UE SPM-PHO-S09-112 Second Harmonic Generation and related second order Nonlinear Optics

N. Fressengeas

Laboratoire Matériaux Optiques, Photonique et Systèmes
Unité de Recherche commune à l'Université Paul Verlaine Metz et à Supélec
October 5, 2010

Usefull reading. . .

[YY84, DGN91, LKW99]

围 V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals, volume 64 of Springer Series in Optical Sciences. Springer Verlag, Heidelberg, Germany, 1991.

回 W. Lauterborn, T. Kurz, and M. Wiesenfeldt. Coherent Optics: Fundamentals and Applications. Springer-Verlag, New York, 1999.
A. Yariv and P. Yeh.

Optical waves in crystals. Propagation and control of laser radiation. Wiley series in pure and applied optics. Wiley-Interscience, Stanford University, 1984.

Contents

(1) Three-wave interaction

- Assumptions framework
- Three Wave propagation equation
- Sum frequency generation
- Scalar approximation
(2) Non Linear Optics Application
- Second Harmonic Generation
- Optical Parametric Amplifier
- Optical Parametric Oscillator
(3) Phase matching
- Phase matching conditions
- Phase matching in uni-axial crystals
- Quasi-phase matching

A classical Maxwell framework

With standard assumptions: no charge, no current, no magnet and no conductivity

Maxwell Model

- $\operatorname{div}(D)=0$
- $\operatorname{div}(B)=0$
- $\operatorname{curl}(E)=-\frac{\partial B}{\partial t}$
- $\operatorname{curl}(H)=\frac{\partial D}{\partial t}$

Matter equations

- $D=\varepsilon_{0} E+P=\varepsilon E$
- $B=\mu_{0} H$
- $P=\varepsilon_{0} \chi_{L} E+P_{N L}$

Wave equation in isotropic medium

$$
\Delta E-\mu_{0} \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}}
$$

Solutions to be found only in a specific framework:
We look here for :

- Quadratic non-linearity
- Three wave interaction

Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction

- Transversal E : has x and y components
- Wave equation : $\frac{\partial^{2} E}{\partial z^{2}}-\mu_{0} \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{N L}(z)}{\partial t^{2}}$

Quadratic non-linearity

- $P_{N L}$ is transversal
- $\left[P_{N L}\right]_{i}=\sum[d]_{i j k}[E]_{j}[E]_{k}=[d]_{i j k}[E]_{j}[E]_{k}$

$$
\{j, k\} \in\{x, y\}^{2}
$$

Three wave interaction only

- Three waves only are present : ω_{1}, ω_{2} and ω_{3}
- Non linear interaction of two waves : sum, difference, doubling, rectification. . .
- We consider only those for which $\omega_{1}+\omega_{2}=\omega_{3}$

Three wave interaction solution ansatz

Sum of three waves

- $[E]_{x, y}(z, t)=\operatorname{Re}\left(\sum_{\nu=1}^{3} \exp \left(i k_{\nu} z-i \omega_{\nu} t\right)\right)$
- Dispersion law : $k_{\nu}^{2}=\mu_{0} \varepsilon_{\nu} \omega_{\nu}^{2}$
- ε dispersion : $\varepsilon_{\nu}=\varepsilon\left(\omega_{\nu}\right)$

How good is this ansatz ?

- We have assumed $\omega_{1}+\omega_{2}=\omega_{3}$
- Why would ω_{3} not be a source as well ?
- OK if wave 3 is small enough

Separate investigation at each frequency

- At ω_{ν}, consider only the part of $P_{N L}$ oscillating at frequency $\omega_{\nu}: P_{N L}^{\omega_{\nu}}$
- Three separate equations

Wave propagation for frequency $\omega_{\nu} \quad \nu \in\{1,2,3\}$

3 Perturbed wave equations
$\frac{\partial^{2} E^{\left(\omega_{\nu}\right)}(z, t)}{\partial z^{2}}-\mu_{0} \varepsilon_{\omega_{\nu}} \frac{\partial^{2} E^{\left(\omega_{\nu}\right)}(z, t)}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{N L}^{\omega_{\nu}}(z, t)}{\partial t^{2}}$
Temporal harmonic notation

- $E^{\left(\omega_{\nu}\right)}$ is a plane wave
- Non linear polarization is a plane wave
- Considering only...the ω_{ν} part \Leftrightarrow the plane wave part
- $\frac{\partial^{2} E^{\left(\omega_{\nu}\right)}(z, t)}{\partial z^{2}}+\mu_{0} \varepsilon_{\omega_{\nu}} \omega_{\nu}^{2} E^{\left(\omega_{\nu}\right)}(z, t)=-\mu_{0} \omega_{\nu}^{2} P_{N L}^{\omega_{\nu}}(z, t)$

Non Linear Polarisation $P_{N L}$ in harmonic framework

Reminder
$\left[P_{N L}\right]_{i}=[d]_{j j k}[E]_{j}[E]_{k}$
Temporal harmonic framework

- Multiply complex fields
- Include Conjugates to take Real Part
- Select only the ω_{1} component

$$
\left.\left[P_{N L}^{\omega_{1}}(z, t)\right]_{i}=\operatorname{Re} e\left([d]_{i j k}\left[E^{\left(\omega_{3}\right)}(z)\right]_{j} \overline{\left[E\left(\omega_{2}\right)\right.}(z)\right]_{k} e^{\left(i\left(k_{3}-k_{2}\right) z-i\left(\omega_{3}-\omega_{2}\right) t\right)}\right)
$$

Wave propagation equation

$$
\frac{\partial^{2} E^{\left(\omega_{1}\right)}(z, t)}{\partial z^{2}}+\mu_{0} \varepsilon_{\omega_{1}} \omega_{1}^{2} E^{\left(\omega_{1}\right)}(z, t)=-\mu \omega_{1}^{2} P_{N L}^{\omega_{1}}(z, t)
$$

The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation

- Beam envelope is assumed to vary slowly in the longitudinal direction
- Equivalent as assuming a narrow beam
- Second derivative with respect z neglected compared to
- the first one with respect to z
- the others with respect to x and y

To put it in maths...

- $\frac{\partial^{2} E^{\left(\omega_{1}\right)}(z, t)}{\partial z^{2}}=\frac{\partial^{2}}{\partial z^{2}} \operatorname{Re}\left(E^{\left(\omega_{1}\right)}(z) \exp \left(i\left(k_{1} z-\omega_{1} t\right)\right)\right)$
- $\cdots=\operatorname{Re}\left(\left[2 i k_{1} \frac{\partial E^{\left(\omega_{1}\right)}(z)}{\partial z}-k_{1}^{2} E^{\left(\omega_{1}\right)}(z)\right] e^{\left(i\left(k_{1} z-\omega_{1} t\right)\right)}\right)$

Wave Propagation Equation under SVA approximation

 Obtaining an envelope equation, which is simplerNon SVA wave propagation equation

$$
\frac{\partial^{2} E^{\left(\omega_{1}\right)}(z, t)}{\partial z^{2}}+\mu_{0} \varepsilon_{\omega_{1}} \omega_{1}^{2} E^{\left(\omega_{1}\right)}(z, t)=-\mu \omega_{1}^{2} P_{N L}^{\omega_{1}}(z, t)
$$

SVA equation

- $\left(\left[2 i k_{1} \frac{\partial E^{\left(\omega_{1}\right)}(z)}{\partial z}\right]\right)$
$\bullet=\left(-\mu_{0} \omega_{1}^{2}[d]_{i j k}\left[E^{\left(\omega_{3}\right)}(z)\right]_{j} \overline{\left[E^{\left(\omega_{2}\right)}(z)\right]_{k}} e^{\left(i\left(k_{3}-k_{2}-k_{1}\right) z\right)}\right)$

The three waves

Phase mismatch and dispersion relationship

- Phase mismatch: $\Delta k=k_{1}+k_{2}-k_{3}$
- Recall the dispersion relationship : $k_{1}^{2}=\mu_{0} \varepsilon_{\omega_{1}} \omega_{1}$
- Wave impedance : $\eta_{\nu}=\sqrt{\frac{\mu_{0}}{\varepsilon_{\omega_{\nu}}}}$

Three wave propagation, rotating $i \rightarrow j \rightarrow k$

- $\left[\frac{\partial E^{\left(\omega_{1}\right)}}{\partial z}\right]_{i}=+\frac{i \omega_{1}}{2} \eta_{1}[d]_{i j k}\left[E^{\left(\omega_{3}\right)}\right]_{j} \overline{\left[E^{\left(\omega_{2}\right)}\right]_{k}} \exp (-i \Delta k z)$
- $\overline{\left[\frac{\partial E^{\left(\omega_{2}\right)}}{\partial z}\right]_{k}}=-\frac{i \omega_{2}}{2} \eta_{2}[d]_{k i j}\left[E^{\left(\omega_{1}\right)}\right]_{i} \overline{\left[E^{\left(\omega_{3}\right)}\right]_{j}} \exp (-i \Delta k z)$
- $\left[\frac{\partial E^{\left(\omega_{3}\right)}}{\partial z}\right]_{j}=+\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} \exp (i \Delta k z)$

6 equations for various quadratic phenomena

All in one for: frequency sum and difference, second harmonic generation and optical rectification, parametric amplifier...

Six equations

- $\left[\frac{\partial E^{\left(\omega_{1}\right)}}{\partial z}\right]_{i}=+\frac{i \omega_{1}}{2} \eta_{1}[d]_{j i k}\left[E^{\left(\omega_{3}\right)}\right]_{j} \overline{\left[E^{\left(\omega_{2}\right)}\right]_{k}} \exp (-i \Delta k z)$
- $\overline{\left[\frac{\partial E^{\left(\omega_{2}\right)}}{\partial z}\right]_{k}}=-\frac{i \omega_{2}}{2} \eta_{2}[d]_{k i j}\left[E^{\left(\omega_{1}\right)}\right]_{i} \overline{\left[E^{\left(\omega_{3}\right)}\right]_{j}} \exp (-i \Delta k z)$
- $\left[\frac{\partial E^{\left(\omega_{3}\right)}}{\partial z}\right]_{j}=+\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} \exp (i \Delta k z)$

Why all those names?
They differ by :

- The input frequencies and the generated ones
- The one that is the smallest and those which are large

Example : sum frequency generation

Input beams assumed constant
Undepleted pump approximation

Assumptions

- $\omega_{1}+\omega_{2}=\omega_{3}$
- Generated beam null at $z=0:\left[E^{\left(\omega_{3}\right)}(z=0)\right]_{j}=0$
- $\frac{\partial\left[E\left(\omega_{1}\right)\right]_{i}}{\partial z}=\frac{\overline{\partial\left[E^{\left(\omega_{2}\right)}\right]_{k}}}{\partial z}=0$

One equation remains

$$
\left[\frac{\partial E^{\left(\omega_{3}\right)}}{\partial z}\right]_{j}=+\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} \exp (-i \Delta k z)
$$

Solving the SVA wave propagation equation

Equation to solve

$$
\left[\frac{\partial E^{\left(\omega_{3}\right)}}{\partial z}\right]_{j}=+\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} \exp (-i \Delta k z)
$$

$\Delta k \neq 0$
$y^{\prime}=a e^{(i b x)} \Rightarrow y=\frac{i a}{b}\left(1-e^{(i b x)}\right)$

$$
\begin{aligned}
& \Delta k=0 \\
& y^{\prime}=a \Rightarrow y=a x
\end{aligned}
$$

Wave solution $\quad\left[E^{\left(\omega_{3}\right)}\right]_{j}$
Wave solution
$\left[E^{\left(\omega_{3}\right)}\right]_{j}$

$$
\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} \frac{e^{(i \Delta k z)}-1}{i \Delta k}
$$

$$
\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left[E^{\left(\omega_{2}\right)}\right]_{k}\left[E^{\left(\omega_{1}\right)}\right]_{i} z
$$

Intensity

$$
\propto\left[E^{\left(\omega_{3}\right)}\right]_{j} \overline{\left[E^{\left(\omega_{3}\right)}\right]_{j}}
$$

Intensity
$\propto\left[E^{\left(\omega_{3}\right)}\right]_{j}\left[E^{\left(\omega_{3}\right)}\right]_{j}$
$\omega_{3}^{2} \eta_{3}^{2}\left[d^{2}\right]_{j k i}\left|E^{\left(\omega_{2}\right)}\right|_{k}^{2}\left|E^{\left(\omega_{1}\right)}\right|_{i}^{2} \frac{\sin ^{2}\left(\frac{\Delta k z}{2}\right)}{\Delta k^{2}}$

$$
\omega_{3}^{2} \eta_{3}^{2}\left[d^{2}\right]_{j k i}\left|E\left(\omega_{2}\right)\right|_{k}^{2}\left|E\left(\omega_{1}\right)\right|_{i}^{2} z^{2}
$$

Phase match or not phase match

Phase matching is a key issue to sum frequency generation

Phase mismatch

- Oscillating intensity
- Max intensity $\propto \frac{1}{\Delta k^{2}}$

Phase match
$\Delta k=0$

- Intensity quadratic increase
- Approximations do not hold long

A Scalar Three Wave Interaction model

Further approximations to remove vectors
Simplifying notations

- Set indexes equal for polarization and frequency: $A_{\nu}=\left[E^{\left(\omega_{\nu}\right)}\right]_{\nu}$
- Consider $\varepsilon_{\nu}=n_{\nu}^{2} \varepsilon_{0}$
- Abbreviate $C=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \sqrt{\frac{\omega_{1} \omega_{2} \omega_{3}}{n_{1} n_{2} n_{3}}}$
- For lossless media, d is isotropic.
- Assume d is frequency independent
- Let $K=d C / 2$

Scalar three wave interaction

- $\frac{\partial A_{1}}{\partial z}=+i K \overline{A_{2}} A_{3} \exp (-i \Delta k z)$
- $\frac{\overline{\partial A_{2}}}{\partial z}=-i K A_{1} \overline{A_{3}} \exp (+i \Delta k z)$
- $\frac{\partial A_{3}}{\partial z}=+i K A_{2} A_{1} \exp (+i \Delta k z)$

Second Harmonic Generation

Sum frequency generation of two equal frequencies from the same source
One input beam counts for two

- $\omega_{1}=\omega_{2}, A_{1}=A_{2}, k_{1}=k_{2}$, $\omega_{3}=2 \omega_{1}$
- $\Delta k=2 k_{1}-k_{3}$

2 remaining equations

- $\frac{\partial A_{1}}{\partial z}=+i K \overline{A_{1}} A_{3} \exp (-i \Delta k z)$
- $\frac{\partial A_{3}}{\partial z}=+i K A_{1}{ }^{2} \exp (+i \Delta k z)$

Phase matching

- $\frac{\partial A_{1}}{\partial z}=+i K \overline{A_{1}} A_{3}$
- $\frac{\partial A_{3}}{\partial z}=+i K A_{1}{ }^{2}$
$\Delta k=0$ Figure: Closeup of a BBO crystal inside a resonant build-up ring cavity for frequency doubling 461 nm blue light into the ultraviolet. (source fliłkr)

Second Harmonic Beam Generation

Remember. . .

- $\frac{\partial A_{1}}{\partial z}=+i K \overline{A_{1}} A_{3}$
- $\frac{\partial A_{3}}{\partial z}=+i K A_{1}{ }^{2}$
$A_{1} \in \mathbb{R}$
$A_{3} \in i \mathbb{R}$
- $A_{3}=i \tilde{A}_{3} \Rightarrow \tilde{A}_{3} \in \mathbb{R}$
- $A_{1}=\overline{A_{1}}$

Real equations

- $\frac{\partial A_{1}}{\partial z}=-K \overline{A_{1}} \tilde{A}_{3}$
- $\frac{\partial \tilde{A}_{3}}{\partial z}=K A_{1}{ }^{2}$

$$
\Delta k=0
$$

Multiply by A_{1} and \tilde{A}_{3}

$$
\text { - } \frac{\partial\left(A_{1}^{2}+\tilde{A}_{3}^{2}\right)}{\partial z}=0
$$

- This is Energy Conservation

Start with no harmonic

$$
\left(A_{1}^{2}(z)+\tilde{A}_{3}^{2}(z)\right)=A_{1}^{2}(0)
$$

\tilde{A}_{3} equation

$$
\frac{\partial \tilde{A}_{3}}{\partial z}=K A_{1}^{2}=K\left(A_{1}^{2}(0)-\tilde{A}_{3}^{2}(z)\right)
$$

Second Harmonic Beam Evolution

\tilde{A}_{3} equation

$$
\frac{\partial \tilde{A}_{3}}{\partial z}=K\left(A_{1}^{2}(0)-\tilde{A}_{3}^{2}(z)\right)
$$

\tilde{A}_{3} expression

$$
\tilde{A}_{3}(z)=A_{1}(0) \tanh \left(K A_{1}(0) z\right)
$$

I_{3} expression

$$
I_{3}(z)=I_{1}(0) \tanh ^{2}\left(K A_{1}(0) z\right)
$$

$I_{1}(z)=I_{1}(0)-I_{3}(z)$
$I_{1}(z)=I_{1}(0) \operatorname{sech}^{2}\left(K A_{1}(0) z\right)$

$I_{3}(z) / I_{1}(0) \quad I_{1}(0)=$ constant

SHG conclusion

Second Harmonic Beam Evolution

Suprinsingly...

- It is possible to convert 100% of a beam, with large interaction length or intensity
- The process has no threshold and does not need noise to start
- We have retrieved Energy Conservation in spite of drastic approximations

Optical Parametric Amplifier

Optical Amplification of a weak signal beam thanks to a powerful pump beam
Signal beam amplification

- ω_{1} : weak signal to be amplified
- ω_{3} : intense pump beam
- $\omega_{2}=\omega_{3}-\omega_{1}$: difference frequency generation (idler)

Undepleted pump approximation

$$
A_{3}(z)=A_{3}(0)=K_{p} / K
$$

Phase matched equations

- $\frac{\partial A_{1}}{\partial z}=+i K_{p} \overline{A_{2}}$
- $\frac{\overline{\partial A_{2}}}{\partial z}=-i K_{p} A_{1}$

Figure: White light continuum seeded optical parametric amplifier (OPA) able to generate extremely short pulsps. (source Freie Universität Berlin)

universite-merz

Solving the OPA equations

Phase matched equations

- $\frac{\partial A_{1}}{\partial z}=+i K_{p} \overline{A_{2}}$
- $\overline{\frac{\partial A_{2}}{\partial z}}=-i K_{p} A_{1}$

Initial conditions

- A weak signal : $A_{1}(0) \neq 0$
- No idler: $A_{2}(0)=0$

Amplitude solution

- Amplified signal :

$$
A_{1}(z)=A_{1}(0) \cosh \left(K_{p} z\right)
$$

- Idler :

$$
\overline{A_{2}(z)}=-i A_{1}(0) \sinh \left(K_{p} z\right)
$$

Intensities

- Amplified signal :

$$
I_{1}(z)=I_{1}(0) \cosh ^{2}\left(K_{p} z\right)
$$

- Idler :

$$
I_{2}(z)=I_{1}(0) \sinh ^{2}\left(K_{p} z\right)
$$

Amplification

Optical Parametric Oscillator
 OPO

Use Optical Parametric Amplification to make a tunable laser

OPA pumped with ω_{3}

- Amplifier for ω_{1} and ω_{2}
- With $\omega_{1}+\omega_{2}=\omega_{3}$
- Phase matching: $k_{1}+k_{2}=k_{3}$
- ω_{1} and ω_{2} initiated from noise

Frequency tunable laser

- Get Non Linear Medium
- Adjust Cavity for ω_{1} and ω_{2}
- Pump with ω_{3}
- You got it !

Figure: Optical Parametric Oscillator ray (source Cristal Laser)

Colinear (scalar) phase matching

Phase matching for co-propagation waves

- $k_{1}+k_{2}=k_{3} \Rightarrow \omega_{1} n_{1}+\omega_{2} n_{2}=\omega_{3} n_{3}$
- for SHG: $2 k_{1}=k_{3} \Rightarrow n_{1}=n_{3}$
- The last is never achieved, due to normal dispersion: $n_{1}<n_{3}$

One and only solution

Use birefringent crystals and different polarizations

Non colinear phase matching

Use clever geometries
With reflections

SHG Type I Phase Matching

Waves polarization

- 1 incident wave counts for 2
- They share the same polarization
- Second Harmonic polarization is orthogonal

Type I phase matching

- One refraction index for Fundamental
- The other for Second Harmonic
- They must be equal
- Propagate in the right direction

SHG Type I phase matching: a few numbers

Fundamental index ellipsoïd section

$$
\frac{1}{n_{e}^{2}(\theta)}=\frac{\cos ^{2}(\theta)}{n_{o}^{2}}+\frac{\sin ^{2}(\theta)}{n_{e}^{2}}
$$

Harmonic index ellipsoïd section

$$
\frac{1}{\tilde{n}_{0}^{2}(\theta)}=\frac{\cos ^{2}(\theta)}{\tilde{n}_{o}^{2}}+\frac{\sin ^{2}(\theta)}{\tilde{n}_{e}^{2}}
$$

Solve the equation

$$
\sin ^{2}(\theta)=\frac{n_{o}^{-2}-\tilde{n}_{o}^{-2}}{\tilde{n}_{e}^{-2}-\tilde{n}_{o}^{-2}}
$$

Type II phase matching

In the three beam interaction, Type I was

- Both input beams ω_{1} and ω_{2} share the same polarization
- The generated beam ω_{3} polarization is orthogonal

Another solution: Type II

- Input beams polarization are orthogonal
- Generated beam share one of them
- Not possible for SHG
- How is the angle calculated ?

Phase matching in bi-axial crystals

A hard task

- Phase matching is seldom colinear
- Vector phase matching in a complex index ellipsoïd
- I will let you think on it

Paper by Bœuf can help
回 N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall.

Calculating characteristics of noncolinear phase matching in uniaxial and biaxial crystals.
Optical Engineering, 39(4):1016-1024, 2000.

Quasi phase matching in layered media

Periodically Poled Lithium Niobate

- Periodic Domain Reversal
- d sign reversal

Single grating

$$
\left[\frac{\partial E^{\left(\omega_{3}\right)}}{\partial z}\right]_{j}
$$

$$
\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\left|E^{\left(\omega_{1}\right)}\right|_{i}^{2} \frac{e^{(i \Delta k \Lambda)}-1}{\Delta k} \sum_{n=1}^{N}(-1)^{n} e^{(i \Delta k \Lambda)}
$$

Intsensity Solution
$\Delta k \Lambda=\pi$

$$
\left.\left.\left|\frac{i \omega_{3}}{2} \eta_{3}[d]_{j k i}\right| E^{\left(\omega_{1}\right)}\right|_{i} ^{2}\right|^{2} 4 \Lambda^{2} \operatorname{sinc}^{2}(\Delta k \Lambda / 2) \frac{1-(-1)^{N} \cos (\Delta k \Lambda N)}{1+\cos (\Delta k \Lambda)}
$$

