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Three-wave interaction Assumptions framework

@ Three-wave interaction
@ Assumptions framework
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ASIUTFIERS (RiErai
A classical Maxwell framework

With standard assumptions: no charge, no current, no magnet and no conductivity

Maxwell Model

o div(D) =0 Matter equations
o div(B) =0 ° D=ek+P=cE
0B ° B=puH
o curl (E) = -5
oD
o curl (H) = 57 ]
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With standard assumptions: no charge, no current, no magnet and no conductivity

Maxwell Model

o div(D) =0 Matter equations
o div(B) =0 ° D=ek+P=cE
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ASIUTFIERS (RiErai
A classical Maxwell framework

With standard assumptions: no charge, no current, no magnet and no conductivity

Maxwell Model ]
o div(D) =0 MatteDr equa;onsp .
o div(B) =0 °B_5°H+ =
ocurl(E):—%—’f OP_MO £op
@ P =c¢oxLE+ PnL
o curl(H) = % ]
Wave equation in isotropic medium
AE — Moé‘—z Moaafé‘“ J
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Three-wave interaction Assumptions framework

A classical Maxwell framework

With standard assumptions: no charge, no current, no magnet and no conductivity

Maxwell Model
o div(D) =0 Matter equations
o div(B) =0 ° D=cob+P=cE
ocurl(E):—%—’f ° B = uoH
@ P=cox E+ PnL
o curl(H) = % ]

Wave equation in isotropic medium

AE — Moé‘—z 1o 03’:9“

v

Solutions to be found only in a specific framework:
We look here for :

@ Quadratic non-linearity

@ Three wave interaction

v
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ASIUTFIERS (RiErai
Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction

@ Transversal E : has x and y components

. B2E 92E 9*Pui(z
o Wave equation : 55 — pocgz = /Lo#()
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ASIUTFIERS (RiErai
Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction

@ Transversal E : has x and y components

. 2 2 o2 P,
o Wave equation : 25 — ji0e %5 = Mo%ﬁ

Quadratic non-linearity
@ Py is transversal

o [Pn]; = Z [d]ijk[E]j[E]k

{ikre{xy}?
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ASIUTFIERS (RiErai
Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction

@ Transversal E : has x and y components

92°E 9*Pyi(2)

fn ’E
o Wave equation : G5 — oeG;7 = o5

Quadratic non-linearity
@ Py is transversal

o [Pni]; = Z [d]ijk[E]j[E]k = [d]ijk[E]j[E]k
Ukre{xyy?
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ASIUTFIERS (RiErai
Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction

@ Transversal E : has x and y components

. B2E 92E 9*Pui(z
o Wave equation : 55 — pocgz = /1,0%()

Quadratic non-linearity
@ Py is transversal

o [Pni]; = Z [d]ijk[E]j[E]k = [d]ijk[E]j[E]k
Ukre{xyy?

Three wave interaction only
@ Three waves only are present : w1, wy and w3

@ Non linear interaction of two waves : sum, difference, doubling,
rectification. . .
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Three-wave interaction Assumptions framework

Three wave interaction assumptions

All waves are transverse plane waves propagating in the z direction
@ Transversal E : has x and y components

. B2E 92E 9*Pui(z
o Wave equation : 55 — pocgz = /1,0#()

Quadratic non-linearity

@ Py is transversal
o [Pn]; = Z [d]ijk[E]j[E]k = [d]ijk[E]j[E]k
{kre{xy}?

Three wave interaction only

@ Three waves only are present : w1, wy and w3

@ Non linear interaction of two waves : sum, difference, doubling,
rectification. . .

@ We consider only those for which w; + wy = w3
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Three-wave interaction Three Wave propagation equation

@ Three-wave interaction

@ Three Wave propagation equation
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Three wave interaction solution ansatz

Sum of three waves

3
o [E],,(z,t)=TRe (Z exp (ik,z — iw,,t))

v=1
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Three wave interaction solution ansatz

Sum of three waves

3
o [E],,(z,t)=TRe (Z exp (ik,z — iw,,t))

v=1

@ Dispersion law : kﬁ = uosng

e ¢ dispersion : g, = £ (wy)

N. Fressengeas (LMOPS) SHG November 12, 2012 6 /30



Three wave interaction solution ansatz

Sum of three waves

3
o [E],,(z,t)=TRe (Z exp (ik,z — iw,,t))

v=1
e Dis ion law : k2 = 2
persion law : k7 = poe wy

e ¢ dispersion : g, = £ (wy)

How good is this ansatz 7
@ We have assumed wq + wr = w3

@ Why would w3 not be a source as well ?
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Sum of three waves

3
o [E],,(z,t)=TRe (Z exp (ik,z — iw,,t))

v=1
e Dis ion law : k2 = 2
persion law : k7 = poe wy

e ¢ dispersion : g, = £ (wy)

How good is this ansatz 7
@ We have assumed wq + wr = w3
@ Why would w3 not be a source as well ?

o OK if wave 3 is small enough

N. Fressengeas (LMOPS) SHG November 12, 2012 6 /30



Three wave interaction solution ansatz

Sum of three waves
3
o [E],,(z,t)=TRe Z exp (ikyz — iwyt)

v=1
e Dis ion law : k2 = 2
persion law : k7 = poe wy

e ¢ dispersion : g, = £ (wy)

How good is this ansatz 7
@ We have assumed wq + wr = w3
@ Why would w3 not be a source as well ?

o OK if wave 3 is small enough

Separate investigation at each frequency

@ At w,, consider only the part of Py, oscillating at frequency w, :Py/

@ Three separate equations

v
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Wave propagation for frequency w, ve{l,2,3}

3 Perturbed wave equations

PECY) (z,1) PEC (=) _ | PPy (2,1)
B A A L

@
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Wave propagation for frequency w, ve{l,2,3}

3 Perturbed wave equations

PECY) (z,1) PEC (=) _ | PPy (2,1)
B A A L

Temporal harmonic notation

o E@) s a plane wave

@
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Three-wave interaction Three Wave propagation equation

Wave propagation for frequency w, ve{l,2,3}

3 Perturbed wave equations

PECzr) _  PECI(zt) PPy (z,t)
P 0Cwy 32 — M0 o

Temporal harmonic notation

o E@) s a plane wave

@ Non linear polarization is a plane wave

o Considering only. ..the w, part < the plane wave part
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Three-wave interaction Three Wave propagation equation

Wave propagation for frequency w, ve{l,2,3}

3 Perturbed wave equations

PECzr) _  PECI(zt) PPy (z,t)
P 0Cwy 32 — M0 o

Temporal harmonic notation

E(@) is a plane wave

Non linear polarization is a plane wave

82E(Wl/) »
° % + MoEwVW?/E(w”) (z,t) = —MOWEP/L\‘;L (z,t)

Considering only. . .the w, part < the plane wave part
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Non Linear Polarisation Py, in harmonic framework

Reminder
[Pnc]; = [d]; [E];[E]x J

-’
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Three-wave interaction Three Wave propagation equation

Non Linear Polarisation Py, in harmonic framework

Reminder

[Pnc]; = [d]; [E];[E]x

Temporal harmonic framework for w1
@ Multiply complex fields
@ Include Conjugates to take Real Part
@ Select only the w; component

-’

November 12, 2012 8 /30
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Three-wave interaction Three Wave propagation equation

Non Linear Polarisation Py, in harmonic framework

Reminder

[Pnc]; = [d]; [E];[E]x

Temporal harmonic framework for w1
@ Multiply complex fields
@ Include Conjugates to take Real Part
@ Select only the w; component

[Phi(2,1)]; = Re <[d] ik [EW (z)} [Hm(z)]ke(i(kz—b)z—i(m_m)t))

J

v

-’
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Three-wave interaction Three Wave propagation equation

Non Linear Polarisation Py, in harmonic framework

Reminder

[Pnc]; = [d]; [E];[E]x

v
Temporal harmonic framework

for wq
@ Multiply complex fields

@ Include Conjugates to take Real Part
@ Select only the w; component

[Phi(2,1)]; = Re <[d] ik [EW (z)} [Hm(z)]ke(i(ka—b)z—i(m_m)t))

j
Wave propagation equation
O2E@) (2, ¢
D) 4 e RED (2.0) = P (211

L

November 12, 2012 8 /30
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The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation
@ Beam envelope is assumed to vary slowly in the longitudinal direction

L
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The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation
@ Beam envelope is assumed to vary slowly in the longitudinal direction

@ Equivalent as assuming a narrow beam

L
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The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation
@ Beam envelope is assumed to vary slowly in the longitudinal direction

@ Equivalent as assuming a narrow beam
@ Second derivative with respect z neglected compared to

o the first one with respect to z
o the others with respect to x and y
v

L
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Three-wave interaction Three Wave propagation equation

The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation

@ Beam envelope is assumed to vary slowly in the longitudinal direction
@ Equivalent as assuming a narrow beam

@ Second derivative with respect z neglected compared to
o the first one with respect to z
o the others with respect to x and y

To put it in maths. ..

° % = 2 Re (E) (2) exp (i (kiz — wit)))

v

O
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Three-wave interaction Three Wave propagation equation

The Slow Varying Approximation

Closely related to the paraxial approximation

The Slow Varying Approximation

@ Beam envelope is assumed to vary slowly in the longitudinal direction
@ Equivalent as assuming a narrow beam

@ Second derivative with respect z neglected compared to
o the first one with respect to z
o the others with respect to x and y

To put it in maths. ..

2 (1) (2 w )
° aEai;(’t) _5’9 Re (E( 1)(2) exp(/(klz—wlt)))
1)

022
. =TRe <[ Eé G 2iky 8E(;1z)(2) — kle(wl) (Z)] e(i(klz_wlt))>

N. Fressengeas (LMOPS) SHG
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

Q2EE) (2, 1)

0z2 + Mogwlw%E(wl) (z,t) = _MOM%PI“\;IL (z,1)

SVA equation

V.
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

Q2EE) (2, 1)

D272 + piog W ECY (2,8) = —powi Py (2, 1)

SVA equation

° Re <[2ik18E(;:)(z) k2 E() (Z)] (i(kaz— wlt))>

V.
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

H2E() (2, ¢)

D272 + piog W ECY (2,8) = —powi Py (2, 1)

SVA equation
o Re <[2ik18’5(;12)(2) — k125(w1) (Z)] e(f(klzwlt))>

o +Re (e W2 EW@) (z)elilkiz—wrt)))

o

@
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

H2E() (2, ¢)

D272 + piog W ECY (2,8) = —powi Py (2, 1)

SVA equation
o Re <[2ik1(%((;:)(z) — kle(‘”l) (z)] e(i(kIZwlf))>

o +Re (e w2 W) (z)elilkiz—wit)))
e = Re <_NOW%[d]Uk [E(W3)( ):| m (k3 kZ)Z—i(W3—w2)t)>

o
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

O?EL (z,t)

022 + g Wi EWY (z,1) = —powi Pyt (2, t)

SVA equation
® Re <[2/k 8E(“J1)(Z):| e(i(klz—wlt))>

o = Re (—po?[d] [EC) (2)] [EC) (2)] elithak)zmilwa—e)0))
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

O?EL (z,t)

022 + g Wi EWY (z,1) = —powi Pyt (2, t)

SVA equation

o ([2 ik 8E(W1)(z):| e(i(klz—wlt))>

° = (—,uowf[d]ijk [E(“’3)( )] [E2) (2)] e (i(ks—ko)z—i(ws— w2)t))
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Wave Propagation Equation under SVA approximation

Obtaining an envelope equation, which is simpler

Non SVA wave propagation equation

O?EL (z,t)

0z2 + yogwlw%E(wl) (z,t) = _NOW%PICA\JllL (z.t)

SVA equation

. ( [2”(1 8E(;1Z)(z)] >

o = (—nowdldly [EC) (2)] @ (2)] elithstak)2)
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The three waves

Phase mismatch and dispersion relationship
@ Phase mismatch : Ak = ky + ko — k3
@ Recall the dispersion relationship : k¥ = ppe,,w?

Ho

Ewy

o Wave impedance : n, =
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The three waves

Phase mismatch and dispersion relationship
@ Phase mismatch : Ak = ky + ko — k3

@ Recall the dispersion relationship : k¥ = ppe,,w?

o Wave impedance : n, = ENTO
Three wave propagation, rotating i — j — k (i,j, k) € {va}3

o [aEa(:l)L:+iw1 [d]uk[ ]j[ETﬂ]kexp(—iAkz)

° |:8E8(:2)} ) _iwp 772[d]kJ [ 1)] [E(u@)] exp (—iDkz)

o [2862] =+ igumlaly [EC2)], [E)] enp (i)

v

\C
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6 equations for various quadratic phenomena

All in one for : frequency sum and difference, second harmonic generation and optical
rectification, parametric amplifier. . .

Six equations (i.j,k) € {x, ¥}
(w1) iw w w H
o [2EC2), — vl [E), TEC, exp (it

o [P2] = sl [ TEGT, exp (~itke)

° {aEza(:3)}j = 5 nald] [EC2)] [EC1)]; exp (ikz)
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Three-wave interaction Three Wave propagation equation

6 equations for various quadratic phenomena

All in one for : frequency sum and difference, second harmonic generation and optical
rectification, parametric amplifier. . .

Six equations (i.j,k) € {x, ¥}
(w1) iw w w H
o [2EC2), — vl [E), TEC, exp (it

o [P2] = sl [ TEGT, exp (~itke)

° {aEza(:3)}j = 5 nald] [EC2)] [EC1)]; exp (ikz)

Why all those names ?
They differ by :
@ The input frequencies and the generated ones

@ The one that is the smallest and those which are large
o ...

v
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Three-wave interaction Sum frequency generation

@ Three-wave interaction

@ Sum frequency generation
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Example : sum frequency generation

Input beams assumed constant Undepleted pump approximation

Assumptions
@ W1 +wor = w3
@ Generated beam null at z=10: [E(“’3) (z= O)L. =0

a[E(w)]i B a[E(wz)]k

° 0z 0z =0

@
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Three-wave interaction Sum frequency generation

Example : sum frequency generation
Input beams assumed constant

Assumptions

0 Wi +wr=uws

@ Generated beam null at z=0: [E(“’3) (z= O)L. =

a[E(w)]i B a[E(wz)]k

° 0z 0z

=0

Undepleted pump approximation

0

One equation remains

{aEa(?) L = + %3] d] i [ED], [ECD], exp (—iLkz)

N. Fressengeas (LMOPS) SHG

November 12, 2012
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Solving the SVA wave propagation equation

Equation to solve

[aEB(?)L = +%773[d]jk,' [E(w2)] K [E(wl)] ; €xp (—iQkz)

@
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Solving the SVA wave propagation equation

Equation to solve

[aEB(?)L = +%773[d]jk,' [E(w2)] K [E(wl)] ; €xp (—iQkz)

Dk # 0
y/ — ae(ibx) =y= %3 (1 _ e(ibx)) J

@
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Solving the SVA wave propagation equation

Equation to solve

{BEB(?)L = +%U3[d]jk;[5(“’2)]k[E(“’l)]iexp (—iDkz)

Nk #£0

y/ — ae(ibx) =y= %a (1 _ e(ibx))

Wave solution [E(w3)] )
J

(idkz) _q

Lanald] [E@2)] [ED] Sak

N. Fressengeas (LMOPS) SHG

November 12, 2012
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Three-wave interaction Sum frequency generation

Solving the SVA wave propagation equation

Equation to solve

aEa(:e»)L = +%U3[d]jk;[5(“’2)]k[E(“’l)]iexp (—iDkz)

|

N. Fressengeas (LMOPS)

Dk # 0
Y =ael®) = y=12(1_¢

(ibx))

v

Wave solution

[Es)].

J
(idkz) _q

Saipld] g [E@] [EEV] Sont

Intensity x [E(%)] .[E("J3)L.

B[] 5 | ECD [ EC)

2 sin? )

v

SHG
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Three-wave interaction Sum frequency generation

Solving the SVA wave propagation equation

Equation to solve

{aEa(:3)}j = +%773[d]jk;[5(“2)]k[E(“’l)]iexp (—iDkz)

Ak £0
y' =ael®) = y =121

— elib0)

Ak =0

y=a=y=ax

Wave solution

sl [E2)] [ECV],

£

elibkz) _1
i

Intensity o [E(w3)]j[E(w3)L
in Ak
R[], |E ) |
N. Fressengeas (LMOPS)

SHG

November 12, 2012

\CC

14 / 30



Three-wave interaction Sum frequency generation

Solving the SVA wave propagation equation

Equation to solve

{aEa(?) L = +%3p3[d] i [ED], [E@D], exp (—iLkz)

Dk #£0

Ak =0
y/:ae(ibx) :>y:%a(1_e(ibx)) y’:a:>y:ax
Wave solution [E(““)} .| Wave solution [E(w3)] .
J J

sl [E2)] [ECV],

elibkz) _1
i

%1773[d]jki [E(M)} K [E(wl)} iZ

Intensity o [E(w3)]j[E(w3)L
in Ak
R[], |E ) |
N. Fressengeas (LMOPS)

SHG
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Solving the SVA wave propagation equation

Equation to solve

[2L] = il [0, [£69)] exp (- iake)

Ak =0

y=a=y=ax

0z
Ak #£0
y/ — ae(ibx) =y = %a (1 _ e(ibx))
Wave solution [E(““)} .
J

(idkz) _q

“ams(d] [E@D)], [ECD]

4

Intensity o [E(w3)]j[E(w3)L
2 W (w1) 25m Lz )
Wa”’o’[d]k’E | |E ‘ _2_

Wave solution

[Es)].
%1773[d]jki [E(M)} K [E(wl)} iZ

J

v

Intensity

v

N. Fressengeas (LMOPS)

x [E(“3)]j[E(W3)] .

w33 [dz]jki ‘ E(2) |i | () ‘?22

J
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Phase match or not phase match

Phase matching is a key issue to sum frequency generation

Phase mismatch Nk #£0
@ Oscillating intensity
@ Max intensity ﬁ
Intensity
r 1/Ak2

" Akz)2

N. Fressengeas (LMOPS)
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Phase match or not phase match

Phase matching is a key issue to sum frequency generation

Phase mismatch Dk #0 Phase match Nk =0

e Oscillating intensity @ Intensity quadratic increase

e Max intensity oc ﬁ @ Approximations do not hold
‘ long
Intensity .
1/8k"2 IIlteIISlty

80—

2 ° " Akzm/24 2 ’ " Nkz)2 '
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Three-wave interaction Scalar approximation

@ Three-wave interaction

@ Scalar approximation
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors

Simplifying notations

@ Set indexes equal for polarization and frequency: A, = [E(“’”)]V
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors
Simplifying notations
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Simplifying notations
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o Consider ¢, = n,%eo
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors
Simplifying notations

@ Set indexes equal for polarization and frequency: A, = [E(“’”)]V

. _ 2
Consider €, = n;eg

. — [po [wiwows
Abbreviate C = \/;\/J

For lossless media, d is isotropic.
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors

Simplifying notations

@ Set indexes equal for polarization and frequency: A, = [E(””)]V

. _ 2
Consider €, = n;eg

. — [po [wiwows
Abbreviate C = \/;m

For lossless media, d is isotropic.

Assume d is frequency independent
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors

Simplifying notations

@ Set indexes equal for polarization and frequency: A, = [E(””)]V
e Consider ¢, = n2gq
H _ Ko Wiwows
@ Abbreviate C = \ 2o\ e
@ For lossless media, d is isotropic.
@ Assume d is frequency independent
o Let K=dC/2
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Sezlay SR ipAITEET
A Scalar Three Wave Interaction model

Further approximations to remove vectors

Simplifying notations

@ Set indexes equal for polarization and frequency: A, = [E(“’”)]V

. _ 2
Consider €, = n;eg

. — [po [wiwows
Abbreviate C = \/;\/E

For lossless media, d is isotropic.

Assume d is frequency independent
Let K = dC/2

Scalar three wave interaction

° % = +iKAyAz exp (—ikz)
o %o — _iKA A7 exp (+ilkz)
o %5 = 1 iKAA; exp (+ilkz)

v
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Generation SHG

Sum frequency generation of two equal frequencies from the same source

One input beam counts for two
® w1 =wy, A1 = Ap, k1 = ko,
w3 = 2w
o Nk =2ki — k3

Figure: Closeup of a BBO crystal inside
a resonant build-up ring cavity for
frequency doubling 461 nm blue light
into the ultraviolet. (source flick
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Generation SHG
Sum frequency generation of two equal frequencies from the same source
One input beam counts for two
0 w; =wy, A1 = Ag, k1 = ko,
w3 = 2w
o ANk =2k; — ks
2 remaining equations
o %4 = KA Az exp (—ilkz)
° 6A3 = +iKAL? exp (+iDkz2)

Figure: Closeup of a BBO crystal inside
a resonant build-up ring cavity for
frequency doubling 461 nm blue light
into the ultraviolet. (source flick
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Generation SHG

Sum frequency generation of two equal frequencies from the same source

One input beam counts for two
® w1 =wy, A1 = Ap, k1 = ko,
w3 = 2w
o Nk =2ki — k3

2 remaining equations

o %4 — LKA Az exp (—ilkz)

oz
° % = +iKAL? exp (+iDkz2)
Phase matching Ak = 0 | Figure: Closeup of a BBO crystal inside
OA, I a resonant build-up ring cavity for
° G = TiKAIAs frequency doubling 461 nm blue light
° % = +iKA;2 into the ultraviolet. (source flick

N. Fressengeas (LMOPS) SHG November 12, 2012 17 / 30


http://www.flickr.com/photos/fatllama/44883250/

Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Generation

Remember. . . Nk =20
o 2 = 1iKALA;s
0As _ 2
o 52 = +iKA;
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Second Harmonic Generation

Remember. .. Nc=0
o % = +iKAA;s
o %h = 1iKA;?
Al eR Az € i]R{J
0o A3 =iA3 = A3 eR
o AL =A; )
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Second Harmonic Beam Generation

Remember. .. Nc=0

o % = +iKAA;s

o %h = 1iKA;? )
Al eR Az € iR

0o A3 =iA3 = A3 eR

o AL =A; )
Real equations

° % = —KA71/~43

o U _ K42 |
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Generation

Remember. . .
o 2 = 1iKALA;s
o %h = 1iKA;?

AL eR
0A3:I';43:>A3€R
o AL =A;

Nk =0 .
Multiply by A; and As Sum
o B(A?Z-Z\g) _0
e R @ This is Energy Conservation

Real equations

o M — KA

Ay _ 2
o 52 =KA
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Second Harmonic Beam Generation

Remember. . .
o 2 = 1iKALA;s
o %h = 1iKA;?

AL eR
0A3:I';43:>A3€R
o AL =A;

Real equations

o M — KA

Ay _ 2
o 52 =KA

N. Fressengeas (LMOPS)

Nk =0 .

Multiply by A; and As Sum

2 A2
o a(AngA3) _0

M e R @ This is Energy Conservation )

Start with no harmonic

(43 (2) + B (2)) = 42 (0)
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Non Linear Optics Application

Second Harmonic Generation

Second Harmonic Beam Generation

Remember. ..
o 2 = 1iKALA;s
o %h = 1iKA;?

A eR
OA3:I';43:>A3€R
o Ai=A

Az € iR

Real equations

o % = —KA_1A3
o U = KA?

N. Fressengeas (LMOPS)

SHG

Multiply by A; and As

o(A2+A2)
o ) _

@ This is Energy Conservation

Sum

Start with no harmonic

(42 (2) + A (2))

= AL (0)

W — KAZ = K (42(0)

~ % (2))

v
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Evolution

As equation

o = K (A (0)- A3 (2))

@

N. Fressengeas (LMOPS) SHG November 12, 2012 19 / 30



Non Linear Optics Application

Second Harmonic Beam Evolution

As equation

o = K (A (0)- A3 (2))

Second Harmonic Generation

As expression
A3 (z) = Ay (0) tanh (KA; (0) z)
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Non Linear Optics Application

Second Harmonic Beam Evolution

As equation

o = K (A (0)- A3 (2))

A3 expression

A3 (z) = Ay (0) tanh (KA; (0) z)

I3 expression

I3 (z) = h (0) tanh? (KA; (0) 2)
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Evolution

As equation
%o — K (42 (0) - A3 (2))

As expression
A3 (z) = Ay (0) tanh (KA; (0) z)

I3 expression

I3 (z) = h (0) tanh? (KA; (0) 2)
h(z) = h(0) - Kk(z2)

h (z) = I (0) sech? (KA1 (0) 2)

| @
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Evolution

As equation

% — K (M0) - B(2)

h (0) = constant

As expression
A3 (z) = Ay (0) tanh (KA; (0) z)

I3 expression
I3 (z) = h (0) tanh? (KA; (0) 2) | | | |
h(z)=h(0)— k(z) Z
h (z) = I (0) sech? (KA1 (0) 2)
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Non Linear Optics Application Second Harmonic Generation

Second Harmonic Beam Evolution

As equation

% — K (M0) - B(2)

z = L = constant

As expression
A3 (z) = Ay (0) tanh (KA; (0) z)

I3 expression
I3 (z) = h (0) tanh? (KA; (0) 2) | | | |
h(z)=h(0)— h(z) A(0)
h (z) = I (0) sech? (KA1 (0) 2)
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Non Linear Optics Application Second Harmonic Generation

SHG conclusion

Second Harmonic Beam Evolution

pigd 1

0.75 0.751

0.5 0.5

0.251 0.251
z A(0)
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SHG conclusion

Second Harmonic Beam Evolution

0.75 0.751
0.5 0.5
0.251 0.251

z N0

@ It is possible to convert 100% of a beam, with large interaction length
or intensity
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0.75 0.751
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@ The process has no threshold and does not need noise to start
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Non Linear Optics Application Second Harmonic Generation

SHG conclusion

Second Harmonic Beam Evolution

z N0

@ It is possible to convert 100% of a beam, with large interaction length
or intensity

@ The process has no threshold and does not need noise to start

@ We have retrieved Energy Conservation in spite of drastic
approximations

v
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© Non Linear Optics Application

@ Optical Parametric Amplifier
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Optical Parametric Amplifier OPA

Optical Amplification of a weak signal beam thanks to a powerful pump beam

Signal beam amplification
@ wi : weak signal to be
amplified
@ w3 : intense pump beam
@ wy = w3 — w1 : difference
frequency generation (idler)

Figure: White light continuum seeded
optical parametric amplifier (OPA) able
to generate extremely short pulses.
(source Freie Universitat Berlin)
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Optical Amplification of a weak signal beam thanks to a powerful pump beam

Signal beam amplification
@ wi : weak signal to be
amplified
@ w3 : intense pump beam
@ wy = w3 — w1 : difference
frequency generation (idler)

Undepleted pump approximation
A3z(z) = A3(0) = Kp/K
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Non Linear Optics Application Optical Parametric Amplifier

Optical Parametric Amplifier

OPA

Optical Amplification of a weak signal beam thanks to a powerful pump beam

Signal beam amplification
@ wi : weak signal to be
amplified
@ w3 : intense pump beam

@ wy = w3 — ws : difference
frequency generation (idler)

Undepleted pump approximation
A3z(z) = A3(0) = Kp/K

Phase matched equations

e % = +iKpAz

dAy -
o W — —IKpA]_

N. Fressengeas (LMOPS)

Figure: White light continuum seeded
optical parametric amplifier (OPA) able
to generate extremely short pulses.
(source Freie Universitat Berlin)
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Qpiteel PRraimiiie Amaiie
Solving the OPA equations

Phase matched equations

0AT _ | -

°o St = +iKp A2
0Ay :

o 52 = —iKpA

@
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Qpiteel PRraimiiie Amaiie
Solving the OPA equations

Phase matched equations

0AT _ | -

°o St = +iKp A2
0Ay :

o 52 = —iKpA

Initial conditions
e A weak signal : A;(0) #0
o Noidler: A>(0) =0
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Non Linear Optics Application Optical Parametric Amplifier

Solving the OPA equations

Phase matched equations

0AT _ | -

°o St = +iKp A2
0Ay :

o 52 = —iKpA

Initial conditions
e A weak signal : A;(0) #0
o Noidler: A>(0) =0

Amplitude solution
o Amplified signal :
A1 (z) = A1 (0) cosh (Kp2z)

o Idler :

Az (2) = —iAy (0)sinh (Kpz) | @
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Qpiteel PRraimiiie Amaiie
Solving the OPA equations

Intensities

Phase matched equations . )
o Amplified signal :

) % = +IKpA72 Il (Z) — /1 (0) C05h2 (KPZ)
® % = —IKpAL o Idler :
’ / = 11 (0)sinh? (K
Initial conditions > (2) = h (0)sinh? (Kj2) )
o A weak signal : A; (0) # 0 Amplification
e Noidler: A;(0)=0 o

Amplitude solution
e Amplified signal :
A1 (z) = A1 (0) cosh (Kp2)
o Idler:
Az (z) = —iA1 (0) sinh (Kp2) ) - : : '

y
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© Non Linear Optics Application

@ Optical Parametric Oscillator
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Qpiteel Perriciite Gssilexer
Optical Parametric Oscillator OPO

Use Optical Parametric Amplification to make a tunable laser

OPA pumped with w3
o Amplifier for wy and wy
o With w1 + wy = w3
@ Phase matching: ky + ko = ks

@ wi and wy initiated from noise mp
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Qpiteel Perriciite Gssilexer
Optical Parametric Oscillator OPO

Use Optical Parametric Amplification to make a tunable laser

OPA pumped with w3
o Amplifier for wy and wy
o With w1 + wy = w3
@ Phase matching: ky + ko = ks

@ wi and wy initiated from noise

Frequency tunable laser

@ Get Non Linear Medium

o Adjust Cavity for wy and wy

e Pump with w3

@ You got it !
Figure: Optical Parametric Oscillat

(source Cristal Laser)
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Phase matching Phase matching conditions

© Phase matching
@ Phase matching conditions
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Pligee g caifiasis
Colinear (scalar) phase matching

Phase matching for co-propagation waves
@ ki + ko = k3 = wini +wony = w3ng
o for SHG : 2ky = k3 = ny = n3

@
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Pligee g caifiasis
Colinear (scalar) phase matching

Phase matching for co-propagation waves
@ ki + ko = k3 = wini +wony = w3ng
o for SHG : 2ky = k3 = ny = n3

@ The last is never achieved, due to normal dispersion: ny < n3

@
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Pligee g caifiasis
Colinear (scalar) phase matching

Phase matching for co-propagation waves
@ ki + ko = k3 = wini +wony = w3ng
o for SHG : 2ky = k3 = ny = n3
@ The last is never achieved, due to normal dispersion: ny < n3

One and only solution
Use birefringent crystals and different polarizations
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Pligee g caifiasis
Non colinear phase matching

@
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Pligee g caifiasis
Non colinear phase matching

Use clever geometries
With reflections J

@
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Pligee g caifiasis
Non colinear phase matching

Use clever geometries

With reflections
Or even more clever. . .
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@ Phase matching in uni-axial crystals
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Phase matching in uni-axial crystals
SHG Type | Phase Matching

Waves polarization

@ 1 incident wave counts for 2

l
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Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization
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Phase matching in uni-axial crystals
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Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic

@ They must be equal
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic

@ They must be equal

@ Propagate in the right direction
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2
@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic

@ They must be equal

@ Propagate in the right direction

N. Fressengeas (LMOPS)

SHG

ng and ne function of propagation di-
rection: index ellipsoid cross-section
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2
@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic

@ They must be equal

@ Propagate in the right direction
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SHG

ng and ne function of propagation di-
rection: index ellipsoid cross-section
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Phase matching Phase matching in uni-axial crystals

SHG Type | Phase Matching

Waves polarization
@ 1 incident wave counts for 2

@ They share the same
polarization

@ Second Harmonic polarization
is orthogonal

Type | phase matching

@ One refraction index for
Fundamental

@ The other for Second Harmonic

@ They must be equal

@ Propagate in the right direction

N. Fressengeas (LMOPS)

SHG

ng and ne function of propagation di-
rection: index ellipsoid cross-section
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Phase matching Phase matching in uni-axial crystals

SHG Type | phase matching: a few numbers

i

0V
W
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Phase matching Phase matching in uni-axial crystals

SHG Type | phase matching: a few numbers

D

@
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Phase matching in uni-axial crystals
SHG Type | phase matching: a few numbers

K Fundamental index ellipsoid section
1 cos?(8) sin%(9)
HO G

@
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Phase matching in uni-axial crystals
SHG Type | phase matching: a few numbers

N. Fressengeas (LMOPS)

Fundamental index ellipsoid section

1 cos?(8) sin%(9)
RO - m @

Harmonic index ellipsoid section

@
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Phase matching in uni-axial crystals
SHG Type | phase matching: a few numbers

N. Fressengeas (LMOPS)

Fundamental index ellipsoid section

1 _ cos?(6) sin?(0)
() B

Harmonic index ellipsoid section

1 _ 1
n3(0) — A3

Solve the equation

S 2oy _ Bgl—ng
sin“ (0) = T

@
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Phase matching in uni-axial crystals
Type Il phase matching

In the three beam interaction, Type | was
@ Both input beams w1 and wy share the same polarization

@ The generated beam w3 polarization is orthogonal

@
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Phase matching in uni-axial crystals
Type Il phase matching

In the three beam interaction, Type | was
@ Both input beams w1 and wy share the same polarization

@ The generated beam w3 polarization is orthogonal

Another solution : Type Il
@ Input beams polarization are orthogonal

@ Generated beam share one of them

@
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Phase matching in uni-axial crystals
Type Il phase matching

In the three beam interaction, Type | was
@ Both input beams w1 and wy share the same polarization

@ The generated beam w3 polarization is orthogonal

Another solution : Type Il
@ Input beams polarization are orthogonal
@ Generated beam share one of them
@ Not possible for SHG

@
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Phase matching in uni-axial crystals
Type Il phase matching

In the three beam interaction, Type | was
@ Both input beams w1 and wy share the same polarization

@ The generated beam w3 polarization is orthogonal

Another solution : Type Il

@ Input beams polarization are orthogonal
Generated beam share one of them
Not possible for SHG

How is the angle calculated ?

@
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Phase matching in uni-axial crystals
Phase matching in bi-axial crystals

A hard task
@ Phase matching is seldom colinear
@ Vector phase matching in a complex index ellipsoid

o | will let you think on it

B

Wl
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Phase matching Phase matching in uni-axial crystals

Phase matching in bi-axial crystals

A hard task
@ Phase matching is seldom colinear
@ Vector phase matching in a complex index ellipsoid

o | will let you think on it

Paper by Beeuf can help

[3 N. Boeuf, D. Branning, |. Chaperot, E. Dauler, S. Guerin, G. Jaeger,
A. Muller, and A. Migdall.
Calculating characteristics of noncolinear phase matching in uniaxial
and biaxial crystals.
Optical Engineering, 39(4):1016-1024, 2000.

v
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Phase matching Quasi-phase matching

© Phase matching

@ Quasi-phase matching
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Quesi-iliees e
Quasi phase matching in layered media

Periodically Poled Lithium Niobate
@ Periodic Domain Reversal

@ d sign reversal

L
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Quesi-iliees e
Quasi phase matching in layered media

Periodically Poled Lithium Niobate
@ Periodic Domain Reversal

@ d sign reversal ey
Single grating
A—I
i (w3)
Wave solution [agaz .
J

N
i w1) |2 elitkA) _ n (i
2l d] | ECV]; S a IZ(—l) I8k
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Quasi phase matching in layered media
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@ Periodic Domain Reversal

@ d sign reversal ey
Single grating
A—I
i (w3)
Wave solution [agaz .
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N
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Quesi-iliees e
Quasi phase matching in layered media

Periodically Poled Lithium Niobate
@ Periodic Domain Reversal

@ d sign reversal

Wave solution

1w3 3 [d]_/kl ‘ E(wl

2

lAkA 1 Z

n=1

[afa(:s)]j

lAkA)

N. Fressengeas (LMOPS)
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Quesi-iliees e
Quasi phase matching in layered media
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