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Photorefractive effect
History began in 1966 as Optical Damage

Optical Damage in LiNbO3

Shine a light on LiNbO3

Remove it

Shine another : damaged crystal

Semi-permanent effect

Leave it in the dark : still damaged

Leave it under uniform light : sometimes repaired

Today

Photorefractivity can prove useful

Some people still call it optical damage:

Bad for linear optics (electro-optic modulators. . . )
Bad for instant Non Linear Optics (SHG,OPA. . . )
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Photorefractivity is attractive
Non linear optics at low optical power

Non Linear Optics

Dynamic Holography

Phase conjugation

All optical computing

. . .

At milliwatts and below power levels

Observed in many non linear crystals

Sillenites : Bi12SiO20, Bi12TiO20, Bi12GeO20

Tungsten-Bronze : SrxBa1−xNb2O6

Ferroelectrics : LiNbO3, BaTiO3

Semiconductors : InP:Fe, AsGa
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Usefull reading. . .
[Yeh93, GH88, GH89]

P. Günter and J. P. Huignard.
Photorefractive materials and their applications I,
volume 61 of Topics in Applied Physics.
Springer Verlag, Berlin, 1988.

P. Günter and J. P. Huignard.
Photorefractive materials and their applications II,
volume 62 of Topics in Applied Physics.
Springer Verlag, Berlin, 1989.

P. Yeh.
Introduction to photorefractive nonlinear optics.
Wiley Interscience, New York, 1993.
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Photorefractive charge transport and trapping

Linear Index Modulation

Space charge electric field generates refractive index
variation through electro-optic effect
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Periodic illumination of a photorefractive material
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Donors wanted
Carriers are generated by donors: no donors, no carriers

Nominally pure crystals

No in-band-gap level

No donor nor acceptor
No photorefractive effect

Structural defects often present

As well as pollutants

They create in-band-gap levels

Photorefractivity can arise from them

More efficient: doping

Introduce in-band-gap species

LiNbO3:Fe, InP:Fe. . .
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Introducing Donors and Acceptors

Introduce Donors of electrons ND

Energy level close to conduction band

They easily give electrons to conduction band

Introducing Acceptors NA ≪ ND

Photorefractivity needs traps

Ionized donors are traps

Introduce Acceptors close to the valence band

They catch Donors electrons

Donors are partially ionized N+
D = NA
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Thermal carrier generation ne̊
We assume here that the only carriers are electrons. . . what if not?

Comes from temperature induced Brownian motion

Temperature induced

Electrons are kicked into conduction band

Rate proportional to donors-left-to-ionize density

∂ne̊

∂t
= β

(
ND − N+

D

)

One generated electron leaves one ionized donor

∂ne̊

∂t
=

∂N+
D

∂t
= β

(
ND − N+

D

)
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Photo-excitation of carriers
The photoelectric effect at work

Photoelectric effect

Photon energy sufficient to reach conduction band

Rate proportional to light intensity I
And to left-to-ionize donors

Photo-excitation rate

∂ne̊

∂t
=

∂N+
D

∂t
= σI

(
ND − N+

D

)

The photo-ionization cross section σ

Has the dimensions of a surface

If I is given as a number of photon per surface units
and time

Sometimes the case, sometimes not. . .
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Carrier recombination

Recombination needs luck, electrons and empty traps

A luck factor ξ

Carriers density ne̊

Empty trap density N+
D

∂ne̊

∂t
=

∂N+
D

∂t
= −ξne̊N

+
D
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Carriers rate equation
A combination of generation and recombination

A combination of generation and recombination

∂N
+
D

∂t
= (β + σI)

(
ND − N

+
D

)
− ξne̊N

+
D
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Charge transport in the conduction band
An assumption of the Band Transport Model. . . sometimes untrue

Diffusion

Due to Temperature and Brownian motion

Think of it as sugar in water (or coffee)

Depends on concentration variations

Drift under electric-field

Needs electric-field

Externally applied or diffusion generated

Depends on electric field and mobility

Photovoltaic effect

Sometimes called photo-galvanic

Non-isotropic effect

Think of solar cells: light generates current

Depends on light intensity
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Diffusion transport
Diffusion current from Fick’s first law linked to Einstein relation

Fick’s first law Particle flow

−→
Jp = −Dgrad (p)

Einstein relation

Links diffusion, absolute temperature T and Brownian
motion through mobility

Mobility µ is the velocity to electric field ratio

D = µe̊kBT/e

Diffusion Current
−→J = −e

−→
Je̊ = +µe̊kBTgrad (ne̊)
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Drift
A charged particle in an electric field. . .

Electric Field
−→
E

Externally applied

Due to charged carrier diffusion

Drift current

Electrons velocity: −→v = −µe̊

−→
E

Drift Current:
−→J = −e ×−→v

−→J = ene̊µe̊

−→
E
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Photovoltaic current
An non isotropic effect stemming from crystal asymmetry

Origins

Non centro-symmetric crystal e.g. LiNbO3

Anisotropic photo-electric effect

Depends on light polarization

Photovoltaic tensor

Rank 2

Main component along polar axis

Often reduced to a scalar

Photovoltaic Current
[−→J

]

i
=

(
ND − N+

D

) ∑

j ,k

[
βph

]
j ,k

[−→
E

]

j

[−→
E

]

k

−→ui

−→J ≈ βphI
(
ND − N+

D

)−→c
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Band Transport Model
Also known as Kukhtarev model Published in 1979

Ionized donors rate equation

∂N+
D

∂t
= (β + σI)

(
ND − N+

D

)
− ξne̊N

+
D

Current density expression
−→J = µe̊kBTgrad (ne̊) + ene̊µe̊

−→
E + βphI

(
ND − N+

D

)−→c

Quasi-static Maxwell model

Continuity : div
(−→J

)
+ ∂ρ

∂t
= 0

Charge : ρ = e
(
N+

D − N−
A − ne̊

)

Maxwell-Gauss : div
(−→

D
)

= ρ, with
−→
D = ε̂

−→
E
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Refractive index modulation through
electro-optics
Space-charge electric field induces refractive index variations

This is not an electro-optics lesson

Please refer to the electro-optics lesson

Anyhow. . .

Light generated electric field: the space charge field
−→
E

In electro-optic materials : creates index modulation
[
∆ 1

n2

]
i ,j

=
∑

k

[̂r ]ijk

[−→
E

]

k

Local modulation of refractive index

Local modification of refractive index ellipsöıd
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Periodic illumination from plane waves
interference

Two plane waves interfering

Same wavelength and coherent

non collinear wave vectors
−→
k1 and

−→
k2 :

−→
K =

−→
k2 −−→

k1

Interference pattern : I(0)

(
1 + m cos

(−→
K · −→r

))

I(0) = I1 + I2

m = 2
√
I1I2

I1+I2

Harmonic assumptions

m ≪ 1 : intensities are very different

All unknowns are sum of

A large uniform background : order 0
A small harmonic modulation : order 1

Linearity : orders can be uncoupled

Uniform intensity analysis
Followed by small signal analysis
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Simplifying assumptions

One dimension problem 1D

Plane waves interference

All phenomena are collinear to
−→
K

Drift-diffusion transport only assumed

Photovoltaic effect assumed negligible

Photo-generation only assumed

Large intensities: thermal generation can be neglected

Steady state study

All temporal derivatives assumed zero
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Carrier generation–recombination equilibrium

Steady state equilibrium

σI
(
ND − N+

D

)
= ξne̊N

+
D

Uniform electric field
−→
D (0) is homogeneous

div
(−→

D (0)

)
= ρ(0) = 0

N+
D (0) − N−

A − ne̊ (0) = 0

Small illumination

ne̊ ≪ NA

σI ≪ ξNA

Equilibrium homogeneous densities

N+
D (0) = NA + ne̊ (0)

ne̊ (0) = ND−NA

ξNA
σI(0)
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Order 1 framework
Basic multi-scale modeling

All quantities are assumed periodic

div
(−→

X
)

= ı̇
−→
K · −→X

. . .

Order 0 assumed known Order 1 assumed small

∀X , X(1) ≪ X(0)

(X × Y )(1) = X(0)Y(1) + X(1)Y(0)

Order 0 is independently found

Order 1 products is Order 2 : assumed negligible
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Order one charge and current equilibrium

Steady state equilibrium

σI
(
ND − N+

D

)
= ξne̊N

+
D

σI(1)

(
ND − N+

D (0)

)
+ σI(0)

(
−N+

D (1)

)
=

ξne̊ (0)N
+
D (1) + ξne̊ (1)N

+
D (0)

Harmonic Current density
−→J (1) = µe̊kBT ı̇ne̊ (1)

−→
K + eµe̊ne̊ (1)

−→
E (1)

Harmonic Current density divergence is null ı̇
−→
K · −→J = 0

ı̇
−→
K ·

(
µe̊kBT ı̇ne̊ (1)

−→
K + eµe̊ne̊ (1)

−→
E (1)

)
= 0

Harmonic Poisson

ı̇
−→
K ·

(
ε̂ · −→E (1)

)
= e

(
N+

D (1) − ne̊ (1)

)
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Order One Space Charge Field

General Expression

−→
E (1) =

ı̇
−→
K kBT

e
−

−→
K ·µE(0)
−→
K<µ>

1 + ‖
−→
K ‖2

k2
D

+ ı̇ e
kBT

−→
K ·µE(0)

k2
D
<µ>

I(1)

I(0)

Effective permittivity

< ε >=
−→
K ·bε

−→
K

‖
−→
K ‖2

Effective permeability

< µ >=
−→
K ·µ

−→
K

‖
−→
K ‖2

Debye vector kD = 2π
λD

k2
D = e

<ε>
e

kBT
ND

NA
(ND − NA)
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Let’s simplify this complex expression

General Expression

−→
E (1) =

ı̇
−→
K kBT

e

1 + ‖
−→
K ‖2

k2
D

I(1)

I(0)

Simplifying assumptions

Very often
−→
E (1) ‖

−→
K

When no field is applied :
−→
E (0) = 0

Quarter period phase shift between Intensity and
Space-Charge Field gratings
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Space charge field vs. grating spacing
Λ = 2π/‖−→K ‖

Large grating spacing

Small
−→
K

−→
E (1) = ı̇

−→
K kBT

e

I(1)

I(0)

Diffusion field :
−→
Ed =

−→
K kBT

e

Small grating spacing

Large
−→
K

−→
E (1) = ı̇

−→
K kBT

e

k2
D

‖
−→
K ‖2

I(1)

I(0)

Saturation Field :
−→
Eq =

−→
K kBT

e

k2
D

‖
−→
K ‖2
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Space charge field as a function of grating
spacing

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Grating vector, normalized to Debye vector 

Saturation Field

Diffusion Field
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Space charge field with externally applied field

No applied field

−→
E (1) = ı̇

−→
Ed

1 + Ed

Eq

I(1)

I(0)

Applied field
−→
Ea

−→
E (1) = ı̇

−→
Ed

1 + Ed

Eq

[
1 + ı̇ Ea

Ed

1 + ı̇ Ea

Ed+Eq

]
I(1)

I(0)



Photorefractivity
Version 1.2
frame 30

N. Fressengeas

Band Transport

Harmonic
illumination

Harmonic framework

Order 0

Order 1

Simplification and

Consequences

Two Wave Mixing

Applied field effect

Standard approximations

For most gratings and materials : Ed ≪ Eq

Applied field in the middle : Ed ≪ Ea ≪ Eq

In phase1illumination and space charge gratings

−→
E (1) = −

−→
Ea

1 + Ed

Eq

I(1)

I(0)

1Actually, they are π phase shifted. A possible negative sign on the
electro-optic coefficient renders in-phase index and illumination gratings.
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Coupled waves

Two Beam Coupling

In phase intensity and index gratings
Beam interference is destructive, owing to reflection sign reversal
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Coupled waves

Two Beam Coupling

Quarter period shifted gratings
Beam interference is constructive
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Two Beam Coupling

Two waves and a grating

Two waves make an intensity grating

Waves are coherent and same wavelength

Wave vectors are
−→
k1 and

−→
k2

Intensity grating vector is
−→
K =

−→
k2 −−→

k1

Waves amplitudes are Ai =
√
Iie

−ı̇ψi

Index Grating

Assume Ed ≪ Ea ≪ Eq

Index grating ∝ Φ shifted illumination grating

n = n(0) + Re

[
n(1)e

ı̇Φ A1A2

I(0)
e
−→
K ·−→r

]

Φ = π/2 if no applied field and Φ = 0 if field applied
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Assumption framework

Slow Varying Approximation Paraxial Framework

Propagation equation : ∆A + ω2

c2 n2A = 0

SVA: ‖∂2A
∂z2 ‖ ≪ ‖β ∂A

∂z
‖

β such as βz =
−→
k · −→r
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Two Beam Coupling

Co-propagative coupling β1β2 > 0

Conventions

z = 0 : entrance in the photorefractive material

Symmetric coupling : β1 = β2 = ‖−→k ‖ cos (θ)

θ is the half angle between input beams

After Coupled Mode calculations2

∂A1
∂z

= − 1
2I(0)

Γ‖A2‖2A1 − αA1

∂A2
∂z

= − 1
2I(0)

Γ‖A1‖2A2 − αA2

Γ = ı̇
2πn(1)

λ cos(θ)e
−ı̇Φ

α is absorption

2See lessons on Second Harmonic Generation and Optical Phase
Conjugation for details.
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Intensity and phase coupling
Diffusion induces intensity coupling Drift induces phase coupling

Separate Diffusion and Drift influences

Γ = γ + 2ı̇ζ

γ =
2πn(1)

λ cos(θ) sin (Φ) ζ =
πn(1)

λ cos(θ) cos (Φ)

Intensity coupling

∂I1
∂z

= −γ I1I2
I1+I2

− αI1

∂I2
∂z

= +γ I1I2
I1+I2

− αI2

Phase coupling

∂ψ1

∂z
= ζ I2

I1+I2

∂ψ2

∂z
= ζ I1

I1+I2

Energy transfer

For small absorption α, energy is transferred from one
beam to the other

Transfer direction is given by sign of γ
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Coupled waves

Two Beam Coupling

Photorefractive Two Wave Mixing

Coupled Modes Solution

Let m =
I1 (0)

I2 (0)

I1 (z) = I1 (0)
1 + m−1

1 + m−1eγz
e−αz

I2 (z) = I2 (0)
1 + m

1 + me−γz
e−αz
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Coupled waves

Two Beam Coupling

Two Wave Mixing Intensity Coupling
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Two Wave Mixing Intensity Coupling with
Absorption
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