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1 Introduction

In the mathematical physics literature, the Fock spéces the carrier space of the natural irre-
ducible representation of an infinite-dimensional HeiszglLie algebraf). Namely, .7 is the
polynomial ringC|x; | i € N*|, and$) is the Lie algebra generated by the derivationgx; and the
operators of multiplication by;.

In the 70’s it was realized that the Fock space could also gsesto interesting concrete
realizations of highest weight representations of Kac-toaffine Lie algebrag. Indeedg has
a natural Heisenberg subalgelyrdthe principal subalgebra) and the simplest highest weight
module, called the basic representatiorgofemains irreducible under restriction o Therefore,
one can in principle extend the Fock space representatiprtmb Fock space representatioh
of @. This was first done fog = sl, by Lepowsky and WilsonlJW ]. The Chevalley generators of
sl act on.# via some interesting but complicated differential opersitaf infinite degree closely
related to the vertex operators invented by physicistserttieory of dual resonance models. Soon
after, this construction was generalized to all affine Lgebkasg of A, D, E type [KKLW ].

Independently and for different purposes (the theory dft@olequations) similar results were
obtained by Date, Jimbo, Kashiwara and MiM&KM ] for classical affine Lie algebras. Their
approach is however different. They first endo#vwith an action of an infinite rank affine Lie
algebra and then restrict it to various subalgelyas obtain their basic representations. In type
A for example, they realize io# the basic representation gtf., (related to the KP-hierarchy
of soliton equations) and restrict it to natural subalgelismmorphic tosl, (n > 2) to get Fock
space representations of these algebras (related to thénkedafchy forn = 2). In this approach,
the Fock space is rather the carrier space of the naturatseptation of an infinite-dimensional
Clifford algebra, that is, an infinite dimensional analogafean exterior algebra. The natural
isomorphism between this “fermionic” construction and irevious “bosonic” construction is
called the boson-fermion correspondence.

The basic representation gfhas level one. Higher level irreducible representationsalao
be constructed as subrepresentations of higher level Faadesrepresentations 9fF1, F2].

After quantum enveloping algebras of Kac-Moody algebraswe/ented by Jimbo and Drin-
feld, it became a natural question to constructdfenalogues of the above Fock space represen-
tations. The first results in this direction were obtainedHsyashi H]. His construction was
soon developed by Misra and MiwdM ], who showed that the Fock space representation of
Uq(sln) has a crystal basis (crystal bases had just been introdycEddhiwara) and described it
completely in terms of Young diagrams. This was the first gxarof a crystal basis of an infinite-
dimensional representation. Another construction of #well one Fock space representation of
Uq(sln) was given by Kashiwara, Miwa and SteKiNIS ], in terms of semi-infinitej-wedges. This
relied on the polynomial tensor representationﬂsJ@(fsT[n) which give rise to the quantum affine
analogue of the Schur-Weyl duality obtained by Ginzburgshegéikhin and VasseroGRV], and
Chari and PressleydP] independently.

In [LLT ] and [LT1], some conjectures were formulated relating the decontipasmatrices
of type A Hecke algebras angtSchur algebras at anth root of unity on the one hand, and the
global crystal basis of the Fock space representafonf Uq(sl,) on the other hand. Note that
[LT1] contains in particular the definition of the global basis?®fwhich does not follow from the
general theory of Kashiwara or Lusztig. The conjecture ookdealgebras was proved by Ariki
[Al], and the conjecture on Schur algebras by Varagnolo andeYatsiy/V].

Slightly after, Uglov gave a remarkable generalizationhe tesults of KMS], [LT1], and
[VV] to higher levels. Together with Takemur&{], he introduced a semi-infinite wedge real-
ization of the level Fock space representationslf(s(,), and in U1, U2] he constructed their



canonical bases and expressed their coefficients in tertdazidan-Lusztig polynomials for the
affine symmetric groups.

A full understanding of these coefficients as decompositiambers is still missing. Recently,
Yvonne [Y2] has formulated a precise conjecture stating that, undeioeconditions on the com-
ponents of the multi-charge of the Fock space, the coeftiigiJglov’s bases should give the de-
composition numbers of the cyclotongeSchur algebras of Dipper, James and MatlziddMa].
Rouquier R] has generalized this conjecture to all multi-charges. ignversion the cyclotomic
g-Schur algebras are replaced by some quasi-hereditarprafgarising from the categowy of
the rational Cherednik algebras attached to complex reftegroups of types(4,1, m).

In these lectures we first present in Section 2 the Fock syggresentations of the affine Lie
algebrasl,. We chose the most suitable construction for our purposgd#formation, namely,
we realize.7 as a space of semi-infinite wedges (the fermionic pictumefSdction 3 we explain
the level one Fock space representatiotgfs(,) and construct its canonical bases. In Section 4
we explain the conjecture oET1] and its proof by Varagnolo and Vasserot. Finally, in Sat#o
we indicate the main lines of Uglov’s construction of higherel Fock space representations of
Uq(sln), and of their canonical bases, and we give a short review ohfe’s work.

2 Fock space representations ofin

2.1 The Lie aIgebrasA[n and its wedge space representations

We fix an integein > 2.
2.1.1 The Lie algebrasl,
The Lie algebrgy = sl of traceless x n complex matrices has Chevalley generators
Ei=Ej+1, F=Ey, H=Ei—Eii1, (1<i<n-1).
Its natural action o = C" =& ,Cv; is
Eivj = 9jit1Vvi, FV)=90jiVit1, Hivj=0jiVi—9djit1Vis1, (1<i<n-1).
We may picture the action gfonV as follows

F Fo
v Ly, 22 Iy

2.1.2 The Lie algebralL (sl,)

The loop spack(g) = g® C[z,z 1] is a Lie algebra under the Lie bracket
[a® 2 b 7] =[ab ez, (abeg, kleczZ).

The loop algebra.(g) naturally acts oW (z) =V @ C[z,z 1] by

(aR)-(voZ)=ave !, (acg, veV, kleZ).



2.1.3 The Lie algebrasf[n

The affine Lie algebrg = sl, is the central extensioh(g) @ Cc with Lie bracket
[a®Z+Ac, boZ +uc =[abl@Z! +k&_itr(abc,  (abeg, A,peC, klez).
This is a Kac-Moody algebra of typ%g(]l_)l with Chevalley generators
e=E®1 fi=F®l h=H®1, (1<i<n-1),
e=En®z fo=En®z?' ho=(En—En)®l+c
We denote by\; (i =0,1,...,n— 1) the fundamental weights @t By definition, they satisfy
Ai(hj) = &, (0<i,j<n-1).

LetV(A) be the irreduciblg;-module with highest weight [K, §9.10]. If A = S;a/; then the
central element = 3 h; acts asy; gld onV(A), and we calll = 5; & the level ofV(A). More
generally, a representatiéhof g is said to havdevel/ if ¢ acts orv by multiplication by¢.
The loop representatiov (z) can also be regarded as a representatiop, @ which ¢ acts
trivially. Define
Ui,nk:Vi®Zk7 (1<i<n keZ).

Then(u; | j € Z) is aC-basis oV (z). We may picture the action @fonV (z) as follows

e e f f f e f f f
TR U T g~ U Up — e T Uy 2 Uns g — Uy =

Note that this is not a highest weight representation.

2.1.4 The tensor representations

Forr € N*, we consider the tensor spadéz)®’. The Lie algebrag acts by derivations on the
tensor algebra of (z). This induces an action on each tensor powgn)“", namely,

XU, @ QU ) = (XUy) @ @Uj, -+ + U, @@ (XU, ), (XE, i1,---,iy € 7).

Again c acts trivially onV (2)®".
We have a vector space isomorphisti' @ C(z;, ...,z5] — V(2)°" given by

Vi, @ OV @2 o (v, @Y @@ (i, ©2),  (L<in,...,ir <N, ja,..., Jr €Z).

2.1.5 Action of the affine symmetric group

The symmetric groui®, acts onvV®" @ (C[zf, ...,Z"] by

i ; Jg-1 Ig-14
oW, @--ov)eg g =V, ©-ov ez Yz (o).

lo—11

Moreover the abelian grou" acts on this space, namelly, ..., k) € Z" acts by multiplication
by ijlzﬁf Hence we get an action on(z)®" of the affine symmetric grou®, := &, x Z'.
Clearly, this action commutes with the actiongof

It is convenient to describe this action in terms of the basis

(ul :ull® ®ulr ||:(|l7,|r)€Zr)

4



Denote bysc = (k,k+1), (k= 1,...,r —1) the simple transpositions &;. The affine symmetric
group &, acts naturally orZ' via

S = (i1, ik, ik ---r), (A<k<r—1),
Zj-i = (il,...,ij—n,...,ir), 1<j<r),
and we have R
WU = Uyi, (ieZ, we ).

Thus the basis vectorg are permuted, and each orbit has a unique representativich
€A ={ieZ |1<it<iz< - <ir <n}.

Leti € A.. The stabilizer&; of u; in &, is the subgroup of5, generated by the, such that
ik = ikt1, @ parabolic subgroup. Hence we have finitely many orbitd, each of them is of the
form &, /&; for some parabolic subgroup; of &;.

2.1.6 The wedge representations

Consider now the wedge productV (z). It has a basis consisting of normally ordered wedges
AU = Ui, AU, A=+ AU, (i=(1>i2>-->i)eZ).

The Lie algebrag also acts by derivations on the exterior algebk4(z), and this restricts to an
action onA"V (z), namely,

X(uil/\“'/\uir):(Xul)/\“'/\uir+"'+ui1/\'“/\(xur)7 (Xe/g\v ilv"'vil’ GZ)

Again c acts trivially onA"V (z).
We may think ofA"V (z) as the vector space quotient\bfz)“" by the subspace

r—1
Jri=y Im(sc+1d) cV(2®'
K=1

of “partially symmetric tensors”.

2.1.7 Action of the center of(C@r

The space/; is not stable under the aciion é‘r. (For example ifr = 2, we havez; (Up ® Up) =
U_n ® Up, which is not symmetric.) Hena®, does not act on the wedge producV (z). However,
for everyk € Z, the element
;
bk = Zf
i=

of the group algebr&&, commutes withs, C 7.&,. Therefore it has a well-defined action on
A"V (z), given by

bk(/\ui) = U, —nk AU, A= AUip +Uig AUi,—pk A=< AU, 4 - 4 Uip AUip A AU —nk.

This action commutes with the action @on A"V (z). The element$y (k € Z) generate a subal-
gebra ofC&, isomorphic to the algebra of symmetric Laurent polynomials variables.



2.2 The level one Fock space representation of,

We want to pass to the limit— oo in the wedge product'V (z).

2.2.1 The Fock space”
Fors>r define a linear mags: A"V (2) — AV (2) by

Prs(AU) = AU AU AU_r_1 A AU_g}1.
Then clearlygs; o ¢rs = ¢r¢ for anyr <s<t. Let

AV (z) := lim AV (2)

be the direct limit of the vector spacesV (z) with respect to the mapg s. EachAu; in A"V (2)
has an imag@, (Au;) € A®V (z), which should be thought of as the “infinite wedge”

Or(AU) = AU AU AU_r—g A+ AU_gA -+

The spaceZ = A"V (2) is called thefermionic Fock spacdt has a basis consisting of all infinite
wedges
Uip AUy A-os AU A ey (i1>i2>- >0 >-),
which coincide except for finitely many indices with the spémfinite wedge
|0) :=Ug AU_1 A+ AU_r AU_r_gA---

called thevacuum vectorlt is convenient to label this basis by partitions. A p#otitA is a finite
weakly decreasing sequence of positive inteders A, > --- > As > 0. We make it into an infinite
sequence by putting; = 0 for j > s, and we set

|A) i= Uiy AU, A Al Ae-

whereiy = Ak —k+1 (k> 1).

This leads to a naturdf-grading on.# given by de¢A) = 5, A; for every partitionA. The
dimension of the degre®componentZ (@ of .Z is equal to number of partitions of d. This can
be encoded in the following generating function

. 1
dz dim.Zz@d = T 1)
>0 k>1

2.2.2 Young diagrams

Let &7 denote the set of all partitions. Elements &f are represented graphically by Young
diagrams. For example the partitidn= (3,2) is represented by

If yis the cell in column numberand row numberj, we calli — j the contentof y. For example
the contents of the cells df are

-10

0[1]2]

Giveni € {0,...,n—1}, we say thay is ani-cell if its contentc(y) is congruent ta modulon.

6



2.2.3 The total Fock spacé

It is sometimes convenient to consider, for Z, similar Fock spaces?, obtained by using the
modified family of embeddings

AL (AU = AU AUy AUm_r—1 A~ AUm_s 1.
The spaceZ, has a basis consisting of all infinite wedges
Uig AUipg Ao AU, A-e - (i1 >i2>-- >0 >--),
which coincide, except for finitely many indices, with
[Om) :=UnAUn-1A"-- AUn_r AUp_r—1 /A"

The space = dnezFm is called thetotal Fock spaceand.#, is the Fock space of charge . m
Most of the time, we shall only deal witlf = .%.

2.2.4 Action of fj

Consider the action of the Chevalley generatihis =0,1,...n— 1) of g on the sequence of vector
spaces\'V(2). Itis easy to see that, foru; € A"V (2),

fi drs(AU) = brias i drrra (AU
foralls>r.
Exercise 1 Check this.
Hence one can define an endomorphiffrof .% by
fi or(AU) = r i1 i rrra (A). 2)

The action off;” on the basig|A) | A € £} has the following combinatorial translation in terms
of Young diagrams:

)= [u), @3)
u
where the sum is over all partitionsobtained fromA by adding arni-cell.
Exercise 2 Check it. Check that, fon= 2, we have

fol3,1) =132 +[3,11), 31 =[41).

2.2.5 Action ofg

Similarly, one can check that puttiref ¢, (Au;) := ¢ (& Au;) one gets a well-defined endomor-
phism of.%. Its combinatorial description is given by

&lu) = |A). (4)
A

where the sum is over all partitiords obtained fromu by removing ari-cell.



Exercise 3 Check it. Check that, fon = 2, we have
13,1 =121, €31 =3).
Theorem 1 The map
quoo’ fi'_>fio°> (Oglgn—l),

extends to a level one representatiorgafn .%.

Proof — Let u be obtained fromA by adding ari-cell y. Then we cally aremovable i-celbf u
or anaddable i-cellof A. One first deduces from Eqg. (3) (4) tHat := [e”, f] is given by

h*|A) =Ni(A)[A), (5)
whereN;(A) is the number of addabliecells of A minus the number of removablecells of A.
It is then easy to check from Eq. (3) (4) (5) that the endomisrphe®, f, h® (0<i<n—1)
satisfy the Serre relations of the Kac-Moody algebra of t&ﬁ]_él (see K, §0.3,89.11]). Now,
c=ho+hy+---+hy_1 acts by
n—-1
clA) = > Ni(A)[A).
2"

Clearly, the difference between the total number of addedlle and the total number of removable
cells of any Young diagram is always equal to 1, hence we E@é Ni(A)=1foreveryA. O

Thus the Fock spacé is endowed with an action @f. Note that, although every'V(z) is
a level 0 representation, their limi is a level 1 representation. This representation is cahed t
level 1 Fock space representatiohyg.

Note also that\"V (z) has no primitive vectori.e.no vector killed by everys. But.# has
many primitive vectors.

Exercise 4 Taken = 2. Check thatp = |0) andv; = |2) — |1,1) are primitive vectors. Can you
find an infinite family of primitive vectors ?
2.2.6 Action ofby

Recall the endomorphisnix (k € Z) of A"V (2) (see§2.1.7). It is easy to see that,kf#£ 0, the
vector gsby ¢r s(Au;) is independent of for s > r large enough. Hence, one can define endomor-
phismsby’ (k € Z*) of % by

by dr (AU := ¢shk ¢r,s(/\ui) (s>1). (6)
In other words
bﬁo(Uil A Ui, AR ) = (Uil—nk/\ Ui, ASE ) + (uil A Uiz—nk/\ e ) 4

where in the right-hand side, only finitely many terms arezewn. By construction, these endo-
morphisms commute with the action @bn.%. However they no longer generate a commutative
algebra but a Heisenberg algebra, as we shall now see.



2.2.7 Bosons

In fact, we will consider more generally the endomorphigBasgk € Z*) of .# defined by
Bk(uil AUy A\ -+ ) = (Uil—k/\ Ui, A -+ ) + (Uil AUy N\ -+ ) +--- @)
so thatby = Bnk.

Proposition 1 For k,I € Z*, we have B, 8] = & 1 kld z.

Proof — Recall the total Fock spade= ®mcz-%m introduced in§2.2.3. Clearly, the definition
of the endomorphisni of .# given by Eq. (7) can be extended to a#,. So we may consider
Bk as an endomorphism & preserving eact¥,. Fori € Z, we also have the endomorphism
of F defined byw;(v) = u; A V. It sends%, to .Fm. 1 for everyme Z. For anyv € IF, we have

ﬁkWi (V) = Bk(ui /\V) =U_k AV+U A ﬁk(V),
hence|fx, wi] = wi_k. It now follows from the Jacobi identity that

(1B, B, Wi] = [[BeWil, B] = [[B1, Wi, Bl = Wik, Bi] — [Wi_1, Bi] = —Wi__1 +Wi__ = O.

Let us write for shorty = [B«,31]. We first want to show thay = k Idr for some constank.
Consider a basis element .%,,. By construction we have

V="Uj, A Alig A |Om_n)

for some large enougN andi; > i, > --- > iy > m— N. Sincey commutes with everyy;, we
have

(V) = Uiy A+ Ay A Y([Om-n))- (8)
We have
V(I0m-n)) =D @jUmy; A= Alm AOm-n-L)
]

for some large enoughandmy ; > --- >m_; > m—N—L. Clearly,m j < m—N+ K| +|l|. Tak-
ing N large enough, we can assume that-N+1,m—N+2,... m—N+ k| + ||} C {i1,...,in}.
Hence we must havey j = m— N for every j, and this forcestpj =m—-N-—-1,... . m_j =
m—N—L+ 1. This shows thag(v) = kv for some scalak,. Now Eq. (8) shows that, = K|p,, )
for N large enough, s&, = k does not depend on

Finally, we have to calculate. For that, we remark thgi is an endomorphism of degree,
for the grading of# defined in§2.2.1. Hence we see thatkft+ | # 0 thenk = 0. So suppose
k= —I > 0, and let us calculat§B, 3]|0). For degree reasons this reducegif_¢|0). It is easy
to see thaf3_k|0) is a sum ok terms, namely

ﬁ_k|0> = U A\ |0_1> + Ug A Uk—1 A |0_2> + -+ U AU A AU_k2 AU A |0—k>-
Moreover one can check that each of thieserms is mapped t{@) by Sx. O

Proposition 1 shows that the endomorphisfiis(k € Z*) endow.# with an action of an
infinite-dimensional Heisenberg Lie algebsavith generatorg;, gi(i € N*), andK, and defining
relations

(pi,q;] =6 K, [K,pi]=[K,qg]=0.



In this representatiork acts by I¢, and dedqi ) =i = —ded p;). Its character is given by Eq. (1),
so by the classical theory of Heisenberg algebraséspfK, §9.13]), we obtain tha# is isomor-
phic to the irreducible representation 9fin % = C[x; | i € N*] in which p; = d/d% andgq; is the
multiplication byx. Note that we endow? with the unusual grading given by deg=i. Thus
we have obtained a canonical isomorphism between the faiiock space# and thebosonic
Fock space#. This is called théoson-fermion correspondence

Exercise 5 Identify 8 = C|x; | i € N*] with the ring of symmetric functions by regardimgas the
degreea power sum (seeMlicd]). Then the Schur functios, is given by

S = Xa(H)Xu/Zy,
o

where forA andu = (1%,2% . ..) partitions ofm,
Xy =xXde ..z = 1kg12%kgl

andx, (1) denotes the irreducible characpey of G, evaluated on the conjugacy class of cycle-
type u. Show that the boson-fermion corresponder®€e— % maps|A) to s, [MJD, §9.3], [K,
§14.10].

2.2.8 Decomposition of#

Let us go back to the endomorphisifs= Bn (k € Z*) of §2.2.6. By Proposition 1, they generate
a Heisenberg subalgebfg, of End% with commutation relations

b7.b7] = nkd 1dz, (kI €Z7). ©)

Since the actions gf and$, on.# commute with each other, we can rega#das a module over
the product of enveloping algebragg) @ U ($n). Let C[$,] denote the commutative subalgebra
of U ($n) generated by thby (k < 0). The same argument as in.8% shows thaC[$,,]|0) is an
irreducible representation &, with character

1
—r (10)
I!;Il 1—tnk
On the other hand, the Chevalley generatorg a€t on|0) by
gl0) =0, fi|0)=23a0/|1), hi|0) =3d00), (i=0,1,...,n—1).

It follows from the representation theory of Kac-Moody dges that) (g)|0) is isomorphic to the
irreducibleg-moduleV (Ag) with level one highest weighiy, whose character is (seeg.[K, EX.

14.3)) )
n_ 1
I = )

By comparing Eg. (1), (10), and (11), we see that we have prtvat
Proposition 2 The U(g) ® U ($n)-modules# and V(Ag) ® C[$);,]| are isomorphic. O

We can now easily solve Exercise 4. Indeed, it follows frorad@sition 2 that the subspace
of primitive vectors of# for the action ofg is C[$);,]. Thus, for evenk > 0,

nk

500) = 3 (™.

|
is a primitive vector. Here(i,1""') denotes the partitiofi,1,1,...,1) with 1 repeatechk — i
times.
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2.3 The higher level Fock space representations of,
2.3.1 The representation# (]

Let ¢ be a positive integer. Following Frenkét], F2], we notice thafy contains the subalgebra
8 =9®C[Z,z '|®Cg,
and that the linear map : g — gy given by
awz)=awz’, 1c)=>t, (acg keZ),

is a Lie algebra isomorphism. Hence by restricting the Faace representation gfto ﬁ[f] we
obtain a new Fock space representatiff| of g. In this representation, the central elemeatts
via 1/(c) = (¢, therefore by multiplication by. So.#[¢] has levell and is calledhe level¢ Fock
space representatioaf g. More generally, for everyn € Z we get from the Fock spac&, of
chargem a levell representatiot’ (] of sly,.

2.3.2 Antisymmetrizer construction

The representationgm[¢] can also be constructed step by step from the representatiras we
did in the case = 1. This will help to understand their structure. In partanlit will yield an
action ofsl, of level n on .%,[¢], commuting with the levef action ofsl,.

(@) The new action ofj onV(z) coming from the identificatio@ = gy, is as follows:

86U = O=it1Uk 1, filk = Ozilkit, (1<i<n-1),
Uk = O=1Uk—1-(—1n, folk = Ok=0Ukt14(—1)n-

Here, &= is the Kronecker symbol which is equal to 1kif= i modn and to O otherwise. For
example, ifn= 2 and/ = 3, this can be pictured as follows:

f f f f f f f
—o> U_sg —l> U_g L up —l> U —o> Uy —l> Usg —0>

f f f f f f f
—0> u_3 —1> u_o _0) us —1> Ug —0> Ug —1> Uio —O>

fo f1 fo f1 fo f1 fo
— U3 — U — U — Ug — Ux — U2 —

This suggests a different identification of the vector spé¢® with a tensor product. Let us
change our notation and writé¢ := @;Cu;. We consider again

n
V= @(Cvi,
i=1

and also ,

W =PCw;.
=1

Then we can identifV ®V @ Clz,z 1] with U by

W@V ®Z = U (jinme  (1<i<n 1<j<L ken). (12)

11



Now the previous action of = sl, onthe spact) reads as follows:

g = ldwo®E®l fi = ldwoF®l, h = ldweoH®1, (1<i<n-1),
& = ldw®Eu®z fi = ldw®En®z?!, hy = ldw® (Enn—E11)® 1.

But we also have a commuting actiongf= sl given by

& = Exldyel f

& = Enoldyez fy = Eyoldvoz?l, h = (Ex—En)@ldy®1.

— Foldv®l, h = Holdhel  (1<i<i-1),

Here, we have denoted Hfy; the matrix units ofgl,, and we have sé = E;;,1, F = E;1; and
Hi =Eii — Eiiyis1.

(b) From this we get as if2.1.4 some tensor representations. iLetN*. We have
U¥ = WaVeCzz ) =W oV aClZ,...,z].

This inherits fromU two commuting actions of and ofg. ~
We have endowed " @ C[z,...,z"] with a left action of&; in §2.1.5. Similarly, we endow
W' with a right action of&,, given by

Wi, @+ QW -0 =&(0) (Wi, @ QWi ) (0€ &),
whereg (o) denotes the sign of the permutation

(c) We can now pass to the wedge product and consider the repaisam"U, on whichg and
g act naturally. It has a standard basis consisting of noynoatlered wedges

AUj i= Uy A=+ AU, (iy>--->i €7Z).
Proposition 3 We have the following isomorphism of vector spaces

AU 2W* @cs, (V' RCl7,...,Z7]).

Proof — Let 1™ denote the one-dimensional sign representatiosofWe have
AU 2 1” @cg, U,

where&; acts onU®" by permuting the factors. L&t andB be two vector spaces. Then it is easy
to see that
1~ @ce, (A®B)*" = A¥ ®¢g, B,

where &, acts onB®" by permuting the factors, and @&*" by permuting the factors and mul-
tiplying by the sign of the permutation. Recall that the l&étion of &, on (V @ C[zF])®" is by
permutation of the factors, while the right action &f on W®" is by signed permutation of the
factors. It follows that

AU 2W* @, (V@ CZ])™ 2W* gce, (V' @ClZ,...,21).

12



(d) The elementyy = z{zlzﬁ< € (CE‘%r commute with&, C ér, hence their action on
U =W oV @ Clz,...,Z ]

by multiplication on the last factor descendsitfdJ . Using Eq. (12), we see that it is given on the
basis of normally ordered wedges by

bk(/\ui) = U, —nek AUy A== AU, + Uig AUip—negk A== AUip + -+ =+ Uig AU, A A Ui —nek- (13)
This action commutes with the actionsgéndg.

(e) Finally, we can pass to the limit— o as in§2.2. For every chargm € Z, we obtain exactly
in the same way a Fock space with a standard basis consistaiigrdinite wedges

AU = Uig AU, A= AU A - (i = (i1> o> >0 > ) EZN*),
which coincide, except for finitely many indices, with
‘0m> = Um/\ Umfl VAREEWAN Umfr AN Umfrfl/\ M

We shall denote that space b¥m[/], since it is equipped with a levél action ofg, obtained,
as in§2.2.4,82.2.5, by passing to the limit — oo in the action of(c). It is also equipped with
commuting actions of of level n, and of the Heisenberg algebfs, generated by the limitby
of the operatorgy of Eq. (13), which satisfy

[b(])ov b&o] =n¢j 5],—k Idizm[f]v (Jak S Z*) (14)

2.3.3 Labellings of the standard basis

It is convenient to label the standard basis/f|¢] by partitions. In fact, we shall use two different
labellings. The first one is as §2.2.1, namely, fonu; € %] we set

Ak =1Ik—m—Kk+1, (ke N¥).

By the definition of.%[¢], the weakly decreasing sequente= (A | k € N*) is zero fork large
enough, hence is a partition. The first labelling is

AU; = |A, m). (15)
For the second labelling, we use Eq. (12) and write, for ekeryN*,
Ui, = Wi, @ Vi @ Z%, (I<a<n 1<b<l, ceZ).

This defines sequencésy), (bx), and(ck). For eacht = 1,...,¢ consider the infinite sequence

kgt) < kg) < ---, consisting of all integer& such thatb, =t. Then it is easy to check that the
sequence

3w ~NGw, 8o —NGg, ... (16)

is strictly decreasing and contains all negative integ&ceet possibly a finite number of them.
Therefore there exists a unique integersuch that the sequence

Al(t):akp—nckgw—m, Az(t)zakg>_” p-m-1, Aét)z%‘“” H=—Mm=2

is a partitonA®. Let A, = (AD,....A(9) be the/-tuple of partitions thus obtained, and let
m; = (my,...,m;). The second labelling is

AU = |A,,my). a7
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Example 1 Letn =2 and/ = 3. ConsiderAy; given by the following sequence
i=(7, 6, 4, 3 1-1,-2-3,-5-6,...)
containing all integers< —5. It differs only in finitely many places from the sequence
(3, 2, 1, 0,—1,-2,-3,—4,-5,—6,...).

Hencem= 3 andA = (4,4,3,3,2,1,1,1).

For the second labelling, we have (use the picturg2id.2 (a))

uy = W1®V1®Zfl, Ug = W3®V2®ZO, Ug = W2®V2®ZO,
Uz = Wmowue?d, u = wmowue?d, u; = WWuZ,
Uz = WwRweZ, Uz = wmeuez, us = wmeweZ,

Hence the sequences in Eq. (16) are

3,1, -1 -2 -3,... (t=1),
2,1,0, -1, -2, ... (t=2),
2, -1, -2, -3,... (t=3).

It follows thatmsz = (1,2,0) andA; = ((2,1),0,(2)).

Exercise 6 Prove thatm +-- - +m, = m. Show that the mapA, m) — (A,,m) is a bijection from
P xTto P x 7.

2.3.4 The spaces [/

Define Z‘(m) = {(my,...,my) € Z* | mg +--- +my = m}. Givenm, € Z‘(m), let F[m,] be the
subspace of#y[¢] spanned by all vectors of the standard basis of the fgrmm,) for some
¢-tuple of partitionsA ,. Using Exercise 6, we get the decomposition of vector spaces

Fulll = @ Fimi. (18)

Moreover, since the action @ onW @V ® C[z*] involves only the last two factors and leaves
W untouched, it is easy to see that every summiamd,| is stable undeg. Similarly, since the
action of the bosonig, involves only the facto€ |z, ...,z inU®" =W*' @V*' @ C[Z,...,Z ],
each spacdé[m,] is stable under the Heisenberg algelfra. Therefore Eq. (18) is in fact a
decomposition ob) (g) ® U ($n,)-modules.

The spacé-|m/]| is called thdevel¢ Fock space with multi-charge,.

Remark 1 When? = 1, F[m1] = %, is irreducible as &J(g) ® U ($n)-module (see Proposi-
tion 2). But for¢ > 1, the spaceB[m,] are in generahot irreducible asJ (g) @ U ($Hn,)-modules.
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2.3.5 (-tuples of Young diagrams

Let us generalize the combinatorial definitions@f2.2 tol-tuples of Young diagrams. Consider
an/-tuple of partitionsA, = (A(,... A()). We may represent it as drtuple of Young diagrams.
Givenm, = (my,...,m,) € Z*, we attach to each cel of these diagrams eontent ¢y). If yis
the cell of the diagram (9 in column numbef and row numbeij then

c(y) =mg+i—j. (19)
For example letA, = ((2,1),(2,2),(3,2,1)) andm, = (2,0,3). The contents of the cells of
(mg,A,) are

1 10 3
2[3] [o]1 3/4]|5]

i

1]
2

The pair(mg,A,) is called acharged/-tuple of Young diagramslf i € {0,1,...,n— 1}, we say
that a celly of (m,,A,) is ani-cell if its contentc(y) is congruent to modulon.
2.3.6 Action of the Chevalley generators on ]

By unwinding the definition of the action @ on F[m/|, and the correspondence between the
labellings of the standard basis, one obtains the follovgingple combinatorial formulas for the
action of the Chevalley generators, which generalize tlod$2.2.4 anc;2.2.5.

Proposition 4 We have

fi|A£7mK> = Z|H{>m€>7 (20)
where the sum is over gl obtained from}, by adding an i-cell. Similarly,

&lH, M) =% [A,my), (21)
where the sum is over all, obtained fromu, by removing an i-cell. O

Exercise 7 Taken= 2,/ =3,m3 = (0,0,1), andA; = ((1), (2), (1,1)). Check that
60|A3,m3> = ( (2)7( ) )) ((1)7 (2)7(1))7
Az, ma) = ((1),(1),(1,1)),
folds,ma) = ((1).(3),(1,1))+((1), (2), (2,1)),
filAs,ma) = ((2),(2),(1,1)+((1,1), (2), (1,2)) +((1),(2,1),(1,1)) + ((1),(2),(1,1,1)).
Denote byrk (1 < k < /) the residue ofne modulon. It follows from Eq. (20), (21) thad, m,)
is a primitive vector ofF[m], of weight

l
/\m — /\r .
f k; «

)

Exercise 8 Check it.

Hence we see that the submodulgg)|0,m,) is isomorphic to the irreducible modWgAp, ). In
particular, every integrable highest weight irreduciptenodule can be realized as a submodule of
a Fock space representation.

The formulas (20), (21) also show that the action of the Clevgenerators, and hence the
isomorphism type of|m,|, only depends on the residues moduol@f the components of the
multi-chargem,. Therefore we do not lose anything by assuming that {0,1,...,n— 1}‘.

This is in sharp contrast with the quantum case, where ithvelimportant to deal with multi-
chargean, € Z*.
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3 Fock space representation olﬂq(;[n) s level 1

In this section we study ganalogue of the constructions §#.1 and§2.2.

3.1 The quantum affine algebran(sA[n)

The enveloping algebrl (g) has ag-analogue introduced by Drinfeld and Jimbo. This is the
algebraUq(g) over Q(q) with generatorss, fi,t;,t* (0 < i < n— 1) subject to the following
relations:

ttt=tt=1 =t
tet-l_ e ecl oans P T
et - =g e, tifit - =q % fj, af,—f,a_djm,

1§<—1)k[ N qu_aj_kejekﬂ (#1)

1zauj(_1)k[ 1—a; } Ktk =0 (i)
o k g | B

Here,A = [ajj]o<i j<n—1 is the Cartan matrix of typAﬁl_)l, and

[ m] _ [(m[m—1]---[m—k+1]
k 1 [K[k—1]---[1]

is theg-analogue of a binomial coefficient, wheké = 1+q+--- +¢< L.
Exercise 9 Check thaK :=tot; - - - tn_1 is central inUq(g).
Theg-analogue of the “vector” representativtiz) of g (see§2.1.3) is theQ(q)-vector space

U :=PQ(q)u,

keZ
with theU,(g)-action given by
QU= Ocis1lk1,  filk = Oeilicrr, ik = Oty

Exercise 10 Check that this defines a representatiotdgfg). Check thaK acts onJ by muilti-
plication by® = 1,i.e.U is a level O representation oG (9).

3.2 The tensor representations
The algebrdJy(g) is a Hopf algebra with comultiplicatioa given by

Afi=fiol+tef, Ae=ect'+loe, A*=t"coth (22)

This allows to endow the tensor powe#s™ with the structure of &4(g)-module. Let us write
Ui i=Uj, ®---@u fori=(i,...,iy) € Z'. We then have

r .

fou = zqzﬂ:iml;k—al;kﬂ)uiHj, (23)
j=1
ijjzk
r

el = 3 g ety (24)
j=1
ijJEk+1
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where(gj | 1< j <r) is the canonical basis @'.
Theg-analogue of the action @, onV(2)“" given in§2.1.5 is an action of the affine Hecke

algebra.
3.3 The affine Hecke algebra,

H, is the algebra ove®(q) generated bif; (1 <i < r—1) and invertible element¥ (1 <i <r)
subject to the relations

TiTipaTi = TipaTiTiga, (25)
TiTy =TT, (i—j#+£1), (26)
(T—g ) (Ti+9) =0, (27)
YiYj =YjYi, (28)
Tin:YjTi fOI’j;ﬁi,i—i—l, (29)
TYiTi =Yiq1. (30)

The generatorg; replace the simple transpositiossof &;, and the generatorg replace the
generatorsz of ér. Because of Eq. (25) (26), for evewy € &, written in reduced form as
W=s, -5, we can defin€l,, := T, ---Ty,. This does not depend on the choice of a reduced
expression. Far= (iy,...,ir) € Z" we shall also writey' :=Y;*--.Y/r.
There is a canonical involutior — X of H, defined as the uniqu@-algebra automorphism
such that
a=q ' T=T% Yi=TY 11T,

wherewy is the longest element @&,. We have the following more general formula, which can
be deduced from the commutation formulas.

Proposition 5 For s€ &, andi € Z", we have: (Y'Tg) = Tw‘olYWO'iTWOs. O

3.4 Action of H, onU®"

Regall the fundamental domafy := {i € Z" | 1 < i1 <i2 < --- <iy < n} of §2.1.5 for the action
of &. We write S, A :={j € Z" | 1< ju1, j2, -, Jr < N}, and we introduce an action b onU“"
by requiring that

Yjui = quia (l< J <, i€ Zr)7 (31)
Us,j it Jk < ki1,
Ty = ¢ gly if jk = Jkia, (I<k<r—1,je&A). (32
Ui + (@t —a)u if ji> jisa,
In these formulasz;i ands,j are as defined i2.1.5.

Proposition 6 Eq. (31) (32) define an action ¢f, on U®" which commutes with the action of
Uq(9).
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Proof — First we explain how to calculat&u; for an arbitraryi € Z". Write i =j — nl, with
j € &A andl € Z' (this is always possible, in a unique way). Then by the firsnidau; = Y'y;.
Write

! =yl (yl'l YL (Y )Rz ler) '

Eq. (29) (30) show thalk, commutes with the second bracketed factor. Indeed, on®hagdmple

TViYier1 = Vi1 Ty iy = Y YiTi.

Hence we are reduced to calculé’t@ﬁlk*'“luj. For this, we use the following commutation rela-
tions, which are immediate consequences of Eq. (29) (30):

|—
YT+ (@—q° ZY Yl (120,
TV = (33)

These relations allow us to exprega); as a linear combination of terms of the folf' Tyu; for
somem € Z" and therefore to calculafiui.

Eq. (32) is copied from some classical formulas of Jimbd] which give an action of the
finite Hecke algebréd, = (T« | 1 <k <r — 1) on the tensor powér®" of the vector representation
of Ug(sln). This action commutes with the actiond§(sl,) (Qquantum Schur-Weyl duality). The
above discussion shows that Eq. (31) allows to extend thisrato an action ofd, onU®".
Comparing Eq. (31) and Eq. (23) (24), we see easily that thieraof Uy(g) commutes with the
action of theYj’s. The fact that the action 6l commutes witheg and fo can be checked by a
direct calculation. O

Fori € A;, letH; be the subalgebra of, generated by the thg's such thasii =i. This is the
parabolic subalgebra attached to the parabolic subg&upDenote byl' the one-dimensional
Hi-module on whichl acts by multiplication by;~2. Then, Eq. (31) (32) show that tié-module

U®" decomposes as
or = @ HrUi,
ieAr
and that

Hu= @ QOus=H ou 1.
O'Gér/Gi

Hence,U®" is a direct sum of a finite number gfrabolic H,-modules, parametrized bye A,.
Each of these submodules inherits a bar involution, nantedysemi-linear map given by

a=q 7',  XG=X4, (xeH).
The following formula follows easily from Proposition 5.

Proposition 7 Leti € A, andj € @ri. Then

} =q (W0|)T uWko

where vy is the longest element &f;. O
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3.5 Theg-deformed wedge-spaces

Let .4 = zrkjlm(TkJrqld) C U®" be theg-analogue of the subspace of “partially symmetric
tensors” (se€2.1.6). We define
AU = u®/.#.

Let pr :U®" — AU be the natural projection. Fok Z', we put
AqUi := g~ ")pr(u).

We shall also write\qUj = Ui, Aq Ui, Aq - -+ Aq Ui, -
The next proposition gives a set of straightening rules fwress any\qu; in terms of Aquk’s
with kg > -+ > k.

Proposition 8 Leti € Z' be such thatyd < ik 1. Write ik 1 =ik+an+b, witha>0and0< b < n.
Then

/\qU| — _U|1/\q/\q Uik+1/\q U|k/\q/\q Uir7 |fb:0,
AqUi = —q Ui, Aq - Aq Ui,y Aq Ui Ag -+ Aq Ui, ifa=0,
AqUi = —q Uiy Aq-+- Ag Uiy Aq Ui Ag -+~ Aq Ui

—Ui; Aq * -+ Aq Uig+an\q Uiy, ;—anAq - - - A\q Ui

—q Ui, Aq - Ag Uig,;—anAq Ui ran/Ag -~ Aq Ui » otherwise.

Proof — To simplify the notation, let us write=ix andm =y, 1. Since the relations only involve
componentk andk+ 1 we shall also use the shorthand notations

(lp) = Uy @ - QUi ; QUj QUp @ Uiy, &=+ & Uiy cuyer,

[1sP) 1= Uiy Aq -+ Aq Uiy AqUj Ag UpAq Ui, Ag -+ Ag Ui, € Ag'U.

We shall use the easily checked fact tht+Y," ; commutes withTy for everyp € Z.
Supposeb = 0. It follows from Eq. (32) thaflk(I,1) = g~*(1,1). Hence(l,l) € Im(Tx+q).
Since(Y, +Y.3)(Tk+0a) = (Tk+a) (Y, +Y,.3) we also have

M YD D = (M) + (1,m) € Im (T +q),

and thugl,m) + |m,l) = 0.
Suppose = 0. ThenTy(l,m) = (m,1) by Eq. (32), and

(Tk+a)(1,m) = (m 1) +q(l,m) € Im (Tx+q),
which gives|l,m) = —q~|m,I).
Finally suppose thaa, b > 0. By the previous casém,| +an) +q(l +an,m) € Im(Tx + Q).
Applying Y2+ Y2 ; we get that
(m]1)+ (m—an,l +an)+q(l,m) +q(l +an,m—an) € Im(Tx+q),

which gives the third claim. a
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Exercise 11 Taker = 2 andn = 2. Check that
Up AqUs = —q UsAq Ui — U Aq Uz — G T Up Ag Us,
and thatu, Aq U3 = —q LUz Aq Up. Thus
UpAqUs = —q tUsAq Ui+ (g2 — 1) ug Aq Up.

Proposition 9 LetZ{ ={i€Z" |i1 > ... >i;}. The sef{Aqu; | i € ZL} of ordered wedges is a
basis of the vector spacgU.

Proof — By Proposition 8, the\qu; with iy >i> > --- > iy spanAaU. To prove that they are
linearly independent, we consider th@antisymmetrizer

oy = (_q)l(s)—l(Wo)Ts'
S;r

Using the relation
TsTk = 1 .
Tss+ (@ —a)Ts if I(ss) > I(s) -1,

it is easy to check that for evekywe havea; (Tx+ ) = 0. Suppose th&; a (Aqui) = 0 for some
scalarsa; € Q(q). This means thay;au; € .% C keray, thusy;a a;ui = 0. We are therefore
reduced to prove that the tensargy; with i; > i, > --- > i, are linearly independent. Since they
belong todjcz Z[d,q~]uj, we can specializg to 1, and it is then classical that these specialized
tensors are linearly independent over a

3.6 The bar involution of /\[qU

Note thatT; +q = T; + g, hence the bar involution df " preserves# and one can define a
semi-linear involution omgU by

pr(u)=pr(m, (ueu®).
Proposition 10 Leti € A, andj € - @r. Then

Rt = (=) /g1 7.

Proof — Foranyu; e U®" andk=1,...,r — 1, we have
@+ T Hy = (Tk+q)y € 4,

hence ptT,u) = —g~pr(y;). It follows that pr(Ttu) = (—q)~'")pr(y;). By Proposition 7
we have

AqU = q ") pr(t) = ¢ o)~ (o) Pr (T Uwej) = (— 1) (W) gl (wo)—1(Wo) Ay .
O

Proposition 10 allows to compute the expansiomgij on the basis of ordered wedges by
using the straightening algorithm of Proposition 8.
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Exercise 12 Taker = 2 andn = 2. Check that
Us Aq Uz = Us Aq Us + (9 — 0 ) Ug Ag Up.

Fori € ZL write AqUi = ¥jczr & (d) (Aqy;). Using Proposition 10 and Proposition 8, we
easily see that the coefficierdg(q) € Z[q,q 1] satisfy the following properties.

Proposition 11 (i) The coefficientsjgq) are invariant under translation afandj by (1,...,1).
Hence, settingp = (r —1,r —2,...,1,0), it is enough to describe thgj &) for whichi — p and

j — p have non-negative componeritg, for whichi — p andj — p are partitions.

(ii) If & (q) #Otheni c érj. In particular, ifi — p andj — p are partitions, they are partitions of
the same integer k.

(i) The matrixAy with entries the g(q) for whichi — p andj — p are partitions of k is lower
unitriangular if the columns and rows are indexed in dechegdexicographic order. O

Exercise 13 Forn = 2 andr = 3, check that the matrices for k= 2,3,4 are

(6100 (5200 (430) (421)
(4,100 (32,0) (510) (420 (321)

1 0 0 0

1 0 0 1
171 0 0 1 0 q;q 171 0 0
q—q 1 q—qt 0 1 qg“°-1 g-—q 1 0
0 -1 g-qt 1

3.7 Canonical bases o;f\aU

LetL* (resp.L™) be theZ[q] (resp.Z[q~1])-lattice in AgU with basis{Aqui| i € ZL }. The fact that
the matrix of the bar involution is unitriangular on the Isashqu;| i € Z% } implies, by a classical
argument going back to Kazhdan and Lusztig, that

Theorem 2 There exist bases™B= {G;" | i € ZL}, B~ = {G[ | i € ZL} of A{U characterized
by:

() G =6 G =G,

(i) G'=nqumodgL", G =Aqu modqiL".

Proof — Let us prove the existence Bf". Fix an integek > 0, and consider the subspddgof
/\EU spanned by thequ; with i — p a partition ofk. Letl = {i1,i>,...,im} be the list ofi € Z{
such that — p is a partition ofk, arranged in decreasing lexicographic order. By Propmsifil
(i) (i), it is enough to prove that there exists a bafg"} of Uy indexed byl and satisfying the
two conditions of the theorem. By Proposition 11 (il)g Ui, = AqUi,,, SO We can tak&; = Ui, .
We now argue by induction and suppose that for a centainm we have constructed vectors

GL,GLZ, ...,G; satisfying the conditions of the theorem. Moreover, we aBsthat
Gi—:—i = NAqUi,,; + Z aij (Q) AqUi,,; » i=1...,m-—r), (34)
i<j<m-—r

for some coefficientsjj (q) € Z[qg]. In other words, we make the additional assumption that the
expansion ot’;‘ﬁ+i only involves vectors\qu; with j <irj. We can therefore write, by solving a
linear system with unitriangular matrix,

AqUi; = AqUi, + Z Bj (q) G

. irej”
1<jsm—r
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where the coefﬁuentﬁ (q) belong toZ[g,q71]. By applying the bar involution to this equation
we get tha;(q~*) = —B;(a), henceB;(a) = vj(a) — vj(a™*) with yj(a) € gZ[g). Now set

Gl =Aqu, + Y V(@G

Irtj °
1<jsm—r

We haveGﬁ = AqU;, modgL™, Gﬁ = Gﬁ, and the expansion @(A") on the standard basis is of
the form (34) as required, hence the existencBofollows by induction.

The proof of the existence &~ is similar.

To prove unicity, we show that i € qL™ is bar-invariant therx = 0. Otherwise writex =
Yi6(a) Aqui, and letj be maximal such tha (q) # 0. ThenAqu; occurs inx with coefficient
6 (q1), henced (q) = 6/(q~1). But since (q) € gZ[q this is impossible. O

Set
ZCU (Aqu), G =Y li(=a ") (Aquy).

J

Let Cx andLy denote respectively the matrices with entries the coefftsig; (q) andl;j(q) for
whichi — p andj — p are partitions ok.

Exercise 14 Forr = 3 andn = 2, check that we have

6,1,0) (5,2,0) (4,3,0) (4,2,1) 6,1,0) (52,0) (4,3,0) (421)
1 0 0 0 1 q o 0
Cs= 1 0 0 La= o 1 q 0
0 q 1 0 0 0 1 q
q Vg q 1 0 0 0 1

3.8 Action ofUy(g) and Z(Hy) on AjU

Since the action dfl4(g) onU®" commutes with the action ®1,, the subspace is stable under
Uq(g) and we obtain an induced actiond(g) on AGU. The action omqu; of the generators of

Uq(sA[n) is obtained by projecting (23), (24):

r
fi(AqUi) Z qz| 1 G —k— 08 =k+1) (/\qu|+€j)a (35)
1=k
r
a((/\q ul) — Z q_ Z{:j+1(é|zk_d|zk+l) (/\q ui—Ej ) (36)
ijJET(-Ji-l

Note thatifi ¢ ZL theni+&; € ZL :={j € Z" | j1 > --- > | }. Itfollows that either\q Ui, belongs
to the basﬁ{/\quj |jeZ"}, orAqu.ig = 0. Hence, Eq (35) (36) require no straightening relation
and are very simple to use in practice.

By a classical result of Bernstein (sdaufL, Th. 8.1]), the centeZ( r) of H; is the algebra
of symmetric Laurent polynomials in the eIemehrﬁtsCIearIy,Z(H ) leaves invariant the submod-
ule .7. It follows thatZ(H;) acts onA\gU =U®"/.#. This action can be computed via (31). In

particularBy = S!_, YX acts by

/\q U| Zl/\q U| nk‘;.:J y (k € Z*) (37)
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Note that the right-hand side of (37) may involve termgy with j ¢ ZL which have to be ex-
pressed on the basfg\qu; | i € ZL } by repeated applications of the straightening rules.

Example 2 Taker = 4 andn = 2. We have

B 2(AqU321.0)) = AqU7,2.1,0) + AqUz6.1,0) + AqUz250) + AqUz214)-

By Proposition 8,

NqU(36,1,0) = —q ' Aq Ue,3,1,0 T (@%=1) Aq U(5,4,1,0)

NqU(3250) = —q ' Aq Uiz 520) T (@ 2-1) Aq U3 430 = q ' Aq U(5,32,0)

AqU@a214) = —0 *AqUg241) + (02— 1) AqUg232) = —0 > AqUa321),
which yields

B-2(A\qU210) = AqUz210 — 9 Aq Ue3.10)
+(072=1) AqUisa10) + 9 AqUs320)—d 2 AqUaza):

3.9 The Fock space

As in §2.2, we shall now construct the Fock space representatidhy(@f) as the direct limit of
vector spaces
F =limAgU

with respect to the linear maggss: AGU — AU (r < s) defined by
¢|’75(ui1 /\q e /\q uir) == uil /\q e /\q uir /\q u_y /\q U_r_1 /\q e /\q U,er]_.

By construction, eachqu; € Aau has an image, (A\qui) € % which we think of as the infinite
g-wedge
¢r(/\q U|) = uil /\q e /\q uir /\q ufr /\q ufrfl/\q te /\q u75+]_ /\q te

Given a partitiond = (A;)ien, Where we assume as before that= O for i large enough, we set
|A) i= Ui, Aq Ui, Aq - Aq Ui, A--+,

whereiy = Ak —k+1 (k> 1). It follows from Proposition 8 and Proposition 9 thah ) | A € &7}
is a basis of#. As in §2.2.1, we will be using the natural grading.&f given by

deg|A)) = Z)\k.
We will sometimes writéA | instead of de¢A)), andA - Kkif |A| =k.

3.10 Action ofUq(g) on.#

Asin §2.2.4 ands2.2.5, wherr — o the compatible actions &fq(g) on theg-wedge spacesgU
give an action on#, by setting

figr(Aqui) == roafidrria(Aqui), &dr(Aqui) = qidzrq’r(a(/\q u)), (ie Zr>)

These formulas have a nice combinatorial description im$eof Young diagrams. Given two
partitions A and  such that the Young diagram ¢f is obtained by adding ancell y to the
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Young diagram ofA, let A/ (A, 1) (resp. R(A, u)) be the number of addabiecells ofA (resp.of
removable-cells of A) situated to the right of (y not included). Set

Nir(Avl'l) = Alr()‘>“) - er()‘>“)
Then Eq. (35) gives
filA) =3 a¥OH ), (38)
[T

where the sum is over all partitions obtained fromA by adding an-cell. Similarly, Eq. (36)
gives
|
alp) =S g N @), (39)
A

where the sum is over all partitioms obtained fromu by removing ani-cell, andN! (A, u) is
defined as\f (A, u) but replacing right by left.
Exercise 15 Check that, fon = 2, we have

fol3,1) = q'32)+(3,1,1), f[3,1) = |41),

®3,1) = q?21), el31) = [3).
Exercise 16 Show thattj|A) = q¥?) |A), whereN;(A) denotes the number of addabil@odes

minus the number of removablenodes ofA. Deduce that the central elemdfit=ty---t,_1 acts
on.Z asqldz, i.e..Z is alevel one representation G§(g).

3.11 Action of the bosons on7
Leti € ZL . It follows from the easily checked relations
ufs/\q u,r /\q ufrfl/\q /\q U,SZO, U,r /\q ufrfl/\q /\q ufs/\q U,r :O, (S} r 2 O)

that the vectowps By ¢ s(AqUi) is independent of for s > r large enough. Hence one can define
endomorphism8y of .# by

Bidr (AqUi) := ¢sBk drs(Aqui), (keZ, s>1). (40)

By construction, these endomorphisms commute with themaf Uy(g) on .%#. However they
no longer generate a commutative algebra. Using argumenyssimilar to those of the proof of
Proposition 1, Kashiwara, Miwa and SteKNIS] showed that

1— q—2nk )

km—— if k=—I

Bk, Bi] = 1-q& ’ (41)
0 otherwise.

Hence theBy generate a Heisenberg algebra that we shall denot&’by

Remark 2 TheBy's areg-analogues of the endomorphisifig of §2.2.7. We do not have natural
g-analogues of the other bosofiswith | not a multiple ofn. In the classical case, thefebelong
in fact tog. (For examplef; = ¥;&.) They generate the principal Heisenberg subalgelwfg.
We lack a nice qguantum analogue of this principal subalgebra

Let C[.7#~] denote the commutative subalgebradaf7#’) generated by th8 (k < 0). Let
V (/o) denote the irreducible highest weidbg(g)-module with highest weigh,. Using charac-
ters and arguing as i2.2.8, we get the following analogue of Proposition 2.

Proposition 12 The U,(g) ® U (#)-modules# and V(o) ® C[.7~| are isomorphic. 0
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3.12 The bar involution of .#
Using Proposition 8 we can check the following

Lemma 1l Leti € Z" and let m>r. Assume thati> —m(k=1,...,r) and y(ik+k—1) <m.
Then
ufm/\q uil /\q e /\q uir /\q ufr /\q te /\q u7m+]_ -

(—1)mq_a(i) Uil /\q e /\q uir /\q u_r /\q e /\q u_m+1 /\q u_m,
where di) =f{j<r|ijZ-—-m}+{-r>j>-m+1|j#-—mj. 0

Repeated applications of this lemma together with ProjpositO yield that ifi satisfies the hy-
pothesis of the lemma anal> m, we have

Grp(AqUi) = Pmp(Prm(AqUi)).
Thus we can define a semi-linear involution .enby putting

In particular, forA = (A,...,A;) € & ands> S A, we have

[A) = ¢s(Up, AqUp,—1Aq " AqUx —r11/\q U-r Aq -+~ Aq U-st1)-

The following proposition shows that the lowering operatofUq(g) and.7#” commute with the
bar involution.

Proposition 13 For A € &2, 0<i < n—1and ke N*, we have

fi]A)="fi|A),  B_x|A) =B_k|A).

Proof — This readily follows from Eq. (38) (40) (42). (Note that thenclition A; > —min (42)
is preserved by the action of these lowering operators.) O

__ Because of Proposition 12, it is easy to see that Proposifiand the normalization condition
|0) = |0) characterize the bar involution of. One can also develop a straightening free algorithm
based on Proposition 13 for computing the bar involutionicliis much more efficient in practice
(see L2)).

3.13 Canonical bases of#

Letp, :=(r—1r—2,...,10) € ZL. Foru € & write
=S buaA).

AeZ
Then, for|A| = |u| < r it follows from (42) that we have

by u(a) = aj(q)

wherei = A +py, j = 4+ pr, and the coefficients;j (q) have been defined i1 3.6. Hence by
Proposition 11 the matrix

Be:=[bap(@],  (A,pkk)

is unitriangular, and one can define canonical bd§gs| A € 27}, {G; | A € 2} of .7 charac-
terized by:
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@) G =G, G, =G,
(i) Gf=|A)modgL$, G, =]|A)modg 'L,

whereL} (resp. L) is the Z|qg]-submodule resp. Z[q1]-submodule) of# spanned by the ele-
ments|A) of the standard basis. Set

Gi = Y @A) Gy =Y el-aIh).
7]

and

Di:=[dhu(@)], Exi=leu(@l,  (AuEKk).
Then, forr > k we have

() = Cagpy, ptp (9), enu(d) =g puro (9
where the polynomials;j (g) andlj; (q) are those 0£3.7.

Exercise 17 Check that
4 Bl 22 (2,1,1) (1,112

1 0 0 0 0
D= 4 1 0 0 0
0 gq 1 0 0
g ¢ 9q 1 0
d? O 0 q 1

Compare with the matri, of Exercise 14.

3.14 Crystal and global bases

Lusztig’s theory of canonical bases for guantum envelopiggbras was inspired by the Kazhdan-
Lusztig bases of Iwahori-Hecke algebras. Independentlyusktig, Kashiwara gave a different
construction of canonical bases inspired by works of thet&gmoup on solvable models in statis-
tical mechanics. Since in the framework of statistical nagitsq represents the temperature, one
might expect that the representation theory becomes dadigtsimpler as the temperature tends
to absolute zero and the model crystallizes. This was firsented by Date, Jimbo and Miwa
for g = gl,, [DIM], and then generalized to an arbitrary symmetrizable Kaod§ algebrgy by
Kashiwara Kasl].

In Kashiwara’s approach, the canonical basis 0f,&)-moduleM, calledglobal basisof M,
is obtained in two steps. First, one constructs a combiiztskeleton, called therystal basis
which one should think of as a “basis bf at q = 0". The second step involves the same bar
involution of Ug(g) as in Lusztig’s construction, which induces a bar involtam every highest
weight irreducibleUq(g)-module. Kashiwara shows that for any irreducible intetgraiighest
weightUq(g)-moduleM there is a uniqué)(q)-basis ofM which is bar-invariant and “coincides
with the crystal basis @&t = 0" [Kasl]. This is theglobal basisof M, and it is identical to Lusztig's
canonical basis d¥1, as shown by Grojnowski and LusztiGL].

By Proposition 13, the restriction of the bar involution tetsubmoduléy(g)|0) =V (Ao)
coincides with the Kashiwara-Lusztig bar involution of flreducible modulé/(/Ag). Moreover,
it was shown by Misra and MiwaMM ] that in the crystal limitg — 0 the standard basis of
tends to a crystal basis oF. The subset of the standard basis labelled by the satrefular
partitions, i.e.partitionsA with no part repeated more than- 1 times, turns out to give “aj= 0"
a basis oV (Ag). This implies
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Proposition 14 The subsefG*(A) | A is n-regular} coincides with Kashiwara’s global basis (or
Lusztig’s canonical basis) of the basic representatidi\vy). O

Thus we have obtained a global ba§3*(A) | A € 42} of the Fock space extending the global
basis of its highest irreduciblgy(g)-submodule. InKas2], Kashiwara has generalized these
results to the more general Fock space representationsaotu affine algebras introduced in
[KMPY].

4 Decomposition numbers

4.1 The Lusztig character formula

Let Uy(gl,) be the quantum enveloping algebraghf. This is aQ(v)-algebra with generators
g, fi, Kj (1<i<r—1, 1< j<r)subject to the relations

KKt =K 'Kj=1, KK =KK,;

KiK — KK;

i

lg<—1>k[ N } o " e =0 (i#])

1-a;
1— & 1-a;—k L
S (k| ] a0 20
k=0 v
Here, A = [aij]1<i j<r—1 is the Cartan matrix of typé\_;. Let Uyz(gl;) denote theZ[v,v 1]-
subalgebra generated by the elements

0. & k. f
&= R fi = KT K, (keN).

Let € C be such thaf? is a primitiventh root of 1. One defined; (gl;) :=Uyz(gl;) Qzpy-1 C
whereZ[v,v—1] acts onC by v ¢ [Lu2, Lu3].

Let A € ZL. There is a unique finite-dimension@l,(gl;)-module (of type 1)\(A) with
highest weightA. Its character is the same as fgf and is given by Weyl’s character formula.
Fix a highest weight vectary, € W,(A) and denote bW,z (A) theU,z(gl,)-submodule of\{(A)
generated by, . Finally, put

W (A) :=Wz(A) ®zpy-1 C.

This is aU, (gl,)-module called a Weyl modulé.{i2]. By definition ctW, (A) = chW\,(A). There
is a unique simple quotient &k (A) denoted byl (A). Its character is given in terms of the
characters of the Weyl modules by the so-called Lusztigemnoje Lu3] (now a theorem of
Kazhdan-LusztigKL ] and Kashiwara-TanisakK]T ]).

To state it, recall the action ab, on Z' introduced in§2.1.5. Namelys, (1 <k<r—1)
acts by switching th&th and(k + 1)th components of, andz; (1 < j <r) by translating thejth
component by-n.
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Theorem 3 (Kazhdan-Lusztig [KL], Kashiwara-Tanisaki [KT]) Letp=(r—1,r—2,...,1,0).
We have

chL(A 1) chw, (u), (43)

Z H+p, /\+p
where the sum is over gil € Z% such thatu + p belongs to theS, -orbit of A +p.

In this formula, the coefﬁment@wp Aip

Lusztig polynomials foiS,, whose definition will be recalled in the next section.

(—1) are values atj = —1 of some parabolic Kazhdan-

Example 3 Taker =3,n=2andA = (4,0,0). ThenA +p = (6,1,0). The only dominant weights

VRS Z3 suchtha® (6.1.0) ( ) # 0 are(4,0,0), (3,1,0), and(2,2,0), and one can calculate

P610.610(@) =1 Ps20.610(@) =0 Paz0)610)/(a) =

It follows that the character df(4,0,0) for {? = —1 is given by

chL(4,0,0) = chW, (4,0,0) — chW, (3, 1,0) + chW, (2, 2,0).

4.2 Parabolic Kazhdan-Lusztig polynomials

The parabolic versions of the Kazhdan-Lusztig polynomiese been introduced by Deodhar
[D]. We refer to Bq for a more detailed exposition.

Up to now, we have been regardi@g as the semidirect produét; x Z', and we have used
the corresponding Bernstein presentatioﬂp.li To introduce the Kazhdan-Lusztig polynomials,
we need to shift our point of view and considgf as an extended Coxeter group, with generators
%,S1,..-,5 -1, T subject to the relations

SS+1S = S+1SS+1, (44)
SSj =Sjs, (i—j#%1), (45)
& =1, (46)
TS =S41T. (47)

Here the indices = 0,1,...r — 1 are taken modulo. The new generators andt are expressed
in terms of the old ones by

T=8% S 1%, (48)
O=S_1S_2 9% S-1Z 7. (49)

The subgrourf?)r generated by, sy,..., -1 is a Coxeter group of typEr 1, and therefore has an
associated Bruhat order, and a length function. (B.uis not a Coxeter group. However one can
extend the Bruhat order and the length functlorﬁ;fto Gr as follows. Letw = to,w = 1Mo’
with kme Z, 0,0’ € Sr. We say thatv < w if and only if k= mand o < g/, and we put
[(w) :=1(0).

The Hecke algebral, has the following alternative description. This is the algeoverQ(q)
with basisT,, (w € &;) and multiplication defined by

TawTw = Taw if I(wvx/) I (w +I(V\/), (50)
(Ts—a 1) (Ts+0a) =0, (0<i<r—1). (51)
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The generators used §8.3 areTi =Tg (1<i<r—1)andYj=T; (1< j <r). We can now also
useTp = Tg, andT;, which we shall simply denote by. This gives another presentation:

TiTiaTi = TipaTiTiga, (52)
TiTy =TT, (i—j#=£1), (53)
(Ti—a )(Ti+a) =0, (54)
TTi = Tij1T, (55)

where now the subscripts=0,1,...,r —1 are understood modufo
For the action of5, onZ" defined in§2.1.5, we have
%l = (Ir _n,iz,...7ir71,i1+n), TI = (lr _n,i]_,iz,...,irfl).

We shall now define another bagig | i € Z") of U®". Puty; = u; if i € A;. Otherwise, there is a
uniquej € A, such thai belongs to theS, -orbit of j, and a unique elememt = w(i) of minimal
length such that =w-j. Then putv; = TyV; = Tyuj. This new basis is better adapted to the
Coxeter-type presentation b . Indeed, puttindgo = ir — n, it is not difficult to see that

Vi = Vig, (ieZ), (56)

Vsi if ik <yt
Twvi = q‘lvi if ik =ik, o0<k<r—1,ieZ). (57)
Vsei+ (@t —avi if ik > ik,

Lemma 2 Fori € Z%, we have y= u;.

Proof — Write i = Zs-j with j € A, k € Z', ands € ;. It is easy to see that the assumption
i € Zt, forcesk € ZL. This in turn implies that(Zs) = 1(Z) +1(s), henceTxTs = Txs. Now for
k € Z one also ha3x =YX, sov; = Txglj = Y*(Tolj) = YKusj = uj. O

Recall the decompositiod ®" = @i H;U; of §3.4. For evenyi € A, theH,-submodule
Hu = D Qa)y = @ Qo)
jei jei
is a parabolic module, and therefore has two Kazhdan-Lgigztses defined as follows. Consider
the two lattices

L =@ zdv, 4 =@ zlam
je&i je&i
By work of Deodhar D], there are two base%*, G (e @ri) of H,u; characterized by

wherex — X denotes the bar involution ¢f,u; defined in§3.4. By collecting them together for
all'i € A, we obtain two base@jﬂ C (eZ)of U®r called the Kazhdan-Lusztig bases. The
parabolic Kazhdan-Lusztig polynomials are then definedheésexpansions

G =3 Ri@vw. G =3 Rj-aHu
ke&yi keGyi

They can be calculated inductively, as illustrated by tha egample.
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Example 4 Let us taker = 3, n =2 and comput&;~ for j = (0,6,1). We have(0,6,1) € Sai
with i = (1,2,2) € As. So we can start Witﬁ:(l 22) = V(122)- Next we calculate that

(0,6,1)::EQSOSﬁbSOT'(l,Z,Z)

Clearly
C223 = Cr122 = V223
Now note that for every = 0,1,2 we haveT,—q1 =T, —q %, hence applyingi —q ! to a

Kazhdan-Lusztig elemei@, gives a bar-invariant element. Then, setting for shertq 1, we
compute successively

(To—t)Vi223) = V(124 — V223 = C(124):

(T2=1)C 124 =V(142) —V(124) — V(232 +tV(223) = Clraz)y

(T1=1)C 14 =Via12) —tV(142) — V214 HtV124 — V(22 V(232 = Carz)
(To—t)C 419 = V(016 —tV(412) — V(043 + V(122 +tV 223 — V(124

— V(025 +tV(322) TtV (034 — t3V(232) = Co16)
(T2—t)Clo16) = Vios1) —tVio.06) —tV(a21) + t2V(4,1,2) — V(0,34
FV(04.3) + 2V(124) — 2V(142) + 22V (232 — 2223
—tV(05.2) + V(025 T tV(043 — tV(03.4)-

We see that this last vectur= v(gg 1) + V(04,3 modt.Z . Thus, subtracting

Clo43) = V(043 —tV034) W42 + tVi124) V0232 —tV223),

which we can assume already calculated by induction, we get

Cloe1) = V(061 — V016 —tVia21) + t2V(4,1,2) + t2V(1,2,4) —tV(14,2)

+t2V(2,3,2) - t3V(2,2,3) — W52 + t2V(o,2,5) + t2V(o,4,3) - t3V(o,3,4)-

4.3 Categorification of A"U

We can now relate the canonical basesxgl.ﬂ to the representation theory 0f (gl;). Recall the
polynomialsl;; (q) defined in§3.7.

Theorem 4 (Varagnolo-Vasserot [VV]) Fori,j € ZL , we havejl; = Pii-

Proof — Takei € Z', and consider the elemebi :=pr(C; ) € /\rU ThenDj = D; by definition
of the bar involution omjU. Note that ifj € Z, then pr(v)) = pr(u,) g ) Aqu; by Lemma 2.
Otherwise, ifjk < jk+1 then pr(v;) = —q~pr(vs ), as follows immediately from the definition
of pr and Eq. (57). Therefore K € Z. ands € &, we have pfvsk) = (—q) ¥ ") Aquy. We
now use the following simple observation (s&s[Remark 3.2.4]): ifx > ik, 1 and jk > jki1 then
P.;i(=a 1) =—q*P;(-q ). Sincei € ZL, this implies that

Di=[r]' 5 Pi(=a) Aqui,
JeZL
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where
M= =1 [ =d™ 5 g2
W€6r
is bar-invariant. Henc¢l/[r]!)D; is bar-invariant and congruent te;u; modulog=!L~. Thus
D; = [r]! G and the theorem is proved. O

This theorem has the following nice reformulation. Defirig-Bnear mapr from the Grothen-
dieck group of finite-dimensional representationsJpfgl,) to A"U by

1\Wz(A)] = AUxp, (A eZy).

Then comparing Theorem 4 and the Lusztig character formi8a\{e see that[L(A)] is equal
to the specialization af = 1 of G;er. In other words, using a more fancy language, the cate-
gory of finite-dimensional representationslif(gl; ) is acategorificationof the vector spaca'U

endowed with the specialization gt= 1 of the canonical basis;” (i € Z%).

Remark 3 The above proof of the relation between the canonical b@sigi € Z\) and the
simpleU, (gl;)-modules relies on Lusztig's character formula, whose prequires a lot of work.
There are now two other proofs which do not use Lusztig’s idemand therefore provide an inde-
pendent proof of this formula (for typ#&). The first one is due to Varagnolo-Vasserot-Schiffmann
[VV, S4. It relies on a geometric construction of the affw&chur algebra. The second ond |
uses Ariki's theoremAl]. Ariki's theorem gives a proof of the LLT-conjectur&l[T ], which
relates the simple modules of the finite Hecke algebtdg ) with a subset of the canonical basis
G (i€ZY). In[L1]itis proved that Ariki's theorem implies the Lusztig chater formula (for

type A).
4.4 Categorification of the Fock space

We first describe an interesting symmetry of the bar involutof the Fock space”. Define a
scalar product oo# by

<|A>7‘u>>:6)\[.17 ()\7"16‘@)
Define also a semi-linear involution— V' on.# by setting

q, = q_lv |)‘>, = |A,>7

whereA’ denotes the partition conjugate oc &2 (that is, the rows of the Young diagram Af
are the columns of the Young diagram/of. One can showi[T2, Th. 7.11] that

<U7 V> = <u/7v>7 (u7ve tgz)' (58)

Let {G; } denote the basis of* adjoint to{G; } for the above scalar product. In other words,
(Gy,G}) =0y y- Write

Gi=>nu@A), and Ge=[gu@],  (AuFk).
B

Since{|A)} is an orthonormal basis, we ha@ = D, *, a unitriangular matrix with off-diagonal
entries ingZ|q.

Proposition 15 For A € & one hagG;) =G;,.
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Proof — We have to prove tha(G; )’ satisfies the two defining properties@f,, namely

(G3) =) modq 'Ly, (G} =(G})"
SinceGy is unitriangular with off-diagonal entries igZ[q], G; = [A) modqLy, which implies
that(G;) = [A') modq 1L, . The second property is equivalent to

<(G;),>(GZ)/> :5)\,[.17 ()‘7 “'_k)>
because(G; )’} is the basis adjoint t§(G};)'}. Now, by Eq. (58),

<(G—j\y7 (G;Jlr)/> = <Gj\ 7G_?1_> = <G;\ ) GZ> = 6)\7;1'

Proposition 15 amounts to say tfegt, (q) = €y/,#(q), or in other words that

Ekew(—Q) dyu(@) =y, (A HEK).
e

In particular, setting) = 1 we get

MZ(e)\/y(—l)dyu(l) :5)\IJ’ ()\,[Jf‘k)

Since by Theorem 4, we have that the coefficient Oigfu) in chL(A) is equal to

A purp(=1)=eru(-1),

it follows that

dru(1) = Wz (A7) - LK)
is the multiplicity ofL(u’) as a composition factor of the Weyl modwié (A). Thus the values at
q = 1 of the coefficientsl) , (q) of G;; are decomposition numbers 10¢ (gl ), as was conjectured
in [LT1].

It is more natural to state these results in terms ofwSchur algebras#(¢). Hereé = Z?
and, by definition,#(& ) is the image ol (gly) in the endomorphism ring of theh tensor power
of its definingk-dimensional representation. Thus, the category(f )-modules is nothing else
than the category of polynomial representations of degreéU, (gl). The algebra”i(&) is
quasi-hereditary, and its simple objects can be identifigtl the L(A) for A - k. (For a nice
exposition of the theory of quasi-hereditary algebras &t tilting modules, we refer taddR]).
Consider the category

¢ = Pmod.#(&).
keN
This can be regarded as a categorification of the Fock sgaosith the G, being the classes of
the simple object (A ) of ¢, and thelA ) the classes of the standard objet{gA ).

Moreover, letT (A) denote the indecomposable tilting (& )-module with highest weight .

By [DPS Prop. 8.2] which states that

We (A") : L()] = [T (1) : W (A))],

we see thalT (1) :W; (A)] =d, (1), and theG" (A ) are the classes of the indecomposable tilting
objectsT (A).
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5 Fock space representations dﬁq(sA[n) . higher level

In this section we sketch following Uglow [J, U1, U2] a g-analogue of the constructions §#.3.
We fix an integer > 1.

5.1 ActiononU
Theg-analogue of the action @fonV(z) used in§2.3.2 (a) is theQ(q)-vector space

U= @@(q)uka
keZ
with theUq(g)-action given by
8 = Oit1lk 1, filk = O=ilkia, (1<i<n-1),
Uk = O=1U 1 (-1n folk = eoUkiis(e-1)ns
tu = qéxzi_aKziJrl Uk, (0<i<n-1).

Exercise 18 Check that this defines a level 0 representatiob(if).

We consider again

and also

Then we can identifV ®V ® Q(q)[z z %] with U by
W@V ®Z = U (jinme  (1<i<n 1<j<L ken). (59)

The above action can be rewritten as

eWg®Vve®zZ") = O(c=i+1 modn) Wd ®Ve_1®Z™M 90, (0<i<n-1),
filwg@ve®2z") = 5(czi mod n) Wd®Vc+1®Zm_a’O7 0<i<n-1),
t (Wd RVe® zm) = q(5c;i mod n—Oc=i+1 mod n) We @ Ve ® zm’ (O <ig<n-— 1)

Here it is understood that = v, andv,, 1 = vs. R
Putp:= —qg*and consider the quantum affine algebidg) = Up(sl,). To avoid confusion,
we denote its generators Iy fi,f (0 <i</—1). It acts onU by

EWg®Ve®Z™) = g=it1mods) Wi 1®Ve®2Z™M 90, (0<i<r-1),
fi(Wa®Ve®Z") = Odi mods) Was1 ® Ve ®2ZM 30, (0<i<i-1),
ti (Wd ®VC®Zm) — p(édzi mod ¢—Od=i+1 mod ¢) Wy ®VC®Zm, (0 < i </l— l)

Here it is understood thaty = w, andw,;1 = w;. Clearly, the actions dfl4(g) andUp(g) com-
mute with each other.

33



5.2 The tensor spacel '

Letr > 1. Using the comultiplicatio of (22) we get a level 0 action &fy(g) onU®". Similarly,
we endowU ®" with a level 0 action obJ,(g) using the comultiplication

Afi=fiol+tief, Aq=goilting, AL*=t"ot" (60)

We have endowed ®" © Q(q)[Z, ...,z with a left action ofH, in §3.4. We can also define
a right action oH, onW¢®" by

—Wg, i if i <iks,
wWTk=1< (—g)w if ik =lky1, (1<k<r—1).
—Ws i + (gt —qwi if ik > ik,
Here, fori = (i1,...,i¢) € [1,£]" we writew; = w;, ® --- ®@Ww;, € W', This is ag-analogue of the
right action of&, onW®" given in§2.3.2 (b).
5.3 Theg-wedge spacesgU

Following Uglov, we can now define
AU =W @y (V' 0Q(O)7),...,Z]) - (61)

Note that this is indeed ganalogue ofA"U, by Proposition 3. As in the cage= 1, theg-wedge
spacengU is endowed by construction with a basis of normally orderededges{ \qui | i € Z"}.
However, the straightening relations are now significamtigre complicated, and they depend
both onn and?. We shall not reproduce them here (seg.[U1, §2.1]).

5.4 The Fock spaces /]

Passing to the limit — o, we get for everym € Z a Q(q)-vector spaceZnm[¢] with a standard
basisconsisting of all infiniteg-wedges

which coincide, except for finitely many indices, with
|0m> = Um /\q Um_l /\q e /\q Um_r /\q Um_r_l /\q e

We can label the elements of this basis by partitions in éx#éot same way as i§2.3.3. We shall
write, with the same notation
AgUi = |)\,m> = |A£,mg>.

We can then defin€[m,] as the subspace ofy[¢] spanned by all vectors of the standard basis
of the form|A,,m,) for some/-tuple of partitionsA,. This is theg-deformed Fock space of level
¢ with multi-chargem,. Indeed, it is a level representation dfl4(g). The isomorphism type of
F[m,] as aJq(g)-module depends only on the (unordered) list of residuesutoatiof the compo-
nents ofm,. There are some nioganalogues of the combinatorial formulas of Propositioo f
the action of the Chevalley generators on the standard (sese.g9.[U2, §2.1]).

The Fock spac&[my] is also endowed with the action of bosdBisgiven by

= (/\q Ui) = Zl/\q Ui—nrke; 5 (k S Z*). (62)
=
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They generate a Heisenberg algels2]f

(1-g*M(1-q )

[Bk, Bm] = O -mk (1—q &7 ’

(kmeZ").

5.5 The canonical bases of [m/]

One can define a bar involution ofiy[¢], either by flippingg-wedges (as in Prop. 10) or by
using the bar involution off,. ltis expressed by a unitriangular matrix on the standard ba
sis, and it preserves the subspak@s,|. This allows to introduce, as i§8.13, canonical bases
{G(A,,m)*| A, € 2} and{G(A,,m;)~| A, € 22} of F[m,] characterized by:

() GApm)t=GA,m)",  G(A,me)~ =G(A,my)",
(i)  G(Ay,me)* =|A,,me) modgLt[m], G(A,,me)” =[A,,m,) modq L™ [my],

whereL*[m,] (resp. L"[m,]) is the Z[g]-submodule resp. Z[q]-submodule) of[m,] spanned
by the elements of the standard basis.

We denote byA"[m,] the transition matrix from the standard basi§@(A,,m,)*| A, € 2‘}
in the degre& component of[m,|. Uglov [U2, Th. 3.26] has given an expression of the entries of
A:kt[mg] in terms of parabolic Kazhdan-Lusztig polynomials ®r which generalizes Theorem 4.

5.6 Comparison of bases

Letm; = (my,...,my) andmj = (n7,,...,m,) be two multi-charges such that
m; = m modn, (1<i<g). (63)

We have seen th&tm,| andF[m/] are isomorphic representationsldf(g), but the formulas for
the action of the Chevalley generators on the standard ba#liese two Fock spaces are not the
same, and the matricés [m,] andA;S [m;] are in general different. It is a very interesting problem
to determine under which additional conditionsrapandm;, we have an equality. A first result in
this direction was proved by Yvonn¥1]. He showed that i, andm;, aresufficiently dominant
i.e.if

my > Mmoo >>my, my > mp s> ), (64)

thenAF[m,] = AF[m)). The proof is based on the fact that the Fock sp&des] andF[m/] are
weight spaces of[(] for the action 01Up(5A[g) [U2, §4.2]. When the condition (63) is fulfilled,
the correspondingA[g—weights/\ andA’ are in the same orbit of the Weyl gro@)g. If moreover
(64) holds them\’ = s, --- s, (A) and for everyk = 1,... .t the weights, --- s, (A) is extremal on
its ix-string. Yvonne then proves that the canonical basis issgmeed” under such reflexions.

5.7 Cyclotomicv-Schur algebras

Dipper, James and MathaBipaMa] have introduced somé-cyclotomic analogues of the Schur
algebras¥i(&) of §4.4. These are quasi-hereditary algebrgg¢é,s,) depending on at-tuple

of parametersy = (sq,...,s) € (Z/nZ)". (Here, as ir§4.4, we assume thdt is a primitive nth
root of 1.) The simple¥k(¢§,s,)-modules and the standat (& ,s,)-modules are labelled by all
¢-tuples of partition\ , = (A(Y ..., A1) with 7;|A )| = k. James and Matha3¥l] have proved

a Jantzen-type sum formula for the multiplicities of simpledules in the layers of the Jantzen
filtration of a standard module. This allows to calculate deeomposition matrix of#(&,s,) in
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small rankk, but there is no known algorithm or Kazhdan-Lusztig typerfola for calculating
these decomposition numbers in general.

Yvonne [Y2] has conjectured that the decomposition matrixGf £, s;) is equal to the eval-
uation atg = 1 of the matrixA:kt[mg] for any multi-chargem, satisfying

m =s modn, (i=1,...,¢) and M >mp > >>m.

In fact, he conjectures more generally that the ma]@{mg] without evaluation ofj is equal to
the matrix of graded decomposition numbers given by thezganfiltration. He then proves that
this last conjecture is compatible with the James-Mathas fwmula, thus obtaining a strong
support for his conjectures.

Rouquier R] conjectures that all the matrice.‘kf[mg] (without any dominance assumption
on my) should have a similar interpretation in terms of some maeegal cyclotomios-Schur
algebras coming from rational Cherednik algebras via themk-Zamolodchikov functor.

6 Notes

§2 : The main references ark ], [F1], [F2]. See MJD] for the relations with soliton equations.

83 : The main references ar&kj1S], [LT1], [LT2], [VV]. See 2] for a more combinatorial
presentation followingliM ]. See L2] for the bosonic side and the connections with symmetric
functions. For a beautiful introduction to quantum groupsf the viewpoint of mathematical
physics, seeJ2]. Kashiwara has written several surveys of the theory oftalybasesKas3,
Kas4].

84 . See M] for the g-Schur algebras, their representation theory and decadtiggoaumbers. See
[GS] for a recent interpretation of the canonical ba§d (A)} of .# in terms of characteristic
cycles of modules over the rational Cherednik algebras pué &y

85 : The main references arg]], [U2], [TU].

The first construction oF[m| (for multi-chargesm, satisfying 0< m; <--- <my < n—1)
was given in JMMO ], with emphasis on combinatorial formulas and crystal basBee also
[FLOTW]. By changing the multi-chargen, (as in§5.6) we obtain several multi-partition de-
scriptions of the crystal graph of an irreducililg(g)-module. By Ariki's theorem A1], they
correspond to different parametrizations of the simple ubesl of the Ariki-Koike algebras. The
meaning of these parametrizations was explainedan]|

Fock space representations for quantum affine algéliy@p of classical type have been con-
structed in KMPY ], using the theory of perfect crystals. They may have |évell. Note however
that forg = sl and? > 1 these Fock space representations are irreducililly @3 ® 7#-modules.
Hence they ara@otisomorphic to the representatiorgm,] for £ > 1.
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