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Introduction

These notes represent the written, expanded and improved version of a series
of lectures given at the winter school “Representation theory and related topics”
held at the ICTP in Trieste in January 2006, and at the summer school ” Geometric
methods in representation theory” held at Grenoble in June 2008. The topic for
the lectures was “Hall algebras” and I have tried to give a survey of what I believe
are the most fundamental results and examples in this area. The material was
divided into five sections, each of which initially formed the content of (roughly)
one lecture. These are, in order of appearance on the blackboard :

e Lecture 1. Definition and first properties of (Ringel-)Hall algebras,

e Lecture 2. The Jordan quiver and the classical Hall algebra,

e Lecture 3. Hall algebras of quivers and quantum groups,

e Lecture 4. Hall algebras of curves and quantum loop groups,

e Lecture 5. The Drinfeld double and Hall algebras in the derived setting.

By lack of time, chalk, (and yes, competence !), I was not able to survey with
the proper due respect several important results (notably Peng and Xiao’s Hall Lie
algebra associated to a 2-periodic derived category [PX2], Kapranov and Toén’s
versions of Hall algebras for derived categories, see [K3], [T], or the recent theory of
Hall algebras of cluster categories, see [CC], [CK], or the recent use of Hall algebra
techniques in counting invariants such as in Donaldson-Thomas theory, see [J2],
[KS], [R4],...). These are thus largely absent from these notes. Also missing is
the whole geometric theory of Hall algebras, initiated by Lusztig [L5] : although
crucial for some important applications of Hall algebras (such as the theory of
crystal or canonical bases in quantum groups), this theory requires a rather different
array of techniques (from algebraic geometry and topology) and I chose not to
include it here, but in the companion survey [S5]. More generally, I apologize to all
those whose work deserves to appear in any reasonable survey on the topic, but is
unfortunately not to be found in this one. Luckily, other texts are available, such
as [R7], [R8], [H5]. There are essentially no new results in this text.

Let me now describe in a few words the subject of these notes as well as the
content of the various lectures.

Roughly speaking, the Hall, or Ringel-Hall algebra H 4 of a (small) abelian
category A encodes the structure of the space of extensions between objects in A.
In slightly more precise terms, H 4 is defined to be the C-vector space with a basis
consisting of symbols {[M]}, where M runs through the set of isomorphism classes
of objects in A; the multiplication between two basis elements [M] and [N] is a
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linear combination of elements [P], where P runs through the set of extensions of
M by N (i.e. middle terms of short exact sequences 0 — N — P — M — 0),
and the coefficient of [P] in this product is obtained by counting the number of
ways in which P may be realized as an extension of M by N (see Lecture 1 for
details). Of course, for this counting procedure to make sense .4 has to satisfy
certain strong finiteness conditions (which are coined under the term finitary), but
there are still plenty of such abelian categories around. Another fruitful, slightly
different (although equivalent) way of thinking about the Hall algebra H 4 is to
consider it as the algebra of finitely supported functions on the “moduli space”
M 4 of objects of A (which is nothing but the set of isoclasses of objects of A,
equipped with the discrete topology), endowed with a natural convolution algebra
structure (this is the point of view that leads to some more geometric versions of
Hall algebras, as in [L5], [L1], [S4]).

Thus, whether one likes to think about it in more algebraic or more geometric
terms, Hall algebras provide rather subtle invariants of finitary abelian categories.
Note that it is somehow the “first order” homological properties of the category A
(i.e. the structure of the groups Ext'(M, N)) which directly enter the definition
of Hy, but A may a priori be of arbitrary (even infinite) homological dimension.
However, as discovered by Green [G4], when A is hereditary , i.e. of homological
dimension one or less, it is possible to define a comultiplication A : H4 — H4®QH 4
and, as was later realized by Xiao [X1], an antipode S : H4y — H 4. These three
operations are all compatible and endow (after a suitable and harmless twist which
we prefer to ignore in this introduction) H 4 with the structure of a Hopf algebra.
All these constructions are discussed in details in Lecture 1.

As the reader can well imagine, the above formalism was invented only after
some motivating examples were discovered. In fact, the above construction appears
in various (dis)guises in domains such as modular or p-adic representation theory
(in the form of the functors of parabolic induction/restriction), number theory
and automorphic forms (Eisenstein series for function fields), and in the theory
of symmetric functions. The first occurence of the concept of a Hall algebra can
probably be traced back to the early days of the twentieth century in the work of
E. Steinitz (a few years before P. Hall was born) which, in modern language, deals
with the case of the category A of abelian p-groups for p a fixed prime number.
This last example, the so-called classical Hall algebra is of particular interest due to
its close relation to several fundamental objects in mathematics such as symmetric
functions (see [M1]), flag varieties and nilpotent cones. After studying in some
details Steintiz’s classical Hall algebra we briefly state some of the other occurences
of (examples of) Hall algebras in Lecture 2.

The interest for Hall algebras suddenly exploded after C. Ringel’s groundbreak-
ing discovery ([R5]) in the early 1990s that the Hall algebra Hp,_ 5 of the category

of IF-representations of a Dynkin quiver Q (equiped with an arbitrary orientation)
provides a realization of the positive part U(b) of the enveloping algebra U(g) of
the simple complex Lie algebra g associated to the same Dynkin diagram (to be
more precise, one gets a quantized enveloping algebra U, (g), where the deformation
parameter v is related to the order ¢ of the finite field F,).

It is also at that time that the notion of a Hall algebra associated to a finitary
category was formalized (see [R6]). These results were subsequently extended to
arbitrary quivers in which case one gets (usually infinite-dimensional) Kac-Moody
algebras, and were later completed by Green. The existence of a close relationship
between the representation theory of quivers on one hand, and the structure of
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simple or Kac-Moody Lie algebras on the other hand was well-known since the
seminal work of Gabriel, Kac and others on the classification of indecomposable
representations of quivers (see [G1], [K1]). Hall algebras thus provide a concrete,
beautiful (and useful !) realization of this correspondence. After recalling the
forerunning results of Gabriel and Kac, we state and prove Ringel’s and Green’s
fundamental theorems in the third Lecture.

Apart from the categories of F-representations of quivers, a large source of fini-
tary categories of global dimension one is provided by the categories Coh(X) of
coherent sheaves on some smooth projective curve X defined over a finite field F,,.
As pointed out by Kapranov in [K2], the Hall algebra He,p,(x) may be interpreted
in the context of automorphic forms over the function field of X. Using this inter-
pretation, he wrote down a set of relations satisfied by Heopn(x) for an arbitrary
X (these relations involve as a main component the zeta function of X). These
relations turn out to determine completely Heyop(x) when X ~ P! but this is most
likely not true in higher genus (see [SV2], however, for a combinatorial approach).

In another direction, H. Lenzing discovered in the mid-80’s some important gen-
eralizations Coh (X, ») of the category Coh(P')- the so-called weighted projective
lines— which depend on the choice of points Aj,...,\, € P! and multiplicities
p1,-..,pr € N associated to each point ([L2]). The category Coh(X, ) is heredi-
tary and shares many properties with the categories Coh(X) of coherent sheaves on
curves (not necessarily of genus zero). In fact, in good characteristics, Coh(X,, ») is
equivalent to the category of G-equivariant coherent sheaves on some curve Y acted
upon by a finite group G, for which Y/G ~ P!. The Hall algebras Heconx, ) are
studied in [S3], where it is shown that they provide a realization of the positive part
of quantized enveloping algebras of loop algebras of Kac-Moody algebras. Note that
these algebras are in general not Kac-Moody algebras : for instance when X, ) is of
“genus one” one gets the double affine, or elliptic Lie algebras &; = g[ttl, st oK
for a Lie algebra g of type Dy, Eg, E7 or Eg. Simultaneously, Crawley-Boevey was
led in his beautiful work on the Deligne-Simpson problem [CB1] to study the classes
of indecomposable sheaves in Coh(X,, 1) and found them to be related to loop alge-
bras of Kac-Moody algebras as well (see [CB2]). The above results concerning Hall
algebras of coherent sheaves on curves form the content of Lecture 4, and should
be viewed as analogues, in the context of curves, of Gabriel’s, Kac’s and Ringel’s
theorems for quivers.

Finally in the last lecture, we state various results and conjectures regarding
the behavior of Hall algebras under derived equivalences. Recall that taking the
Drinfeld double is a process which turns a Hopf algebra H into another one DH
which is twice as big as H and which is self-dual; for instance the Drinfeld double
of the positive part U, (b) of a quantized enveloping algebra is isomorphic to the
whole quantized enveloping algebra U, (g). The guiding heuristic principle —~which
has recently been established in a wide class of cases by T. Cramer [C]- is that
although the Hall algebras H 4 and Hp of two derived equivalent finitary hereditary
categories need not be isomorphic, their Drinfeld doubles DH 4 and DHp should be.
More generally, any fully faithful triangulated functor F : D*(A) — D®(B) between
derived categories should give rise to a homomorphism of algebras F, : DH 4 —
DHp. In particular, the group of autoequivalences of the derived category D’(A)
is expected to act on DH 4 by algebra automorphisms. As supporting example and
motivation for the above principle, we show how the group Aut(D?(Coh(X))) for
an elliptic curve X acts on DHgp,(x). This action turns out to be the key point
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in understanding the structure of the algebra DHc,p(x) (the elliptic Hall algebra
studied in [BS1]).

A recent theorem of Happel [H2] states that any (connected) hereditary category
which is linear over an algebraically closed field £ and which possesses a t11t1ng
object (see Lecture 5.) is derived equivalent to either Reka for some quiver Q or
Coh(X, ) for some weighted projective line X, . Although the case of categories
which are linear over a finite field k is slightly more complicated (see [HR], and
also [RV]), if one believes the above heuristic principle then the results of Lectures
3 and 4 essentially describe the Hall algebra of any finitary hereditary category
which possesses a tilting object. Of course the case of finitary hereditary categories
which do not possess a tilting object (this corresponds to curves of higher genus)
is still very mysterious, as is the case of categories of higher global dimension (this
corresponds to higher-dimensional varieties) for which virtually nothing is known.

A final word concerning the style of these Lecture notes. They follow a leisurely
pace and many examples are included and worked out in details. Nevertheless,
because they are mostly (though not only !) aimed at people interested in repre-
sentation theory of finite-dimensional algebras, I have decided to assume some basic
homological algebra and, starting from Lecture 3, a little familiarity with quivers.
On the other hand, I assume nothing from Lie algebras and quantum groups the-
ory. Hence I have included in a long appendix a “crash course” on simple and
Kac-Moody Lie algebras, loop algebras, and the corresponding quantum groups.

The first four Lectures follow each other in a logical order, but a reader allergic
to examples could well jump to Lecture 5 directly after Lecture 1.
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Lecture 1.

The aim of this first Lecture is to introduce in as much generality as possible the
notion of the Hall algebra of a finitray abelian category, and to describe in details
all the extra structures (coproduct, antipode,...) which have been discovered over
the time and which one can put on such an algebra. A final paragraph briefly dis-
cusses some functoriality properties of this construction. Examples of Hall algebras
abound in Lectures 2, 3 and 4, and the reader is invited to have a look at them as
he proceeds through this first Lecture.

1.1. Finitary categories

A small abelian category A is called finitary if the following two conditions are
satisfied :

i) For any two objects M, N € Ob(A) we have |[Hom(M,N)| < oo,
ii) For any two objects M, N € Ob(A) we have |Ext' (M, N)| < cc.

In most, if not all examples of finitary categories which we will be considering
in these notes, A is linear over some finite field F,, and we have

(1.1) dim Hom(M,N) < oo, dim Ext*(M,N) < oo

for any pair of objects M, N € Ob(A). Examples of such categories are provided
by the categories Rep]Fqu of (finite dimensional) F,-representations of a quiver,
or more generally by the categories Mod A of finite-dimensional representations
of a finite-dimensional F,-algebra A. For another class of examples of a more
geometric flavor, one may consider the categories Coh(X) of coherent sheaves on
some projective scheme defined over F, (the finiteness property (1.1) holds by a
famous theorem of Serre, see e.g. [H3]).

We denote by K(A) the Grothendieck group (over Z) of an abelian category
A. In most situations of interest for us, this will be a free Z-module. If A is a
finite length category (i.e. if any object of A has a finite composition sequence with
simple factors) then K(.A) is freely generated by the classes of the simple objects.

1.2. Euler form and symmetric Euler form.

Let A be a finitary category, and let us make the additional assumptions that
gldim(A) < oo and that property ii) above is satisfied for the groups Ext!(M, N)
for all i'. For any two objects M, N of A we put

1

oo 2
(1.2) (M,N),, = <H(#Exti(M,N))<—1>’> :

i=0
Since A is of finite global dimension, Ext'(M, N) = {0} for i >> 0 and the product
is finite. Note that the definition of (M, N) implicitly involves a choice of a square
root. An easy application of the long exact sequences in homology associated to
the functor Hom shows that (M, N),, only depend on the classes of M and N in
the Grothendieck group and (1.2) thus defines a form (, ), : K(A) x K(A) — C
which is called the (square root of the) multiplicative Euler form. It is also useful to
introduce the multiplicative symmetric Euler form (M, N ), = (M, N}y - (N, M) .

Here we implicitly assume that the groups Ext’ are well-defined. This is the case for all
examples discussed above (modules over a finite-dimensional algebra, coherent sheaves over smooth
projective varieties, ...).
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When A is k-linear then one usually considers additive versions of the Euler forms
instead, which are defined by (M, N), = >".(~1)'dim Ext'(M,N) and (M, N), =
(M,N), + (N,M),. In this very simple way, we have associated to any finitary
k-linear category a lattice (K(A),( , )a), that is a (usually free and finite rank)
Z-module equipped with a Z-valued symmetric bilinear form. As we will see, this
seemingly rather coarse invariant already carries a lot of information regarding .A.

1.3. The name of the game.

Let A be a finitary category. We now introduce the main character of these notes,
namely the Hall algebra H 4 of A. Let X = Ob(A)/ ~ be the set of isomorphism
classes of objects in A. Consider a vector space

Ha:= P C[M]
Mex
linearly spanned by symbols [M], where M runs through X. We will now define a
multiplication on H 4. Given any three objects M, N, R, let Pﬁ’N denote the set of
short exact sequences 0 — N — R — M — 0, and put PJ; v = [Pf} y|. Observe

that Pfy y is indeed finite since by assumption Hom(N, R) and Hom(R, M) are
finite. For any object P, we put ap = |Aut(P)].

Proposition 1.1 (Ringel, [R6]). The following defines on H 4 the structure of an
associative algebra :

N = I bR
(13) M- [N = 4,00 3 P (A

The uniti: C — Hy is given by i(c) = c[0], where 0 is the zero object of A.

The proof of this result will be quite easy and natural once we have reinterpreted
the above definition of H 4 from a slightly more geometric perspective. We view
X as some kind of “moduli space of objects in A”, and H 4 as the set of finitely
supported functions on X

H, = {f:X — C|supp(f) is finite }

by identifying the symbol [M] with the characteristic function 1,;. We claim that
the product (1.3) can be rewritten as follows :

(1.4) (f-9)(R) =D (R/Q,Q)mf(R/Q)9(Q)
QCR

Indeed, by bilinearity it is enough to check that (1.4) coincides with (1.3) when
f=1ax and g = 1. This is in turn a consequence of the following Lemma :

Lemma 1.2. For any three objects M, N, R of A we have

1
1.5 Pl y={LCR|L~NandR/L~M}|.
(1.5) anran M H CR| and R/ }|
Proof. The group Aut(M) x Aut(N) acts freely on Pﬁ} ~-» and the quotient is
canonically identified with the right-hand side of (1.5). v

Proof of Proposition 1.1. It will be more convenient to formulate the proof using
(1.4) rather than (1.3). Assume that f = 1), and ¢ = 1n. Then the right-hand
side of (1.4) is a function supported on the set {R} of extensions of M by N. As
Extl(M, N) is finite, there are only finitely many such extensions, hence 157 - 1
does indeed belong to H4. By bilinearity it follows that f-g € Hy4 for any
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f,9 € Hq. We now prove the associativity. Let f,g,h € Hy4 and let M be an
object of A. We compute

(1.6)
(f-(g-h)(M)= > (M/N,N)uf(M/N)(g-h)(N)
NCM
= > (M/N,N)u(N/L, L)y f(M/N)g(N/L)h(L)
NCM,LCN
= > (M/N,L)u(M/N,N/L)uy(N/L, L)y f(M/N)g(N/L)h(L)
LCNCM

where we have used the bilinearity of the multiplicative Euler form. Similarly,
(L.7)
((f-9)-h)(M)

> " (M/R, Ry (f - 9)(M/R)h(R)

RCM

Y. (M/R,R)n{(M/R)/S,S)mf((M/R)/S)g(S)h(R)

RCM,SCM/R

Observe that there is a natural bijection S — S’ between the set {S | S C M/R}
and the set {S' | R C 8" C M} satisfying S ~ S’/R and (M/R)/S ~ M/S’. Using
this, we may rewrite (1.7) as

> (M/S' R} (S'/R, R)m(M/S', S| Ry [(M/S)g(S' | R)h(R)

RCS'CM

which is none other than (1.6). This shows that the product is associative. The
statement concerning the unit is obvious. v

Remarks 1.3. i) As pointed out in the course of the proof of Proposition 1.1, the
product [M] - [N] is a linear combination of elements [R], where R is an extension
of M by N. Hence, H4 encodes the structure of the set of short exact sequences
in A. In fact, as observed by A. Hubery [H5] it is possible to define a Hall algebra
for any ezact category satisfying the finiteness conditions of Section 1.1.

ii) The algebra H 4 is naturally graded by the Grothendieck group K(A) of A : we
have

Ha= @ Hualo], where Hulo]= P C[M].

aEK(A) M=«

iii) Assume that A is a semisimple category and let S = {S;};cr be the set of simple
objects. Then if i # j one easily checks that

[S] - [S5] = [S: @ 5] = [S5] - [Si]
[Si] - [Si] = |End(S;)[V/*(|End(S;)| + 1)[Si ® 5]

and in fact H 4 is a free commutative polynomial algebra in the generators {[S;] }ier.

iv) In the case of a semisimple category A as above the algebra H 4 is commutative.
However, this is a rather rare phenomenon : in general the set of extensions of
M by N and the set of extensions of N by M differ and the algebra H 4 is not
commutative.

v) The product of more than two elements also has an interpretation in terms of
number of filtrations : if My,..., M, are objects in A then

[M]---[M,] = Z (H(Mi,Mj)m {L, C---CLi=R|Li/Lit1 ~ M;}|)[R].

R i<j
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The integers P]@[’ N OT g Pff/f n are usually called Hall numbers. We will give
many examples of computations of Hall numbers and Hall algebras in the second,
third and fourth Lectures.

1.4. Green’s coproduct.

Let A denote again a fixed finitary category. The multiplication in H 4 encodes,
essentially, all the ways of putting an object M on top of an object N. It seems
natural to try to define a dual operation, which breaks up a given object in all
possible ways. This is exactly what Green’s coproduct achieves. There is, however
a subtle point here. Although there are (in finitary categories) only finitely many
possible extensions between any two given object, there are in general infinitely
many ways of splitting any given object into two pieces. This explains why we are
forced to consider certain completions of H 4 and Hy ® H 4.

We will again define the comultiplication in two (equivalent) ways, one purely
algebraic and a second more geometric. For o, 8 € K(A), set

HylJ@H4[8) = [[ clM]ecy),
M=a,M=8
HA RH 4 = HHA[O‘]@HAW]’
a,B

In other words, H ®H 4 is simply the space of all formal (infinite) linear combi-
nations >, v cv,n[M] @ [N].

Proposition 1.4 (Green, [G4]). The following defines on H 4 the structure of a
topological coassociative coproduct :

(1) A(R) = 37 (M, Ny - Pfy v [M] 0 [N],
M,N R

with counit € : Hy — C defined by e([M]) = dnrp0.

Before giving a proof of this result, let us spell out the meaning of the word
topological here. Formula (1.8) only defines a map A : Hy — H_4®H 4, and not
A:Hy — H a®H 4, as in a genuine coalgebra. Moreover, for the coassociativity
to even make sense, we must check that the two maps (A® 1) o A (1@ A)o A :
H, — H,QH 4QH 4 are well-defined (this is not obvious since we are composing
functions with values in spaces consisting of infinite sums). Luckily, this follows
from the fact that A is finitary : indeed, the only terms in H4®H 4 which may
contribute to [M;] ® [M2] ® [M3] in (A ® 1) o A (resp. in (1 ® A) o A) are of the
form [N] ® [M3] for some extension N of M; by M (resp. of the form [M;] ® N
for some extension N of My by M), and there are only finitely many such terms.

Proof of Proposition 1.4. The coassociativity is easily seen to be equivalent to the
following set of relations, for any quadruple of objects (M, N,Q, R) :

1
Z<SaQ>m<M7 N>m@P NPSQ - Z<N’ Q>m<M7 T>mﬁPN QPM T

S T
which can be rewritten as

Z P%N 5.Q = Z PNQ T

This last equality expresses in fact the associativity of the multiplication in H 4:
up to multiplication by the factor (M, N), (M, Q)m (N Q>maMaNaQ the left-hand
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side is the coeflicient of [R] in ([M] - [N]) - [Q] while the right-hand side is the
coefficient of [R] in [M]- ([N] - [Q])- v

As for the product, there is a more “geometric” interpretation of the map A, at
least when A is of global dimension at most one. Observe that, in the same way
as H4 was identified with the set of finitely supported functions on X, we may
identify HA®H 4 with the set of (arbitrary) functions on X x X.

Proposition 1.5. Assume that gldim(A) < 1. For any f : X — C belonging to
H 4 and for any objects M, N we have

_ _(M,N),
AN = o ) gEEItZ(:M,mf(X{)’

where X¢ is the middle term of the extension of M by N which is associated to .

Proof. To prove the Proposition, we have to show that for any fixed objects M, N, R,

1

(1.9) |Ext (M, N)]|

{6 € Bat (M, N) | Xe = R} = (M, N)2, Pl .
R

By definition, |{§ € Ext'(M,N) | Xe ~ R}| is equal to the number of equivalence
classes of short exact sequences

(1.10) 0 N—>R—">M 0.

The group Aut(R) acts on the set Pﬁi n of all exact sequences as above by ¢-(a, b) =

(¢poa,bop1) and two exact sequences (a,b) and (a’,b’) are equivalent if and only if
there exists ¢ € Aut(R) such that (a’,b’) = ¢-(a,b). We claim that the stabilizer of
any short exact sequence (a,b) under the above action of Aut(R) is isomorphic to
Hom(M,N). Indeed, ¢-(a,b) = (a,b) if and only if we have ¢|,(q) = Id : Im(a) —
R and if the induced map ¢’ : R/Im(a) — R/Im(a) is the identity. This holds
exactly when ¢ € Id ® Hom(R/Im(a),Im(a)) ~ Id ® Hom(M, N). Therefore, we
get |{¢ € Ext'(M,N) | X¢ ~ R}| = |P1\}}7N|w which (for hereditary A)

immediately yields (1.9). v

Remarks 1.6. Properties of the coproduct map A : H 4 — H4®H 4 are essentially
dual to those of the multiplication map m : H4y ® H4 — H 4. Namely,

i) The map A respects the grading by K(A), that is

AMHAR]) € ] Hale]8HAS].
a+pB=y

ii) For S a simple object we have A([S]) = [S]® 1+ 1® [S], i.e. [S] is a primitive
element of Hy. The converse is not true (game : find some counterexamples in
Lecture 2.).

iii) As for the product, there is absolutely no reason for the coproduct to be co-
commutative in general.

iv) As A is coassociative, we may consider an iterated comultiplication A™ : H4 —
H4®:--®H 4, which has the following interpretation :

AY(R) = Y0 (TT (M, My =0

My, M, i<j R
x|{Lr C++- CLi=R|Li/Liz1 = M}|)[Mi] ® - ® [M,].
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v) The coproduct A takes values in H4®H 4 (and not in the completion H4&H 4)
if and only if the following condition is satisfied :

(1.11) Any fized object R of A has only finitely many subobjects N C R.

We will call this condition the finite subobjects condition. It holds for categories of
representations of quivers (see Lecture 2, Lecture 3), but not for the categories of
coherent sheaves on curves (Lecture 4).

Let us finish this Section with a rather useful and completely general result. For

v e K(A), let
1, :Z [M]

M=~

be the sum of all objects in .4 of class «y (this sum may be infinite for some categories,
so strictly speaking 1, belongs to the formal completion of H 4).

Lemma 1.7. Assume that gldim(A) < 1. Then we have
a+pB=y

Proof. By definition, for any objects M and N such that M = o and N = 3 the
coefficient of the element [M]®[N] in A(1,) is equal to (e, B)m 3=, 5-P; - From

Yoneda’s description of Ext'(M, N) we derive

)

Bt (M,N)| = 3" |({0 = N % L5 M — 0}/ Aut(L))
L

where the action of Aut(L) on the exact sequence {0 — N % L LN 0} is given
by the rule g (a,b) = (ga,bg~1). It remains to observe that for any L the stabilizer
of any such sequence is isomorphic to Hom(M, N), and thus

1 Ext'(M,N _
<a7ﬁ>mz EP%/[,N = (aaﬁ>MM = <a7ﬁ>mlv

L
proving (1.12). v

1.5. The Hall bialgebra and Green’s theorem.

As we have seen, any finitary category A gives rise to a C-vector space H 4 which is
both an algebra and a coalgebra (the latter in a topological sense). It is natural to
ask whether these two operations are compatible and endow H 4 with the structure
of a bialgebra. This turns out to be false in general, but essentially true for hereditary
categories (categories of global dimension at most one), as shown by Green [G4]. In
this paragraph we explain the (difficult) proof of this important result. We make
the assumption throughout that A is hereditary.

First of all, it is necessary to slightly twist the mutiplication in Hy ® H 4 : if
x,y, z,w are homogeneous elements in H 4 of respective weight wt(x), wt(y), wit(z),
wt(w) € K(A), we define a new multiplication by

(z®y) - (z@w) = (wi(y), wi(z))m(rz @ yw)

(i.e. we introduce an extra factor (wt(y),wt(z))m, of the symmetric Euler form
when y “jumps over” z).
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Next, we need to face the fact that A takes values in the completion H 4 ®H 4
rather than H 4 ® H 4. The problem here is that the multiplication map

Hs0H4) @ (H4H4) —Ha®@Hy

clearly doesn’t extend to the completion. We will say that a product
O awb)- (D ¢ od)
i J

of elements of H4®H 4 is convergent if for any pair of objects R,S in A the
coefficient of [R| ® [S] in (a; ® b;) - (¢; ® d;) is nonzero for only finitely many values
of (i,7). In this case of course the product is a well-defined element in H AQH 4.
Luckily for us, the product of any two elements in the image of A converges, as the
following Lemma shows :

Lemma 1.8. Let M, N be objects in A. Then the product A([M]) - A([N]) con-
verges.

Proof. The coefficient of [T}] ® [L1] is nonzero in A([M]) only if there exists a
short exact sequence 0 — L; — M — Ty — 0. Similarly, the term [T5] ® [Lo]
appears in A([N]) only if there exists a sequence 0 — Ly — N — Ty — 0. Now
let R, S be objects in A. The coefficient of [S] in [T1] - [T2] is nonzero only when
there exists a sequence 0 — T — S — T1 — 0, and [R] appears in [L1] - [L2] only
when there exists a sequence 0 — Ly — R — L; — 0. But if all these conditions
are satisfied then L; is isomorphic to the image of a morphism R — M and T5 is
isomorphic to the image of a morphism N — S. By the finitary condition on A, the
sets Hom(R, M) and Hom(N, S) are finite and in particular there are only finitely
many choices for L; and T5. But then there are also only finitely many possibilities
for T5 and L,. The Lemma is proved. v

Slightly abusing notions (since, as explained above, H AQH 4 is not an algebra)
we may state Green’s fundamental theorem as follows :

Theorem 1.9 (Green, [G4]). The map A : Hy — HA®H4 is a morphism of
algebras, i.e. for any x,y € H4 we have Az -y) = A(z) - A(y).

Proof. There is a very detailed proof in [R9]. For the reader’s convenience, we
sketch it here. By bilinearity of the product, it is enough to show that for any pair
of objects M, N in A we have

(1.13) A([M] - [N]) = A([M]) - A(IN]).
The left hand side of (1.13) may be rewritten as follows :
AMIND = (31.8) 3 Pl )
— 1 1o J
= KZL<M7 N)(K, L) AN ZJ: aJPM,NPK,L[K] ® [L].

As for the right hand side of (1.13), it may be expressed as

A(M)A(N)

S DIRCNAPS S RAETA) N D SR ATS SN AL
Ko,Lo Ki,Ly

_ Z <K1’L1><K27flj/>[ff§hL2><L27K1>P%2,L2P]I\(]1,L1[K2HK1] L) [L4]

Ki,L1,K2,La
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Z Z <K1,L1><K2,L2><K17L2><L2,K1><K2,K1><L27L1>X
AMANOQK, QK,QL, AL,

X PII§2,K1P£2,L1P%2,L2PI]\(]1,L1[K] ® [L]

Z <M7 N><Ka L> Z |E(Et(K2,L1)| P§2aK1P£27L1P%2,L2P%13L1

K| ®|L
Lo |H0m(K27L1)| K, AK,AL, AL, [ } [ }

apypa
KL MEN gy K Ly,

where we have used the bilinearity of the Euler form. Simplifying both sides, we
have to prove that, for each pair of objects K, L, the number

Ext(Ko. L PK PL PM PN
(114) Z | 1‘( 25 1)| Ko, Ki1™ Lo, L1~ Ka,La™ Ki,Ln

Ky .L1 K2 Lo ‘HO?TL(KQ,Llﬂ AK,AK,Q1,Q[,

which counts (with a certain weight) the set of “squares”

(1.15) 0 0
0 Ly e Lo 0
N M
v’ Y
0 K > K ! K 0
0 0

is equal to the number
1
(1.16) Z (TJP}{/I,NPJK,L
J

which counts (with a certain weight) the set of “crosses”

(1.17) 0

0

We call two crosses as in (1.17), with respective middle term J and J’ equivalent
if there exists an isomorphism ¢ : J ~ J’ making all relevant diagrams commute,
and we let C'y (resp. 6]) stand for the set of all crosses with middle term J (resp.
the set of all such crosses, up to equivalence). In the same fashion we define, for a
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triple (K1, Ko, L1, Lo), the set Dk, k,,1,,1,) of all squares as in (1.15) with ver-

tices K1, K2, L, Ly and the set Dk, k.1, 1, of all such squares, up to equivalence.

Note that for a given quadruple (K7, K3, L1, L2), the group Aut(K;)x Aut(Ks) x
Aut(Ly) x Aut(Lz) acts freely on Dk, i, r, 1,) and hence
‘5 | _ |D(K17K27L1’L2)‘
(K1,K2,L1,L2) 4K, 05, 0L, 4,

K L M N
_ PK27K1PL2=L1PK2,L2PK17L1

aKlaK2aL1aL2

so that the expression (1.14) is equal to

|E{,Ct(K2,L1)‘ ~
(118) —|D Ki,K3,L1,L2 |
th:LhLz |Hom (K, Ly)| ¢ )

Similarly, the stabilizer in Aut(J) of a cross C' = (J,a,a’,b,b') in C; is the set of
¢ satistying @|ger v = Id, ¢|gervy = Id, and for which the induced maps satisfy
G|coker a = 1d, |coker o = Id. A simple diagram chase shows that such automor-
phisms are in bijection with elements in Hom(Coker b'a, Ker b'a). It follows that
the expression in (1.16) is equal to

1 1

1.19 —|Cy| = .

(1.19) Z aJ| s Z Z _ |Hom(Coker Va, Ker b'a)|
J I (J,a,a' ,b,b)eC

We will show that (1.18) and (1.19) are equal by using a canonical map ® :
LICs — U D(k, ks L1,L,), constructed as follows : given a cross C' = (J,a,a’,b, V)
we may complete it into a big commutative diagram by setting

Li =Kerba~ Ker bd, Lo =1Im bd,
K, =Imba, K5 = Coker ba' ~ Coker Va.
The maps u,v, v ,v',z,y,x’,y are all tautological, and it is an easy exercise to
check that the resulting square S = ®(C), obtained by deleting the central object

J, does indeed belong to Dk, k,,1,,1.)- For instance, when A is the category of
modules over some ring, we have Ly ~ LN N, Ly ~ L/(LNN), K; ~ N/(LNN)

and Ky ~ J/(L ® N). The map ® defined above descends to the desired map @
between equivalence classe of crosses and squares.
Combining (1.18) and (1.19), we see that the proof of Green’s theorem boils

down to the following fact :
Claim. The fiber of ® over any point of ﬁ(K17K27L1,L2) is of cardinality |Ext(Ks, L1)].

Proof of Claim. Let us fix a square S € Dk, k,,1,,1,)- Lhe sequences

0 K K K5 0,
0 Lo M Ko 0

determine elements o1 € Ext(Ks, K1),00 € Ext(Ks, Lo) respectively, which give
rise to an element 1 = 01 ® 09 € FExt(Ks, K1 ® Ly) corresponding to an extension

17 "
T Yy

0—— K1 & Lo X Ko 0

where X = K xxg, M = {(k@®m) € K& M | y'(k) = y(m)}. Similarly, there exists
a canonical exact sequence

1" 1"
u v

0 L Y Ki®L,——0
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where Y = LUy, N=L® N/{u(l)®v' (1) |1 € L}.
Assume given a cross C = (a,a’,b,b’, J) such that ®(C) ~ S. As is easily seen,
we may fit J into an exact, commutative diagram

(1.20) 0 0
0—— K18 L, z X - Ko 0
’U/l b//
0 y —4—— > K, 0
!’ s
Ly Ly
0 0

Conversely, one shows (see [G4], Prop. (2.6d)) that, once J is fixed, the set
@71 (S) of crosses in the fiber ®~1(S) with central object .J is in bijection with the
set of exact, commutative diagrams

"

(1.21) 0—>K &L, 2> X 2> K, 0
UNT b,,T
0 y ———> 5K, 0

(where v" 2" y" are fixed and a”,b” are allowed to vary). Of course, instead of
(1.21), we could just as well have chosen the first two columns of (1.20). Our task
will now be to compute, for a given J, the number of diagrams of the form (1.21).

First of all, for a given extension

(1.22) 0 Y > ——= K> 0

there exists a map b” making (1.21) commute if and only if the element £ €
Ext(K,,Y) associated to (1.22) satisfies ¢(§) = n € FExt(Ksy, K1 & L), where
7 is defined previously and where ¢ : Ext(K2,Y) — Ext(Ka, K1 @ Lo) fits in the
long exact sequence

(1.23)
0—— Hom(Kg,Ll) — HO?’TL(KQ,Y) —— HOm(K27K1 D L2) —

e But(K2, L)) — Ext(Ks,Y) —2> Eat(Ky, K @ Ly) —> 0

Note that the sequence stops after two lines since by assumption gldim(A) < 1.
Let Ext, j(K2,Y) C Ext(K2,Y) be the subset of ¢$~!(n) whose associated middle
term is isomorphic to J. We will use the following two facts, whose (easy) proofs
we leave to the reader (see Prop. 1.5 for statement i)) :

i) the number of sequences (1.22) corresponding to any fixed extension class
¢ € Ext(K»,Y) is equal to ay/|Hom(K2,Y)|,

ii) for any such sequence (1.22) associated to an element in Ext, ;(K»2,Y), the
number of choices for the map 4" in (1.21) (i.e. making (1.21) commute) is equal
to |[Hom (K3, K1 & Ls)|.
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Hence, we see that, all together, there are
|Exty j(K2,Y)|aj|Hom (K2, K1 @ Lo)|/|Hom(K>,Y)|

sequences as in (1.21) involving J, and hence as many crosses belonging to ®~1(.5)
with J as a central object. Remembering that the stabilizer in Aut(J) of any such
cross is isomorphic to Hom(Ks, L1), we see that there are

|E£L’tn7J(K2,Y)‘ ‘HOm(K2,L1)| |H0m(K2,K1 @LQ)|/|HOWL(K2,Y)|

equivalence classes of crosses in 5’1(5 ) with central object isomorphic to J.
Summing up over all J (up to isomorphism), we get

|<T>’1(S)| = Z |Ext, ;(K2,Y)| |Hom (K2, L1)| |Hom (K2, K1 & Lo)|/|[Hom(K2,Y)|

J
= ¢~ ()| [Hom(Ky, L1)| |[Hom(K2, K1 & Ly)|/|Hom(K3,Y)|.
But from the long exact sequence (1.23), we deduce that
|~ ()| = |Ext(K2, L1)| [Hom(K3,Y)|/|[Hom(K2, K1 & Ly)| [Hom(Ka, Ly)],

from which we finally obtain |®~1(S)| = |Ext(K2, L1)| as wanted. This concludes
the proof of the claim, and thus the proof of Green’s theorem. v

It is quite useful to restate Green’s theorem in a different way, by adding a
piece of “degree zero” to H 4. This way we will avoid twisting the multiplication
in Hy ® Hy as above. This may seem rather artificial at first glance, but it is
in fact very natural given the analogy with quantum groups (see Lecture 3 ). Let
K = C[K(.A)] be the group algebra of the Grothendieck group K (.A). To avoid any
confusion we denote by kjs (resp. k) the element of K corresponding to the class
of an object M (resp. to the class o). We also write N for the class of an object
N in K(A). We equip the vector space ﬁA := H4 ®¢ K with the structure of an
algebra (containing H4 and K as subalgebras) by imposing the relations

ko [Mk; ! = (a, M),,[M].

The algebra H 4 is still K (A)-graded, where deg(k,,) = 0 for any . We also extend
the comultiplication to a map A : Hq — HA®H 4 by setting

(1.24) A(ky) = ko @ Ko,
(1.25) A(RIe) = 3 (M, N} —PFy Mk, ® [Nk
M,N R

Finally, we equip H 4 ® H 4 with the standard multiplication, i.e. (z®y)(z@w) =
xz @ yw. We call Hy4 the extended Hall algebra of A. To avoid confusion, we will
sometimes write A’ for the old comultiplication, defined on H 4.

Green’s theorem may now be expressed in the following fashion.
Corollary 1.10. The map A : ﬁA — ﬁA<§>ﬁA is a morphism of algebras.

Of course, concerning the multiplication in the completion H A@ﬁ A, the reser-
vations voiced at the beginning of this section still apply.

To turn H 4 into a bialgebra, it only remains to introduce a counit map. Define
a C-linear morphism € : H 4 — C by

(MK = {o if M #£0,

1 it M =0.

The reader will easily check that (fI A,%,m, e, A) is a (topological) bialgebra.
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Remarks 1.11. i) Of course, when A satisfies the finite subobjects condition
(1.11), there is no need to consider any completion at all, and H A 1s a genuine
bialgebra.

ii) When the symmetrized Euler form is trivial, the twisted multiplication in the
tensor product Hy4 ® H 4 coincides with the usual multiplication, and there is a
priori no need to introduce the extension H A-

iii) Although it is possible to define a comultiplication in H4 (or H4) for exact
categories, Green’s theorem only holds for abelian categories.

1.6. Green’s scalar product.

The bialgebras which arise as Hall algebras of some abelian category A have an
additional important feature : they are self-dual. This means that the dual space
ﬁf“, equipped with the multiplication which is dual to A and the comultiplication
dual to m, is isomorphic to H A as a bialgebra. The best way to state this property
is to use a natural nondegenerate bilinear form on H 4, introduced by Green in [G4].
In this paragraph as in the previous one, A denotes a hereditary finitary abelian
category.

Proposition 1.12 ([G4]). The nondegenerate scalar product (, ) : Hi@H 4 — C
defined by

(1.26) ((M],[N]) = 220

is a Hopf pairing, that is for any triple x,y, z of elements in H 4 we have (xy,z) =
(x @y, A'(2)).

Proof. By bilinearity, it is enough to check this when x = [M],y = [N] and z = [P]
for some objects M, N, P of A. Then zy = (M, N)pm Y 5 w——PJ; y[R] hence

an aN
1
= (M, N),,—— P .
(wy,2) = (M, >maMaNaP M,N
On the other hand, we have A'(z) = Y- (R, S)m ;= Pf s[R] © [S] therefore
1
A'(2)) = (M,N),,——PL .
(z @y, A(2)) = (M, N) anranap. MY
We are done. v

Recall that H4 is in general not a bialgebra. However, it is an easy task to
extend Green’s scalar product to H 4.

Corollary 1.13. The scalar product ﬁA ® ﬁA — C defined by

W Oéaﬁ)m

is a Hopf pairing, i.e. for any triple x,y, z of elements in H 4 we have (zy,z) =
(x ®y,A2)).

(1.27) (MK, [N]ks) = 228

As the examples of Lecture 3 and Lecture 4 will attest, the existence of this
nondegenerate scalar product is a very strong property of Hall algebras, and despite
its simple form, it “encodes” a surprising amount of information concerning H 4.
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1.7. Xiao’s antipode and the Hall Hopf algebra.

The results of paragraphs 1.4. and 1.5. show that the Hall algebra H 4 of a
hereditary, finitary abelian category A4 may be equipped with the structure of a
bialgebra, at least in a topological sense. At this point, it is natural to ask whether
H A may actually be upgraded to a Hopf algebra, i.e. whether one can define a
morphism S : H A — H A satisfying the axioms of an antipode, namely

(1.28) mo(l®S)oA=jioge, mo(S®1)oA=iog,
(1.29) S(zxy) = S(y)S(x), AoS=(S5®5)0A%?,
(1.30) Soi=1i, €oS =g,

When A is the category of representations of a quiver, Xiao discovered such an
antipode map ([X1]). His construction can be directly extended to any category
satisfying the finite subobjects condition (1.11). Let A be such an abelian finitary
category. For any object M and integer r let Sy, denote the set of strict r-step
filtrations

O#Lrg"'QIQQIq:M
and let us set

(1.31)
S((M]) =k (Z(—l)’“ Z H<Li/Li+1,L¢+1>maL"aL”'*1/Lr COM/Ls

a
r>1 L €S, i=1 M

(M/Ls] - [Lo/Ls] -+ Loy /L] - [m)

=~/ M+ D0 (M/N,N), =

0£ANCM

Ky [M/N]-[N]+ -

In plain words, we consider all strict filtrations of M, take the corresponding suc-
cessive subquotients, multiply them together in the Hall algebra in the same order,
and sprinkle a few signs here and there. Of course, this sum is finite by our as-
sumption on A. We extend the map S to the whole of H A by bilinearity and by
setting S([M]ke) = k;1S([M]). This map respects the grading of H 4.

Theorem 1.14 (Xiao, [X1]). The map S : ﬁA — fIA is an antipode for the Hall
bialgebra H 4, i.e. the identities (1.28), (1.29) and (1.30) are all satisfied.

Proof. The relations (1.30) follow directly from the definitions. In addition, it is
well-known in the theory of Hopf algebras that relations (1.29) are consequences of
(1.28) and (1.30). Hence we only need to prove relations (1.28). We will deal with
the first equality, and leave the second one to the reader. It is clearly enough to
show that for any non zero object M in A, we have mo (1® S) o A([M]) =0. We
have, using the definitions (1.31) and (1.25)

mo (1@ 5) o A([M])

(1.32) = [M] +kp S([M]) + Z (M/N, N)mM[M/N]kNS([ND
0£ANCM aM
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+ DT Y H Li/Lis1, Lit1)m M[M/L] (L1 /Ly] - [Ly]

r>1 L, €S, i=1 am
apM/NAON s
D DTS A D SIS D | (L S
0£ANCM M s>1 K, €Sn. i

an
The last term in the above expression may be rewritten as

Z Z Z M/N N <N/K27K2>m"'<K571/Ks»Ks>m

s>1 0#ANCM K, €SN,

CMNONTR O (NN - [N/ K] -+ (Ko /K - (K

ap

= _Z( Z H L /L’L+17 2+1> M[M/L ] '[erl/Lr] ’ [Lr]-

r>2 L ES]er 1 am

It follows that the whole quantity in (1.32) vanishes, as desired. The Theorem
is proved. v

Remark 1.15. What happens when A does not satisfy the finite subobject con-
dition (for example, when A is a category of coherent sheaves on a curve) ? In
this case, the sum in (1.31) does not make sense in general (indeed, it may be an
infinite sum of positive integers !). Depending on the situation, there may be two
ways around this difficulty :

i) The category A may be Fg-linear, and all the structure constants for the antipode
may be expressed as power series in q.

ii) Instead of an antipode map S, one may try to define the inverse map S~!. When
A satisfies the finite subobjects condition, such a map is given by the expression

(1.33)

S :(Z(_l)T Z ﬁ<Li/Li+1,Li+1>maL"'aLT71/Lr [ OM/La

a
r>1 L €Snr.i=1 M

(L] [Lyes /L] - [La/Ls] - [M/LQ])kM

In this sum, the coefficient of [N] counts, with a certain weight, the number of
pairs of filtrations (L, € -+ € Ly € Ly = M; L, C --- C Ly C L} = N)
satisfying L;/Lit1 = L., ,_ 1/LT_~_2 p for i =1,...,r. If Ais such that for any
M, N € Ob(A) there are finitely many such pairs of filtrations then the expression
in (1. 33) converges, and we may define an inverse antipode map S~! ' H A — Hc
Here H is a certain formal completion of H A-
The map S~!, which serves the same basic purposes as S, satisfies the following

relations :

mo(1®S 1) oA? =joe, mo(ST'®@1)o AP =joe,

S @) =S WS @), ATos = (ST @5 oA,

Sloi=1i, coSl=¢
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1.8. Functorial properties.

Let A and B be two finitary categories, and let F' : A — B be a functor. What
does the existence of F' imply about the Hall algebras H4 and Hg ? The functor
F gives rise to a map between sets of isomorphism classes of objects f: X4 — X,
and we may define two natural maps of vector spaces

f* : HB — Hi,
[M] — > 7
REX.A,F(R)~M

and

f* : HA - HB7

[M] — [F(M)]

(in the above, H} = [[;;cx, C[M] is the formal completion of H 4). Without any
further assumptions on the functor F, these maps are in general neither morphisms

of algebras nor morphisms of coalgebras. Let us briefly examine under which cir-
cumstances they are.

Let us start with f*. By definition, if g and h belong to Hz and R € X4 we
have

flg-M)(B)=g-MFR) = Y (F(R)/S,S)ng(F(R)/S)h(S)

SCF(R)

while
frg- f*h(R) = > (R/T,T)mg(F(R/T))h(F(T)).
TCR

A sufficient condition for these two quantitites to be equal, and hence for f* to
be a morphism of algebras, is that : F preserves Euler forms (i.e. (M,N), =
(F(M),F(N)), for any M, N € X4) and that for any R € X4, the functor F sets
up a bijection between the subobjects of R and F(R).

Suppose now that A and B are hereditary and let us consider the compatibility
of f* with the coproduct. We have for any function g € Hg and objects M, N € X4
(see Proposition 1.5),

. - 1
A(f*g)(M,N) = B (L N)] EEEmtzl(:M.,N)g(F<R£))

and

1
*® [ (A(9)(M,N) = — R,).
& 1 (A@)MN) = 0 (F(M)vF(N))uemm;m,nm)g( )

Therefore, a natural sufficient condition for f* to be a morphism of coalgebras is
that F is exact and that the associated map F : Ext' (M, N) — Ext'(F(M), F(N))
is an isomorphism for any M, N € X 4. This last condition amounts to saying that F’
sets up a bijection between the sets of short exact sequences 771\1}7 N and Pg((ﬁ)% F(N)?
and that furthermore any extension of F(N) by F(M) can be obtained in this way.

The properties of the map f,. are also easily worked out. For f, to be a mor-
phism of algebras, it is sufficient that F' is exact and that the associated map
F: Ext'(M,N) — Ext'(F(M), F(N)) is an isomorphism for any M, N € X4. For
f+ to be a morphism of coalgebras, it is sufficient that F' preserves Euler forms and
that for any R € X4, the functor F sets up a bijection between the subobjects of
R and F(R). Thus the conditions for f, are in a certain sense dual to those for f*.
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All in all, we see that the conditions to impose on a functor F' for it to induce a
(co)algebra morphism between Hall algebras are rather restrictive. We summarize
the above discussion in the following result which is sufficient for many purposes.
We will call an exact functor F' : A — B extremely faithful if it defines isomorphisms
Ext'(M,N) = Ext!(F(M), F(N)) for any M, N € A and any i > 0.

Corollary 1.16. Let A and B be finitary categories, and let F' : A — B be an
extremely faithful exact functor . Then fi is an embedding of algebras and if A, B
are hereditary then f* is a morphism of coalgebras. If in addition F(A) is essentially
stable under taking subobjects (in B) then f. is a morphism of coalgebras and f* is
a morphism of algebras.

Though we have not explained the definition of the Hall algebra of an exact cat-
egory, let us give a last (essentialy obvious) functoriality property of Hall algebras.

Corollary 1.17. Let B be a finitary category and let A C B be an exact full
subcategory stable under extensions. Let f : A — B be the embedding. Then
f+ : Hq — Hpg is an embedding of algebras.

As Lecture 4 will demonstrate, the above Corollary is particularly useful in the
context of Hall algebras of categories of coherent sheaves on curves (where abelian
subcategories are few and far between while exact subcategories abound).



22 OLIVIER SCHIFFMANN

Lecture 2.

After having introduced all the basic concepts of Hall algebras in Lecture 1, it
is now high time for us to provide the reader with some concrete examples. This
is what this and the next two Lectures are devoted to. In doing so, we hope to
illustrate the following “abstract nonsense” principle, which we learned from Yves
Benoist :

“There are many more theories than fundamental objects in mathematics.”

A direct corollary of this principle is that behind many distinct interesting theo-
ries lie in fact the same fundamental objects. Of course, each theory sheds its own
light on these objects, and combining the various perspectives is likely to be very
fruitful.

As the examples of Lectures 2,3 and 4 will show, the theory of Hall algebras turns
out to be intimately related to the structure theory of semisimple Lie algebras or
Kac-Moody algebras, or to the combinatorial theory of symmetric functions. This
interaction has proved to be extremely useful for all parties involved.

Incidentally, we will take the above principle as an excuse for not answering the
question of why such a deep relation exists and concentrate instead on the question
of how this relation exists.

The aim of the present lecture is to provide the first and perhaps most funda-
mental example of a Hall algebra —the so-called classical Hall algebra, introduced
by Steinitz at the turn of the twentieth century. This will allow the reader to see
all the notions appearing in Lecture 1 in action. We will finish by briefly describing
other occurences of Hall algebras in various mathematical contexts.

2.1. The Jordan quiver.

Let k be any field. The Jordan quiver is the oriented graph @0 with a single vertex
i and a single loop h : i — 1.

—

Qo: i

By definition, a representation of Qo over k is a pair (V, x) consisting of a finite-
dimensional k-vector space V and a k-linear map = : V' — V. A morphism between
two representations (V,z) and (V' 2') of Qo is simply a linear map f : V — V'
making the following diagram commute

(2.1) V——=V

|

V=V

The collection of all representations of Qo over k thus acquires the structure of a
k-linear category Repkéo which is easily seen to be abelian. In fact, two seconds of
thought will be amply enough for the reader to convince himself that this category
is equivalent to the category of finite-dimensional modules over the polynomial ring
k[z]. In particular, it is of global dimension one.

We will be interested here in the full subcategory consisting of those representa-
tions (V, x) for which z is a nilpotent endomorphism of V. This is the only one we
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will be considering here, we denote it by Rep}j“@o. The structure of RepZ”Qo has
been essentially well-known since the end of the nineteenth century, due to the work
of Jordan and Kronecker (see [B3] for a fascinating discussion of the famous con-
troversy, surrounding this result, which opposed these two great mathematicians).
In modern language, it reads :

Theorem 2.1 (Jordan and/or Kronecker). The following hold :
i) The object S = (k,0) is the only simple object of Repzil(jo,
il) We have Hom(S,S) =k and Ext'(S,8) =k,
iii) For any n € N there exists a unique indecomposable object I, of length n
m Repziléo, It is given by the endomorphism x € End(k™) with matriz

010 0
0 0 1 0
=10 0 0 :
00 0 1
00 0 0

From i) it follows that K (RepZ“Q'O) ~ 7 and from ii) we deduce that the Euler
form (, ), vanishes. In addition, from iii) and the Krull-Schmidt theorem we see
that any object (V,z) in RepZ“@o is isomorphic to a direct sum 11@11 ®--- @I
for certain integers r,l1,...,l.. Thus X Repni G is canonically isomorphic to the set
II of all partitions, via the assignement

/\:()‘17A27~-~7A7‘)HI)\lel@"'EBIA

r°

2.2. Computation of some Hall numbers.

Let us assume from now on that & = [, is a finite field with ¢ elements, so that
Repi Qo and Repﬁ”@o are finitary hereditary categories. Our aim will be to describe
the Hall algebra of Repziléo in some details. For this, we need to understand the

2 1 I, 3 v —
structure constants P | := amar B LI Obviously, P\ = 0 unless [v| = |A[+]u].

Example 2.2. Let us compute explicitly the first few values of P} |

. P((11)22 1) counts the number of submodules R C S & S which are isomorphic to S,

and such that (S @ S)/R is isomorphic to S. Any one-dimensional submodule R
will do, and there are |P!(k)| = ¢ + 1 such submodules.

. P((f)) 1) counts the number of submodules R C I, which are isomorphic to S and

such that Ir/R is isomorphic to S. Again, any one-dimensional submodule R will
do but this time there is only one such submodule (the kernel of the map ). Hence

@
Py =1

° P((22)),1()1) counts the number of submodules R € M = Iy & S isomorphic to S
and such that M/R is isomorphic to Io. We have Im « C Ker © C M. A one-
dimensional subspace R will be isomorphic to S if R C Ker z while for M/R to be
isomorphic to Iy we need R # Im x. Thus there are |P!(k)| — 1 = ¢ allowed choices
for R.

° P((f)’,l()z) counts the number of submodules of R C M = I & S isomorphic to I
and such that M/R is isomorphic to S. We have Im « C Ker & C M. A subspace
R of dimension two will be isomorphic to I3 if R D I'm x while R # Ker x. Thus

there are again |P!(k)| — 1 = ¢ valid choices for R. A
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Example 2.3. The above very simple examples already afford some interesting
generalisations :

° P((ll:,)r)’(lr) counts the number of r-dimensional submodules R of the trivial module
M = S% which are trivial and such that M/R is trivial. We may pick any r-
dimensional submodule, hence P((ll:,),,.)v(l,,.) is equal to the number of points over

F, of the Grassmanian Gr(r,t) of r-planes in t-space. This number is equal to a
g-binomial coefficient

\Gr(r,t)] = m+ _

[t - [t =1yt —r+1]4
24 [r =14 [r]+

where for any integer n we set [n]y = 1+ ¢+ ---+ ¢"~ L. It is known that this
g-binomial coefficient in fact belongs to N|g].

° P((ttzr) ) counts the number of indecomposable submodules R of dimension r

of I; for which I;/R is again indecomposable. There is a unique r-dimensional
A

submodule of I; and it satisfies the required conditions. Hence P((ttlr) ) = 1.

Example 2.4. As a final, more complicated example let us compute PZ (1" Thus,
given a representation I, we want to count the number of submodules R isomorphic
to SO such that I,/M is of a given type. Let us set

K =KerxzC 1, K;=KnImz,

so that we have K = Ko D K1 D K9 D ---. Now let R C K be an r-dimensional
submodule and let us set 7; = dim(RN K;), so that r =rg > r1 > ry---. We claim
that the type of I,/ R is completely determined by the integers r;. In fact, we claim
that I,/R is isomorphic to I, where if v = (1'*,2/2 ... n') then

(2.2) w= (111+27'1—T0—7'2 , 212+27'2—T1—7'3’ L 7nln+7'n_7'n—1)'

To see this, observe that a representation (W,y) is isomorphic to Iy where A =
(1ma 2mz . p™a)if and only if dim(Ker y'™t) —dim(Ker y') = mip1+- - +my
for all i > 0. Note that if y € End(I,/R) denotes the operator induced by z then

dim(Ker y) = dim(Ker ) — dim(R) + dim(RNImx) =1l +...l, —ro+ 7

dim(Ker y?) = dim(Ker z*) — dim(R) + dim(R N Im %)
=l1+2(12+ln) — 19+ 17o
and in general
dim(Ker y') = dim(Ker ') — dim(R) + dim(R N I'm z*)
:l1+2lg+~-~+(i— 1)11,14-2(11—"-[”) — 1o+ 7.
Formula (2.2) now follows by a simple computation.

To sum up, we have shown that for a given u there are as many possible choices
of a valid submodule R as there are r-dimensional subspaces R in K which intersect
the flag of subspaces K1 D K3 D -+- D K,—1 D K,, = {0} in some certain specified
dimensions dim(R N K;) = r; (which can be obtained from p using (2.2)). The

cardinality of this set can be computed as follows. Let O C Gr(r,> ;) be the
above subset of r-planes in K. There is a natural projection map

7:0 — Gr(rp—1,ln) X Gr(rp_o —rp_1,lp—1) X -+ X Gr(ro — r1,11)
which associates to R the sequence of subspaces

RO Kp_1,(RNKp_2)/(ROKn_1),...,(ROK) /(RN K>), R/(RNK))
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in K1, Kpn—o/Kp—1,...,K1/Ks, K/K;. We claim that 7 is an affine fibration of
rank

t :(Tn—Q - rn—l)(ln - Tn—l) + (Tn—?) - Tn—Q)(ln—l + ln - Tn—2) + -
+(ro—r)(la+ -+l —11)

To see why this is true, let us pick arbitrary subspaces S,_1,...,S1, 5 in the above
product of Grassmanians and look at the fiber of 7 at that point. For R to belong
to it, we need to have in particular RNK,,_1 = S,,—1 and (RNK,_2)/(RNK,_1) =
Sn—o € K,,_o/K,_;. Fixing a basis of S,,_1 and S,,_2 we see that RN K,,_5 is
determined up to a choice of a linear map from S,,_5 to K, 1 /(RN K,,_1). But
then once (RN K,,_2) and S,,_3 are fixed, (RN K,,_3) is determined up to a linear
map from S,_3 to K,_o/(RN K,,_3), and so on. Continuing in this manner, we
arrived at the desired result.

(2.3)

. . . . .|t
Finally, since the number of points over F, of the Grassmaninan Gr(r,t) is [7} ,

+
we obtain in fine

v _ ln . lnfl . ll t
L N I St P [Py

where v = (11,...,n!"), the integers r; are determined by (2.2) and t is given by
(2.3). A

All the above examples suggest that P;; s Is in fact given by the evaluation at
t = g of some “universal” polynomial P ,(¢) € Z[t]. Here “universal” means that
Py \(t) € Z[t] is independent of the choice of the ground (finite) field k. This is
indeed the case, as we will see at the end of the next section.

2.3. Steinitz’s classical Hall algebra.

Let Hy = Hp, g, be the Hall algebra? of Rep}'Qy. By definition, it has a
basis {[I,] |; A € IT} and relations

IARIAED I NIA

(recall that the Euler form vanishes). It is N-graded (by the dimension of the
representation, which is also the class in the Grothendieck group). As the Euler
form vanishes, the Hall algebra H; is already a bialgebra as it stands, and there
is no need to consider its extension ﬁcl. Moreover, the finite subobjects condition
being verified, H,; is in fact a genuine (and not only a topological) Hopf algebra.
The first few values of the (co)multiplication and the antipode are given in the
following examples :

Example 2.5. Using the computations of the previous section, we have :
Ul U] = (a+DlIaz)] + L),
Ul Ul =dlen]+ s,

) =q
L) - )] = qlle] + [I3)-
For the coproduct, we have

A(I]) =1 Iy + I @1,
A(I))) =1@ Il + 1= ¢ )] @ Iy + [[2)) ® 1,

a I
o I

2the index ‘cl’ stands for ‘classical’.
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A([Ta)) =1 [Iaz] + ¢ o] ® o] + oz @1,
Allen)) =1@ o]+ Ten] © 1+ (1 - ¢72) ([In)] @ Uaz] + o] @ )+
+a ()] @ U]+ U] @ o))
In the above computations, we have used the following formulas
ar,, = (q-1),  ar, =@ -1)("~a), ar, =(@*~q), ar,,, =(@"—¢*)(@*—q).
Finally, for the antipode map, we have
S(w)) = -l
(¢ —1)?
(¢ = 1)(¢* —q)

T))? = —q¢ o)+ (@ —a )Lz

S(Laz))) = -z + (¢ +1) L) =q L))+ a a2,

S([I2)]) = I 2)] +

A

Despite these seemingly complicated formulas, the (abstract) structure of H; is
startingly simple :

Theorem 2.6 (Steinitz, Hall, Macdonald). The following hold :

i) He is both commutative and cocommutative,

ii) He ~ C[[In], [I(12)],...] is a free polynomial algebra in the infinitely many

generators [I(1)], [I(12)], .. ..

iii) For any integer n we have

(2.4) A(Tam]) =Y a7 Ian)] @ [Tgn-r)].
r=0

Proof. To prove point i), we have to show that for any triple v, u, A\, we have
Py, = P{,. For this we will use the natural (contravariant) duality functor in
the category Repzil(jo, which associates to a representation (V,z) its transpose

V* z'). Note that any object of RepP* _'0 is isomorphic to its transpose. On the
) y obj P p p
other hand, this duality M — M™* gives rise to a bijection

(RCL|R~D\, L/R~I1,} "5 {(SC i, |I[/S~Ti~1\~ S~I:~1}
R— S=R"

It now suffices to recall that P} , is the cardinality of the left-hand side while Py ,

is the cardinality of the right-hand side.

We turn to the second statement. Define a partial order on the set of partitions IT
as follows : A = (111,2%2...) = = (1"™1,2™2 ) if for any i > 1 we have
<mqg+2mg+---+ (G — Dmi—1 +i(mg +mipr + )
(this is the transpose of the usual partial order on partitions). Let us fix a partition
A= (11,22 .. n') and let us consider the product
X = [I(ll")] : [I(llnfl“")} T [I(llﬁ'““")}'

By construction, if I, appears in X with a nonzero coefficient and if (V,z) repre-
sents I, then there exists a filtration {0} = Vo € V; C --- C V,, = V such that
dim(V;/Vi_1) =l + - + 1, and 2(V;) C V;_1. In that situation, dim(Ker z*) >

dimV; =1y +2ls+ - +i(l; + liy1 + - -+ ). But writing v = (1™1,2™2,...) we have
dim(Ker xi) =my +2mgo+ -+ i(m; + miy1 + -+ ), hence v < A. In addition, it
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is easy to see that if ¥ = A then there exists a unique admissible filtration (V;) as
above. Therefore we have

X € [I)\] + ®y<>\(C[[l,].

We deduce from this that the collection Z of products [I(yn1)] - [I(1n2)] - [L(1ne)]
(ordered so that ny < ng < --- < ny) is obtained from the basis {[I,]} by acting by
a matrix which is upper triangular with respect to =< and has 1’s along the diagonal.
Therefore 7 forms a basis of H,; and point ii) follows.

Finally, iii) is shown by a direct calculation. Since any submodule or quotient of
I(1ny is again of the form I(;r for some r < n, we have

N Yganen Gy
A([Iam)) = Z(:) Twlp(lnfr)’(p")[l(l"*r)] ® [Ian).

The formulas
u( u 1)

a0y = |GL(u, Fy)l = (¢"~1)(¢"~q) -+~ (¢"—¢""") = (¢—-1)"q [u][u—1]---1],
(am _ m _ M)y [n — 1)y ---[1]4
o0 = e T G =1 W (= el —r =115 1)
yield the desired result. v

The above Theorem is enough to prove the existence of the so-called Hall poly-
nomials Py ,(t) alluded to at the end of Section 2.2.

Proposition 2.7. For any triple of partitions A, u, v satisfying |\ + || = |v| there
erists a unique polynomial Py \(t) € Z[t] such that for any prime power g and finite
field k with q elements we have Pl =PF] NCE

Proof. Note that the unicity is obvious since any two polynomials taking the same
values at an infinite set of points are equal. Hence it is enough to show existence.
We start by slightly refining the proof of point ii) of Theorem 2.6 above. By
Example 2.4. we know that for any g € II and r > 1 there exists polynomials
P? .\ (t) € Z]t] such that

ws(17)
)= Z B
By iteration we deduce that for any rq, . .., r; there exists polynomials P(m) 1) (t)
such that
(2.5) [I(th) I(1T1) Z Py (1rt),...,(171) Q)[I ]

In particular, if A = (1/+,2%2 ... nl) and 7; = l; + --- +1,, then

[I(lwﬂ T [I(lrl)] =[] + Z Pﬁn),...,(1n)(‘])[[u}-
V<A

Inverting the upper triangular matrix of polynomials (P(Vm) (yl)(t)) we see that

,,,,,

conversely for any v there exists polynomials Q(Vm),‘..,(m)(t) such that

(2.6) ZQ (1rt),.. (1?1) )[I(lrt)]"‘[fv(l"l)},

(r3)
where the sum ranges over all possible sets of ordered indices (r; > 79+« > r;). But
now, using (2.6) we may rewrite any product [I,,]-[I,] as a linear combination with
polynomial coefficients of terms of the form [I(1r)] - - - [I(1r1)]. Then we use (2.5) to
rewrite each such element as a linear combination of [I,]’s, again with polynomial
coefficient. We are done. v



28 OLIVIER SCHIFFMANN

An important corollary of the existence of Hall polynomials is that we may now
consider a “universal”, or “generic” version H, of the Hall algebra H.;, which is
defined over the ring C[t,¢71].

We now define the generic classical Hall algebra to be the algebra
Hcl = @ (C[tv t_l][IA]
A

where the multiplication is defined by

Z /M

The algebra H , is clearly commutative, and the proof of Proposition 2.7 shows

that it is a free polynomial ring over C[t,t~!] in the generators Uyl a2y, . ... We
may define a coproduct A on H,, by (2.4). Indeed, this satisfies all the required
properties (coassociativity, compatibility with the multiplication, ... ) over C[t, ¢~ !]

since the same is true for an infinite number of specializations t = ¢g. Finally, we
leave it as an exercise to the reader to check the formula

S([Iam)) = (=1)"g ""=D/21,,

where 1,, is the characteristic function of the set of all representations of dimension
n; this allows us to also define an antipode map S for H,. We have obtained in
this manner a genuine Hopf algebra H; over C[t,t~']. Note that the product is
defined at t = 0, but not the coproduct (or the antipode).

There is one last piece of the structure of Hall algebras which we didn’t mention
here so far : Green’s scalar product. Recall that by definition, it is given by the

formula
1

(5], Uul) = Oxp—
ar,

Lemma 2.8. The number ar, of automorphism of I\ is given by the formula

27) o =P O 0 =) g

where A = (111,212 ... mln) and n(A\) = Y, (i — 1)\

Proof. We have I = Ifell &) 12@[2 -+, Let xgi),xg), .. (1) be fixed generators of
I?l’i. An endomorphism f of I, is completely determmed by the image under it

of the elements x?. For f to be an automorphism, the restriction of f to Il@l"

composed with the projection to IZ-@“ should be an automorphism. In addition, for

f to be well-defined, we should have f (:cy)) € Ker x'. Thus there are

(GL(L:, Fy)| - ’ {(Ker #) NP L) o Ker )0 I?li)} ok ’

(2.8) i
_ |GL(li7]Fq)‘qli(l1+212+"-+(i—1)17',—1+(i—1)li+i(li+1+-“))
possible choices for (f(mgl)), . ,f(xl(l))) Hence the number of automorphism is

obtained by multiplying together (2.8) for all values of 7. A little arithmetic on
partitions using the identities

M=, n() = %Zili(li 1)+ Y ilil;

% A 1<j
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brings this expression to the form (2.7). v

2.4. Link with the ring of symmetric functions.

As we have seen, the classical Hall algebra H.; , or its generic version H, are
N-graded polynomial rings with one generator in every degree. There is another
famous such, which plays a very important role in much of mathematics, and partic-
ularly in combinatorics and representation theory : Macdonald’s ring of symmetric
functions ([M1]). Let us briefly recall its definition.

Consider, for n > 1, the ring of symmetric polynomials in n variables : A, =
Clz1,...,7,]®". These form a projective system via the maps A, ;1 — A, obtained
by setting the last variable x,+1 to zero. The projective limit (in the category of
graded rings) A = lim A,, can thus be considered as the ring “Clz1, 22, .. ]8> of
symmetric functions in infinitely many variables.

The ring A is also equipped with a canonical coproduct, which was formally
introduced by Zelevinsky [Z1] : for n > 1 consider the map A, : Ag,, — A, ® Ay
induced by the embedding

Clx1, ... ,xgn]GQ" — Clzq,... ,xgn]G"XG"

= (C['rlv s 71'%]6” ® (C[xn+17 ce 7x2n]6n7

where in the second term the first copy of &,, permutes together the variables
Z1, ..., T, while the second copy of &,, permutes together the variables x,, 11, ..., Zapy.
In the projective limit, the maps A,, give rise to a coproduct A : A — A ® A.

There are many bases of A, and it is often the matrix relating one such basis to
another which carries the interesting combinatorial information. The simplest of
all these bases is probably the basis of elementary symmetric functions : for r € N
set

e = Z Ti Tiy =Ty, €A
i1 <ip <<y

and for a partition A = (A1, Ag,...) put ex = ey, €ex, -+ - €, -

Theorem 2.9 (Macdonald, [M1]). The set {e) | A € II} forms a basis of A, i.e.
A ~Cley,ea,...].

By the above Theorem, we may construct an algebra isomorphism @, : Hey —

A by imposing @) ([[1)]) = ¢~ “¢,. From the definition, it is easy to check

that A(e;) = >, _gen—r ® €,. From this and from Theorem 2.6 iii) it follows
that @ is a morphism of bialgebras as well. Hence H.; provides a new model or
realization of A. Moreover, it comes almost for free with a very canonical one-
parameter deformation H,, defined over C[t,¢~!] and there is an isomorphism & :
H, - A®Cltt™].

Let us mention two immediate applications : we can use ® to transport on
A ® C[t,t7!] the nondegenerate Hopf pairing (, ) of Green on H_; and the set
{®([»]) | A € I} is an orthogonal basis for this scalar product. These turn out to
be very interesting : ®,((, )) is the Hall-Littlewood scalar product, which is the

scalar product uniquely determined by the conditions
{z,y2} = {Az),y © 2},

r

2. = -
( 9) {prvps}’ 6r,s qr 1
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where p, = ). a7 stands for the power sum symmetric function. Therefore the
basis {®([[,]) | A € I} is (up to a harmless renormalization) the basis of Hall-
Littlewood polynomials. In particular, the norm of these polynomials (with respect
to the Hall-Littlewood scalar product) is given by (2.7).

There are many more applications of the classical Hall algebra to the theory
of symmetric functions. As discussing these would distract us too much from our
topic, we prefer to refer the interested reader directly to the Scriptures [M1].

Remark 2.10. One may wonder why the maps ®,) and ® are defined in this
way and not in another. The first answer is that this is the easiest way to obtain
a morphism of bialgebras. A better answer is that there exists a “geometric lift”
of the map ®,) which makes it indeed very canonical; this involves (affine) flag
varieties and (spherical) Hecke algebras —see the survey [S2] for details.

2.5. Other occurences of Hall algebras.

In this final section, which is independent of the rest of these notes, we quickly de-
scribe a few classical mathematical contexts in which Hall algebras arise naturally.

Steinitz’s formulation of the classical Hall algebra. Needless to say, neither quiv-
ers nor abelian categories were around in the early days of the twentieth century.
Instead, Steinitz considered the set of all abelian p-groups; of course, these share
many properties with nilpotent representations of the Jordan quiver (over F,),
namely there is a unique simple object and a unique indecomposable object of any
given length. In fact, it is easy to see that the Hall numbers computed from both
categories coincide, and hence Sections 2.2. and 2.3. are essentially a direct re-
formulation of Steinitz’s work. A third alternative formulation, which is used by
Macdonald in [M1], is to consider the category of finite length modules over some
discrete valuation ring R whose residue field R/m is finite.

Parabolic induction for GL(n). For n > 1, put G, = GL(n,F,), and let R,, be
the character ring of G, i.e. the ring of class functions on G,,. The vector space
R = @,, R, has a ring structure given by the parabolic induction : if f € R,, and
g € R,, then we put

foh=indg" " (f @ h),

where P, ,;, C G4 is the maximal parabolic subgroup of type (n,m), and f ® h
is pulled back to P, ,, by the projection P, ,, - G, X G,,. By definition, the value
of foh a at class 4 € Gy is equal to ZtGGner/Pn,m f @ h(tut=1).

For any = € Gy, let V,, be the F,[t]-module structure on Fé obtained by having
t act as x. Clearly, V,, ~ V, if and only if z and y are conjugate. Hence there is a
well-defined isomorphism class of Fy[t]-module associated to any conjugacy class p
in GGy, for any [. Using this notation, we may write

Foh(u)="Y" gk ..f(m)-hus)

K102

where gf; . is the number of F,[t]-submodules W C V,, such that W ~ V,,, and
Vu/W ~V,,. Thus, after a small reformulation, parabolic induction for the groups
GL(l,F,) may be considered as a simple, special case of Hall algebra multiplication.
There is a similar interpretation for parabolic induction for the groups GL(l,Q,).
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Automorphic forms for function fields. This may be viewed as a global analog of
the previous example. Let X be a smooth projective curve defined over a finite
field F, and let Bun,(X) denote the set of isomorphism classes of vector bundles
on X of rank r. A complex-values function f on Bun,(X) may be interpreted as an
automorphic form for the group GL(r) over the function field Fy(X) of X. In this
setting, the induction product for automorphic forms coincides with the product
in the Hall algebra Hy .(x) of the exact category Vec(X) of vector bundles on X.
Many properties of automorphic forms may be stated in a simple manner using
the language of Hall algebras. For instance, an automorphic form f is a cusp form
if A(f) € Hyeex) ©@ Hropxy @ Hror(x) ® Hyee(x), where Tor(X) denotes the
category of torsion sheaves on X; the Hecke operators on the space of automorphic
forms are given by the adjoint action by certain elements of Hrp,,(x), etc. We refer
to [K2] for much more in this direction.
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Lecture 3.

In this Lecture, we describe the main examples of Hall algebras : those asso-
ciated to the categories of representations of quivers over finite fields. This finds
its source in Gabriel’s insight that the set of indecomposable representations of fi-
nite type quivers can be parametrized by root systems of simple Lie algebras [G1],
in Kac’s generalization of this result to arbitrary quivers [K1], and culminates in
Ringel’s discovery [R5] (later completed by Green [G4]) that the Hall algebra of a
quiver Q contains a copy of the quantized enveloping algebra of the Kac-Moody
algebra associated to the graph ) underlying Q After recalling Gabriel’s and Kac’s
theorems and some representation theory of quivers, we present the fundamental
results of Ringel and Green. The last three Sections are devoted to some more
advanced topics concerning tame quivers (which we mostly state without proofs).
These are important for Lecture 4. For the reader’s convenience, just enough of
the structure theory of Kac-Moody Lie algebras and quantum groups is reviewed
in Appendices A.1 through A.4. As for the representation theory of quivers, all of
the results used below may be found in [B1] or [CB3].

3.1. Quivers.

Let Cj be a quiver with vertex set I and edge set H. We allow @ to have multiple
edges and cycles, but no loops. The target, resp. source of an edge h will be
denoted t(h), resp. s(h). By a representation of @ over a field k we mean a
pair (V,z) where V. = @, V; is a finite-dimensional I-graded vector space and
z = (xn)hen € @), Hom(Vyny, Vin)). A representation (V,z) is nilpotent if there
exists N > 0 such that for any n > N, zp_xp,,_, - - - xp, = 0 for any path hy - - - h,, of
length n in Q We let Rep};“ Q stand for the category of nilpotent representation of
Q over k. It is an abelian, k-linear category satisfying the Krull-Schmidt property.
Of course, when Cj has no oriented cycles then any representation is nilpotent.

To any vertex is attached a simple representation S; such that V; =k, V; = {0}
for j #4 and = 0.

Proposition 3.1. The collection {S; | i € I} is a complete set of simple objects of
Repi™Q.

Proof. Let (V,z) be simple and let iy be any vertex such that V; # {0}. Let v € V;,
be a nonzero vector. By the nilpotency condition, there exists a path hy---h,
starting at ig such that xp,, ---xp, -v # 0 but xp, Ty, - -5, -v = 0 for all edges

hn41 leaving the terminal vertex, say i of h,. This means that S;, C (V,z) . But
since V is simple we deduce that V =5, . v

Corollary 3.2. The following hold :

i) Any representation (V,z) in Rep}g“@ admits a finite composition series
consisting of S;’s,
ii) We have K(Rep'Q) ~ 7.

The class of a representation (V,z) in K (Repzilé) is simply its dimension vector
dim V = (dim V;)e;.

It is well-known that the category Repﬁ“@ is hereditary. As a consequence, we

may easily compute the Euler form on K (Repﬁ“ Cj) Let us assume from now on
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that k = [, is a finite field. Let
cij = #{h € H | s(h) = i,t(h) = j}
be the number of oriented edges in Q going from i to j.
Proposition 3.3. We have (S;,S;j)s = 0;j — ¢;j and
(S5, 8V m = q%(&'jfcz‘j)'

Proof. This is a consequence of the facts that Repﬁ“@ is hereditary and that
dim(Ea:tl(Si, Sj)) = Cij. v

The matrix of the additive Euler form is A = (a;j); jer with a;; = 26; j —¢;; —¢js.
In particular, it is a symmetric integral matrix satisfying
aii:2, Qg5 SO lf’L;é]
Therefore A is a generalized (symmetric) Cartan matrix and we may associate to
it a Kac-Moody algebra g (see Appendix A.1, A.2.). The Dynkin diagram of g is
simply the unoriented graph underlying Q.

Let {o; | i € I} be the set of simple roots, let QQ = @, Za; be the root lattice
and let (, ) be the restriction of the Cartan-Killing form to Q.

Corollary 3.4. The map
p  K(Repi'@Q) — Q
V- Z dim(V;) oy

is an isomorphism of Z-modules. It maps the symmetrized Euler form (, )q to the
Cartan-Killing form ( , ).

This is a first, purely numerical, indication of a link between categories of repre-
sentations of quivers on the one hand and Kac-Moody algebra on the other. This
link will be made much stronger in the coming paragraphs.

For completeness, we add the following theorem, which explains the importance
of quivers in the representation theory of finite dimensional algebras.

Theorem 3.5 (Gabriel). Let k be an algebraically closed field. Any finite dimen-
sional k-algebra of global dimension at most one is Morita equivalent to the category
RepilQ for some (uniquely determined) quiver Q.

Remark 3.6. There is a version of the above theorem when k& is a finite field : one
then has to consider not only quivers, but species, or equivalently quivers equipped
with automorphisms (see [R10]).

3.2. Gabriel’s and Kac’s Theorems.

Since the category Repzilé is Krull-Schmidt, the next important invariant (after
the Grothendieck group and the Euler form) is the set of indecomposable objects.
Call a quiver of finite type if it has only finitely many indecomposables, and call
it tame if the indecomposables lying in each class in K (Repﬁ”@) can be arranged
in finitely many one-parameter families. A quiver not falling in these two sets is
called wild.
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Theorem 3.7 (Gabriel). The category Rep}j“@ 1s of finite type if and only if A is
positive definite, i.e. if and only if g is a simple Lie algebra. Moreover, in this case
the map M = (V,z) — >, dim(V;)o; € Q establishes a bijection between the set of
indecomposable objects and the set AT of positive roots of g.

In other words, once we have identified K (Rep?”@) and @ using Corollary 3.4,
the positive root system AT pinpoints exactly the classes of indecomposables and
there is a unique indecomposable belonging to each such class.

Example 3.8. Suppose that Cj is given by

*———¢ — - - - —@
1 2 n
The associated Lie algebra is g = sl,,11(C). If {aq, ..., a,} are the simple roots

then (see Appendix A.1, Example A.5.)
At ={oi+ a1+ +aj | i < g}

These correspond to the indecomposable representations

The case of a quiver with the same underlying graph but different orientation is
entirely similar. A

Example 3.9. Now let us suppose that Cj is

3
1 2 4
The associated Lie algebra is now s0g(C). If oy, . .., oy are the simple roots then

the positive roots are (see Appendix A.1, Example A.6.)

AT ={a; |i=1,...,4} U{o1 + ag, o + a3, az + a4}
Ufag +a +as, ar + a4+ ay, ag +az + oy}
U{ar +as+az+astU{as + 202 + a3+ ag}.

Of all these roots only the last two do not have support in a subdiagram of type
A. The corresponding indecomposable representations are

k

Ti234 = l

e

and
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Io234 = i

k= Bk

In this last case, the three maps k — k2 have to be injective, and thus de-
fine three lines in k2, or three points (A1, A2, A3) in PY(k). The representation is
indecomposable if and only if these points are distinct. Moreover the action by
conjugation at the vertex 2 of GL(2, k) corresponds to the action on (A1, A2, A3) by
an element of Aut(P!). It is well-known that any triple of distinct points in P! may
be brought to (0,1, 00) by an automorphism, hence Ij5234 is indeed unique up to
isomorphism.

A

By Cartan’s classification (see Appendix A.1.) A is positive definite if and only
if the quiver @ is of type A,, D,, or E; with [ = 6,7,8. The above examples treat
the (easy) cases of A, and D,,. The indecomposables for the exceptional quivers

are worked out in [R10].

Concerning tame quivers, we have the following result, established independently
by Nazarova [N2] and Donovan-Freislich [DF] :

Theorem 3.10 (Nazarova, Donovan-Freislich). The category Repﬁ“ ) is tame if
and only if the matriz A is positive semi-definite and has corank equal to 1, i.e. if
and only if g is an affine Lie algebra. Moreover,

i) For o € Q, there exists an indecomposable representation M = (V, z) with
> dim(Vy)ey if and only if o« € AT,

i) If @ € AT is a real root then there exists a unique such indecomposable;
if « € AT is imaginary then, unless Cj is a cyclic quiver, there exists a
one-parameter family of such indecomposables.

The new phenomenon here, as opposed to the finite type case, is the existence
of dimensions for which an infinite number of indecomposables exist (when the
ground field is itself infinite, of course). The case of a cyclic quiver is special, and
is discussed separately in Section 3.5. As the root system of affine Lie algebras
contains a single line ZJ of imaginary roots, all dimension vectors for which there
exists several indecomposables are multiple of the indivisible imaginary root §.

Example 3.11. The simplest tame quiver is the Kronecker quiver :

hy

O

ha

0

2 -2
-2 2
algebra is sl (C). If {ag,a1} are the simple roots then the indivisible imaginary
root is 6 = ap + a1 and

The matrix of the Euler form is A = ( ) and the relevant Kac-Moody

At ={a;+né|n>0 U {—a;+nd|n>0}U{nd|n >0}

Here are some indecomposables associated to real roots (all maps below are iso-
morphisms) :



36 h2 OLIVIER SCHIFFMANN

k k
Ia1+5 = . hy . Ifa1+5 =

]ECB&

k k
. hy .
0 1 0 1

Let us now consider dimensions corresponding to the imaginary root ¢ :

R

E——k A #0.0)
0 1

’
SH

It is clear that I(g’\’“) is isomorphic to Ié)‘/ ) if and only if there exists t € k
such that (N, p') = (¢, tp). Hence the indecomposable representations of class §
are parametrized by points of P!(k). A

Example 3.12. Let us now choose for @ the following quiver of type Dil) :

The Kac-Moody Lie algebra here is §0(C). The indivisible imaginary root is
0 = ap + a1 + 2as + a3 + a4. Indecomposable representations of dimension § are
given by a quadruple of injective maps k — k2

N
k/é\k

1 4

I(>\0)\17>\3,/\4) _
5 =

landing in at least three different lines in k2. Each such line corresponds to a point
A; in P1(k). Hence the set of indecomposables is in bijection with the set of ordered
quadruples (Ag, A1, A3, Ag) of points in P*(k), with at least three of the \;’s distinct,
and all up to an automorphism of P!(k). This set is a little bit more tricky than
one might first think :

Case a). \; # Aj for i = 1,3,4. Then there is a unique ¢ € Aut(P'(k)) sending
(A1, A3, A1) to (0,1,00). It sends Ay to some point = € P! (k).

Case b). Two among A1, A3, A4 are equal; then, up to the action of Aut(P!(k)) we
may reduce (Mg, A1, Az, A\y) to exactly one of :

(0,1,1,00), (0,1, 00, 00), (0,1,00,1).

Hence, geometrically, the set of indecomposables ressembles a projective line with
three points being “doubled” :

(3.1)



LECTURES ON HALL ALGEBRAS 37

A

In a remarkable work [K1], Kac managed to extend the theorem of Gabriel to
the case of an arbitrary quiver.

Theorem 3.13 (Kac). Let Q be an arbitrary quiver.

i) For a € Q, there exists an indecomposable representation M = (V,z) with
> dim(V;)ey if and only if a € AT,

ii) If « € AT is a real root then there exists a unique such indecomposable;
if « € AT is imaginary then there exists many (i.e. more than one) such
indecomposables.

3.3. Hall algebras of quivers.

We are now ready to compute the extended Hall algebra I:I@ of Repﬁ“@. We

assume in this Section that k = I, so that RepZ“@ is a finitary, hereditary category.
Moreover, as this category satisfies the finite subobject condition (see Remark 1.6)
its Hall algebra HQ is an honest Hopf algebra. It will be convenient to introduce a

new notation v = ¢2 (note that there is a choice of the square root involved here).

Let us start with some simple calculations of Hall numbers.

Example 3.14. The simplest quiver in the galaxy : Cj = e (one vertex, zero
arrows). There is but a single simple object S, and any object is isomorphic to
597 for some j. We have Hom(S,S) = k and FExt'(S,S) = {0}, so that (S, S),, =
q% = v. We have

[S®] . [SPI] = v H#Gr(j,i + )[ST ] = V¥ {z J]r]} [S®i+i]
+

since the Hall number in this case simply counts the number of i-dimensional sub-
spaces in an ¢ + j-dimensional vector space. In particular,
n(n—1)

(3.2) [S]" = v [l [S®"] = v (D [n]I[S"].

(see Example 2.3 and Appendix A.4. for the definitions of v-binomial numbers).
A

Examples 3.15. Assume that Q has two vertices 1 and 2, with c¢;5 arrows going
from 1 to 2, and ¢y arrows going from 2 to 1. The simple modules associated to
the vertices are denoted S; and Sa; Of course, Hom(S1, S2) = Hom(S2, S1) = {0}.

o If ¢1o = o1 = 0 (i.e. the two vertices are not connected) then there are no
nontrivial extensions between Sy and S and (S1, S2),;, = (S2,51)m = 1. Hence

[S1] - [S2] = [S1 @ S2] = [Sa] - [S1]-

e Assume now that cjo = 1,01 = 0, i.e. that vertices 1 and 2 are connected by a
single edge going from, say, 1 to 2. We have Ext'(S;, S2) = {0} and Ext(S,,S1) =
k. Then (S1,52)m, = q*% = v~ ! and there is a unique nontrivial extension I;5 of
Sa by S1. As Hom(S2,I12) = k, it is easy to see that

[S1] - [S2) = v ([S1 @ Sa] + [I12]).
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On the other hand, there are no nontrivial extensions of S by S, thus (Sa, S1)m = 1
and

[Sa] - [S1] = [S1 @ Sa].

This simple example already shows that ﬁ@ and HQ are not commutative in gen-
eral.

e Let us keep the same quiver as above. As there are still no extensions of Sy by
S, we have

(3.3) [Sa] - [S1)? = v(v? 4+ 1)[Sa] - [SP?] = v(v? + 1)[SP? @ Sy).
In the other direction,
[$1]% - [S2] = v(v* + 1)[ST?] - [S2]

=v ' (12 + 1)([SF? & So] + [S1 @ 112))

since Hom/(Ss, S%BQ @ S3) = Hom(S2, 51 @ I12) = k.

Finally, to compute [S1] - [Sa] - [S1] = [S1] - [S1 @ S2], note that there are ¢ + 1
submodules of S?Q @ Ss isomorphic to S1 © S3, but only one submodule of I15 ®Ss
isomorphic to S7 ® S3. We deduce that
(3.5) [$1] - [Sa] - [S1] = (V® + 1)[ST? @ So] + [S1 ® [a).

Observe that combining (3.3), (3.4) and (3.5) yields the following equation sat-
isfied by [S1] and [Sa] :

(3.6) [$1)2 - [Sa] = (v + v )[S1] - [S2] - [S1] + [S2] - [$1]* = 0.

(3.4)

Similar computations give the dual relation :
(3.7) [Sa]? - [S1] = (v + v 1)[Sa] - [S1] - [Se] + [S1] - [Sa]* = 0.

In fact, as will follow from Ringel’s Theorem 3.16, these are the only relations
satisfied by [S1] and [S2].
A

Recall that g is the Kac-Moody algebra associated to the Euler matrix A =
(aij)ijer of Q. Let U,(b’ ) be the positive half of the quantum group U, (g")
associated to g (more precisely, to the derived algebra g’ of g)-see Appendix A.4.
Here we consider the version of the quantum group U, (b’,) which is specialized at
v=v.

The Hopf algebra U, (b, ) is generated by elements E;, K* for i € I subject to
the following set of relations :

(3.8) K,K; = K;K;, K,E;K;'=v"E;  Vijel,
1—aij 1

(39) I LR
=0

As for the coproduct and antipode, they are given by
(3.10) AK) =K, ®K,;, AF;,)=E;1+K,;®FE,,

(3.11) S(K;))=K;',  S(E)=-K;'E;.
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Theorem 3.16 (Ringel, Green). The assignement E; — [S;], K; — kg, forie I
extends to an embedding of Hopf algebras

v:U,(b,) - Hg.

The map V¥ is an isomorphism if and only zf@ is of finite type, (i.e. if and only if

g is a simple Lie algebra).

Proof. There are two steps in the proof. First, we need to check that relations
(3.8),(3.9), (3.10) and (3.11) hold in H; this will prove the existence of the map
W. Secondly, we need to show that W is injective.

The first step is essentially one big (but straightforward) computation. Relations
(3.8), (3.10) and (3.11) all hold trivially by definition. The only difficulty lies in
checking (3.9). Note that this relation only involves two vertices 4,5 € I. When
la;;] < 1, this is treated in Example 3.15. We deal here with the general case. In
order to unburden the notation, let us set r = ¢;5,5 = ¢j; and t = r + s = —a;;. By

Example 3.14, (3.2), we have [S;]() := % = =D[SP. As (S Sy, = v,
we have

[S:)18,] = V=07 N v,

MeT,
where 7, = {M | 3N C M s.t. N ~ S;, M/N ~ S&'}.

Next, for a representation L of Cj of dimension (r + 1)e; + €, we define

UL = ﬂ Ker Th, VL = Zlm Th,
h

. h . . ho.
1—] J—

and set ur, = dim(Ur),wr = dim(Vy). A direct computation shows that

[Sz](l)[sj][sz](n) _ ansflr+nl+l(l71)+n(nfl) Z pM,n[M]a
[M]

where par,, = 0 unless Vs C Uy, in which case we have

(upr—n)(n—wnr) |:UM — wM] -

=#Gr(n —wpy, upy — W) =V
Py = #Gr( M, UM M) n— way

Setting n =t + 1 — [ and summing up, we obtain

t+1
S EDISIVS IS =Y pulM,
1=0 [M] s.t.Vam CUn

where
t+1 w w
_ -1 lansflr+nl+l(l71)+n(n71)+(qun)(n7wM) M — WM
Py ;( ) " — war
t+1
— ) s—unwy Z(_1)t+1_"y_(25+1—uM—UJM)" [UM a wM:| .

n—uw
n=0 M

Clearly, up; > s+ 1 > wyy for any M. We deduce that 1 — up — wyy <
2s+ 1 —upy —wy < upr +wy — 1. Now we use the following identity (see, for
example, [K5, (3.2.8)]) :
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Lemma. Let m > 1 and let 1 —m < d <m —1 withd =m — 1 (mod 2). Then

As a consequence, we obtain

t+1

PNEVCILIEAEALE

=0

which is nothing else than the v-Serre relation (3.9). This shows that ¥ is well-
defined. The fact that ¥ is compatible with the coproduct and the antipode is
straightforward given the definitions.

Let {,} : U,(b,) ® U,(b/,) — C be the pullback under ¥ of Green’s scalar
product on H- As Uis a morphism of Hopf algebras and Green’s scalar product
is a Hopf pairing, {, } is also a Hopf pairing. Moreover, by construction it satisfies

2_1’

{Ei,Ej} = L (KZ,KJ) = I/aij, (E“KJ) = 0

By Theorem A.18 this completely determines {, }, which coincides with the restric-
tion to U, (b, ) of Drinfeld’s scalar product on U, (b, ). In particular, the restriction
of {, } to U,(ny) is nondegenerate. Hence

(Ker W)U, (ny) C (Ker {, })NU,(ny) = {0}.

The injectivity of ¥ easily follows from the fact that U, (b’ ) = CIKFier®U,(ny)
while H g = (C[kil]ie I® HQ. Of course, the restriction of ¥ gives an embedding
U, (n4) — Hg. This concludes the proof of the first statement.

The second statement, concerning finite type quivers, follows from Kac’s theo-
rem 3.13; indeed, by a quantum version of the PBW theorem (see Theorem A.16)
for U, (n4) we have for any weight 3

dim U, (0[] = {(na) € N7 [ Y nga = g}|.
On the other hand, by construction

dim Hg[8] =[{M € X5 | dim M = 3}]
=[{(ma) € N @ | N ydim I = 5}

where Indec Cj stands for the set of all indecomposable representations of C_j These
two expressions for graded dimensions are equal if and only if there is precisely one
indecomposable of dimension « for all positive roots o« € A*. This happens if and
only if Q is of finite type. We are done. v

This seems to be the right place to summarize the correspondence between the
category of representations of a quiver @ and the associated Kac-Moody algebra :
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Category C = Repk.@ Kac-Moody Lie algebra g
Grothendieck group K(C) Root lattice Q = @, Zoy;
Symmetrized additive Euler form (, ) Cartan-Killing form (, )
(classes of) simple objects {S;} Simple roots {«;}
(classes of) indecomposable objects Positive root system A*
Hall algebra H 5 Quantum group U, (n4)
Group algebra of K(C) Cartan U, (h)
Extended Hall algebra ﬁ@ Quantum group U, (b’,)
Finite type, tame type, wild type Simple Lie algebra, affine Lie algebra,
the rest (1)

Remarks 3.17. i) The existence of the map ¥ as a morphism of algebras is due to
Ringel [R5], where he also shows that ¥ is an isomorphism for finite type quivers.
The fact that ¥ is also compatible with a comultiplication and a scalar product,
and its rather easy corollary that W is injective, are due to Green [G4].

ii) The image of ¥, i.e. the subalgebra of HQ generated by the simple objects,
is the composition subalgebra CQ~. Lusztig’s theory of canonical bases provides a
geometric characterization of C5 as a subalgebra of H 5 but as this relies on inter-
section cohomology methods it is highly unlikely that there exists any elementary
description of the elements of C G for a general quiver. However, such a description

does exist when Q is tame— see Section 3.7.

iii) There is a version of this result for quivers in which loops are allowed. The cor-
responding Lie algebras are then the so-called generalized, or Borcherds Kac-Moody
algebras —see [KS]. There is also a version of this result for species (or quivers
with automorphisms). This provides a construction of quantum groups for non
necessarily simply laced Kac-Moody algebras.

3.4. PBW bases (finite type).

We assume here that Q is a quiver of finite type, and hence that g is a simple Lie
algebra. As in the previous Section, £ = F, and we set v = q%. By Theorem 3.16,
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there is an isomorphism

v, U, (b)) > Hg

which restricts to an isomorphism

U, : U, (ny) = Hg.

We have added the index v to ¥ because we will soon vary the field k£ and it will be
important for us to remember the value of g. The pullback under ¥, of the natural
basis {[M] | M € Obj(Repr@)} yields a basis {f, as | M € Obj(Repr@)} of the
quantum group U, (ny) specialized at v = v. This basis, usually called the PBW
basis® is a very useful tool in quantum groups theory (see e.g. [L6]). What is crucial
here, and a priori not obvious at all, is that the bases {f, 5s} for different values of
q all come from a same basis of the integral form U (n;) (see Appendix A.4.).
This, as we will see, is more or less equivalent to the existence of Hall polynomials.

Before we proceed, let us make the important remark that when Cj is of finite
type, the set of objects of Repﬁ“@ is independent of the field k. Indeed, by Gabriel’s
Theorem 3.5, it can be canonically identified with the set of maps A*™ — N by giving
the multiplicity of each indecomposable. We denote this set of objects by (9@.

Proposition 3.18 (Ringel). Let Q be a quiver of finite type. Then

i) For each object L € Oy there exists a unique element fr, € Uj* (ny) such
that, for any finite field k = Fq we have (f1),=, = ¥, ' ([L]).

ii) Let M, N, R be objects of OQ' There exists a unique polynomial Pﬁ,N(t) €
Q[t] (independent of the field k), such that for any choice of finite field
k=T, we have

The proof hinges on the following Lemma, which is a byproduct of Auslander-
Reiten theory (see [CB3]).

Lemma 3.19. Let Q be a finite quiver. There exists a total ordering = of the set
of indecomposables (independent of the ground field k) such that
M < N = Hom(N, M) = Ext'(M, N) = {0}.

Moreover, for any indecomposable M, we have Ext'(M, M) = {0} and End(M) =
k.

Example 3.20. Suppose that Cj is the equioriented quiver of type A, of Exam-
ple 3.8. Then

Hom([i,_“’j,li/’,_,j/) = {0} ifi < i/ ori= i/ andj < j/,

Ext'(I; ;1. )={0} ifi>iori=iandj>j.

3strictly speaking, the PBW basis is obtained from {fjs} by a slight renormalization which we
choose to ignore here.
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Example 3.21. Let us now consider the quiver of type D4 of Example 3.9. We
leave it to the reader to check that we may take for < any total ordering refining
the following partial order :

I Iia3 Ii23
I, < I3 < ILg23a< Ti2a < T12sa< 14
Ioy 1334 1334

(the subscript indicates the support of the indecomposable). VAN

Proof of Proposition 3.18 : We will first derive statement i). Clearly, if i € I and
n € N then by (3.2) we have

Ufn(nfl)E(") _ vfn(nfl)ﬁ'
' [n]!
Let us now argue by induction on the dimension vector dim L. Assume that we have

proved the existence of fj; for any M such that dim M < dim L. We distinguish
two cases :

fison) =

Case a) : L has at least two nonisomorphic indecomposable summands. Thus we
may write L = I @ ... @ I®" where r > 1 and I; are indecomposables which
we may as well order in such a way that I; < I if j < h. In particular, we have
Eat'(I;, 1) = {0} if j < h. We claim that, in Hg,

(3.12) L] (127 = IE™ @ - @ 1977] = 4[]

where d = >, njnpdim Hom(I;,I). Indeed, any extension of the IJ@M in
that order is necessarily trivial so that we only have to compute the Hall number
PILl@"l,..‘,I?”W But as Hom(I,, I;) = {0} for any j < r, there is only one submodule

of L isomorphic to I and then only one submodule of L/I®" which is isomor-

I?_”{’l, and so on. Hence P =1 and (3.12) is proved. Observe

@©ny
Il

phic to on
8nr

.....

that d is independent of k. We may therefore set f;, = ’U_deeBnl ---f,en.. Note that
1 T
as r > 1 we have dim I;-B"j < dim L for all j.

Case b) : L = I®" for some indecomposable representation I. Restricting < to the
set of simple objects we get a total ordering such that S; < S; if there exists an
arrow j — i in Q. Let us write all simple objects in this order as {S;,, S, ..., Si,. }.
Let I; = dim(L;) so that dim(L) =, l;e;. We claim that
Dli,, ®liy
(313) [SEm] (55 = 1 STV
N

i1

where d = ) i<h li; 15, (Si;, Siy)a and where N ranges over all representations of Q

of dimension dy, = ), l;¢;. Indeed, since there are no arrows in @ leaving the vertex

i1, any representation N of dimension dj has a unique submodule isomorphic to
®l; . . . ol ®l;

S,7't. Similarly, there is a unique submodule of N/S; 2
1 1 12

so on. Hence

‘1 isomorphic to S and

N 1
®l; ol —
Spo Sy

This proves (3.13). Because there is at most one indecomposable representation of
any given dimension, we may rewrite (3.13) as

[M] = v 4SS - 3]

i1
N
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where N ranges over all representations of dimension dj, which are different from M.
Note that these all have at least two nonisomorphic indecomposable summands :
indeed, the dimension of any indecomposable is a positive root and it is known that
no two positive roots span the same line over Q. Thus, by case a) above, there
exists an element fy with the required properties for each of these N. Hence we
may set

—d Z
ij[ =0 *fsfﬁzim e fsfblil — fN.
m i1 N
This finishes the induction step and concludes the proof of statement i).

We turn to statement ii). Since {f, a/} is a basis of U,(ny), the set {fa/} is
linearly independent. By graded dimensions considerations, we deduce that {fy;}
is a basis of U,(ny) (over C(v)). In particular, for any triple M, N, R of objects
the coefficient of fr in the product f; - fiy is a rational function TI\I/?‘LN(U) € C(v).

We set Pyt () = t_%<M>N>aTﬁN(t%). A priori, this is only a rational function
in t%, but note that by construction we have Pﬁ’ ~(q) € N for any prime power g.

We leave it to the reader to check that this last property in fact forces Pﬁ ~(q) to
belong to QJt]. v

As a consequence of the existence of Hall polynomials, we may, just like in
Lecture 2, define a “universal”, or “generic” version Hc} of the Hall algebra H@,

which is defined over the ring C[tz, ¢ 2].
Definition. The generic Hall algebra of Cj is the algebra
H= P Clt?.t 3]ty
MGOQ

in which the multiplication is defined by

for £y = Ytz MNPl (1),
R

Corollary 3.22. There is an isomorphism of algebras ¥ : U,(ny) = H;, where
v=t3.
Proof. By Proposition 3.18 there is a canonical embedding of C[v,v~!]-algebras
i: Hg < Uy*(ny). Conversely, by definition U} (ny) is generated by the ele-
ments Ez(n) for i € I. As these all belong to i(Hs) we deduce that ¢ is in fact an
isomorphism and we may take for W its inverse. v
The generic extended Hall algebra is defined to be the tensor product

Hj =Hg o Clk; ies

with relations
[kiv kj] =0,

kify k= tz(MSagy,

Of course, a Corollary to the Corollary says that there is an isomorphism ¥ :
U,(b ) = EQ' Thus EC) is a Hopf algebra and there exists “Hall polynomials”
for the comultiplication A or the antipode S. The basis {fa; | M € Oy} is called
the generic PBW basis of UL (ny).
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Remarks 3.23. i) With a little more work, one can show that in fact the Hall
polynomials Pf} y(t) belong to Z[t]. See [R11] for a thorough treatment of these
polynomials (some interesting applications are outlined at the very end of that
paper).

ii) As one can well guess from Example 3.20. for instance, the “homological”
ordering < on the set of indecomposable representations strongly depends on the
orientation of the quiver, i.e. it is not something intrinsic to the root system A™.
Since the PBW basis {fy; | M € OQ} is essentially obtained by multiplying together
following the order =< elements f; corresponding to indecomposables, we see that
the PBW basis of U7¢*(n,) depends on the quiver. Hence, strictly speaking, there
are as many PBW bases of U7°°(ny) as orientations of the Dynkin diagram of g.

3.5. The cyclic quiver.

We spend this Section describing the Hall algebra of the equioriented quiver of
)

n—1 -+

type A

1 2 n—2 n—1

Though this quiver is tame, it is in some sense very close to being of finite type :
the classification of nilpotent modules is independent of the ground field k, and
in particular there are only finitely many representations of any given dimension.
This makes it possible to study not just the composition algebra C g but the whole
Hall algebra HQ. As will become clearer in Sections 3.6, 3.7 and Lecture 4, this
Hall algebra appears in many places and plays an important role in the theory.

We start by classifying all representations of Q Fixie {0,...,n—1}and ! > 1.
Consider a Z-graded vector space V' = EB;-:Hl_l ke;j and define x € End(V') by
z(e;) = ej_1 if j # ¢+ 1—1 and z(ej41—;) = 0. The induced I = Z/nZ-graded
vector space V = @, c; Vi where V), = ®j5h ke;, equipped with the same map
x € End(V) is an indecomposable representation of C_j, which we call Ij;,;;. As will
follow from Proposition 3.24, this is the unique indecomposable of length [ and
socle S;. Clearly Ij;;; only depends on the class of i in Z/nZ.

Proposition 3.24. For any field k, the representations {1y | i € Z/nZ,1 > 1}
form a complete collection of indecomposables.

Proof. Let (V,z) be an indecomposable. As z is nilpotent, Ker = # {0}. Moreover,
since x maps V; — V;_1, the kernel splits as a direct sum

(3.14) Kerz:@(vj N Ker x).

J
By the classification of nilpotent endomorphisms of k-vector spaces (see Theo-
rem 2.1), there exists a basis u1,...,uqgm v over which z is in canonical form,
ie. for which z(u;) € {u;j_1,0}. By (3.14), we may even choose the u;’s to be
homogeneous. The Proposition easily follows. v

Using the above Proposition, we see that the set of objects of Repzil@ is in
canonical bijection with the set TI"™ of n-tuples of partitions (Aq,...,2,), via the
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assignement
o) = BB Ly
iel  j
This set is indeed independent of k. The indivisible imaginary root is § = ag +
ay -+ Qp-1.

Fix k =F, and set v = q%. By Ringel’s Theorem 3.16 there is an embedding
¥:Uy(ng) — Hy
B = [Si] = i)
where ny C g[n is the standard positive nilpotent subalgebra.
The image of ¥ is the composition algebra ch C HQ. Let U’ be the two-sided
ideal of H 5 generated by {[Si] | i € I}, and let R = (U")* be its orthogonal in
H ;5 with respect to Green’s scalar product ( , ). As (, ) is a Hopf pairing, R

is a subcoalgebra (because U’ is an ideal) and a subalgebra (because U’ is also a
coideal). The structure of HQ is given by the next Proposition, proved in [S1] :

Proposition 3.25 (S.). The following hold :
i) As a bialgebra, R is isomorphic to a polynomial ring R ~ C[x1,Xa,...
where deg(x;) =19, and A'(x;) =%, @1+ 1 ® x;.
ii) R is a central subalgebra of HQ and the multiplication map gives an iso-

morphism C5 ® R = Hj.

A detailed analysis of R was made by Hubery in [H6], who obtained the following
remarkable result :

Proposition 3.26 (Hubery). The center of HQ coincides with R. It is generated
by the elements

c, = (_1)TV—2TT7. Z (_1)dim(End(M))aM[M],
McZ,
where Z, is the set of representations M of dimension rd whose socle soc M is
square-free, i.e for which soc M ~ @, Si@"" with n; < 1. These elements satisfy

Ae,) =30 _oCrs @ cCs.

Observe that, by Proposition 3.25 i), R is abstractly isomorphic, as a bialgebra,
to Macdonald’s ring of symmetric functions A = Clxy, 2, ...]%= (see Lecture 2,
Section 2.4.). Using Proposition 3.26 we can make this precise. Consider the
generating function C(z) = 1+ Y, ¢,7". The equation P(z)C(z) = “LC(z) has
unique solution P(z) = Y o, pr2""!. The elements p, are primitive (that is,
A'(p;) = pr ® 1 +1® p,), and they clearly freely generate R. Thus there is a
unique isomorphism

o, RS A

pr — (1 o Vf2nr)

Pr

where p, is the power sum symmetric function. This generalizes the map ® (or
more precisely the map ®,)) of Section 2.4 which corresponds to the degenerate
case n = 1. We may view the rings R (for n € N) as another realization of A. Just
as in Lecture 2, one may wonder what the restriction of Green’s scalar product to
R, transported to A via ®,,, is. This turns out to bring nothing new :
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Proposition 3.27 (Hubery). The pullback under ®,, of Green’s scalar product on
R is the Hall-Littlewood scalar product given by

{z,yz} ={A'(2),y ® 2},

r

(315) {pT7ps} = 57“,3 q — 1

To finish, let us indicate a second decomposition of HQ, as a noncommutative

product this time. Let C be the full subcategory of Repké consisting of those
representatiions (V,z) for which z; : V; — V;_; is an isomorphism for all i # 1.
In other words, objects of C are all direct sums ofindecomposables of the form
Ijg;ny) for some [ > 1. It is clear that C is an abelian subcategory closed under

extensions, and which is equivalent to Repkéo where Cjo is the Jordan quiver.
Thus by Corollary 1.16 there is an embedding of algebras

0,:H= HQO — HQ
()] [@ I[O;Mjﬂ
J

Let K C HQ be the image of this embedding. The subalgebras CQ and K do not
commute. However,

Proposition 3.28 (S., [S3]). The multiplication map defines an isomorphism of
vector spaces K ® CQ = H@,

Remarks 3.29. i) There exists Hall polynomials for the cyclic quiver —see [R12].
ii) There is, to my knowledge, no completely elementary description of the elements
of the composition subalgebra C 6 C HQ.

iii) The decomposition HQ ] CQ ® R where R is a central polynomial ring exists
in fact for all tame quivers, as was shown (independently of [S1]) by Hua and Xiao
[HX]. Of course in this case the structure of R, i.e. the number of generators per
degree, depends on the ground field k.

iv) One might ask what the structure of HQ is, for an arbitrary quiver. By a
theorem of Sevenhant and Van den Bergh (see [SVdB2)), it is always a quantum
group associated to a Borcherds algebra (usually of infinite rank). The precise
determination of that Borcherds algebra is however still very much an open problem.

3.6. Structure theory for tame quivers.

We collect in this Section several results concerning the category Repk@ when Cj
is a tame quiver. This is necessary before we can describe the exact structure of the
composition subalgebra C5 C Hj (see Section 3.7.). This will also be important
for the next Lecture.

Throughout this Section we fix a tame quiver Cj which is not a cyclic quiver and
an arbitrary field k. Hence the categories Repké and RepZ“Q coincide. Proofs
of the assertions made below can be found in [CB3]. The fundamental tool to use
here is the following
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Theorem 3.30 (Auslander-Reiten). There exists a unique pair of adjoint functors
7,7 : Repr@Q — ReprQ equipped with natural isomorphisms

Ext'(M,N)* ~ Hom(N, M)
Ext'(M,N)* ~ Hom(r~ N, M).

Such pairs of adjoint functors are now called Serre functors in general, and
appear to be a very powerful tool for commutative or noncommutative algebraic
geometry (see [BK]). In the case of hereditary algebras they were invented by
Auslander and Reiten and are known as Auslander-Reiten translations.

Obviously, 7M = 0 if and only if M is projective while 7= N = 0 if and only if
N is injective. In addition, if M, M’ are non zero then (tM = M') & (1M’ =
M). This means that 7,7~ are inverse bijections between non-projective and non-
injective objects in Repké.

An indecomposable representation M is called :
- preprojective if 7'M = 0 for i > 0,
- preinjective if 77°M =0 for i > 0,
- regular if 7°M # 0 for i € Z.

Let P,Z, R denote the set of preprojective, preinjective or regular indecompos-
ables respectively. Though it is not obvious from the definitions, the sets P and
T are disjoint (recall that Cj is tame). Clearly, the AR translations 7,7~ preserve
each of the sets P,Z,R. Call a module preprojective if all of its indecomposable
summands are preprojective, and let P denote the full category of Reka consisting
of preprojective modules. The categories I, R are defined in a similar manner.

Proposition 3.31. The categories P and I are exact and stable under extensions.
The categoryR is abelian and stable under extensions. In addition, if M € P, N €1
and L € R then

(3.16) Hom(N,M) = Hom(N,L) = Hom(L,M) = {0}
(3.17) Ext'(M,N) = Ext'(L,N) = Ext'(M, L) = {0}

Let us draw a picture of the indecomposables as follows

- < = -

where the projective {P(i) | i € I'} are on the extreme left, followed by the modules
{r7P(i) | i € I}, etc..; the injectives {I(i) | ¢ € I} are on the extreme right,
then {71(i) | i € I}, etc..; the regular modules are put in the middle. The above
Proposition says that morphisms go from left to right, whereas extensions go from
right to left.

Let us now proceed to describe completely the structure of the regular indecom-
posables. Call such a module simple if it contains no nontrivial regular submodule,
and call it homogeneous if TM ~ M. If M is simple then ky; = End(M) is a field
extension of k; the degree of M is the index [kps : k].
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Any regular module M € R has a composition series whose factors are regu-
lar simples. Conversely, given regular simple modules Mj,..., M, we denote by
Cu,,...,m, the subcategory of R consisting of modules with a composition series
whose factors all belong to {My, ..., M,}.

Proposition 3.32. The following hold :

i) If M is simple homogeneous then dim M = [kas : k]§ and Cpr is equivalent to the
category of nilpotent representations of the Jordan quiver over k.

1t) If M is non-homogeneous then kjy; = k and there exists an integer r > 0 such that
T"M ~ M, 7°M % M for 0 < s < r. Moreover we have Zg;é@ T°M = ¢ and
the category Cpr a1, 771 0 08 equivalent to the category of milpotent representations
of the cyclic quiver of length r, over k.

Of course, under the equivalence in statement i) above the object M goes to
the simple object S (see Lecture 2), while under the equivalence in ii), the simple
objects M,7M,...,7""1M are mapped to the simple objects Sy, Ss,...,5, (see
Section 3.5.).

Before stating the main structure Theorem for the category R, let us recall that
a closed point x of P! over a field k is nothing but a homogeneous maximal ideal
m, of the graded ring k[Xo, X;], and that the degree of x is simply the index
[k[X1, Xa]/m, : k] (hence the usual points of P!(k) correspond to closed points of
degree one).

Theorem 3.33 (Ringel). Let d and p1,...,pq be attached to Q as in the table
(3.18) below. Then

i) There is a degree-preserving bijection M, < x between the set of homoge-
neous reqular simple modules and closed points of P1\D where D consists
of d points of degree one.

i) There are exactly d T-orbits O1,...,Oq4 of non-homogeneous regqular simple
modules, and they are of size p1,...,pq respectively.

iii) The whole category R decomposes as a direct sum of orthogonal blocks

R= H C]ww X H C(gl.
1=1,....d

x€P\D

type ofé d D1y Pd
ALY
(3.18) AS), n>1 2 p1 = #arrowg going clockwise .
p2 = Farrows going counterclockwise
DV 3 2.2.n—2
EY n=6,78]3 2,3,n—3

The subcategories Cps, and Cp, are called homogeneous and non-homogeneous
tubes respectively.

The values of d and p1, ..., pgq can in fact be read off quite simply from the finite
Dynkin diagram of same type as (). Note that these are all shaped as “stars” with
a central vertex out of which some branches are coming; d is simply the number of
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such branches, and p, ..., pg are their respective lengths (there is an ambiguity in
type A, and one has to be more careful there ).

Example 3.34. Let us consider again the Kronecker quiver of Example 3.11. of
which we keep the notations :

0
(] , ( ]

0 1
The indecomposable is always regular, simple and homogeneous. When k
is not algebraically closed, there are also higher-order regular simples (see [R10]).

—

Hence, all together, the category Repy(Q) looks like this :

I(g/\“u)

PO) T-P0O) __ L - - 71(0) 1(0)
[ ) [} Q [ ) [ ]
A/ A SRl WAV
Py —P() S e~ S (L)

M‘r DR DR 1‘/

For simplicity, only the regular modules generated by simples of degree one have
been drawn in the above picture, but it is important to keep in mind that when k&
is not algebraically closed, there are infinitely many homogeneous tubes of regular
indecomposables which start in degrees 1§, [ > 1. Also, following custom, we drew

dim(M, M') arrows between neighboring indecomposables M and M’.
VAN

Example 3.35. Let Cj be the quiver of type Dfll) of Example 3.12. :

1 4

The indecomposable I y“’)‘l’)‘:")“‘) is always regular. It is simple if and only if

Ao, A1, A3, Ay are all distinct, in which case it is also homogeneous. The others,
which are not simple, belong to the three non-homogeneous tubes generated by the
T-orbits {11237 1024}, {1124, 1023}, {1012, 1234}. Compare with the picture (31)

A

3.7. The composition algebra of a tame quiver.

To finish off this Lecture, we proceed to describe as precisely as possible, following
Zhang [Z2] and Hubery [H7], the elements of the composition algebra C 5 of a tame

quiver Q We assume here again that Cj is not a cyclic quiver. The ground field
is k = Fy and as usual v = q2. We will freely use the no(ta)tions of the previous
Section.

We start by observing the following important fact. Let Hp, Hg, Hy be the Hall
algebras of the exact categories P, R and . As all of these categories are stable under



LECTURES ON HALL ALGEBRAS 51

extensions, Corollary 1.17 gives us natural algebra embeddings Hp — HQ, Hr —
HQ and Hy — H@. The categories Cp,,...,Co, generated by non-homogeneous
regular simple representations are all abelian and also closed under extensions.
Thus we have embeddings H; := HCoi — Hp — HQ. By Proposition 3.32 ii), H;
is isomorphic to the Hall algebra of the cyclic quiver studied in Section 3.5. The
composition subalgebra of H; will be denoted C;.

Lemma 3.36. The multiplication map induces an isomorphism of vector spaces
Hp ® Hr ® Hj ZHQ.

Proof. Any object M of Repké decomposes as a direct sum M = Mp & Mg & My
of a preprojective, regular, and preinjective module. We claim that

(3.20) [Mp] - [Mg] - [M;] = v*[M]

where e = (Mp, Mg)o + (Mp, M)y + (Mg, M1),. First note that by Proposi-
tion 3.31 any extension of Mp, Mg, M; in this order is trivial, so that the only mod-
ule appearing in the product is [M]. Furthermore, since Hom(M;, Mp®Mp) = {0}
and Hom(Mpg, Mp) = {0}, there is a unique filtration 0 C L; C Ly C M
satisfying Ly ~ Mj,Lo/Ly ~ Mpr and M/Ls ~ Mp. Thus the Hall number
Py} apo, 18 equal to 1 and (3.20) follows. From this it is easy to deduce that
m: Hp ® Hg ® H — HQ is both injective and surjective. v

The composition algebra CQ turns out to be itself compatible with the above
triangular decomposition. This will be a consequence of the fact that it is stable
under the old coproduct map A’, as the proof of the next Proposition shows. Set
Cp = CQ N Hp and define Cg, Cj in a similar fashion.

Proposition 3.37 (Zhang). The multiplication map induces an isomorphism of
vector spaces Cp @ Cr ® Cy ~ CQ.

Proof. Set Crgr = CQ N Hrgr. We start by showing that CQ = Cp - Cpgy. Fix
T € CQ and decompose it as a sum

(321) T = Z‘raiﬁm Ta;,B; € (H]P’[al]) ’ (HR@H[ﬂZ])

In the above, «;, 3; are dimension vectors satisfying a; + 3; = deg(x), and A[]
indicates the component of the algebra A of degree . We will prove by descending
induction on «; that z,, g, € Hp - Crer. Let ¢ be such that «; is maximal, and let
us consider the component Af,, 5 (x) of A’(x) which lands in (Hg[as]) @ (Hg[8:]).
As Cg is generated by the simples {[S;]} and as A'([S;]) = [S;] @ 1 +1® [S)],
the composition algebra C@ is stable under the coproduct, and thus A) 5 () lies
in (Cglai]) ® (CylB:]). Write za,,5, = 3°,[F/] - up: where P/ is preprojective and
upi € Hrgr. Let 7: HQ ® H@ — Hp® HQ stand for the natural projection (with
respect to the defining basis {[M] | M € Obj(Repr@)}). We claim that

(322) m™o A:xi,ﬁi (xaiﬁz‘) = Z[‘Plz] ® Upy-

1
Indeed, if 7o Af, 5 ([M]) # 0 then there exists a projection M — P for some
preprojective module P of dimension «;. By Proposition 3.31, this implies that the
preprojective component of M is of dimension at least a;. Since by our assumption
a; was chosen to be maximal among all dimensions appearing in (3.21), we deduce
the first equality of (3.22). As for the second equality, it follows from the definition
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of A’ and the fact that any module of the form P & T with P preprojective and T’
in R @ I has a unique submodule isomorphic to T'. As a consequence, we have
ups = ([P @ )AL, . (2) € ([P ©1)- C4© Cg € Cg

and hence u pi € Cregr. This proves the first step of the induction. Next, fix j and
assume that z,, g, € Hp - Crer for any ¢ for which o; > aj. Let us write as before
Ta, 8, = > 1B 9] P where Pl] is preprojective and Upi € Hpggr, and consider
again 7 o Af% ﬁj( x). ThlS time, we have, using Pr0p051t10n 3.31
WOA:)Q,ﬁj( ) Z[ ®U,P; + Z ZAa],al—aJ P}i])(l®uP}’L)
o>
Hence,
(P} @ 1)mo A 5 (x)
_uPJ+ Z Z PJ ®1 ocJ aL—aJ([P}i])'(l(@uPi)'
;>0

By the induction hypothesis u pi € Cregr hence
uPK (S (CQ‘ + Hp - C]REB]I) N HREB]I = CQ’ M HREB]I = CR@]{

as desired. This concludes the induction step and proves that C@ C Hp - Crg.-
An absolutely symmetrical argument, based on a descending induction on (; this
time, shows that CQ~ C Cp - Hgrg1. But then

CQ’ - (C]p : H]RGBH) N (H]p . CR@H) = Cp - Cprgr.

Finally, we may repeat the same argument again for Cggy in place of CQ to obtain
the inclusion Crgr C Cg - Cp. This yields the inclusion CQ C Cp-Cgr - Cyq. The
reverse inclusion is obvious. We are done. v

The hard part is now to determine Cp, Cg and Cj. The following Proposition
takes care of a little over two-thirds of the problem.

Proposition 3.38 (Zhang). We have Cp = Hp and C; = Hy. Moreover, C; C Cg
fori=1,...,d.

To complete the description of Cg, we need to introduce a few more notations.
Recall from Theorem 3.33 that R decomposes as a direct sum of categories C, =~

Repy, @0 and Co, ~ RepkA(l_) where x ranges over all closed points of P1\ D, C_jo

pi—1)
is the Jordan quiver, and ¢ = 1,...,d. As a consequence,
= & He, o QHe,
z€PI\D

For x € P'\D let ®;!: A = He, be the isomorphism constructed in Section 2.4.
(with ground field equal to k), and for ¢ = 1,...,d let @;1 be the composition
A S5 H S K where K C He,, is defined in Section 3.5 (strictly speaking, the
definition of K presupposes the choice of a distinguished simple object in Cop,,
corresponding to the vertex labelled 1; the results here do not depend on such a
choice).

Now, for r > 1, put

T — [:*]deg(z)éb;l(l)m) if deg(x)|r,
o 0 otherwise
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[r] 1
Tr,i = 7¢z (pr)a

and T, = >  Tro + > ,Tr;. Note that deg(T,) = rd. Let K’ C Hg be the
subalgebra generated by T, Ty, . ... It is clear that K’ ~ C[T}, T5,. . .].

Proposition 3.39 (Hubery). The following hold
i) The algebra K’ belongs to Cr. Moreover the multiplication map induces an
isomorphism of vector spaces K' @ @, C; = Cg.
ii) The center Z of Cg is isomorphic to K' and the multiplication map gives
an isomorphism Z @ @, C; = Cg.

Example 3.40. Let Q be the Kronecker quiver

-
s

0
Then, as an easy computation shows,

V2[S1] - [Sa] = [Sa] - [S1] = > [IF].

z€P (k)

Thus we see that the average over all regular indecomposables of degree one belongs
to Cg. This is simply 77 in the notation above. The T,.’s for » > 2 may also be
obtained as (more complicated) commutators. A

Remarks 3.41. i) As was recently showed by Hubery in [H9], Hall polynomials
exist for any tame quiver.

ii) The proof of Proposition 3.37 may be applied verbatim to obtain the following
general statement :

Proposition 3.42. Let A be a finitary hereditary category satisfying the finite sub-
object condition, and let T = I, - - -UZ, be a partition of the set of indecomposables
of A satisfying Hom(Z;,Z;) = Ext"(Z;,Z;) = {0} if i > j. Let C be a subalgebra
of Hy stable under the map A. Then the multiplication induces an isomorphism
C,® - ®C, > C, where C; = CNHy, and A; is the additive subcategory of A
generated by I;.
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Lecture 4.

In this Lecture we momentarily forget about quivers to turn our attention to
another very natural class of hereditary categories, namely the categories of co-
herent sheaves on smooth projective curves X. The category Coh(X) is never of
finite type (i.e. there always are infinitely many indecomposables objects) and is
tame if and only if X is of genus zero (i.e. X ~ P'), or of genus one (i.e. X is an
elliptic curve). Inspired by some problems in number theory, Kapranov studied in
the deep paper [K2] the Hall algebra Hx := Hgop(x) (or more precisely a certain
“composition subalgebra” Cx C Hx) and observed some strong analogies with
quantum loop algebras. This becomes a precise theorem when X = P!, in which
case the composition algebra Cx turns out to be a certain subalgebra of U, (;[2)

In [S3], Kapranov’s Theorem was generalized to the case of Lenzing’s weighted
projective lines X, y» which may be viewed as noncommutative, or orbifold, pro-
jective lines, and which form a very natural and important class of hereditary
categories. The Hall algebras are now related to quantum groups associated to
loop algebras of Kac-Moody algebras. The categories Coh(X, ) themselves are still
quite mysterious. In fact, the classification of (classes) of indecomposables (i.e.
the analogue of Kac’s Theorem 3.13) was only proved recently by Crawley-Boevey
[CB2].

After describing Kapranov’s fundamental results in the case of P! and the notion
of a weighted projective line X, , we state in this Lecture the main Theorems of
[CB2] and [S3] concerning the structure of C'oh(X, ,) and its Hall algebra, paying
special attention to the cases when X, y is of genus at most one. Motivated by this,
we then describe, following the joint work of I. Burban and the author [BS1], the
Hall algebra of an elliptic curve. In the last section we compile what is known and
expected of Hall algebras in higher genus. Appendices A.5. and A.6. contain all

the necessary properties of loop algebras and their quantum groups.

4.1. Generalities on coherent sheaves.

For the notion of a coherent sheaf on an algebraic variety, we refer to [H3]. We just
recall here a few basic facts; this will also be useful for comparing with weighted
projective lines. Let X be a smooth projective variety defined over a field k£ which
will be either C or a finite field.

A torsion sheaf on X is a sheaf whose support is a finite set of points. The
notion of a locally free sheaf on X is equivalent to the notion of a vector bundle
E — X. As usual, O stands for the structure sheaf on X (the trivial line bundle).
The category Coh(X) of coherent sheaves on X, contrary to the category Vec(X)
of vector bundles, is abelian (in fact, Vec(X) is an exact subcategory of Coh(X)).
By a theorem of Serre, when X is smooth we have gldim(Coh(X)) = dim(X), and
when X is projective

dim(Ext*(F,G)) < oo, VYV F,G e Coh(X).

Hence Coh(X) is a finitary hereditary category if and only if X is a smooth pro-
jective curve defined over a finite field £ = F,. Under this hypothesis which we
henceforth make, any sheaf F has a canonical (maximal) torsion subsheaf 7 C F
and canonical quotient vector bundle ¥V = F /7. Moreover the exact sequence

0 T F 1% 0

splits; that is, any sheaf can be decomposed as a direct sum F =V 7.
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Let Tor(X) stand for the (abelian) full subcategory of Coh(X) consisting of
torsion sheaves. It decomposes as a direct product of blocks

Tor(X) = H Tor,
zeX
where x ranges over the set of closed points of X and Tor, is the category of torsion
sheaves supported at x. This last category is equivalent to the category of finite-
dimensional modules over the local ring O®) at z which, by the smoothness of X,
is a discrete valuation ring. Thus, in the end, Tor, is equivalent to the category

Repziléo of nilpotent representations of the Jordan quiver over the residue field

k, = O®) /m®) In particular, there is a unique simple sheaf O, supported at .

The rank of a coherent sheaf F is the rank of its canonical quotient vector bundle
V. The degree of a sheaf is the only invariant satisfying deg(O) = 0, deg(O,) =
deg(x) = [k, : k] and which is additive on short exact sequences (i.e. which factors
through the Grothendieck group K (Coh(X))).

To finish, let us state some important homological properties of Coh(X). Let
wx stand for the line bundle of differential forms. The exact functor Coh(X) —
Coh(X), -+ -®@wy is a Serre functor® | that is there are natural isomorphisms

(4.1) Ext'(F,G)* ~ Hom(G, F @ wx).
One consequence of this is that for any 7 € Tor(X) and V € Vec(X) one has
(4.2) Hom(T,V) = Ext'(V,T) = {0}.

In particular, Ext'(O,, 0) ~ k%9 for any closed point x of X, and there is a
unique line bundle extension of O, by O, which is denoted by O(z).

4.2. The category Coh(P!).

Everything concerning C'oh(X) becomes very explicit when X = P!. Recall that
the homogeneous coordinate ring of P! is the Z-graded ring S = k[X7, X3] where
deg(X1) = deg(X3) = 1. Hence a closed point x of P! is simply a maximal (homo-
geneous) ideal m, of S. To any finitely generated graded S-module M = &, M;
is associated a coherent sheaf M. The resulting functor™ : S—Modgr — Coh(P!)
is, however, not an equivalence. Let S—F'in be the full subcategory of S—Modgr
consisting of finite-dimensional graded modules. This is a Serre subcategory, i.e. it
is abelian, stable under extensions, subobjects and quotients.

Theorem 4.1 (Serre). The functor™ induces an equivalence of categories
S—Modgr/S—Fin = Coh(P')
(where the quotient category is defined in the sense of Serre, see e.g. [G2]).
In more plain terms, Serre’s Theorem states that two graded S-modules M and

N give rise to isomorphic coherent sheaves if there is an isomorphism (of graded
S-modules) M, = @,s, M; ~ N>, := @,~,, N; for n > 0. Similarly, we have

i>n i>n
(4.3) Homeop@y(M,N™) = Lim Homg(M>y, N).

The first important result concerning the category Coh(PP!) is the following one :

4actually to be precise the Serre functor is the autoequivalence of the derived category given
by - — - ® wx[1]. Without the shift [1], the functor is called the Auslander-Reiten translate.
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Theorem 4.2 (Grothendieck, [G5]). Any indecomposable vector bundle is a line
bundle. Two line bundles are isomorphic if and only if they have the same degree.

For d € Z we will denote by O(d) the (unique) line bundle of degree d. We have
O(d) = S[d]"; where S[d] is the dth shift of the trivial module S, i.e. S[d]; := S;+4.
If F is any coherent sheaf we set F(d) = F ® O(d). An easy consequence of
Grothendieck’s Theorem is

Corollary 4.3. We have K(Coh(P')) = Z?. The class of a sheaf F is given by
the pair (rank(F),deg(F)).

Proof. Let x,y be any two closed points of degree one, the extensions

0 @) O(z) (@ 0

0 @ O(y) O, 0

show that, in K (Coh(P')), we have O + O, = O(z) = O(1) = O(y) = O + O, so
that O, = O,. The same argument shows that O, = deg(x)@ and finally that

T = deg(T)O for any torsion sheaf. But then F = rank(F)O + deg(F)O,, and
we are done. v

The Euler form on K (Coh(P')) is now also easy to compute. Since

Hom(O(n), O(m)) = {}E?n}_nﬂ = m

ifn<m
and since wy = O(2), we deduce (using (4.1) that
Hom(0,0) = Hom(0O,,0,) = Hom(0,0,) = k, Hom(0,,0) = {0}
Ext'(0,0) = Ext'(0,0,) = {0},  FEat'(0,,0) = Ext(Ox, O,) = k.
Therefore
(4.4) (F,G)q = rank(F) (rank‘(g) + deg(g)) — deg(F)rank(G),
and (F,G)q = 2rank(F)rank(G).
As first observed by Kapranov, we may summarize all this in the following man-

ner. Let g = s be the affine Lie algebra associated to sly, and let Q Zo® 7.6
be its root lattice (see Appendix A.3.).

Corollary 4.4. The map

K(Coh(PY)) — Q

F — rank(F)a + deg(F)6§

is an isomorphism of Z-modules. It sends the symmetrized Euler form (, )q to the
Cartan-Killing form (, ) on Q. Under the identification by p, the set of classes of
indecomposable sheaves is the nonstandard set of positive roots
(4.5) o, ={a+nd|neZu{nd|n>0}
Moreover,

i) if B € @4 is real then there exists a unique indecomposable sheaf F of class

B,
ii) If 3 € ®, is imaginary then there exists a P -family of indecomposable
sheaves of class (3.
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To finish with the presentations, let us draw a picture of Coh(P!), similar to the
ones appearing in Section 3.6. for tame quivers. We plot one point for each in-
decomposable and draw dim(F, F’) arrows between neighboring indecomposables.
We use the homological ordering, that is, morphisms go from left to right while
extensions go from right to left.

(4.6)

- - O(;3) 0(-1) 01) O@)
SERAVAVAY A
o2 0 0O© - - <
Oy i . O

For clarity, only the subcategories T'or, with deg(x) = 1 have been drawn.

4.3. The Hall algebra of Coh(P!).

The ressemblance between Corollary 4.4 and Kac’s Theorem 3.13 will certainly not
have escaped the reader’s sagacity. At this point it seems natural to expect that
the Hall algebra Hp: is closely related to the quantum group U, (sly). This is the
content of Kapranov’s Theorem, which we will soon state. Before this, let us work
as usual through some sample computations of Hall numbers. Set k = F, and put

v = q%. The Hall algebra of Coh(P!) over k will simply be denoted Hps .

Example 4.5. Since Tor(P!) is an abelian subcategory of Coh(P!) which is closed
under extensions, there is an natural embedding of Hall algebras Hyop.(p1) <= Hp1
(see Corollary 1.16). Moreover, because Tor(P') decomposes as a direct prod-
uct Hmeﬂ”l Tory, there is an isomorphism Hr,,.p1) > ®er?1 Hyr,,,. Finally, each
Hr,,, is isomorphic to a classical Hall algebra (with respect to the ground field

ks ).
A

Example 4.6. Assume that F,G are two sheaves such that Hom(G,F) = {0}.
Then by Serre duality
Ext'(F,G)* ~ Hom(G(2), F) ~ Hom(G, F(—2)) = {0}
since there is a canonical embedding F(—2) — F. We deduce that
[F] - g] = ptim HomED[F & g]

(indeed, any extension is trivial since Ext'(F,G) = {0} and there is a unique
subsheaf of F @& G isomorphic to G since Hom(G, F) = {0}). We may apply this
to the following situations : we have Hom(O(n),O(m)) = {0} if n > m, and
Hom(T,V) = {0} if T is a torsion sheaf and V is a vector bundle. Hence

47)  [0(m)]---[O(n,)] = p2=ics dim Hom(©@) 00D [O(n)) & - - @ O(n,)]
if ny <ng---<n,; and
(4.8) V] - [T] = vdim HomV Dy ¢ T = vV @ 7|

if V is a vector bundle of rank r and 7 is a torsion sheaf of degree d.
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Example 4.7. Let d € N and let us set

las = Z 7]

T=(0,1)

where the sum ranges over all torsion sheaves of degree d. To compute the product
145 - [O(n)] we first note that any extension between a torsion sheaf of degree d and
O(n) is of the form O(n+s)® 7T’ for some torsion sheaf 7’ of degree d —s. Next, a
map ¢ : O(n) — O(n+d—s)® T’ is injective if and only if Im ¢ ¢ 7', and such a
map has a cokernel which is a torsion sheaf of degree d. There are, up to a scalar,
(qlstDH(d=s) _gd=s) /(g —1) = ¢?5[s 4 1], such maps. Thus, all in all, we obtain

d
L [0m] = v 1Y Y s 1,0 +5) 6 T
5:0?:(0,(1—5)

(4.9) vils+1] Y [0+ s)@ T

T'=(0,d—s)

M= 1=

[s + 1[O(n +5)] - La—s)s

@
I
o

A

Example 4.8. As a final example, let us compute the product [O(n)]-[O(m)] when
n > m. Since any extension of O(m) by O(n) is of the form O(m + s) @ O(n — s)
for some 0 < s < (n —m)/2, we have

Ln—zm,

O@m)] - [O(m)] = ™17 3 PO (0(m 4 5) & O(n — 5).

In order to calculate the Hall number Pg((gzs()g)o ("=%) Wwe need only count the

number of nonzero maps ¢ : O(m) — O(n—s) @ O(m+ s) whose cokernel is locally
free; indeed any such map is injective and by Grothendieck’s Theorem 4.2 any line
bundle of degree n is isomorphic to O(n). Let us write ¢ = ¢1 @ ¢ with

@1 € Hom(O(m),O(m + s)) ~ Lim Homg(S[m]>;, Sim + s]) ~ k[X1, Xo]s,

¢p2 € Hom(O(m),O(n — s)) ~ Lim Homg(S[m]>i, S[n — s]) ~ k[X1, Xo|n—s—m.

Thus we may view the maps ¢i, ¢2 as homogeneous polynomials in k[X7, Xa] of
degrees s and n — s — m respectively. For Im ¢ to be a vector subbundle, i.e. for
Coker ¢ to be a vector bundle it is necessary and sufficient that ¢; and ¢y be
relatively prime. Indeed, the support of the torsion sheaf Coker ¢; for i = 1,2 is
the set of homogeneous prime factors of ¢; and I'm ¢ is a subbundle if and only if
these two supports do not intersect.

Claim ([BK]). Let a;,, stand for the number of pairs of coprime homogeneous
polynomials (P, Q) in k[X7, Xa| of respective degrees ¢ and w. Then

(q—1D)(¢"rv 1 —1)  ift=00rw=0,
Qg =
b (g —1)(¢®> = 1)g"™™=1 ift >1and w > 1.

Proof. Let by, + stand for the number of pairs of homogeneous polynomials (R, T)
in k[X1, Xs] of degrees t and w. We have b;,, = (¢ — 1)(¢¥™* — 1) while on
the other hand we may write any such pair as (R,T) = (DP, DQ) where D is a
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polynomial of degree, say, s, and (P, Q) are coprime of degrees t — s and w — s. As
D is well-defined up to a scalar, we deduce that

qs+1 -1
bw,t = Z (]—71%_8’1”_3'

s<min(t,w)
The claim follows by an induction on min(¢, w). v

Thus, putting everything together we get
(4.10)

n

£
> v 2 -1)[0(mA-s) @O (n—s)].

L
[O)]-[0(m)] = v~ 2 [O(m)@O(n)]+
A

We now turn to Kapranov’s Theorem. Let us regard the Lie algebra sly not as a
Kac-Moody algebra but rather as the loop algebra Lsly of sly (see Appendix A.5.
for the definition of the loop algebra of a Kac-Moody algebra). Let Lby C Lslo
be the positive Borel subalgebra associated to the set of nonstandard weights ®
defined in (4.5). Let U,(Lsly) be the quantum loop algebra of sly, and let U, (Lb)
be the positive Borel subalgebra of U,(Lsly) (see Appendix A.6.). Thus U, (Lb,)
is generated by elements F; for | € Z, H,, for n € Z* and K*', C*'/2 modulo the
relations

(4.11) CF1/2 is central

(4.12) (K, H,] = [Hy,, H] =0,

(4.13) KEL,K™! = v?Fy,

(4.14) [H, E}] = %[21]0—‘”/215,“[,

(4.15) By 1B — v*EiEyy = v EyEj 1 — Eip 1 Ey.

We let U, (Lby) be the specialization at v = v of U,(Lby). Recall that for
all closed points € P! there is an isomorphism L) LA S Hr,-, where A is
Macdonald’s ring of symmetric functions (see Lecture 2). Here, if z is of degree
deg(x) > 1, we view Hr,,, as the classical Hall algebra over the ground field k = k.
For r > 1, put

T, — [:*-]dEQ(I)d’;I(Pﬁm) if deg(x)|r,
o 0 otherwise

and T, = 3 T).,. Note that deg(T,.) = rd.

The following Theorem was stated (and a sketch of a proof was given) in [K2].
A detailed proof first appeared in [BK]. Let us slightly extend the Hall algebra Hp:
by adding a square root k}s/2 of ks and let us denote by Hp, = Hps Bcpe!) C[kgﬂm}

the resulting bialgebra.

Theorem 4.9 (Kapranov, [K2]). The assignement E; — [O(1)] forl € Z, H, —
Trk;‘rl/2 forr>1, K — ko and CY/? — k};/2 extends to an embedding of algebras

‘1/ . U,/([,b_t,_) — ﬁfm
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Proof. Relation (4.11) is obvious since 0 is an isotropic root (i.e. (4, ), = 0 for any
weight «). Relation (4.12) comes from the fact that H, is of weight nd, that the
classical Hall algebra is commutative and that of course the Hall algebras Hr,,.,
and Hr,, associated to distinct points z and y commute. Relation (4.13) follows
from the definitions. Thus (4.14) and (4.15) are the only relations for which one
has to work. We begin with the following Lemma :

Lemma 4.10. We have 1+ ) o, 155" = exp(d_, 5, %sr),

Proof. Since Hr,,,, is commutative, we have

TT’ r Tr.m r
eo:p(z ms )= H 6xp(z [r] s").

r>1 zeP! r>1

Since on the other hand 1 + 27?1 158" = [[pep (1 + EQl 1,5,5"), where

1r6,m == Z [f]a

FeTor,
F=(0,r)

it suffices to show that exp(3_, -, [;]T s") = 14,5 Lrses”. This is in turn a
consequence of the following identity in the ring of symmetric functions A :

p
1+ Z h.s" = e:cp(z %sr),
r>1 r>1

where h, is the complete symmetric function. v

With a little algebraic manipulation, we may rewite the formula (4.9) as
1
(1= =)
olO(r)]t". We have, by Lemma 4.10,
6),

(4.16) 1(s)O(t) = O(t)1(s)

where 1(s)

log(1(s)) = >,

(4.17) [T(5), (1)) = ~O(1)log (1 — )1~ ),

14>+, 158 and O(t) =
>1 [T— =: T(s). Thus, by (4

r>
1

which with a little effort may be rewritten as

L om) = T 0m + 1),

[r] r

17, 10 = 2200 + ).

Relation (4.14) follows. The last relation (4.15) is a consequence of formula (4.10).
We have proved that there indeed exists an algebra homomorphism

\I/ . U,/([:b_t,_) — ﬁfpl

To show that this map is injective, we will use a graded dimension argument.

Let U,(¢) be the subalgebra of U,(Lb,) generated by Ej,I > 0 and H,,n > 1.

Thus U,(c) is a deformation of the enveloping algebra U(c) of the subalgebra
= (n®CJt])) @ (h ® tCJt]) C Lb. Note that U(c) has finite-dimensional weight

spaces. By the PBW Theorem, we have

(4.18)

dim U(c)[ka + 16]

= #{(no,nl,...),(ml,mg,...) ‘ ng, m; € N, an = k, Z(Z’ﬂz +2m,) = l} .
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The same holds for U, (c). By construction, ¥(U,(c)) contains the elements [O(1)]
for I > 0 and the elements 1,5 for n > 1. Hence it also contains all the (finite)
products

[OO)]™ - [OM)]™ - 112

By Example 4.6., all these products are linearly independent, and of weight A =
>-oni)a+ (O in; + im;)d. Comparing with (4.18), we deduce that

dim ¥ (U, (¢))[ka + 18] > dim U, (¢)[ka + 16],

whence the two dimensions are equal and the restriction of ¥ to U, (¢) is injective.
To finish the proof, we use the following fact. There is an automorphism 7 of
U, (Lby) such that 7(E;) = Ejq1, 7(Hy) = Hyy1 and 7(C) = C,7(K) = K. There
is a similar automorphism 7’ of ITII’FDl induced by the self-equivalence of categories
F — F(1). It is easy to check from the definition of ¥ that ¥ o7 = 7’ o U. Now,
any element x of U, (£b,) may be written as z = yK°C?, with y belonging to the
subalgebra U, (Ln, ) generated by E; for | € Z and H,, for n € N. In particular,
there exists m > 0 such that 7™(y) € U,(¢). But then (7')"¥(z) = ¥(r™(x)) =
(7™ (y))Kaa+bs 7# 0. Thus ¥ is injective, and Theorem 4.9 is proved. v

As Coh(P!) is hereditary, its Hall algebra Hp: has a bialgebra structure. How-
ever, because the finite subobjects condition (1.11) obviously fails, this is only a
topological bialgebra structure. Let us see what this coproduct looks like.

Example 4.11. The abelian subcategory Tor(]P’l) is stable under taklng subobjects

and quotients. Thus, by Corollary 1.16, HTOT([PI) is a subbialgebra of H[pl More-
over, the isomorphisms Hr,,p1) > ®16P1 Hror, and &, : Hyor, >~ A are compat-
ible with the map A. This completely determines the coproduct for Hpy,p1). As
an example (which is also a corollary of Lemma 1.7), we have

(4.19) A(Lys) = Z 1oskes @ 1ys.

Ss+t=r

A

Example 4.12. Let us now compute A([O]). As any subsheaf of O is a line bundle,
it is clear that Aq _p,0,)([0]) = 0if I > 1 and A(y,9)0 = [O]. The only difficult
part is to calculate the component of A([O]) of weight ((0,1), (1, —!)). First observe
that any quotient of O which is not equal to O is of the form

(f);flu) DD (f);(;:r)

where x; are distinct closed points of P! and Og(gn) stands for the (unique) indecom-
posable torsion sheaf supported at x and of length n. This comes from the fact
that there are no surjective maps O —» O @ O™ for any z, because there are
no surjective maps O - O, & O,. Next, we claim that a morphism

6=@P¢i: 00 a...0 00

is surjective if and only if each of the maps ¢; : O — (’)g(ffi) is. Indeed, we may
assume that no x; is equal to oo, and then restrict everything to P*\{oco} = Al.
The statement is then easily seen to be a consequence of the Chinese Remain-
der Theorem. Finally, if ¢ : O — @, (99(;;”’) is surjective then by Grothendieck’s
Theorem, Ker(¢) is necessarily isomorphic to O(— )", n;deg(z;)). Since there are

|H0m((97(’)§cni))\ |Hom(O, ol nﬁl )| = p2rideg(@i) (1 — y=2deg(i)) choices for the
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map ¢;, we see that all together,

(4.20) A(O) =[0]@ 1+ Y Vukey @ [O(=1)]
1>0
with
(4.21) u = Z H(l _ V—2deg(rt))[(f)g(£i)]
where the sum ranges over the set of tuples of distinct points z1,...,z, and mul-

tiplicities ny,...,n, such that ) . n;deg(z;) = 1.

Just for the pleasure, we give another, more formal, derivation of the coproduct of
(O], which has the advantage of showing directly that A([0]) € U, (L£b;)®U, (Lb,).
For this we set, for any class (7, d) in the Grothendieck group, 1, 4) = Z?:(r, d) [F].
It is easy to see that

(4.22) Z vO(s = 1)]1ys.

1>0
Inverting (4.22) we obtain [O] = ano v "1(1,—n)Xn, Where
Xn = (1" > 1) Lo
r>0 i+ +l-=n

Recall that 1(s) = 1+~ 1(os', and set x(s) =1+ D1 xis'. Tt is easy to see
that the elements {x, } are completely determined by the relations »,, ., 105X =
91,0, which can be rewritten in the form 1(s)x(s) = 1. Nex