

Mécanique des Structures Etude des Poutres Patrice Cartraud

▶ To cite this version:

Patrice Cartraud. Mécanique des Structures Etude des Poutres. Engineering school. Ecole Centrale de Nantes, FRANCE, 2010, pp.63. cel-00451733v1

HAL Id: cel-00451733 https://cel.hal.science/cel-00451733v1

Submitted on 29 Jan 2010 (v1), last revised 7 Jan 2011 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mécanique des Structures Etude des Poutres

Patrice CARTRAUD

Centrale Nantes

20/01/2010

ii

Avant-Propos

La **Mécanique des Structures** est une discipline très ancienne, qui s'est développée pour répondre à des besoins de construction, initialement dans le domaine du Génie-Civil. Elle repose sur l'utilisation de **modèles simplifiés**, qui vont permettre l'analyse des structures de façon rapide.

Ces modèles exploitent une caractéristique essentielle des structures qui sont des solides déformables tridimensionnels : leurs trois dimensions ne sont pas du même ordre de grandeur. Il y a ainsi deux catégories de structures.

- les structures minces dont une dimension (l'épaisseur) est très petite devant les deux autres, et qui sont appelées plaques ou coques selon que leur surface moyenne est plane ou non;
- les structures élancées dont une dimension (la longueur) est très grande devant les deux autres, et qui sont appelées poutre ou arc selon que leur ligne moyenne est droite ou non.

Ces structures constituent aujourd'hui l'immense majorité des structures industrielles, et ce dans tous les domaines : aéronautique, automobile, construction ferroviaire et navale, génie civil, etc. Ces deux types de structures sont aussi souvent combinés entre elles, par exemple en renforçant des plaques par des poutres. La popularité de ces structures vient du fait qu'elles présentent des propriétés optimales en termes de raideur et de résistance, vis-à-vis de la quantité de matière utilisée. A contrario, les solides déformables massifs, c'est-à-dire avec des longueurs comparables dans les trois dimensions de l'espace, sont très peu utilisés.

La théorie de la Mécanique des Structures a été initiée au $17^{\rm ème}$ siècle, donc bien avant la Mécanique des Milieux Continus dont le formalisme actuel a été mis au point au début de la $2^{\rm ème}$ moitié du $20^{\rm ème}$ siècle. Les modèles simplifiés développés sont assis sur des hypothèses *a priori* validées à l'époque par l'expérience. Ce n'est seulement que dans la $2^{\rm ème}$ moitié du $20^{\rm ème}$ siècle que ces modèles ont été justifiés *a posteriori*. En effet, les mathématiciens appliqués ont démontré leur bien fondé, au sens asymptotique du terme. Ainsi, lorsque la minceur d'une structure tend vers 0 ou son élancement vers l'infini, la différence entre la solution du problème de l'élasticité tridimensionnelle et du modèle simplifié tend vers 0. Ces modèles simplifiés sont respectivement le modèle de Love-Kirchhoff pour les plaques, et celui de Navier-Bernoulli pour les poutres.

C'est à ce dernier modèle qu'est consacré ce document qui traite donc de la mécanique des structures élancées. L'exposé débute par un rappel de la théorie de l'élasticité linéaire, dans le cadre de la Mécanique des Milieux Continus tridimensionnelle. Dans ce contexte est ensuite abordée la résolution analytique de problèmes posés sur une structure tridimensionnelle élancée (problèmes dits de Saint-Venant). L'objectif est ici de disposer de résultats de référence pour guider la construction du modèle simplifié. La théorie de poutre de Navier-Bernoulli est alors présentée, avec la volonté délibérée de monter le parallèle

avec la Mécanique des Milieux Continus tridimensionnelle. Enfin, deux chapitres courts concernent l'illustration de la théorie sur des structures treillis et sur des problèmes de flexion plane.

Ce document est naturellement amené à évoluer, au gré des remarques et commentaires des lecteurs qui sont les bienvenus. Il s'enrichira également dans une prochaine version de la présentation du flambement et des vibrations des poutres.

Nantes, janvier 2009

P. Cartraud

nantes.fr

Table des matières

A	Avant-Propos iii							
1	Élasticité Linéaire							
	1.1	Introd	uction. Cadre de travail	1				
	1.2	Positio	on du problème	1				
		1.2.1	Équations de champs	2				
		1.2.2	Les conditions aux limites	3				
		1.2.3	Récapitulatif	4				
	1.3	Eléme	nts théoriques	4				
		1.3.1	Introduction	4				
		1.3.2	Formulation variationnelle en déplacement	5				
		1.3.3	Formulation variationnelle en contrainte	7				
	1.4	Résolu	ntion des problèmes d'élasticité	8				
		1.4.1	Approche en déplacement	8				
		1.4.2	Approche en contraintes	9				
		1.4.3	Choix d'une méthode de résolution	10				
	1.5	Princi	pe de Saint-Venant	10				
		_						
2	Ana	alyse ti	ridimensionnelle de solides élancés.					
	Pro	blème	de Saint-Venant	13				
	2.1	Introd		13				
	2.2	Le pro	bblème de Saint-Venant	13				
		2.2.1	Position du problème	13				
		2.2.2	Décomposition de la solution	14				
	2.3	Solutio	ons élémentaires	16				
		2.3.1	Traction-compression	16				
		2.3.2	Flexion pure	16				
		2.3.3	Torsion	18				
		2.3.4	Flexion simple	19				
3	Une	e théor	ie approchée des poutres	21				
	3.1	Introd	uction	21				
	3.2	Défini	tions	21				
	3.3	Hypot	hèses cinématiques	22				
	3.4	Défori	nations	24				

	3.5	Contraintes intégrées - Efforts internes	25			
	3.6	Equations locales	27			
	3.7	Loi de comportement généralisée	29			
	3.8	Conditions aux limites	32			
	3.9	Bilan	33			
	3.10	Eléments théoriques	34			
	3.11	Résolution du problème	37			
		3.11.1 Approche en déplacement	37			
		3.11.2 Approche en force	38			
		3.11.3 Décomposition du problème	40			
	3.12	Dimensionnement	40			
4	Etm	de des treillis	43			
-	4 1	Définition	4 3			
	4.2	Mise en équations	43			
	1.2	4.2.1 Effort normal dans une barre	43			
		4.2.2 Propriétés de l'effort normal dans une barre	44			
		4.2.3 Contraintes et déformations	45			
		4.2.4 Equilibre d'un noeud	45			
		4.2.5 Conditions aux limites	46			
		4.2.6 Energie élastique de contrainte	47			
	4.3	Résolution d'un problème de treillis	47			
4.4 Exemple						
		4.4.1 Résolution en utilisant la compatibilité géométrique	48			
		4.4.2 Résolution par la méthode des forces	48			
F	Star	etunes planes chargées dans leur plan en flevier	51			
9	5 1	Introduction	51			
	5.2	Faustions du problème	51			
	0.2 5.2	Pécalution du problème	51			
	0.0	5.2.1 Approche en déplecements	52			
		5.3.1 Approche en deplacements	52			
		5.3.2.1 Cas isostatique	57 57			
		5.3.2.1 Cas hyperstatique	55			
		0.0.2.2 Cas hyperstatique	00			
Ré	Références					

Élasticité Linéaire

1.1 Introduction. Cadre de travail

Ce chapitre est consacré à l'étude de l'évolution d'un système mécanique qui, à partir d'un état initial non chargé (les contraintes sont nulles en tout point), va atteindre un nouvel état d'équilibre sous l'action de sollicitations extérieures. L'objectif ici est de déterminer ce nouvel état. En effet, la connaissance des contraintes dans le système permet l'analyse de sa tenue aux sollicitations, à l'aide de critères de dimensionnement (tel que le critère de résistance de Von-Mises, utilisé pour les matériaux métalliques).

L'étude sera limitée à un système constitué d'un matériau homogène et isotrope, à comportement élastique linéaire dans le cadre des petits déplacements et des petites déformations. Le système est en outre supposé subir des déformations isothermes, sous l'action de sollicitations extérieures appliquées très progressivement (celles-ci sont dites statiques ou quasi-statiques), à partir d'un état initial non contraint.

Après avoir présenté le système d'équations à résoudre et quelques résultats théoriques (unicité de la solution), des méthodes pour la recherche d'une solution analytique seront exposées. Ceci constitue la théorie de l'élasticité linéaire (ou élastostatique linéaire).

Il convient de préciser qu'une solution analytique n'est accessible que dans des situations relativement simples (l'ouvrage [12] constitue dans ce domaine une référence majeure et recense un grand nombre de problèmes avec solution analytique). Par conséquent, pour traiter un problème pratique, l'ingénieur doit en général avoir recours à des méthodes numériques, pour obtenir une approximation de la solution du problème. Cependant, il est souvent possible d'approcher un problème complexe par un problème simplifié, dont la solution analytique existe, ce qui permet une analyse critique des résultats obtenus par des méthodes numériques. Les solutions analytiques de l'élasticité linéaire sont donc extrêmement précieuses et permettent d'aborder de nombreux problèmes des sciences de l'ingénieur. D'autre part, elles sont à la base de théories simplifiées, telles que la théorie des poutres qui sera exposée au chapitre 3.

1.2 Position du problème

Les équations du problème d'élasticité sont rappelées rapidement, le lecteur étant supposé familier avec les notions classiques de la Mécanique des Milieux Continus. Tous les éléments utiles sont disponibles dans [3], [4], [7] ou [9].

1.2.1 Équations de champs

Les contraintes sont un tenseur symétrique d'ordre 2, donc caractérisées par six composantes. Elles sont régies par trois équations locales d'équilibre

$$\overrightarrow{div}\overline{\overline{\sigma}} + \overrightarrow{f} = \overrightarrow{0} \tag{1.1}$$

ce qui donne en coordonnées cartésiennes $\sigma_{ij,j} + f_i = 0$.

Il est donc clair que ces équations sont insuffisantes pour déterminer complètement les contraintes.

Comme le suggère l'expérience, le matériau constitutif joue un rôle dans la réponse du système, il faut donc faire intervenir sa loi de comportement, qui relie le tenseur des contraintes à celui des déformations. Celui-ci est noté $\overline{\varepsilon}$ en petites transformations, et est symétrique, cf. 1.6.

Celle-ci s'écrit dans le cas d'un matériau isotrope ($\overline{\overline{c}}$ est le tenseur de raideur, λ et μ sont les coefficients de Lamé)

$$\overline{\overline{\sigma}} = \overline{\overline{\overline{c}}} : \overline{\overline{c}} = \lambda \ trace(\overline{\overline{c}})\overline{\overline{Id}} + 2\mu \ \overline{\overline{c}} \quad \text{avec} \quad \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} \quad \mu = \frac{E}{2(1+\nu)}$$
(1.2)

ce qui donne en coordonnées cartésiennes $\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$. La relation inverse est donnée par

$$\overline{\overline{\varepsilon}} = \overline{\overline{\overline{s}}} : \overline{\overline{\sigma}} = -\frac{\nu}{E} trace(\overline{\overline{\sigma}}) + \frac{1+\nu}{E}\overline{\overline{\sigma}}$$
(1.3)

avec $\overline{\overline{s}}$ tenseur de souplesse.

Par des arguments de stabilité, il est possible de justifier que la forme quadratique associée à la loi de comportement est positive, ce qui se traduit par

 $\forall \overline{\varepsilon}, \ \overline{\varepsilon}: \overline{\overline{\varepsilon}}: \overline{\overline{\varepsilon}} \ defini \ positif \qquad \forall \overline{\sigma}, \ \overline{\sigma}: \overline{\overline{s}}: \overline{\overline{\sigma}} \ defini \ positif \qquad (1.4)$

Autrement dit, la nullité de ces expressions n'est possible que si $\overline{\overline{c}} = \overline{\overline{0}}$ et $\overline{\overline{\sigma}} = \overline{\overline{0}}$. La prise en compte de ces relations entraîne

$$3\lambda + 2\mu > 0 \quad \mu > 0 \quad E > 0 \quad -1 < \nu < \frac{1}{2}$$
 (1.5)

En adjoignant la relation déformations-déplacements

$$\overline{\overline{\varepsilon}}(\vec{u}) = \frac{1}{2} \left(\overline{\overline{grad}} \vec{u} + \overline{\overline{grad}}^{\mathrm{T}} \vec{u} \right)$$
(1.6)

qui s'écrit en cartésiennes $\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$ il y a alors 3+6+6 = 15 équations de champs aux dérivées partielles, pour 15 inconnues correspondant aux composantes des contraintes (6), des déformations (6) et du déplacement (3).

Ces équations posées sur le domaine Ω sont complétées par des conditions aux limites portant sur la frontière $\partial \Omega$. Dans la pratique, ces conditions aux limites permettent de fixer les constantes d'intégration qui apparaissent lors de l'intégration des équations aux dérivées partielles.

1.2.2 Les conditions aux limites

Les conditions aux limites font partie intégrante des données du problème, et précisent l'action du milieu extérieur sur le contour $\partial\Omega$ du système. Elles portent sur les déplacements ou les contraintes, et en tout point de $\partial \Omega$, est connue, dans trois directions orthogonales entre elles, la composante du déplacement ou du vecteur contrainte.

Généralement, $\partial\Omega$ est partitionné en $\partial\Omega = \partial\Omega_u \cup \partial\Omega_\sigma$ avec $\partial\Omega_u \cap \partial\Omega_\sigma = \emptyset$ et

$$- \operatorname{sur} \partial \Omega_u : \vec{u} = \vec{u}_d$$

$$-\operatorname{sur}\,\partial\Omega_{\sigma}:\overline{\sigma}.\vec{n}=\dot{\mathrm{T}}(\mathrm{M},\vec{n})=\dot{\mathrm{T}}_{d}$$

Sur $\partial \Omega_u$ les conditions aux limites sont dites essentielles ou cinématiques ou en déplacements, alors que sur $\partial \Omega_{\sigma}$ elles sont dites **naturelles** ou **statiques** ou sur les contraintes. Le vecteur \vec{n} est la normale extérieure à $\partial \Omega_{\sigma}$.

Ci-après sont donnés quelques exemples de conditions aux limites.

Essai de traction

L'étude porte sur une éprouvette cylindrique dont la base a pour aire S, cf. figure 1.1(a).

Figure 1.1 - Exemples de conditions aux limites : (a) traction (b) contact glissant

Le contour $\partial \Omega$ se décompose en les bases du cylindre en $x_1 = 0$ et $x_1 = \ell$, et la surface latérale du cylindre S_{ℓ} . En tout point de $\partial \Omega$, le vecteur contrainte est connu ($\partial \Omega_{\mu} = \emptyset$), et les conditions aux limites sont (sous l'hypothèse d'une distribution uniforme des efforts de traction sur les sections extrêmes)

- sur S_{ℓ} : $\vec{T}(M, \vec{n}) = \vec{0}$ (condition de bord libre);

- en
$$x_1 = 0$$
 : T(M, \vec{n}) = $-\frac{F}{S}\vec{e}_1$ avec $\vec{n} = -\vec{e}_1$

 $- \text{ en } x_1 = \ell : \vec{\mathrm{T}}(\mathrm{M}, \vec{n}) = \frac{\mathrm{F}}{\mathrm{S}}\vec{e_1} \text{ avec } \vec{n} = \vec{e_1}.$

Cas d'un solide en contact sans frottement avec un solide indéformable

Ce cas est représenté figure 1.1(b). En considérant seulement la surface de contact, les conditions aux limites s'écrivent en l'absence de frottement $\vec{e_1} \cdot \vec{T}(M, \vec{n}) = \vec{e_2} \cdot \vec{T}(M, \vec{n}) = 0$ avec $\vec{n} = -\vec{e}_3$. Le contact persistant avec le solide indéformable fournit $\vec{e}_3 \cdot \vec{u} = 0$.

Sur ce dernier exemple, il apparaît qu'en un point de $\partial \Omega$, les conditions aux limites peuvent porter à la fois sur les déplacements et les contraintes, mais que dans chaque direction, soit la composante du vecteur contrainte, soit la composante du déplacement est connue. Cette propriété est essentielle pour la démonstration de l'unicité de la solution d'un problème d'élasticité. Le problème est dit **régulier**, ce qui revient à dire qu'il est **bien posé**.

Notons enfin que lorsque dans une direction donnée, la composante du vecteur contrainte est imposée, la composante du déplacement correspondante est une inconnue du problème. C'est donc seulement la résolution du problème qui permettra de la calculer. Autrement dit, il n'est pas possible, dans une direction donnée, de prescrire à la fois une force et un déplacement.

1.2.3 Récapitulatif

L'ensemble des équations précédentes constitue la formulation du problème d'élasticité. Les données de ce problème sont

- la géométrie du système;
- la loi de comportement du matériau, c'est-à-dire les valeurs de λ et μ ou E et ν ;
- les forces volumiques;

– les conditions aux limites sur le contour $\partial \Omega = \partial \Omega_u \cup \partial \Omega_\sigma$ avec $\partial \Omega_u \cap \partial \Omega_\sigma = \emptyset$. Le problème à résoudre s'écrit alors : trouver $\vec{u}, \overline{\epsilon}, \overline{\sigma}$ solutions de

$$\left\{\begin{array}{l}
\overrightarrow{div}\overline{\overline{\sigma}} + \overrightarrow{f} = \overrightarrow{0} \\
\overline{\overline{\sigma}} = \overline{\overline{\overline{c}}} : \overline{\overline{c}} = \lambda \operatorname{trace}(\overline{\overline{c}})\overline{1d} + 2\mu \overline{\overline{c}} \\
\overline{\overline{c}}(\overrightarrow{u}) = \frac{1}{2} \left(\overline{\overline{grad}} \overrightarrow{u} + \overline{\overline{grad}}^{\mathrm{T}} \overrightarrow{u} \right) \\
\overrightarrow{u} = \overrightarrow{u}_{d} \operatorname{sur} \partial \Omega_{u} \\
\overline{\overline{\sigma}} . \overrightarrow{n} = \overrightarrow{\mathrm{T}}(\mathrm{M}, \overrightarrow{n}) = \overrightarrow{\mathrm{T}}_{d} \operatorname{sur} \partial \Omega_{\sigma} \end{array}\right\} \text{ conditions aux limites sur } \partial\Omega$$

$$(1.7)$$

1.3 Eléments théoriques

1.3.1 Introduction

Avant d'aborder la résolution des problèmes d'élasticité, il importe de s'intéresser aux problèmes d'existence et d'unicité de la solution.

La question de l'**existence** de la solution dépasse largement le cadre de ce cours. Le lecteur désireux d'approfondir cette question pourra se référer à [4] (section 6). Dans la suite, il sera seulement fait état, dans certaines circonstances, d'une condition nécessaire à satisfaire par les données en efforts du problème pour qu'une solution existe. Ce point sera explicité dans la section suivante.

L'unicité de la solution joue un rôle fondamental dans la résolution d'un problème d'élasticité. En effet, il n'existe pas de méthode générale pour résoudre un problème. Ainsi, la démarche consiste à proposer une solution, et à vérifier que toutes les équations du problème sont satisfaites. Le résultat d'unicité permet alors de conclure que le candidat proposé est bien la solution du problème. Ce type d'approche est qualifiée de semi-inverse. L'unicité de la solution est une conséquence de la linéarité du problème 1.7. Cette linéarité exprime que pour un système de géométrie et de matériaux donnés, (CL signifie conditions aux limites) si

- $(\vec{u_1}, \overline{\varepsilon}_1, \overline{\sigma}_1)$ est solution du problème 1.7 de données (f_1, CL_1) ;

- $(\vec{u_2}, \overline{\epsilon}_2, \overline{\sigma}_2)$ est solution du problème 1.7 de données (f_2, CL_2) ;

4

- alors, le problème 1.7 de données $(\lambda_1 f_1 + \lambda_2 f_2, \lambda_1 \text{CL}_1 + \lambda_2 \text{CL}_2)$ admet pour solution $(\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2, \lambda_1 \overline{\overline{\varepsilon}}_1 + \lambda_2 \overline{\overline{\varepsilon}}_2, \lambda_1 \overline{\overline{\sigma}}_1 + \lambda_2 \overline{\overline{\sigma}}_2).$

Ce résultat est encore appelé principe de superposition.

L'unicité se démontre facilement à partir de la formulation variationnelle du problème, qui peut être exprimée sur les déplacements ou les contraintes. Cette approche variationnelle permet également de caractériser la solution du problème en tant que minimum d'une fonctionnelle, qui correspond à une énergie. Cette dernière propriété est à la base de méthodes de résolution qui seront présentées au chapitre 3, section 3.11.2.

1.3.2 Formulation variationnelle en déplacement

Définition : le champ \vec{v} est dit cinématiquement admissible (noté par la suite **C.A.**) avec les données cinématiques du problème 1.7, s'il est suffisamment régulier et satisfait les conditions aux limites cinématiques $(1.7)_4$.

Dans cette définition, suffisamment régulier signifie continu, et tel que les expressions utilisées par la suite (intégrales, opérations de dérivation) aient un sens.

A partir de cette définition, il vient la formulation variationnelle en déplacement

Formulation variationnelle en déplacement : si \vec{u} est solution du problème 1.7, alors

$$\begin{cases} \vec{u} \text{ est C.A.} \\ \forall \vec{v} \text{ C.A. } a(\vec{u}, \vec{v} - \vec{u}) = \Phi(\vec{v} - \vec{u}) \end{cases}$$
(1.8)

avec

$$\begin{cases} a(\vec{u}, \vec{v} - \vec{u}) = \int_{\Omega} \overline{\overline{\varepsilon}}(\vec{u}) : \overline{\overline{\varepsilon}} : \overline{\overline{\varepsilon}}(\vec{v} - \vec{u}) d\Omega \\ \Phi(\vec{v} - \vec{u}) = \int_{\Omega} \vec{f} \cdot (\vec{v} - \vec{u}) d\Omega + \int_{\partial\Omega_{\sigma}} \vec{T}_{d} \cdot (\vec{v} - \vec{u}) dS \end{cases}$$
(1.9)

La démonstration est rapide. Il vient en effet à partir de l'équation d'équilibre $(1.7)_1$

$$\int_{\Omega} (\vec{div}\overline{\sigma} + \vec{f}).(\vec{v} - \vec{u})d\Omega = 0$$
(1.10)

Or, d'après la relation

$$\overrightarrow{div}(\vec{u}.\overline{\overline{\sigma}}) = \overrightarrow{div}\overline{\overline{\sigma}}.\vec{u} + \overline{\overline{\sigma}}: \overline{\overline{grad}}^{\mathrm{T}}\vec{u}$$
(1.11)

dont le dernier terme est égal à $\overline{\overline{\sigma}}$: $\overline{\overline{\varepsilon}}(\vec{u})$ en tenant compte de la symétrie de $\overline{\overline{\sigma}}$, et de la formule de Green-Ostrogradsky, la relation 1.10 devient

$$\int_{\Omega} \overline{\overline{\sigma}} : \overline{\overline{\varepsilon}} (\vec{v} - \vec{u}) d\Omega = \int_{\Omega} \vec{f} \cdot (\vec{v} - \vec{u}) d\Omega + \int_{\partial \Omega} (\vec{v} - \vec{u}) \cdot \overline{\overline{\sigma}} \cdot \vec{n} \, \mathrm{dS}$$
(1.12)

Le second membre représente le **travail des efforts extérieurs** dans le déplacement $\vec{v} - \vec{u}$. Il est rappelé que $\partial \Omega = \partial \Omega_u \cup \partial \Omega_\sigma$. Or, pour \vec{u} et \vec{v} C.A., $\vec{v} - \vec{u} = \vec{0}$ sur $\partial \Omega_u$, et d'autre part, d'après $(1.7)_5$, $\overline{\sigma}.\vec{n} = \vec{T}(M,\vec{n}) = \vec{T}_d$ sur $\partial \Omega_\sigma$. Le second membre se réduit donc finalement à $\Phi(\vec{v} - \vec{u})$, ce qui achève la démonstration. L'unicité de la solution en déplacements s'obtient à partir de la formulation variationnelle. En effet, supposons que le problème 1.7 admette deux déplacements solution \vec{u}_1 et \vec{u}_2 . Ces champs sont C.A., si bien que 1.8 fournit

$$\begin{cases} a(\vec{u}_1, \vec{u}_2 - \vec{u}_1) = \Phi(\vec{u}_2 - \vec{u}_1) \\ a(\vec{u}_2, \vec{u}_1 - \vec{u}_2) = \Phi(\vec{u}_1 - \vec{u}_2) \end{cases}$$
(1.13)

En sommant ces deux égalités, la forme *a* étant bilinéaire, Φ linéaire, et en posant $\vec{u}^* = \vec{u}_1 - \vec{u}_2$, il vient $a(\vec{u}^*, \vec{u}^*) = 0$. Or

$$a(\vec{u}^*, \vec{u}^*) = \int_{\Omega} \overline{\overline{\varepsilon}}(\vec{u}^*) : \overline{\overline{\overline{\varepsilon}}} : \overline{\overline{\varepsilon}}(\vec{u}^*) d\Omega$$
(1.14)

et sous l'hypothèse classique (cf. 1.4) que le tenseur $\overline{\overline{c}}$ est défini positif, il s'ensuit que

$$\overline{\overline{\varepsilon}}(\vec{u}^*) = \overline{\overline{0}} \tag{1.15}$$

Ce qui montre que $\vec{u}^* \in \mathcal{R}$ où \mathcal{R} est l'espace des déplacements de solide rigide, défini par

$$\mathcal{R} = \{ \vec{u}_{\rm R} / \vec{u}_{\rm R} = \vec{t} + \vec{\theta} \wedge \vec{x}, \text{ avec } \vec{t} \text{ et } \vec{\theta} \text{ constants} \}$$
(1.16)

D'autre part, \vec{u}^* est obtenu par différence de \vec{u}_1 et \vec{u}_2 , tous les deux C.A. Par conséquent, \vec{u}^* est un champ compatible avec des données cinématiques nulles pour le problème 1.7, c'est-à-dire $\vec{u}^* = \vec{0}$ sur $\partial \Omega_u$. Ce champ est dit C.A. homogène, noté **C.A.H.** Deux cas de figure se présentent alors

- ou bien les conditions aux limites cinématiques $\vec{u}^* = \vec{0}$ sur $\partial \Omega_u$ empêchent tout mouvement de solide rigide. Auquel cas $\vec{u}^* = \vec{0}$ et la solution en déplacement du problème 1.7 est unique;
- ou bien l'espace *R* (ou une partie non vide de celui-ci) est contenu dans l'espace des champs C.A.H., et alors la solution du problème 1.7 est définie à un déplacement de solide rigide près. D'autre part, d'après 1.8, il vient

$$\forall \vec{u}^* C.A.H \in \mathcal{R}, \int_{\Omega} \vec{f}.\vec{u}^* d\Omega + \int_{\partial \Omega_{\sigma}} \vec{T}_d.\vec{u}^* dS = 0$$
(1.17)

Cette condition est appelée condition de compatibilité sur les données statiques. C'est une condition nécessaire pour qu'il existe une solution au problème 1.7. Physiquement, elle exprime des conditions d'équilibre global du domaine étudié.

Ainsi, pour le cas de l'essai de traction, cf. section 1.2.2, où $\partial \Omega_u = \emptyset$, 1.17 implique la nullité du torseur de l'ensemble des efforts extérieurs, condition qui est bien vérifiée pour un effort de traction uniformément réparti.

Notons que quand bien même la solution en déplacement est définie à un déplacement de solide rigide près, la solution en déformation et en contrainte est quant à elle unique, puisque $\overline{\overline{\varepsilon}}(\vec{u}^*) = \overline{\overline{0}}$.

Outre l'unicité de la solution (au sens défini précédemment pour le déplacement), il découle de la formulation variationnelle en déplacement le théorème suivant.

Théorème de l'énergie potentielle en déplacement : parmi tous les champs C.A., le champ de déplacement solution minimise l'énergie potentielle en déplacement définie par

 $W - \Phi$. W représente l'énergie élastique de déformation et a pour expression

$$W(\vec{u}) = \frac{1}{2}a(\vec{u}, \vec{u})$$
(1.18)

Pour démontrer ce théorème, considérons le déplacement \vec{v} C.A. et le champ \vec{u} solution du problème 1.7. La forme *a* étant symétrique, la différence d'énergie potentielle des champs \vec{v} et \vec{u} est

$$W(\vec{v}) - \Phi(\vec{v}) - (W(\vec{u}) - \Phi(\vec{u})) = \frac{1}{2}(a(\vec{v}, \vec{v}) - a(\vec{u}, \vec{u})) - \Phi(\vec{v}) + \Phi(\vec{u})$$

$$= \frac{1}{2}a(\vec{v} - \vec{u}, \vec{v} - \vec{u}) + a(\vec{u}, \vec{v} - \vec{u}) - \Phi(\vec{v} - \vec{u})$$
(1.19)

Or d'après la formulation variationnelle 1.8, le second membre se réduit au premier terme. Enfin celui-ci est positif ou nul d'après 1.4.

1.3.3 Formulation variationnelle en contrainte

Définition : le champ de contrainte $\overline{\tau}$ est dit statiquement admissible (noté par la suite **S.A.**) avec les données statiques du problème (1.7), s'il est symétrique, satisfait les équations d'équilibre (1.7)₁ et les conditions aux limites statiques (1.7)₅.

A partir de cette définition, il vient la formulation variationnelle en contrainte

Formulation variationnelle en contrainte : si $\overline{\sigma}$ est solution du problème 1.7, alors

$$\begin{cases} \overline{\sigma} \text{ est S.A.} \\ \forall \overline{\tau} \text{ S.A. } A(\overline{\sigma}, \overline{\tau} - \overline{\sigma}) = \Phi^*(\overline{\tau} - \overline{\sigma}) \end{cases}$$
(1.20)

avec

$$\begin{cases} A(\overline{\sigma}, \overline{\tau} - \overline{\sigma}) = \int_{\Omega} \overline{\sigma} : \overline{\overline{s}} : (\overline{\tau} - \overline{\sigma}) d\Omega \\ \Phi^*(\overline{\tau} - \overline{\sigma}) = \int_{\partial\Omega_u} \vec{u}_d . (\overline{\tau} - \overline{\sigma}) . \vec{n} \, dS \end{cases}$$
(1.21)

La démonstration est donnée très rapidement car reprenant des arguments utilisés dans l'approche en déplacement.

D'après la symétrie de la loi de comportement $(\overline{\overline{\overline{s}}}^{T} = \overline{\overline{\overline{s}}})$, il vient

$$A(\overline{\sigma}, \overline{\tau} - \overline{\sigma}) = \int_{\Omega} (\overline{\tau} - \overline{\sigma}) : \overline{\overline{s}} : \overline{\sigma} d\Omega = \int_{\Omega} (\overline{\tau} - \overline{\sigma}) : \overline{\varepsilon}(\vec{u}) d\Omega$$
(1.22)

Or l'application de la formule 1.11 fournit

$$\overrightarrow{div}(\vec{u}.(\overline{\tau}-\overline{\sigma})) = \overrightarrow{div}(\overline{\tau}-\overline{\sigma}).\vec{u} + (\overline{\tau}-\overline{\sigma}):\overline{\overline{grad}}^{\mathrm{T}}\vec{u}$$
(1.23)

Or, $(\overline{\tau} - \overline{\sigma})$ étant symétrique, le dernier terme est égal à $(\overline{\tau} - \overline{\sigma}) : \overline{\varepsilon}(\vec{u})$. Et après application du théorème de Green-Ostrogradsky, il vient

$$A(\overline{\overline{\sigma}}, \overline{\overline{\tau}} - \overline{\overline{\sigma}}) = -\int_{\Omega} \overrightarrow{div}(\overline{\overline{\tau}} - \overline{\overline{\sigma}}).\vec{u} \, d\Omega + \int_{\partial\Omega} \vec{u}.(\overline{\overline{\tau}} - \overline{\overline{\sigma}}).\vec{n} \, dS$$
(1.24)

Et comme $\overline{\overline{\tau}}$ et $\overline{\overline{\sigma}}$ sont S.A., il en résulte que $\overline{\overline{\tau}} - \overline{\overline{\sigma}}$ est S.A. homogène, c'est-à-dire S.A. avec des données statiques nulles, d'où $\overrightarrow{div}(\overline{\overline{\tau}} - \overline{\overline{\sigma}}) = \vec{0}$, et $(\overline{\overline{\tau}} - \overline{\overline{\sigma}}) \cdot \vec{n} = \vec{0}$ sur $\partial \Omega_{\sigma}$. Ceci finit la démonstration.

En envisageant deux champs de contraintes solution $\overline{\sigma}$ et $\overline{\tau}$, **l'unicité de la solution** en contrainte est obtenue d'après la nullité de $A(\overline{\sigma}, \overline{\tau} - \overline{\sigma})$ et la propriété 1.4 De même il vient le théorème de l'énergie complémentaire.

Théorème de l'énergie complémentaire : parmi tous les champs S.A., le champ de contrainte solution minimise l'énergie complémentaire définie par $W^* - \Phi^*$. W^* représente l'énergie élastique de contrainte et a pour expression

$$W^*(\overline{\overline{\sigma}}) = \frac{1}{2} A(\overline{\overline{\sigma}}, \overline{\overline{\sigma}})$$
(1.25)

1.4 Résolution des problèmes d'élasticité

Deux approches existent pour la résolution du problème d'élasticité 1.7, selon que la recherche de la solution est faite en choisissant le champ de déplacement ou le champ de contrainte comme inconnue principale.

1.4.1 Approche en déplacement

Cette méthode consiste à choisir le champ de déplacement \vec{u} comme inconnue principale. Dans la pratique, une certaine forme pour ce champ est proposée. Il s'agit alors de vérifier toutes les équations du problème.

Ce champ doit satisfaire les conditions aux limites en déplacement, et il est aisé de calculer par dérivation les déformations, puis les contraintes en utilisant la loi de comportement. Il est alors possible d'étudier si les équations d'équilibre et les conditions aux limites portant sur les contraintes sont vérifiées. Dans le cas d'un domaine Ω homogène (le matériau est le même en tout point de Ω , il est plus commode d'exprimer directement les équations d'équilibre en termes de déplacement. Celles-ci sont obtenues en reportant la relation déformations/déplacements (1.7)₃ dans la loi de comportement (1.7)₂, puis en injectant cette expression dans les équations d'équilibre (1.7)₁. Il vient alors les équations d'équilibre en termes de déplacement, équations dites de **Lamé-Navier**, dont l'expression est

$$(\lambda + \mu) \overrightarrow{grad} (div\vec{u}) + \mu \,\Delta \vec{u} + \vec{f} = \vec{0} \tag{1.26}$$

ou encore

$$(\lambda + 2\mu) \overrightarrow{grad} (div\vec{u}) - \mu \overrightarrow{rot} \left(\overrightarrow{rot} \vec{u} \right) + \vec{f} = \vec{0}$$
(1.27)

Le processus de résolution avec la méthode en déplacement est donc

- postuler un champ de déplacement;
- vérifier les conditions aux limites sur les déplacements;
- vérifier les équations de Lamé-Navier;
- vérifier les conditions aux limites sur les contraintes;
- conclure grâce à l'unicité.

Remarque : si le champ de déplacement est irrotationnel, les équations se réduisent à

$$(\lambda + 2\mu) \overline{grad} (div\vec{u}) + \vec{f} = \vec{0}$$
(1.28)

ce qui implique que $\overrightarrow{rot}\vec{f} = \vec{0}$ et que \vec{f} est de la forme $\vec{f} = \overrightarrow{grad} \vec{F}$. Il s'ensuit après intégration

$$(\lambda + 2\mu) \, div\vec{u} + \vec{F} = cste \tag{1.29}$$

1.4.2 Approche en contraintes

La seconde méthode de résolution consiste à rechercher directement les contraintes. Le champ de contrainte doit vérifier les conditions aux limites portant sur les contraintes et les équations d'équilibre.

Si tel est le cas, il sera toujours possible de lui associer un champ $\overline{\overline{\varepsilon}}$ en utilisant la loi de comportement sous sa forme inverse, $\overline{\overline{\varepsilon}} = \overline{\overline{\overline{s}}} : \overline{\overline{\sigma}}$.

En revanche, il n'est pas sûr que ce champ corresponde à un champ de déformations. Il faut pour cela s'assurer qu'il existe un champ de déplacement \vec{u} tel que $\overline{\epsilon}$ dérive de ce champ de déplacement, soit

$$\overline{\overline{\varepsilon}} = \frac{1}{2} \left(\overline{\overline{\operatorname{grad}}} \vec{u} + \overline{\overline{\operatorname{grad}}}^{\mathrm{T}} \vec{u} \right) \tag{1.30}$$

ce qui revient à dire que $\overline{\overline{\epsilon}}$ doit vérifier des conditions d'intégrabilité, encore appelées **condi**tions de compatibilité des déformations. Ces équations sont complexes à exprimer en écriture tensorielle. En cartésiennes, les 6 équations peuvent être mises sous la forme

$$\Delta \varepsilon_{ij} + \varepsilon_{kk,ij} - (\varepsilon_{jk,ik} + \varepsilon_{ik,jk}) = 0 \tag{1.31}$$

En pratique, lors d'une approche en contraintes, ces équations sont exprimées en fonction des contraintes. Pour ce faire, il faut utiliser la loi de comportement 1.2. Mais les équations obtenues sont difficiles à exploiter, c'est pourquoi elles sont combinées avec les équations d'équilibre, pour donner finalement les équations de **Beltrami-Michell**

$$\overline{div}(grad(\overline{\sigma})) + \frac{1}{1+\nu} \overline{grad}(grad(trace(\overline{\sigma})) + \frac{\nu}{1-\nu} \overline{Id} \, div \vec{f} + \overline{grad} \vec{f} + \overline{grad}^{\mathrm{T}} \vec{f} = \overline{0} \ (1.32)$$

Dans le cas particulier fréquent où les forces de volume sont constantes $\overline{grad}\vec{f} = \overline{0}$, l'équation se réduit à ses deux premiers termes. En coordonnées cartésiennes, cela donne

$$(1+\nu)\Delta\sigma_{ij} + \sigma_{kk,ij} = 0 \tag{1.33}$$

Si le champ de contrainte proposé vérifie ces équations, il sera alors possible d'intégrer le champ de déformations et d'obtenir le déplacement \vec{u} défini à un déplacement de solide rigide près. Il restera enfin à satisfaire les conditions aux limites sur les déplacements. Le processus de résolution avec la méthode en contrainte est donc

– postuler un champ de contrainte;

- vérifier les conditions aux limites sur les contraintes;

- vérifier les équations d'équilibre;
- vérifier les équations de Beltrami-Michell;
- intégrer les déformations et obtenir le champ de déplacement;
- vérifier les conditions aux limites sur les déplacements;
- conclure grâce à l'unicité

Remarques

- notons que lorsque les forces volumiques sont constantes, tout champ de contraintes constant ou affine par rapport aux variables d'espace satisfait les équations de Beltrami-Michell;
- si les forces volumiques sont nulles, tout champ de contraintes constant vérifie à la fois les équations d'équilibre et les équations de Beltrami-Michell;
- si le problème étudié est sans condition aux limites sur les déplacements $\partial \Omega_u = \emptyset$, quand le champ de contrainte proposé satisfait les conditions aux limites sur les contraintes, les équations d'équilibre et les équations de Beltrami-Michell, celui-ci est la solution en contraintes du problème. Pour l'exemple de la traction simple, cf. section 1.2.2, il s'en déduit que $\overline{\sigma} = \frac{F}{S}\vec{x_1} \otimes \vec{x_1}$ est la solution du problème.

1.4.3 Choix d'une méthode de résolution

Pour un problème d'élasticité linéaire admettant une solution analytique, le choix d'une méthode de résolution doit être guidé par l'intuition qui incite à faire des hypothèses sur la forme des déplacements ou des contraintes. Cependant, comme toute solution doit satisfaire les conditions aux limites du problème, l'inconnue sur laquelle les conditions aux limites sont les plus nombreuses est en général privilégiée.

La proposition d'un candidat à la solution d'un problème est alors une étape délicate, et il faut exploiter toutes les informations disponibles. En particulier, les propriétés géométriques des données du problème (géométrie du système, chargement volumique, loi de comportement et conditions aux limites) doivent être utilisées. Elles peuvent en effet conduire à la recherche d'une solution indépendante d'une ou plusieurs variables d'espace, ou vérifiant des propriétés de symétrie. Enfin, signalons que lorsque les deux méthodes de résolution sont utilisables, la méthode des déplacements sera préférée, car moins lourde au niveau des calculs que la méthode des contraintes (l'intégration des déformations est assez fastidieuse).

1.5 Principe de Saint-Venant

Dans la pratique, la formulation des conditions aux limites est difficile, car le plus souvent les informations sur $\partial\Omega$ sont approximatives et connues de façon globale. Ainsi, sur $\partial\Omega_{\sigma}$, le torseur résultant des efforts appliqués sera connu, mais pas sa répartition surfacique exacte, d'où l'impossibilité de définir un problème régulier. Autrement dit, avec de telles données, le problème d'élasticité admet une infinité de solutions, chacune d'entre elles étant la solution d'un problème régulier avec une répartition surfacique d'efforts donnée. Pour résoudre cette difficulté, une propriété importante est alors exploitée.

Principe de Saint-Venant : si la distribution surfacique \overline{T}_d sur une partie $\partial \Omega_{SV}$ de $\partial \Omega_{\sigma}$ est remplacée par une distribution qui lui est "statiquement équivalente" (c'est-à-dire que les torseurs de ces deux distributions sont identiques), les champs de contrainte et de déplacement de la solution du problème d'équilibre élastique sont pratiquement inchangés dans toute partie du solide Ω suffisamment éloignée de $\partial \Omega_{SV}$.

Ainsi, si un problème dont les conditions aux limites sur $\partial \Omega_{SV}$ sont exprimées en termes de torseur résultant possède une solution analytique, cette solution peut être considérée comme valable dans Ω , sauf au voisinage de $\partial \Omega_{SV}$. Ce principe autorise une certaine souplesse dans la formulation des conditions aux limites, et permet également d'étendre le champ d'applications de solutions de problèmes réguliers. Par exemple, la solution de l'essai de traction simple vue auparavant est valable loin des bases d'un cylindre sur lesquelles on applique deux efforts opposés.

Ce principe empirique est bien vérifié par l'expérience, et par les résultats donnés par les méthodes numériques.

2

Analyse tridimensionnelle de solides élancés. Problème de Saint-Venant

2.1 Introduction

Nous nous intéressons dans ce chapitre à des poutres, c'est-à-dire à des solides élancés dont une dimension est grande devant les deux autres. Cette particularité géométrique incite à rechercher des hypothèses simplificatrices pour décrire leur comportement, à l'aide d'une modélisation monodimensionnelle, afin d'éviter la complexité de l'approche tridimensionnelle. Pour justifier ces hypothèses, il convient cependant de pouvoir disposer d'une solution rigoureuse de référence. C'est l'objectif de l'étude du problème dit de Saint-Venant, qui sera traitée dans le cadre de l'élasticité tridimensionnelle. Afin de ne pas alourdir la présentation, seuls les résultats essentiels seront fournis, sans rentrer dans le détail de la résolution des problèmes d'élasticité. Le lecteur désireux d'approfondir ces questions pourra se reporter à [1] ou [2].

2.2 Le problème de Saint-Venant

2.2.1 Position du problème

L'étude concerne la réponse élastique d'un solide cylindrique Ω de section constante (base) S, d'axe $\vec{e_1}$, et de longueur ℓ . Ainsi $\Omega = [0, \ell] \times S$, cf. figure 2.1. Ce solide est uniquement

Figure 2.1 - Définition du domaine Ω étudié

sollicité sur ses sections extrêmes : les efforts volumiques sont donc nuls, et la surface latérale $S_{\ell} =]0, \ell[\times \partial S \text{ est libre. D'autre part, les sollicitations sur les sections extrêmes } S_0$

et S_1 ne sont connues que par leurs torseurs résultants, aux centres de surface G_0 et G_1 de ces sections. Ainsi, $(\vec{R}_0, \vec{M}_{G_0})$, $(\vec{R}_1, \vec{M}_{G_1})$ sont donnés, et le problème à résoudre s'écrit en cartésiennes, en notant

$$\begin{cases} \vec{R} = \int_{S} \vec{T} (M, \vec{e}_{1}) \ dS \\ \vec{M}_{G} = \int_{S} \vec{GM} \wedge \vec{T} (M, \vec{e}_{1}) \ dS \end{cases}$$
(2.1)

$$\sigma_{ij,j} = 0$$

$$\varepsilon_{ij} = \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} \sigma_{kk} \delta_{ij}$$

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

$$\vec{T}(M, \vec{n}) = \vec{0} \text{ sur } S_{\ell}$$

$$\vec{R} (x_1 = 0) = \vec{R}_0, \ \vec{M}_G (x_1 = 0) = \vec{M}_{G_0}$$

$$\vec{R} (x_1 = \ell) = \vec{R}_1, \ \vec{M}_G (x_1 = \ell) = \vec{M}_{G_1}$$
(2.2)

Il en résulte que les conditions aux limites ne peuvent être mises sous la forme classique

$$\forall \mathbf{M} \in \partial \Omega, \ \forall \vec{e_i}, \ \vec{e_i} \cdot \vec{u} \text{ ou } \vec{e_i} \cdot \vec{T}(\mathbf{M}, \vec{n}) \text{ donné.}$$

$$(2.3)$$

et que le problème précédent n'est pas régulier. Il admet donc une infinité de solutions, car il est possible de définir une infinité de conditions aux limites statiques sur S_0 et S_1 respectant la donnée du torseur résultant.

Cependant, d'après le principe de Saint-Venant, cf. section 1.5, loin de S_0 et S_1 , l'écart entre toutes ces solutions est négligeable, ce qui signifie que toute solution du problème peut être considérée comme valable dans cette zone, et ce, quelle que soit la façon dont sont appliquées les sollicitations sur les sections extrêmes (à torseur égal). Il apparaît ainsi que la solution obtenue sera exploitable à condition que la longueur du cylindre soit grande devant les dimensions de la section. C'est pourquoi les solides étudiés ici sont dits **élancés**.

Enfin, le problème précédent ne possédant pas de conditions aux limites de type déplacement imposé, il admettra des solutions à condition que l'équilibre global soit respecté, cf. section 1.3.2, ce qui impose

$$\begin{cases} \vec{R}_0 + \vec{R}_1 = \vec{0} \\ \vec{M}_{G_0} + \vec{M}_{G_1} + \ell \vec{e}_1 \wedge \vec{R}_1 = \vec{0} \end{cases}$$
(2.4)

2.2.2 Décomposition de la solution

Grâce à la linéarité du problème, le principe de superposition permet de décomposer le problème précédent en six problèmes élémentaires, correspondant à des sollicitations de

nature différente. Cette décomposition est la suivante

$$\begin{cases} \vec{R}_{1} = \begin{cases} R_{11} \\ 0 + \begin{cases} 0 \\ 0 + \end{cases} \begin{pmatrix} 0 \\ R_{12} + \begin{cases} 0 \\ 0 \\ R_{13} \end{pmatrix} \\ \vec{M}_{G_{1}} = \begin{cases} 0 \\ 0 + \end{cases} \begin{pmatrix} 0 \\ M_{12} + \begin{cases} 0 \\ M_{12} + \end{cases} \begin{pmatrix} 0 \\ 0 + \end{cases} \begin{pmatrix} M_{11} \\ 0 + \end{cases} \begin{pmatrix} 0 \\ 0 + \end{cases} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \vec{M}_{13} \end{pmatrix}$$
(2.5)

 \vec{R}_0 et \vec{M}_{G_0} se déduisant de \vec{R}_1 et \vec{M}_{G_1} en utilisant l'équilibre global (2.4).

Les six cas ci-dessus vont maintenant être envisagés successivement, ce qui peut être schématisé de la façon suivante Étant donné que toutes les conditions aux limites portent

Figure 2.2 - Décomposition en problèmes élémentaires

sur les contraintes, l'approche en contraintes sera utilisée pour résoudre ce problème. Le champ de contrainte sera donc cherché comme vérifiant les équations d'équilibre et de Beltrami-Michell, et les conditions aux limites, soit

$$\begin{cases} \sigma_{ij,j} = 0 \\ \sigma_{ij,mm} + \frac{1}{1+\nu} \sigma_{ll,jj} = 0 \\ \vec{T}(M,\vec{n}) = \vec{0} \text{ sur } S_{\ell} \\ \vec{R} (x_1 = 0) = \vec{R}_0, \ \vec{M}_G (x_1 = 0) = \vec{M}_{G_0} \\ \vec{R} (x_1 = \ell) = \vec{R}_1, \ \vec{M}_G (x_1 = \ell) = \vec{M}_{G_1} \end{cases}$$
(2.6)

2.3 Solutions élémentaires

2.3.1 Traction-compression

Pour ce problème, il est très aisé de constater que

$$\left[\overline{\overline{\sigma}}\right]_{\{\vec{e}_i\}} = \frac{\mathbf{R}_{11}}{|\mathbf{S}|} \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(2.7)

avec |S| aire de la section droite, est solution du problème pour le cas de charge 1. D'où en utilisant la loi de comportement

$$[\overline{\overline{e}}]_{\{\vec{e}_i\}} = \frac{R_{11}}{E|S|} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\nu & 0 \\ 0 & 0 & -\nu \end{bmatrix}$$
(2.8)

et après intégration, à un déplacement de solide rigide près

$$\{\vec{u}\}_{\{\vec{e}_i\}} = \frac{R_{11}}{E|S|} \begin{cases} x_1 \\ -\nu x_2 \\ -\nu x_3 \end{cases}$$
(2.9)

Ceci conduit à un déplacement axial selon $\vec{e_1}$ linéaire en x_1 , et à des déplacements transversaux (selon $\vec{e_2}$ et $\vec{e_3}$) indépendants de x_1 . Pour une section rectangulaire de dimensions $a \times b$, la déformée présentée figure 2.3 est obtenue selon l'axe de la poutre d'une part, et dans la section d'autre part (pour $R_{11} > 0$). Ces deux figures sont caractéristiques de **l'effet Poisson**, qui se traduit par des déformations transversales égales à $-\nu$ fois les déformations axiales, lorsque la sollicitation est purement axiale. Enfin, pour une poutre

Figure 2.3 - Déformée de la poutre en traction, selon deux plans de projection

élancée (ou longue), c'est-à-dire si $\ell \gg$ dimensions de la section, notons que le changement de forme de la section est négligeable devant le déplacement axial.

2.3.2 Flexion pure

Considérons maintenant les cas de charge 2 et 3, le chargement étant dû uniquement à des moments aux extrémités, portés par l'axe \vec{e}_2 ou \vec{e}_3 .

Pour le cas du moment autour de l'axe $\vec{e_3}$, si les directions $\vec{e_2}$ et $\vec{e_3}$ sont principales d'inertie (c'est-à-dire si $\int_{\mathbf{S}} x_2 x_3 d\mathbf{S} = 0$), alors la solution $\overline{\sigma}$ est de la forme

$$[\overline{\sigma}]_{\{\vec{e}_i\}} = -\frac{M_{13}}{I_{33}} x_2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \text{ avec } I_{33} = \int_{S} x_2^2 dS \text{ moment quadratique principal } (2.10)$$

Ainsi, la matière travaille en traction ou en compression selon le signe de x_2 , et pour $M_{13} > 0$, d'où la répartition des contraintes normales σ_{11} , illustrée figure 2.4. La loi de

Figure 2.4 - *Répartition de la contrainte* σ_{11} *dans une section*

comportement donne

$$[\overline{\overline{e}}]_{\{\vec{e}_i\}} = -\frac{M_{13}}{I_{33}} x_2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\nu & 0 \\ 0 & 0 & -\nu \end{bmatrix}$$
(2.11)

Et après intégration, le déplacement solution est donné (à un déplacement de solide rigide près) par

$$\{\vec{u}\}_{\{\vec{e}_i\}} = \frac{M_{13}}{EI_{33}} \begin{cases} -x_1 x_2 \\ \frac{1}{2} \left(x_1^2 + \nu \left(x_2^2 - x_3^2\right)\right) \\ \nu x_2 x_3 \end{cases}$$
(2.12)

Ainsi, le centre de surface $(x_2 = x_3 = 0)$ subit un déplacement de valeur $v = \frac{1}{2} \frac{M_{13}}{EI_{33}} x_1^2$ selon \vec{e}_2 et décrit donc une parabole. Le calcul de la courbure κ de la courbe $v(x_1)$ s'obtient en appliquant la formule

$$\kappa = \frac{v_{,11}}{\left(1 + \left(v_{,1}\right)^2\right)^{3/2}} \tag{2.13}$$

Or, $v_{,1}$ est un terme de $\overline{grad}\vec{u}$, et donc dans l'hypothèse des petites transformations est très petit devant 1, si bien que $\kappa \approx v_{,11}$. En outre, dans le cas présent, κ est constant et vaut

$$\kappa = \frac{M_{13}}{EI_{33}} \tag{2.14}$$

La déformée de la ligne des centres de surface est donc très bien approchée par un cercle de rayon $1/\kappa$. Par la suite, la ligne des centres de surface sera appelée **ligne moyenne ou fibre moyenne**.

En ce qui concerne la déformée d'une section droite $(x_1 = cste)$, pour une section rectangulaire la déformée obtenue est présentée figure 2.5, avec un changement de forme (gonflement ou contraction) directement lié au signe de x_2 compte tenu de l'expression de σ_{11} , ce qui traduit l'effet Poisson.

Figure 2.5 - Déformée de la poutre en flexion, selon deux plans de projection

Pour une poutre élancée, il est licite de considérer que le déplacement selon $\vec{e_2}$ est quasiment constant sur la section, et que les déplacements correspondant au changement de forme de la section sont négligeables par rapport à ce dernier. Le vecteur rotation $\vec{\omega} = \frac{1}{2}r\vec{o}t \vec{u}$, qui est associé à la partie anti-symétrique du gradient des déplacements, a pour expression $\vec{\omega} = \frac{M_{13}}{EI_{33}} (\nu x_3 \vec{e_1} + x_1 \vec{e_3})$. Ainsi, dans une section à $x_1 = cste$, la rotation est constante autour de $\vec{e_3}$. La déformée de cette section est donc plane, avec dans le plan le changement de forme représenté auparavant.

D'autre part, $\omega_3 = \frac{M_{13}}{EI_{33}}x_1$, et est donc égal à la pente $v_{,1}$ du déplacement de la ligne moyenne, ce qui signifie que **la section droite déformée est perpendiculaire à la déformée de la ligne moyenne**. Ce résultat peut aussi être justifié en remarquant que $\gamma_{12} = 0$, d'où le fait que les transformés de \vec{e}_1 et \vec{e}_2 restent perpendiculaires. Cette propriété est illustrée figure 2.5.

Le cas de la flexion autour de l'axe \vec{e}_2 (cas de charge n°3) se traite de façon analogue et il suffit de transposer les résultats précédents pour obtenir

$$\sigma_{11} = \frac{M_{12}}{I_{22}} x_3 \quad ; \quad w = -\frac{1}{2} \frac{M_{12}}{EI_{22}} x_1^2 \tag{2.15}$$

avec $I_{22} = \int_S x_3^2 dS$ moment quadratique principal et w déplacement selon \vec{e}_3 de la ligne moyenne.

2.3.3 Torsion

Le cas de charge n°4 avec un moment axial aux extrémités est maintenant étudié. La résolution du problème conduit à $\overline{\sigma}$ de la forme

$$[\overline{\sigma}]_{\{\vec{e}_i\}} = \begin{bmatrix} 0 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & 0 & 0 \\ \sigma_{13} & 0 & 0 \end{bmatrix} \text{ avec } \begin{cases} \sigma_{12} = \frac{M_{11}}{J}\hat{\psi}_{,3} \\ \sigma_{13} = -\frac{M_{11}}{J}\hat{\psi}_{,2} \end{cases} \text{ et } J = 2\int_{S}\hat{\psi}dS$$
(2.16)

où $\hat{\psi}(x_2, x_3)$ est solution d'un problème de Laplacien posé sur la section

$$\begin{cases} \Delta \hat{\psi} + 2 = 0 \quad \text{dans S} \\ \hat{\psi} = 0 \quad \text{sur } \partial S \end{cases}$$
(2.17)

Il s'ensuit

$$[\overline{\overline{\varepsilon}}]_{\{\vec{e}_i\}} = \frac{\mathcal{M}_{11}}{2\mu \mathcal{J}} \begin{bmatrix} 0 & \hat{\psi}_{,3} & -\hat{\psi}_{,2} \\ \hat{\psi}_{,3} & 0 & 0 \\ -\hat{\psi}_{,2} & 0 & 0 \end{bmatrix}$$
(2.18)

et après intégration, à un champ de solide rigide près, que

$$\{\vec{u}\}_{\{\vec{e}_i\}} = \frac{M_{11}}{\mu J} \begin{cases} \varphi(x_2, x_3) \\ -x_1 x_3 \\ x_1 x_2 \end{cases} \quad \text{avec} \quad \varphi_{,2} = \hat{\psi}_{,3} + x_3 \quad \text{et} \quad \varphi_{,3} = -\hat{\psi}_{,2} + x_2 \qquad (2.19)$$

Ainsi, les contraintes et déformations sont indépendantes de x_1 .

Le champ de déplacement se décompose en un déplacement axial indépendant de x_1 , et en déplacements transversaux dus à la rotation $\frac{M_{11}}{\mu J}x_1 \vec{e_1}$ qui s'applique sur toute la section, autour de l'axe $\mu \vec{e_1}$. Il vient ainsi la relation

$$\frac{M_{11}}{\mu J} = \omega_{1,1} \tag{2.20}$$

Dans le cas de la section circulaire et du tube à section circulaire, $\varphi = 0$. Ceci conduit à la déformée présentée figure 2.6 Cependant, dans le cas général, $\varphi \neq 0$ et la section ne reste

Figure 2.6 - Déformée d'une poutre à section circulaire en torsion

pas plane. Ce phénomène est appelé gauchissement.

2.3.4 Flexion simple

Considérons maintenant le problème 5. Le champ de contrainte $\overline{\overline{\sigma}}$ est trouvé de la forme

$$[\overline{\sigma}]_{\{\vec{e}_i\}} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & 0 & 0 \\ \sigma_{13} & 0 & 0 \end{bmatrix} \text{ avec } \begin{cases} \sigma_{11} = \frac{-R_{12} \left(\ell - x_1\right) x_2}{I_{33}} \\ \sigma_{12} = \frac{-R_{12}}{2I_{33}} \left(x_2^2 - \frac{\nu}{1 + \nu} x_3^2\right) + \chi_{,3} \\ \sigma_{13} = -\chi_{,2} \end{cases}$$
(2.21)

 χ étant solution d'un problème de Laplacien posé sur la section

$$\begin{cases} \Delta \chi = 0 \text{ dans } S \\ \chi_{,3}n_2 - \chi_{,2}n_3 = \frac{R_{12}}{2I_{33}} \left(x_2^2 - \frac{\nu}{1+\nu} x_3^2 \right) n_2 \text{ sur } \partial S \end{cases}$$
(2.22)

Les expressions des déformations et des déplacements ne sont pas reportées ici, mais le calcul de la courbure donne

$$v_{,11}(x_1) = \frac{-R_{12}(\ell - x_1)}{EI_{33}}$$
(2.23)

soit une formule analogue au cas de la flexion pure en remarquant que le moment (moment de flexion qui sera défini dans le chapitre suivant) s'exerçant sur la section située à l'abscisse x_1 vaut $R_{12} (\ell - x_1) \vec{e_3}$.

Pour approfondir l'analyse, il est nécessaire de résoudre le problème en χ . Or, ce problème n'admet pas en général de solution analytique, sauf dans le cas de sections de forme très simple, comme une section circulaire par exemple.

Pour une section circulaire de rayon a, la déformation ε_{12} due au cisaillement σ_{12} est négligeable par rapport à la rotation de la ligne moyenne $v_{,1}$, dès lors que la poutre est suffisamment élancée, soit $\ell \gg a$. Il y a donc une analogie avec la réponse flexion pure, où les sections déformées restent planes et orthogonales à la déformée de la ligne moyenne. L'effet dû au cisaillement est donc négligeable dans ce cas. Une autre façon de mettre en évidence ce résultat consiste à comparer les énergies de déformation dues aux contraintes de flexion σ_{11} à celles des contraintes de cisaillement σ_{12} et σ_{13} . Il apparaît alors que leur rapport devient très grand si $\ell \gg a$.

Ainsi, pour une poutre élancée, l'action de la résultante des efforts selon $\vec{e_2}$ et $\vec{e_3}$ est négligeable par rapport aux effets de la flexion. Ceci se traduit sur la déformée par un gauchissement négligeable par rapport aux déplacements de flexion, et sur l'énergie par la prépondérance de l'énergie de flexion.

Le cas de charge n°6 se traite de la même façon et on obtient

$$\sigma_{11} = \frac{-R_{13} \left(\ell - x_1\right) x_3}{I_{22}} \tag{2.24}$$

3

Une théorie approchée des poutres

3.1 Introduction

Le problème de Saint-Venant, étudié au chapitre précédent, bien que simple par sa géométrie et ses conditions aux limites (ces dernières étant définies par un torseur d'efforts sur les sections extrêmes), donne lieu à des calculs fastidieux avec une approche tridimensionnelle. Il serait donc très utile de proposer une modélisation simplifiée des poutres (classiquement appelée **Résistance des Matériaux**) pour obtenir rapidement les informations jugées essentielles (déformée, répartition des contraintes) sous l'action d'efforts extérieurs connus globalement. Il s'agit donc de réaliser le passage d'une modélisation tridimensionnelle à une schématisation monodimensionnelle. De ce fait, le formalisme de l'élasticité linéarisée et ses équations aux dérivées partielles va se transformer en un système d'équations différentielles. Il en résulte un gain énorme sur le temps de résolution du problème, au prix de quelques approximations qui seront soulignées ci-après.

Pour effectuer cette simplification $3D \rightarrow 1D$, les résultats obtenus sur le problème de Saint-Venant vont largement être exploités, et extrapolés à des situations plus générales (c'est-à-dire pour d'autres types de chargement et de conditions aux limites). Le cadre de travail est donc le même que dans les chapitres précédents, à savoir celui des petites perturbations. D'autre part, la structure étudiée est supposée constituée d'un même matériau, à comportement élastique isotrope.

Ce chapitre suit un plan classique dans le cadre de la Mécanique des Milieux Continus, l'objectif étant de mettre en place les différents éléments de la théorie des poutres, conduisant à la formulation d'un problème aux limites. L'exposé portera donc successivement sur la description de la cinématique, des déformations, des efforts internes et des équations locales qui les régissent, la loi de comportement et enfin les conditions aux limites. La résolution du problème sera ensuite abordée.

La présentation s'appuie principalement sur les références suivantes : [10] et [8] (ouvrages magistraux), ainsi que [11], [1] et [5].

3.2 Définitions

L'étude concerne des **structures élancées**, encore appelées **poutres**, qui ont la caractéristique géométrique d'avoir une dimension très supérieure aux deux autres. Selon la grande dimension, la poutre est assimilée à une courbe correspondant à sa **ligne moyenne**. Transversalement à celle-ci est définie la **section** S de la poutre, dont le centre de surface appartient à la ligne moyenne. Dans ce chapitre, l'exposé est limité aux poutres dont la ligne moyenne est une droite.

Figure 3.1 - Le domaine Ω étudié et une section droite S

3.3 Hypothèses cinématiques

Pour définir le déplacement de la poutre dans le cadre d'une modélisation 1D, il est prévisible que des hypothèses sur la déformation des sections seront nécessaires, afin de "gagner" deux dimensions. Or, pour le problème de Saint-Venant, il avait été remarqué qu'excepté pour le cas de la torsion, une bonne approximation de la déformation de la section de la poutre pouvait être obtenue en considérant que celle-ci subissait un mouvement d'ensemble (i.e. de solide rigide), qui après déformation la maintient perpendiculaire à la ligne moyenne. Ceci conduit à la formulation de l'hypothèse de Navier-Bernoulli

Hypothèse de Navier-Bernoulli : toute section droite d'une poutre subit un déplacement de solide rigide qui la maintient perpendiculaire à la ligne moyenne déformée.

L'interprétation graphique de la décomposition de la poutre en sa section et sa ligne moyenne est donnée figure 3.2.

Figure 3.2 - Schématisation de la poutre par sa ligne moyenne et sa section

La cinématique de la section est donc régie par 6 degrés de liberté. Les 3 degrés de liberté de translation sont définis par les composantes u, v et w du déplacement $\vec{u}_{\rm G}$ du centre de surface G de la section. Ainsi, pour un point M quelconque appartenant à la section de

centre de surface G, avec $\vec{GM} = x_2\vec{e}_2 + x_3\vec{e}_3$, le déplacement de solide rigide de la section se traduit par

$$\vec{u}_{\rm M} = \vec{u}_{\rm G} + \vec{\theta} \wedge \vec{\rm GM} \Rightarrow \{\vec{u}_{\rm M}\}_{\{\vec{e}_i\}} = \begin{cases} u(x_1) - x_2\theta_3(x_1) + x_3\theta_2(x_1) \\ v(x_1) - x_3\theta_1(x_1) \\ w(x_1) + x_2\theta_1(x_1) \end{cases}$$
(3.1)

en notant $\vec{\theta}$ la rotation de la section.

Pour le centre de surface de la section, les composantes du déplacement correspondent pour u au **déplacement axial** de la ligne moyenne, et aux **déplacements transverses** pour v et w. Ces derniers sont encore appelés **flèches**.

La conservation de l'angle droit entre la section et la ligne moyenne conduit aux relations

$$\begin{cases} \theta_3 = v_{,1} \\ \theta_2 = -w_{,1} \end{cases}$$
(3.2)

Cette relation est illustrée dans le plan $(\vec{e_1}, \vec{e_2})$ figure 3.3.

Figure 3.3 - Conservation de l'angle droit entre la section et la ligne moyenne

La rotation θ_1 , quant à elle, ne peut être reliée au déplacement de la ligne moyenne. Finalement

$$\{\vec{u}_{\mathrm{M}}\}_{\{\vec{e}_i\}} = \begin{cases} u(x_1) - x_2 v_{,1}(x_1) - x_3 w_{,1}(x_1) \\ v(x_1) - x_3 \theta_1(x_1) \\ w(x_1) + x_2 \theta_1(x_1) \end{cases}$$
(3.3)

La comparaison de ce champ avec la solution élastique 3D du problème de Saint-Venant fait apparaître une approximation, conséquence directe de l'hypothèse de mouvement de solide rigide de la section : ses changements de forme sont négligés. Ceux-ci peuvent être décomposés en deux parties : ceux qui ont lieu dans le plan de la section, et ceux qui se produisent en dehors de celui-ci, et qui correspondent au gauchissement. Comme indiqué dans le chapitre 2, les premiers d'entre eux peuvent effectivement être négligés si la poutre est suffisamment élancée. Quant au gauchissement, qui peut être dû à la torsion ou à la flexion simple, il peut se calculer en résolvant un problème **local** sur la section de la poutre, sans qu'il soit utile de le prendre en compte dans la modélisation **globale** de la poutre. Pour finir, il convient de remarquer que pour ces deux sollicitations, la cinématique définie par 3.3 permet d'obtenir les déplacements et rotations d'ensemble de la section.

3.4 Déformations

Le champ de déplacement étant connu, le champ de déformation s'en déduit simplement, grâce à la partie symétrique de son gradient, puisque le cadre adopté est celui des petites perturbations. Le gradient est donné par

$$\overline{grad}\vec{u} = \vec{u}_{,i} \otimes \vec{e}_i \tag{3.4}$$

D'où, en considérant l'expression 3.1 de \vec{u} , avec à ce stade $\vec{\theta}(x_1)$ (c'est-à-dire sans avoir pris en compte encore la conservation de l'angle droit entre la ligne moyenne et la section), et d'autre part de la relation $\vec{GM} = x_2\vec{e}_2 + x_3\vec{e}_3$, il vient

$$\overline{grad}\vec{u} = \left(\vec{u}_{G}(x_{1}) + \theta(\vec{x}_{1}) \wedge \vec{GM}\right), i \otimes \vec{e}_{i}$$

$$= \left(\vec{u}_{G,1} + \vec{\theta}_{,1} \wedge \vec{GM}\right) \otimes \vec{e}_{1} + \vec{\theta}(x_{1}) \wedge (\vec{GM})_{,i} \otimes \vec{e}_{i}$$

$$= \left(\vec{u}_{G,1} + \vec{\theta}_{,1} \wedge \vec{GM}\right) \otimes \vec{e}_{1} + \left(\vec{\theta} \wedge \vec{e}_{2}\right) \otimes \vec{e}_{2} + \left(\vec{\theta} \wedge \vec{e}_{3}\right) \otimes \vec{e}_{3}$$

$$= \left(\vec{u}_{G,1} + \vec{\theta}_{,1} \wedge \vec{GM}\right) \otimes \vec{e}_{1} - \theta_{3}\vec{e}_{1} \otimes \vec{e}_{2} + \theta_{2}\vec{e}_{1} \otimes \vec{e}_{3} + \theta_{1}(\vec{e}_{3} \otimes \vec{e}_{2} - \vec{e}_{2} \otimes \vec{e}_{3})$$
(3.5)

Ce qui conduit aux déformations, en prenant la partie symétrique

$$\overline{\overline{e}} = \frac{1}{2} \Big((\vec{u}_{\mathrm{G},1} + \vec{\theta}_{,1} \wedge \mathrm{\vec{G}M} + \vec{e}_{1} \wedge \vec{\theta}) \otimes \vec{e}_{1} + \vec{e}_{1} \otimes (\vec{u}_{\mathrm{G},1} + \vec{\theta}_{,1} \wedge \mathrm{\vec{G}M} + \vec{e}_{1} \wedge \vec{\theta}) \Big)$$
(3.6)

Il est ainsi aisé de vérifier que toutes les composantes de déformation associées au changement de forme de la section sont nulles, ce qui est une conséquence directe de l'hypothèse de mouvement de solide rigide de la section. En effet, $\varepsilon_{ij} = 0$ si i ou $j \neq 1$.

Sous forme matricielle, l'expression des déformations est

$$\left[\overline{\overline{e}}\right]_{\{\vec{e}_i\}} = \begin{bmatrix} u_{,1} + x_3\theta_{2,1} - x_2\theta_{3,1} & \frac{1}{2}(v_{,1} - \theta_3 - x_3\theta_{1,1}) & \frac{1}{2}(w_{,1} + \theta_2 + x_2\theta_{1,1}) \\ 0 & 0 \\ \text{Sym.} & 0 \end{bmatrix}$$
(3.7)

L'expression 3.6 des déformations amène naturellement à introduire les deux vecteurs suivants, associés respectivement à la partie constante et linéaire sur la section, soit

$$\vec{\epsilon_0} := \vec{u}_{\mathrm{G},\,1} + \vec{e}_1 \wedge \vec{\theta} \qquad \qquad \vec{\kappa_0} := \vec{\theta}_{,\,1} \tag{3.8}$$

de sorte que l'expression des déformations devient

$$\overline{\overline{\varepsilon}} = \frac{1}{2} [(\vec{\epsilon_0} + \vec{\kappa_0} \wedge \vec{\mathrm{GM}}) \otimes \vec{e_1} + \vec{e_1} \otimes (\vec{\epsilon_0} + \vec{\kappa_0} \wedge \vec{\mathrm{GM}})]$$
(3.9)

Ces deux vecteurs forment les **déformations généralisées** de la poutre. Leurs composantes sont

$$\{\vec{\epsilon_0}\}_{\{\vec{e_i}\}} = \left\{ \begin{array}{c} u_{,1} \\ v_{,1} - \theta_3 \\ w_{,1} + \theta_2 \end{array} \right\} \qquad \qquad \{\vec{\kappa_0}\}_{\{\vec{e_i}\}} = \left\{ \begin{array}{c} \theta_{1,1} \\ \theta_{2,1} \\ \theta_{3,1} \end{array} \right\} \tag{3.10}$$

Elles sont faciles à interpréter. Ainsi, la composante 1 de ϵ_0 caractérise la variation relative de longueur de la ligne moyenne, alors que les composantes 2 et 3 sont égales à la diminution de l'angle droit entre la ligne moyenne et les directions 2 et 3 respectivement. Quant à $\vec{\kappa_0}$, sa composante 1 correspond au **taux de rotation de torsion** associé à la rotation de la section sur elle-même, alors que les deux autres composantes sont les **courbures** de la ligne moyenne, respectivement dans les plans $(\vec{e_1}, \vec{e_3})$ et $(\vec{e_2}, \vec{e_3})$.

La prise en compte de la deuxième partie de l'hypothèse de Navier-Bernoulli, à savoir la relation 3.2, qui traduit la conservation de l'angle droit entre la ligne moyenne et la section, implique

$$\{\vec{\epsilon_0}\}_{\{\vec{e_i}\}} = \begin{cases} u_{,1} \\ 0 \\ 0 \end{cases} \qquad \qquad \{\vec{\kappa_0}\}_{\{\vec{e_i}\}} = \begin{cases} \theta_{1,1} \\ -w_{,11} \\ v_{,11} \end{cases} \qquad (3.11)$$

Et l'expression des déformations devient

$$[\overline{\overline{e}}]_{\{\vec{e}_i\}} = \begin{bmatrix} u_{,1} - x_3 w_{,11} - x_2 v_{,11} & -\frac{1}{2} x_3 \theta_{1,1} & \frac{1}{2} x_2 \theta_{1,1} \\ 0 & 0 \\ \text{Sym.} & 0 \end{bmatrix}$$
(3.12)

Dans ce cas, les composantes de déformations ε_{12} et ε_{13} sont dues uniquement à la torsion et résultent du changement d'orientation des parallèles à la génératrice du cylindre, initialement portées par $\vec{e_1}$, cf. section chapitre 2 section 2.3.3.

3.5 Contraintes intégrées - Efforts internes

Comme il a été déjà mentionné à plusieurs reprises, la théorie simplifiée de poutre est une théorie globale, dans laquelle les effets locaux sont négligés ou restitués à une échelle supérieure. Ainsi, pour la cinématique, les déformations d'une section dans son plan ne sont pas représentées dans la théorie, qui ne retient que les mouvements de solide rigide de celle-ci, qui peuvent s'interpréter comme ses mouvements globaux. De façon analogue, la modélisation adoptée pour les efforts internes consiste en une représentation globale. C'est ainsi que les efforts internes, définis sur la section, sont décrits par un torseur pris en son centre de surface. Notons que cette définition est tout à fait cohérente avec le principe de Saint-Venant, cf. section 1.5, qui est largement utilisé dans les modèles à base de poutres, dans lesquels les sollicitations extérieures sont définies globalement.

Une façon classique de faire apparaître ce torseur des efforts internes consiste à décomposer artificiellement une poutre en 2 parties, notées 1 et 2, grâce à une coupure selon une section S. Les efforts intérieurs sur la section S de normale extérieure $\vec{e_1}$ sont les efforts exercés par la partie 2 sur la partie 1, et leur torseur est noté $[\mathcal{T}_{2\to1}]$. De même, lorsque c'est la normale extérieure $-\vec{e_1}$ qui est considérée, le torseur des efforts intérieurs est noté $[\mathcal{T}_{1\to2}]$, et en vertu du principe d'action-réaction, $[\mathcal{T}_{2\to1}] = -[\mathcal{T}_{1\to2}]$ si aucune sollicitation n'est exercée sur la section S.

Le torseur $[\mathcal{T}_{2\to 1}]$ sera dorénavant noté $[\mathcal{T}_{int}(x_1, \vec{e_1})]$, la notation $(x_1, \vec{e_1})$ indiquant de façon explicite la dépendance de ce torseur à l'abscisse de la section, et à l'orientation de sa normale extérieure. Ainsi, $[\mathcal{T}_{1\to 2}]$ aura pour expression $[\mathcal{T}_{int}(x_1, -\vec{e_1})]$. Le torseur des efforts intérieurs se décompose en une résultante $\vec{R}_{int}(x_1, \vec{e_1})$ et un moment résultant au centre de surface $\vec{M}_{int}(x_1, \vec{e_1})$. La projection de la résultante et du moment résultant sur la normale à la section et dans le plan de la section conduit aux définitions suivantes (:= indique une définition). L'illustration est donnée figure 3.4, où les moments sont représentés par des flèches doubles.

Figure 3.4 - Composantes du torseur des efforts internes : résultante à gauche, moment à droite

$$\begin{cases} \vec{R}_{int}(x_1, \vec{e}_1) := N\vec{e}_1 + \vec{V} := N\vec{e}_1 + V_2\vec{e}_2 + V_3\vec{e}_3 \\ \vec{M}_{int}(x_1, \vec{e}_1) := T\vec{e}_1 + \vec{M} := T\vec{e}_1 + M_2\vec{e}_2 + M_3\vec{e}_3 \end{cases}$$
(3.13)

avec

- N : effort normal
- V : effort tranchant
- T : moment de torsion
- M : moment de flexion (ou moment fléchissant)

Il est facile de relier ces quantités aux contraintes. En effet, dès lors que la poutre est décomposée en deux tronçons, apparaît sur sa section une distribution surfacique d'efforts qui par définition correspond au vecteur contrainte $\overline{\sigma}.\vec{n} = \vec{T}(M,\vec{n})$ ($\vec{T}(M,\vec{n})$ ne doit pas être confondu avec T qui représente le moment de torsion), où \vec{n} est la normale extérieure. Celle-ci vaut $\vec{e_1}$ pour la partie 1 (respectivement $-\vec{e_1}$ pour la partie 2). Le torseur des efforts internes est donc simplement le **torseur résultant** du vecteur contrainte, soit pour la résultante

$$\vec{\mathbf{R}}_{int}(x_1, \vec{e}_1) = \int_{\mathbf{S}} \vec{\mathbf{T}} \left(\vec{x}, \vec{e}_1 \right) \ d\mathbf{S} \Rightarrow \begin{cases} \mathbf{N} \\ \mathbf{V}_2 \\ \mathbf{V}_3 \end{cases} = \int_{\mathbf{S}} \begin{cases} \sigma_{11} \\ \sigma_{21} \\ \sigma_{31} \end{cases} \ d\mathbf{S}$$
(3.14)

et pour le moment résultant

$$\vec{\mathcal{M}}_{int}(x_1, \vec{e}_1) = \int_{\mathcal{S}} \vec{\mathcal{GM}} \wedge \vec{\mathcal{T}}(\vec{x}, \vec{e}_1) \ d\mathcal{S} \Rightarrow \begin{cases} \mathcal{T} \\ \mathcal{M}_2 \\ \mathcal{M}_3 \end{cases} = \int_{\mathcal{S}} \begin{cases} x_2 \sigma_{31} - x_3 \sigma_{21} \\ x_3 \sigma_{11} \\ -x_2 \sigma_{11} \end{cases} d\mathcal{S}$$
(3.15)

Les composantes du torseur des efforts internes sont donc aussi logiquement appelées contraintes intégrées, ou encore contraintes généralisées.

Il en résulte que les efforts intérieurs associés à la section S en considérant la normale extérieure $-\vec{e_1}$ seront simplement donnés par

$$\begin{cases} \vec{R}_{int}(x_1, -\vec{e}_1) = \int_S \vec{T} (M, -\vec{e}_1) \ dS = -\int_S \vec{T} (M, \vec{e}_1) \ dS = -\vec{R}_{int}(x_1, \vec{e}_1) \\ \vec{M}_{int}(x_1, -\vec{e}_1) = -\vec{M}_{int}(x_1, \vec{e}_1) \end{cases}$$
(3.16)

ce qui restitue le principe d'action-réaction, soit

$$[\mathcal{T}_{int}(x_1, -\vec{e}_1)] = -[\mathcal{T}_{int}(x_1, \vec{e}_1)]$$
(3.17)

Ces relations jouent le rôle de la relation de Cauchy $\vec{T} = \overline{\sigma} \cdot \vec{n}$ pour un milieu continu tridimensionnel. Elles peuvent être écrites de façon synthétique sous la forme

$$\left\{ \vec{\mathbf{R}}_{int}(x_1, n\vec{e_1}) \right\}_{\{\vec{e}_i\}} = n \left\{ \begin{array}{c} \mathbf{N} \\ \mathbf{V}_2 \\ \mathbf{V}_3 \end{array} \right\}$$

$$\text{avec } n = \pm 1$$

$$\left\{ \vec{\mathbf{M}}_{int}(x_1, n\vec{e_1}) \right\}_{\{\vec{e}_i\}} = n \left\{ \begin{array}{c} \mathbf{T} \\ \mathbf{M}_2 \\ \mathbf{M}_3 \end{array} \right\}$$

$$(3.18)$$

ce qui est interprété graphiquement figure 3.5

Figure 3.5 - Conséquences du principe d'action réaction sur la résultante des efforts internes, pour deux sections en vis-à-vis

3.6 Equations locales

L'approche choisie ici pour établir ces équations consiste à considérer un tronçon de poutre, et à écrire l'équilibre global de celui-ci.

Soit donc un tronçon délimité par deux sections dont les centres de surface sont notés A et B. Ce tronçon est soumis à des efforts extérieurs, qui se décomposent en des efforts volumiques \vec{f} et des efforts surfaciques \vec{T}_d sur son contour latéral S_ℓ , qui après intégration sur la section donnent une répartition linéïque d'efforts, de torseur noté $[\varphi(x_1)]$. La résultante est notée $\vec{q}(x_1)$ et le moment résultant au centre de surface de la section $\vec{m}(x_1)$.

Ce tronçon de poutre ayant été isolé de son milieu d'origine, il s'exerce sur ses sections extrêmes des efforts de cohésion, qui correspondent aux efforts internes. Ceci est schématisé figure 3.6, où sont représentés séparément les efforts et les moments agissant sur le tronçon.

Figure 3.6 - Analyse de l'équilibre d'un tronçon de poutre

L'équilibre global du tronçon s'exprime par

$$\left[\mathcal{T}_{int}(x_{1_{\rm A}}, -\vec{e}_1)\right] + \left[\mathcal{T}_{int}(x_{1_{\rm B}}, \vec{e}_1)\right] + \int_{x_{1_{\rm A}}}^{x_{1_{\rm B}}} [\varphi(x_1)] \ dx_1 = [0] \tag{3.19}$$

D'où sur la résultante et le moment (pris en A)

$$\begin{pmatrix}
\vec{R}_{int}(x_{1_{A}}, -\vec{e}_{1}) + \vec{R}_{int}(x_{1_{B}}, \vec{e}_{1}) + \int_{x_{1_{A}}}^{x_{1_{B}}} \vec{q}(x_{1}) dx_{1} = \vec{0} \\
\vec{M}_{int}(x_{1_{A}}, -\vec{e}_{1}) + \vec{M}_{int}(x_{1_{B}}, \vec{e}_{1}) + (x_{1_{B}} - x_{1_{A}})\vec{e}_{1} \wedge \vec{R}_{int}(x_{1_{B}}, \vec{e}_{1}) \\
+ \int_{x_{1_{A}}}^{x_{1_{B}}} ((x_{1} - x_{1_{A}})\vec{e}_{1} \wedge \vec{q}(x_{1}) + \vec{m}(x_{1})) dx_{1} = \vec{0}
\end{cases}$$
(3.20)

Soit, en tenant compte de la propriété $[\mathcal{T}_{int}(x_{1_A}, -\vec{e_1})] = -[\mathcal{T}_{int}(x_{1_A}, \vec{e_1})]$, et en omettant pour alléger l'écriture la notation $(x_1, \vec{e_1})$

$$\begin{cases} \int_{x_{1_{A}}}^{x_{1_{B}}} \left(\frac{d\vec{R}_{int}}{dx_{1}} + \vec{q}\right) dx_{1} = \vec{0} \\ \int_{x_{1_{A}}}^{x_{1_{B}}} \left(\frac{d}{dx_{1}} \left(\vec{M}_{int} + (x_{1} - x_{1_{A}})\vec{e}_{1} \wedge \vec{R}_{int}\right) + (x_{1} - x_{1_{A}})\vec{e}_{1} \wedge \vec{q}(x_{1}) + \vec{m}(x_{1})\right) dx_{1} = \vec{0} \end{cases}$$
(3.21)

Ces équations doivent être vérifiées quelles que soient les valeurs de x_{1_A} et x_{1_B} . La première équation fournit donc

$$\frac{d\vec{\mathbf{R}}_{int}}{dx_1} + \vec{q} = \vec{0} \tag{3.22}$$

D'autre part, dans la deuxième équation, sachant que

$$\frac{d}{dx_1}((x_1 - x_{1_A})\vec{e}_1 \wedge \vec{R}_{int}) = \vec{e}_1 \wedge \vec{R}_{int} + (x - x_{1_A})\vec{e}_1 \wedge \frac{d\vec{R}_{int}}{dx_1}$$
(3.23)

alors d'après 3.22, il vient

$$\frac{d\vec{\mathcal{M}}_{int}}{dx_1} + \vec{e}_1 \wedge \vec{\mathcal{R}}_{int} + \vec{m} = \vec{0} \tag{3.24}$$

Les équations précédentes sont valables à condition qu'aucun torseur d'efforts "concentrés" ne soit appliqué entre les sections extrêmes du tronçon. Cela peut cependant être le cas, qu'il s'agisse de charges concentrées ou d'actions de liaison correspondant à des liaisons cinématiques, cf. figure 3.7.

Il faut alors reprendre les équations 3.20. Ainsi, en faisant tendre A vers C à gauche, noté C⁻, et B vers C à droite, noté C⁺, elles conduisent à

$$\begin{cases} \vec{R}_{int}(x_{1C^{-}}, -\vec{e}_{1}) + \vec{R}_{int}(x_{1C^{+}}, \vec{e}_{1}) + \vec{F}_{C} = \vec{0} \\ \vec{M}_{int}(x_{1C^{-}}, -\vec{e}_{1}) + \vec{M}_{int}(x_{1C^{+}}, \vec{e}_{1}) + \vec{M}_{C} = \vec{0} \end{cases}$$
(3.25)

Figure 3.7 - Exemple de tronçon avec sollicitations concentrées

d'où en notant $\llbracket g(\mathbf{C}) \rrbracket := g(\mathbf{C}^+) - g(\mathbf{C}^-)$, il vient

$$\begin{cases} [[\vec{R}_{int}(x_{1C})]] + \vec{F}_{C} = \vec{0} \\ [[\vec{M}_{int}(x_{1C})]] + \vec{M}_{C} = \vec{0} \end{cases}$$
(3.26)

En D, les équations sont

$$\begin{cases} \vec{u}_{\rm D} = \vec{0} \\ [\![\vec{M}_{int}(x_{\rm 1D})]\!] = \vec{0} \end{cases}$$
(3.27)

Il s'ensuit une **discontinuité** du torseur des efforts internes en C et D. En effet, en D, il existe des actions de liaison associées à $\vec{u}_{\rm D} = \vec{0}$, qui de ce fait engendrent une discontinuité de la résultante des efforts internes. Par la suite, de tels points seront donc appelés points de discontinuité. Signalons dès à présent que la discontinuité ne concerne que le torseur des efforts internes. Les champs $\vec{u}_{\rm G}$ et $\vec{\theta}$ sont en effet continus, pour respecter la continuité du milieu.

3.7 Loi de comportement généralisée

Si à ce stade un premier bilan équations/inconnues est effectué, il vient pour les inconnues : 4 variables cinématiques pour le mouvement de solide rigide de la section : u, v, w et θ_1 , 4 composantes de déformations généralisées : $\vec{\epsilon_0} \cdot \vec{e_1}$ et $\vec{\kappa_0}$, et les 6 composantes du torseur des efforts internes $[\mathcal{T}_{int}(x_1, \vec{e_1})]$.

Les équations établies jusqu'à présent sont les 4 équations 3.11 donnant l'expression des déformations généralisées en fonction du déplacement, et les 6 équations d'équilibre locales 3.22 et 3.24 portant sur le torseur des efforts internes. Il manque cependant des équations pour résoudre le problème posé, et obtenir les déformations et déplacements de la poutre. Comme en Mécanique des Milieux Continus, les équations qui font défaut ici sont celles qui expriment le comportement élastique de la poutre, et relient le torseur des efforts internes aux déformations généralisées. Notons d'ores et déjà la notion de comportement de poutre, qui est plus large que celui de matériau, puisqu'il est naturel que le comportement de la structure étudiée mette en jeu des caractéristiques matériau et des propriétés géométriques de la section.

Une façon naturelle d'obtenir cette loi de comportement est de recourir à l'expérience, avec l'inconvénient d'avoir à réitérer cette démarche dès que le matériau ou la forme de la section changent. L'objectif ici est donc d'obtenir une expression analytique de cette loi de comportement, autant que faire se peut en utilisant les équations issues de la Mécanique des Milieux Continus tridimensionnelle, afin d'avoir la meilleure précision possible. Une première approche pour aboutir à la loi de comportement, consiste à choisir comme point de départ l'expression 3.12 des déformations de la poutre pour appliquer la loi de comportement tridimensionnelle. Les contraintes peuvent alors être calculées en utilisant la loi de Hooke du matériau, puis par intégration les composantes du torseur des efforts internes. Or la loi de Hooke s'écrit

$$\overline{\overline{\sigma}} = \lambda trace(\overline{\overline{\varepsilon}})\overline{\overline{Id}} + 2\mu\overline{\overline{\varepsilon}} \quad \text{avec} \quad \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} \qquad \mu = \frac{E}{2(1+\nu)}$$
(3.28)

Ceci conduit à $\sigma_{11} = (\lambda + 2\mu)(u_{,1} - x_3w_{,11} - x_2v_{,11})$ et par suite, étant donné que l'origine des coordonnées x_i est au centre de surface à $N = (\lambda + 2\mu)|S|u_{,1}$ où |S| correspond à l'aire de la section. Cette expression est en contradiction avec le résultat $N = E|S|u_{,1}$ provenant de la résolution du problème de Saint-Venant pour le cas de la traction pure, cf. 2.9. Ceci vient du fait que les contraintes ont été calculées à partir de l'expression des déformations issues de l'hypothèse de Navier-Bernoulli, qui néglige les déformations de la section dans son plan. Or ces déformations existent dans le cas de la traction pure. Elles expriment "l'effet Poisson", comme cela peut être constaté dans l'expression 2.8, et illustré figure 2.3. **Cette approche n'est donc pas satisfaisante** car elle ne redonne pas pour la poutre la loi de comportement obtenue par résolution d'un problème 3D. Le même constat pourrait être fait pour la flexion pure, pour laquelle "l'effet Poisson" est également observé, cf. 2.11 et figure 2.5(b).

En fait, l'analyse des résultats du problème de Saint-Venant, cf. chapitre 2, montre que quelle que soit la sollicitation considérée (traction, flexion pure ou simple, torsion), l'état de contrainte est **anti-plan**, c'est-à-dire de la forme

$$[\overline{\sigma}]_{\{\vec{e}_i\}} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & 0 & 0 \\ \sigma_{13} & 0 & 0 \end{bmatrix}$$
(3.29)

Partons maintenant de cette expression pour calculer les déformations via la loi de Hooke

$$\overline{\overline{\varepsilon}} = -\frac{\nu}{\mathrm{E}} trace(\overline{\overline{\sigma}})\overline{\mathrm{Id}} + \frac{1+\nu}{\mathrm{E}}\overline{\overline{\sigma}}$$
(3.30)

il vient alors

$$\varepsilon_{11} = \frac{1}{E}\sigma_{11} \tag{3.31}$$

$$\varepsilon_{12} = \frac{(1+\nu)}{E}\sigma_{12} \tag{3.32}$$

$$\varepsilon_{13} = \frac{(1+\nu)}{E}\sigma_{13} \tag{3.33}$$

d'où en inversant ces relations et en tenant compte des expressions 3.11 et 3.12 des déformations

$$\begin{cases} \sigma_{11} \\ \sigma_{21} \\ \sigma_{31} \end{cases} = \begin{bmatrix} E & 0 & Ex_3 & -Ex_2 \\ 0 & -\mu x_3 & 0 & 0 \\ 0 & \mu x_2 & 0 & 0 \end{bmatrix} \begin{cases} \vec{\epsilon_0} \cdot \vec{e_1} \\ \{\vec{\kappa_0}\} \end{cases}$$
(3.34)

1

Il s'ensuit, en intégrant sur la section et compte tenu de la définition 3.14 et 3.15 du torseur des efforts intérieurs

$$\begin{cases} \vec{R}_{int}(x_{1}, \vec{e}_{1}) \\ \vec{M}_{int}(x_{1}, \vec{e}_{1}) \end{cases} = \int_{S} \begin{cases} \sigma_{11} \\ \sigma_{21} \\ \sigma_{31} \\ x_{2}\sigma_{31} - x_{3}\sigma_{21} \\ x_{3}\sigma_{11} \\ -x_{2}\sigma_{11} \end{cases} dS$$

$$= \left(\int_{S} \begin{bmatrix} E & 0 & Ex_{3} & -Ex_{2} \\ 0 & -\mu x_{3} & 0 & 0 \\ 0 & \mu x_{2} & 0 & 0 \\ 0 & \mu (x_{2}^{2} + x_{3}^{2}) & 0 & 0 \\ 0 & \mu (x_{2}^{2} + x_{3}^{2}) & 0 & 0 \\ Ex_{3} & 0 & Ex_{3}^{2} & -Ex_{2}x_{3} \\ -Ex_{2} & 0 & -Ex_{3}x_{2} & Ex_{2}^{2} \end{bmatrix} dS \right) \begin{cases} \vec{e}_{0}.\vec{e}_{1} \\ \{\vec{\kappa}_{0}\} \end{cases}$$

$$(3.35)$$

Or, d'après la définition de la ligne moyenne, $\int_{S} x_2 dS = \int_{S} x_3 dS = 0$. De plus, en introduisant les moments quadratiques ou moments d'inertie géométriques

$$I_{22} = \int_{S} x_3^2 \, dS \quad ; \quad I_{33} = \int_{S} x_2^2 \, dS \quad ; \quad I_{23} = \int_{S} x_2 x_3 \, dS \tag{3.37}$$

il vient

$$\begin{bmatrix}
\vec{R}_{int}(x_1, \vec{e}_1) \cdot \vec{e}_1 = N = E|S|\vec{\epsilon}_0 \cdot \vec{e}_1 = E|S|u_{,1} \\
\vec{M}_{int}(x_1, \vec{e}_1) \cdot \vec{e}_1 = T = \mu(I_{22} + I_{33})\vec{\kappa}_0 \cdot \vec{e}_1 = \mu(I_{22} + I_{33})\theta_{1,1} \\
\begin{cases}
\vec{M}_{int}(x_1, \vec{e}_1) \cdot \vec{e}_2 \\
\vec{M}_{int}(x_1, \vec{e}_1) \cdot \vec{e}_3
\end{bmatrix} = \begin{cases}
M_2 \\
M_3
\end{bmatrix} = E \begin{bmatrix}
I_{22} & -I_{23} \\
-I_{23} & I_{33}
\end{bmatrix} \begin{cases}
\vec{\kappa}_0 \cdot \vec{e}_2 \\
\vec{\kappa}_0 \cdot \vec{e}_3
\end{bmatrix} \\
= E \begin{bmatrix}
I_{22} & -I_{23} \\
-I_{23} & I_{33}
\end{bmatrix} \begin{cases}
-w_{,11} \\
v_{,11}
\end{bmatrix}$$
(3.38)

et si les axes \vec{e}_2 et \vec{e}_3 sont choisis comme étant les axes principaux d'inertie, alors $I_{23} = 0$ et la dernière équation se simplifie. Ceci sera supposé vrai par la suite.

Ces relations sont identiques à celles obtenues à partir de la résolution 3D du problème de Saint-Venant, pour la traction-compression cf. 2.9, et la flexion, cf. 2.14. En revanche, il y a une différence pour la torsion, cf. 2.20. En effet, cette dernière relation fait intervenir via le terme J le gauchissement, qui est ignoré dans la théorie de poutre dans laquelle la section est supposée rester plane. La relation $(3.38)_2$ doit donc être corrigée et remplacée par $T = \mu J \theta_{1,1}$, où J a été défini en 2.16.

D'où finalement

$$\left\{ \begin{array}{c} \vec{\mathrm{R}}_{int}(x_1, \vec{e}_1).\vec{e}_1 \\ \vec{\mathrm{M}}_{int}(x_1, \vec{e}_1) \end{array} \right\} = \left[\begin{array}{c} \mathrm{E}|\mathrm{S}| & 0 & 0 & 0 \\ 0 & \mu \mathrm{J} & 0 & 0 \\ 0 & 0 & \mathrm{EI}_{22} & 0 \\ 0 & 0 & 0 & \mathrm{EI}_{33} \end{array} \right] \left\{ \begin{array}{c} \vec{\epsilon_0}.\vec{e}_1 \\ \{\vec{\kappa_0}\} \end{array} \right\} := [c_p] \left\{ \begin{array}{c} \vec{\epsilon_0}.\vec{e}_1 \\ \{\vec{\kappa_0}\} \end{array} \right\}$$
(3.39)

où a été introduite la matrice raideur $[c_p]$ de la poutre.

Sous cette forme, et compte tenu des relations E > 0 et $\mu > 0$ (cf. 1.5) sur les caractéristiques matériau, et de la positivité de I₂₂, I₃₃ (cf. 3.37) et de J (cf. T.D.), il en découle immédiatement les propriétés suivantes

$$\forall \{\vec{\mathbf{R}}_{int}.\vec{e}_{1}; \{\vec{\mathbf{M}}_{int}\}^{\mathrm{T}}\}, \ \{\vec{\mathbf{R}}_{int}.\vec{e}_{1}; \{\vec{\mathbf{M}}_{int}\}^{\mathrm{T}}\} [c_{p}]^{-1} \left\{ \begin{array}{c} \vec{\mathbf{R}}_{int}.\vec{e}_{1} \\ \{\vec{\mathbf{M}}_{int}\} \end{array} \right\} \ge 0$$

$$\forall \{\vec{\epsilon_{0}}.\vec{e}_{1}; \{\vec{\kappa_{0}}\}^{\mathrm{T}}\}, \ \{\vec{\epsilon_{0}}.\vec{e}_{1}; \{\vec{\kappa_{0}}\}^{\mathrm{T}}\} [c_{p}] \left\{ \begin{array}{c} \vec{\epsilon_{0}}.\vec{e}_{1} \\ \{\vec{\kappa_{0}}\} \end{array} \right\} \ge 0$$

$$(3.40)$$

Remarques

- il s'avère que la relation 3.35 ne permet pas de relier les efforts tranchants $\vec{R}_{int}.\vec{e}_2$ et $\vec{R}_{int}.\vec{e}_3$ aux déformations généralisées. Ce résultat était prévisible car les variables duales des efforts tranchants sont $\vec{\epsilon_0}.\vec{e}_2$ et $\vec{\epsilon_0}.\vec{e}_3$, qui sont nulles en théorie de Navier-Bernoulli. En fait, les efforts tranchants peuvent être calculés à partir des équations statiques : équations d'équilibre, conditions aux limites statiques et conditions statiques de discontinuité.

- le caractère anti-plan de l'état de contrainte, obtenu lors de la résolution du problème de Saint-Venant, est rigoureusement exact si le chargement est appliqué sur les sections extrêmes de la poutre. Il est supposé ici que ce résultat demeure pour un chargement quelconque. Cela constitue une approximation, facile à mettre en évidence dès lors que des efforts sont imposés sur le contour latéral S_{ℓ} de la section, dont la normale extérieure appartient au plan (\vec{e}_2, \vec{e}_3) .

- pour finir, remarquons qu'outre la limitation notée précédemment sur la relation obtenue pour la torsion, l'application de la loi de Hooke à partir de l'état de contrainte anti-plan 3.29 donne $\varepsilon_{22} = \varepsilon_{22} = \frac{-\nu}{E}\sigma_{11}$. Ceci restitue bien l'effet Poisson, conformément à la solution 3D du problème de Saint-Venant. C'est en revanche en contradiction avec l'hypothèse de Navier-Bernoulli, dont les approximations sont ici à nouveau visibles.

3.8 Conditions aux limites

La combinaison des équations d'équilibre et de la loi de comportement intégrée conduit à un système différentiel d'ordre 12. Sa résolution fait donc apparaître des constantes d'intégration, qui seront déterminées par 12 conditions aux limites : 6 à chaque extrémité de la poutre.

Ces conditions aux limites s'écrivent d'une manière générale :

$$u = u_d \quad \text{ou} \quad nN = F_{d1}$$

$$v = v_d \quad \text{ou} \quad nV_2 = F_{d2}$$

$$w = w_d \quad \text{ou} \quad nV_3 = F_{d3}$$

$$\theta_1 = \theta_{1_d} \quad \text{ou} \quad nT = M_{d1}$$

$$-w_{,1} = \theta_{2d} \quad \text{ou} \quad nM_2 = M_{d2}$$

$$v_{,1} = \theta_{3d} \quad \text{ou} \quad nM_3 = M_{d3}$$

$$(3.41)$$

le ou étant exclusif, puisqu'il n'est pas possible d'appliquer à la fois un effort (respectivement un moment) et un déplacement (resp. une rotation). Dans ces équations, \vec{F}_d et \vec{M}_d représentent la résultante et le moment résultant des efforts extérieurs imposés sur les sections extrêmes, et $n = \vec{n}.\vec{e_1}$ où \vec{n} est la normale extérieure à la section extrême. Ainsi, $n = \pm 1$.

Ci-après sont donnés quelques exemples de conditions aux limites.

 Poutre scellée dans un bâti supposé indéformable, cf. figure 3.8 : cette liaison est appelée encastrement. Toutes les conditions aux limites sont de type cinématique avec un second membre nul.

Figure 3.8 - Liaison encastrement : cas réel et modélisation

- Poutre soumise à des efforts extérieurs à une extrémité. Toutes les conditions aux limites sont de type effort et moment imposé, avec n = -1 en 0 et n = 1 en ℓ , cf. figure 3.9.

Figure 3.9 - Torseur extérieur imposé sur les sections extrêmes

– Poutre sur **appuis**, cf. figure 3.10, dans le cas d'un problème plan dans le plan $(\vec{e_1}, \vec{e_2})$ (seulement 3 conditions aux limites à chaque extrémité). En supposant que le milieu extérieur (hachuré) est indéformable, et que la liaison avec celui-ci est parfaite (pas de discontinuité de déplacement avec la poutre). P représente le poids du solide posé sur la poutre. Sur ce dernier exemple, il y a une approximation dans la mesure où on écrit que le déplacement est nul au niveau de la ligne moyenne, alors qu'en réalité c'est à la base de la poutre que ce déplacement est nul.

Figure 3.10 - Poutre reposant sur un milieu rigide : cas réel et modélisation

3.9 Bilan

Pour fixer les idées, considérons le problème illustré figure 3.11, où seules les sollicitations concentrées sont représentées. L'extrémité gauche en A de la poutre est supposée avoir une

cinématique imposée, alors que sur son extrémité droite en B des efforts et moments extérieurs sont appliqués dans les trois directions de l'espace, notés \vec{F}_d et \vec{M}_d respectivement. Les autres efforts extérieurs (volumiques et surfaciques sur le contour latéral de la section) conduisent après intégration à un torseur de résultante \vec{q} et de moment \vec{m} , cf. section 3.6. D'autre part, deux discontinuités existent aux points C et D. Il s'agit d'un appui en C, avec un moment extérieur concentré noté \vec{M}_C . En D, un effort concentré de résultante \vec{F}_D est imposé.

Figure 3.11 - Exemple de poutre, représentée pour simplifier avec une cinématique imposée nulle en A (encastrement), et sans faire figurer les efforts et moments répartis

Les équations du problème à résoudre sont donc (la notation $(x_1, \vec{e_1})$ est omise pour alléger l'écriture)

$$\vec{R}_{int,1} + \vec{q} = \vec{0}
\vec{M}_{int,1} + \vec{e}_{1} \land \vec{R}_{int} + \vec{m} = \vec{0}
\begin{cases} \vec{R}_{int}.\vec{e}_{1} \\ \{\vec{M}_{int}\} \end{cases} = \begin{bmatrix} E|S| & 0 & 0 & 0 \\ 0 & \mu J & 0 & 0 \\ 0 & 0 & EI_{22} & 0 \\ 0 & 0 & 0 & EI_{33} \end{bmatrix} \begin{cases} \vec{e}_{0}.\vec{e}_{1} \\ \{\vec{\kappa}_{0}\}\} \end{cases}$$
sur $]0, \mathbf{x}_{1C}[\cup]\mathbf{x}_{1C}, \mathbf{x}_{1D}[\cup]\mathbf{x}_{1D}, \ell[$
 $\vec{e}_{0}.\vec{e}_{1} = u, 1
\{\vec{\kappa}_{0}\}_{\{\vec{e}_{i}\}} = \begin{cases} \theta_{1,1} \\ -w, 11 \\ v, 11 \end{cases} \end{cases}$
 $\vec{u}(0) = \vec{u}_{d} \text{ et } \vec{\theta}(0) = \vec{\theta}_{d} \\ \vec{R}_{int}(\ell, \vec{e}_{1}) = \vec{F}_{d} \text{ et } \vec{M}_{int}(\ell, \vec{e}_{1}) = \vec{M}_{d} \end{cases}$ conditions aux limites en $\{0\}$ et $\{\ell\}$
 $\vec{u}_{G}(\mathbf{x}_{1C}) = \vec{0} \\ [\vec{M}_{int}(\mathbf{x}_{1C})] + \vec{M}_{C} = \vec{0} \\ [\vec{M}_{int}(\mathbf{x}_{1D})] = \vec{0} \end{cases}$ équations pour les discontinuités en $\{\mathbf{x}_{1C}\}$ et $\{\mathbf{x}_{1D}\}$
 (3.42)

Avant d'aborder la résolution de ce problème, il importe de s'assurer qu'il est bien posé, ce qui fait l'objet de la section suivante.

3.10 Eléments théoriques

Comme cela sera illustré par la suite, la résolution du problème 3.42 par la méthode des efforts internes est en général privilégiée. Par conséquent, les éléments théoriques qui suivent se restreignent à une approche en contrainte (au sens 3D du terme), c'est-à-dire dans le cas d'une poutre au torseur des efforts internes.

Définition : le torseur $[\mathcal{T}_{int}(x_1, \vec{e_1})]$ est dit statiquement admissible **S.A.** avec les données statiques du problème (3.42) s'il satisfait les équations d'équilibre $(3.42)_{(1-2)}$, les conditions aux limites statiques $(3.42)_{(7)}$ et les conditions statiques de discontinuité $(3.42)_{(9-10-11)}$. Il vient alors la formulation variationnelle en contrainte.

Formulation variationnelle en contrainte : si $[\mathcal{T}_{int}(x_1, \vec{e_1})]$ est solution du problème 3.42, alors

$$\begin{cases} [\mathcal{T}_{int}(x_1, \vec{e}_1)] \text{ est S.A.} \\ \forall [\mathfrak{T}_{int}(x_1, \vec{e}_1)] \text{ S.A. }; \text{A}([\mathcal{T}_{int}], [\mathfrak{T}_{int}] - [\mathcal{T}_{int}]) = \Phi^*([\mathfrak{T}_{int}] - [\mathcal{T}_{int}]) \end{cases}$$
(3.43)

où la notation $(x_1, \vec{e_1})$ a été omise pour alléger l'écriture, et avec les définitions suivantes, en posant $[\mathcal{T}_{int}^*] = [\mathfrak{T}_{int}] - [\mathcal{T}_{int}]$

$$\begin{cases} A([\mathcal{T}_{int}], [\mathcal{T}_{int}^*]) = \int_0^\ell \left(\frac{NN^*}{E|S|} + \frac{TT^*}{\mu J} + \frac{M_2M_2^*}{EI_{22}} + \frac{M_3M_3^*}{EI_{33}} \right) dx_1 \\ \Phi^*([\mathcal{T}_{int}^*]) = -\vec{R}_{int}^*(0).\vec{u}_d - \vec{M}_{int}^*(0).\vec{\theta}_d \end{cases}$$
(3.44)

La démonstration est donnée ci-après. D'après la loi de comportement $(3.42)_3$ et la relation $(3.42)_{(4-5)}$ entre les déformations généralisées et les variables cinématiques de la poutre, il vient

$$\frac{\mathrm{NN}^{*}}{\mathrm{E}|\mathrm{S}|} + \frac{\mathrm{TT}^{*}}{\mu \mathrm{J}} + \frac{\mathrm{M}_{2}\mathrm{M}_{2}^{*}}{\mathrm{EI}_{22}} + \frac{\mathrm{M}_{3}\mathrm{M}_{3}^{*}}{\mathrm{EI}_{33}} = \mathrm{N}^{*}u_{,1} + \mathrm{T}^{*}\theta_{1,1} - \mathrm{M}_{2}^{*}w_{,11} + \mathrm{M}_{3}^{*}v_{,11}
= (\mathrm{N}^{*}u + \mathrm{T}^{*}\theta_{1} - \mathrm{M}_{2}^{*}w_{,1} + \mathrm{M}_{3}^{*}v_{,1})_{,1}
- (\mathrm{N}^{*},_{1}u + \mathrm{T}^{*},_{1}\theta_{1} - \mathrm{M}_{2,1}^{*}w_{,1} + \mathrm{M}_{3,1}^{*}v_{,1})$$
(3.45)

Or, $[\mathcal{T}_{int}^*]$, égal à la différence de deux torseurs S.A., est donc un champ S.A. avec des données statiques nulles du problème, ou encore S.A. homogène (**S.A.H**). Il vérifie ainsi

$$\begin{cases} \vec{\mathbf{R}^{*}}_{int,1} = \vec{0} \\ \vec{\mathbf{M}^{*}}_{int,1} + \vec{e_{1}} \wedge \vec{\mathbf{R}^{*}}_{int} = \vec{0} \end{cases}$$
(3.46)

Ce qui donne par projection les 6 équations suivantes

$$\begin{cases} N^{*}_{,1} = 0 \quad ; \quad V^{*}_{2,1} = 0 \quad ; \quad V^{*}_{3,1} = 0 \\ T^{*}_{,1} = 0 \quad ; \quad M^{*}_{2,1} - V^{*}_{3} = 0 \quad ; \quad M^{*}_{3,1} + V^{*}_{2} = 0 \end{cases}$$
(3.47)

Par conséquent, la deuxième partie du second membre de 3.45 se réduit à $M_{2,1}^*w_{,1} - M_{3,1}^*v_{,1}$ et s'écrit finalement

$$\mathbf{M}_{2,1}^*w_{,1} - \mathbf{M}_{3,1}^*v_{,1} = \mathbf{V}_3^*w_{,1} + \mathbf{V}_2^*v_{,1} = (\mathbf{V}_2^*v + \mathbf{V}_3^*w)_{,1} - \mathbf{V}_{2,1}^*v - \mathbf{V}_{3,1}^*w$$
(3.48)

et en utilisant à nouveau 3.47, il vient

$$\frac{\mathrm{NN}^{*}}{\mathrm{E}|\mathrm{S}|} + \frac{\mathrm{TT}^{*}}{\mu\mathrm{J}} + \frac{\mathrm{M}_{2}\mathrm{M}_{2}^{*}}{\mathrm{EI}_{22}} + \frac{\mathrm{M}_{3}\mathrm{M}_{3}^{*}}{\mathrm{EI}_{33}} = (\mathrm{N}^{*}u + \mathrm{V}_{2}^{*}v + \mathrm{V}_{3}^{*}w + \mathrm{T}^{*}\theta_{1} - \mathrm{M}_{2}^{*}w_{,1} + \mathrm{M}_{3}^{*}v_{,1})_{,1}$$

$$= (\mathrm{R}^{*}_{int}.\vec{u}_{\mathrm{G}} + \mathrm{M}^{*}_{int}.\vec{\theta})_{,1}$$

$$(3.49)$$

Cette dernière équation est alors intégrée entre 0 et ℓ , de façon classique pour le premier membre. Pour le second membre, compte tenu des discontinuités, l'intégrale est décomposée en la somme de 3 intégrales, entre 0 et x_{1C^-} , x_{1C^+} et x_{1D^-} , et enfin entre x_{1D^+} et ℓ . Ceci donne, $\vec{u}_{\rm G}$ et θ étant continus

Pour les deux premiers termes, il faut tenir compte des conditions aux limites cinématiques $(3.42)_{(6)}$. D'autre part, $[\mathcal{T}_{int}^*]$ étant (**S.A.H**), il vérifie dans 3.42 les conditions aux limites statiques et les équations de discontinuité statique avec un second membre nul. De plus, d'après 3.42, $\vec{u}_{\rm G}(x_{1\rm C}) = \vec{0}$, ce qui finit la démonstration du résultat 3.43.

Remarquons que la forme bilinéaire $A([\mathcal{T}_{int}], [\mathcal{T}_{int}^*])$ définie par 3.44 a une forme tout à fait comparable à celle utilisée en élasticité 3D, à savoir 1.21. En effet

$$\frac{\mathrm{NN}^{*}}{\mathrm{E}|\mathrm{S}|} + \frac{\mathrm{TT}^{*}}{\mu\mathrm{J}} + \frac{\mathrm{M}_{2}\mathrm{M}_{2}^{*}}{\mathrm{EI}_{22}} + \frac{\mathrm{M}_{3}\mathrm{M}_{3}^{*}}{\mathrm{EI}_{33}} = \{\vec{\mathrm{R}}_{int}.\vec{e}_{1}; \{\vec{\mathrm{M}}_{int}\}^{\mathrm{T}}\}[c_{p}]^{-1} \left\{ \begin{array}{c} \vec{\mathrm{R}}_{int}.\vec{e}_{1}\\ \{\vec{\mathrm{M}}_{int}\} \end{array} \right\}$$
(3.51)

d'où l'analogie avec 1.21, puisque $[c_p]^{-1}$ représente le comportement en souplesse de la poutre.

L'unicité de la solution en torseur des efforts internes est alors très facile à démontrer. En effet, en envisageant deux torseurs solution $[\mathcal{T}_{int}(x_1, \vec{e_1})]$ et $[\mathfrak{T}_{int}(x_1, \vec{e_1})]$, leur différence est d'après 3.43 solution de A($[\mathfrak{T}_{int}] - [\mathcal{T}_{int}], [\mathfrak{T}_{int}] - [\mathcal{T}_{int}]$) = 0. Ceci entraîne immédiatement $[\mathfrak{T}_{int}] - [\mathcal{T}_{int}] = 0$, du fait que la forme bilinéaire A est définie positive, d'après 3.40.

Le torseur des efforts internes étant unique, il en est de même pour les déformations généralisées $\vec{e_0}.\vec{e_1}$ et $\vec{\kappa_0}$. Une intégration simple fournit alors $u = \vec{u}_{\rm G}.\vec{e_1}$ et $\vec{\theta}$. Ceci donne donc directement θ_1 , mais il faut intégrer une fois de plus les relations $\theta_2 = -w_{,1}$ et $\theta_3 = v_{,1}$ pour obtenir v et w, c'est-à-dire les composantes $v = \vec{u}_{\rm G}.\vec{e_2}$ et $w = \vec{u}_{\rm G}.\vec{e_3}$.

La solution en déplacement est en général unique, sauf si les données cinématiques homogènes du problème (sur les conditions aux limites et les équations de discontinuité) permettent un déplacement d'ensemble de la structure. Dans cette circonstance, comme en élasticité 3D, cf. section 1.3.2, le problème n'admet de solution qu'à condition que le torseur des efforts extérieurs vérifie des équations d'équilibre global. Pour le problème étudié en 3.42, le déplacement et la rotation sont prescrits en $x_1 = 0$. Aucun mouvement d'ensemble n'est donc possible.

La formulation variationnelle en contrainte permet d'établir le théorème de l'énergie complémentaire. Théorème de l'énergie complémentaire : parmi tous les torseurs S.A., le torseur solution minimise l'énergie complémentaire définie par $W^* - \Phi^*$. W^* représente l'énergie élastique de contrainte et a pour expression

$$W^{*}([\mathcal{T}_{int}]) = \frac{1}{2}A([\mathcal{T}_{int}], [\mathcal{T}_{int}]) = \frac{1}{2}\int_{0}^{\ell} \left(\frac{N^{2}}{E|S|} + \frac{T^{2}}{\mu J} + \frac{M_{2}^{2}}{EI_{22}} + \frac{M_{3}^{2}}{EI_{33}}\right) dx_{1}$$
(3.52)

Pour démontrer ce théorème, considérons le torseur S.A. $[\mathfrak{T}_{int}]$. La forme A étant bilinéaire symétrique et Φ^* linéaire, il vient

$$W^{*}([\mathfrak{T}_{int}]) - \Phi^{*}([\mathfrak{T}_{int}]) - (W^{*}([\mathcal{T}_{int}]) - \Phi^{*}([\mathcal{T}_{int}])) = \frac{1}{2} (A([\mathfrak{T}_{int}], [\mathfrak{T}_{int}]) - A([\mathcal{T}_{int}], [\mathcal{T}_{int}])) - \Phi^{*}([\mathfrak{T}_{int}] - [\mathcal{T}_{int}]) = \frac{1}{2} (A([\mathfrak{T}_{int}] - [\mathcal{T}_{int}], [\mathfrak{T}_{int}] - [\mathcal{T}_{int}])) + A([\mathcal{T}_{int}], [\mathfrak{T}_{int}] - [\mathcal{T}_{int}]) - \Phi^{*}([\mathfrak{T}_{int}] - [\mathcal{T}_{int}]) (3.53)$$

Et d'après 3.43, la somme des deux derniers termes est nulle. De plus, étant donné les propriétés de la loi de comportement de la poutre, cf. 3.40, la forme A est définie positive, ce qui établit le théorème.

Dans le cas particulier (très fréquent en pratique) où les données cinématiques du problème sont nulles (conditions aux limites et équations de discontinuité), le torseur solution minimise simplement l'énergie élastique de contrainte.

3.11 Résolution du problème

Comme dans le cas de l'élasticité 3D, deux approches sont disponibles pour la résolution du problème 3.42. Une méthode en déplacements et une méthode en forces, dont les grandes lignes sont données ci-après. Ces méthodes seront illustrées plus en détails au cours des chapitres suivants.

3.11.1 Approche en déplacement

Les variables cinématiques sont ici privilégiées et choisies comme inconnues principales. Comme en élasticité 3D, les équations d'équilibre sont directement exprimées sur ces variables. Pour ce faire, tout d'abord, les expressions des déformations $(3.42)_{4-5}$ sont reportées dans la loi de comportement $(3.42)_3$, ce qui conduit à

$$N = E|S|u_{,1} ; T = \mu J\theta_{1,1} ; M_2 = -EI_{22}w_{,11} ; M_3 = EI_{33}v_{,11}$$
(3.54)

Puis cette dernière expression est introduite dans $(3.42)_{1-2}$. Il en découle des équations différentielles suivantes sur u, v, w et θ_1 , après combinaison des équations de résultante et de moment dans le plan (\vec{e}_2, \vec{e}_3)

$$\begin{cases} E|S|u_{,11} + q_1 = 0 \\ \mu J \theta_{1,11} + m_1 = 0 \\ EI_{33}v_{,1111} - q_2 + m_{3,1} = 0 \\ -EI_{22}w_{,1111} + q_3 + m_{2,1} = 0 \end{cases}$$
(3.55)

Ces équations sont en général faciles à intégrer analytiquement. Les constantes d'intégration sont alors fixées par les conditions aux limites et les équations de discontinuité. Pour faciliter la prise en compte des équations statiques dans ces deux dernières familles d'équations, les expressions 3.54 sont utilisées.

Cette méthode est tout à fait systématique. Notons qu'à la différence de l'élasticité 3D où il faut proposer un candidat à la solution, cette fois-ci, il suffit d'intégrer les équations différentielles 3.55. Les calculs peuvent cependant s'avérer fastidieux, et ce d'autant plus que le nombre de discontinuités est important. En effet, dès qu'il y a des discontinuités, il faut intégrer ces équations sur des intervalles sans discontinuités, puis raccorder les solutions obtenues en écrivant les équations de discontinuité du problème ainsi que la continuité de toutes les variables cinématiques aux points de discontinuité. Ainsi, pour l'exemple du problème 3.42, il faut intégrer séparément sur $]0, x_{1C}[$, sur $]x_{1C}, x_{1D}[$ et sur $]x_{1D}, \ell[$.

C'est pourquoi la méthode des forces peut s'avérer plus efficace.

3.11.2 Approche en force

L'approche consiste ici à choisir comme inconnues principales le torseur des efforts internes. En se restreignant, parmi les équations du problème 3.42, à celles qui mettent en jeu uniquement le torseur, il vient

$$\vec{R}_{int,1} + \vec{q} = \vec{0} \\
\vec{M}_{int,1} + \vec{e}_{1} \wedge \vec{R}_{int} + \vec{m} = \vec{0} \\
\vec{R}_{int}(\ell, \vec{e}_{1}) = \vec{F}_{d} \text{ et } \vec{M}_{int}(\ell, \vec{e}_{1}) = \vec{M}_{d} \\
\vec{R}_{int}(x_{1C}) + \vec{M}_{C} = \vec{0} \\
\vec{R}_{int}(x_{1D}) + \vec{F}_{D} = \vec{0} \\
\vec{R}_{int}(x_{1D}) = \vec{0}
\end{aligned}$$

$$\vec{R}_{int}(x_{1D}) = \vec{0}$$

Deux cas de figure se présentent alors

- ou bien ces équations sont suffisantes pour déterminer le torseur des efforts internes $[\mathcal{T}_{int}]$. Auquel cas le système est dit **isostatique**, et l'espace des champs S.A. est réduit à un seul élément. Il est remarquable qu'alors le torseur des efforts internes soit obtenu sans faire intervenir la loi de comportement de la poutre;
- ou bien ces ces équations sont insuffisantes, ce qui est le cas pour le problème considéré dans 3.56.

En effet, en intégrant les équations d'équilibre, \vec{R}_{int} et \vec{M}_{int} sont définis à un vecteur constant près, sur chacun des intervalles $]0, x_{1C}[,]x_{1C}, x_{1D}[$ et $]x_{1D}, \ell[$. Celui-ci peut être fixé sur $]x_{1D}, \ell[$ grâce aux conditions aux limites statiques en ℓ . C'est aussi vrai pour $]x_{1C}, x_{1D}[$, en exploitant les résultats sur $]x_{1D}, \ell[$ et les équations statiques de discontinuité en D, qui fournissent la valeur de \vec{R}_{int} et \vec{M}_{int} en D⁻. De même sur $]0, x_{1C}[$, les équations statiques de discontinuité en C permettent de déterminer \vec{M}_{int} . En revanche, \vec{R}_{int} reste indéterminé, car il y a des conditions aux limites cinématiques en 0 et des équations cinématiques de discontinuité sur $\vec{u}_{\rm G}$ en C. Aucune information n'est donc disponible sur la valeur de \vec{R}_{int} en ces points.

Une autre façon de mettre en évidence cette difficulté est de constater que les actions de liaison, dues à ces équations cinématiques (en 0 et C), sont au nombre de 9, alors qu'il y a seulement, pour un problème 3D, 6 équations d'équilibre global pour la structure. Ces dernières sont obtenues en intégrant $(3.56)_{1-2}$ entre 0 et ℓ , en tenant compte des équations de discontinuité statiques, et en considérant que pour chaque condition cinématique (conditions aux limites ou discontinuité), la composante correspondante de l'action de liaison est une inconnue.

Le système est alors dit hyperstatique de degré h (ici h = 3).

La méthode de résolution consiste alors à choisir h inconnues hyperstatiques, notées $\vec{X} / {\{\vec{X}\}^T} = {\{X_1; X_2; ...; X_h\}}$ (par exemple ici les 3 composantes de l'action de liaison en C) et à exprimer $[\mathcal{T}_{int}]$ en fonction du chargement et de \vec{X} . Ceci est en effet possible car dans cette étape \vec{X} est considéré comme donné (même s'il n'est pas encore connu), ce qui rend le système isostatique.

Pour trouver enfin la solution du problème, le théorème de l'énergie complémentaire est utilisé, sous la forme

$$\frac{\partial}{\partial \vec{X}} (W^* - \Phi^*) = \vec{0}$$
(3.57)

soit

$$\frac{\partial}{\partial \mathbf{X}_i} (\mathbf{W}^* - \Phi^*) = 0 \quad i = 1 \dots h \tag{3.58}$$

Et dans le cas fréquent déjà évoqué où les données cinématiques du problème sont nulles ce résultat prend la forme du théorème de Ménabréa.

Théorème de Ménabréa : pour un système hyperstatique, les inconnues hyperstatiques minimisent l'énergie élastique de contrainte W^{*}.

Une fois le torseur des efforts internes connus, toutes les équations 3.56 qui représentent les équations statiques du problème 3.42 sont satisfaites. Les équations complémentaires sont alors utilisées pour obtenir les déformations généralisées, puis par intégration les variables cinématiques de la poutre. La solution est ainsi connue en tout point de la poutre.

Il arrive aussi qu'au lieu de rechercher la solution en déplacement sur toute la poutre, l'objectif soit d'obtenir celle-ci en des points particuliers.

Sur l'exemple étudié ici, considérons pour simplifier le cas où les conditions aux limites cinématiques sont nulles en 0, et intéressons-nous plus particulièrement au calcul du déplacement $u(\ell).\vec{e_1} = u(\ell)$. Supposons à ce stade que ce déplacement est en fait imposé, et que par conséquent l'effort associé $\vec{F_d}.\vec{e_1}$ soit inconnu. Cela revient à dire qu'une condition aux limites de type cinématique est imposée en ℓ , avec une réaction $\vec{F_d}.\vec{e_1}$ inconnue. Le calcul de $u(\ell)$ peut alors être effectué grâce à l'application du théorème de l'énergie complémentaire. En effet, avec des conditions cinématiques nulles en 0 et $u(\ell)$ en ℓ , il vient $\Phi^* = \vec{F_d}.\vec{e_1}u(\ell)$, et le théorème fournit

$$\frac{\partial}{\partial(\vec{\mathbf{F}}_d.\vec{e}_1)} (\mathbf{W}^* - \Phi^*) = 0 \tag{3.59}$$

soit encore d'après l'expression de Φ^*

$$u(\ell) = \frac{\partial W^*}{\partial (\vec{F}_d.\vec{e}_1)} \tag{3.60}$$

Ce résultat s'énonce de façon plus générale sous la forme suivante.

Théorème de Castigliano : soit une structure sur laquelle toutes les données cinématiques (conditions aux limites et équations de discontinuité) sont nulles. Si la structure est soumise à une force (respectivement un moment) concentré(e), alors la dérivée partielle de l'énergie élastique de contrainte W^{*} par rapport à cette force (resp. ce moment) fournit la valeur du déplacement (resp. de la rotation) dans sa direction.

Pour un problème hyperstatique, lorsque les inconnues hyperstatiques X_i sont choisies comme étant les composantes des actions de liaison associées à des conditions cinématiques nulles, l'application du théorème de Ménabréa fournit $\frac{\partial W^*}{\partial X_i} = 0$. Il y a donc coincidence avec le théorème de Castigliano puisque d'après ce théorème, ce résultat exprime simplement la nullité de la variable cinématique associée à l'action de liaison.

3.11.3 Décomposition du problème

Il est aisé de constater que le problème constitué par le système d'équations 3.42 peut se décomposer par linéarité en 4 sous-systèmes **indépendants** mettant en jeu respectivement les inconnues

- N, $\vec{\epsilon_0} \cdot \vec{e_1}$, *u* qui correspond à la réponse en traction-compression de la poutre;
- $M_2, V_3, \vec{\kappa_0}, \vec{e_2}, w$ pour la flexion dans le plan $(\vec{e_1}, \vec{e_3})$;
- $-M_3, V_2, \vec{\kappa_0}, \vec{e_3}, v$ pour la flexion dans le plan $(\vec{e_1}, \vec{e_2})$;
- $-T, \vec{\kappa_0}.\vec{e_1}, \theta_1$ pour la torsion.

Ces problèmes étant indépendants, cela signifie qu'on peut les résoudre séparément. Il en résulte également que si par exemple la poutre est sollicitée uniquement en tractioncompression alors on aura $V_2 = V_3 = T = M_2 = M_3 = v = w = \theta_1 = 0$.

Par la suite, les problèmes relatifs à la traction compression et à la flexion dans un plan seront donc abordés successivement.

3.12 Dimensionnement

Une fois le problème 3.42 résolu, la solution obtenue est par définition 1D. Il est donc nécessaire de "relocaliser" la solution dans tout le domaine 3D Ω . Cela ne présente aucune difficulté puisqu'il suffit de refaire en sens inverse les opérations qui nous ont permis de passer de la description 3D au modèle 1D. Les quantités d'intérêt principales pour l'ingénieur sont les contraintes. En effet, la conception de toute structure obéit nécessairement à des critères de résistance, qui garantissent que la structure, compte tenu des propriétés de ses matériaux constitutifs, peut conserver son intégrité sous l'action des chargements appliqués. Ce dimensionnement est le plus souvent élastique.

L'obtention des contraintes 3D à partir de la solution du problème 3.42 est simple. Partons de la loi de comportement de la poutre 3.61 sous sa forme inverse

$$\left\{ \begin{array}{c} \vec{\epsilon_0}.\vec{e_1} \\ \{\vec{\kappa_0}\} \end{array} \right\} = \left[\begin{array}{cccc} \frac{1}{\mathrm{E}|\mathrm{S}|} & 0 & 0 & 0 \\ 0 & \frac{1}{\mu\mathrm{J}} & 0 & 0 \\ 0 & 0 & \frac{1}{\mathrm{EI}_{22}} & 0 \\ 0 & 0 & 0 & \frac{1}{\mathrm{EI}_{33}} \end{array} \right] \left\{ \begin{array}{c} \vec{\mathrm{R}}_{int}(x_1, \vec{e_1}).\vec{e_1} \\ \vec{\mathrm{M}}_{int}(x_1, \vec{e_1}) \end{array} \right\}$$
(3.61)

Par ailleurs, il a été établi la relation 3.34 rappelée ci-dessous

$$\begin{cases} \sigma_{11} \\ \sigma_{21} \\ \sigma_{31} \end{cases} = \begin{bmatrix} E & 0 & Ex_3 & -Ex_2 \\ 0 & -\mu x_3 & 0 & 0 \\ 0 & \mu x_2 & 0 & 0 \end{bmatrix} \begin{cases} \vec{\epsilon_0} \cdot \vec{e_1} \\ \{\vec{\kappa_0}\} \end{cases}$$
(3.62)

Ainsi, en combinant ces deux relations, il vient

$$\begin{cases} \sigma_{11} = \frac{N}{|S|} + x_3 \frac{M_2}{I_{22}} - x_2 \frac{M_3}{I_{33}} \\ \sigma_{21} = \frac{-x_3 T}{J} \\ \sigma_{31} = \frac{x_2 T}{J} \end{cases}$$
(3.63)

Et il est rappelé ici que compte tenu de l'hypothèse de l'état de contrainte anti-plan, les composantes des contraintes données dans 3.63 sont les seules non nulles.

L'expression de la contrainte normale σ_{11} est identique à celle obtenue lors de la résolution du problème de Saint-Venant, cf. chapitre 2. Pour les contraintes de cisaillement, celles données ici sont dues uniquement à la torsion, et par rapport à la solution du problème de Saint-Venant, elles correspondent au cas où le gauchissement est nul. La théorie de poutre ne permet pas d'accéder aux contraintes de cisaillement en flexion simple, ou de façon plus générale à celles qui correspondent aux efforts tranchants. En effet, compte tenu de la relation $V_2 = \int_S \sigma_{21} dS$ et $V_3 = \int_S \sigma_{31} dS$, dès qu'une composante d'effort tranchant est non nulle, il en résulte une distribution de contrainte de cisaillement sur la section. Celle-ci peut être calculée de manière approchée, selon des méthodes décrites dans [11] ou [6] par exemple, mais qui ne sont pas détaillées ici.

Cependant, il est important de signaler que les contraintes de cisaillement sont en général négligeables devant la contrainte normale, et ce d'autant plus que l'élancement de la poutre est grand.

4

Etude des treillis

4.1 Définition

Un treillis, cf. figure 4.1 est un assemblage de poutres reliées entre elles par des **articu**lations rotoïdes parfaites, appelées nœuds du treillis. Le chargement, constitué par des forces ponctuelles est appliqué seulement aux nœuds du treillis. Dans ces conditions, il sera démontré que chaque poutre ne travaille qu'en traction-compression. De telles poutres sont appelées des **barres** et il y a transmission des efforts dans la direction des barres uniquement.

Figure 4.1 - Exemple de structure treillis

4.2 Mise en équations

4.2.1 Effort normal dans une barre

Isolons une barre dont les extrémités sont les nœuds I et J : soit \vec{F}_I , l'effort de liaison à l'extrémité I de la barre IJ (action du noeud I sur la barre IJ) et \vec{F}_J l'effort à l'extrémité I (il est rappelé qu'au niveau de la liaison rotoïde, aucun moment n'est transmis), cf. figure 4.2. L'équilibre de la barre IJ, donne

$$\begin{cases} \vec{F}_{I} + \vec{F}_{J} = \vec{0} \\ \vec{IJ} \wedge \vec{F}_{J} = \vec{0} \end{cases}$$

$$(4.1)$$

Donc, \vec{F}_J et \vec{IJ} sont colinéaires. En notant $\vec{F}_J = N \vec{x}_l$ avec \vec{x}_l vecteur local unitaire défini par $\vec{x}_l = \vec{IJ}/IJ$ (\vec{x}_l coïncide avec la normale extérieure en J), N est par définition **l'effort normal** dans la barre IJ, et il pourra aussi être noté $N = N_{IJ} = N_{JI}$.

Figure 4.2 - Etude de l'équilibre d'une barre

D'après 4.1, les efforts exercés sur la barre sont donc en réalité comme représentés figure 4.3.

Figure 4.3 - Prise en compte de l'équilibre de la barre

Et si N > 0 la barre est en traction, alors que si N < 0 elle est en compression.

4.2.2 Propriétés de l'effort normal dans une barre

Isolons un tronçon de barre entre le nœud I et le point K tel que IK < IJ. En I, l'effort extérieur appliqué est $\vec{F}_I = -N \vec{x}_l$, et en K, la coupe effectuée introduit comme efforts extérieurs surfaciques le vecteur contrainte $\vec{T}(M, \vec{x}_l)$, cf. figure 4.4 où la barre est supposée de section circulaire. L'équilibre du tronçon en projection selon \vec{x}_l fournit

Figure 4.4 - Analyse d'un tronçon de barre

$$-N + \int_{S} \vec{x}_{l} \cdot \vec{T} (M, \vec{x}_{l}) dS = 0$$

$$(4.2)$$

Or, $\vec{x_l} \cdot \vec{T}$ (M, $\vec{x_l}$) = $\sigma_{x_l x_l}$, d'où

$$\mathbf{N} = \int_{\mathbf{S}} \sigma_{x_l x_l} d\mathbf{S} \tag{4.3}$$

L'effort normal représente donc l'intégrale, sur la section, des contraintes normales, ce qui est cohérent avec la définition 3.13.

La réaction en I étant colinéaire à \vec{x}_l et le moment étant nul, les 5 autres équations d'équilibre global du tronçon conduisent à la nullité des composantes du torseur des efforts internes. D'autre part, ce résultat est valable quelle que soit la section considérée.

Ainsi, le torseur des efforts intérieurs dans la barre se réduit au seul effort normal. D'autre part, l'effort normal est constant dans la barre, conformément à l'équation d'équilibre locale 3.42, puisque $\vec{q} = \vec{0}$ en l'absence d'efforts répartis sur la barre.

4.2.3 Contraintes et déformations

Il a été établi qu'une barre est soumise à ses deux extrémités à deux efforts opposés N, dirigés selon son axe (cf. figure 4.3). Compte tenu de la solution du problème de Saint-Venant, cf. section 2.3.1, il en résulte que la contrainte normale dans une section droite est uniformément répartie dans la section, et égale à

$$\sigma_{x_l x_l} = \frac{N}{|S|} \tag{4.4}$$

où |S| désigne l'aire de la section. D'autre part, la matrice des contraintes dans une base orthogonale contenant \vec{x}_l a pour seul terme non nul $\sigma_{x_lx_l}$. L'état de contraintes est donc monoaxial.

La loi de Hooke permet d'exprimer la déformation axiale dans la barre (de module d'Young E)

$$\varepsilon_{x_l x_l} = \frac{\sigma_{x_l x_l}}{E} = \frac{N}{E|S|} \tag{4.5}$$

Par définition, $\varepsilon_{x_lx_l} = \partial u_{x_l}/\partial x_l$ où $u_{x_l} = \vec{u} \cdot \vec{x_l}$ est le déplacement axial de la barre, et x_l la coordonnée locale selon l'axe de la barre $(x_l(I) = 0 \text{ et } x_l(J) = IJ)$. N étant constant, de même que E|S| pour une barre homogène de section constante, l'intégration de 4.5 entre les extrémités I et J donne la variation de longueur IJ de la barre, soit

$$u_{x_l}(\mathbf{J}) - u_{x_l}(\mathbf{I}) = \mathbf{I}\mathbf{J} \times \varepsilon_{x_l x_l} \tag{4.6}$$

ou encore

$$\frac{\Delta (\mathrm{IJ})}{\mathrm{IJ}} = \varepsilon_{x_l x_l} = \frac{\mathrm{N}}{\mathrm{E}|\mathrm{S}|} \tag{4.7}$$

Signalons pour conclure que la matrice des déformations dans une base orthogonale contenant \vec{x}_l est diagonale, les déformations dans les directions perpendiculaires à \vec{x}_l étant égales à $-\nu \times \varepsilon_{x_l x_l}$ (effet Poisson).

4.2.4 Equilibre d'un noeud

D'après ce qui précède, les états de contrainte et de déformation dans une barre sont régis par la seule valeur de l'effort normal, qui est constante dans la barre. Les différents résultats ont été obtenus en utilisant les équations d'équilibre locales (au sens intégral en section 4.2.2), la loi de comportement du matériau, et la relation déformations/déplacements.

Pour avoir la valeur des efforts normaux, il faut écrire l'équilibre d'un nœud, c'est-à-dire l'équilibre d'un élément de matière au voisinage d'un nœud. Soit par exemple ci-après le

Figure 4.5 - Equilibre d'un noeud

cas d'un nœud I à la jonction de 3 barres, ce nœud étant soumis par ailleurs à une charge extérieure \vec{P} , cf. figure 4.5.

La coupure d'une barre fait apparaître comme torseur résultant l'effort normal, dirigé selon la normale extérieure. Toutes les forces étant concourantes en I, l'équilibre global se réduit à

$$\vec{\mathbf{P}} + \sum \mathbf{N}_{\mathbf{I}\mathbf{J}_i} \vec{x}_{l_i} = \vec{\mathbf{0}} \tag{4.8}$$

où \vec{x}_{l_i} est de la forme $\vec{x}_{l_i} = \overrightarrow{IJ_i}/IJ_i$ où J_i est l'extrémité de chaque barre en vis-à-vis de I. Ces équations sont écrites aux *n* nœuds du treillis, ce qui fournit 2n ou 3n équations selon

Il est aisé de vérifier que ces équations redonnent, par combinaison linéaire, l'équilibre global du treillis.

4.2.5 Conditions aux limites

que le problème est de dimension 2 ou 3.

Les liaisons avec le milieu extérieur sont assurées par des appuis fixes ou glissants, cf. figure 4.6. Dès qu'une composante de déplacement est imposée, il en résulte une inconnue d'effort de liaison associé.

Figure 4.6 - Conditions aux limites : appui simple et appui glissant

Les conditions aux limites s'écrivent

- Appui fixe : $\vec{u} = \vec{0}$
- Appui glissant (en 2D) : $\vec{R}.\vec{e_1} = 0$; $\vec{u}.\vec{e_2} = 0$

4.2.6 Energie élastique de contrainte

Pour une barre de longueur ℓ dont le torseur des efforts internes se réduit à un effort normal N, l'énergie élastique de contrainte est donnée, d'après 3.52 par :

$$W^* = \frac{1}{2} \int_0^{\ell} \frac{N^2}{E|S|} dx = \frac{1}{2} \frac{N^2 \ell}{E|S|}$$
(4.9)

4.3 Résolution d'un problème de treillis

Soit un treillis réalisé avec b barres et n nœuds, comportant a actions de liaison inconnues (associées à a déplacements imposés). Soit d la dimension du problème (d = 2 ou 3).

Les inconnues du problème sont constituées des efforts normaux dans les barres (au nombre de b), des a actions de liaison inconnues, et des $n \times d$ déplacements des nœuds.

Par ailleurs les équations disponibles sont les équations 4.8 qui concernent l'équilibre des nœuds (au nombre de $n \times d$), les expressions 4.6 de l'allongement des barres (au nombre de b), et les conditions de déplacement imposé (au nombre de a).

Le problème peut donc être résolu.

En pratique, dès que le nombre de barres est élevé, il peut être fastidieux de résoudre le problème en écrivant les équations relatives à l'allongement des barres. La **méthode de type forces** est donc privilégiée, en utilisant comme inconnues principales les efforts normaux dans les barres (b) et les actions de liaison (a). Cette méthode présente en outre l'intérêt de se focaliser sur les quantités de type efforts, qui sont les seules utiles quand le treillis est dimensionné sur un critère de type résistance (cas fréquent).

Les équations 4.8 d'équilibre des nœuds mettent en jeu uniquement les b + a inconnues de type forces précédentes. Il y a alors 3 cas possibles

- Si $b + a = n \times d$, le système est **isostatique**. Les équations d'équilibre des nœuds suffisent alors pour déterminer les efforts normaux dans les barres. L'écriture de l'allongement des barres et des conditions de déplacement imposé fournit alors directement les déplacements des nœuds.
- Si $b+a > n \times d$, alors le système est **hyperstatique**, de degré h = b+a-n. Les équations d'équilibre des nœuds ne suffisent pas pour déterminer les inconnues principales. En pratique, il faut choisir h inconnues hyperstatiques, et utiliser le théorème de Ménabréa, cf. section 3.11.2, pour obtenir h équations supplémentaires (cf. exemple ci-après).
- Si $b + a < n \times d$, alors le système est dit **hypostatique**. Ceci signifie que le système est instable, ou encore qu'il s'agit d'un mécanisme. Il est possible de déplacer les nœuds sans modifier la longueur des barres. Il faut donc rajouter des barres ou des liaisons pour se ramener à l'un des 2 cas précédents.

4.4 Exemple

Soit le treillis plan de 3 barres présenté figure 4.7, la barre verticale ayant pour longueur ℓ ($\ell\sqrt{2}$ pour les 2 autres). Toutes les barres ont le même module d'Young E et la même

section d'aire |S|. L'effort F est vertical descendant.

Figure 4.7 - Exemple de treillis à 3 barres

Les inconnues du problème sont les efforts normaux dans les barres : N_{14} , N_{24} , N_{34} ; les 2 composantes des actions de liaison aux nœuds : \vec{R}_1 , \vec{R}_2 , \vec{R}_3 , et celles des déplacements des nœuds : \vec{u}_1 , \vec{u}_2 , \vec{u}_3 , \vec{u}_4 . Soit $b + a + n \times d = 3 + 6 + 8 = 17$ inconnues.

Les équations du problème sont : les 2 équations d'équilibre pour chaque nœud 1, 2, 3, 4, puis 1 équation pour l'allongement de chacune des 3 barres, et les équations sur les déplacements imposés : $\vec{u}_1 = \vec{u}_2 = \vec{u}_3 = \vec{0}$, ce qui donne 6 équations. D'où 8 + 3 + 6 = 17 équations.

4.4.1 Résolution en utilisant la compatibilité géométrique

Comme $\vec{u}_1 = \vec{u}_2 = \vec{u}_3 = \vec{0}$, il reste à obtenir N₁₄, N₂₄, N₃₄, \vec{R}_1 , \vec{R}_2 , \vec{R}_3 et \vec{u}_4 à partir des équations suivantes

– Equilibre des nœuds :

$$\begin{cases} \vec{\mathbf{R}}_{i} + \mathbf{N}_{i4}\vec{x}_{l_{i}} = \vec{0} \quad i = 1, \ 2, \ 3 \quad \text{avec } \vec{x}_{l_{i}} = \vec{i4}/i4 \\ -\mathbf{N}_{14}\vec{x}_{l_{1}} - \mathbf{N}_{24}\vec{x}_{l_{2}} - \mathbf{N}_{34}\vec{x}_{l_{3}} - \mathbf{F}\vec{e}_{2} = \vec{0} \end{cases}$$

$$(4.10)$$

La somme de ces équations redonne l'équilibre global du treillis.

– Allongement des barres (en tenant compte de $\vec{u}_1 = \vec{u}_2 = \vec{u}_3 = \vec{0}$)

$$\frac{\vec{u}_4 \cdot \vec{x}_{l_i}}{\ell_{i4}} = \frac{N_{i4}}{E|S|} \quad i = 1, \ 2, \ 3 \quad \text{avec } \ell_{24} = \ell \text{ et } \ell_{14} = \ell_{34} = \ell\sqrt{2}$$
(4.11)

Comme le problème 2D, et que les 3 équations 4.11 portent sur les 2 composantes de \vec{u}_4 , il en résulte une relation dite de compatibilité géométrique : $N_{14} + N_{34} = N_{24}$ (les barres obliques sont à 45°).

Il s'ensuit, en combinant avec les équations d'équilibre du nœud 4, $N_{24} = F\sqrt{2}/(1+\sqrt{2})$ et $N_{14} = N_{34} = N_{24}/2$ et par suite, $\vec{u}_4 = (N_{24}\ell/E|S|)\vec{e}_2$

4.4.2 Résolution par la méthode des forces

On a b + a = 9 et $n \times d = 8$, le système est donc hyperstatique, de degré 9 - 8 = 1. Il apparaît en effet que les 8 équations 4.10 sont insuffisantes pour déterminer N₁₄, N₂₄, N₃₄ et \vec{R}_1 , \vec{R}_2 , \vec{R}_3 . Il faut donc utiliser le théorème de Ménabréa pour obtenir une nouvelle équation. Le degré d'hyperstaticité étant 1, une inconnue hyperstatique doit être choisie, par exemple N₂₄. Ensuite, grâce aux équations d'équilibre du nœud 4, N₁₄ et N₃₄ sont exprimés en fonction de N₂₄ et de l'effort extérieur F. Ceci conduit à N₁₄ = N₃₄ = $\frac{1}{\sqrt{2}}$ (F - N₂₄) L'énergie de déformation du treillis est : W^{*} = $\sum_{i=1}^{3} N_{i4}^2 \ell_{i4}/2E|S|$ et l'application du théorème de Ménabréa, soit $\partial W^*/\partial N_{24} = 0$, donne N₂₄ = F $\sqrt{2}/(1 + \sqrt{2})$.

5

Structures planes chargées dans leur plan en flexion

5.1 Introduction

Les problèmes de flexion plane dans le plan principal d'inertie $(\vec{e_1}, \vec{e_2})$ se rencontrent lorsque les sollicitations extérieures appliquées à la poutre sont telles que le torseur des forces internes dans une section quelconque se réduit à un effort tranchant V₂ et à un moment de flexion M₃, c'est-à-dire que les charges appliquées sont des forces ou des déplacements suivant $\vec{e_2}$ ou des moments ou des rotations selon $\vec{e_3}$.

5.2 Equations du problème

Le champ des déplacements général introduit en 3.3 se réduit à :

$$\{\vec{u}_{\rm M}\}_{\{\vec{e}_i\}} = \begin{cases} -x_2 v_{,1} \\ v & \text{et} \quad \vec{\theta} = v_{,1} \vec{e}_3 \\ 0 \end{cases}$$
(5.1)

Le problème à résoudre consiste à trouver la flèche v, l'effort tranchant V₂ et le moment de flexion M₃ solutions de

$$\begin{cases} V_{2,1} + q_2 = 0 \\ M_{3,1} + V_2 + m_3 = 0 \\ M_3 = EI_{33}v_{,11} \end{cases} \text{sur }]0, \ell[\\ \text{Conditions aux limites en } 0 \text{ et } \ell \end{cases}$$
(5.2)

Les conditions aux limites, décrites de façon générale section 3.8, seront précisées sur les différents exemples abordés par la suite. Pour simplifier l'exposé, les équations précédentes supposent l'absence de discontinuités, entre 0 et ℓ . Le cas plus général avec discontinuité a été traité au chapitre 3.

5.3 Résolution du problème

5.3.1 Approche en déplacements

La combinaison des 3 équations de champ de fournit

$$EI_{33}v_{,1111} + m_{3,1} - q_2 = 0 \quad dans \quad]0,\ell[$$
(5.3)

D'où en intégrant successivement 4 fois cette équation, et prise en compte des conditions aux limites, l'obtention de la flèche v, et, au fur et à mesure des intégrations des quantités $V_2 = -EI_{33}v_{,111}$; $M_3 = EI_{33}v_{,11}$ et $\theta_3 = v_{,1}$.

Exemple

Pour illustrer la démarche, on considère une poutre encastrée à gauche en 0, soumise à une force uniformément répartie en travée q_2 et à une charge verticale P en ℓ , cf. figure 5.1 Les

$$\begin{array}{c} \begin{array}{c} q_2 \\ \hline \\ A \end{array} \end{array} \begin{array}{c} P \\ B \end{array}$$

Figure 5.1 - Exemple de poutre encastrée

conditions aux limites associées s'écrivent

$$\begin{cases} v(0) = 0 \\ \theta_3(0) = v_{,1}(0) = 0 \\ V_2(\ell) = P = -EI_{33}v_{,111}(\ell) \\ M_3(\ell) = 0 = EI_{33}v_{,11}(\ell) \end{cases}$$
(5.4)

D'où en intégrant l'équation différentielle

$$EI_{33}v = \frac{q_2x_1^4}{24} + \frac{C_1x_1^3}{6} + \frac{C_2x_1^2}{2} + C_3x_1 + C_4$$
(5.5)

et les 4 constantes d'intégration sont déterminées d'après les 4 conditions aux limites, soit

$$V_{2}(\ell) = P = -EI_{33}v_{,111}(\ell) \Rightarrow q_{2}\ell + C_{1} + P = 0$$

$$M_{3}(\ell) = 0 = EI_{33}v_{,11}(\ell) \Rightarrow \frac{q_{2}\ell^{2}}{2} + C_{1}\ell + C_{2} = 0$$

$$\theta_{3}(0) = v_{,1}(0) = 0 \Rightarrow C_{3} = 0$$

$$v(0) = 0 \Rightarrow C_{4} = 0$$

(5.6)

d'où finalement la flèche et la rotation qui sont données en tout point par

$$\begin{cases} v(x_1) = \frac{1}{\mathrm{EI}_{33}} \left(\frac{q_2}{24} x_1^4 - (q_2\ell + \mathrm{P}) \frac{x_1^3}{6} + (\frac{q_2\ell^2}{2} + \mathrm{P}\ell) \frac{x_1^2}{2} \right) \\ \theta_3(x_1) = \frac{1}{\mathrm{EI}_{33}} \left(\frac{q_2}{6} x_1^3 - (q_2\ell + \mathrm{P}) \frac{x_1^2}{2} + (\frac{q_2\ell^2}{2} + \mathrm{P}\ell) x_1 \right) \end{cases}$$
(5.7)

et en particulier la flèche et la rotation en ℓ sont égales à

$$\begin{cases} v(\ell) = \frac{q_2\ell^4}{8EI_{33}} + \frac{P\ell^3}{3EI_{33}}\\ \theta_3(\ell) = \frac{q_2\ell^3}{6EI_{33}} + \frac{P\ell^2}{2EI_{33}} \end{cases}$$
(5.8)

Cette méthode de résolution est tout à fait générale.

En présence de discontinuités, le mode opératoire est un peu différent : il faut en effet intégrer l'équation différentielle 5.3 sur chacun des intervalles de la poutre sans discontinuité. Ceci conduit à 4 constantes d'intégration sur chaque intervalle. Ces constantes sont ensuite obtenues grâce aux conditions aux limites en 0 et ℓ , et aux équations de discontinuité. Celles-ci sont au nombre de 4 et comprennent 2 équations statiques et 2 cinématiques, ces dernières exprimant la continuité de v et de $v_{,1}$.

5.3.2 Approche en forces

Avec cette méthode, la priorité est de déterminer V_2 et le moment de flexion M_3 (c'est-àdire les quantités à partir desquelles les contraintes peuvent être calculées, cf. section 3.12). Comme dans le cas des treillis de barres, l'objectif est de calculer V_2 et M_3 sans utiliser les équations mettant en jeu les variables cinématiques.

Ainsi, dans le problème 5.2, sont conservées les équations suivantes

$$\left\{\begin{array}{c}
V_{2,1} + q_2 = 0 \\
M_{3,1} + V_2 + m_3 = 0
\end{array}\right\} \text{sur }]0, \ell[
(5.9)$$
Conditions aux limites statiques en 0 et ℓ

En pratique, ce système n'est pas résolu en intégrant les deux premières équations, mais à partir de leur version intégrale, ce qui revient à écrire l'équilibre global d'un tronçon de longueur finie. Ainsi, pour obtenir V₂ et M₃ dans une section d'abscisse x_1 , le tronçon de poutre $[0, x_1]$ ou $[x_1, \ell]$ est considéré.

Soit par exemple le cas du tronçon $[0, x_1]$. Pour un problème de flexion, les efforts extérieurs exercés sur ce tronçon sont constitués (cf. figure 5.2, où les moments perpendiculaires au plan de la figure sont représentés par un vecteur tournant)

- des efforts de cohésion dus à l'action du tronçon $[x_1, \ell]$, dont le torseur a pour composantes $V_2(x_1)$ et $M_3(x_1)$;
- aux efforts répartis d'intensité q_2 ;
- au torseur à l'extrémité $x_1 = 0$, de résultante notée R_A et de moment résultant noté Γ_A .

Figure 5.2 - *Efforts extérieurs sur le tronçon* $[0, x_1]$

L'écriture de l'équilibre global donne alors

- pour la résultante

$$V_2(x_1) + \int_0^{x_1} q_2 dt + R_A = 0$$
(5.10)

- pour le moment résultant en $x_1 = 0$

$$M_3(x_1) + x_1 V_2(x_1) + \int_0^{x_1} tq_2 dt + \Gamma_A = 0$$
(5.11)

Il s'avère que ces deux équations correspondent à l'intégrale, entre 0 et x_1 de $(5.9)_1$ et $(5.9)_2$ respectivement, sachant que $V_2(0) = -R_A$ et $M_3(0) = -\Gamma_A$.

Il est laissé au lecteur le soin de contrôler que sur le tronçon $[x_1, \ell]$, la même approche conduit à

$$-V_{2}(x_{1}) + \int_{x_{1}}^{\ell} q_{2}dt + R_{B} = 0$$
(5.12)

et à (moment en $x_1 = 0$)

$$-M_{3}(x_{1}) - x_{1}V_{2}(x_{1}) + \int_{x_{1}}^{\ell} tq_{2}dt + \ell R_{B} + \Gamma_{B} = 0$$
(5.13)

Deux cas sont alors possibles, selon que le système est isostatique ou hyperstatique.

5.3.2.1 Cas isostatique

Le cas isostatique correspond à la situation où il y a exactement deux conditions aux limites statiques (il ne peut y en avoir plus sinon le système est instable). Auquel cas, 2 quantités parmi R_A , R_B , Γ_A et Γ_B sont connues, les 2 autres étant des actions de liaison associées aux deux autres conditions aux limites, qui sont cinématiques. Ces dernières peuvent alors être calculées en écrivant l'équilibre global de la poutre (entre 0 et ℓ), soit pour la résultante

$$R_{A} + \int_{0}^{\ell} q_{2} dt + R_{B} = 0$$
(5.14)

et pour le moment en $x_1 = 0$

$$\Gamma_{\rm A} + \int_0^\ell t q_2 dt + \ell \mathcal{R}_{\rm B} + \Gamma_{\rm B} = 0 \tag{5.15}$$

Les quantités R_A , R_B , Γ_A et Γ_B étant connues, V_2 et M_3 sont obtenus à partir de 5.10 et 5.11 ou 5.12 et 5.13.

Le mode opératoire est donc le suivant

- les conditions aux limites de type effort ou couple imposé donnent 2 quantités parmi R_A , R_B , Γ_A et Γ_B ;
- les 2 actions de liaison inconnues sont déterminées en utilisant l'équilibre global de la poutre;
- l'équilibre global d'un tronçon fournit V₂ et M₃;
- il reste alors à intégrer $M_3 = EI_{33}v_{,11}$ en tenant compte des conditions aux limites cinématiques pour obtenir la déformée de la poutre.

Application à l'exemple de la figure 5.1.

Les conditions aux limites statiques du problème donnent $R_B = P$ et $\Gamma_B = 0$. L'équilibre global de la poutre 5.14 et 5.15 conduit à $R_A = -(q_2\ell + P)$ et à $\Gamma_A = -q_2\frac{\ell^2}{2} - P\ell$. D'où en utilisant les équations d'équilibre du tronçon $[0, x_1]$, soit 5.10 et 5.11, il vient

$$\begin{cases} V_2 = -R_A - q_2 x_1 = (q_2 \ell + P) - q_2 x_1 \\ M_3 = -x_1 V_2 (x_1) - q_2 \frac{x_1^2}{2} - \Gamma_A = q_2 \frac{\ell^2}{2} - q_2 \ell x_1 + q_2 \frac{x_1^2}{2} + P(\ell - x_1) \end{cases}$$
(5.16)

Remarque :

Sur cet exemple, étant donné que les deux conditions aux limites de type effort ou couple sont en ℓ , il vaudrait mieux considérer l'équilibre global du tronçon de poutre $[x_1, \ell]$ (équations 5.12 et 5.13), qui donne directement V₂ et M₃ à partir de R_B = P et $\Gamma_B = 0$. Les actions de liaison en A peuvent alors être obtenues grâce à V₂(0) = -R_A et M₃(0) = - Γ_A , et il convient de vérifier en procédant de cette façon que ces valeurs sont cohérentes avec l'équilibre global 5.14 et 5.15.

5.3.2.2 Cas hyperstatique

Cette fois-ci, il y a 0 ou 1 condition aux limites statique. Ainsi, au plus une des quantités parmi R_A, R_B, Γ_A et Γ_B est connue, et les 2 équations d'équilibre global sont insuffisantes pour déterminer les actions de liaison associées aux 4 ou 3 conditions cinématiques (déplacement ou rotation imposé(e)). Le système est donc hyperstatique, de degré h = 2(respectivement h = 1), si on a 0 (resp. 1) condition aux limites statique. Pour résoudre sans utiliser les équations cinématiques, il faut obtenir h équations supplémentaires sur les efforts, en utilisant un théorème énergétique (voir section 3.11.2).

Le mode opératoire est alors presque identique à celui du cas isostatique.

- les conditions aux limites statiques donnent 0 ou 1 quantité parmi R_A , R_B , Γ_A et Γ_B ;
- -h inconnue(s) hyperstatique(s) est(sont) choisie(s) parmi les autres;
- les 4 h autres actions de liaison inconnues sont calculées en fonction de l'(des) inconnue(s) hyperstatique(s) et du chargement extérieur en utilisant l'équilibre global de la poutre;
- l'équilibre global d'un tronçon $[0, x_1]$ ou $[x_1, \ell]$ fournit V₂ et M₃;
- l'(les) inconnue(s) hyperstatique(s) sont déterminées en utilisant le théorème de Ménabréa;
- l'intégration de $M_3 = EI_{33}v_{,11}$ avec prise en compte des conditions aux limites cinématiques fournit la déformée de la poutre.

Application à l'exemple de la figure 5.3.

La poutre étudiée est encastrée à gauche, soumise à une force uniformément répartie en travée q_2 et appuyée à l'extrémité droite. La seule condition aux limites statique est $\Gamma_{\rm B} = 0$,

$$\begin{array}{c} q_2 \\ \hline \uparrow \\ A \end{array}$$

Figure 5.3 - Exemple de poutre hyperstatique

le système est donc hyperstatique de degré h = 1.

La réaction R_B est choisie comme inconnue hyperstatique. L'écriture de l'équilibre global du tronçon $[x_1, \ell]$ fournit alors les valeurs de V_2 et M_3 , dont les expressions coïncident avec 5.16 par analogie avec l'exemple précédent, en remplaçant P par R_B .

A partir de $M_3 = q_2 \frac{\ell^2}{2} - q_2 \ell x_1 + q_2 \frac{x_1^2}{2} + R_B(\ell - x_1)$, l'énergie élastique de contrainte de la poutre est calculée grâce à l'expression

$$W^* = \frac{1}{2} \int_0^\ell \frac{M_3^2}{EI_{33}} dx_1$$
(5.17)

et l'application du théorème de Ménabréa donne $\frac{\partial W^*}{\partial R_B} = 0$ fournit la valeur de R_B . Ceci conduit à $R_B = -\frac{3q_2\ell}{8}$, ce qui est cohérent avec 5.8 puisqu'en remplaçant P par R_B il vient $v(\ell) = 0$.

Ayant déterminé M_3 , la flèche est obtenue en intégrant 2 fois la relation $M_3 = EI_{33}v_{,11}$, et prise en compte des 2 conditions aux limites cinématiques non utilisées jusqu'alors.

Références

- P. Ballard and A. Millard. Modélisation et calcul des structures élancées. Cours de l'Ecole Polytechnique. 2ème edition, 2008. 13, 21
- [2] Y. Bamberger. Mécanique de l'ingénieur 3 Solides déformables. Hermann, 1997. 13
- [3] S. Dubigeon. Mécanique des milieux continus. Lavoisier, 2ème edition, 1998. 2
- [4] G. Duvaut. Mécanique des Milieux Continus. Masson, 1990. 2, 4
- [5] K.D. Hjelmstad. Fundamentals of Structural Mechanics. Springer, 2nd edition, 2005. 21
- [6] S. Laroze. Résistance des matériaux et structures. Tome 2. Eyrolles-Masson, 1980.
 41
- [7] N. Moës. Mécanique des milieux continus. Cours de l'Ecole Centrale de Nantes. 2006.
 2
- [8] J. Salençon. Mécanique des Milieux Continus. Tome 3. Milieux curvilignes. Editions de l'Ecole Polytechnique, 2002. 21
- [9] J. Salençon. Mécanique des Milieux Continus. Tome 1. Concepts généraux. Editions de l'Ecole Polytechnique, 2005. 2
- [10] J. Salençon. Mécanique des Milieux Continus. Tome 2. Thermoélasticité. Editions de l'Ecole Polytechnique, 2007. 21
- [11] F. Sidoroff. Mécanique des solides. Tome 1, mécanique des milieux continus. Cours de l'Ecole Centrale de Lyon. 21, 41
- [12] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw-Hill, third edition, 1970. 1