Now 4.8(4) shows that the f; ® 1 generate Homg,, (P ®4 Q, Ma(p) ®4 Q). Applying (1)
to P, we see that this Hom space has dimension (P : Ma(u)) = r over Q). Therefore the

fi ® 1 are linearly independent over (), hence the f; over A. So they form a basis for
Homg , (P, Ma(p))-

Corollary: Let P be a projective object in O4 and let M be a module in OYF. Then
Homg, (P, M) is a free A-module of finite rank.

Proof: This follows by induction on the length of a Verma flag. One uses that Homg, (P, )
is exact because P is projective.
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4.11. Suppose now that A is the local ring of S at the maximal ideal Sh. So the residue
field of A is equal to C and C gets thus the S—algebra structure as S/Sh.

Let A € b* be regular, integral, and antidominant. Then the block of A is equal to
WeA; this follows from the analogous result for the residue field C. Set (’)XF)\ equal to

the full subcategory of all M in OYF that belong to the block O4 w.», i.e., such that all
factors in a Verma flag of M have the form M (p) with p € WeA. For M in (’)Xg\ we
slightly change the notation from 4.10(1) and write

(M ®4Q)w=(M®aQ)w.  forallweW.

We have then
MesQ= P (M Q)u. (1)

weW

By Proposition 4.7.a there exists a projective indecomposable object P4(\) in Oy
with P4(A) ®4 C ~ P(X). This module has a Verma flag. Each M4 (we)) with w € W
occurs with multiplicity 1 as a factor in a Verma flag of P4()), cf. 4.2(1). So we get

(Pa(A) ®a Q)w = Mg (wel) for each w € W.

We get thus natural isomorphisms

Endg, (Pa(d) @4 Q) == ] Endg,(Pa(d) @4 Q) — [] @ (2)

weW weW

Recall from 4.8(4) the isomorphism
(Endg, Pa(A)) ®4 Q — Endg, (Pa(A) ®4 Q).

We get now via ¢ +— ¢ ® idg an embedding

Endg, Pa(\) — [] @ (3)

weWw

Proposition: The image of (3) is the set of all W—tuples (tuy)wew € [[,cw A with

U = Us,w mod Aa (4)
forallwe W and o € ®.
Proof: We get from 4.8(2)
Endg, PO = [ Endg,, (Pa()) @4 4,). (5)
peP(A)

A prime ideal p € PB(A) has the form p = A~y with ~ an irreducible element in S, cf. 2.15.
The constant term of 7 is 0 since otherwise v is a unit in A. The local ring A, coincides
then with SpﬂS = SS’y~
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If v ¢ CaY for all € ®, then the examples in 4.7 yield M4, (ws)) = P4, (ws)) for
all w € W. A look at the Verma flag of P4(\) shows now that the block decomposition of
Pa(M\) ® Ay has the form

PA()\) ®A Ap ~ @ (PA()\) XA Ap)[w,)\] with (PA()\) XA Ap)[w.)\] ~ PAP (w.)\)
weW

for all w € W. Furthermore (P4 (A)®4 Ap)jwer] = Pa(A) @4 ApN(Pa(N) ®4Q)w, cf. 4.9(5),
shows that (3) induces an identification

Endg, (PaN)®ady) =[] 4 ] @ (6)

weW weW

Suppose now that v € CaV for some o € . Set W = {w e W | wla € T }.
Then W is the disjoint union of W’ and s,W'. Each {we)\, sqweA} is a block over A,. We
have (w(A+p),a’) < 0and (sqw(A+p),a”) > 0 for all w € W’. The block decomposition
of P4(\) ® A, has the form

Py(A) @4 Ap =~ @ (Pa(A) @4 Ap)fwe,sawe]-

Each (P4(A) ®4 Ap)[wer,sawen] has a Verma flag with factors My, (wed) and My, (sqws),
both occurring once. Since P4(\) ®4 Ay is projective, the examples in 4.7 yield

(PA()\) ®A Ap)[woA,sawo)\] ~ PAp (w.)\) for each w € W'.

We get now
Endg, (Pa(A)®4 A4p) ~ [] Endg,, Pa,(w.))
weW’
and we know by 4.8(6) that
Endg, Pa,(w.)) — {(u,v) € Ay x Ap | u=v mod Apa" }. (7)

Both isomorphisms are compatible with (3).

It is now clear that any family as in the proposition belongs to the image of (3).
Consider conversely a family (uy)wew in the image of (3). Using (6) and (7) one gets
Uw € DPE‘B(A) A, = A for all w € W. Using (7) we get for each o € &1 the additional
condition that

Uy — Us w € A(AQV)aV NA=Aa"

for all w e W.



Moment graphs and representations 65

4.12. (A functor to sheaves) Keep A and X as in 4.11. Proposition 4.11 implies
that we can identify Endg, Pa(\) with the structure algebra of a moment graph G: We set
Y = W. Two vertices w and w’ are joined by an edge if and only if there exists o € ®* with
w’ = s,w; if so, there is only one edge E joining these vertices and we set ap = V. We
define the ordering on V such that w < w’ if and only if weA < w’e\. This is a refinement
of the Bruhat ordering on W: If w < w’ in the Bruhat ordering, then also w < w’ in our
ordering that depends on A, but the converse does not hold in general.

In the following we only consider A-sheaves on G and call them simply sheaves. As
stated above we identify

Z = 2Z(G) =Endg, Ps()N). (1)
For any M in OYY set
’ VM = Homyg, (Pa()\), M). (2)

Since Z = Endg, Pa()) is commutative, each VM has a natural structure as a Z—
module. It is clear that V is a functor from (’)X’FA to the category of Z-modules. This
functor is exact because P4(\) is projective.

By Corollary 4.10 each VM is free of finite rank as an A-module. We can therefore
apply the functor £ from 2.10 to VM and get a sheaf L(V M) of finite type on G. We get
thus a functor M — L(VM) from O%E to the category of sheaves of finite type on G. We
are going to investigate this functor. 7

Lemma: The moment graph G is a GKM-graph.
Proof: As for the example following the definition in 2.15.

4.13. In order to calculate the functor £ we have to know the idempotent elements e,,,
w € W. Under the isomorphism

Z®4Q > Endg, (PaN) ®4Q) = [] @
zeW
e corresponds to the map
Pa(A) ®4 Q — (Pa(A) ®4 Q)uw — Pa(A) ®4 Q
where the first map is the projection with kernel B, _,,(Pa(A) ®4 Q). We get

ew [ = (f ®@idq) 0 ew (1)
for any f € VM = Homg, (Pa(A), M) and for any M in OXS.
Proposition: (a) Let w € W. Then L(V Ma(w.))) is the Verma sheaf V4 (w).

(b) Let M be a module in OXS. Then the A—module VM 1is free of finite rank. The map
gVM: VM — T(L(VM)) is an isomorphism.

Proof: (a) Proposition 4.10 implies that VM 4(we) is a free A-module of rank 1. Choose a
basis f. Since Homg,, (Mg (we)), Mg(ws))) = 0 for all z # w, we get e, f = (f®idg)oe, =
0 for all x # w. It follows that e, f = 1 f = f. Now a comparison with 3.11 yields
L(VM4(wel)) ~ Va(w).

(b) Corollary 4.10 yields the first claim. The second one follows now from Proposition 2.16
and Lemma 4.12.
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4.14. (In this and the following subsection A can be any S—algebra.) Let D be a subset
of h* with the following property: If A € D and p € h* with u < A, then also p € D. We
set for any module M in O4

OPM =Y U(ga)M, and  M[D]=M/O"M. (1)
ngD

For example, we get for any p € h*

T (R T S N T
In case p ¢ D one uses that Ma(p) = U(ga)Ma(p),, in case p € D one observes that
Ma(p), # 0 implies v < p, hence v € D.
Any homomorphism f: M — N in O restricts to a homomorphism OPM — OPN as
f(M,) C N, for all p € h*. It follows that f induces a natural homomorphism M[D] —
N[D]. Both M — OPM and M ~— M|[D] are functors from O, to itself.

Proposition: Let p € h*, let 0 = N — M — Ma(pn) — 0 be a short exact sequence
in Oa. Then the sequences

0—OPN —OPM — OPMy(p) — 0 (3)

and
0 — N[D] — M[D] — Ma(u)[D] — 0 (4)

are exact.

Proof: We may assume that N is a submodule of M. Then it is clear that OP N is
a submodule of OP M. Denote by ¢ the map M — M(u) in the original short exact
sequence.

Consider first the case where p € D. Then all weights v of M 4(p) satisfy v € D. Since
0— N, - M, — Mu(pn), — 0is exact for all v € h*, we get now that M, = N, for all
v ¢ D, hence that OP N = OP M. Together with (2) this yields the exactness of (3) in this
case. With respect to (4) observe that the map N[D] — M|[D] is the inclusion of N/OP N
into M/OPN = M/OP M. So its cokernel identifies with M/N ~ M (u) = Ma(u)[D].

We are left with the case p ¢ D. Since M4(p), is free of rank 1 over A and since
Ma(p)y = @(M,) for all v, we can find v € M, with M4(pn), = Ap(v). Then the
composition u — uv — p(uv) = up(v) is a bijection U(n}) — M4 (p). It follows that

M=NaUn;)v.
This is a decomposition as an h4-module. We get therefore M, = N, & (U(ny,)v), for all

v € bh*. It follows that
OPM =OPN +U(ga)v.
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The triangular decomposition of g4 yields U(ga)v = U(ny)v + U(ga)nTv. We have

p(nfv) = nlp(v) = 0, hence nf{ v C N. Since njv C B g+ Myta, we get even nfv C

OP N, hence U(ga)v C U(ny)v+ OPN. It follows that
OPM =O0PNaU(@n,)v.

This shows that NNOPM = OP N and that p(OP M) = M (). So we get the exactness
of (3). We see also that M = N + OP M. Therefore the exactness of (4) is just the fact
that the map

N/OPN = N/(NNOPM) — (N + 0P M)/OPM = M/OP M

is an isomophism.

Corollary: If M belongs to OXY, then both OP M and M[D] belong to OYF. We have

then
(OPM = My(p)) = {éM - Mal)) z;llj i g:

and

' _fo ifp¢D,
(M[D] : Ma(p)) = { (M : Ma(p) z’f//j i D,

for all p € b*.

Proof: This follows immediately from (2) and the proposition using induction on the length
of a Verma flag of M.

Remark: Let D’ be another subset of h* satisfying the same assumptions as D. Suppose
that D’ € D. We get then for each M in O 4 an inclusion OP M < OP’ M and a surjection
Y: M[D] — M[D’]. If we divide the short exact sequence 0 — OP'M — M — M[D'] — 0
by OPM, then we get a short exact sequence

0 — OPM/OPM — M[D] - M[D'] — 0.

Let m: M — M|[D] denote the natural map. Since w(M,,) = M[D], for all u € h*, we get
OP'(M[D]) = 7(OP M). So we can rewrite our short exact sequence as

0 — O (M[D]) — M[D] % M[D'] — 0. (5)
4.15. Keep the assumption on D from 4.14. Consider a short exact sequence
0—L-25 M- N0

in Oy4.
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Proposition: If N belongs to O%F, then the sequence
0 — L[D] — M[D] — N[D] — 0

18 exact.

Proof: We use induction over the length of a Verma flag of N. The claim is obvious for
N =0. If N # 0, then we choose a submodule N’ of N such that N’ belongs to OY* and
such that N/N’ ~ M4 (u) for a suitable p € h*. Setting M’ = 1~ 1(N’) we have a short
exact sequence

0—-L—M — N —0.

Consider now the commutative diagram

The first column and the third row are trivially exact. The other columns are exact by
Lemma 4.14, the first row is exact by induction. Now the 9-lemma yields the exactness of
the middle row, since the composed map L[D] — N|[D] is clearly 0.

Remark: In case A is local and satisfies the assumptions in 4.7, one can also proceed as
follows: Observe first that the functor M — M][D] is right exact. Since O4 has enough
projectives, we can use projective resolutions to compute left derived functors. Now one
has to show that the higher derived functors vanish on O%F. Here one uses that one has
for each u € h* a short exact sequence

0= N — Pa(p) — Ma(p) =0 (1)

with N in OYF. In order to construct (1) one chooses D = {v € h* | v < u} and checks
that Pa(u)[D] ~ M () for this choice. This follows from 4.7(1).
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4.16. From now on A is again the local ring of S at Sh. We return to the set-up from 4.12.
Let H = (V', &', &/, <’) be an F-open full subgraph of G. Set D equal to the set of all v € h*
such that there exists € V' with v < z.\. Then D satisfies the assumption in 4.14. Since
H is F-open, we get for any w € W that weA € D if and only if w € V'.

For any M in (’)XF)\ set

O"M =0PM and  M[H] = M[D]. (1)

Then both O M and M[H] belong to O}Y. The factors in a Verma flag of O™ M have
the form M4 (we\) with w ¢ V', those for M[H] he form M 4(we\) with w € V'.
Set (asin 3.14) ey = >y €o-

Lemma: There is a natural isomorphism e VM — V(M[H]).

Proof: The short exact sequence
0—O"M — M £ M[H] — 0 (2)
induces a short exact sequence
0— V(O"M) — VM Y& V(M[H]) — o. (3)

We want to show for any f € VM that Vo (f) = 0 if and only if e f = 0.

The go-module M ®4 Q is semi-simple and O M ®4 Q is the sum of its isotypic
components of type Mg (z+)) with z ¢ V'. This implies Homg,, (Mg (weA), 07" M®4Q) = 0
for all w € V. If f € VO™M, then we get now (f ® idg) o e,, = 0, hence e,, f = 0 for all
w € V', hence ey f = 0.

Consider on the other hand f € VM with exf = 0. Then f ® idg annihilates all
summands (Pa(\) ® Q)w ~ Mg(we\) with w € V'. Therefore the image of f ® idg is
contained in O"M ®4 Q. (Recall the description as a sum of isotypic components.) It
follows that

f(PAN)) CMN(O"M ®4Q)=0"M

where the equality holds because (2) splits over A. (All modules are free over A.) We get
thus f € VO M.

Now (3) shows that we get an isomorphism ey VM —— V(M[H]) mapping any ez f
with f € VM to Vo (f).

4.17. Proposition: Let M be a module in OXY. Then the sheaf L(V M) is flabby. There
1s for each F-open full subgraph 'H of G an isomorphism

D(H,L(VM)) — V(M[H]). (1)

For each x € W the A-module L(V M)y is free of rank (M : Ma(x.)))

Proof: We get from Proposition 4.13.b and Lemma 4.16 for any H as in the proposition
that e VM ~ V(M[H]) is a free A—module of finite rank. So Proposition 3.14 yields the
flabbiness and the isomorphism in (1).
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Fix now z € W. The inclusion of the full subgraph G-, in G<, yields by 4.14(5) a
short exact sequence

0 — 09<=(M[Ge,]) — M[G<,] 2 M[G<y] — 0.

Set N = 0Y9<=(M[G<,]). Using Corollary 4.14 one checks that N has a Verma flag of
length (M : Ma(z.))) with all factors isomorphic to Ma(zs)).
Applying V we get a short exact sequence of Z—modules

0= VN — V(M[G<,]) ~% V(M[Gey]) — 0.

We use Lemma 4.16 to identify V(M [G<.]) with eg_, VM and V(M[G_,]) with eg_, VM.
Then V4 is given by u +— eg_ u. Therefore Vi corresponds under the isomorphism (1)
to the restriction map

[(G<a, LIVM)) — T(G<a, LIVM))
with kernel £L(V M)y, see 3.13(1). We get thus an isomorphism £(V M), ~ VN. Now

the last claim follows from the description of the Verma flag of V.

Corollary: If0 — L — M — N — 0 is a short ezact sequence in OY", then the sequence
0—-T(H,L(VL)) = T(H,L(VM)) - T(H,L(VN)) =0

is exact for each F-open full subgraph H of G.

Proof: This follows from (1) and Proposition 4.15

4.18. We want to show: If P is a projective object in O 4, then £(V P) is an F-projective
sheaf. Any image under L is generated by global sections, see 2.17(A). Proposition 4.17

implies that £(V P) is flabby. So the first condition (A) in 3.8 is satisfied. We now want
to prove 3.8(B).

Lemma: If P is a projective object in Oy, then any L(VP), with w € W is a free
A-module of rank (P : Ma(ws))).

Proof: Set = weX and r = (P : M4(weX)). Recall that L(VP),, = e, VP by definition.
We want to show that there exists an isomorphism of A—modules

ew VP —= V(Ma(p)"). (1)
Since V(M a(p)") is free of rank r over A (cf. Proposition 4.10), this will imply the lemma.

We know by Proposition 4.10 that Homg, (P, Ma(p)) is a free A-module of rank r.
Choose a basis fi, fa,..., f, for this module. Denote by f the homomorphism

fiP— Ma()", 0= (f1(v), f2(0), -, fr(v)). (2)
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Then f induces an A-linear map V f: VP — V(M4 (p)"); we want to show for any g € VP
that
Vf(g) =0 < eug=0. (3)

It follows from 4.8(4) that the f; ® 1 are a basis for Homg, (P ®4 Q, Ma(p) ®4 Q).
Looking at the decomposition P ®4 Q = @, cy (P ®4 Q)» we see that f ® 1 has kernel

D20 (P ®4 Q)s and restricts to an isomorphism (P ®4 Q)w — Mg(p)".
Consider now g € VP = Homg , (Pa(A), P). We have

cwg =0 = (9@ 1) (P ®aQ)w) = 0.

Since (¢ ® 1) (P ®4 Q).) C (P ®4 Q), for all x, this condition is equivalent to
(9®1) (P®aQw) C PP @sQ)s =kerf@1,
THwW
hence to (f ®1)o(g® 1) =0, hence to 0 = fog=Vf(g). This proves (3).
We get thus a well-defined injective homomorphism of A-modules

ewVP — V(Ma(p)") with e,g — V f(g) for all g € VP. (4)

Now (1), and hence the lemma, follow once we show that this map is surjective. But that
amounts to proving that Vf: VP — V(M4 (u)") is surjective. By the Nakayama lemma it
suffices to show that V f becomes surjective after reduction modulo the maximal ideal m
of A. By 4.8(3) the reduction modulo m of V f identifies with the map

Homg(P(\), P ®4 C) — Homg(P(X\), M (1)"), g— fog (5)

where f: P®4 C — M(u)" is the reduction modulo m of f.

By 4.8(3) the reductions modulo m of the f; are a basis for Homg(P ®4 C, M (p)).
Furthermore P® 4 C is a projective object in O, see Proposition 4.7.c. Therefore our claim
follows now from part (b) in the following lemma:

4.19. Lemma: Let p € We.
(a) We have dim Homg (M, M (p)) < dim Homg(P(\), M) for any M in O.

(b) Let P be a projective object in O. Choose a basis fi, fa,..., fr for Homg(P, M(p)).
Denote by f the homomorphism

fiP— M), v (f1(v), f2(v), - fr(v), (1)
Then the map
Homg(P(X), P) — Homg(P(X), M (1)"), g— fog (2)

18 surjective.
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Proof: (a) The module M()) is simple. By a theorem of Verma there exists an injective
homomorphism of g—modules g: M (\) — M (u), cf. [Di], 7.6.23. The image of ¢ is the only
simple submodule of M (), hence equal to its socle, cf. [Ja], Bemerkung 3 in 5.3.

Since P()) is a projective cover of L(A) = M (X), we have a surjective homomorphism
m: P(X\) — M(X). Then gom is a non-zero homomorphism P(\) — M (u) with image equal
to the socle of M (). It is in fact a basis for Homg(P(X), M (1)) since this Hom space has
dimension [M (u) : L(\)] = 1.

Consider the bilinear pairing

Homg(P(\), M) x Homg (M, M (1)) — Homg(P(N), M (n)) ~ C, (p, ) — o

The claim follows if we can show for any ¢ € Homg(M), M (u)), ¥ # 0, that there exists
¢ € Homg(P(X), M) with 1 o ¢ # 0.

Well, ¢» # 0 implies that (M) contains the socle g(M(\)) of M(u). Set N =
Y~1(g(M(N))). Since P()) is projective, we get a homomorphism ¢: P(A\) — N with
Yn o p = gom. We have in particular that 1) o ¢ # 0, as desired.

(b) The map in (2) factors
Homg (P(\), P) — Homg(P(A), f(P)) — Homg(P(X), M(p)").
The first map is surjective since P(\) is projective. So it suffices to show that
Homg (P(A), f(P)) = Homg (P(A), M(2)").
We have dim Homg (P (\), M (p)") = r. Therefore it is enough to show that
dim Homg (P(N), f(P)) > 7.

Now (a) reduces us to showing that dim Homg(f(P), M (u)) > r.

Denote by m;: f(P) — M(u), 1 < i < r, denote the restriction to f(P) of the ith
projection M (u)" — M (p). It suffices to prove that the m; are linearly independent
over C. But if Y/, a;m = 0 with all ¢; € C, then 0 =Y., a;mi(f(v)) = Yi_; ai fi(v)
for all v € P, hence 2221 a;fi = 0. Since the f; are a basis, this yields a; = 0 for all i, as
desired.

4.20. Proposition: If P is a projective object in OXF, then L(V P) is an F-projective
sheaf.

Proof: The condition 3.8(A) holds by the introductory remarks in 4.18. So does 3.8(B)
by Lemma 4.18. It remains to check 3.8(C).
Consider x € W and a € &7 with ze\ < s,ze\. Let E denote the edge joining x

and s,x. We have to show that pf(g P) induces an isomorphism

L(VP),/a"L(VP), > L(VP)g. (1)
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Since pﬁ(gp) is surjective by 2.10(6) and since a¥ L(V P),, is always contained in the kernel

of pC(VP) it suffices to show that

ker pi (¥ ) € @V L(VP),. (2)

Since L(VP), is a free A-module and since A = (),cq4) Ap We have

L(VP),= (] L(VP)a®4 A, CLIVP), ®4Q,
pEP(A)

similarly for a¥£L(V P),. So it suffices to show that
ker p- ") ¥ (L(VP), 4 Ap) = Ve, (VP ©4 Ap) (3)

for all p € P(A).

Any p € P(A) has the form p = Ay with v € S an irreducible polynomial with
constant term 0. If Cy # CaV, then o" is a unit in A, and (3) is trivially satisfied. So
assume from now on that p = AaV.

Set W ={weW |w'ae®t} Foreach M in OY the block decomposition of
M ®4 Ajp has the form M ®4 Ay = P e (M @4 Ap)w Where each (M ®4 Ap)w has a
Verma ﬁag with factors of the forn My, (weA) and MAp (sqws\). We have

(M XA Ap)w =M ®Xa Ap N ((M ®A Q)w ©® (M XA Q)saw)

in the notation from 4.11(1).

Since P® 4 Ay is projective, any indecomposable summand of (P® 4 Ay )., is isomorphic
to Pa, (we)) or to Py, (sqweA). We have seen in the proof of 4.11 that (Pa(\) ®4 Ap)w ~
Py, (weA) for all w € W. Furthermore, we get

(Pa(A) @4 Ap)w = (ew + €sow) (Pa(A) @4 Ap).

Set y = sqx. Recall that VP(E) = (e, +¢e,)VP+a"e, VP and that ker p (E ) is the
set of all e;u with u € VP(FE) and eyu = 0, see 2.9(2). If u = (e, + ey)m + aVezve with
v1,v2 € VP, then eyu = 0 is equivalent to ey(ex—i—ey)vl = 0and e;u € aVey(L(VP)®aAy)
is equivalent to e, (e, + €y)v1 € a¥ey (L(VP)®4 Ap). Therefore it suffices to show that

{esulu€ (ex+e)VP eyu=0} Ca’e,(VP®a Ap). (4)

We can identify VP ® A, with

Homg,, (Pa(A) @4 Ay, P @4 Ap) = [] Homg,, (Pa(X) ®4 Ap)uw, (P ®a Ap)w),
weW’
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hence (e, +¢€,) (VP ® A,) with
Homg,, (Pa(\) @4 Ap)a, (P @4 Ap)s) ~ Homg,, (Pa, (o), (P @4 A,),).
And we have
ex(VP ®a Ap) = ex(es +ey) (VP @4 Ap) = ey Homg, (Pa, (zeA), (P ®a Ap)a).

So our claim will follow once we show: If f € Homg, (Pa,(zeA), (P ®a Ap),) with
eyf =0, thene,f € a’e, Homg, (Pa,(ze)),(P®aAp);). Here we can replace (P®4Ap),
by its indecomposable summands, hence by Pa, (xs)) and Pa, (ysA). We have P, (ys)) ~
My, (ysA), hence e, f = 0 for all f € Homg, (Pa,(xeA),Pa,(ysA)); so in this case the
claim is obvious.

It remains to look at

f€Endg, Pa,(zed)=Ap(es +ey) + ApaVe,,

cf. 4.11(7). If f = a(e; + €,) + ba¥e, with a,b € Ay, then e, f = ae,. So e, f = 0 implies
a =0, hence e, f = baVe, € aVe, EndgAp Py, (we)) as desired.

4.21. Proposition: The functors V and L induce natural isomorphisms
Homy, (M, N) — Homz(VM,VN) — Hom(L(VM),L(VN))

for any M and N in (’)X’FA.

Proof: Propositions 4.13.b and 2.14 yield isomorphisms

Homz(VM,VN) -~ Homz(VM,T['(L(VN))) — Hom(L(VM),L(VN)).

The composition is the second isomorphism in the proposition.
Since VM and VN are free modules of finite rank over A, one gets

Homz(VM,VN)= (] Homzg,a,(VM @4 Ay, VN @4 A4p).
peEP(A)

A comparison with 4.8(2) shows that it suffices to show for all p € P(A) that V induces
an isomorphism

HOIIlgAp (M XA Ap,N®A Ap) AN HOHlZ®AAp(VM XA AP,VN®A Ap)

For this claim I have to refer to [F2], Thm 5.

Remark: We get in particular for any M in (’)XF)\ that LoV induces an algebra isomorphism
Endg, M — End L(VM).
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4.22. Theorem: We have LIV Pa(wel)) ~ B(w) ®g A for all w € W.

Proof: We know by Proposition 4.20 that £(V P4(we))) is F-projective, hence by Propo-
sition 3.17 isomorphic to a direct sum of suitable B(z;) ®g A with z; € W.

Since P4 (w.A) is indecomposable, the only idempotents in Endg, Pa(we)\) are 0 and 1.
Now the remark in 4.21 shows that 0 and 1 are the only idempotents in End £(V Pa(we])),
hence that £(V P4(w.))) is indecomposable.

So there exists z € W with L(V Pa(we)\)) ~ B(2)®gA. The construction of B(z) shows
that z is the smallest element = in W with B(z), # 0, hence with L(V Pa(ws)\)), # 0.
Now Lemma 4.18 implies that z is the smallest element x in W with 0 # (Pa(we) :
M (o)) = [M(xeX) : L(weA)], hence z = w.

Corollary: We have [M(xe)) : L(we\)] = rankg B(w), for all w,z € W.

Proof: We have [M(ze)) : L(we\)] = (Pa(weA) : Ma(ze\)) by 4.7(1). Lemma 4.18 shows
that this number is equal to the rank of the A-module £(V Pa(we))),. Now apply the
theorem.

4.23. (The Kazhdan-Lusztig conjecture) Let GV be a connected semi-simple alge-
braic group over C with a Borel subgroup BY and a maximal torus TV C BY such that
the root system of GV with respect to T identifies with the dual of the root system of
our Lie algebra g with respect to b.

We can identify the Weyl group of GV with respect to TV with our Weyl group W;
then (LieT"V)* identifies as a W-module with b, hence the symmetric algebra S((LieT")*)
with S = S(h).

Consider the TV—variety G¥/BY as in 1.13. We associate to this flag variety a moment
graph G’ as in 2.1 choosing its ordering <’ as in 3.6. Then G’ identifies with G as an
unordered moment graph, but the ordering differs. Denote by <p, the Bruhat ordering
on W. Then we have x <’ y if and only if y <g, . On the other hand, the ordering
introduced in 4.12 is a refinement of <g;.

Let B'(z) denote the Braden-MacPherson sheaf on G’ associated to some z € W. We
claim that there is a close relationship between these B’(z) and our Braden-MacPherson
sheaves B(w) on G. More precisely, we have for all w,z € W an isomorphism of S—modules

B(w)z >~ B (wwo) zw, (1)

where wq is the longest element in the Weyl group.

In order to check (1) consider an auxiliary moment graph Gp, that coincides with G
as an unordered moment graph and where we replace < by <g,. The first thing to observe
is that the B(w) are also the Braden-MacPherson sheaves for Gg,. This holds because we
have for any two vertices x and y joined by an edge in G (or, equivalently, in Gg,) that
x < y is equivalent to x <p, y. And a look at the construction of the Braden-MacPherson
sheaves shows that they only depend on the ordering of the vertices joined by edges.

Now (1) follows from the fact that we have an isomorphism Gg, —5 G’ of ordered
moment graphs that takes any vertex w to the vertex wwg. In order to check that this
map is compatible with the orderings one uses that x <p, y if and only if ywy <, xwq
(for any z,y € W).
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Now (1) combined with Theorem 3.6 and Corollary 4.22 yields
[M(2e)) : L(we)] = dime TH* (Cuwg ) {zwo} for all z,w € W (2)

where C,, = BYyBY/BY for all y € W. Now Kazhdan and Lusztig proved in [KL| that
the right hand side in (2) is the value at 1 of a certain Kazhdan-Lusztig polynomial. If we
plug this result into (2), then we get the statement of the Kazhdan-Lusztig conjecture.

4.24. 1 have followed here [F3], but made a few simplifying assumptions. For example, I
have restricted myself to integral A\. One can handle the general case in the same way if
one replaces W by the subgroup W, generated by all s, with (A, av) € Z.

Furthermore Fiebig shows that £ o V actually is an equivalence of categories be-
tween OX’F)\ and a suitable category of sheaves having an analogue to a Verma flag.

Then it should be said that Fiebig works not with finite dimensional semi-simple
Lie algebras, but more generally with symmetrisable Kac-Moody algebras. This leads to
several complications since in general the Weyl group (and hence the moment graph) is
not finite. However it turns out that one usually can restrict to finite subgraphs.

A more serious complication is the fact that in the Kac-Moody case no longer every
element in h* is conjugate under the Weyl group to an antidominant one. Using a tilting
functor one can also handle all weights that are conjugate to dominant weights. But
weights on the so-called critical hyperplanes cannot be treated by this approach.
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5 Representations in prime characteristics

5.1. (Semi-simple algebraic groups) Let k be an algebraically closed field of prime
characteristic p. Let G be a connected semi-simple algebraic group over k and T a maximal
torus in G. For the sake of simplicity let us assume that G is almost simple and simply
connected. (The results stated in 5.1-5.4 can be found in [Ja2].)

Denote by X (T') the lattice of characters on 7" and by Y (T") the dual lattice of cochar-
acters of T. Then X (T') contains the root system ® of G with respect to T. We choose a
set of simple roots II and set ®* equal to the set of positive roots defined by II. For any
root @ € ® we denote by a¥ € Y(T') the corresponding dual root. Our assumption that G
is simply connected implies that all ¥ with o € II form a basis for Y (T') as a free module
over Z whereas X (T') has a basis consisting of the fundamental weights w,, o € II.

Denote by X(T)*" = > oy Nw, the set of dominant characters on T (with respect
to our choice of IT). We have for each A\ € X(T')" a simple G-module L(\) with highest
weight A\. The map A — L()\) induces a bijection between the set of dominant weights and
the set of isomorphism classes of simple G-modules.

Set

Xp(T) ={ ) mawa |0<mq <pforallacll}
acll

Any X € X(T)" can then be written as A = "1, p'A; with \; € X,(T') for all ¢ (and with
suitable 7). Then Steinberg’s tensor product theorem says that

LA) ~ LX) @ L)Y @ L(A)P @ -+~ @ L(A)™

where an exponent (i) denotes a twist of the module with the i-th power of the Frobenius
endomorphism of G.

5.2. (The Lie algebra) Denote by g the Lie algebra of G and by h C g the Lie algebra
of T. Then g decomposes under the adjoint action of T" into the direct sum of h and the
root subspaces g,, @ € ®. Each g, has dimension 1; pick a basis element z,, for g, over k.

For each A € X(T) the tangent map d\:h — k is a linear form on . The map
A ® 1 +— dX\ induces an isomorphism

X(T)®z k — b*.

We have dually an isomorphism Y (T') ®z k — b. Denote by h, € b the image of a¥ ® 1
under this isomorphism (for any « € ®). Then the h, with o € II are a basis for h over k.

The Lie algebra g is restricted: It comes with a p-th power map = — z!P. For
example, one has ng] =0 and hk’] = h, for all a € .

A g-module M is called restricted if for each = € g the action of z!”! on M is the p-th
power of the action of x on M. It suffices to check this condition for all x in a basis for g
over k.

Any G—module is a restricted g—module under the derived action. A theorem of Curtis
says: Any L(\) with A € X,(T) is simple as a g-module; every simple restricted g-module
is isomorphic to L(A) for exactly one A € X, (7T).
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5.3. (g—7T—modules) A g—T-module is a vector space M over k that has both a structure
as a restricted g—module and as a T-module such that the two structures are compatible
in the following sense:

(A) The restriction of the g-action to h = LieT is equal to the derived action of the
T—action.

(B) One has Ad(t)(z)v=tat v forallt €T,z €g,ve M. (Here Ad(t) denotes the
adjoint action of t € T'C G on g.)

Note that a T-module structure on a vector space M over k is the same as a direct
sum decomposition M = ®A6X(T) My; then any t € T acts as multiplication by A(t) on
each M). Given this direct sum decomposition the condition (A) amounts to

hv=(d\)(h)v  forall h€ b, ve M, \e X(T). (1)

Furthermore (1) implies that (B) holds for all x € . Therefore (B) is equivalent to the
condition that

To My C Myiq for all « € ® and all A € X (7)) (2)

provided that (1) holds. Finally, the condition that M is restricted as a g—-module means
that

P M =0 for all o € ® (3)

once (1) holds because (1) implies that (hj; — hg) M = 0 for all § € ®.

These considerations show: Giving a vector space M over k a structure as a g-71—
module is the same as giving it a structure as a g—module with a direct sum decomposition
M = EBAGX(T) M) as a vector space such that (1)—(3) hold.

Any G-module yields a g—T—module if we restrict the action of G to T and if we
consider the derived action of g. A tensor product of two g—T-modules is again a g-7T-
module: Take the usual tensor product structures, both as a g—module and as a T-module.
In [Ja2] g—T—modules appear under the name of G;T-modules where G; denotes the first
Frobenius kernel of G.

5.4. (Simple and projective g—7T—modules) Any A € X (T') defines a one dimensional
g-T-module k) as follows: Any x € g acts as 0 on k,» whereas any t € T acts as multipli-
cation by (pA)(t) = A(t)P. (Note that (1) is satisfied since d(pA) = 0 in characteristic p.)

Any A € X(T) can be uniquely decomposed A = Ao + pu with Ay € X,(T") and
w € X(T). We then set

~

LO‘) = LO\O) ® kpu' (1)

Then L()) is a simple g-T-module since L()\o) is a simple g-module. One can show
that A\ — E()\) induces a bijection from X (7') to the set of isomorphism classes of simple
g—T—modules.

By Steinberg’s tensor product theorem we know the formal characters (i.e., the di-
mensions of the weight spaces for T') of all simple G-modules if we know the characters
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of all L(\) with A € X, (7). It is clearly equivalent to know the characters of all g-7—
modules L(\) with A €X (T'). These characters are in turn determined by all compositiion
multiplicities [Z(u) : L(\)] with A, u € X(T).

Here Z (1) denotes the baby Verma module with highest weight u. It can be described
as an induced module similarly to the definition of a Verma module in 4.2. But one
now has to replace enveloping algebras by restricted enveloping algebras. One gets that
dim Z( ) = 1; if we choose a basis vector v for Z(,u) and pick a numbering o, g, ..., ay
of ®, then all

I N v with 0 < m; < p for all ¢ (2)

marz o aty
form a basis for Z(u). It is easy to see that

~ ~

Z(p) @ kpy ~ Z(pu+ pv) for all u,v € X (7). (3)

One can check that the category of all g-T-modules contains enough projective ob-
jects. Denote by Q(A) the projective cover of L(\) in this category, for any A € X (7).
These projective modules turn out to admit a baby Verma flag, i.e., a chain of submodules
where the factor modules of subsequent terms are baby Verma modules. The number of
factors isomorphic to a fixed Z(u) is independent of the choice of the filtration and will be

denoted by (Q(A) : Z(1)). Tt turns out that one again has a reciprocity law:
QN : Z(w) = [Z(u) : L)) for all \, € X(T). (4)

Therefore our considerations above show that the characters of all simple G-modules are
determined if we know all (Q(A) : Z(u)). It is easy to show that

~

CA)()\) ® kpy ~ QA + pv) for all \,v € X(T) (5)

and then that R R R R
(QN) : Z(n) = (QA +pv) : Z(p+ pv)) (6)

for all A\, u,v € X(T). Therefore it suffices to find all (@(A) : Z(M)) with A € X, (7). Of
course we could equally well take all A € pv 4+ X,(T) for some fixed v € X(T).

5.5. (Deforming g—T—modules) Set S = U(h); since b is commutative, S coincides
with the symmetric algebra of h. Let A be a (commutative and associative) S—algebra
(and hence by transitivity a k—algebra). Consider the Lie algebras g4 := g ®; A and
ha = h @k A. (The results stated in 5.5-5.14 can be found in [AJS] except for one point
where we give an explicit reference.)

Let 7:h — A denote the composition of the inclusion h — S(h) = S with the homo-
morphism S — A that makes A into an S—algebra. Then 7 is k—linear and we extend 7 to
an A-linear map hy = h ®; A — A; we denote this extension again by 7.

We now define a category C4, the “deformed” category of g—T—modules over A. An
object in C4 is a ga—module M with a direct sum decomposition M = @Aex(T) M) as an
A-module such that:
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) M is finitely generated over A.

) We have hv = (d\(h) + 7(h))v for all h € h, A € X(T'), and v € M.
) We have x, My C My, for all « € ® and all A € X(T).

) We have 22 M = 0 for all a € ®.

Note: If we identify k with the S—algebra S/hS, then we have 7 = 0 and the discussion
in 5.3 shows that Ci is the category of all finite dimensional g—T-modules.

If A" is an A-algebra (for an arbitrary S—algebra as above), then we have an obvious
base change functor C4 — C4» mapping any M to M ® 4 A’ with the obvious structure as
a module over g4 =~ g4 ®4 A" and the obvious grading where (M ®4 A’), = M, ®a4 A’
for all p. R

One can define for any A and any p € X(7T) a baby Verma module Z4(u) in C4. It
has the property that Z (), is free of rank 1 over A; if v denotes a basis for this module,
then all elements as in 5.4(2) form a basis for 2,4(;1) over A. If now A’ is an A-algebra,
then one has an obvious isomorphism

Za(p) ®a A Zar(p)

for any u € X (T). We denote by CEVF the full subcategory of Ca of all objects admitting
a baby Verma flag (defined as in 5.4).

5.6. (Lifting projectives) We want to apply 5.5 to the case where A is the completion
of the localisation of S = S(h) at the maximal ideal generated by h. Then the residue
field of the local ring A identifies with & = S/hS. So the base change functor C4 — Cg,
M — M ® 4 k takes values in the undeformed category of g-T—modules from 5.3.

One shows now that the projective g-T-modules over k can be lifted to A. For each
A € X(T) there exists an indecomposable projective object Q4(\) in C4 with Q4 (A)®@ak ~
Q(\). Each Q4 () has a baby Verma flag and we have

(Qa(N) : Za(p) = [Z(p) : L(N)]  for all A, p € X(T). (1)

Furthermore, any projective object in C4 is isomorphic to a direct sum of certain Q\ A(A)

with A € X(7).

5.7. (The affine Weyl group) Let W denote the Weyl group of the root system ®. It
acts both on X (T") and Y (7). For each root o € ® set s, € W equal to the corresponding
reflection. Then W is a Coxeter group with Coxeter generators s,, a € II (the simple
roots).

Let W, denote the group of affine transformations of X (7") and of the Euclidean space
X(T) ®z R generated by W and by all translations by elements in ®, i.e., by roots. This
group is usually called the affine Weyl group of the dual root system ®V. It is isomorphic
to the semi-direct product of W with the normal subgroup Z® where W acts as given
on .

The group W, is generated by the affine reflections s, , with a € ® and n € Z given
by

San (N) =X — (N ) —n)a for all A € X(T) ®z R.
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S0 Sq,n is equal to s, followed by the translation by na. Note that s, = sq0and s_o .y, =
Sq,n for all « € ® and n € Z. The group W, is a Coxeter group with Coxeter generators

Ea:{3a|aeﬂ}u{sao71}

where « is the unique short root that is a dominant weight. (Here we use that G is almost
simple; in case all roots have the same length, all roots are short.)

We need a somewhat different action of W, on X (T") that we denote by (w, A) — we,A.
If w € W, then wepA = w(A+ p) — p where p is half the sum of the positive roots (equal to
Y aert @a)- If w is the translation by some v € Z®, then we,A = A + pr. It follows that

Sameop A=A — (A4 p, a’) —np)a

forall A\ € X(T'), a« € & and n € Z.
The point about this action is the following linkage principle:

[Z(p) : L] #0 = XA € Waep pie (1)

5.8. (W, as a linear group) We get a linear action of W, on X(7T') ® Z if we let any
w € W act viaw (A, a) = (w(A),a) for all A € X(T') and a € Z and if we let the translation
by any v € Z® act via (A, a) — (A + av,a). We get then for any a € ® and n € Z

San(A a) = (sa(N) + ana, a) for all A € X(T') and a € Z.

Note that A — (A,1) is an W,—equivariant embedding of X (7") with the action of W,
from 5.7 into X (7T") x Z with the present action.

Recall that the action of W on Y (T') is given by s4(v) = v — (a, v)a” for all v € Y(T)
and a € ®. We get now an action of W, on Y (T') @& Z letting any w € W act via
w (v,b) = (w(v),b) for all v € Y(T') and b € Z whereas the translation by any u € Z® acts
via (v,b) — (v, (1, v) +b). We get then for any a € & and n € Z

Sa,n(V,a) = (sq(v), n{a,v) +b) for all v € X(T) and b € Z.

Write § = (0,1) and extend any p € Z® to a Z-linear map Y (T) & Z — Z by setting
(11, 6) = 0. Then the last equation can be rewritten as

San(2) =z — (a, 2) (¥ — nd) for all z € Y(T') @ Z.
So W, acts on Y (T') @ Z as the Weyl group of the extended dual root system
P/ ={a"+nd|lacdnecZ}CcY(T)DLZ.

It is the root system for an affine Kac-Moody algebra over C: If g¢ is the simple Lie
algebra over C with root system ®V, then ®) is the root system for the Kac-Moody
algebra constructed as a certain central extension of g ®c C[t,t™!].
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5.9. (The principal block) Let h denote the Coxeter number of the root system ®; so
h — 1 is the maximum of all (p, ") with o € ®.
Suppose from now on that p > h. This implies that the map

Wo — Wae0, wir>wse,0

is bijective. Furthermore, general translation principles show now that we know all mul-
tiplicities [Z(p) @ L(A)] with A € X,,(T') and p € X(T) if we know all [Z(we,0) : L(ze,0)]
with z,w € W, and z.,0 € X,(T'). So, by 5.6(1) it suffices to determine all (@A(x.p()) :
ZA(w.pO)) for all x and w as before. Here A is (as in 5.6) the completion of the localisation
of S at Sh. Actually, it will be more convenient to consider all z with .,0 € —pp+ X, (T).
By 5.4(6) this does not make a difference.

Therefore we restrict ourselves from now on to modules in C4 having a baby Verma flag
with all subsequent factors of the form Z4(w.,0), w € W,. We denote the full subcategory
of all these objects by CE}(/)F and call it the principal block of CEVF.

This block admits translation functors “through the walls”
0,:CBYF — CBYF

indexed by the Coxeter generators s € X, of W,. These functors are exact and take
projective objects to projective objects. One has for each w € W, a short exact sequence

0 — Za(w1ep0) — O3 Za(wep0) — Za(wsep0) — 0

where {w;, w2} = {w, ws} and where the numbering is chosen such that wje,0 > wae,0.
We get for any M in CE’Y}F that

(OsM : Za(wep0)) = (M : Za(wep0)) + (M : Zs(wse,0)) (1)

for all w € W,. This implies: If x = s,....5251 is a reduced decomposition of an element
x € W, (so all s; belong to ¥, and r is minimal), then we get

(04,04, ... 05 Z4(0) : Za(zep0)) = 1 (2)
and for any w € W,
(045,04, ...05 Z4(0) : Za(wep0)) #0 <= w <z (3)

where < is the Bruhat ordering on W,.

Consider in particular z € W, with z.,0 € —pp + X,(T"). One element with this
property is wg, the longest element in the finite Weyl group W. If our z is distinct
from wp, then we can find s € ¥, with z.,0 < s.,0 and xs.,0 € —pp + X, (T"). (The
alcove containing x.,0 has a wall separating it from the alcove containing wge,0; then
choose s such that ws.,0 is the mirror image of z.,0 with respect to this wall.) This
implies inductively (trivially in the case * = wy) that = has a reduced decomposition
T = Sy ...S251 such that wy = s, ...8m+15, for a suitable m. In this situation Fiebig
shows ([F4], Prop. 8.2):
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Lemma: Then @A(x.pO) is an indecomposable direct summand of ©,,0s, ...0, Z4(0).

More precisely, Q\ A(2e,0) is the unique indecomposable direct summand with Z4 (2e,0)
as a factor in a baby Verma flag, cf. (2). (Note that the Krull-Schmidt theorem holds in
our category since A is a complete local noetherian ring.)

The existence of a reduced decomposition as above shows also that the set of all
w € W, with w < x is stable under left multiplication by W:

IfweW,and z€ W, then w<z < zw <. (4)

(It suffices to check this for z = s, with a € 3.) Furthermore, one gets by induction on
the length of w:
If we W, with w < z, then z.,0 < we,0. (5)

In fact, one has more strongly z.,0 T we,0 in the notation from [Ja2], I1.6.4. This is well
known for x = wy; for the induction step from zs to x as above one can use Lemma I1.6.7

in [Ja2].
5.10. (Further localisation) Keep the assumptions from 5.9. Consider the subrings
AP =AY |a e ®T|
and for each € ®T
AP = A[n' | a e T, a # f
of the fraction field of A. Write

Z%p)=Zpo(p)  and  ZP(u) = Zas ()

for all 4 € X(T). It turns out that each Z%(y) is projective in C40; one has for all
Ape X(T)

7/ _
Home ., (2°(1), Z%(\)) = {A if =,

0  otherwise.
This implies: If M is a module in C§VY | then Home , (Z%(u), M®4 A?) is a free A-module
of rank equal to (M : Z4(p)). Therefore we are interested in knowing all
rk Home , (Z°(wey0), Q a(4,0) ©4 A?)

with x,w € W,.
Let 8 € ®T. For each w € W, there are unique integers n and r such that

(wepO+p, Y)Y =np+r and 0 <r < p.

The assumption that p > h actually implies that » > 0. Denote by #Tw the element in W,
such that

(BTw)ep0 = 5 n+1Wep0 = we,0 + (p — 7).
Then there exists an extension in C 45
0= Z2((B1w)ep0) — Q7 (wep0) — Z°(we,0) — 0 (1)
such that @Q°(w.,0) is a projective object in C4s.
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5.11. (A functor into combinatorics) We now define a functor x: CE}/)F — K(A) into

a “combinatorial” category K(A). An object in C(A) is a family
M = ((Mg)wewa, (Mg)6€¢+,w€WQ) (1)

where each M? is an A?-module and each M2 is an A®-submodule of the A% module
M? o M% . A morphism M — N in K(A) is a family of homomorphisms M? — N9 of

A% modules that induce homomorphisms M? — N2 for all § and w.
Now « is defined by setting for all w € W,

k(M) = Home , (Z°(we,0), M @4 A”)

and (for all g € &)
M)P = Hom QP (we,0), M @4 AP
/i( )w 0 CAQ( (U) p )7 A )

with Q?(w.,0) as at the end of 5.10. In order to embed x(M)% into k(M)? @ K(M)%Tw

one fixes an extension as in 5.10(1). This extension splits after tensoring with A?; this
splitting leads to a well determined isomorphism

Z%(wep0) ® Z° (BT wep0) = QP (wep0) @ 45 A”
and thus to a well determined isomorphism

M)y, @ a5 A = k(M) @ k(M)

Blw:

We identify x(M)? with the image of x(M)? ® 1 under this isomorphism.
One applies £ to homomorphisms as one usually applies a Hom functor. Now the
crucial point is:

Theorem: The functor k is fully faithful.

This implies in particular, that x takes indecomposable objects to indecomposable
objects. Note also that we recover any filtration multiplicity (M : Z4(w.,0)) as the rank
of the free A’ module x(M)?. We get in particular by 5.6(1) that

[Z(wey0) : L(wey0)] = rk 4o 5(Qa(4p0))7, (2)

for all xz,w € W,.
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5.12. (Examples) It is easy to describe the image under x of a baby Verma module.
First a notation: For any w € W, and 3 € ®T there is a unique element 3 | w in W,
satisfying 47 (8]w) = w. One gets now for all w € W,

(ZA(w.pO)) = A" and (ZA(w.pO)) =0 for all x # w
and for all B € &

K(Za(wep0))d = AP(1,0)  and  K(Za(wep0))5, = A%(0,1)
and /i(ZA(w.pO)) =0 for all z # w, 5| w.

As another example consider ) = Q A(wgep0) where wy is the unique element in W
with wo(®1) = —®*+. One gets for all w € W,

@ .
M@&z{A HweW,
0 ifwegW.
In order to describe x(Q)2 we need extra notation. Set ®*(3) = {a € ®* | s5(a) € —@*}
and set for each w € W

al = 11 h_a 11 ht.

acdt(B),w lacdt acdt(8),w—lac—d+
One gets now for all € &1 and w € W
v AP(1,0) + AP(al,1) ifwTlB e -t

Furthermore, one gets for all w € W with w™13 € —®7T that
w(Q) = A°(0,1).
For all remaining x € W, one gets k(Q)? = 0. (The proof of this result uses translation

functors that are slightly more general than those from 5.9.)

5.13. (Translation functors in the combinatorial category) One can construct for
each s € ¥, a functor

0 K(A) — K(A)

such that there exists a natural isomorphism

Ko Oy — g0 K. (1)
For example, one sets for any M as in 5.11(1)
9 (M), = Ml & M3 (2)

The description of ¥,(M)? is more complicated and requires some case-by-case consider-
ations.

Let x € W, with z.,0 € —pp + X,(T"). Consider a reduced decomposition z =
Sy ...S251 as in Lemma 5.9. That lemma and (1) imply that m(@A(m.pO)) is an indecom-
posable direct summand of ¥4, Vs, .. .ﬁsrm(é 4(0)). In fact, it is the unique indecomposable
direct summand M of ¥, Vs, . .ﬂsrm(zA(O)) with M? £ 0. If we can find this summand,

then we get all [Z(w.p()) : L(m.p())] with 2 as above and with w € W, as the rank of M? .
And that would yield all multiplicities.
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5.14. For any S—algebra B that is an integral domain such that all h, with a € ® are
non-zero in B, one sets

B"=Bh;'|ae®t] and BP=B[n;'|acdt, a#f

(for all 3 € ®*). Then one defines a category K(B) analogously to K(A), replacing all A
by B in the first paragraph of 5.11.

We get thus in particular the category IC(S). We have then a base change functor
K(S) — K(A). It takes any family M = ((M?)wew,, (M2)sca+ wew,) to the family of
all

./\/l@w &K g0 AP and Mﬁ Rgn AP,

A look at the examples in 5.12 shows that K(Q\A(wo.p())) and all /<;(Z4(w.p0)) arise
by base change from objects in K(S): Replace any A? by S? and any A° by S° in the
descriptions in 5.12.

Furthermore, the explicit formulae for ¥4 (that I did not state in 5.13) show that these
functors arise by base change from corresponding functors on K(S). We shall denote the
functors on K(S) again by ¥s.

5.15. (The structure algebra) Denote by S the symmetric algebra of the k—vector
space (Y(T)®Z) ®z k and denote by Z the set of all families (uy)wew, with each u,, € S
such that B

Us, w = Uy mod S - (a¥ —nd) (1)

for all « € &7, n € Z, and w € W,. This is the structure algebra of a certain infinite
moment graph; we return to this interpretation later on in 5.20. _

For any Q C W, denote by Z(Q2) the set of all families (uy)weq with each u,, € S
such that (1) holds whenever both w and s, ,w belong to Q. If  is finite, then Z(Q2)

inherits a natural grading from S (normalised such that (Y (T) & Z) ®z k sits in degree 2).

We have for any 2 a natural “forgetful” homomorphism of algebras Z — Z(Q). It
need not be surjective. We say that a Z-module M has finite support if there exists a
finite subset 2 C W, such that the Z—module structure on M arises from a Z({2)-module
structure via the homomorphism Z — Z(2). If M in addition has a Z—grading that makes
it into a graded Z(§2)-module, then we call M a graded Z-module with finite support. In
this case we denote by M (n) for any n € Z the graded Z—module with finite support that
we get from M by shifting the grading by n, cf. 1.1.

5.16. (Translation functors and special modules) Any = € W, induces an auto-
morphism o, of the algebra Z mapping any family (u.,)wew to the family (u!,),ew with
ul, = Uy, for all w € W,. Denote by Z? the subalgebra of all fixed points of o,. One
checks for any reflection s = s, with o € ® and n € Z that Z is free of rank 2 over Z°
with basis 1, ¢s where ¢ = (¢s,w)wew, With ¢s . = w(a” —nd) for all w € W,, see [F4],
Lemma 2.4.

For any simple reflection s € ¥, we define now a functor 6, from Z-modules to
Z-modules by setting

O M = Z Rz M (1)
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for any Z-module M. For reasons that will become clear later on, we also call these 6
translation functors.

If M is a (graded) Z-module with finite support, then so is any 0,M, see [F4],
Lemma 2.7. If M is finitely generated and torsion free over S , then so is any 6.

Let M. denote the graded Z-module equal to S as an abelian group such that any
family (uy)wew, in Z acts on S as multiplication by u.. (Here e is the identity in W,.)
We now define a category H of graded Z-modules with finite support. We take all modules
of the form

By, 00, 008, (M.(n)) 2)

52

with arbitrary finite sequences s, So,...,s, in X, and arbitrary n € Z. We then add
all graded direct summands of modules as in (2) as well as finite direct sums of such
summands.

It follows that H consists of graded Z-modules with finite support that are finitely
generated and torsion free over S. Fiebig calls objects in H special Z-modules.

5.17. (Localisation again) In analogy to our earlier definitions we set
SP=S[(aY —nd)' |aedt, nelZ (1)

and for all B € &+

S8 =S =nd) "t |aedt, a#£f nell (2)

These are subalgebras of the field of fractiogs of S. N
Let 2 C W, be finite. Then Z(12) ®3 S? identifies naturally with [Toeo S%. For any

w € ) denote by &, the component of 1 € Z(Q) Q3 S? in the factor S° corresponding
to w.
If M is a Z(€2)-module, then the Z(2) @3 5% module M ®F 5% decomposes

Mg 8" = M (3)
we

with M?% = ¢, (M ®F 5% for any w € Q. We set M%* =0 for all w ¢ Q.
If M is an object in H, then one gets for all s € ¥, and w € W, that

(QSM)Q),UJ ~ M(Z),w @ M(Z),ws (4)

cf. [F4], Lemma 3.6.
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5.18. (From Z-modules into combinatorics) The isomorphism Y (T) ®z k — b
from 5.2 (with ¥ ® 1 +— hy, for all @ € ®) extends to a linear map (Y (T) D Z) @z k — b
such that 0 ® 1 +— 0. This map induces a homomorphism S — S of the symmetric algebras
(preserving the grading) as well as of the localisations S? — 5% and S8 — S8 for all
Bedt.

These homomorphisms are used by Fiebig to construct an additive functor

U:H — K(A) (1)
satisfying
Ygo0W =Wol, for all s € X,,. (2)

Here I deviate from Fiebig’s notation: What I am calling ¥ is the composition of Fiebig’s
functor U: H — K(S) from [F4], 5.5 with a functor of the form vo: K(S) — K(S) from
[F4], 6.1 and finally an extension of scalars functor IC(S) — K(A) as in 5.14.

Consider an object M in H and choose a finite subset 2 in W, such that the Z-module
structure on M comes from a Z(§2)-module structure. Take the decomposition of M ®§S®
from 5.17(3) and set

(TM)), = (M @z S)®s A for all w € W, (3)

The definition of (U M)#? is more complicated; here I have to refer you to [F4].

For any M in H all M? are free modules over 5% of finite rank. It follows that each
(UM)? is a free A’ module of the same rank:

rkz, M7 = 1k 40 (WM)Y,. (4)

5.19. Recall the Z-module M, that was the starting point of the definition of the
category H in 5.16. One gets now that

UM, ~ rk(Z4(0)), (1)

see the proof of Thm. 5.4 in [F4].
Consider now some z € W, with z.,0 € —pp + X, (T") and a reduced decomposition
T = Sp...8251 as in Lemma 5.9. We get from 5.13(1) and 5.18(2) that

K(04,0s, ... 05 Z4(0)) ~ U(0,,0,, ...0, M.). (2)

Now 5.9(3) implies that 05,0, ...0s M, has a unique indecomposable summand M, such
that M2 # 0. Then WM, is isomorphic to a direct summand of (0,0, .. .@STEA(O))
and satisfies (UM,)? # 0. Tt follows that /{(@ A(2e,0)) is an indecomposable direct sum-
mand of WA/,. This implies using 5.18(4) for all w € W,

rk q0i(Qa(xep0))h, < kg, M. (3)
Using 5.11(2) we can restate this inequality as

[Z(wep0) : L(4,0)] < kg, MO, (4)
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5.20. (The moment graph) We associate to W, a moment graph G as follows: Its
vertices are the elements of W,. The ordering on the set of vertices is the reversed ordering
of the Bruhat ordering on W,. Two elements w and x in W, are joined by an edge if and
only if there is a root & € ®* and an integer n € Z such that = s, ,w; if so, then we
associate to this edge the line k(a¥ —nd) in (Y(T) ® Z) @z k.

This is of course an infinite moment graph whereas in the earlier chapters we have
usually assumed that our moment graph is finite. Therefore we often restrict to finite
subgraphs. For any subset 2 C W, denote by G[€2] the full subgraph of G with Q as set of
vertices.

It is clear that the algebra Z from 5.15 is the structure algebra of G; for any Q C W,
the algebra Z(Q) is the structure algebra of G[Q].

There exists a unique element Wy € W, such that wp.,0 belongs to the same alcove
with respect to W, as —pp. (If p belongs to the root lattice, then wy is translation by —p.)
Set

Qo={weW,|w<w}. (1)

This is a finite subset of W,. By 5.9(4) this set is stable under left multiplication by W.
Any w € Qq satisfies Wpep0 < wey0, see 5.9(5). If x € W, with z.,0 € —pp + X,(T'), then
x € Qp. (Use downward induction on the length of z. If x # Wy, then there exists a wall
of the alcove containing x.,0 separating this alcove from the alcove containing wge,0. Let
s € X, be the simple reflection such that zs.,0 is the mirror image of z.,0 with respect to
this wall. Then also zse,0 € —pp + X, (T) and x < xs.)

Lemma: The moment graph G[Qo] is a GKM-graph.

This is Lemma 9.1 in [F4]. One uses that under our assumption on p two distinct
positive coroots remain linearly independent in Y (7") ® k. This reduces the lemma to the
following claim: Given w € Qp, a € ®*, and n,m € Z such that s, ,w, Sa,mw € Qo and
n=m (mod p), then n = m. This claim follows from the following inequality: One has

[(wep0 + p, V)| < p(p—1) for all w € Qp and « € P. (2)

In the case where w.,0 + p is antidominant, i.e., where (we,0 + p,a¥) <0 for all o € ®T,
one has for all « € &T

(Wep0 + p, ") > (we,0 + p, ) > (Woep0 + p, )
> (=pp,ag) = —p(h — 1) > —p(p - 1),

and (2) follows in this case. For general w € {0y we can find z € W such that z(we,0 + p)
is antidominant. Now observe that

(z(wep0 + p), ") = (wep0 + p, (7))

for all @ € ® and that z(we,0 + p) = (2w)«,0 + p. This shows that it suffices to prove (2)
in the antidominant case.
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5.21. Lemma 5.20 implies that we have for each w € Q, a (graded) Braden-MacPherson
sheaf B(w) on G[], see 3.5.

Consider on the other hand in H the subcategory Hg of all direct sums of graded direct
summands of modules of the form 6 0;, ...0, (M.(n)) such that s, ...sss; is a reduced
expression of an element in 5. We can consider Hy as a category of Z(£2p)-modules. Now
we have according to [F4], Prop. 9.3:

Proposition: The indecomposable objects in Hy are exactly all T'(B(w){n)) with w € Qg
andn € Z.

Note that the canonical map M — I'(£(M)) is an isomorphism for all M in Hy, see
Proposition 2.16. On the other hand, the canonical map £(I'(P)) — P is an isomorphism
for any F-projective graded sheaf on G[{)], in particular for all P = B(z), see 3.8. So
Proposition 3.12 shows that our present proposition is equivalent to the following claim:
The functor £ induces an equivalence of categories between Hy and the category of all
F-projective graded sheaves on G[Q].

One starts with the observation that £L(M.) = B(e). Consider then a module M in Hy
and s € ¥ such that also 6;M belongs to Hy. Suppose we know already that L£L(M) is
F-projective. Then one can use the results in Section 5 of [F5] to show that also L(0,M) is
F-projective. In this way one checks that £ maps modules in Hy to F-projective sheaves.
A look at supports shows then at the end that all B(w) with w € Qg belong to the image.

Lemma 2.7.a implies for any sheaf M on G[Q] that
r(M)>" = M, Rz S? for all w € Q. (1)

From this fact and the proposition one now deduces that the direct summand M, in 5.16
is isomorphic to I'(B(x)(n)) for a suitable integer n. Combining this fact with 5.19(4) we
get for all z € W, with z.,0 € —pp + X,,(T) that

[Z(w.p()) : E(m.p())] < rkzB(z)w for all w € Q. (2)

The Lusztig conjecture for the characters of the irreducible representations of G is
equivalent to the claim that any multiplicity [Z(we,0) : L(x.,0)] as above is equal to the
value puygw,wez(l) at 1 of a suitable Kazhdan-Lusztig polynomial, cf. [Ja2], D.13(1), or
[F6], Conj. 3.4 (and Thm. 3.5). A comparison with quantum groups at a p—th root of

unity (where the analogous conjecture is known to hold) shows that

[Z(wep0) : L(20p0)] = Pugw,wee (1) (3)

for all z and w as before. Therefore (2) and (3) imply: The Lustig conjecture holds for G
if rkgB(m)w = Pwow,woz (1) for all x and w as above.
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5.22. Let GV be a connected semi-simple algebraic group over C and TV a maximal
torus in GV such that the root datum of (GY,T") is dual to the root datum of (G,T). So
we can identify Y (7T") with X (7V) in a way such that ®V identifies with the root system
of GV with respect to T"V.

Let G' = GY((t)) be the corresponding loop group and 7" = TV x C* the standard
maximal torus of G’. Choose an Iwahori subgroup B’ of G’ containing 7" and denote
by X' = G'/B’ the corresponding affine flag variety. This is an ind-variety. There is
a bijection w +— O, between W, and the set of B’—orbits on X’. The closure 0, is a
projective variety, equal to the union of all O, with x € W,, x < w. Each O, itself is
isomorphic to an affine space. The torus T’ has exactly one fixed point in each O,,.

These facts show that one can apply Theorem 3.6 to compute the equivariant in-
tersection cohomology ITH$.,(O,,) for any w € W,. This involves a Braden-MacPherson
sheaf B(w)c on a moment graph Ge which is constructed in the same way as the moment
graph G in 5.20, but with (Y/(7T) ® Z) ® k replaced by (Y(T)®Z) @ C = X(T") ® C. One
gets then

tk B(w)c,. = dim IH*(Oy )2} for all z,w € W,. (1)

A closer look at the construction in 3.5 will show for any x € )y that
rk B(z)y =1k B(2)c,w for all w € Q, (2)

whenever p is larger than a bound depending on the root system ®. Now work by Kazhdan
and Lusztig in [KL] shows that

dim TH* (04) 2y = Pugwswns(1). (3)

Combining (1)—(3) with the last statement in 5.21 we see: Lusztig’s conjecture holds for
all p larger than a bound depending on the root system ®. So we got a new proof for the
main result in [AJS].

Using deeper properties of our modules Fiebig shows for all p > h (which is our
standard assumption):

Proposition: Let x,w € Qo with x«,0 € —pp + X,,(T'). Then

[Z(wep0) : L(xep0)] = 1 <= Puguwwpe(1) = 1.

For this result one does not need the theorem in the quantum case that otherwise
enters our arguments via 5.21(3).

5.23. Fiebig shows in Sections 7 and 8 of [F4] how one can go more directly from
cohomology sheaves to Z—modules and thus prove Lusztig’s conjecture for large p without
mentioning moment graphs.

Using this approach Fiebig has been able to find an explicit bound on p for this result,
see [F7]. This bound is still extremely large: In type Ag one gets a number with 40 digits
whereas one expects that p > 9 should be good enough.
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